Science.gov

Sample records for climate change adelie

  1. Responding to Climate Change: Adelie Penguins Confront Astronomical and Ocean Boundaries

    NASA Technical Reports Server (NTRS)

    Ballard, Grant; Toniolo, Viola; Ainley, David G.; Parkinson, Claire L.; Arrigo, Kevin R.; Trathan, Phil N.

    2009-01-01

    Long-distance migration enables many organisms to take advantage of lucrative breeding and feeding opportunities during summer at high latitudes and then to move to lower, more temperate latitudes for the remainder of the year. The latitudinal range of the Ad lie penguin spans 22 deg. Penguins from northern colonies may not migrate, but due to the high latitude of Ross Island colonies, these penguins almost certainly undertake the longest migrations for the species. Previous work has suggested that Adelies require both pack ice and some ambient light at all times of year. Over a 3-yr period, which included winters of both extensive and reduced sea ice, we investigated migratory routes and characteristics and wintering locations of Adelie Penguins from two colonies of very different size on Ross Island, Ross Sea, the southernmost colonies for any penguin. We acquired data from 3-16 Geolocation Sensors affixed to penguins each year at both Cape Royds and Cape Crozier in 2003-2005. Migrations averaged 12,760 km, with the longest being 17,600 km, and were in part facilitated by pack ice movement. Trip distances varied annually, but not by colony. Penguins rarely traveled north of the main sea ice pack, and used areas with high sea-ice concentration, ranging from 75-85%, about 500 km inward from the ice edge. They also used locations where there was some twilight (2-7 hr with sun greater than 6 below horizon). We review how Adelie Penguin migration has likely changed since withdrawal of the West Antarctic Ice 35 Sheet across the Ross Sea beginning 12,000 yBP. If sea ice extent in the Ross Sea sector decreases, as predicted by climate models, we can expect change in wintering areas, the location of which ultimately may be limited more by the availability of adequate light for visual foraging than by the availability of suitable pack-ice.

  2. Climate Change

    MedlinePlus

    ... in a place over a period of time. Climate change is major change in temperature, rainfall, snow, or ... by natural factors or by human activities. Today climate changes are occurring at an increasingly rapid rate. Climate ...

  3. Climate Change

    NASA Astrophysics Data System (ADS)

    Cowie, Jonathan

    2001-05-01

    In recent years climate change has become recognised as the foremost environmental problem of the twenty-first century. Not only will climate change potentially affect the multibillion dollar energy strategies of countries worldwide, but it also could seriously affect many species, including our own. A fascinating introduction to the subject, this textbook provides a broad review of past, present and likely future climate change from the viewpoints of biology, ecology and human ecology. It will be of interest to a wide range of people, from students in the life sciences who need a brief overview of the basics of climate science, to atmospheric science, geography, and environmental science students who need to understand the biological and human ecological implications of climate change. It will also be a valuable reference for those involved in environmental monitoring, conservation, policy-making and policy lobbying. The first book to cover not only the human impacts on climate, but how climate change will affect humans and the species that we rely on Written in an accessible style, with specialist terms used only when necessary and thoroughly explained The author has years of experience conveying the views of biological science learned societies to policy-makers

  4. Climate Change: Basic Information

    MedlinePlus

    ... EPA United States Environmental Protection Agency Search Search Climate Change Share Facebook Twitter Google+ Pinterest Contact Us Climate Change: Basic Information On This Page Climate change is ...

  5. Agriculture: Climate Change

    EPA Pesticide Factsheets

    Climate change affects agricultural producers because agriculture and fisheries depend on specific climate conditions. Temperature changes can cause crop planting dates to shift. Droughts and floods due to climate change may hinder farming practices.

  6. Climate Change Schools Project...

    ERIC Educational Resources Information Center

    McKinzey, Krista

    2010-01-01

    This article features the award-winning Climate Change Schools Project which aims to: (1) help schools to embed climate change throughout the national curriculum; and (2) showcase schools as "beacons" for climate change teaching, learning, and positive action in their local communities. Operating since 2007, the Climate Change Schools…

  7. Climate Change Indicators

    EPA Pesticide Factsheets

    Presents information, charts and graphs showing measured climate changes across 40 indicators related to greenhouse gases, weather and climate, oceans, snow and ice, heath and society, and ecosystems.

  8. The Changing Climate.

    ERIC Educational Resources Information Center

    Schneider, Stephen H.

    1989-01-01

    Discusses the global change of climate. Presents the trend of climate change with graphs. Describes mathematical climate models including expressions for the interacting components of the ocean-atmosphere system and equations representing the basic physical laws governing their behavior. Provides three possible responses on the change. (YP)

  9. Cholangiocarcinoma with metastasis in a captive Adelie penguin (Pygoscelis adeliae).

    PubMed

    Renner, M S; Zaias, J; Bossart, G D

    2001-09-01

    A captive male Adelie penguin (Pygoscelis adeliae), wild caught in 1976, died unexpectedly. Necropsy revealed cholangiocarcinoma with metastases to lung, pancreas, mesentery, and cloaca, the first known case of a penguin hepatic tumor.

  10. Financing climate change adaptation.

    PubMed

    Bouwer, Laurens M; Aerts, Jeroen C J H

    2006-03-01

    This paper examines the topic of financing adaptation in future climate change policies. A major question is whether adaptation in developing countries should be financed under the 1992 United Nations Framework Convention on Climate Change (UNFCCC), or whether funding should come from other sources. We present an overview of financial resources and propose the employment of a two-track approach: one track that attempts to secure climate change adaptation funding under the UNFCCC; and a second track that improves mainstreaming of climate risk management in development efforts. Developed countries would need to demonstrate much greater commitment to the funding of adaptation measures if the UNFCCC were to cover a substantial part of the costs. The mainstreaming of climate change adaptation could follow a risk management path, particularly in relation to disaster risk reduction. 'Climate-proofing' of development projects that currently do not consider climate and weather risks could improve their sustainability.

  11. Global Climate Change.

    ERIC Educational Resources Information Center

    Hall, Dorothy K.

    1989-01-01

    Discusses recent changes in the Earth's climate. Summarizes reports on changes related to carbon dioxide, temperature, rain, sea level, and glaciers in polar areas. Describes the present effort to measure the changes. Lists 16 references. (YP)

  12. Our Changing Climate

    ERIC Educational Resources Information Center

    Newhouse, Kay Berglund

    2007-01-01

    In this article, the author discusses how global warming makes the leap from the headlines to the classroom with thought-provoking science experiments. To teach her fifth-grade students about climate change, the author starts with a discussion of the United States' local climate. They extend this idea to contrast the local climate with others,…

  13. Coping with climate change

    USGS Publications Warehouse

    Prato, Tony; Fagre, Daniel B.

    2006-01-01

    Climate is not the only factor in the deterioration of natural systems.We are making big changes to the landscape, altering land use and land cover in major ways. These changes combined present a challenge to environmental management. Adaptive management is a scientific approach to managing the adverse impacts of climate and landscape change.

  14. Communicating Urban Climate Change

    NASA Astrophysics Data System (ADS)

    Snyder, S.; Crowley, K.; Horton, R.; Bader, D.; Hoffstadt, R.; Labriole, M.; Shugart, E.; Steiner, M.; Climate; Urban Systems Partnership

    2011-12-01

    While cities cover only 2% of the Earth's surface, over 50% of the world's people live in urban environments. Precisely because of their population density, cities can play a large role in reducing or exacerbating the global impact of climate change. The actions of cities could hold the key to slowing down climate change. Urban dwellers are becoming more aware of the need to reduce their carbon usage and to implement adaptation strategies. However, messaging around these strategies has not been comprehensive and adaptation to climate change requires local knowledge, capacity and a high level of coordination. Unless urban populations understand climate change and its impacts it is unlikely that cities will be able to successfully implement policies that reduce anthropogenic climate change. Informal and formal educational institutions in urban environments can serve as catalysts when partnering with climate scientists, educational research groups, and public policy makers to disseminate information about climate change and its impacts on urban audiences. The Climate and Urban Systems Partnership (CUSP) is an interdisciplinary network designed to assess and meet the needs and challenges of educating urban audiences about climate change. CUSP brings together organizations in Philadelphia, Pittsburgh, Queens, NY and Washington, DC to forge links with informal and formal education partners, city government, and policy makers. Together this network will create and disseminate learner-focused climate education programs and resources for urban audiences that, while distinct, are thematically and temporally coordinated, resulting in the communication of clear and consistent information and learning experiences about climate science to a wide public audience. Working at a community level CUSP will bring coordinated programming directly into neighborhoods presenting the issues of global climate change in a highly local context. The project is currently exploring a number of

  15. A Hydrographic and CFC Survey on the Adelie Land Shelf

    NASA Astrophysics Data System (ADS)

    Warner, M. J.; Rintoul, S. R.; Tilbrook, B.; Bullister, J. L.; Sonnerup, R. E.

    2008-12-01

    During 16 Dec 07 - 27 Jan 08, a hydrographic survey of the Antarctic shelf adjacent to Adelie Land was carried out as part of the joint Australian programs - Climate of Antarctica and the Southern Ocean (CASO) and Collaborative East Antarctic Marine Census (CEAMARC) - from aboard the RSV Aurora Australis. Over 80 CTD stations were occupied on the shelf or adjacent slope in the region between 139° 13' E and 145° E. In addition to hydrographic parameters, dissolved oxygen and nutrients, CFCs, dissolved inorganic carbon, and total alkalinity were measured at nearly all of these stations. Several features of the CFC distributions stand out in this formation region of Adelie Land Bottom Water (ALBW) and appear to be related to the bathymetry of the shelf. There are two depressions in this region, both deeper than 800 m - one on the western edge of the study region and the other adjacent to the Mertz Glacial Tongue on the eastern side of the study region. Throughout most of the study area, the presence of Highly-Modified Circumpolar Deep Water (HMCDW) is reflected in mid-depth CFC concentration minima. However, HMCDW is not present in the shallower region between the depressions. Beneath the HMCDW, CFC concentrations generally increase towards the seafloor. The bottom water CFC concentrations below 600 m in the easternmost of these basins are 5-10% higher than those of the westernmost depression. The bottom water dissolved oxygen concentrations are also higher by approximately 15 μmol kg-1 in bottom waters of the eastern depression. The circulation in the eastern depression is cyclonic and bottom waters can flow out of the basin through a trough in the shelf break near 143° E. Waters with high CFC concentrations were detected on the downslope side of the trough - indicating that ALBW was being supplied to the deep Australia-Antarctic Basin even during summer. The data from this expedition will be compared to previous CFC measurements from this region over the past

  16. Climate change 2007 - mitigation of climate change

    SciTech Connect

    Metz, B.; Davidson, O.; Bosch, P.; Dave, R.; Meyer, L.

    2007-07-01

    This volume of the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) provides a comprehensive, state-of-the-art and worldwide overview of scientific knowledge related to the mitigation of climate change. It includes a detailed assessment of costs and potentials of mitigation technologies and practices, implementation barriers, and policy options for the sectors: energy supply, transport, buildings, industry, agriculture, forestry and waste management. It links sustainable development policies with climate change practices. This volume will again be the standard reference for all those concerned with climate change. Contents: Foreword; Preface; Summary for policymakers; Technical Summary; 1. Introduction; 2. Framing issues; 3. Issues related to mitigation in the long term context; 4. Energy supply; 5. Transport and its infrastructure; 6. Residential and commercial buildings; 7. Industry; 8. Agriculture; 9. Forestry; 10. Waste management; 11. Mitigation from a cross sectoral perspective; 12. Sustainable development and mitigation; 13. Policies, instruments and co-operative agreements. 300 figs., 50 tabs., 3 annexes.

  17. Climate change and mitigation.

    PubMed

    Nibleus, Kerstin; Lundin, Rickard

    2010-01-01

    Planet Earth has experienced repeated changes of its climate throughout time. Periods warmer than today as well as much colder, during glacial episodes, have alternated. In our time, rapid population growth with increased demand for natural resources and energy, has made society increasingly vulnerable to environmental changes, both natural and those caused by man; human activity is clearly affecting the radiation balance of the Earth. In the session "Climate Change and Mitigation" the speakers offered four different views on coal and CO2: the basis for life, but also a major hazard with impact on Earth's climate. A common denominator in the presentations was that more than ever science and technology is required. We need not only understand the mechanisms for climate change and climate variability, we also need to identify means to remedy the anthropogenic influence on Earth's climate.

  18. What Is Climate Change?

    ERIC Educational Resources Information Center

    Beswick, Adele

    2007-01-01

    Weather consists of those meteorological events, such as rain, wind and sunshine, which can change day-by-day or even hour-by-hour. Climate is the average of all these events, taken over a period of time. The climate varies over different parts of the world. Climate is usually defined as the average of the weather over a 30-year period. It is when…

  19. Cuba confronts climate change.

    PubMed

    Alonso, Gisela; Clark, Ismael

    2015-04-01

    Among environmental problems, climate change presents the greatest challenges to developing countries, especially island nations. Changes in climate and the resulting effects on human health call for examination of the interactions between environmental and social factors. Important in Cuba's case are soil conditions, food availability, disease burden, ecological changes, extreme weather events, water quality and rising sea levels, all in conjunction with a range of social, cultural, economic and demographic conditions.

  20. Climate change and skin.

    PubMed

    Balato, N; Ayala, F; Megna, M; Balato, A; Patruno, C

    2013-02-01

    Global climate appears to be changing at an unprecedented rate. Climate change can be caused by several factors that include variations in solar radiation received by earth, oceanic processes (such as oceanic circulation), plate tectonics, and volcanic eruptions, as well as human-induced alterations of the natural world. Many human activities, such as the use of fossil fuel and the consequent accumulation of greenhouse gases in the atmosphere, land consumption, deforestation, industrial processes, as well as some agriculture practices are contributing to global climate change. Indeed, many authors have reported on the current trend towards global warming (average surface temperature has augmented by 0.6 °C over the past 100 years), decreased precipitation, atmospheric humidity changes, and global rise in extreme climatic events. The magnitude and cause of these changes and their impact on human activity have become important matters of debate worldwide, representing climate change as one of the greatest challenges of the modern age. Although many articles have been written based on observations and various predictive models of how climate change could affect social, economic and health systems, only few studies exist about the effects of this change on skin physiology and diseases. However, the skin is the most exposed organ to environment; therefore, cutaneous diseases are inclined to have a high sensitivity to climate. For example, global warming, deforestation and changes in precipitation have been linked to variations in the geographical distribution of vectors of some infectious diseases (leishmaniasis, lyme disease, etc) by changing their spread, whereas warm and humid environment can also encourage the colonization of the skin by bacteria and fungi. The present review focuses on the wide and complex relationship between climate change and dermatology, showing the numerous factors that are contributing to modify the incidence and the clinical pattern of many

  1. Climate Change: An Activity.

    ERIC Educational Resources Information Center

    Lewis, Garry

    1995-01-01

    Presents a segment of the Geoscience Education booklet, Climate Change, that contains information and activities that enable students to gain a better appreciation of the possible effects human activity has on the Earth's climate. Describes the Terrace Temperatures activity that leads students through an investigation using foraminifera data to…

  2. Climate Change Made Simple

    ERIC Educational Resources Information Center

    Shallcross, Dudley E.; Harrison, Tim G.

    2007-01-01

    The newly revised specifications for GCSE science involve greater consideration of climate change. This topic appears in either the chemistry or biology section, depending on the examination board, and is a good example of "How Science Works." It is therefore timely that students are given an opportunity to conduct some simple climate modelling.…

  3. Global climate change

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1991-01-01

    Present processes of global climate change are reviewed. The processes determining global temperature are briefly described and the concept of effective temperature is elucidated. The greenhouse effect is examined, including the sources and sinks of greenhouse gases.

  4. Climate change and inuits

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    The Inuit Circumpolar Conference will seek a declaration from the Inter-American Commission on Human Rights that emissions of greenhouse gases, which the conference says, are destroying the Inuit way of life, are a violation of human rights, conference chair Sheila Watt-Cloutier announced on 15 December.Her announcement comes shortly after the mid-November release of the Arctic Climate Impact Assessment, a scientific study by an international team of 300 scientists. That assessment noted, “The Arctic is now experiencing some of the most rapid and severe climate change on Earth. Over the next 100 years, climate change is expected to accelerate, contributing to major physical, ecological, social, and economic changes, many of which have already begun. Changes in Arctic climate will also affect the rest of the world through increased global warming and rising sea levels.”

  5. Climate Change and Health

    MedlinePlus

    ... can result in improved health, particularly through reduced air pollution. Climate change Over the last 50 years, human ... carbon emissions, and cut the burden of household air pollution, which causes some 4.3 million deaths per ...

  6. Population and Climate Change

    NASA Astrophysics Data System (ADS)

    O'Neill, Brian C.; Landis MacKellar, F.; Lutz, Wolfgang

    2000-11-01

    Population and Climate Change provides the first systematic in-depth treatment of links between two major themes of the 21st century: population growth (and associated demographic trends such as aging) and climate change. It is written by a multidisciplinary team of authors from the International Institute for Applied Systems Analysis who integrate both natural science and social science perspectives in a way that is comprehensible to members of both communities. The book will be of primary interest to researchers in the fields of climate change, demography, and economics. It will also be useful to policy-makers and NGOs dealing with issues of population dynamics and climate change, and to teachers and students in courses such as environmental studies, demography, climatology, economics, earth systems science, and international relations.

  7. Climate Change Adaptation Training

    EPA Pesticide Factsheets

    A list of on-line training modules to help local government officials and those interested in water management issues better understand how the changing climate affects the services and resources they care about

  8. Creationism & Climate Change (Invited)

    NASA Astrophysics Data System (ADS)

    Newton, S.

    2009-12-01

    Although creationists focus on the biological sciences, recently creationists have also expanded their attacks to include the earth sciences, especially on the topic of climate change. The creationist effort to deny climate change, in addition to evolution and radiometric dating, is part of a broader denial of the methodology and validity of science itself. Creationist misinformation can pose a serious problem for science educators, who are further hindered by the poor treatment of the earth sciences and climate change in state science standards. Recent changes to Texas’ science standards, for example, require that students learn “different views on the existence of global warming.” Because of Texas’ large influence on the national textbook market, textbooks presenting non-scientific “different views” about climate change—or simply omitting the subject entirely because of the alleged “controversy”—could become part of K-12 classrooms across the country.

  9. Global Climatic Change.

    ERIC Educational Resources Information Center

    Houghton, Richard A.; Woodwell, George M.

    1989-01-01

    Cites some of the evidence which suggests that the production of carbon dioxide and methane from human activities has begun to change the climate. Describes some measures which should be taken to stop or slow this progression. (RT)

  10. Criminality and climate change

    NASA Astrophysics Data System (ADS)

    White, Rob

    2016-08-01

    The impacts of climate change imply a reconceptualization of environment-related criminality. Criminology can offer insight into the definitions and dynamics of this behaviour, and outline potential areas of redress.

  11. Rapid climate change

    SciTech Connect

    Morantine, M.C.

    1995-12-31

    Interactions between insolation changes due to orbital parameter variations, carbon dioxide concentration variations, the rate of deep water formation in the North Atlantic and the evolution of the northern hemisphere ice sheets during the most recent glacial cycle will be investigated. In order to investigate this period, a climate model is being developed to evaluate the physical mechanisms thought to be most significant during this period. The description of the model sub-components will be presented. The more one knows about the interactions between the sub-components of the climate system during periods of documented rapid climate change, the better equipped one will be to make rational decisions on issues related to impacts on the environment. This will be an effort to gauge the feedback processes thought to be instrumental in rapid climate shifts documented in the past, and their potential to influence the current climate. 53 refs.

  12. Global climatic change

    SciTech Connect

    Houghton, R.A.; Woodwell, G.M.

    1989-04-01

    This paper reviews the climatic effects of trace gases such as carbon dioxide and methane. It discusses the expected changes from the increases in trace gases and the extent to which the expected changes can be found in the climate record and in the retreat of glaciers. The use of ice cores in correlating atmospheric composition and climate is discussed. The response of terrestrial ecosystems as a biotic feedback is discussed. Possible responses are discussed, including reduction in fossil-fuel use, controls on deforestation, and reforestation. International aspects, such as the implications for developing nations, are addressed.

  13. Observed climate change hotspots

    NASA Astrophysics Data System (ADS)

    Turco, M.; Palazzi, E.; Hardenberg, J.; Provenzale, A.

    2015-05-01

    We quantify climate change hotspots from observations, taking into account the differences in precipitation and temperature statistics (mean, variability, and extremes) between 1981-2010 and 1951-1980. Areas in the Amazon, the Sahel, tropical West Africa, Indonesia, and central eastern Asia emerge as primary observed hotspots. The main contributing factors are the global increase in mean temperatures, the intensification of extreme hot-season occurrence in low-latitude regions and the decrease of precipitation over central Africa. Temperature and precipitation variability have been substantially stable over the past decades, with only a few areas showing significant changes against the background climate variability. The regions identified from the observations are remarkably similar to those defined from projections of global climate models under a "business-as-usual" scenario, indicating that climate change hotspots are robust and persistent over time. These results provide a useful background to develop global policy decisions on adaptation and mitigation priorities over near-time horizons.

  14. Managing climate change refugia for climate adaptation

    USGS Publications Warehouse

    Morelli, Toni; Jackson, Stephen T.

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change.

  15. Managing Climate Change Refugia for Climate Adaptation

    PubMed Central

    Daly, Christopher; Dobrowski, Solomon Z.; Dulen, Deanna M.; Ebersole, Joseph L.; Jackson, Stephen T.; Lundquist, Jessica D.; Millar, Constance I.; Maher, Sean P.; Monahan, William B.; Nydick, Koren R.; Redmond, Kelly T.; Sawyer, Sarah C.; Stock, Sarah; Beissinger, Steven R.

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change. PMID:27509088

  16. Managing Climate Change Refugia for Climate Adaptation.

    PubMed

    Morelli, Toni Lyn; Daly, Christopher; Dobrowski, Solomon Z; Dulen, Deanna M; Ebersole, Joseph L; Jackson, Stephen T; Lundquist, Jessica D; Millar, Constance I; Maher, Sean P; Monahan, William B; Nydick, Koren R; Redmond, Kelly T; Sawyer, Sarah C; Stock, Sarah; Beissinger, Steven R

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change.

  17. Poverty and Climate Change

    NASA Astrophysics Data System (ADS)

    van der Vink, G.; Franco, E.; Fuckar, N. S.; Kalmbach, E. R.; Kayatta, E.; Lankester, K.; Rothschild, R. E.; Sarma, A.; Wall, M. L.

    2008-05-01

    The poor are disproportionately vulnerable to environmental change because they have the least amount of resources with which to adapt, and they live in areas (e.g. flood plains, low-lying coastal areas, and marginal drylands) that are particularly vulnerable to the manifestations of climate change. By quantifying the various environmental, economic, and social factors that can contribute to poverty, we identify populations that are most vulnerable to poverty and poverty traps due to environmental change. We define vulnerability as consisting of risk (probability of event and exposed elements), resiliency, and capacity to respond. Resiliency captures the social system's ability to absorb a natural disaster while retaining the same basic structure, organization, and ways of functioning, as well as its general capacity to adapt to stress and change. Capacity to respond is a surrogate for technical skills, institutional capabilities, and efficacy within countries and their economies. We use a "climate change multiplier" to account for possible increases in the frequency and severity of natural events due to climate change. Through various analytical methods, we quantify the social, political, economic, and environmental factors that contribute to poverty or poverty traps. These data sets are then used to determine vulnerability through raster multiplication in geospatial analysis. The vulnerability of a particular location to climate change is then mapped, with areas of high vulnerability clearly delineated. The success of this methodology indicates that it is indeed possible to quantify the effects of climate change on global vulnerability to natural disasters, and can be used as a mechanism to identify areas where proactive measures, such as improving adaptation or capacity to respond, can reduce the humanitarian and economic impacts of climate change.

  18. Current Climate Variability & Change

    NASA Astrophysics Data System (ADS)

    Diem, J.; Criswell, B.; Elliott, W. C.

    2013-12-01

    Current Climate Variability & Change is the ninth among a suite of ten interconnected, sequential labs that address all 39 climate-literacy concepts in the U.S. Global Change Research Program's Climate Literacy: The Essential Principles of Climate Sciences. The labs are as follows: Solar Radiation & Seasons, Stratospheric Ozone, The Troposphere, The Carbon Cycle, Global Surface Temperature, Glacial-Interglacial Cycles, Temperature Changes over the Past Millennium, Climates & Ecosystems, Current Climate Variability & Change, and Future Climate Change. All are inquiry-based, on-line products designed in a way that enables students to construct their own knowledge of a topic. Questions representative of various levels of Webb's depth of knowledge are embedded in each lab. In addition to the embedded questions, each lab has three or four essential questions related to the driving questions for the lab suite. These essential questions are presented as statements at the beginning of the material to represent the lab objectives, and then are asked at the end as questions to function as a summative assessment. For example, the Current Climate Variability & Change is built around these essential questions: (1) What has happened to the global temperature at the Earth's surface, in the middle troposphere, and in the lower stratosphere over the past several decades?; (2) What is the most likely cause of the changes in global temperature over the past several decades and what evidence is there that this is the cause?; and (3) What have been some of the clearly defined effects of the change in global temperature on the atmosphere and other spheres of the Earth system? An introductory Prezi allows the instructor to assess students' prior knowledge in relation to these questions, while also providing 'hooks' to pique their interest related to the topic. The lab begins by presenting examples of and key differences between climate variability (e.g., Mt. Pinatubo eruption) and

  19. Avoiding dangerous climate change

    SciTech Connect

    Hans Joachim Schellnhuber; Wolfgang Cramer; Nebojsa Nakicenovic; Tom Wigley; Gary Yohe

    2006-02-15

    In 2005 the UK Government hosted the Avoiding Dangerous Climate Change conference to take an in-depth look at the scientific issues associated with climate change. This volume presents the most recent findings from the leading international scientists that attended the conference. The topics addressed include critical thresholds and key vulnerabilities of the climate system, impacts on human and natural systems, socioeconomic costs and benefits of emissions pathways, and technological options for meeting different stabilisation levels of greenhouse gases in the atmosphere. Contents are: Foreword from Prime Minister Tony Blair; Introduction from Rajendra Pachauri, Chairman of the IPCC; followed by 41 papers arranged in seven sections entitled: Key Vulnerabilities of the Climate System and Critical Thresholds; General Perspectives on Dangerous Impacts; Key Vulnerabilities for Ecosystems and Biodiversity; Socio-Economic Effects; Regional Perspectives; Emission Pathways; and Technological Options. Four papers have been abstracted separately for the Coal Abstracts database.

  20. Debating Climate Change

    SciTech Connect

    Malone, Elizabeth L.

    2009-11-01

    Debating Climate Change explores, both theoretically and empirically, how people argue about climate change and link to each other through various elements in their arguments. As science is a central issue in the debate, the arguments of scientists and the interpretations and responses of non-scientists are important aspects of the analysis. The book first assesses current thinking about the climate change debate and current participants in the debates surrounding the issue, as well as a brief history of various groups’ involvements. Chapters 2 and 3 distill and organize various ways of framing the climate change issue. Beginning in Chapter 4, a modified classical analysis of the elements carried in an argument is used to identify areas and degrees of disagreement and agreement. One hundred documents, drawn from a wide spectrum of sources, map the topic and debate space of the climate change issue. Five elements of each argument are distilled: the authority of the writer, the evidence presented, the formulation of the argument, the worldview presented, and the actions proposed. Then a social network analysis identifies elements of the arguments that point to potential agreements. Finally, the book suggests mechanisms by which participants in the debate can build more general agreements on elements of existing agreement.

  1. Predicting climate change

    SciTech Connect

    Drake, J.B.

    1995-12-31

    Few scientific topics evoke such general interests and public discussion as climate change. It is a subject that has been highly politicized. New results enter the environmental debate as evidence supporting a position. Usually the qualifiers, the background, and perspective needed to understand the result have been stripped away to form an appropriate sound bite. The attention is understandable given the importance of climate to agriculture and energy use. Fear of global warming and the greenhouse effect has been justification for reducing the use of fossil fuels and increasing use of nuclear energy and alternative energy sources. It has been suggested to avoid climate change, a return to a preindustrial level of emissions is necessary. The subject of this article is not the policy implications of greenhouse warming, or even the validity of the premise that global warming caused by the greenhouse effect is occurring. The subject is the current array of concepts and tools available to understand and predict the earth`s climate based on mathematical models of physical processes. These tools for climate simulations include some of the world`s most powerful computers, including the Intel Paragon XP/S 150 at ORNL. With these tools, the authors are attempting to predict the climate changes that may occur 100 years from now for different temperatures of the earth`s surface that will likely result from rising levels of carbon dioxide in the atmosphere.

  2. Climate Change: Good for Us?

    ERIC Educational Resources Information Center

    Oblak, Jackie

    2000-01-01

    Presents an activity with the objective of encouraging students to think about the effects of climate change. Explains background information on dependence to climate and discuses whether climate change is important. Provides information for the activity, extensions, and evaluation. (YDS)

  3. Managing Climate Change Refugia for Climate Adaptation

    EPA Science Inventory

    The concept of refugia has long been studied from theoretical and paleontological perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change ref...

  4. Climate change matters.

    PubMed

    Macpherson, Cheryl Cox

    2014-04-01

    One manifestation of climate change is the increasingly severe extreme weather that causes injury, illness and death through heat stress, air pollution, infectious disease and other means. Leading health organisations around the world are responding to the related water and food shortages and volatility of energy and agriculture prices that threaten health and health economics. Environmental and climate ethics highlight the associated challenges to human rights and distributive justice but rarely address health or encompass bioethical methods or analyses. Public health ethics and its broader umbrella, bioethics, remain relatively silent on climate change. Meanwhile global population growth creates more people who aspire to Western lifestyles and unrestrained socioeconomic growth. Fulfilling these aspirations generates more emissions; worsens climate change; and undermines virtues and values that engender appreciation of, and protections for, natural resources. Greater understanding of how virtues and values are evolving in different contexts, and the associated consequences, might nudge the individual and collective priorities that inform public policy toward embracing stewardship and responsibility for environmental resources necessary to health. Instead of neglecting climate change and related policy, public health ethics and bioethics should explore these issues; bring transparency to the tradeoffs that permit emissions to continue at current rates; and offer deeper understanding about what is at stake and what it means to live a good life in today's world.

  5. Climate change and forests.

    PubMed

    Gates, David M.

    1990-12-01

    Factors governing long-term change in global temperature are reviewed. The magnitude and rate of change in global temperature resulting from current increases in the concentration of atmospheric greenhouse gases are considered in relation to their impact on forests. Movement in forest zone boundaries at a rate of 2.5 km year(-1) are possible, which is nearly ten times the rate forests have been known to move by natural reproduction. Climate models indicate that increased global temperature will affect rainfall distribution, lead to more frequent and more severe storms and increase climatic variability. Consequences for the world's forests include increased frequencies of fire and blow-down, and wide-spread decline. Increased atmospheric CO(2) concentrations may increase forest growth where the effect is not offset by reduced precipitation, but the overall effect of anticipated changes in global climate is likely to be widespread loss of forests.

  6. Climate-change scenarios

    USGS Publications Warehouse

    Wagner, F.H.; Stohlgren, T.J.; Baldwin, C.K.; Mearns, L.O.; Wagner, F.H.

    2003-01-01

    In 1991, the United States Congress passed the Global Change Research Act directing the Executive Branch of government to assess the potential effects of predicted climate change and variability on the nation. This congressional action followed formation of the Intergovernmental Panel on Climate Change (IPCC) in 1988 by the United Nations Environmental Program and World Meteorological Organization. Some 2,000 scientists from more than 150 nations contribute to the efforts of the IPCC. Under coordination of the U.S. Global Change Research Program, the congressionally ordered national assessment has divided the country into 19 regions and five socio-economic sectors that cut across the regions: agriculture, coastal and marine systems, forests, human health, and water. Potential climate-change effects are being assessed in each region and sector, and those efforts collectively make up the national assessment. This document reports the assessment of potential climate-change effects on the Rocky Mountain/Great Basin (RMGB) region which encompasses parts of nine western states. The assessment began February 16-18, 1998 with a workshop in Salt Lake City co-convened by Frederic H. Wagner of Utah State University and Jill Baron of the U.S. Geological Survey Biological Resources Division (BRD). Invitations were sent to some 300 scientists and stakeholders representing 18 socio-economic sectors in nine statesa?|

  7. [Lifestyle and climate change].

    PubMed

    Lidegaard, Øjvind

    2009-10-26

    The majority of physicians are aware of the urgency of preventing major global warming, and of the global health consequences such warming could bring. Therefore, we should perhaps be more motivated to mitigate these climate changes. The Danish Medical Association should stress the importance of preventing major global climate health disasters, and the need for ambitious international reduction agreements. In our advice and treatment of patients, focus could be on mutually shared strategies comprising mitigation of global warming and changing of life-style habits to improve our general health.

  8. Climate change, climate variability and brucellosis.

    PubMed

    Rodríguez-Morales, Alfonso J

    2013-04-01

    In addition to natural climate variability observed over comparable time periods, climate change is attributed directly or indirectly to human activity, altering the composition of global atmosphere. This phenomenon continues to be a significant and global threat for the humankind, and its impact compromises many aspects of the society at different levels, including health. The impact of climate change on zoonotic diseases has been largely ignored, particularly brucellosis. We here review some direct and indirect evidences of the impact of climate change and climate variability on brucellosis.

  9. Climate change and amphibians

    USGS Publications Warehouse

    Corn, P.S.

    2005-01-01

    Amphibian life histories are exceedingly sensitive to temperature and precipitation, and there is good evidence that recent climate change has already resulted in a shift to breeding earlier in the year for some species. There are also suggestions that the recent increase in the occurrence of El Niño events has caused declines of anurans in Central America and is linked to elevated mortality of amphibian embryos in the northwestern United States. However, evidence linking amphibian declines in Central America to climate relies solely on correlations, and the mechanisms underlying the declines are not understood. Connections between embryo mortality and declines in abundance have not been demonstrated. Analyses of existing data have generally failed to find a link between climate and amphibian declines. It is likely, however, that future climate change will cause further declines of some amphibian species. Reduced soil moisture could reduce prey species and eliminate habitat. Reduced snowfall and increased summer evaporation could have dramatic effects on the duration or occurrence of seasonal wetlands, which are primary habitat for many species of amphibians. Climate change may be a relatively minor cause of current amphibian declines, but it may be the biggest future challenge to the persistence of many species

  10. Climate for Change

    NASA Astrophysics Data System (ADS)

    Newell, Peter

    2000-09-01

    This volume provides a challenging explanation of the forces that have shaped the international global warming debate. It takes a novel approach to the subject by concentrating on the ways non-state actors--such as scientific, environmental and industry groups, as opposed to governmental organizations--affect political outcomes in global fora on climate change. It also provides insights into the role of the media in influencing the agenda. The book draws on a range of analytical approaches to assess and explain the influence of these nongovernmental organizations on the course of global climate politics. The book will be of interest to all researchers and policy makers associated with climate change, and will be used in university courses in international relations, politics, and environmental studies.

  11. Climate change velocity underestimates climate change exposure in mountainous regions

    PubMed Central

    Dobrowski, Solomon Z.; Parks, Sean A.

    2016-01-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not quantify the extent to which trajectories traverse areas of dissimilar climate. Here we calculate velocity and minimum cumulative exposure (MCE) in degrees Celsius along climate trajectories for North America. We find that velocity is weakly related to MCE; each metric identifies contrasting areas of vulnerability to climate change. Notably, velocity underestimates exposure in mountainous regions where climate trajectories traverse dissimilar climates, resulting in high MCE. In contrast, in flat regions velocity is high where MCE is low, as these areas have negligible climatic resistance to movement. Our results suggest that mountainous regions are more climatically isolated than previously reported. PMID:27476545

  12. Climate change velocity underestimates climate change exposure in mountainous regions

    NASA Astrophysics Data System (ADS)

    Dobrowski, Solomon Z.; Parks, Sean A.

    2016-08-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not quantify the extent to which trajectories traverse areas of dissimilar climate. Here we calculate velocity and minimum cumulative exposure (MCE) in degrees Celsius along climate trajectories for North America. We find that velocity is weakly related to MCE; each metric identifies contrasting areas of vulnerability to climate change. Notably, velocity underestimates exposure in mountainous regions where climate trajectories traverse dissimilar climates, resulting in high MCE. In contrast, in flat regions velocity is high where MCE is low, as these areas have negligible climatic resistance to movement. Our results suggest that mountainous regions are more climatically isolated than previously reported.

  13. Thermoregulation, gas exchange, and ventilation in Adelie penguins (Pygoscelis adeliae).

    PubMed

    Chappell, M A; Souza, S L

    1988-01-01

    Adelie penguins (Pygoscelis adeliae) experience a wide range of ambient temperatures (Ta) in their natural habitat. We examined body temperature (Tb), oxygen consumption (VO2), carbon dioxide production (VCO2), evaporative water loss (mH2O), and ventilation at Ta from -20 to 30 degrees C. Body temperature did not change significantly between -20 and 20 degrees C (mean Tb = 39.3 degrees C). Tb increased slightly to 40.1 degrees C at Ta = 30 degrees C. Both VO2 and VCO2 were constant and minimal at Ta between -10 and 20 degrees C, with only minor increases at -20 and 30 degrees C. The minimal VO2 of adult penguins (mean mass 4.007 kg) was 0.0112 ml/[g.min], equivalent to a metabolic heat production (MHP) of 14.9 Watt. The respiratory exchange ratio was approximately 0.7 at all Ta. Values of mH2O were low at low Ta, but increased to 0.21 g/min at 30 degrees C, equivalent to 0.3% of body mass/h. Dry conductance increased 3.5-fold between -20 and 30 degrees C. Evaporative heat loss (EHL) comprised about 5% of MHP at low Ta, rising to 47% of MHP at Ta = 30 degrees C. The means of ventilation parameters (tidal volume [VT], respiration frequency [f], minute volume [VI], and oxygen extraction [EO2]) were fairly stable between -20 and 10 degrees C (VT did not change significantly over the entire Ta range). However, there was considerable inter- and intra-individual variation in ventilation patterns. At Ta = 20-30 degrees C, f increased 7-fold over the minimal value of 7.6 breaths/min, and VI showed a similar change.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Climate Change? When? Where?

    ERIC Educational Resources Information Center

    Boon, Helen

    2009-01-01

    Regional Australian students were surveyed to explore their understanding and knowledge of the greenhouse effect, ozone depletion and climate change. Results were compared with a parallel study undertaken in 1991 in a regional UK city. The comparison was conducted to investigate whether more awareness and understanding of these issues is…

  15. Confronting Climate Change

    ERIC Educational Resources Information Center

    Roach, Ronald

    2009-01-01

    The Joint Center for Political and Economic Studies, an African-American think tank based in Washington, D.C., convenes a commission to focus on the disparate impact of climate change on minority communities and help involve historically Black institutions in clean energy projects. Launched formally in July 2008, the Commission to Engage…

  16. Learning Progressions & Climate Change

    ERIC Educational Resources Information Center

    Parker, Joyce M.; de los Santos, Elizabeth X.; Anderson, Charles W.

    2015-01-01

    Our society is currently having serious debates about sources of energy and global climate change. But do students (and the public) have the requisite knowledge to engage these issues as informed citizenry? The learning-progression research summarized here indicates that only 10% of high school students typically have a level of understanding…

  17. Emissions versus climate change

    EPA Science Inventory

    Climate change is likely to offset some of the improvements in air quality expected from reductions in pollutant emissions. A comprehensive analysis of future air quality over North America suggests that, on balance, the air will still be cleaner in coming decades.

  18. USDA Southwest climate hub for climate change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA Southwest (SW) Climate Hub was created in February 2014 to develop risk adaptation and mitigation strategies for coping with climate change effects on agricultural productivity. There are seven regional hubs across the country with three subsidiary hubs. The SW Climate Hub Region is made up...

  19. Climate change in Iceland

    NASA Astrophysics Data System (ADS)

    Snorrason, A.; Bjornsson, H.

    2010-12-01

    The sub-polar maritime climate of Iceland is characterized by relatively large inter-decadal variations. Temperature measurements and climate related proxies show that the 19th century was colder and more variable than the 20th century. Iceland experienced rapid warming in the 1920s and relatively mild conditions prevailed until the 1960s, when colder conditions set in. In recent decades Iceland has again experienced significant warming and early this century the temperatures exceeded those attained during the mid 20th century warm period. The recent warming has been accompanied by significant changes in both physical and biological systems. These include glacier retreat, runoff changes and isostatic rebound, increased plant productivity and changes in tree-limits. In the coastal waters the range of fish species is changing reflecting warmer conditions.

  20. Challenges of climate change

    PubMed Central

    Husaini, Amjad M

    2014-01-01

    Kashmir valley is a major saffron (Crocus sativus Kashmirianus) growing area of the world, second only to Iran in terms of production. In Kashmir, saffron is grown on uplands (termed in the local language as “Karewas”), which are lacustrine deposits located at an altitude of 1585 to 1677 m above mean sea level (amsl), under temperate climatic conditions. Kashmir, despite being one of the oldest historical saffron-producing areas faces a rapid decline of saffron industry. Among many other factors responsible for decline of saffron industry the preponderance of erratic rainfalls and drought-like situation have become major challenges imposed by climate change. Saffron has a limited coverage area as it is grown as a ‘niche crop’ and is a recognized “geographical indication,” growing under a narrow microclimatic condition. As such it has become a victim of climate change effects, which has the potential of jeopardizing the livelihood of thousands of farmers and traders associated with it. The paper discusses the potential and actual impact of climate change process on saffron cultivation in Kashmir; and the biotechnological measures to address these issues. PMID:25072266

  1. Hantaviruses and climate change.

    PubMed

    Klempa, B

    2009-06-01

    Most hantaviruses are rodent-borne emerging viruses. They cause two significant human diseases, haemorrhagic fever with renal syndrome in Asia and Europe, and hantavirus cardiopulmonary syndrome in the Americas. Very recently, several novel hantaviruses with unknown pathogenic potential have been identified in Africa and in a variety of insectivores (shrews and a mole). Because there is very limited information available on the possible impact of climate change on all of these highly dangerous pathogens, it is timely to review this aspect of their epidemiology. It can reasonably be concluded that climate change should influence hantaviruses through impacts on the hantavirus reservoir host populations. We can anticipate changes in the size and frequency of hantavirus outbreaks, the spectrum of hantavirus species and geographical distribution (mediated by changes in population densities), and species composition and geographical distribution of their reservoir hosts. The early effects of global warming have already been observed in different geographical areas of Europe. Elevated average temperatures in West-Central Europe have been associated with more frequent Puumala hantavirus outbreaks, through high seed production (mast year) and high bank vole densities. On the other hand, warm winters in Scandinavia have led to a decline in vole populations as a result of the missing protective snow cover. Additional effects can be caused by increased intensity and frequency of extreme climatic events, or by changes in human behaviour leading to higher risk of human virus exposure. Regardless of the extent of climate change, it is difficult to predict the impact on hantavirus survival, emergence and epidemiology. Nevertheless, hantaviruses will undoubtedly remain a significant public health threat for several decades to come.

  2. Managing Climate Change Refugia for Climate Adaptation ...

    EPA Pesticide Factsheets

    The concept of refugia has long been studied from theoretical and paleontological perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, locations that may be unusually buffered from climate change effects so as to increase persistence of valued resources. Here we distinguish between paleoecological and contemporary viewpoints, characterize physical and ecological processes that create and maintain climate change refugia, summarize the process of identifying and mapping them, and delineate how refugia can fit into the existing framework of natural resource management. We also suggest three primary courses of action at these sites: prioritization, protection, and propagation. Although not a panacea, managing climate change refugia can be an important adaptation option for conserving valuable resources in the face of ongoing and future climate change. “In a nutshell” (100 words) • Climate change refugia are defined as areas relatively buffered from contemporary climate change, enabling persistence of valued physical, ecological, and cultural resources. • Refugia can be incorporated as key components of a climate adaptation strategy because their prioritization by management may enable their associated resources to persist locally and eventually spread to future suitable habitat. • Steps for

  3. Projections of Future Climate Change

    SciTech Connect

    Cubasch, U.; Meehl , G.; Boer, G. J.; Stouffer, Ron; Dix, M.; Noda, A.; Senior, C. A.; Raper, S.; Yap, K. S.; Abe-Ouchi, A.; Brinkop, S.; Claussen, M.; Collins, M.; Evans, J.; Fischer-Bruns, I.; Flato, G.; Fyfe, J. C.; Ganopolski, A.; Gregory, J. M.; Hu, Z. Z.; Joos, Fortunat; Knutson, T.; Knutti, R.; Landsea, C.; Mearns, L. O.; Milly, C.; Mitchell, J. F.; Nozawa, T.; Paeth, H.; Raisanen, J.; Sausen, R.; Smith, Steven J.; Stocker, T.; Timmermann, A.; Ulbrich, U.; Weaver, A.; Wegner, J.; Whetton, P.; Wigley, T. M.; Winton, M.; Zwiers, F.; Kim, J. W.; Stone, J.

    2001-10-01

    Contents: Executive Summary 9.1 Introduction 9.2 Climate and Climate Change 9.3 Projections of Climate Change 9.4 General Summary Appendix 9.1: Tuning of a Simple Climate Model toAOGCM Results References

  4. Perception of climate change.

    PubMed

    Hansen, James; Sato, Makiko; Ruedy, Reto

    2012-09-11

    "Climate dice," describing the chance of unusually warm or cool seasons, have become more and more "loaded" in the past 30 y, coincident with rapid global warming. The distribution of seasonal mean temperature anomalies has shifted toward higher temperatures and the range of anomalies has increased. An important change is the emergence of a category of summertime extremely hot outliers, more than three standard deviations (3σ) warmer than the climatology of the 1951-1980 base period. This hot extreme, which covered much less than 1% of Earth's surface during the base period, now typically covers about 10% of the land area. It follows that we can state, with a high degree of confidence, that extreme anomalies such as those in Texas and Oklahoma in 2011 and Moscow in 2010 were a consequence of global warming because their likelihood in the absence of global warming was exceedingly small. We discuss practical implications of this substantial, growing, climate change.

  5. Outchasing climate change

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Pygmy possums, monarch butterflies, spoon-billed sandpipers, and a number of trees and other plants could be among the species unable to migrate fast enough to new habitat in the face of potential global climate changes, according to an August 30 report by the Switzerland-based World Wide Fund for Nature (WWF) and the U.S. based Clean-Air-Cool Planet (CACP), two conservation organizations.

  6. Climate change and disaster management.

    PubMed

    O'Brien, Geoff; O'Keefe, Phil; Rose, Joanne; Wisner, Ben

    2006-03-01

    Climate change, although a natural phenomenon, is accelerated by human activities. Disaster policy response to climate change is dependent on a number of factors, such as readiness to accept the reality of climate change, institutions and capacity, as well as willingness to embed climate change risk assessment and management in development strategies. These conditions do not yet exist universally. A focus that neglects to enhance capacity-building and resilience as a prerequisite for managing climate change risks will, in all likelihood, do little to reduce vulnerability to those risks. Reducing vulnerability is a key aspect of reducing climate change risk. To do so requires a new approach to climate change risk and a change in institutional structures and relationships. A focus on development that neglects to enhance governance and resilience as a prerequisite for managing climate change risks will, in all likelihood, do little to reduce vulnerability to those risks.

  7. [Keynote address: Climate change

    SciTech Connect

    Forrister, D.

    1994-12-31

    Broadly speaking, the climate issue is moving from talk to action both in the United States and internationally. While few nations have adopted strict controls or stiff new taxes, a number of them are developing action plans that are making clear their intention to ramp up activity between now and the year 2000... and beyond. There are sensible, economically efficient strategies to be undertaken in the near term that offer the possibility, in many countries, to avoid more draconian measures. These strategies are by-and-large the same measures that the National Academy of Sciences recommended in a 1991 report called, Policy Implications of Greenhouse Warming. The author thinks the Academy`s most important policy contribution was how it recommended the nations act in the face of uncertain science and high risks--that cost effective measures are adopted as cheap insurance... just as nations insure against other high risk, low certainty possibilities, like catastrophic health insurance, auto insurance, and fire insurance. This insurance theme is still right. First, the author addresses how the international climate change negotiations are beginning to produce insurance measures. Next, the author will discuss some of the key issues to watch in those negotiations that relate to longer-term insurance. And finally, the author will report on progress in the United States on the climate insurance plan--The President`s Climate Action Plan.

  8. Climate changes, shifting ranges

    USGS Publications Warehouse

    Romanach, Stephanie

    2015-01-01

    Even a fleeting mention of the Everglades conjures colorful images of alligators, panthers, flamingos, and manatees. Over the centuries, this familiar cast of characters has become synonymous with life in south Florida. But the workings of a changing climate have the potential to significantly alter the menagerie of animals that call this area home. Global projections suggest south Florida wildlife will need to contend with higher temperatures, drier conditions, and rising seas in the years ahead. Recent modeling efforts shed new light on the potential outcomes these changes may have for threatened and endangered species in the area.

  9. Climate Change and Health Factsheets

    EPA Pesticide Factsheets

    The fact sheets on this page show examples of how climate change can affect your health at different stages of your life, and highlight the health impacts of climate change for certain populations of concern.

  10. Designing Global Climate Change

    NASA Astrophysics Data System (ADS)

    Griffith, P. C.; ORyan, C.

    2012-12-01

    In a time when sensationalism rules the online world, it is best to keep things short. The people of the online world are not passing back and forth lengthy articles, but rather brief glimpses of complex information. This is the target audience we attempt to educate. Our challenge is then to attack not only ignorance, but also apathy toward global climate change, while conforming to popular modes of learning. When communicating our scientific material, it was difficult to determine what level of information was appropriate for our audience, especially with complex subject matter. Our unconventional approach for communicating the carbon crisis as it applies to global climate change caters to these 'recreational learners'. Using story-telling devices acquired from Carolyne's biomedical art background coupled with Peter's extensive knowledge of carbon cycle and ecosystems science, we developed a dynamic series of illustrations that capture the attention of a callous audience. Adapting complex carbon cycle and climate science into comic-book-style animations creates a channel between artist, scientist, and the general public. Brief scenes of information accompanied by text provide a perfect platform for visual learners, as well as fresh portrayals of stale material for the jaded. In this way art transcends the barriers of the cerebral and the abstract, paving the road to understanding.;

  11. Implications of abrupt climate change.

    PubMed

    Alley, Richard B

    2004-01-01

    Records of past climates contained in ice cores, ocean sediments, and other archives show that large, abrupt, widespread climate changes have occurred repeatedly in the past. These changes were especially prominent during the cooling into and warming out of the last ice age, but persisted into the modern warm interval. Changes have especially affected water availability in warm regions and temperature in cold regions, but have affected almost all climatic variables across much or all of the Earth. Impacts of climate changes are smaller if the changes are slower or more-expected. The rapidity of abrupt climate changes, together with the difficulty of predicting such changes, means that impacts on the health of humans, economies and ecosystems will be larger if abrupt climate changes occur. Most projections of future climate include only gradual changes, whereas paleoclimatic data plus models indicate that abrupt changes remain possible; thus, policy is being made based on a view of the future that may be optimistic.

  12. Climatic change on Mars.

    PubMed

    Sagan, C; Toon, O B; Gierasch, P J

    1973-09-14

    The equatorial sinuous channels on Mars detected by Mariner 9 point to a past epoch of higher pressures and abundant liquid water. Advective instability of the martian atmosphere permits two stable climates-one close to present conditions, the other at a pressure of the order of 1 bar depending on the quantity of buried volatiles. Variations in the obliquity of Mars, the luminosity of the sun, and the albedo of the polar caps each appear capable of driving the instability between a current ice age and more clement conditions. Obliquity driving alone implies that epochs of much higher and of much lower pressure must have characterized martian history. Climatic change on Mars may have important meteorological, geological, and biological implications.

  13. A remote sensing analysis of Adelie penguin rookeries

    NASA Technical Reports Server (NTRS)

    Schwaller, Mathew R.; Olson, Charles E., Jr.; Ma, Zhenqui; Zhu, Zhiliang; Dahmer, Paul

    1989-01-01

    The Adelie penguin (Pygoscelis adeliae) makes up the vast majority of bird biomass in the Antarctic. As a major consumer of krill, these birds play an important role in the Antarctic food web, and they have been proposed as an indicator species of the vitality of the Southern Ocean ecosystem. This study explores the terrestrial habitat of the Adelie penguin as a target for remote sensing reconnaissance. Laboratory and ground-level reflectance measurements of Antarctic materials found in and around penguin rookeries were examined in detail. These analyses suggested data transformations which helped separate penguin rookeries from surrounding areas in Landsat Thematic Mapper imagery. The physical extent of penguin rookeries on Ross and Beaufort Islands, Antarctic, was estimated from the satellite data and compared to published estimates of penguin populations. The results suggest that TM imagery may be used to identify previously undiscovered penguin rookeries, and the imagery may provide a means of developing new population estimation methods for Antarctic ornithology.

  14. Agenda to address climate change

    SciTech Connect

    1998-10-01

    This document looks at addressing climate change in the 21st century. Topics covered are: Responding to climate change; exploring new avenues in energy efficiency; energy efficiency and alternative energy; residential sector; commercial sector; industrial sector; transportation sector; communities; renewable energy; understanding forests to mitigate and adapt to climate change; the Forest Carbon budget; mitigation and adaptation.

  15. Agriculture and climate change

    SciTech Connect

    Abelson, P.H.

    1992-07-03

    How will increases in levels of CO{sub 2} and changes in temperature affect food production A recently issued report analyzes prospects for US agriculture 1990 to 2030. The report, prepared by a distinguished Task Force, first projects the evolution of agriculture assuming increased levels of CO{sub 2} but no climate change. Then it deals with effects of climate change, followed by a discussion of how greenhouse emissions might be diminished by agriculture. Economic and policy matters are also covered. How the climate would respond to more greenhouse gases is uncertain. If temperatures were higher, there would be more evaporation and more precipitation. Where would the rain fall That is a good question. Weather in a particular locality is not determined by global averages. The Dust Bowl of the 1930s could be repeated at its former site or located in another region such as the present Corn Belt. But depending on the realities at a given place, farmers have demonstrated great flexibility in choosing what they may grow. Their flexibility has been increased by the numerous varieties of seeds of major crops that are now available, each having different characteristics such as drought resistance and temperature tolerance. In past, agriculture has contributed about 5% of US greenhouse gases. Two large components have involved emissions of CO{sub 2} from farm machinery and from oxidation of organic matter in soil due to tillage. Use of diesel fuel and more efficient machinery has reduced emissions from that source by 40%. In some areas changed tillage practices are now responsible for returning carbon to the soil. The report identifies an important potential for diminishing net US emissions of CO{sub 2} by growth and utilization of biomass. Large areas are already available that could be devoted to energy crops.

  16. Population and climate change.

    PubMed

    Cohen, Joel E

    2010-06-01

    To review, the four broad dimensions of any complex human problem, including climate change, are the human population, economics, culture, and environment. These dimensions interact with one another in all directions and on many time-scales. From 2010 to 2050, the human population is likely to grow bigger, more slowly, older, and more urban. It is projected that by 2050 more than 2.6 billion people (almost 94% of global urban growth) will be added to the urban population in today's developing countries. That works out to 1.26 million additional urban people in today's developing countries every week from 2010 to 2050. Humans alter the climate by emitting greenhouse gases, by altering planetary albedo, and by altering atmospheric components. Between 1900 and 2000, humans' emissions of carbon into the atmosphere increased fifteenfold, while the numbers of people increased less than fourfold. Population growth alone, with constant rates of emissions per person, could not account for the increase in the carbon emissions to the atmosphere. The world economy grew sixteenfold in the twentieth century, accompanied by enormous increases in the burning of gas, oil, and coal. In the last quarter of the twentieth century, population grew much faster in developing countries than in high-income countries, and, compared with population growth, the growth of carbon emissions to the atmosphere was even faster in developing countries than in high-income countries. The ratio of emissions-to-population growth rates was 2.8 in developing countries compared with 1.6 in high-income countries. Emissions of CO2 and other greenhouse gases are influenced by the sizes and density of settlements, the sizes of households, and the ages of householders. Between 2010 and 2050, these demographic factors are anticipated to change substantially. Therefore demography will play a substantial role in the dynamics of climate changes. Climate changes affect many aspects of the living environment

  17. Climate Change and National Security

    DTIC Science & Technology

    2013-02-01

    does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. a. REPORT Climate Change and National...Security 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Does climate change constitute a national security threat to the United States? What is climate ...resources for an in-depth discussion on national security and climate change . 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES

  18. Ruminants, climate change and climate policy

    NASA Astrophysics Data System (ADS)

    Ripple, William J.; Smith, Pete; Haberl, Helmut; Montzka, Stephen A.; McAlpine, Clive; Boucher, Douglas H.

    2014-01-01

    Greenhouse gas emissions from ruminant meat production are significant. Reductions in global ruminant numbers could make a substantial contribution to climate change mitigation goals and yield important social and environmental co-benefits.

  19. NPOESS, Essential Climates Variables and Climate Change

    NASA Astrophysics Data System (ADS)

    Forsythe-Newell, S. P.; Bates, J. J.; Barkstrom, B. R.; Privette, J. L.; Kearns, E. J.

    2008-12-01

    Advancement in understanding, predicting and mitigating against climate change implies collaboration, close monitoring of Essential Climate Variable (ECV)s through development of Climate Data Record (CDR)s and effective action with specific thematic focus on human and environmental impacts. Towards this end, NCDC's Scientific Data Stewardship (SDS) Program Office developed Climate Long-term Information and Observation system (CLIO) for satellite data identification, characterization and use interrogation. This "proof-of-concept" online tool provides the ability to visualize global CDR information gaps and overlaps with options to temporally zoom-in from satellite instruments to climate products, data sets, data set versions and files. CLIO provides an intuitive one-stop web site that displays past, current and planned launches of environmental satellites in conjunction with associated imagery and detailed information. This tool is also capable of accepting and displaying Web-based input from Subject Matter Expert (SME)s providing a global to sub-regional scale perspective of all ECV's and their impacts upon climate studies. SME's can access and interact with temporal data from the past and present, or for future planning of products, datasets/dataset versions, instruments, platforms and networks. CLIO offers quantifiable prioritization of ECV/CDR impacts that effectively deal with climate change issues, their associated impacts upon climate, and this offers an intuitively objective collaboration and consensus building tool. NCDC's latest tool empowers decision makers and the scientific community to rapidly identify weaknesses and strengths in climate change monitoring strategies and significantly enhances climate change collaboration and awareness.

  20. Climate Change on Mars

    NASA Technical Reports Server (NTRS)

    Haberle, R. M.; Cuzzi, Jeffrey N. (Technical Monitor)

    1994-01-01

    Today, Mars is cold and dry. With a 7 mbar mean surface pressure, its thin predominantly CO2 atmosphere is not capable of raising global mean surface temperatures significantly above its 217K effective radiating temperature, and the amount of water vapor in the atmosphere is equivalent to a global ocean only 10 microns deep. Has Mars always been in such a deep freeze? There are several lines of evidence that suggest it has not. First, there are the valley networks which are found throughout the heavily cratered terrains. These features are old (3.8 Gyr) and appear to require liquid water to form. A warm climate early in Mars' history has often been invoked to explain them, but the precise conditions required to achieve this have yet to be determined. Second, some of the features seen in orbiter images of the surface have been interpreted in terms of glacial activity associated with an active hydrological cycle some several billion years ago. This interpretation is controversial as it requires the release of enormous quantities of ground water and enough greenhouse warming to raise temperatures to the melting point. Finally, there are the layered terrains that characterize both polar regions. These terrains are geologically young (10 Myr) and are believed to have formed by the slow and steady deposition of dust and water ice from the atmosphere. The individual layers result from the modulation of the deposition rate which is driven by changes in Mars' orbital parameters. The ongoing research into each of these areas of Martian climate change will be reviewed, and similarities to the Earth's climate system will be noted.

  1. Communicating Climate Change (Invited)

    NASA Astrophysics Data System (ADS)

    Mann, M. E.

    2009-12-01

    I will discuss the various challenges scientists must confront in efforts to communicate the science and implications of climate change to the public. Among these challenges is the stiff headwind we must fight of a concerted disinformation effort designed to confuse the public about the nature of our scientific understanding of the problem and the reality of the underlying societal threat. We also must fight the legacy of the public’s perception of the scientist. That is to say, we must strive to communicate in plainspoken language that neither insults the intelligence of our audience, nor hopelessly loses them in jargon and science-speak. And through all of this, we must maintain our composure and good humor even in the face of what we might consider the vilest of tactics by our opposition. When it comes to how best to get our message out to the broader public, I don’t pretend to have all of the answers. But I will share some insights and anecdotes that I have accumulated over the course of my own efforts to inform the public about the reality of climate change and the potential threat that it represents.

  2. Politics of climate change belief

    NASA Astrophysics Data System (ADS)

    2017-01-01

    Donald Trump's actions during the election and his first weeks as US president-elect send a strong message about his belief in climate change, or lack thereof. However, these actions may reflect polarization of climate change beliefs, not climate mitigation behaviour.

  3. Climate Change and Mental Health.

    PubMed

    Trombley, Janna; Chalupka, Stephanie; Anderko, Laura

    2017-04-01

    : Climate change is an enormous challenge for our communities, our country, and our world. Recently much attention has been paid to the physical impacts of climate change, including extreme heat events, droughts, extreme storms, and rising sea levels. However, much less attention has been paid to the psychological impacts. This article examines the likely psychological impacts of climate change, including anxiety, stress, and depression; increases in violence and aggression; and loss of community identity. Nurses can play a vital role in local and regional climate strategies by preparing their patients, health care facilities, and communities to effectively address the anticipated mental health impacts of climate change.

  4. Climate Change and Water Tools

    EPA Pesticide Factsheets

    EPA tools and workbooks guide users to mitigate and adapt to climate change impacts. Various tools can help manage risks, others can visualize climate projections in maps. Included are comprehensive tool kits hosted by other federal agencies.

  5. Climate Change and Water Training

    EPA Pesticide Factsheets

    To take action on climate impacts, practitioners must understand how climate change will effect their region, and the country. Training provided here by EPA and partners allow users to better grasp the issues and make decisions based on current science.

  6. Health Effects of Climate Change

    MedlinePlus

    ... health. Climate defines health concerns such as the direct effects of excess heat or cold, the lack ... nih.gov/climatereport ) examined the state of the science on effects of climate change on human health. ...

  7. Climate change: Cropping system changes and adaptations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate change impacts the life of every person; however, there is little comprehensive understanding of the direct and indirect effects of climate change on agriculture. Since our food, feed, fiber, and fruit is derived from agricultural systems, understanding the effects of changing temperature, p...

  8. Preparing for climate change.

    PubMed

    Holdgate, M

    1989-01-01

    There is a distinct probability that humankind is changing the climate and at the same time raising the sea level of the world. The most plausible projections we have now suggest a rise in mean world temperature of between 1 degree Celsius and 2 degrees Celsius by 2030--just 40 years hence. This is a bigger change in a smaller period than we know of in the experience of the earth's ecosystems and human societies. It implies that by 2030 the earth will be warmer than at any time in the past 120,000 years. In the same period, we are likely to see a rise of 15-30 centimeters in sea level, partly due to the melting of mountain glaciers and partly to the expansion of the warmer seas. This may not seem much--but it comes on top of the 12-centimeter rise in the past century and we should recall that over 1/2 the world's population lives in zones on or near coasts. A quarter meter rise in sea level could have drastic consequences for countries like the Maldives or the Netherlands, where much of the land lies below the 2-meter contour. The cause of climate change is known as the 'greenhouse effect'. Greenhouse glass has the property that it is transparent to radiation coming in from the sun, but holds back radiation to space from the warmed surfaces inside the greenhouse. Certain gases affect the atmosphere in the same way. There are 5 'greenhouse gases' and we have been roofing ourselves with them all: carbon dioxide concentrations in the atmosphere have increased 25% above preindustrial levels and are likely to double within a century, due to tropical forest clearance and especially to the burning of increasing quantities of coal and other fossil fuels; methane concentrations are now twice their preindustrial levels as a result of releases from agriculture; nitrous oxide has increased due to land clearance for agriculture, use of fertilizers, and fossil fuel combustion; ozone levels near the earth's surface have increased due mainly to pollution from motor vehicles; and

  9. Conflict in a changing climate

    NASA Astrophysics Data System (ADS)

    Carleton, T.; Hsiang, S. M.; Burke, M.

    2016-05-01

    A growing body of research illuminates the role that changes in climate have had on violent conflict and social instability in the recent past. Across a diversity of contexts, high temperatures and irregular rainfall have been causally linked to a range of conflict outcomes. These findings can be paired with climate model output to generate projections of the impact future climate change may have on conflicts such as crime and civil war. However, there are large degrees of uncertainty in such projections, arising from (i) the statistical uncertainty involved in regression analysis, (ii) divergent climate model predictions, and (iii) the unknown ability of human societies to adapt to future climate change. In this article, we review the empirical evidence of the climate-conflict relationship, provide insight into the likely extent and feasibility of adaptation to climate change as it pertains to human conflict, and discuss new methods that can be used to provide projections that capture these three sources of uncertainty.

  10. Climate Change and Future World

    DTIC Science & Technology

    2013-03-01

    number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) xx-03-2013 2 . REPORT TYPE STRATEGY RESEARCH PROJECT...viable. 2 In particular, climate change constitutes a “threat multiplier”3 that accelerates and amplifies existing trends, tensions, and...effects of climate change itself.4 When essential resources are not available due to 2 climate change and degraded environmental conditions, some

  11. Natural and anthropogenic climate changes

    SciTech Connect

    Wang, W.C.; Ronberg, B.; Gutowski, W.; Gutzler, D.; Portman, D. ); Li, K.; Wang, S. . Inst. of Geography)

    1987-01-06

    This report discusses the following three components of the project: analysis of climate data in US and China to study the regional climate changes; analysis of general circulation model simulations of current and CO[sub 2]-doubled global and regional climates; and studies of desertification in the United States and China.

  12. Cinematic climate change, a promising perspective on climate change communication.

    PubMed

    Sakellari, Maria

    2015-10-01

    Previous research findings display that after having seen popular climate change films, people became more concerned, more motivated and more aware of climate change, but changes in behaviors were short-term. This article performs a meta-analysis of three popular climate change films, The Day after Tomorrow (2005), An Inconvenient Truth (2006), and The Age of Stupid (2009), drawing on research in social psychology, human agency, and media effect theory in order to formulate a rationale about how mass media communication shapes our everyday life experience. This article highlights the factors with which science blends in the reception of the three climate change films and expands the range of options considered in order to encourage people to engage in climate change mitigation actions.

  13. Expert credibility in climate change.

    PubMed

    Anderegg, William R L; Prall, James W; Harold, Jacob; Schneider, Stephen H

    2010-07-06

    Although preliminary estimates from published literature and expert surveys suggest striking agreement among climate scientists on the tenets of anthropogenic climate change (ACC), the American public expresses substantial doubt about both the anthropogenic cause and the level of scientific agreement underpinning ACC. A broad analysis of the climate scientist community itself, the distribution of credibility of dissenting researchers relative to agreeing researchers, and the level of agreement among top climate experts has not been conducted and would inform future ACC discussions. Here, we use an extensive dataset of 1,372 climate researchers and their publication and citation data to show that (i) 97-98% of the climate researchers most actively publishing in the field surveyed here support the tenets of ACC outlined by the Intergovernmental Panel on Climate Change, and (ii) the relative climate expertise and scientific prominence of the researchers unconvinced of ACC are substantially below that of the convinced researchers.

  14. Climate change and moral judgement

    NASA Astrophysics Data System (ADS)

    Markowitz, Ezra M.; Shariff, Azim F.

    2012-04-01

    Converging evidence from the behavioural and brain sciences suggests that the human moral judgement system is not well equipped to identify climate change -- a complex, large-scale and unintentionally caused phenomenon -- as an important moral imperative. As climate change fails to generate strong moral intuitions, it does not motivate an urgent need for action in the way that other moral imperatives do. We review six reasons why climate change poses significant challenges to our moral judgement system and describe six strategies that communicators might use to confront these challenges. Enhancing moral intuitions about climate change may motivate greater support for ameliorative actions and policies.

  15. Climate@Home: Crowdsourcing Climate Change Research

    NASA Astrophysics Data System (ADS)

    Xu, C.; Yang, C.; Li, J.; Sun, M.; Bambacus, M.

    2011-12-01

    Climate change deeply impacts human wellbeing. Significant amounts of resources have been invested in building super-computers that are capable of running advanced climate models, which help scientists understand climate change mechanisms, and predict its trend. Although climate change influences all human beings, the general public is largely excluded from the research. On the other hand, scientists are eagerly seeking communication mediums for effectively enlightening the public on climate change and its consequences. The Climate@Home project is devoted to connect the two ends with an innovative solution: crowdsourcing climate computing to the general public by harvesting volunteered computing resources from the participants. A distributed web-based computing platform will be built to support climate computing, and the general public can 'plug-in' their personal computers to participate in the research. People contribute the spare computing power of their computers to run a computer model, which is used by scientists to predict climate change. Traditionally, only super-computers could handle such a large computing processing load. By orchestrating massive amounts of personal computers to perform atomized data processing tasks, investments on new super-computers, energy consumed by super-computers, and carbon release from super-computers are reduced. Meanwhile, the platform forms a social network of climate researchers and the general public, which may be leveraged to raise climate awareness among the participants. A portal is to be built as the gateway to the climate@home project. Three types of roles and the corresponding functionalities are designed and supported. The end users include the citizen participants, climate scientists, and project managers. Citizen participants connect their computing resources to the platform by downloading and installing a computing engine on their personal computers. Computer climate models are defined at the server side. Climate

  16. Climate Change and National Security

    SciTech Connect

    Malone, Elizabeth L.

    2013-02-01

    Climate change is increasingly recognized as having national security implications, which has prompted dialogue between the climate change and national security communities – with resultant advantages and differences. Climate change research has proven useful to the national security community sponsors in several ways. It has opened security discussions to consider climate as well as political factors in studies of the future. It has encouraged factoring in the stresses placed on societies by climate changes (of any kind) to help assess the potential for state stability. And it has shown that, changes such as increased heat, more intense storms, longer periods without rain, and earlier spring onset call for building climate resilience as part of building stability. For the climate change research community, studies from a national security point of view have revealed research lacunae, for example, such as the lack of usable migration studies. This has also pushed the research community to consider second- and third-order impacts of climate change, such as migration and state stability, which broadens discussion of future impacts beyond temperature increases, severe storms, and sea level rise; and affirms the importance of governance in responding to these changes. The increasing emphasis in climate change science toward research in vulnerability, resilience, and adaptation also frames what the intelligence and defense communities need to know, including where there are dependencies and weaknesses that may allow climate change impacts to result in security threats and where social and economic interventions can prevent climate change impacts and other stressors from resulting in social and political instability or collapse.

  17. Scaling Climate Change Communication for Behavior Change

    NASA Astrophysics Data System (ADS)

    Rodriguez, V. C.; Lappé, M.; Flora, J. A.; Ardoin, N. M.; Robinson, T. N.

    2014-12-01

    Ultimately, effective climate change communication results in a change in behavior, whether the change is individual, household or collective actions within communities. We describe two efforts to promote climate-friendly behavior via climate communication and behavior change theory. Importantly these efforts are designed to scale climate communication principles focused on behavior change rather than soley emphasizing climate knowledge or attitudes. Both cases are embedded in rigorous evaluations (randomized controlled trial and quasi-experimental) of primary and secondary outcomes as well as supplementary analyses that have implications for program refinement and program scaling. In the first case, the Girl Scouts "Girls Learning Environment and Energy" (GLEE) trial is scaling the program via a Massive Open Online Course (MOOC) for Troop Leaders to teach the effective home electricity and food and transportation energy reduction programs. The second case, the Alliance for Climate Education (ACE) Assembly Program, is advancing the already-scaled assembly program by using communication principles to further engage youth and their families and communities (school and local communities) in individual and collective actions. Scaling of each program uses online learning platforms, social media and "behavior practice" videos, mastery practice exercises, virtual feedback and virtual social engagement to advance climate-friendly behavior change. All of these communication practices aim to simulate and advance in-person train-the-trainers technologies.As part of this presentation we outline scaling principles derived from these two climate change communication and behavior change programs.

  18. Climate change, conflict and health.

    PubMed

    Bowles, Devin C; Butler, Colin D; Morisetti, Neil

    2015-10-01

    Future climate change is predicted to diminish essential natural resource availability in many regions and perhaps globally. The resulting scarcity of water, food and livelihoods could lead to increasingly desperate populations that challenge governments, enhancing the risk of intra- and interstate conflict. Defence establishments and some political scientists view climate change as a potential threat to peace. While the medical literature increasingly recognises climate change as a fundamental health risk, the dimension of climate change-associated conflict has so far received little attention, despite its profound health implications. Many analysts link climate change with a heightened risk of conflict via causal pathways which involve diminishing or changing resource availability. Plausible consequences include: increased frequency of civil conflict in developing countries; terrorism, asymmetric warfare, state failure; and major regional conflicts. The medical understanding of these threats is inadequate, given the scale of health implications. The medical and public health communities have often been reluctant to interpret conflict as a health issue. However, at times, medical workers have proven powerful and effective peace advocates, most notably with regard to nuclear disarmament. The public is more motivated to mitigate climate change when it is framed as a health issue. Improved medical understanding of the association between climate change and conflict could strengthen mitigation efforts and increase cooperation to cope with the climate change that is now inevitable.

  19. Schneider lecture: From climate change impacts to climate change risks

    NASA Astrophysics Data System (ADS)

    Field, C. B.

    2014-12-01

    Steve Schneider was a strong proponent of considering the entire range of possible climate-change outcomes. He wrote and spoke frequently about the importance of low probability/high consequence outcomes as well as most likely outcomes. He worked tirelessly on communicating the risks from overlapping stressors. Technical and conceptual issues have made it difficult for Steve's vision to reach maturity in mainstream climate-change research, but the picture is changing rapidly. The concept of climate-change risk, considering both probability and consequence, is central to the recently completed IPCC Fifth Assessment Report, and the concept frames much of the discussion about future research agendas. Framing climate change as a challenge in managing risks is important for five core reasons. First, conceptualizing the issue as being about probabilities builds a bridge between current climate variability and future climate change. Second, a formulation based on risks highlights the fact that climate impacts occur primarily in extremes. For historical variability and future impacts, the real concern is the conditions under which things break and systems fail, namely, in the extremes. Third, framing the challenge as one of managing risks puts a strong emphasis on exploring the full range of possible outcomes, including low-probability, high/consequence outcomes. Fourth, explaining climate change as a problem in managing risks links climate change to a wide range of sophisticated risk management tools and strategies that underpin much of modern society. Fifth, the concept of climate change as a challenge in managing risks helps cement the understanding that climate change is a threat multiplier, adding new dimensions and complexity to existing and emerging problems. Framing climate change as a challenge in managing risks creates an important but difficult agenda for research. The emphasis needs to shift from most likely outcomes to most risky outcomes, considering the full

  20. Climate Change and Collective Violence.

    PubMed

    Levy, Barry S; Sidel, Victor W; Patz, Jonathan A

    2017-03-20

    Climate change is causing increases in temperature, changes in precipitation and extreme weather events, sea-level rise, and other environmental impacts. It is also causing or contributing to heat-related disorders, respiratory and allergic disorders, infectious diseases, malnutrition due to food insecurity, and mental health disorders. In addition, increasing evidence indicates that climate change is causally associated with collective violence, generally in combination with other causal factors. Increased temperatures and extremes of precipitation with their associated consequences, including resultant scarcity of cropland and other key environmental resources, are major pathways by which climate change leads to collective violence. Public health professionals can help prevent collective violence due to climate change (a) by supporting mitigation measures to reduce greenhouse gas emissions, (b) by promoting adaptation measures to address the consequences of climate change and to improve community resilience, and

  1. Climate change refugia as a tool for climate adaptation

    EPA Science Inventory

    Climate change refugia, areas relatively buffered from contemporary climate change so as to increase persistence of valued physical, ecological, and cultural resources, are considered as potential adaptation options in the face of anthropogenic climate change. In a collaboration ...

  2. Ground water and climate change

    USGS Publications Warehouse

    Taylor, Richard G.; Scanlon, Bridget; Döll, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F.P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J.-F.; Holman, Ian; Treidel, Holger

    2012-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  3. Ground Water and Climate Change

    NASA Technical Reports Server (NTRS)

    Taylor, Richard G.; Scanlon, Bridget; Doell, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F. P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J. -F; Holman, Ian; Treidel, Holger

    2013-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  4. Teaching about Global Climate Change

    ERIC Educational Resources Information Center

    Heffron, Susan Gallagher; Valmond, Kharra

    2011-01-01

    Students are exposed to many different media reports about global climate change. Movies such as "The Day After Tomorrow" and "Ice Age" are examples of instances when movie producers have sought to capture the attention of audiences by augmenting the challenges that climate change poses. Students may receive information from a wide range of media…

  5. Generating Arguments about Climate Change

    ERIC Educational Resources Information Center

    Golden, Barry; Grooms, Jonathon; Sampson, Victor; Oliveri, Robin

    2012-01-01

    This unit is a different and fun way to engage students with an extremely important topic, climate change, which cuts across scientific and nonscientific disciplines. While climate change itself may not be listed in the curriculum of every science class, the authors contend that such a unit is appropriate for virtually any science curriculum.…

  6. Climate change, responsibility, and justice.

    PubMed

    Jamieson, Dale

    2010-09-01

    In this paper I make the following claims. In order to see anthropogenic climate change as clearly involving moral wrongs and global injustices, we will have to revise some central concepts in these domains. Moreover, climate change threatens another value ("respect for nature") that cannot easily be taken up by concerns of global justice or moral responsibility.

  7. Food security under climate change

    NASA Astrophysics Data System (ADS)

    Hertel, Thomas W.

    2016-01-01

    Using food prices to assess climate change impacts on food security is misleading. Differential impacts on income require a broader measure of household well-being, such as changes in absolute poverty.

  8. Implications of abrupt climate change.

    PubMed Central

    Alley, Richard B.

    2004-01-01

    Records of past climates contained in ice cores, ocean sediments, and other archives show that large, abrupt, widespread climate changes have occurred repeatedly in the past. These changes were especially prominent during the cooling into and warming out of the last ice age, but persisted into the modern warm interval. Changes have especially affected water availability in warm regions and temperature in cold regions, but have affected almost all climatic variables across much or all of the Earth. Impacts of climate changes are smaller if the changes are slower or more-expected. The rapidity of abrupt climate changes, together with the difficulty of predicting such changes, means that impacts on the health of humans, economies and ecosystems will be larger if abrupt climate changes occur. Most projections of future climate include only gradual changes, whereas paleoclimatic data plus models indicate that abrupt changes remain possible; thus, policy is being made based on a view of the future that may be optimistic. PMID:17060975

  9. Climate change and human health.

    PubMed

    Luber, George; Prudent, Natasha

    2009-01-01

    Climate change science points to an increase in sea surface temperature, increases in the severity of extreme weather events, declining air quality, and destabilizing natural systems due to increases in greenhouse gas emissions. The direct and indirect health results of such a global imbalance include excessive heat-related illnesses, vector- and waterborne diseases, increased exposure to environmental toxins, exacerbation of cardiovascular and respiratory diseases due to declining air quality, and mental health stress among others. Vulnerability to these health effects will increase as elderly and urban populations increase and are less able to adapt to climate change. In addition, the level of vulnerability to certain health impacts will vary by location. As a result, strategies to address climate change must include health as a strategic component on a regional level. The co-benefits of improving health while addressing climate change will improve public health infrastructure today, while mitigating the negative consequences of a changing climate for future generations.

  10. Malaria ecology and climate change

    NASA Astrophysics Data System (ADS)

    McCord, G. C.

    2016-05-01

    Understanding the costs that climate change will exact on society is crucial to devising an appropriate policy response. One of the channels through while climate change will affect human society is through vector-borne diseases whose epidemiology is conditioned by ambient ecology. This paper introduces the literature on malaria, its cost on society, and the consequences of climate change to the physics community in hopes of inspiring synergistic research in the area of climate change and health. It then demonstrates the use of one ecological indicator of malaria suitability to provide an order-of-magnitude assessment of how climate change might affect the malaria burden. The average of Global Circulation Model end-of-century predictions implies a 47% average increase in the basic reproduction number of the disease in today's malarious areas, significantly complicating malaria elimination efforts.

  11. Climate Change and Human Health

    PubMed Central

    Luber, George; Prudent, Natasha

    2009-01-01

    Climate change science points to an increase in sea surface temperature, increases in the severity of extreme weather events, declining air quality, and destabilizing natural systems due to increases in greenhouse gas emissions. The direct and indirect health results of such a global imbalance include excessive heat-related illnesses, vector- and waterborne diseases, increased exposure to environmental toxins, exacerbation of cardiovascular and respiratory diseases due to declining air quality, and mental health stress among others. Vulnerability to these health effects will increase as elderly and urban populations increase and are less able to adapt to climate change. In addition, the level of vulnerability to certain health impacts will vary by location. As a result, strategies to address climate change must include health as a strategic component on a regional level. The co-benefits of improving health while addressing climate change will improve public health infrastructure today, while mitigating the negative consequences of a changing climate for future generations. PMID:19768168

  12. Climate change and dead zones.

    PubMed

    Altieri, Andrew H; Gedan, Keryn B

    2015-04-01

    Estuaries and coastal seas provide valuable ecosystem services but are particularly vulnerable to the co-occurring threats of climate change and oxygen-depleted dead zones. We analyzed the severity of climate change predicted for existing dead zones, and found that 94% of dead zones are in regions that will experience at least a 2 °C temperature increase by the end of the century. We then reviewed how climate change will exacerbate hypoxic conditions through oceanographic, ecological, and physiological processes. We found evidence that suggests numerous climate variables including temperature, ocean acidification, sea-level rise, precipitation, wind, and storm patterns will affect dead zones, and that each of those factors has the potential to act through multiple pathways on both oxygen availability and ecological responses to hypoxia. Given the variety and strength of the mechanisms by which climate change exacerbates hypoxia, and the rates at which climate is changing, we posit that climate change variables are contributing to the dead zone epidemic by acting synergistically with one another and with recognized anthropogenic triggers of hypoxia including eutrophication. This suggests that a multidisciplinary, integrated approach that considers the full range of climate variables is needed to track and potentially reverse the spread of dead zones.

  13. Adapting agriculture to climate change.

    PubMed

    Howden, S Mark; Soussana, Jean-François; Tubiello, Francesco N; Chhetri, Netra; Dunlop, Michael; Meinke, Holger

    2007-12-11

    The strong trends in climate change already evident, the likelihood of further changes occurring, and the increasing scale of potential climate impacts give urgency to addressing agricultural adaptation more coherently. There are many potential adaptation options available for marginal change of existing agricultural systems, often variations of existing climate risk management. We show that implementation of these options is likely to have substantial benefits under moderate climate change for some cropping systems. However, there are limits to their effectiveness under more severe climate changes. Hence, more systemic changes in resource allocation need to be considered, such as targeted diversification of production systems and livelihoods. We argue that achieving increased adaptation action will necessitate integration of climate change-related issues with other risk factors, such as climate variability and market risk, and with other policy domains, such as sustainable development. Dealing with the many barriers to effective adaptation will require a comprehensive and dynamic policy approach covering a range of scales and issues, for example, from the understanding by farmers of change in risk profiles to the establishment of efficient markets that facilitate response strategies. Science, too, has to adapt. Multidisciplinary problems require multidisciplinary solutions, i.e., a focus on integrated rather than disciplinary science and a strengthening of the interface with decision makers. A crucial component of this approach is the implementation of adaptation assessment frameworks that are relevant, robust, and easily operated by all stakeholders, practitioners, policymakers, and scientists.

  14. Diverse views on climate change

    NASA Astrophysics Data System (ADS)

    Garrett, Timothy; Dubey, Manvendra; Schwartz, Stephen

    2012-04-01

    Third Santa Fe Conference on Global and Regional Climate Change; Santa Fe, New Mexico, 30 October to 4 November 2011 At the Third Santa Fe Conference on Global and Regional Climate Change, hosted by the Los Alamos National Laboratory's Center for Nonlinear Studies, researchers offered some of the latest thinking on how to observe and model the driving forces as well as the impacts of regional and global climate change, climate system responses, and societal impacts. It was the third in a series of conferences held at 5-year intervals. More than 140 climate science experts from the United States and foreign universities and research centers attended the conference, held at the La Fonda Hotel in historic downtown Santa Fe. The conference program included more than 80 invited and contributed oral presentations and about 30 posters. The oral sessions were grouped by topic into sessions of four or five talks, with discussion occurring at the end of each session

  15. Climate Change and Underserved Communities.

    PubMed

    Ziegler, Carol; Morelli, Vincent; Fawibe, Omotayo

    2017-03-01

    Climate change is the greatest global health threat of the twenty-first century, yet it is not widely understood as a health hazard by primary care providers in the United States. Aside from increasing displacement of populations and acute trauma resulting from increasing frequency of natural disasters, the impact of climate change on temperature stress, vector-borne illnesses, cardiovascular and respiratory illnesses, and mental health is significant, with disproportionate impact on underserved and marginalized populations. Primary care providers must be aware of the impact of climate change on the health of their patients and advocate for adaptation and mitigation policies for the populations they serve.

  16. Climate Change and Disturbance Interactions

    NASA Astrophysics Data System (ADS)

    McKenzie, Don; Allen, Craig D.

    2007-05-01

    Workshop on Climate Change and Disturbance Interactions in Western North America, Tucson, Ariz., 12-15 February 2007 Warming temperatures across western North America, coupled with increased drought, are expected to exacerbate disturbance regimes, particularly wildfires, insect outbreaks, and invasions of exotic species. Many ecologists and resource managers expect ecosystems to change more rapidly from disturbance effects than from the effects of a changing climate by itself. A particular challenge is to understand the interactions among disturbance regimes; for example, how will massive outbreaks of bark beetles, which kill drought-stressed trees by feeding on cambial tissues, increase the potential for large severe wildfires in a warming climate?

  17. Climate change, wine, and conservation

    PubMed Central

    Hannah, Lee; Roehrdanz, Patrick R.; Ikegami, Makihiko; Shepard, Anderson V.; Shaw, M. Rebecca; Tabor, Gary; Zhi, Lu; Marquet, Pablo A.; Hijmans, Robert J.

    2013-01-01

    Climate change is expected to impact ecosystems directly, such as through shifting climatic controls on species ranges, and indirectly, for example through changes in human land use that may result in habitat loss. Shifting patterns of agricultural production in response to climate change have received little attention as a potential impact pathway for ecosystems. Wine grape production provides a good test case for measuring indirect impacts mediated by changes in agriculture, because viticulture is sensitive to climate and is concentrated in Mediterranean climate regions that are global biodiversity hotspots. Here we demonstrate that, on a global scale, the impacts of climate change on viticultural suitability are substantial, leading to possible conservation conflicts in land use and freshwater ecosystems. Area suitable for viticulture decreases 25% to 73% in major wine producing regions by 2050 in the higher RCP 8.5 concentration pathway and 19% to 62% in the lower RCP 4.5. Climate change may cause establishment of vineyards at higher elevations that will increase impacts on upland ecosystems and may lead to conversion of natural vegetation as production shifts to higher latitudes in areas such as western North America. Attempts to maintain wine grape productivity and quality in the face of warming may be associated with increased water use for irrigation and to cool grapes through misting or sprinkling, creating potential for freshwater conservation impacts. Agricultural adaptation and conservation efforts are needed that anticipate these multiple possible indirect effects. PMID:23569231

  18. Climate change, wine, and conservation.

    PubMed

    Hannah, Lee; Roehrdanz, Patrick R; Ikegami, Makihiko; Shepard, Anderson V; Shaw, M Rebecca; Tabor, Gary; Zhi, Lu; Marquet, Pablo A; Hijmans, Robert J

    2013-04-23

    Climate change is expected to impact ecosystems directly, such as through shifting climatic controls on species ranges, and indirectly, for example through changes in human land use that may result in habitat loss. Shifting patterns of agricultural production in response to climate change have received little attention as a potential impact pathway for ecosystems. Wine grape production provides a good test case for measuring indirect impacts mediated by changes in agriculture, because viticulture is sensitive to climate and is concentrated in Mediterranean climate regions that are global biodiversity hotspots. Here we demonstrate that, on a global scale, the impacts of climate change on viticultural suitability are substantial, leading to possible conservation conflicts in land use and freshwater ecosystems. Area suitable for viticulture decreases 25% to 73% in major wine producing regions by 2050 in the higher RCP 8.5 concentration pathway and 19% to 62% in the lower RCP 4.5. Climate change may cause establishment of vineyards at higher elevations that will increase impacts on upland ecosystems and may lead to conversion of natural vegetation as production shifts to higher latitudes in areas such as western North America. Attempts to maintain wine grape productivity and quality in the face of warming may be associated with increased water use for irrigation and to cool grapes through misting or sprinkling, creating potential for freshwater conservation impacts. Agricultural adaptation and conservation efforts are needed that anticipate these multiple possible indirect effects.

  19. Basic science of climate change

    SciTech Connect

    Maskell, K.; Callander, B.A. ); Mintzer, I.M. )

    1993-10-23

    Anthropogenic emissions of greenhouse gases are enhancing the natural greenhouse effect. There is almost universal agreement in the scientific community that this will lead to a warming of the lower atmosphere and of the earth's surface. However, the exact timing, magnitude, and regional distribution of this future warming are very uncertain. Merely taking account of changes in the global mean climate is not enough, especially when considering the impacts of climate change. Man also have to consider the rate and regional distribution of climate change and changes in the frequency of events. An increase in the frequency of extremes, such as droughts and storms, and rapid climate change are two factors which could have dramatic effects on human society and natural ecosystems. However, systems already under stress or close to their climate limits are likely to experience the greatest difficulty in adapting to change. Although human activity has been increasing greenhouse gas concentrations for a hundred years, man cannot yet detect unequivocally a greenhouse gas induced signal in climate records. However, increases in greenhouse gas concentrations are almost bound to continue and are likely to emerge as the dominant perturbation of the earth's climate in the coming decades.

  20. Ground water and climate change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As the world’s largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food secu¬rity will probably intensify under climate chan...

  1. Climate Change and Conceptual Change

    ERIC Educational Resources Information Center

    Clark, David J.

    2013-01-01

    Global Warming ("GW") is easily one of the most pressing concerns of our time, and its solution will come about only through a change in human behavior. Compared to the residents of most other nations worldwide, Americans report lower acceptance of the realities of GW. In order to address this concern in a free society, U.S. residents…

  2. Solar Variability and Climate Change

    NASA Astrophysics Data System (ADS)

    Pap, J. M.

    2004-12-01

    One of the most exciting and important challenges in science today is to understand climate variability and to make reliable predictions. The Earth's climate is a complex system driven by external and internal forces. Climate can vary over a large range of time scales as a consequence of natural variability or anthropogenic influence, or both. Observations of steadily increasing concentrations of greenhouse gases --primarily man-made-- in the Earth's atmosphere have led to an expectation of global warming during the coming decades. However, the greenhouse effect competes with other climate forcing mechanisms, such as solar variability, cosmic ray flux changes, desertification, deforestation, and changes in natural and man-made atmospheric aerosols. Indeed, the climate is always changing, and has forever been so, including periods before the industrial era began. Since the dominant driving force of the climate system is the Sun, the accurate knowledge of the solar radiation received by Earth at various wavelengths and from energetic particles with varying intensities, as well as a better knowledge of the solar-terrestrial interactions and their temporal and spatial variability are crucial to quantify the solar influence on climate and to distinguish between natural and anthropogenic influences. In this paper we give an overview on the recent results of solar irradiance measurements over the last three decades and the possible effects of solar variability on climate.

  3. Is Climate Change Predictable? Really?

    SciTech Connect

    Dannevik, W P; Rotman, D A

    2005-11-14

    This project is the first application of a completely different approach to climate modeling, in which new prognostic equations are used to directly compute the evolution of two-point correlations. This project addresses three questions that are critical for the credibility of the science base for climate prediction: (1) What is the variability spectrum at equilibrium? (2) What is the rate of relaxation when subjected to external perturbations? (3) Can variations due to natural processes be distinguished from those due to transient external forces? The technical approach starts with the evolution equation for the probability distribution function and arrives at a prognostic equation for ensemble-mean two-point correlations, bypassing the detailed weather calculation. This work will expand our basic understanding of the theoretical limits of climate prediction and stimulate new experiments to perform with conventional climate models. It will furnish statistical estimates that are inaccessible with conventional climate simulations and likely will raise important new questions about the very nature of climate change and about how (and whether) climate change can be predicted. Solid progress on such issues is vital to the credibility of the science base for climate change research and will provide policymakers evaluating tradeoffs among energy technology options and their attendant environmental and economic consequences.

  4. Linking climate change and groundwater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Projected global change includes groundwater systems, which are linked with changes in climate over space and time. Consequently, global change affects key aspects of subsurface hydrology (including soil water, deeper vadose zone water, and unconfined and confined aquifer waters), surface-groundwat...

  5. Classifying climate change adaptation frameworks

    NASA Astrophysics Data System (ADS)

    Armstrong, Jennifer

    2014-05-01

    Complex socio-ecological demographics are factors that must be considered when addressing adaptation to the potential effects of climate change. As such, a suite of deployable climate change adaptation frameworks is necessary. Multiple frameworks that are required to communicate the risks of climate change and facilitate adaptation. Three principal adaptation frameworks have emerged from the literature; Scenario - Led (SL), Vulnerability - Led (VL) and Decision - Centric (DC). This study aims to identify to what extent these adaptation frameworks; either, planned or deployed are used in a neighbourhood vulnerable to climate change. This work presents a criterion that may be used as a tool for identifying the hallmarks of adaptation frameworks and thus enabling categorisation of projects. The study focussed on the coastal zone surrounding the Sizewell nuclear power plant in Suffolk in the UK. An online survey was conducted identifying climate change adaptation projects operating in the study area. This inventory was analysed to identify the hallmarks of each adaptation project; Levels of dependency on climate model information, Metrics/units of analysis utilised, Level of demographic knowledge, Level of stakeholder engagement, Adaptation implementation strategies and Scale of adaptation implementation. The study found that climate change adaptation projects could be categorised, based on the hallmarks identified, in accordance with the published literature. As such, the criterion may be used to establish the matrix of adaptation frameworks present in a given area. A comprehensive summary of the nature of adaptation frameworks in operation in a locality provides a platform for further comparative analysis. Such analysis, enabled by the criterion, may aid the selection of appropriate frameworks enhancing the efficacy of climate change adaptation.

  6. Have historical climate changes affected Gentoo penguin (Pygoscelis papua) populations in Antarctica?

    PubMed

    Peña M, Fabiola; Poulin, Elie; Dantas, Gisele P M; González-Acuña, Daniel; Petry, Maria Virginia; Vianna, Juliana A

    2014-01-01

    The West Antarctic Peninsula (WAP) has been suffering an increase in its atmospheric temperature during the last 50 years, mainly associated with global warming. This increment of temperature trend associated with changes in sea-ice dynamics has an impact on organisms, affecting their phenology, physiology and distribution range. For instance, rapid demographic changes in Pygoscelis penguins have been reported over the last 50 years in WAP, resulting in population expansion of sub-Antarctic Gentoo penguin (P. papua) and retreat of Antarctic Adelie penguin (P. adeliae). Current global warming has been mainly associated with human activities; however these climate trends are framed in a historical context of climate changes, particularly during the Pleistocene, characterized by an alternation between glacial and interglacial periods. During the last maximal glacial (LGM∼21,000 BP) the ice sheet cover reached its maximum extension on the West Antarctic Peninsula (WAP), causing local extinction of Antarctic taxa, migration to lower latitudes and/or survival in glacial refugia. We studied the HRVI of mtDNA and the nuclear intron βfibint7 of 150 individuals of the WAP to understand the demographic history and population structure of P. papua. We found high genetic diversity, reduced population genetic structure and a signature of population expansion estimated around 13,000 BP, much before the first paleocolony fossil records (∼1,100 BP). Our results suggest that the species may have survived in peri-Antarctic refugia such as South Georgia and North Sandwich islands and recolonized the Antarctic Peninsula and South Shetland Islands after the ice sheet retreat.

  7. Climate change and preventive medicine.

    PubMed

    Faergeman, Ole

    2007-12-01

    Thermal stress, food poisoning, infectious diseases, malnutrition, psychiatric illness as well as injury and death from floods, storms and fire are all likely to become more common as the earth warms and the climate becomes more variable. In contrast, obesity, type II diabetes and coronary artery disease do not result from climate change, but they do share causes with climate change. Burning fossil fuels, for example, is the major source of greenhouse gases, but it also makes pervasive physical inactivity possible. Similarly, modern agriculture's enormous production of livestock contributes substantially to greenhouse gas emissions, and it is the source of many of our most energy-rich foods. Physicians and societies of medical professionals have a particular responsibility, therefore, to contribute to the public discourse about climate change and what to do about it.

  8. Climate Change Adaptation Plan

    DTIC Science & Technology

    2014-06-01

    currently valid OMB control number. 1. REPORT DATE JUN 2014 2 . REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Climate...PERSON a. REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 2 I...policy and guidance. 3 I N T R O D U C T I O NC O N T E N T S EXECUTIVE SUMMARY 2 CONTENTS 3 INTRODUCTION 4 What’s new in the 2014 Adaptation Plan 4

  9. Climate change and avian influenza

    PubMed Central

    Slingenbergh, J.; Xiao, X.

    2009-01-01

    Summary This paper discusses impacts of climate change on the ecology of avian influenza viruses (AI viruses), which presumably co-evolved with migratory water birds, with virus also persisting outside the host in subarctic water bodies. Climate change would almost certainly alter bird migration, influence the AI virus transmission cycle and directly affect virus survival outside the host. The joint, net effects of these changes are rather unpredictable, but it is likely that AI virus circulation in water bird populations will continue with endless adaptation and evolution. In domestic poultry, too little is known about the direct effect of environmental factors on highly pathogenic avian influenza transmission and persistence to allow inference about the possible effect of climate change. However, possible indirect links through changes in the distribution of duck-crop farming are discussed. PMID:18819672

  10. Ocean Observations of Climate Change

    NASA Astrophysics Data System (ADS)

    Chambers, Don

    2016-01-01

    The ocean influences climate by storing and transporting large amounts of heat, freshwater, and carbon, and exchanging these properties with the atmosphere. About 93% of the excess heat energy stored by the earth over the last 50 years is found in the ocean. More than three quarters of the total exchange of water between the atmosphere and the earth's surface through evaporation and precipitation takes place over the oceans. The ocean contains 50 times more carbon than the atmosphere and is at present acting to slow the rate of climate change by absorbing one quarter of human emissions of carbon dioxide from fossil fuel burning, cement production, deforestation and other land use change.Here I summarize the observational evidence of change in the ocean, with an emphasis on basin- and global-scale changes relevant to climate. These include: changes in subsurface ocean temperature and heat content, evidence for regional changes in ocean salinity and their link to changes in evaporation and precipitation over the oceans, evidence of variability and change of ocean current patterns relevant to climate, observations of sea level change and predictions over the next century, and biogeochemical changes in the ocean, including ocean acidification.

  11. Climate Change in New England | Energy and Global Climate ...

    EPA Pesticide Factsheets

    2017-04-10

    EPA Region 1's Energy and Climate Unit and Oceans and Coastal Unit provide information and technical assistance on climate change impacts and adaptation, resilience and preparedness to climate disruptions

  12. CLIMATE CHANGE. Climate change impacts on bumblebees converge across continents.

    PubMed

    Kerr, Jeremy T; Pindar, Alana; Galpern, Paul; Packer, Laurence; Potts, Simon G; Roberts, Stuart M; Rasmont, Pierre; Schweiger, Oliver; Colla, Sheila R; Richardson, Leif L; Wagner, David L; Gall, Lawrence F; Sikes, Derek S; Pantoja, Alberto

    2015-07-10

    For many species, geographical ranges are expanding toward the poles in response to climate change, while remaining stable along range edges nearest the equator. Using long-term observations across Europe and North America over 110 years, we tested for climate change-related range shifts in bumblebee species across the full extents of their latitudinal and thermal limits and movements along elevation gradients. We found cross-continentally consistent trends in failures to track warming through time at species' northern range limits, range losses from southern range limits, and shifts to higher elevations among southern species. These effects are independent of changing land uses or pesticide applications and underscore the need to test for climate impacts at both leading and trailing latitudinal and thermal limits for species.

  13. Climate change. Accelerating extinction risk from climate change.

    PubMed

    Urban, Mark C

    2015-05-01

    Current predictions of extinction risks from climate change vary widely depending on the specific assumptions and geographic and taxonomic focus of each study. I synthesized published studies in order to estimate a global mean extinction rate and determine which factors contribute the greatest uncertainty to climate change-induced extinction risks. Results suggest that extinction risks will accelerate with future global temperatures, threatening up to one in six species under current policies. Extinction risks were highest in South America, Australia, and New Zealand, and risks did not vary by taxonomic group. Realistic assumptions about extinction debt and dispersal capacity substantially increased extinction risks. We urgently need to adopt strategies that limit further climate change if we are to avoid an acceleration of global extinctions.

  14. Climate change and food security.

    PubMed

    Gregory, P J; Ingram, J S I; Brklacich, M

    2005-11-29

    Dynamic interactions between and within the biogeophysical and human environments lead to the production, processing, distribution, preparation and consumption of food, resulting in food systems that underpin food security. Food systems encompass food availability (production, distribution and exchange), food access (affordability, allocation and preference) and food utilization (nutritional and societal values and safety), so that food security is, therefore, diminished when food systems are stressed. Such stresses may be induced by a range of factors in addition to climate change and/or other agents of environmental change (e.g. conflict, HIV/AIDS) and may be particularly severe when these factors act in combination. Urbanization and globalization are causing rapid changes to food systems. Climate change may affect food systems in several ways ranging from direct effects on crop production (e.g. changes in rainfall leading to drought or flooding, or warmer or cooler temperatures leading to changes in the length of growing season), to changes in markets, food prices and supply chain infrastructure. The relative importance of climate change for food security differs between regions. For example, in southern Africa, climate is among the most frequently cited drivers of food insecurity because it acts both as an underlying, ongoing issue and as a short-lived shock. The low ability to cope with shocks and to mitigate long-term stresses means that coping strategies that might be available in other regions are unavailable or inappropriate. In other regions, though, such as parts of the Indo-Gangetic Plain of India, other drivers, such as labour issues and the availability and quality of ground water for irrigation, rank higher than the direct effects of climate change as factors influencing food security. Because of the multiple socio-economic and bio-physical factors affecting food systems and hence food security, the capacity to adapt food systems to reduce their

  15. Climate change: State of knowledge

    SciTech Connect

    1997-12-31

    Burning coal, oil and natural gas to heat our homes, power our cars, and illuminate our cities produces carbon dioxide (CO2) and other greenhouse gases as by-products. Deforestation and clearing of land for agriculture also release significant quantities of such gases. Records of past climate going as far back as 160,000 years indicate a close correlation between the concentration of greenhouse gases in the atmosphere and global temperatures. Computer simulations of the climate indicate that global temperatures will rise as atmospheric concentrations of CO2 increase. As the risks of global climate change become increasingly apparent, there is a genuine need to focus on actions to reduce our greenhouse gas emissions and minimize the adverse impacts of a changing climate.

  16. Climate change impacts on forestry

    SciTech Connect

    Kirilenko, A.P.; Sedjo, R.A.

    2007-12-11

    Changing temperature and precipitation pattern and increasing concentrations of atmospheric CO{sub 2} are likely to drive significant modifications in natural and modified forests. The authors' review is focused on recent publications that discuss the changes in commercial forestry, excluding the ecosystem functions of forests and nontimber forest products. They concentrate on potential direct and indirect impacts of climate change on forest industry, the projections of future trends in commercial forestry, the possible role of biofuels, and changes in supply and demand.

  17. Climate change impacts on forestry

    PubMed Central

    Kirilenko, Andrei P.; Sedjo, Roger A.

    2007-01-01

    Changing temperature and precipitation pattern and increasing concentrations of atmospheric CO2 are likely to drive significant modifications in natural and modified forests. Our review is focused on recent publications that discuss the changes in commercial forestry, excluding the ecosystem functions of forests and nontimber forest products. We concentrate on potential direct and indirect impacts of climate change on forest industry, the projections of future trends in commercial forestry, the possible role of biofuels, and changes in supply and demand. PMID:18077403

  18. Climate Change: Meeting the Challenge

    ERIC Educational Resources Information Center

    Chance, Paul; Heward, William L.

    2010-01-01

    In "Climate Change: Meeting the Challenge," we conclude the special section by assuming that you have been persuaded by Thompson's paper or other evidence that global warming is real and poses a threat that must be dealt with, and that for now the only way to deal with it is by changing behavior. Then we ask what you, as behavior analysts, can do…

  19. Aggregate Models of Climate Change

    NASA Astrophysics Data System (ADS)

    Hooss, G.; Voss, R.; Hasselmann, K.; Maier-Reimer, E.; Joos, F.

    Integrated assessment of climate change generally requires the evaluation of many transient scenario simulations of century-timescale changes in atmospheric compo- sition and climate, desirably with the accuracy of state-of-the-art three-dimensional (3D) coupled atmosphere-ocean general circulation models (GCMs). Such multi- scenario GCM computations are possible through appropriate representation of the models in aggregate forms. For this purpose, we developed Nonlinear Impulse- response projections of 3D models of the global (oceanic and terrestrial) Carbon cycle and the atmosphere-ocean Climate System (NICCS). For higher CO2 forcing, appli- cability is extended beyond the linear response domain through explicit treatment of dominant nonlinear effects. The climate change module was furthermore augmented with spatial patterns of change in some of the most impact-relevant fields. Applied to three long-term CO2 emission scenarios, the model demonstrates (a) the minor rela- tive role of the terrestrial carbon sink through CO2 fertilization, and (b) the necessity to reduce fossil carbon emissions to a very small fraction of today's rates within the next few decades if a major climate change is to be avoided.

  20. Dislocated interests and climate change

    NASA Astrophysics Data System (ADS)

    Davis, Steven J.; Diffenbaugh, Noah

    2016-06-01

    The predicted effects of climate change on surface temperatures are now emergent and quantifiable. The recent letter by Hansen and Sato (2016 Environ. Res. Lett. 11 034009) adds to a growing number of studies showing that warming over the past four decades has shifted the distribution of temperatures higher almost everywhere, with the largest relative effects on summer temperatures in developing regions such as Africa, South America, southeast Asia, and the Middle East (e.g., Diffenbaugh and Scherer 2011 Clim. Change 107 615-24 Anderson 2011 Clim. Change 108 581; Mahlstein et al 2012 Geophys. Res. Lett. 39 L21711). Hansen and Sato emphasize that although these regions are warming disproportionately, their role in causing climate change—measured by cumulative historical CO2 emissions produced—is small compared to the US and Europe, where the relative change in temperatures has been less. This spatial and temporal mismatch of climate change impacts and the burning of fossil fuels is a critical dislocation of interests that, as the authors note, has ‘substantial implications for global energy and climate policies.’ Here, we place Hansen and Sato’s ‘national responsibilities’ into a broader conceptual framework of problematically dislocated interests, and briefly discuss the related challenges for global climate mitigation efforts.

  1. Western water and climate change.

    PubMed

    Dettinger, Michael; Udall, Bradley; Georgakakos, Aris

    2015-12-01

    The western United States is a region long defined by water challenges. Climate change adds to those historical challenges, but does not, for the most part, introduce entirely new challenges; rather climate change is likely to stress water supplies and resources already in many cases stretched to, or beyond, natural limits. Projections are for continued and, likely, increased warming trends across the region, with a near certainty of continuing changes in seasonality of snowmelt and streamflows, and a strong potential for attendant increases in evaporative demands. Projections of future precipitation are less conclusive, although likely the northern-most West will see precipitation increases while the southernmost West sees declines. However, most of the region lies in a broad area where some climate models project precipitation increases while others project declines, so that only increases in precipitation uncertainties can be projected with any confidence. Changes in annual and seasonal hydrographs are likely to challenge water managers, users, and attempts to protect or restore environmental flows, even where annual volumes change little. Other impacts from climate change (e.g., floods and water-quality changes) are poorly understood and will likely be location dependent. In this context, four iconic river basins offer glimpses into specific challenges that climate change may bring to the West. The Colorado River is a system in which overuse and growing demands are projected to be even more challenging than climate-change-induced flow reductions. The Rio Grande offers the best example of how climate-change-induced flow declines might sink a major system into permanent drought. The Klamath is currently projected to face the more benign precipitation future, but fisheries and irrigation management may face dire straits due to warming air temperatures, rising irrigation demands, and warming waters in a basin already hobbled by tensions between endangered fisheries

  2. NASA's Role in Understanding Climate Change

    NASA Video Gallery

    Earth's climate is changing because of human activity. Learn about NASA's role in understanding climate and climate change with Gilberto Colón, special assistant to the deputy director of NASA's Go...

  3. Resources for Addressing Climate Change and Water

    EPA Pesticide Factsheets

    EPA produces guides and tools aimed to help water professionals adapt to climate change. Research done at EPA helps better understand climate change impacts. These items are meant to assist in effective adaptation to climate impacts in the water sector.

  4. Climate change and related activities

    SciTech Connect

    Not Available

    1992-01-01

    The greenhouse'' process regulates the Earth's climate at a level to sustain life, making our planet unique. The term climate'' refers not only to temperature, but also to the entire system of precipitation, cloudiness, and winds, as well as to the distribution of these features in space and time. The production and consumption of energy contributes to the concentration of greenhouse gases in the atmosphere and is the focus of other environmental concerns as well. Yet the use of energy contributes to worldwide economic growth and development. It we are to achieve environmentally sound economic growth, we must develop and deploy energy technologies that contribute to global stewardship. Global climate change is a significant issue for the US Department of Energy (DOE) because greenhouse gases are emitted from the production and use of fossil fuels. Energy use and production now contribute more than half of the total manmade emissions on a global basis. DOE carries out an aggressive scientific research program to address some of the key uncertainties associated with the climate change issue. Of course, research simply to study the science of global climate change is not enough. At the heart of any regime of cost-effective actions to address the possibility of global climate change will be a panoply of new technologies -- technologies both to provide the services we demand and to use energy more efficiently than in the past. These, too, are important areas of responsibility for DOE. This report is a brief description of DOE's activities in scientific research, technology development, policy studies, and international cooperation that are directly related to or have some bearing on the issue of global climate change.

  5. Climate change and related activities

    SciTech Connect

    Not Available

    1992-03-01

    The ``greenhouse`` process regulates the Earth`s climate at a level to sustain life, making our planet unique. The term ``climate`` refers not only to temperature, but also to the entire system of precipitation, cloudiness, and winds, as well as to the distribution of these features in space and time. The production and consumption of energy contributes to the concentration of greenhouse gases in the atmosphere and is the focus of other environmental concerns as well. Yet the use of energy contributes to worldwide economic growth and development. It we are to achieve environmentally sound economic growth, we must develop and deploy energy technologies that contribute to global stewardship. Global climate change is a significant issue for the US Department of Energy (DOE) because greenhouse gases are emitted from the production and use of fossil fuels. Energy use and production now contribute more than half of the total manmade emissions on a global basis. DOE carries out an aggressive scientific research program to address some of the key uncertainties associated with the climate change issue. Of course, research simply to study the science of global climate change is not enough. At the heart of any regime of cost-effective actions to address the possibility of global climate change will be a panoply of new technologies -- technologies both to provide the services we demand and to use energy more efficiently than in the past. These, too, are important areas of responsibility for DOE. This report is a brief description of DOE`s activities in scientific research, technology development, policy studies, and international cooperation that are directly related to or have some bearing on the issue of global climate change.

  6. Double Exposure: Photographing Climate Change

    NASA Astrophysics Data System (ADS)

    Arnold, D. P.; Wake, C. P.; Romanow, G. B.

    2008-12-01

    Double Exposure, Photographing Climate Change, is a fine-art photography exhibition that examines climate change through the prism of melting glaciers. The photographs are twinned shots of glaciers, taken in the mid-20th century by world-renowned photographer Brad Washburn, and in the past two years by Boston journalist/photographer David Arnold. Arnold flew in Washburn's aerial "footprints", replicating stunning black and white photographs, and documenting one irreversible aspect of climate change. Double Exposure is art with a purpose. It is designed to educate, alarm and inspire its audiences. Its power lies in its beauty and the shocking changes it has captured through a camera lens. The interpretive text, guided by numerous experts in the fields of glaciology, global warming and geology, helps convey the message that climate change has already forced permanent changes on the face of our planet. The traveling exhibit premiered at Boston's Museum of Science in April and is now criss-crossing the nation. The exhibit covers changes in the 15 glaciers that have been photographed as well as related information about global warming's effect on the planet today.

  7. The Climates of Change.

    ERIC Educational Resources Information Center

    Renaud, Harriet

    There is increasing evidence that significant personality changes take place during adolescence and early adulthood. Among 10,000 high school seniors tested, the group intending to go to college differed in ability, socioeconomic background, parental encouragement, academic motivation and attitudes from those going on to jobs or homemaking.…

  8. Assessing urban climate change resilience

    NASA Astrophysics Data System (ADS)

    Voskaki, Asimina

    2016-04-01

    Recent extreme weather events demonstrate that many urban environments are vulnerable to climate change impacts and as a consequence designing systems for future climate seems to be an important parameter in sustainable urban planning. The focus of this research is the development of a theoretical framework to assess climate change resilience in urban environments. The methodological approach used encompasses literature review, detailed analysis, and combination of data, and the development of a series of evaluation criteria, which are further analyzed into a list of measures. The choice of the specific measures is based upon various environmental, urban planning parameters, social, economic and institutional features taking into consideration key vulnerabilities and risk associated with climate change. The selected criteria are further prioritized to incorporate into the evaluation framework the level of importance of different issues towards a climate change resilient city. The framework could support decision making as regards the ability of an urban system to adapt. In addition it gives information on the level of adaptation, outlining barriers to sustainable urban planning and pointing out drivers for action and reaction.

  9. Climate change and game theory.

    PubMed

    Wood, Peter John

    2011-02-01

    This paper examines the problem of achieving global cooperation to reduce greenhouse gas emissions. Contributions to this problem are reviewed from noncooperative game theory, cooperative game theory, and implementation theory. We examine the solutions to games where players have a continuous choice about how much to pollute, as well as games where players make decisions about treaty participation. The implications of linking cooperation on climate change with cooperation on other issues, such as trade, are also examined. Cooperative and noncooperative approaches to coalition formation are investigated in order to examine the behavior of coalitions cooperating on climate change. One way to achieve cooperation is to design a game, known as a mechanism, whose equilibrium corresponds to an optimal outcome. This paper examines some mechanisms that are based on conditional commitments, and their policy implications. These mechanisms could make cooperation on climate change mitigation more likely.

  10. Renewable Energy and Climate Change

    SciTech Connect

    Chum, H. L.

    2012-01-01

    The Intergovernmental Panel on Climate Change issued the Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN) at http://srren.ipcc-wg3.de/ (May 2011 electronic version; printed form ISBN 978-1-107-60710-1, 2012). More than 130 scientists contributed to the report.* The SRREN assessed existing literature on the future potential of renewable energy for the mitigation of climate change within a portfolio of mitigation options including energy conservation and efficiency, fossil fuel switching, RE, nuclear and carbon capture and storage (CCS). It covers the six most important renewable energy technologies - bioenergy, direct solar, geothermal, hydropower, ocean and wind, as well as their integration into present and future energy systems. It also takes into consideration the environmental and social consequences associated with these technologies, the cost and strategies to overcome technical as well as non-technical obstacles to their application and diffusion.

  11. Climate change and forest fires.

    PubMed

    Flannigan, M D; Stocks, B J; Wotton, B M

    2000-11-15

    This paper addresses the impacts of climate change on forest fires and describes how this, in turn, will impact on the forests of the United States. In addition to reviewing existing studies on climate change and forest fires we have used two transient general circulation models (GCMs), namely the Hadley Centre and the Canadian GCMs, to estimate fire season severity in the middle of the next century. Ratios of 2 x CO2 seasonal severity rating (SSR) over present day SSR were calculated for the means and maximums for North America. The results suggest that the SSR will increase by 10-50% over most of North America; although, there are regions of little change or where the SSR may decrease by the middle of the next century. Increased SSRs should translate into increased forest fire activity. Thus, forest fires could be viewed as an agent of change for US forests as the fire regime will respond rapidly to climate warming. This change in the fire regime has the potential to overshadow the direct effects of climate change on species distribution and migration.

  12. Forensic entomology and climatic change.

    PubMed

    Turchetto, Margherita; Vanin, Stefano

    2004-12-02

    Forensic entomology establishes the postmortem interval (PMI) by studying cadaveric fauna. The PMI today is still largely based on tables of insect succession on human cadavers compiled in the late 19th- or mid-20th centuries. In the last few years, however, the gradual warming of the climate has been changing faunal communities by favouring the presence of thermophilous species. To demonstrate how globalization and climate change are overcoming geographic barriers, we present some cases of southern and allochthonous species found in north-east Italy during our entomo-forensic investigations.

  13. [Air quality and climate change].

    PubMed

    Loft, Steffen

    2009-10-26

    Air quality, health and climate change are closely connected. Ozone depends on temperature and the greenhouse gas methane from cattle and biomass. Pollen presence depends on temperature and CO2. The effect of climate change on particulate air pollution is complex, but the likely net effect is greater health risks. Reduction of greenhouse-gas emissions by reduced livestock production and use of combustion for energy production, transport and heating will also improve air quality. Energy savings in buildings and use of CO2 neutral fuels should not deteriorate indoor and outdoor air quality.

  14. Position Statement On Climate Change.

    PubMed

    2016-05-01

    The North Carolina Environmental Justice Network (NCEJN), a coalition of grassroots organizations, developed a statement to explain our environmental justice perspective on climate change to predominantly white environmental groups that seek to partner with us. NCEJN opposes strategies that reduce greenhouse emissions while maintaining or magnifying existing social, economic, and environmental injustices. Wealthy communities that consume a disproportionate share of resources avoid the most severe consequences of their consumption by displacing pollution on communities of color and low income. Therefore, the success of climate change activism depends on building an inclusive movement based on principles of racial, social and economic justice, and self-determination for all people.

  15. Public Engagement on Climate Change

    NASA Astrophysics Data System (ADS)

    Curry, J.

    2011-12-01

    Climate change communication is complicated by complexity of the scientific problem, multiple perspectives on the magnitude of the risk from climate change, often acrimonious disputes between scientists, high stakes policy options, and overall politicization of the issue. Efforts to increase science literacy as a route towards persuasion around the need for a policy like cap and trade have failed, because the difficulty that a scientist has in attempting to make sense of the social and political complexity is very similar to the complexity facing the general public as they try to make sense of climate science itself. In this talk I argue for a shift from scientists and their institutions as information disseminators to that of public engagement and enablers of public participation. The goal of engagement is not just to inform, but to enable, motivate and educate the public regarding the technical, political, and social dimensions of climate change. Engagement is a two-way process where experts and decision-makers seek input and learn from the public about preferences, needs, insights, and ideas relative to climate change impacts, vulnerabilities, solutions and policy options. Effective public engagement requires that scientists detach themselves from trying to control what the public does with the acquired knowledge and motivation. The goal should not be to "sell" the public on particular climate change solutions, since such advocacy threatens public trust in scientists and their institutions. Conduits for public engagement include the civic engagement approach in the context of community meetings, and perhaps more significantly, the blogosphere. Since 2006, I have been an active participant in the climate blogosphere, focused on engaging with people that are skeptical of AGW. A year ago, I started my own blog Climate Etc. at judithcurry.com. The demographic that I have focused my communication/engagement activities are the technically educated and scientifically

  16. Maritime Archaeology and Climate Change: An Invitation

    NASA Astrophysics Data System (ADS)

    Wright, Jeneva

    2016-12-01

    Maritime archaeology has a tremendous capacity to engage with climate change science. The field is uniquely positioned to support climate change research and the understanding of past human adaptations to climate change. Maritime archaeological data can inform on environmental shifts and submerged sites can serve as an important avenue for public outreach by mobilizing public interest and action towards understanding the impacts of climate change. Despite these opportunities, maritime archaeologists have not fully developed a role within climate change science and policy. Moreover, submerged site vulnerabilities stemming from climate change impacts are not yet well understood. This article discusses potential climate change threats to maritime archaeological resources, the challenges confronting cultural resource managers, and the contributions maritime archaeology can offer to climate change science. Maritime archaeology's ability to both support and benefit from climate change science argues its relevant and valuable place in the global climate change dialogue, but also reveals the necessity for our heightened engagement.

  17. AEROSOL, CLOUDS, AND CLIMATE CHANGE

    SciTech Connect

    SCHWARTZ, S.E.

    2005-09-01

    Earth's climate is thought to be quite sensitive to changes in radiative fluxes that are quite small in absolute magnitude, a few watts per square meter, and in relation to these fluxes in the natural climate. Atmospheric aerosol particles exert influence on climate directly, by scattering and absorbing radiation, and indirectly by modifying the microphysical properties of clouds and in turn their radiative effects and hydrology. The forcing of climate change by these indirect effects is thought to be quite substantial relative to forcing by incremental concentrations of greenhouse gases, but highly uncertain. Quantification of aerosol indirect forcing by satellite- or ground-based remote sensing has proved quite difficult in view of inherent large variation in the pertinent observables such as cloud optical depth, which is controlled mainly by liquid water path and only secondarily by aerosols. Limited work has shown instances of large magnitude of aerosol indirect forcing, with local instantaneous forcing upwards of 50 W m{sup 66}-2. Ultimately it will be necessary to represent aerosol indirect effects in climate models to accurately identify the anthropogenic forcing at present and over secular time and to assess the influence of this forcing in the context of other forcings of climate change. While the elements of aerosol processes that must be represented in models describing the evolution and properties of aerosol particles that serve as cloud condensation particles are known, many important components of these processes remain to be understood and to be represented in models, and the models evaluated against observation, before such model-based representations can confidently be used to represent aerosol indirect effects in climate models.

  18. Stratospheric aerosols and climatic change

    NASA Technical Reports Server (NTRS)

    Baldwin, B.; Pollack, J. B.; Summers, A.; Toon, O. B.; Sagan, C.; Van Camp, W.

    1976-01-01

    Generated primarily by volcanic explosions, a layer of submicron silicate particles and particles made of concentrated sulfuric acids solution is present in the stratosphere. Flights through the stratosphere may be a future source of stratospheric aerosols, since the effluent from supersonic transports contains sulfurous gases (which will be converted to H2SO4) while the exhaust from Space Shuttles contains tiny aluminum oxide particles. Global heat balance calculations have shown that the stratospheric aerosols have made important contributions to some climatic changes. In the present paper, accurate radiative transfer calculations of the globally-averaged surface temperature (T) are carried out to estimate the sensitivity of the climate to changes in the number of stratospheric aerosols. The results obtained for a specified model atmosphere, including a vertical profile of the aerosols, indicate that the climate is unlikely to be affected by supersonic transports and Space Shuttles, during the next decades.

  19. The Atlantic Climate Change Program

    SciTech Connect

    Molinari, R.L. ); Battisti, D. ); Bryan, K. ); Walsh, J. )

    1994-07-01

    The Atlantic Climate Change Program (ACCP) is a component of NOAA's Climate and Global Change Program. ACCP is directed at determining the role of the thermohaline circulation of the Atlantic Ocean on global atmospheric climate. Efforts and progress in four ACCP elements are described. Advances include (1) descriptions of decadal and longer-term variability in the coupled ocean-atmosphere-ice system of the North Atlantic; (2) development of tools needed to perform long-term model runs of coupled simulations of North Atlantic air-sea interaction; (3) definition of mean and time-dependent characteristics of the thermohaline circulation; and (4) development of monitoring strategies for various elements of the thermohaline circulation. 20 refs., 4 figs., 1 tab.

  20. The Science of Climate Change

    ERIC Educational Resources Information Center

    Oppenheimer, Michael; Anttila-Hughes, Jesse K.

    2016-01-01

    Michael Oppenheimer and Jesse Anttila-Hughes begin with a primer on how the greenhouse effect works, how we know that Earth is rapidly getting warmer, and how we know that the recent warming is caused by human activity. They explain the sources of scientific knowledge about climate change as well as the basis for the models scientists use to…

  1. Western water and climate change

    USGS Publications Warehouse

    Dettinger, Michael; Udall, Bradley; Georgakakos, Aris P.

    2015-01-01

    In this context, four iconic river basins offer glimpses into specific challenges that climate change may bring to the West. The Colorado River is a system in which overuse and growing demands are projected to be even more challenging than climate-change-induced flow reductions. The Rio Grande offers the best example of how climate-change-induced flow declines might sink a major system into permanent drought. The Klamath is currently projected to face the more benign precipitation future, but fisheries and irrigation management may face dire straits due to warming air temperatures, rising irrigation demands, and warming waters in a basin already hobbled by tensions between endangered fisheries and agricultural demands. Finally, California's Bay-Delta system is a remarkably localized and severe weakness at the heart of the region's trillion-dollar economy. It is threatened by the full range of potential climate-change impacts expected across the West, along with major vulnerabilities to increased flooding and rising sea levels.

  2. Conservation practices for climate change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate change presents a major challenge to sustainable land management (USDA NRCS 2010). Several reports have reported that over the last few decades rainfall intensities have also increased in many parts of the world, including in the United States. Without good productive soils and the ecosyste...

  3. Global Climate Change Interaction Web.

    ERIC Educational Resources Information Center

    Fortner, Rosanne W.

    1998-01-01

    Students investigate the effects of global climate change on life in the Great Lakes region in this activity. Teams working together construct as many links as possible for such factors as rainfall, lake water, evaporation, skiing, zebra mussels, wetlands, shipping, walleye, toxic chemicals, coastal homes, and population. (PVD)

  4. Climate Change and Respiratory Infections.

    PubMed

    Mirsaeidi, Mehdi; Motahari, Hooman; Taghizadeh Khamesi, Mojdeh; Sharifi, Arash; Campos, Michael; Schraufnagel, Dean E

    2016-08-01

    The rate of global warming has accelerated over the past 50 years. Increasing surface temperature is melting glaciers and raising the sea level. More flooding, droughts, hurricanes, and heat waves are being reported. Accelerated changes in climate are already affecting human health, in part by altering the epidemiology of climate-sensitive pathogens. In particular, climate change may alter the incidence and severity of respiratory infections by affecting vectors and host immune responses. Certain respiratory infections, such as avian influenza and coccidioidomycosis, are occurring in locations previously unaffected, apparently because of global warming. Young children and older adults appear to be particularly vulnerable to rapid fluctuations in ambient temperature. For example, an increase in the incidence in childhood pneumonia in Australia has been associated with sharp temperature drops from one day to the next. Extreme weather events, such as heat waves, floods, major storms, drought, and wildfires, are also believed to change the incidence of respiratory infections. An outbreak of aspergillosis among Japanese survivors of the 2011 tsunami is one such well-documented example. Changes in temperature, precipitation, relative humidity, and air pollution influence viral activity and transmission. For example, in early 2000, an outbreak of Hantavirus respiratory disease was linked to a local increase in the rodent population, which in turn was attributed to a two- to threefold increase in rainfall before the outbreak. Climate-sensitive respiratory pathogens present challenges to respiratory health that may be far greater in the foreseeable future.

  5. Students' evaluations about climate change

    NASA Astrophysics Data System (ADS)

    Lombardi, Doug; Brandt, Carol B.; Bickel, Elliot S.; Burg, Colin

    2016-05-01

    Scientists regularly evaluate alternative explanations of phenomena and solutions to problems. Students should similarly engage in critical evaluation when learning about scientific and engineering topics. However, students do not often demonstrate sophisticated evaluation skills in the classroom. The purpose of the present study was to investigate middle school students' evaluations when confronted with alternative explanations of the complex and controversial topic of climate change. Through a qualitative analysis, we determined that students demonstrated four distinct categories of evaluation when writing about the connections between evidence and alternative explanations of climate change: (a) erroneous evaluation, (b) descriptive evaluation, (c) relational evaluation, and (d) critical evaluation. These categories represent different types of evaluation quality. A quantitative analysis revealed that types of evaluation, along with plausibility perceptions about the alternative explanations, were significant predictors of postinstructional knowledge about scientific principles underlying the climate change phenomenon. Specifically, more robust evaluations and greater plausibility toward the scientifically accepted model of human-induced climate change predicted greater knowledge. These findings demonstrate that instruction promoting critical evaluation and plausibility appraisal may promote greater understanding of socio-scientific topics and increased use of scientific thinking when considering alternative explanations, as is called for by recent science education reform efforts.

  6. Climate change - creating watershed resilience

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate change is likely to intensify the circulation of water, which will shift spatial and temporal availability of snowmelt and runoff. In addition, drought and floods are likely to be more frequent, severe and widespread. Higher air temperatures will lead to higher ocean temperatures, elevating ...

  7. Climatic Change and Human Evolution.

    ERIC Educational Resources Information Center

    Garratt, John R.

    1995-01-01

    Traces the history of the Earth over four billion years, and shows how climate has had an important role to play in the evolution of humans. Posits that the world's rapidly growing human population and its increasing use of energy is the cause of present-day changes in the concentrations of greenhouse gases in the atmosphere. (Author/JRH)

  8. A Lesson on Climate Change.

    ERIC Educational Resources Information Center

    Lewis, Jim

    This cooperative learning activity, for grades 7-12, promotes critical thinking skills within the context of learning about the causes and effects of climate change. Objectives include: (1) understanding factors that reduce greenhouse gases; (2) understanding the role of trees in reducing greenhouse gases; (3) identifying foods that produce…

  9. Community action and climate change

    NASA Astrophysics Data System (ADS)

    Ordner, James P.

    2017-03-01

    President Obama's rejection of the Keystone XL pipeline in 2015 established the viability of grassroots mobilization modelled on the social movement organization Bold Nebraska. This set a precedent for communities fighting energy projects that threaten natural resources and contribute to climate change.

  10. Climate Change: Evidence and Causes

    ERIC Educational Resources Information Center

    Wolff, Eric

    2014-01-01

    The fundamentals of climate change are well established: greenhouse gases warm the planet; their concentrations in the atmosphere are increasing; Earth has warmed, and is going to continue warming with a range of impacts. This article summarises the contents of a recent publication issued by the UK's Royal Society and the US National Academy of…

  11. Climate change and related activities

    SciTech Connect

    Not Available

    1992-10-01

    The production and consumption of energy contributes to the concentration of greenhouse gases in the atmosphere and is the focus of other environmental concerns as well. Yet the use of energy contributes to worldwide economic growth and development. If we are to achieve environmentally sound economic growth, we must develop and deploy energy technologies that contribute to global stewardship. The Department of Energy carries out an aggressive scientific research program to address some of the key uncertainties associated with the climate change issue. Of course, research simply to study the science of global climate change is not enough. At the heart of any regime of cost-effective actions to address the possibility of global climate change will be a panoply of new technologies-technologies both to provide the services we demand and to use energy more efficiently than in the past. These, too, are important areas of responsibility for the Department. This report is a brief description of the Department`s activities in scientific research, technology development, policy studies, and international cooperation that are directly related to or have some bearing on the issue of global climate change.

  12. Climate change and related activities

    SciTech Connect

    Not Available

    1992-01-01

    The production and consumption of energy contributes to the concentration of greenhouse gases in the atmosphere and is the focus of other environmental concerns as well. Yet the use of energy contributes to worldwide economic growth and development. If we are to achieve environmentally sound economic growth, we must develop and deploy energy technologies that contribute to global stewardship. The Department of Energy carries out an aggressive scientific research program to address some of the key uncertainties associated with the climate change issue. Of course, research simply to study the science of global climate change is not enough. At the heart of any regime of cost-effective actions to address the possibility of global climate change will be a panoply of new technologies-technologies both to provide the services we demand and to use energy more efficiently than in the past. These, too, are important areas of responsibility for the Department. This report is a brief description of the Department's activities in scientific research, technology development, policy studies, and international cooperation that are directly related to or have some bearing on the issue of global climate change.

  13. Climate change and trace gases.

    PubMed

    Hansen, James; Sato, Makiko; Kharecha, Pushker; Russell, Gary; Lea, David W; Siddall, Mark

    2007-07-15

    Palaeoclimate data show that the Earth's climate is remarkably sensitive to global forcings. Positive feedbacks predominate. This allows the entire planet to be whipsawed between climate states. One feedback, the 'albedo flip' property of ice/water, provides a powerful trigger mechanism. A climate forcing that 'flips' the albedo of a sufficient portion of an ice sheet can spark a cataclysm. Inertia of ice sheet and ocean provides only moderate delay to ice sheet disintegration and a burst of added global warming. Recent greenhouse gas (GHG) emissions place the Earth perilously close to dramatic climate change that could run out of our control, with great dangers for humans and other creatures. Carbon dioxide (CO2) is the largest human-made climate forcing, but other trace constituents are also important. Only intense simultaneous efforts to slow CO2 emissions and reduce non-CO2 forcings can keep climate within or near the range of the past million years. The most important of the non-CO2 forcings is methane (CH4), as it causes the second largest human-made GHG climate forcing and is the principal cause of increased tropospheric ozone (O3), which is the third largest GHG forcing. Nitrous oxide (N2O) should also be a focus of climate mitigation efforts. Black carbon ('black soot') has a high global warming potential (approx. 2000, 500 and 200 for 20, 100 and 500 years, respectively) and deserves greater attention. Some forcings are especially effective at high latitudes, so concerted efforts to reduce their emissions could preserve Arctic ice, while also having major benefits for human health, agricultural productivity and the global environment.

  14. Changing Climates @ Colorado State: 100 (Multidisciplinary) Views of Climate Change

    NASA Astrophysics Data System (ADS)

    Campbell, S.; Calderazzo, J.; Changing Climates, Cmmap Education; Diversity Team

    2011-12-01

    We would like to talk about a multidisciplinary education and outreach program we co-direct at Colorado State University, with support from an NSF-funded STC, CMMAP, the Center for Multiscale Modeling of Atmospheric Processes. We are working to raise public literacy about climate change by providing information that is high quality, up to date, thoroughly multidisciplinary, and easy for non-specialists to understand. Our primary audiences are college-level students, their teachers, and the general public. Our motto is Climate Change is Everybody's Business. To encourage and help our faculty infuse climate-change content into their courses, we have organized some 115 talks given by as many different speakers-speakers drawn from 28 academic departments, all 8 colleges at CSU, and numerous other entities from campus, the community, and farther afield. We began with a faculty-teaching-faculty series and then broadened our attentions to the whole campus and surrounding community. Some talks have been for narrowly focused audiences such as extension agents who work on energy, but most are for more eclectic groups of students, staff, faculty, and citizens. We count heads at most events, and our current total is roughly 6,000. We have created a website (http://changingclimates.colostate.edu) that includes videotapes of many of these talks, short videos we have created, and annotated sources that we judge to be accurate, interesting, clearly written, and aimed at non-specialists, including books, articles and essays, websites, and a few items specifically for college teachers (such as syllabi). Pages of the website focus on such topics as how the climate works / how it changes; what's happening / what might happen; natural ecosystems; agriculture; impacts on people; responses from ethics, art, literature; communication; daily life; policy; energy; and-pulling all the pieces together-the big picture. We have begun working on a new series of very short videos that can be

  15. Climate Change and Intertidal Wetlands

    PubMed Central

    Ross, Pauline M.; Adam, Paul

    2013-01-01

    Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause—the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the “squeeze” experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change. PMID:24832670

  16. Climate change and intertidal wetlands.

    PubMed

    Ross, Pauline M; Adam, Paul

    2013-03-19

    Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause-the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the "squeeze" experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change.

  17. Climate change and the Delta

    USGS Publications Warehouse

    Dettinger, Michael; Anderson, Jamie; Anderson, Michael L.; Brown, Larry R.; Cayan, Daniel; Maurer, Edwin P.

    2016-01-01

    Anthropogenic climate change amounts to a rapidly approaching, “new” stressor in the Sacramento–San Joaquin Delta system. In response to California’s extreme natural hydroclimatic variability, complex water-management systems have been developed, even as the Delta’s natural ecosystems have been largely devastated. Climate change is projected to challenge these management and ecological systems in different ways that are characterized by different levels of uncertainty. For example, there is high certainty that climate will warm by about 2°C more (than late-20th-century averages) by mid-century and about 4°C by end of century, if greenhouse-gas emissions continue their current rates of acceleration. Future precipitation changes are much less certain, with as many climate models projecting wetter conditions as drier. However, the same projections agree that precipitation will be more intense when storms do arrive, even as more dry days will separate storms. Warmer temperatures will likely enhance evaporative demands and raise water temperatures. Consequently, climate change is projected to yield both more extreme flood risks and greater drought risks. Sea level rise (SLR) during the 20th century was about 22cm, and is projected to increase by at least 3-fold this century. SLR together with land subsidence threatens the Delta with greater vulnerabilities to inundation and salinity intrusion. Effects on the Delta ecosystem that are traceable to warming include SLR, reduced snowpack, earlier snowmelt and larger storm-driven streamflows, warmer and longer summers, warmer summer water temperatures, and water-quality changes. These changes and their uncertainties will challenge the operations of water projects and uses throughout the Delta’s watershed and delivery areas. Although the effects of climate change on Delta ecosystems may be profound, the end results are difficult to predict, except that native species will fare worse than invaders. Successful

  18. Harnessing Historical Climate Variability to Assess Multivariate Climate Changes

    NASA Astrophysics Data System (ADS)

    Mahony, C. R.; Cannon, A. J.; Aitken, S. N.

    2015-12-01

    Climate is intrinsically multivariate—the collective influence of various aspects of weather at different times of year. A central challenge of climate change impact analysis is therefore to characterize changes in multiple temperature and precipitation variables simultaneously. Historical climate variability provides key context for relating climate variables to each other and assessing collective deviations from historical climate conditions. We have developed a Mahalanobian probability metric to describe spatial and temporal climatic dissimilarity in terms of local interannual climatic variability. Our approach is particularly suited to evaluation of climate analogs in space and time, but also facilitates multivariate extensions to several prominent indices of climate change. We use this metric to detect the departure of multivariate climate conditions from the historical range of local variability across North America and to identify regions that are particularly susceptible to emergence of no-analog climates. With respect to interpreting climate extremes, some critical considerations emerge from this research. In particular, we highlight the potential for temporal aggregation to exaggerate the statistical significance of extreme conditions, and the dilemma of identifying an appropriate statistical distribution for precipitation across both space and time. Despite the challenges of interpreting the specific impacts associated with multivariate climate changes and extremes, expressing these conditions relative to historical climate variability provides a useful first approximation of their ecological and socioeconomic significance. Figure Caption: Demonstration of the use of the chi distribution to measure spatial climatic dissimilarity in terms of local interannual climatic variability.

  19. Science Matters Podcast: Climate Change Research

    EPA Pesticide Factsheets

    Listen to a podcast with Dr. Andy Miller, the Associate Director for Climate for the Agency's Air, Climate, and Energy Research Program, as he answers questions about climate change research, or read some of the highlights from the conversation here.

  20. The velocity of climate change.

    PubMed

    Loarie, Scott R; Duffy, Philip B; Hamilton, Healy; Asner, Gregory P; Field, Christopher B; Ackerly, David D

    2009-12-24

    The ranges of plants and animals are moving in response to recent changes in climate. As temperatures rise, ecosystems with 'nowhere to go', such as mountains, are considered to be more threatened. However, species survival may depend as much on keeping pace with moving climates as the climate's ultimate persistence. Here we present a new index of the velocity of temperature change (km yr(-1)), derived from spatial gradients ( degrees C km(-1)) and multimodel ensemble forecasts of rates of temperature increase ( degrees C yr(-1)) in the twenty-first century. This index represents the instantaneous local velocity along Earth's surface needed to maintain constant temperatures, and has a global mean of 0.42 km yr(-1) (A1B emission scenario). Owing to topographic effects, the velocity of temperature change is lowest in mountainous biomes such as tropical and subtropical coniferous forests (0.08 km yr(-1)), temperate coniferous forest, and montane grasslands. Velocities are highest in flooded grasslands (1.26 km yr(-1)), mangroves and deserts. High velocities suggest that the climates of only 8% of global protected areas have residence times exceeding 100 years. Small protected areas exacerbate the problem in Mediterranean-type and temperate coniferous forest biomes. Large protected areas may mitigate the problem in desert biomes. These results indicate management strategies for minimizing biodiversity loss from climate change. Montane landscapes may effectively shelter many species into the next century. Elsewhere, reduced emissions, a much expanded network of protected areas, or efforts to increase species movement may be necessary.

  1. A common-sense climate index: is climate changing noticeably?

    NASA Technical Reports Server (NTRS)

    Hansen, J.; Sato, M.; Glascoe, J.; Ruedy, R.

    1998-01-01

    We propose an index of climate change based on practical climate indicators such as heating degree days and the frequency of intense precipitation. We find that in most regions the index is positive, the sense predicted to accompany global warming. In a few regions, especially in Asia and western North America, the index indicates that climate change should be apparent already, but in most places climate trends are too small to stand out above year-to-year variability. The climate index is strongly correlated with global surface temperature, which has increased as rapidly as projected by climate models in the 1980s. We argue that the global area with obvious climate change will increase notably in the next few years. But we show that the growth rate of greenhouse gas climate forcing has declined in recent years, and thus there is an opportunity to keep climate change in the 21st century less than "business-as-usual" scenarios.

  2. A common-sense climate index: Is climate changing noticeably?

    PubMed Central

    Hansen, James; Sato, Makiko; Glascoe, Jay; Ruedy, Reto

    1998-01-01

    We propose an index of climate change based on practical climate indicators such as heating degree days and the frequency of intense precipitation. We find that in most regions the index is positive, the sense predicted to accompany global warming. In a few regions, especially in Asia and western North America, the index indicates that climate change should be apparent already, but in most places climate trends are too small to stand out above year-to-year variability. The climate index is strongly correlated with global surface temperature, which has increased as rapidly as projected by climate models in the 1980s. We argue that the global area with obvious climate change will increase notably in the next few years. But we show that the growth rate of greenhouse gas climate forcing has declined in recent years, and thus there is an opportunity to keep climate change in the 21st century less than “business-as-usual” scenarios. PMID:9539699

  3. A common-sense climate index: is climate changing noticeably?

    PubMed

    Hansen, J; Sato, M; Glascoe, J; Ruedy, R

    1998-04-14

    We propose an index of climate change based on practical climate indicators such as heating degree days and the frequency of intense precipitation. We find that in most regions the index is positive, the sense predicted to accompany global warming. In a few regions, especially in Asia and western North America, the index indicates that climate change should be apparent already, but in most places climate trends are too small to stand out above year-to-year variability. The climate index is strongly correlated with global surface temperature, which has increased as rapidly as projected by climate models in the 1980s. We argue that the global area with obvious climate change will increase notably in the next few years. But we show that the growth rate of greenhouse gas climate forcing has declined in recent years, and thus there is an opportunity to keep climate change in the 21st century less than "business-as-usual" scenarios.

  4. Plan B for climate change

    NASA Astrophysics Data System (ADS)

    2009-09-01

    Ever thought about tackling climate change by spraying aerosols into the upper atmosphere to act as a giant sunblock? Or how about placing trillions of tiny parasols in space to divert solar radiation? Or perhaps fertilizing the oceans with iron to promote artificial blooms of phytoplankton that can soak up carbon dioxide? The problem with these and other proposed "geoengineering" techniques is that they sound so crazy, expensive and dangerous that many mainstream climate scientists have refused to take such solutions seriously. Indeed, some fear that even discussing geoengineering is enough to scupper climate negotiations, such as those that are due to take place in Copenhagen in December, by implying that we do not need to bother cutting greenhouse-gas emissions.

  5. Risk management and climate change

    NASA Astrophysics Data System (ADS)

    Kunreuther, Howard; Heal, Geoffrey; Allen, Myles; Edenhofer, Ottmar; Field, Christopher B.; Yohe, Gary

    2013-05-01

    The selection of climate policies should be an exercise in risk management reflecting the many relevant sources of uncertainty. Studies of climate change and its impacts rarely yield consensus on the distribution of exposure, vulnerability or possible outcomes. Hence policy analysis cannot effectively evaluate alternatives using standard approaches, such as expected utility theory and benefit-cost analysis. This Perspective highlights the value of robust decision-making tools designed for situations such as evaluating climate policies, where consensus on probability distributions is not available and stakeholders differ in their degree of risk tolerance. A broader risk-management approach enables a range of possible outcomes to be examined, as well as the uncertainty surrounding their likelihoods.

  6. Precipitation Extremes Under Climate Change.

    PubMed

    O'Gorman, Paul A

    The response of precipitation extremes to climate change is considered using results from theory, modeling, and observations, with a focus on the physical factors that control the response. Observations and simulations with climate models show that precipitation extremes intensify in response to a warming climate. However, the sensitivity of precipitation extremes to warming remains uncertain when convection is important, and it may be higher in the tropics than the extratropics. Several physical contributions govern the response of precipitation extremes. The thermodynamic contribution is robust and well understood, but theoretical understanding of the microphysical and dynamical contributions is still being developed. Orographic precipitation extremes and snowfall extremes respond differently from other precipitation extremes and require particular attention. Outstanding research challenges include the influence of mesoscale convective organization, the dependence on the duration considered, and the need to better constrain the sensitivity of tropical precipitation extremes to warming.

  7. Climate change and allergic disease.

    PubMed

    Bielory, Leonard; Lyons, Kevin; Goldberg, Robert

    2012-12-01

    Allergies are prevalent throughout the United States and impose a substantial quality of life and economic burden. The potential effect of climate change has an impact on allergic disorders through variability of aeroallergens, food allergens and insect-based allergic venoms. Data suggest allergies (ocular and nasal allergies, allergic asthma and sinusitis) have increased in the United States and that there are changes in allergies to stinging insect populations (vespids, apids and fire ants). The cause of this upward trend is unknown, but any climate change may induce augmentation of this trend; the subspecialty of allergy and immunology needs to be keenly aware of potential issues that are projected for the near and not so distant future.

  8. Adapting to Climate Change: Research Challenges

    NASA Astrophysics Data System (ADS)

    Palutikof, Jean; Romero-Lankao, Patricia

    2009-06-01

    Climate Change Impacts, Adaptation, and Vulnerability Community Coordination; Boulder, Colorado, 8-9 January 2009; In 2007, the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) reaffirmed that anthropogenic climate change is under way, that future climate change is unavoidable, and that observed impacts can be attributed, at least in part, to anthropogenic warming. In addition, a growing number of climate change adaptation strategies are being developed around the world, indicating that policy makers are waking up to the reality of climate change. While mitigation efforts remain vital for avoiding the most dangerous impacts, adapting to unavoidable climate change is also essential. The climate change impacts, adaptation, and vulnerability (IAV) research community is now being called upon to demonstrate the likely impacts and vulnerabilities associated with future climate changes and to provide scientific advice on the most effective adaptation strategies.

  9. Asia's changing role in global climate change.

    PubMed

    Siddiqi, Toufiq A

    2008-10-01

    Asia's role in global climate change has evolved significantly from the time when the Kyoto Protocol was being negotiated. Emissions of carbon dioxide, the principal greenhouse gas, from energy use in Asian countries now exceed those from the European Union or North America. Three of the top five emitters-China, India, and Japan, are Asian countries. Any meaningful global effort to address global climate change requires the active cooperation of these and other large Asian countries, if it is to succeed. Issues of equity between countries, within countries, and between generations, need to be tackled. Some quantitative current and historic data to illustrate the difficulties involved are provided, and one approach to making progress is suggested.

  10. 1000 years of climate change

    NASA Astrophysics Data System (ADS)

    Keller, C.

    Solar activity has been observed to vary on decadal and centennial time scales. Recent evidence (Bond, 2002) points to a major semi-periodic variation of approximately 1,500 yrs. For this reason, and because high resolution proxy records are limited to the past thousand years or so, assessing the role of the sun's variability on climate change over this time f ame has received much attention. A pressingr application of these assessments is the attempt to separate the role of the sun from that of various anthropogenic forcings in the past century and a half. This separation is complicated by the possible existence of natural variability other than solar, and by the fact that the time-dependence of solar and anthropogenic forcings is very similar over the past hundred years or so. It has been generally assumed that solar forcing is direct, i.e. changes in sun's irradiance. However, evidence has been put forth suggesting that there exist various additional indirect forcings that could be as large as or even exceed direct forcing (modulation of cosmic ray - induced cloudiness, UV- induced stratospheric ozone change s, or oscillator -driven changes in the Pacific Ocean). Were such forcings to be large, they could account for nearly all 20th Century warming, relegating anthropogenic effects to a minor role. Determination of climate change over the last thousand years offers perhaps the best way to assess the magnitude of total solar forcing, thus allowing its comparison with that of anthropogenic sources. Perhaps the best proxy records for climate variation in the past 1,000 yrs have been variations in temperat ure sensitive tree rings (Briffa and Osborne, 2002). A paucity of such records in the Southern Hemisphere has largely limited climate change determinations to the subtropical NH. Two problems with tree rings are that the rings respond to temperature differently with the age of the tree, and record largely the warm, growing season only. It appears that both these

  11. Solar Variability and Climate Change

    NASA Astrophysics Data System (ADS)

    Haigh, Joanna

    2013-03-01

    The need to distinguish natural from anthropogenic causes of climate change makes it important to understand and quantify any impact of the Sun. In this talk I will outline what is known about variations in solar output and review the evidence for solar influences on climate over a range of timescales. When the Sun is more active our work shows the response in temperature is not a warming of the tropics but mainly of mid-latitudes, along with a weakening and poleward shift of the jet streams and storm-tracks. Using climate models we have found that an important factor driving this response is the absorption in the stratosphere of solar UV radiation and we have identified a dynamical coupling mechanism which transfers a solar signal from the stratosphere to the atmosphere below. This means that simple assessments of the solar impact based on energy balance ideas may be effective in estimating global mean temperature change but might be neglecting important effects on regional climate. During the last solar cycle minimum the Sun was in a state of very low activity and some satellite measurements have suggested that the solar spectrum has been behaving in a strange and unexpected way. The talk will finish with a discussion of recent work on the implications of these spectral variations.

  12. Climate Change and Civil Violence

    NASA Astrophysics Data System (ADS)

    van der Vink, G.; Plancherel, Y.; Hennet, C.; Jones, K. D.; Abdullah, A.; Bradshaw, J.; Dee, S.; Deprez, A.; Pasenello, M.; Plaza-Jennings, E.; Roseman, D.; Sopher, P.; Sung, E.

    2009-05-01

    The manifestations of climate change can result in humanitarian impacts that reverse progress in poverty- reduction, create shortages of food and resources, lead to migration, and ultimately result in civil violence and conflict. Within the continent of Africa, we have found that environmentally-related variables are either the cause or the confounding factor for over 80% of the civil violence events during the last 10 years. Using predictive climate models and land-use data, we are able to identify populations in Africa that are likely to experience the most severe climate-related shocks. Through geospatial analysis, we are able to overlay these areas of high risk with assessments of both the local population's resiliency and the region's capacity to respond to climate shocks should they occur. The net result of the analysis is the identification of locations that are becoming particularly vulnerable to future civil violence events (vulnerability hotspots) as a result of the manifestations of climate change. For each population group, over 600 social, economic, political, and environmental indicators are integrated statistically to measures the vulnerability of African populations to environmental change. The indicator time-series are filtered for data availability and redundancy, broadly ordered into four categories (social, political, economic and environmental), standardized and normalized. Within each category, the dominant modes of variability are isolated by principal component analysis and the loadings of each component for each variable are used to devise composite index scores. Comparisons of past vulnerability with known environmentally-related conflicts demonstrates the role that such vulnerability hotspot maps can play in evaluating both the potential for, and the significance of, environmentally-related civil violence events. Furthermore, the analysis reveals the major variables that are responsible for the population's vulnerability and therefore

  13. Liver and heart mitochondria obtained from Adelie penguin (Pygoscelis adeliae) offers high resistance to lipid peroxidation.

    PubMed

    Gavazza, Mariana; Marmunti, Mónica; Montalti, D; Gutiérrez, Ana María

    2008-06-01

    Lipid peroxidation is generally thought to be a major mechanism of cell injury in aerobic organisms subjected to oxidative stress. All cellular membranes are especially vulnerable to oxidation due to their high concentration of polyunsaturated fatty acids. However, birds have special adaptations for preventing membrane damage caused by reactive oxygen species. This study examines fatty acid profiles and susceptibility to lipid peroxidation in liver and heart mitochondria obtained from Adelie penguin (Pygoscelis adeliae). The saturated fatty acids in these organelles represent approximately 40-50% of total fatty acids whereas the polyunsaturated fatty acid composition was highly distinctive, characterized by almost equal amounts of 18:2 n-6; 20:4 n-6 and 22:6 n-3 in liver mitochondria, and a higher proportion of 18:2 n-6 compared to 20:4 n-6 and 22:6 n-3 in heart mitochondria. The concentration of total unsaturated fatty acids of liver and heart mitochondria was approximately 50% and 60%, respectively, with a prevalence of oleic acid C18:1 n9. The rate C20:4 n6/C18:2 n6 and the unsaturation index was similar in liver and heart mitochondria; 104.33 +/- 6.73 and 100.09 +/- 3.07, respectively. Light emission originating from these organelles showed no statistically significant differences and the polyunsaturated fatty acid profiles did not change during the lipid peroxidation process.

  14. Novel communities from climate change

    PubMed Central

    Lurgi, Miguel; López, Bernat C.; Montoya, José M.

    2012-01-01

    Climate change is generating novel communities composed of new combinations of species. These result from different degrees of species adaptations to changing biotic and abiotic conditions, and from differential range shifts of species. To determine whether the responses of organisms are determined by particular species traits and how species interactions and community dynamics are likely to be disrupted is a challenge. Here, we focus on two key traits: body size and ecological specialization. We present theoretical expectations and empirical evidence on how climate change affects these traits within communities. We then explore how these traits predispose species to shift or expand their distribution ranges, and associated changes on community size structure, food web organization and dynamics. We identify three major broad changes: (i) Shift in the distribution of body sizes towards smaller sizes, (ii) dominance of generalized interactions and the loss of specialized interactions, and (iii) changes in the balance of strong and weak interaction strengths in the short term. We finally identify two major uncertainties: (i) whether large-bodied species tend to preferentially shift their ranges more than small-bodied ones, and (ii) how interaction strengths will change in the long term and in the case of newly interacting species. PMID:23007079

  15. Novel communities from climate change.

    PubMed

    Lurgi, Miguel; López, Bernat C; Montoya, José M

    2012-11-05

    Climate change is generating novel communities composed of new combinations of species. These result from different degrees of species adaptations to changing biotic and abiotic conditions, and from differential range shifts of species. To determine whether the responses of organisms are determined by particular species traits and how species interactions and community dynamics are likely to be disrupted is a challenge. Here, we focus on two key traits: body size and ecological specialization. We present theoretical expectations and empirical evidence on how climate change affects these traits within communities. We then explore how these traits predispose species to shift or expand their distribution ranges, and associated changes on community size structure, food web organization and dynamics. We identify three major broad changes: (i) Shift in the distribution of body sizes towards smaller sizes, (ii) dominance of generalized interactions and the loss of specialized interactions, and (iii) changes in the balance of strong and weak interaction strengths in the short term. We finally identify two major uncertainties: (i) whether large-bodied species tend to preferentially shift their ranges more than small-bodied ones, and (ii) how interaction strengths will change in the long term and in the case of newly interacting species.

  16. Radiative Forcing of Climate Change

    SciTech Connect

    Ramaswamy, V.; Boucher, Olivier; Haigh, J.; Hauglustaine, D.; Haywood, J.; Myhre, G.; Nakajima, Takahito; Shi, Guangyu; Solomon, S.; Betts, Robert E.; Charlson, R.; Chuang, C. C.; Daniel, J. S.; Del Genio, Anthony D.; Feichter, J.; Fuglestvedt, J.; Forster, P. M.; Ghan, Steven J.; Jones, A.; Kiehl, J. T.; Koch, D.; Land, C.; Lean, J.; Lohmann, Ulrike; Minschwaner, K.; Penner, Joyce E.; Roberts, D. L.; Rodhe, H.; Roelofs, G.-J.; Rotstayn, Leon D.; Schneider, T. L.; Schumann, U.; Schwartz, Stephen E.; Schwartzkopf, M. D.; Shine, K. P.; Smith, Steven J.; Stevenson, D. S.; Stordal, F.; Tegen, I.; van Dorland, R.; Zhang, Y.; Srinivasan, J.; Joos, Fortunat

    2001-10-01

    Chapter 6 of the IPCC Third Assessment Report Climate Change 2001: The Scientific Basis. Sections include: Executive Summary 6.1 Radiative Forcing 6.2 Forcing-Response Relationship 6.3 Well-Mixed Greenhouse Gases 6.4 Stratospheric Ozone 6.5 Radiative Forcing By Tropospheric Ozone 6.6 Indirect Forcings due to Chemistry 6.7 The Direct Radiative Forcing of Tropospheric Aerosols 6.8 The Indirect Radiative Forcing of Tropospheric Aerosols 6.9 Stratospheric Aerosols 6.10 Land-use Change (Surface Albedo Effect) 6.11 Solar Forcing of Climate 6.12 Global Warming Potentials hydrocarbons 6.13 Global Mean Radiative Forcings 6.14 The Geographical Distribution of the Radiative Forcings 6.15 Time Evolution of Radiative Forcings Appendix 6.1 Elements of Radiative Forcing Concept References.

  17. Challenges and Possibilities in Climate Change Education

    ERIC Educational Resources Information Center

    Pruneau,, Diane; Khattabi, Abdellatif; Demers, Melanie

    2010-01-01

    Educating and communicating about climate change is challenging. Researchers reported that climate change concepts are often misunderstood. Some people do not believe that climate change will have impacts on their own life. Other challenges may include people's difficulty in perceiving small or gradual environmental changes, the fact that…

  18. Phenological changes reflect climate change in Wisconsin

    PubMed Central

    Bradley, Nina L.; Leopold, A. Carl; Ross, John; Huffaker, Wellington

    1999-01-01

    A phenological study of springtime events was made over a 61-year period at one site in southern Wisconsin. The records over this long period show that several phenological events have been increasing in earliness; we discuss evidence indicating that these changes reflect climate change. The mean of regressions for the 55 phenophases studied was −0.12 day per year, an overall increase in phenological earliness at this site during the period. Some phenophases have not increased in earliness, as would be expected for phenophases that are regulated by photoperiod or by a physiological signal other than local temperature. PMID:10449757

  19. Teaching Climate Change Through Music

    NASA Astrophysics Data System (ADS)

    Weiss, P. S.

    2007-12-01

    During 2006, Peter Weiss aka "The Singing Scientist" performed many music assemblies for elementary schools (K-5) in Santa Cruz County, California, USA. These assemblies were an opportunity for him to mix a discussion of climate change with rock n' roll. In one song called "Greenhouse Glasses", Peter and his band the "Earth Rangers" wear over-sized clown glasses with "molecules" hanging off them (made with Styrofoam balls and pipe cleaners). Each molecule is the real molecular structure of a greenhouse gas, and the song explains how when the wearer of these glasses looks up in the sky, he/she can see the "greenhouse gases floating by." "I've seen more of them this year than the last / 'Cuz fossil fuels are burning fast / I wish everyone could see through these frames / Then maybe we could prevent climate change" Students sing, dance and get a visual picture of something that is invisible, yet is part of a very real problem. This performance description is used as an example of an educational style that can reach a wide audience and provide a framework for the audience as learners to assimilate future information on climate change. The hypothesis is that complex socio-environmental issues like climate change that must be taught in order to achieve sustainability are best done so through alternative mediums like music. Students develop awareness which leads to knowledge about chemistry, physics, and biology. These kinds of experiences which connect science learning to fun activities and community building are seriously lacking in primary and secondary schools and are a big reason why science illiteracy is a current social problem. Science education is also paired with community awareness (including the local plant/animal community) and cooperation. The Singing Scientist attempts to create a culture where it is cool to care about the environment. Students end up gardening in school gardens together and think about their "ecological footprint".

  20. Climate change 'understanding' and knowledge

    NASA Astrophysics Data System (ADS)

    Hamilton, L.

    2011-12-01

    Recent surveys find that many people report having "a great deal" of understanding about climate change. Self-assessed understanding does not predict opinions, however, because those with highest "understanding" tend also to be most polarized. These findings raise questions about the relationship between "understanding" and objectively-measured knowledge. In summer 2011 we included three new questions testing climate-change knowledge on a statewide survey. The multiple-choice questions address basic facts that are widely accepted by contrarian as well as mainstream scientists. They ask about trends in Arctic sea ice, in CO2 concentrations, and the meaning of "greenhouse effect." The questions say nothing about impacts, attribution or mitigation. Each has a clear and well-publicized answer that does not presume acceptance of anthropogenic change. About 30% of respondents knew all three answers, and 36% got two out of three. 34% got zero or one right. Notably, these included 31% of those who claimed to have "a great deal" of understanding. Unlike self-assessed understanding, knowledge scores do predict opinions. People who knew more were significantly more likely to agree that climate change is happening now, caused mainly by human activities. This positive relationship remains significant controlling for gender, age, education, partisanship and "understanding." It does not exhibit the interaction effects with partisanship that characterize self-assessed understanding. Following the successful statewide test, the same items were added to a nationwide survey currently underway. Analyses replicated across both surveys cast a new light on the problematic connections between "understanding," knowledge and opinions about climate science.

  1. Lack of Climate Expertise Among Climate Change Educators

    NASA Astrophysics Data System (ADS)

    Doesken, N.

    2015-12-01

    It is hard to know enough about anything. Many educators fully accept the science as well as the hype associated with climate change and try very hard to be climate literate. But many of these same educators striving for greater climate literacy are surprisingly ignorant about the climate itself (typical seasonal cycles, variations, extremes, spatial patterns and the drivers that produce them). As a result, some of these educators and their students are tempted to interpret each and every hot or cold and wet or dry spell as convincing evidence of climate change even as climate change "skeptics" view those same fluctuations as normal. Educators' overreaction risks a backfire reaction resulting in loss of credibility among the very groups they are striving to educate and influence. This presentation will include reflections on climate change education and impacts based on 4 decades of climate communication in Colorado.

  2. NASA Nice Climate Change Education

    NASA Astrophysics Data System (ADS)

    Frink, K.; Crocker, S.; Jones, W., III; Marshall, S. S.; Anuradha, D.; Stewart-Gurley, K.; Howard, E. M.; Hill, E.; Merriweather, E.

    2013-12-01

    Authors: 1 Kaiem Frink, 4 Sherry Crocker, 5 Willie Jones, III, 7 Sophia S.L. Marshall, 6 Anuadha Dujari 3 Ervin Howard 1 Kalota Stewart-Gurley 8 Edwinta Merriweathe Affiliation: 1. Mathematics & Computer Science, Virginia Union University, Richmond, VA, United States. 2. Mathematics & Computer Science, Elizabeth City State Univ, Elizabeth City, NC, United States. 3. Education, Elizabeth City State University, Elizabeth City, NC, United States. 4. College of Education, Fort Valley State University , Fort Valley, GA, United States. 5. Education, Tougaloo College, Jackson, MS, United States. 6. Mathematics, Delaware State University, Dover, DE, United States. 7. Education, Jackson State University, Jackson, MS, United States. 8. Education, Alabama Agricultural and Mechanical University, Huntsville, AL, United States. ABSTRACT: In this research initiative, the 2013-2014 NASA NICE workshop participants will present best educational practices for incorporating climate change pedagogy. The presentation will identify strategies to enhance instruction of pre-service teachers to aligned with K-12 Science, Technology, Engineering and Mathematics (STEM) standards. The presentation of best practices should serve as a direct indicator to address pedagogical needs to include climate education within a K-12 curriculum Some of the strategies will include inquiry, direct instructions, and cooperative learning . At this particular workshop, we have learned about global climate change in regards to how this is going to impact our life. Participants have been charged to increase the scientific understanding of pre-service teachers education programs nationally to incorporate climate education lessons. These recommended practices will provide feasible instructional strategies that can be easily implemented and used to clarify possible misconceptions and ambiguities in scientific knowledge. Additionally, the presentation will promote an awareness to the many facets in which climate

  3. Climate change, environment and allergy.

    PubMed

    Behrendt, Heidrun; Ring, Johannes

    2012-01-01

    Climate change with global warming is a physicometeorological fact that, among other aspects, will also affect human health. Apart from cardiovascular and infectious diseases, allergies seem to be at the forefront of the sequelae of climate change. By increasing temperature and concomitant increased CO(2) concentration, plant growth is affected in various ways leading to prolonged pollination periods in the northern hemisphere, as well as to the appearance of neophytes with allergenic properties, e.g. Ambrosia artemisiifolia (ragweed), in Central Europe. Because of the effects of environmental pollutants, which do not only act as irritants to skin and mucous membranes, allergen carriers such as pollen can be altered in the atmosphere and release allergens leading to allergen-containing aerosols in the ambient air. Pollen has been shown not only to be an allergen carrier, but also to release highly active lipid mediators (pollen-associated lipid mediators), which have proinflammatory and immunomodulating effects enhancing the initiation of allergy. Through the effects of climate change in the future, plant growth may be influenced in a way that more, new and altered pollens are produced, which may affect humans.

  4. Past and Current Climate Change

    NASA Astrophysics Data System (ADS)

    Mercedes Rodríguez Ruibal, Ma

    2014-05-01

    In 1837 the Swiss geologist and palaeontologist Louis Agassiz was the first scientist to propose the existence of an ice age in the Earth's past. Nearly two centuries after discussing global glacial periods... while the average global temperature is rising very quickly because of our economic and industrial model. In tribute to these pioneers, we have selected a major climate change of the past as the Snowball Earth and, through various activities in the classroom, compared to the current anthropogenic climate change. First, we include multiple geological processes that led to a global glaciation 750 million years ago as the decrease in the atmospheric concentration of greenhouse gases such as CO2 and CH4, the effect of climate variations in solar radiation due to emissions of volcanic dust and orbital changes (Milankovitch cycles), being an essential part of this model the feedback mechanism of the albedo of the ice on a geological scale. Moreover, from simple experiments and studies in the classroom this time we can compare the past with the current anthropogenic global warming we are experiencing and some of its consequences, highlighting that affect sea level rise, increased extreme and effects on health and the biosphere weather.

  5. Exploring the Multifaceted Topic of Climate Change in Our Changing Climate and Living With Our Changing Climate

    NASA Astrophysics Data System (ADS)

    Brey, J. A.; Kauffman, C.; Geer, I. W.; Mills, E. W.; Nugnes, K. A.; Stimach, A. E.

    2015-12-01

    As the effects of climate change become more profound, climate literacy becomes increasingly important. The American Meteorological Society (AMS) responds to this need through the publication of Our Changing Climate and Living With Our Changing Climate. Both publications incorporate the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the USGCRP's Third National Climate Assessment. Topic In Depth sections appear throughout each chapter and lead to more extensive, multidisciplinary information related to various topics. Additionally, each chapter closes with a For Further Exploration essay, which addresses specific topics that complement a chapter concept. Web Resources, which encourage additional exploration of chapter content, and Scientific Literature, from which chapter content was derived can also be found at the conclusion of each chapter. Our Changing Climate covers a breadth of topics, including the scientific principles that govern Earth's climate system and basic statistics and geospatial tools used to investigate the system. Released in fall 2015, Living With Our Changing Climate takes a more narrow approach and investigates human and ecosystem vulnerabilities to climate change, the role of energy choices in affecting climate, actions humans can take through adaption, mitigation, and policy to lessen vulnerabilities, and psychological and financial reasons behind climate change denial. While Living With Our Changing Climate is intended for programs looking to add a climate element into their curriculum, Our Changing Climate is part of the AMS Climate Studies course. In a 2015 survey of California University of Pennsylvania undergraduate students using Our Changing Climate, 82% found it comfortable to read and utilized its interactive components and resources. Both ebooks illuminate the multidisciplinary aspect of climate change, providing the opportunity for a more sustainable future.

  6. Mars Recent Climate Change Workshop

    NASA Astrophysics Data System (ADS)

    Haberle, Robert M.; Owen, Sandra J.

    2012-11-01

    Mars Recent Climate Change Workshop NASA/Ames Research Center May 15-17, 2012 Climate change on Mars has been a subject of great interest to planetary scientists since the 1970's when orbiting spacecraft first discovered fluvial landforms on its ancient surfaces and layered terrains in its polar regions. By far most of the attention has been directed toward understanding how "Early Mars" (i.e., Mars >~3.5 Gya) could have produced environmental conditions favorable for the flow of liquid water on its surface. Unfortunately, in spite of the considerable body of work performed on this subject, no clear consensus has emerged on the nature of the early Martian climate system because of the difficulty in distinguishing between competing ideas given the ambiguities in the available geological, mineralogical, and isotopic records. For several reasons, however, the situation is more tractable for "Recent Mars" (i.e., Mars during past 20 My or so). First, the geologic record is better preserved and evidence for climate change on this time scale has been building since the rejuvenation of the Mars Exploration Program in the late 1990's. The increasing coverage of the planet from orbit and the surface, coupled with accurate measurements of surface topography, increasing spatial resolution of imaging cameras, improved spectral resolution of infrared sensors, and the ability to probe the subsurface with radar, gamma rays, and neutron spectroscopy, has not only improved the characterization of previously known climate features such as polar layered terrains and glacier-related landforms, but has also revealed the existence of many new features related to recent climate change such as polygons, gullies, concentric crater fill, and a latitude dependent mantle. Second, the likely cause of climate change - spin axis/orbital variations - is more pronounced on Mars compared to Earth. Spin axis/orbital variations alter the seasonal and latitudinal distribution of sunlight, which can

  7. The Educational Challenges of Climate Change.

    ERIC Educational Resources Information Center

    McClaren, Milton; Hammond, William

    2000-01-01

    Explains five concepts that are vital for the design or implementation of programs on global climate change. Discusses different approaches for how global climate change should be taught. (Contains 20 references.) (YDS)

  8. Health, Energy Efficiency and Climate Change

    EPA Pesticide Factsheets

    Climate change is becoming a driving force for improving energy efficiency because saving energy can help reduce the greenhouse gas emissions that contribute to climate change. However, it is important to balance energy saving measures with ventilation...

  9. Global Climate Change and the Mitigation Challenge

    EPA Science Inventory

    Book edited by Frank Princiotta titled Global Climate Change--The Technology Challenge Transparent modeling tools and the most recent literature are used, to quantify the challenge posed by climate change and potential technological remedies. The chapter examines forces driving ...

  10. Managing Climate Change Refugia for Biodiversity Conservation

    EPA Science Inventory

    Climate change threatens to create fundamental shifts in in the distributions and abundances of species. Given projected losses, increased emphasis on management for ecosystem resilience to help buffer fish and wildlife populations against climate change is emerging. Such effort...

  11. Federal Collaborations Addressing Climate Change and Water

    EPA Pesticide Factsheets

    EPA works with other Federal Agencies to act on Climate Change. Together, these agencies can command action and coordinate efforts to help our nation adapt to climate change impacts. Collaborative works include executive initiatives and other partnerships.

  12. Climate Change, Indoor Environment and Health

    EPA Pesticide Factsheets

    Climate change is becoming a driving force for improving energy efficiency because saving energy can help reduce the greenhouse gas emissions that contribute to climate change. However, it is important to balance energy saving measures with ventilation...

  13. Communicating Vulnerabilities to Climate Change: Pregnant Women

    EPA Pesticide Factsheets

    View and download fact sheets that highlight the health impacts of climate change at different stages of life and for certain populations of concern, as well as communications materials to help strengthen conversations about climate change and health.

  14. Communicating Vulnerabilities to Climate Change: Older Adults

    EPA Pesticide Factsheets

    View and download fact sheets that highlight the health impacts of climate change at different stages of life and for certain populations of concern, as well as communications materials to help strengthen conversations about climate change and health.

  15. Addressing Climate Change in the Water Sector

    EPA Pesticide Factsheets

    Climate change is altering the water cycle and influencing water quality and availability. Water professionals need to understand the impacts of climate change on water, EPA’s response, and available tools to mitigate and adapt.

  16. The science of climate change.

    SciTech Connect

    Doctor, R. D.

    1999-09-10

    A complex debate is underway on climate change linked to proposals for costly measures that would reshape our power grid. This confronts technical experts outside of the geophysical disciplines with extensive, but unfamiliar, data both supporting and refuting claims that serious action is warranted. For example, evidence is brought to the table from one group of astrophysicists concerned with sunspots--this group believes there is no issue man can manage; while another group of oceanographers concerned with the heat balance in the world's oceans are very alarmed at the loss of arctic ice. What is the evidence? In an effort to put some of these issues in perspective for a technical audience, without a background in geophysics, a brief survey will consider (1) an overview of the 300 years of scientific inquiry on man's relationship to climate; (2) a basic discussion of what is meant by the ''greenhouse'' and why there are concerns which include not only CO{sub 2}, but also CH{sub 4}, N{sub 2}O, and CFC's; (3) the geological record on CO{sub 2}--which likely was present at 1,000 times current levels when life began; (4) the solar luminosity and sunspot question; and (5) the current evidence for global climate change. We are at a juncture where we are attempting to understand the earth as an integrated dynamic system, rather than a collection of isolated components.

  17. Climate variability and vulnerability to climate change: a review

    PubMed Central

    Thornton, Philip K; Ericksen, Polly J; Herrero, Mario; Challinor, Andrew J

    2014-01-01

    The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food systems, with a focus on the developing world. We present new analysis that tentatively links increases in climate variability with increasing food insecurity in the future. We consider the ways in which people deal with climate variability and extremes and how they may adapt in the future. Key knowledge and data gaps are highlighted. These include the timing and interactions of different climatic stresses on plant growth and development, particularly at higher temperatures, and the impacts on crops, livestock and farming systems of changes in climate variability and extreme events on pest-weed-disease complexes. We highlight the need to reframe research questions in such a way that they can provide decision makers throughout the food system with actionable answers, and the need for investment in climate and environmental monitoring. Improved understanding of the full range of impacts of climate change on biological and food systems is a critical step in being able to address effectively the effects of climate variability and extreme events on human vulnerability and food security, particularly in agriculturally based developing countries facing the challenge of having to feed rapidly growing populations in the coming decades. PMID:24668802

  18. Climate Change Education for Mitigation and Adaptation

    ERIC Educational Resources Information Center

    Anderson, Allison

    2012-01-01

    This article makes the case for the education sector an untapped opportunity to combat climate change. It sets forth a definition of Climate Change Education for Sustainable Development that is comprehensive and multidisciplinary and asserts that it must not only include relevant content knowledge on climate change, environmental and social…

  19. Climate Change Ignorance: An Unacceptable Legacy

    ERIC Educational Resources Information Center

    Boon, Helen J.

    2015-01-01

    Climate change effects will be most acutely felt by future generations. Recent prior research has shown that school students' knowledge of climate change science is very limited in rural Australia. The purpose of this study was to assess the capacity of preservice teachers and parents to transmit climate change information and understanding to…

  20. Physiological ecology meets climate change.

    PubMed

    Bozinovic, Francisco; Pörtner, Hans-Otto

    2015-03-01

    In this article, we pointed out that understanding the physiology of differential climate change effects on organisms is one of the many urgent challenges faced in ecology and evolutionary biology. We explore how physiological ecology can contribute to a holistic view of climate change impacts on organisms and ecosystems and their evolutionary responses. We suggest that theoretical and experimental efforts not only need to improve our understanding of thermal limits to organisms, but also to consider multiple stressors both on land and in the oceans. As an example, we discuss recent efforts to understand the effects of various global change drivers on aquatic ectotherms in the field that led to the development of the concept of oxygen and capacity limited thermal tolerance (OCLTT) as a framework integrating various drivers and linking organisational levels from ecosystem to organism, tissue, cell, and molecules. We suggest seven core objectives of a comprehensive research program comprising the interplay among physiological, ecological, and evolutionary approaches for both aquatic and terrestrial organisms. While studies of individual aspects are already underway in many laboratories worldwide, integration of these findings into conceptual frameworks is needed not only within one organism group such as animals but also across organism domains such as Archaea, Bacteria, and Eukarya. Indeed, development of unifying concepts is relevant for interpreting existing and future findings in a coherent way and for projecting the future ecological and evolutionary effects of climate change on functional biodiversity. We also suggest that OCLTT may in the end and from an evolutionary point of view, be able to explain the limited thermal tolerance of metazoans when compared to other organisms.

  1. Conceptualizing Climate Change in the Context of a Climate System: Implications for Climate and Environmental Education

    ERIC Educational Resources Information Center

    Shepardson, Daniel P.; Niyogi, Dev; Roychoudhury, Anita; Hirsch, Andrew

    2012-01-01

    Today there is much interest in teaching secondary students about climate change. Much of this effort has focused directly on students' understanding of climate change. We hypothesize, however, that in order for students to understand climate change they must first understand climate as a system and how changes to this system due to both natural…

  2. Psychological research and global climate change

    NASA Astrophysics Data System (ADS)

    Clayton, Susan; Devine-Wright, Patrick; Stern, Paul C.; Whitmarsh, Lorraine; Carrico, Amanda; Steg, Linda; Swim, Janet; Bonnes, Mirilia

    2015-07-01

    Human behaviour is integral not only to causing global climate change but also to responding and adapting to it. Here, we argue that psychological research should inform efforts to address climate change, to avoid misunderstandings about human behaviour and motivations that can lead to ineffective or misguided policies. We review three key research areas: describing human perceptions of climate change; understanding and changing individual and household behaviour that drives climate change; and examining the human impacts of climate change and adaptation responses. Although much has been learned in these areas, we suggest important directions for further research.

  3. Using Satellites to Understand Climate and Climate Change

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric

    2007-01-01

    This viewgraph presentation reviews the measurement of climate with the use of satellites. The basic greenhouse effect, Ice-albedo feedback, climate models and observations, aerosol-cloud interactions, and the Antarctic are discussed, along with the human effect on climate change.

  4. Global Climate Change and Agriculture

    SciTech Connect

    Izaurralde, Roberto C.

    2009-01-01

    The Fourth Assessment Report of the Intergovernmental Panel on Climate Change released in 2007 significantly increased our confidence about the role that humans play in forcing climate change. There is now a high degree of confidence that the (a) current atmospheric concentrations of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) far exceed those of the pre-industrial era, (b) global increases in CO2 arise mainly from fossil fuel use and land use change while those of CH4 and N2O originate primarily from agricultural activities, and (c) the net effect of human activities since 1750 has led to a warming of the lower layers of the atmosphere, with an increased radiative forcing of 1.6 W m-2. Depending on the scenario of human population growth and global development, mean global temperatures could rise between 1.8 and 4.0 °C by the end of the 21st century.

  5. Virgin's Knight tackles climate change

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2008-11-01

    "There is no greater or more immediate challenge than that posed by climate change," said Sir Richard Branson, chairman of the Virgin group, via video-link at the 59th International Astronautical Congress (IAC) held in Glasgow in the UK at the end of September. That grand statement may seem like a lot of hot air for the entrepreneur best known for his attempt to circumnavigate the globe by balloon. But Branson went on to reveal that Virgin Galactic, which aims to fly passengers 100 km into space for 200 000 per trip, will also provide room on its craft for a series of scientific experiments to study the Earth's atmosphere.

  6. Climate Change and Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Ledley, Tamara S.; Sundquist, Eric; Schwartz, Stephen; Hall, Dorothy K.; Fellows, Jack; Killeen, Timothy

    1999-01-01

    The American Geophysical Union (AGU), as a scientific organization devoted to research on the Earth and space sciences, provides current scientific information to the public on issues pertinent to geophysics. The Council of the AGU approved a position statement on Climate Change and Greenhouse Gases in December 1998. The statement, together with a short summary of the procedures that were followed in its preparation, review, and adoption were published in the February 2, 1999 issue of Eos ([AGU, 1999]. The present article reviews scientific understanding of this issue as presented in peer-reviewed publications that serves as the underlying basis of the position statement.

  7. Climate Change: A Controlled Experiment

    SciTech Connect

    Wullschleger, Stan D; Strahl, Maya

    2010-01-01

    Researchers are altering temperature, carbon dioxide and precipitation levels across plots of forests, grasses and crops to see how plant life responds. Warmer temperatures and higher CO{sub 2} concentrations generally result in more leaf growth or crop yield, but these factors can also raise insect infestation and weaken plants ability to ward off pests and disease. Future field experiments that can manipulate all three conditions at once will lead to better models of how long-term climate changes will affect ecosystems worldwide.

  8. The climate change consensus extends beyond climate scientists

    NASA Astrophysics Data System (ADS)

    Carlton, J. S.; Perry-Hill, Rebecca; Huber, Matthew; Prokopy, Linda S.

    2015-09-01

    The existence of anthropogenic climate change remains a public controversy despite the consensus among climate scientists. The controversy may be fed by the existence of scientists from other disciplines publicly casting doubt on the validity of climate science. The extent to which non-climate scientists are skeptical of climate science has not been studied via direct survey. Here we report on a survey of biophysical scientists across disciplines at universities in the Big 10 Conference. Most respondents (93.6%) believe that mean temperatures have risen and most (91.9%) believe in an anthropogenic contribution to rising temperatures. Respondents strongly believe that climate science is credible (mean credibility score 6.67/7). Those who disagree about climate change disagree over basic facts (e.g., the effects of CO2 on climate) and have different cultural and political values. These results suggest that scientists who are climate change skeptics are outliers and that the majority of scientists surveyed believe in anthropogenic climate change and that climate science is credible and mature.

  9. Climate Change and Aerosol Feedbacks

    NASA Astrophysics Data System (ADS)

    Norman, Ann-Lise

    2008-05-01

    Climate instability is expected as mixing ratios of greenhouse gases in the Earth's atmosphere increase. The current trend in rising temperature can be related to anthropogenic greenhouse gas emissions. However, this trend may change as feedback mechanisms amplify; one of the least-understood aspects of climate change. Formation of cloud condensation nuclei from rising sulfate concentrations in the atmosphere may counteract the current warming trend. A key point is where the sulfate, and cloud condensation nuclei are formed. Is cloud formation widespread or localized near sulfate emission sources? A major source of atmospheric sulfate is dimethylsulfide, a compound related to biotic turnover in the surface ocean that constitutes a widespread natural source of aerosols over the remote ocean. A second major source contributing a significant proportion of atmospheric sulfate in the northern hemisphere is produced over continents from industrial activities and fossil fuel combustion. Distinguishing the source of sulfate in well-mixed air is important so that relationships with cloud formation, sea-ice in polar regions, and albedo can be explored. This distinction in sulfate sources can be achieved using isotope apportionment techniques. Recent measurements show an increase in biogenic sulfate coincident with rising temperatures in the Arctic and large amounts sulfur from DMS oxidation over the Atlantic, potentially indicating a widespread biotic feedback to warming over northern oceans.

  10. [Climate change and Kyoto protocol].

    PubMed

    Ergasti, G; Pippia, V; Murzilli, G; De Luca D'Alessandro, E

    2009-01-01

    Due to industrial revolution and the heavy use of fossil fuels, the concentration of greenhouse gases in the atmosphere has increased dramatically during the last hundred years, and this has lead to an increase in mean global temperature. The environmental consequences of this are: the melting of the ice caps, an increase in mean sea-levels, catastrophic events such as floodings, hurricanes and earthquakes, changes to the animal and vegetable kingdoms, a growth in vectors and bacteria in water thus increasing the risk of infectious diseases and damage to agriculture. The toxic effects of the pollution on human health are both acute and chronic. The Kyoto Protocol is an important step in the campaign against climatic changes but it is not sufficient. A possible solution might be for the States which produce the most of pollution to adopt a better political stance for the environment and to use renewable resources for the production of energy.

  11. CLIMATE CHANGE AND INFECTIOUS DISEASES IN WILDLIFE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A large and growing body of scientific evidence indicates the Earth’s climate is changing, and the recent International Panel on Climate Change (IPCC) declared that “warming of the climate system is unequivocal, as is now evident from observations of increases in global average air and ocean tempera...

  12. Contributions of Psychology to Limiting Climate Change

    ERIC Educational Resources Information Center

    Stern, Paul C.

    2011-01-01

    Psychology can make a significant contribution to limiting the magnitude of climate change by improving understanding of human behaviors that drive climate change and human reactions to climate-related technologies and policies, and by turning that understanding into effective interventions. This article develops a framework for psychological…

  13. Impacts of Climate Change on Ecosystem Services

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ecosystems, and the biodiversity and services they support, are intrinsically dependent on climate. During the twentieth century, climate change has had documented impacts on ecological systems, and impacts are expected to increase as climate change continues and perhaps even accelerates. This techn...

  14. Butterflies as indicators of climate change.

    PubMed

    Vickery, Margaret

    2008-01-01

    In Britain, most butterfly species reach the limit of their range due to climate. Such species are the ones most likely to show rapid adaptations to climate change. There are indications that several butterfly species are adapting and that these insects make good indicators of the likely effects of climate change on other animals.

  15. Science Teachers' Perspectives about Climate Change

    ERIC Educational Resources Information Center

    Dawson, Vaille

    2012-01-01

    Climate change and its effects are likely to present challenging problems for future generations of young people. It is important for Australian students to understand the mechanisms and consequences of climate change. If students are to develop a sophisticated understanding, then science teachers need to be well-informed about climate change…

  16. Climate change: believing and seeing implies adapting.

    PubMed

    Blennow, Kristina; Persson, Johannes; Tomé, Margarida; Hanewinkel, Marc

    2012-01-01

    Knowledge of factors that trigger human response to climate change is crucial for effective climate change policy communication. Climate change has been claimed to have low salience as a risk issue because it cannot be directly experienced. Still, personal factors such as strength of belief in local effects of climate change have been shown to correlate strongly with responses to climate change and there is a growing literature on the hypothesis that personal experience of climate change (and/or its effects) explains responses to climate change. Here we provide, using survey data from 845 private forest owners operating in a wide range of bio-climatic as well as economic-social-political structures in a latitudinal gradient across Europe, the first evidence that the personal strength of belief and perception of local effects of climate change, highly significantly explain human responses to climate change. A logistic regression model was fitted to the two variables, estimating expected probabilities ranging from 0.07 (SD ± 0.01) to 0.81 (SD ± 0.03) for self-reported adaptive measures taken. Adding socio-demographic variables improved the fit, estimating expected probabilities ranging from 0.022 (SD ± 0.008) to 0.91 (SD ± 0.02). We conclude that to explain and predict adaptation to climate change, the combination of personal experience and belief must be considered.

  17. Factsheet: Climate Change and Harmful Algal Blooms

    EPA Pesticide Factsheets

    Climate change is predicted to change many environmental conditions that could affect the properties of fresh and marine waters. These changes could favor the growth of harmful algal blooms and habitat changes.

  18. Climate Change, Health, and Populations of Concern

    EPA Pesticide Factsheets

    This page contains communication materials that summarize key points from the U.S. Climate and Health Assessment for eight different populations that are disproportionately affected by climate change impacts.

  19. Climate Change and Water Partner Organizations

    EPA Pesticide Factsheets

    EPA works with partners to advance climate science as well as adaptation and mitigation actions. Highlighted on this page you'll find organizations in various sectors working to understand and act on climate change and water.

  20. Climate Cases: Learning about Student Conceptualizations of Global Climate Change

    ERIC Educational Resources Information Center

    Tierney, Benjamin P.

    2013-01-01

    The complex topic of global climate change continues to be a challenging yet important topic among science educators and researchers. This mixed methods study adds to the growing research by investigating student conceptions of climate change from a system theory perspective (Von Bertalanffy, 1968) by asking the question, "How do differences…

  1. Abrupt climate change: can society cope?

    PubMed

    Hulme, Mike

    2003-09-15

    Consideration of abrupt climate change has generally been incorporated neither in analyses of climate-change impacts nor in the design of climate adaptation strategies. Yet the possibility of abrupt climate change triggered by human perturbation of the climate system is used to support the position of both those who urge stronger and earlier mitigative action than is currently being contemplated and those who argue that the unknowns in the Earth system are too large to justify such early action. This paper explores the question of abrupt climate change in terms of its potential implications for society, focusing on the UK and northwest Europe in particular. The nature of abrupt climate change and the different ways in which it has been defined and perceived are examined. Using the example of the collapse of the thermohaline circulation (THC), the suggested implications for society of abrupt climate change are reviewed; previous work has been largely speculative and has generally considered the implications only from economic and ecological perspectives. Some observations about the implications from a more social and behavioural science perspective are made. If abrupt climate change simply implies changes in the occurrence or intensity of extreme weather events, or an accelerated unidirectional change in climate, the design of adaptation to climate change can proceed within the existing paradigm, with appropriate adjustments. Limits to adaptation in some sectors or regions may be reached, and the costs of appropriate adaptive behaviour may be large, but strategy can develop on the basis of a predicted long-term unidirectional change in climate. It would be more challenging, however, if abrupt climate change implied a directional change in climate, as, for example, may well occur in northwest Europe following a collapse of the THC. There are two fundamental problems for society associated with such an outcome: first, the future changes in climate currently being

  2. Climate Change Education in Earth System Science

    NASA Astrophysics Data System (ADS)

    Hänsel, Stephanie; Matschullat, Jörg

    2013-04-01

    The course "Atmospheric Research - Climate Change" is offered to master Earth System Science students within the specialisation "Climate and Environment" at the Technical University Bergakademie Freiberg. This module takes a comprehensive approach to climate sciences, reaching from the natural sciences background of climate change via the social components of the issue to the statistical analysis of changes in climate parameters. The course aims at qualifying the students to structure the physical and chemical basics of the climate system including relevant feedbacks. The students can evaluate relevant drivers of climate variability and change on various temporal and spatial scales and can transform knowledge from climate history to the present and the future. Special focus is given to the assessment of uncertainties related to climate observations and projections as well as the specific challenges of extreme weather and climate events. At the end of the course the students are able to critically reflect and evaluate climate change related results of scientific studies and related issues in media. The course is divided into two parts - "Climate Change" and "Climate Data Analysis" and encompasses two lectures, one seminar and one exercise. The weekly "Climate change" lecture transmits the physical and chemical background for climate variation and change. (Pre)historical, observed and projected climate changes and their effects on various sectors are being introduced and discussed regarding their implications for society, economics, ecology and politics. The related seminar presents and discusses the multiple reasons for controversy in climate change issues, based on various texts. Students train the presentation of scientific content and the discussion of climate change aspects. The biweekly lecture on "Climate data analysis" introduces the most relevant statistical tools and methods in climate science. Starting with checking data quality via tools of exploratory

  3. Climate Change and Children's Health: A Commentary.

    PubMed

    Stanley, Fiona; Farrant, Brad

    2015-10-15

    This commentary describes the likely impacts on children's health and wellbeing from climate change, based on the solid science of environmental child health. It describes likely climate change scenarios, why children are more vulnerable than older people to these changes, and what to expect in terms of diseases (e.g., infections, asthma) and problems (e.g., malnutrition, mental illness). The common antecedents of climate change and other detrimental changes to our society mean that in combatting them (such as excessive consumption and greed), we may not only reduce the harmful effects of climate change but also work towards a better society overall-one that values its children and their futures.

  4. Economic Consequences Of Climate Change

    NASA Astrophysics Data System (ADS)

    Szlávik, János; Füle, Miklós

    2009-07-01

    Even though the climate conflict resulting from green houses gases (GHG) emissions was evident by the Nineties and the well-known agreements made, their enforcement is more difficult than that of other environmental agreements. That is because measures to reduce GHG emissions interfere with the heart of the economy and the market: energy (in a broader sense than the energy sector as defined by statistics) and economical growth. Analyzing the environmental policy responses to climate change the conclusion is that GHG emission reduction can only be achieved through intensive environmental policy. While extensive environmental protection complements production horizontally, intensive environmental protection integrates into production and the environment vertically. The latter eliminates the source of the pollution, preventing damage. It utilizes the biochemical processes and self-purification of the natural environment as well as technical development which not only aims to produce state-of-the-art goods, but to make production more environmentally friendly, securing a desired environmental state. While in extensive environmental protection the intervention comes from the outside for creating environmental balance, in intensive environmental protection the system recreates this balance itself. Instead of dealing with the consequences and the polluter pays principle, the emphasis is on prevention. It is important to emphasize that climate strategy decisions have complex effects regarding the aspects of sustainability (economical, social, ecological). Therefore, all decisions are political. At present, and in the near future, market economy decisions have little to do with sustainability values under normal circumstances. Taking social and ecological interests into consideration can only be successful through strategic political aims.

  5. Responding to the Consequences of Climate Change

    NASA Technical Reports Server (NTRS)

    Hildebrand, Peter H.

    2011-01-01

    The talk addresses the scientific consensus concerning climate change, and outlines the many paths that are open to mitigate climate change and its effects on human activities. Diverse aspects of the changing water cycle on Earth are used to illustrate the reality climate change. These include melting snowpack, glaciers, and sea ice; changes in runoff; rising sea level; moving ecosystems, an more. Human forcing of climate change is then explained, including: greenhouse gasses, atmospheric aerosols, and changes in land use. Natural forcing effects are briefly discussed, including volcanoes and changes in the solar cycle. Returning to Earth's water cycle, the effects of climate-induced changes in water resources is presented. Examples include wildfires, floods and droughts, changes in the production and availability of food, and human social reactions to these effects. The lk then passes to a discussion of common human reactions to these forecasts of climate change effects, with a summary of recent research on the subject, plus several recent historical examples of large-scale changes in human behavior that affect the climate and ecosystems. Finally, in the face for needed action on climate, the many options for mitigation of climate change and adaptation to its effects are presented, with examples of the ability to take affordable, and profitable action at most all levels, from the local, through national.

  6. Covering Climate Change in Wikipedia

    NASA Astrophysics Data System (ADS)

    Arritt, R. W.; Connolley, W.; Ramjohn, I.; Schulz, S.; Wickert, A. D.

    2010-12-01

    The first hit in an internet search for "global warming" using any of the three leading search engines (Google, Bing, or Yahoo) is the article "Global warming" in the online encyclopedia Wikipedia. The article garners about half a million page views per month. In addition to the site's visibility with the public, Wikipedia's articles on climate-related topics are widely referenced by policymakers, media outlets, and academia. Despite the site's strong influence on public understanding of science, few geoscientists actively participate in Wikipedia, with the result that the community that edits these articles is mostly composed of individuals with little or no expertise in the topic at hand. In this presentation we discuss how geoscientists can help shape public understanding of science by contributing to Wikipedia. Although Wikipedia prides itself on being "the encyclopedia that anyone can edit," the site has policies regarding contributions and behavior that can be pitfalls for newcomers. This presentation is intended as a guide for the geoscience community in contributing to information about climate change in this widely-used reference.

  7. Climate Trends and Farmers' Perceptions of Climate Change in Zambia.

    PubMed

    Mulenga, Brian P; Wineman, Ayala; Sitko, Nicholas J

    2017-02-01

    A number of studies use meteorological records to analyze climate trends and assess the impact of climate change on agricultural yields. While these provide quantitative evidence on climate trends and the likely effects thereof, they incorporate limited qualitative analysis of farmers' perceptions of climate change and/or variability. The present study builds on the quantitative methods used elsewhere to analyze climate trends, and in addition compares local narratives of climate change with evidence found in meteorological records in Zambia. Farmers offer remarkably consistent reports of a rainy season that is growing shorter and less predictable. For some climate parameters-notably, rising average temperature-there is a clear overlap between farmers' observations and patterns found in the meteorological records. However, the data do not support the perception that the rainy season used to begin earlier, and we generally do not detect a reported increase in the frequency of dry spells. Several explanations for these discrepancies are offered. Further, we provide policy recommendations to help farmers adapt to climate change/variability, as well as suggestions to shape future climate change policies, programs, and research in developing countries.

  8. Climate Trends and Farmers' Perceptions of Climate Change in Zambia

    NASA Astrophysics Data System (ADS)

    Mulenga, Brian P.; Wineman, Ayala; Sitko, Nicholas J.

    2017-02-01

    A number of studies use meteorological records to analyze climate trends and assess the impact of climate change on agricultural yields. While these provide quantitative evidence on climate trends and the likely effects thereof, they incorporate limited qualitative analysis of farmers' perceptions of climate change and/or variability. The present study builds on the quantitative methods used elsewhere to analyze climate trends, and in addition compares local narratives of climate change with evidence found in meteorological records in Zambia. Farmers offer remarkably consistent reports of a rainy season that is growing shorter and less predictable. For some climate parameters—notably, rising average temperature—there is a clear overlap between farmers' observations and patterns found in the meteorological records. However, the data do not support the perception that the rainy season used to begin earlier, and we generally do not detect a reported increase in the frequency of dry spells. Several explanations for these discrepancies are offered. Further, we provide policy recommendations to help farmers adapt to climate change/variability, as well as suggestions to shape future climate change policies, programs, and research in developing countries.

  9. How Does Drought Change With Climate Change

    NASA Astrophysics Data System (ADS)

    Trenberth, K. E.

    2014-12-01

    Large disparities among published studies have led to considerable confusion over the question of how drought is changing and how it is expected to change with global warming. As a result the IPCC AR5 assessment has watered down statements, and failed to carry out an adequate assessment of the sources of the discrepancies. Quite aside from the different definitions of drought related to meteorological (absence of precipitation), hydrological (lack of water in lakes and rivers), and agricultural (lack of soil moisture) drought, there are many indices that measure drought. Good homogeneous datasets are essential to assess changes over time, but are often not available. Simpler indices may miss effects of certain physical processes, such as evapotranspiration (ET). The Palmer Drought Severity Index (PDSI) has been much maligned but has considerable merit because it can accommodate different ET formulations (e.g., Thornthwaite vs Penman-Monteith), it can be self calibrating to accommodate different regions, and it carries out a crude moisture balance. This is in contrast to simpler indices, such as the Standardized Precipitation Index, which provides only a measure of moisture supply, or the Standardized Precipitation Evapotranspiration Index, which also includes potential (but not actual) ET. The largest source of drought variations is ENSO: during La Niña more rain falls on land while during El Niño most precipitation is over the Pacific Ocean, exposing more land to drought conditions. It is essential to account for interannual and inter-decadal variability in assessing changes in drought with climate change. Yet drought is one time on land when effects accumulate, with huge consequences for wild fire risk. It is important to ask the right questions in dealing with drought.

  10. Dengue in a changing climate.

    PubMed

    Ebi, Kristie L; Nealon, Joshua

    2016-11-01

    Dengue is the world's most important arboviral disease in terms of number of people affected. Over the past 50 years, incidence increased 30-fold: there were approximately 390 million infections in 2010. Globalization, trade, travel, demographic trends, and warming temperatures are associated with the recent spread of the primary vectors Aedes aegypti and Aedes albopictus and of dengue. Overall, models project that new geographic areas along the fringe of current geographic ranges for Aedes will become environmentally suitable for the mosquito's lifecycle, and for dengue transmission. Many endemic countries where dengue is likely to spread further have underdeveloped health systems, increasing the substantial challenges of disease prevention and control. Control focuses on management of Aedes, although these efforts have typically had limited effectiveness in preventing outbreaks. New prevention and control efforts are needed to counter the potential consequences of climate change on the geographic range and incidence of dengue, including novel methods of vector control and dengue vaccines.

  11. Chemistry implications of climate change

    SciTech Connect

    Atherton, C.S.

    1997-05-01

    Since preindustrial times, the concentrations of a number of key greenhouse gases such as carbon dioxide (CO{sub 2}), methane (CH{sub 4}) and the nitric oxides (N{sub 2}O) have increased. Additionally, the concentrations of anthropogenic aerosols have also increased during the same time period. Increasing concentrations of greenhouse gases are expected to increase temperature, while the aerosols tend to have a net cooling effect. Taking both of these effects into account, the current best scientific estimate is that the global average surface temperature is expected to increase by 2{degrees}C between the years 1990 to 2100. A climate change if this magnitude will both directly and indirectly impact atmospheric chemistry. For example, many important tropospheric reactions have a temperature dependence (either Arrhenius or otherwise). Thus, if temperature increase, reaction rates will also increase.

  12. Statistical principles for climate change studies

    SciTech Connect

    Levine, R.A.; Berliner, L.M. |

    1999-02-01

    Predictions of climate change due to human-induced increases in greenhouse gas and aerosol concentrations have been an ongoing arena for debate and discussion. A major difficulty in early detection of changes resulting from anthropogenic forcing of the climate system is that the natural climate variability overwhelms the climate change signal in observed data. Statistical principles underlying fingerprint methods for detecting a climate change signal above natural climate variations and attributing the potential signal to specific anthropogenic forcings are discussed. The climate change problem is introduced through an exposition of statistical issues in modeling the climate signal and natural climate variability. The fingerprint approach is shown to be analogous to optimal hypothesis testing procedures from the classical statistics literature. The statistical formulation of the fingerprint scheme suggests new insights into the implementation of the techniques for climate change studies. In particular, the statistical testing ideas are exploited to introduce alternative procedures within the fingerprint model for attribution of climate change and to shed light on practical issues in applying the fingerprint detection strategies.

  13. Climate change and cultural diversity.

    PubMed

    Wisner, Ben

    2010-01-01

    Cultures and climate are changing. These changes interact with local knowledge and practice. Research has focused on technical questions, such as how small farmers and livestock keepers understand seasonal forecasts, veterinary problems or market conditions. However, there is a more holistic way of engaging local knowledge. Rural people utilise external technical ideas and tools, even complex ones, that complement their own concepts and experience of change. However, there are obstacles to overcome in generating such hybrid local knowledge. Firstly, there is a long history of domination of rural people by urban elites, including the assumed superiority of urban or high culture versus rural, vernacular or low culture. A second obstacle comes from the frequent use of science as justification to force rural people to do what governments want. Experience of exclusion and displacement has left a residue of bitterness and suspicion among many rural people. A third obstacle involves misuse of one-size-fits-all methods. No single, homogeneous knowledge exists in a locality. Rather there are women's forms of knowledge and the knowledge of men and elders and the knowledge of young people and children, which are differentiated also by occupation and by ethnicity. In the face of such cultural diversity an incompetent use of standardised participatory methods yields poor results and may alienate residents.

  14. Climate Change and Coastal Eutrophication

    NASA Astrophysics Data System (ADS)

    Rabalais, N. N.

    2014-12-01

    The world's climate has changed and human activities will continue to contribute to the acceleration of greenhouse gases and temperature rise. The major drivers of these changes are increased temperature, altered hydrological cycles and shifts in wind patterns that might alter coastal currents. Increasing temperatures alone have the potential to strengthen pycnoclines in estuarine and coastal waters, but lower surface salinity (e.g., from increased freshwater runoff) would be more of a factor in stratifying the water column. The combination of increased nutrient loads (from human activities) and increased freshwater discharge (from GCC) will aggravate the already high loads of nutrients from the Mississippi River to the northern Gulf of Mexico, strengthen stratification (all other factors remaining the same), and worsen the hypoxia situation. Reduced precipitation, on the other hand, would lower the amount of nutrients and water reaching the coastal zone and, perhaps, lead to oligotrophication and reduced fisheries productivity, or perhaps alleviate hypoxia. The increase or decrease in flow (whichever occurs), flux of nutrients and water temperature are likely to have important, but as yet not clearly identifiable, influences on hypoxia. In anticipation of the negative effects of global change, nutrient loadings to coastal waters need to be reduced now, so that further water quality degradation is prevented.

  15. Corticosterone responses in birds: individual variation and repeatability in Adelie penguins (Pygoscelisadeliae) and other species, and the use of power analysis to determine sample sizes.

    PubMed

    Cockrem, John F; Barrett, D Paul; Candy, E Jane; Potter, Murray A

    2009-09-01

    Plasma corticosterone concentrations increase when birds experience a stressor, and in this study we quantified variation in corticosterone responses for the first time in a species of free-living bird. Adelie penguins (Pygoscelisadeliae) nesting at Cape Bird on Ross Island in Antarctica were sampled on three occasions. Penguins with relatively low or high corticosterone responses on the first occasion had consistently low or high responses, as previously found for great tits and chickens. A model for birds is proposed in which birds with low corticosterone responses and proactive personalities are likely to be more successful (have greater fitness) in constant or predictable conditions, whilst birds with reactive personalities and high corticosterone responses will be more successful in changing or unpredictable conditions. There is thus no linear relationship between the size of a corticosterone response and fitness. Whilst the absolute magnitude of corticosterone responses varies markedly across species of birds, coefficients of variation are similar. Individual corticosterone responses are generally repeatable, with significant statistical repeatabilities for 30 min corticosterone concentrations and integrated corticosterone concentrations in the Adelie penguin, great tit and chicken. Coefficients of variation in corticosterone responses between birds and power analyses were used to provide a rule of thumb for determining differences between groups of birds in mean corticosterone concentrations to enable statistical analyses to have acceptable levels of statistical power for given sample sizes. It is suggested that power analyses and this rule of thumb be adopted in future investigations of corticosterone responses in birds.

  16. Wealth reallocation and sustainability under climate change

    NASA Astrophysics Data System (ADS)

    Fenichel, Eli P.; Levin, Simon A.; McCay, Bonnie; St. Martin, Kevin; Abbott, Joshua K.; Pinsky, Malin L.

    2016-03-01

    Climate change is often described as the greatest environmental challenge of our time. In addition, a changing climate can reallocate natural capital, change the value of all forms of capital and lead to mass redistribution of wealth. Here we explain how the inclusive wealth framework provides a means to measure shifts in the amounts and distribution of wealth induced by climate change. Biophysical effects on prices, pre-existing institutions and socio-ecological changes related to shifts in climate cause wealth to change in ways not correlated with biophysical changes. This implies that sustainable development in the face of climate change requires a coherent approach that integrates biophysical and social measurement. Inclusive wealth provides a measure that indicates sustainability and has the added benefit of providing an organizational framework for integrating the multiple disciplines studying global change.

  17. Global Climate Change and Children's Health.

    PubMed

    Ahdoot, Samantha; Pacheco, Susan E

    2015-11-01

    Rising global temperature is causing major physical, chemical, and ecological changes across the planet. There is wide consensus among scientific organizations and climatologists that these broad effects, known as climate change, are the result of contemporary human activity. Climate change poses threats to human health, safety, and security. Children are uniquely vulnerable to these threats. The effects of climate change on child health include physical and psychological sequelae of weather disasters, increased heat stress, decreased air quality, altered disease patterns of some climate-sensitive infections, and food, water, and nutrient insecurity in vulnerable regions. Prompt implementation of mitigation and adaptation strategies will protect children against worsening of the problem and its associated health effects. This technical report reviews the nature of climate change and its associated child health effects and supports the recommendations in the accompanying policy statement on climate change and children's health.

  18. Climate Change, Health, and Communication: A Primer.

    PubMed

    Chadwick, Amy E

    2016-01-01

    Climate change is one of the most serious and pervasive challenges facing us today. Our changing climate has implications not only for the ecosystems upon which we depend, but also for human health. Health communication scholars are well-positioned to aid in the mitigation of and response to climate change and its health effects. To help theorists, researchers, and practitioners engage in these efforts, this primer explains relevant issues and vocabulary associated with climate change and its impacts on health. First, this primer provides an overview of climate change, its causes and consequences, and its impacts on health. Then, the primer describes ways to decrease impacts and identifies roles for health communication scholars in efforts to address climate change and its health effects.

  19. India's National Action Plan on Climate Change

    PubMed Central

    Pandve, Harshal T.

    2009-01-01

    Climate change is one of the most critical global challenges of our times. Recent events have emphatically demonstrated our growing vulnerability to climate change. Climate change impacts will range from affecting agriculture – further endangering food security – to sea-level rise and the accelerated erosion of coastal zones, increasing intensity of natural disasters, species extinction, and the spread of vector-borne diseases. India released its much-awaited National Action Plan on Climate Change (NAPCC) to mitigate and adapt to climate change on June 30, 2008, almost a year after it was announced. The NAPCC runs through 2017 and directs ministries to submit detailed implementation plans to the Prime Minister's Council on Climate Change by December 2008. This article briefly reviews the plan and opinion about it from different experts and organizations. PMID:20165607

  20. Global climate change and international security

    SciTech Connect

    Rice, M.

    1991-01-01

    On May 8--10, 1991, the Midwest Consortium of International Security Studies (MCISS) and Argonne National Laboratory cosponsored a conference on Global Climate Change and International Security. The aim was to bring together natural and social scientists to examine the economic, sociopolitical, and security implications of the climate changes predicted by the general circulation models developed by natural scientists. Five themes emerged from the papers and discussions: (1) general circulation models and predicted climate change; (2) the effects of climate change on agriculture, especially in the Third World; (3) economic implications of policies to reduce greenhouse gas emissions; (4) the sociopolitical consequences of climate change; and (5) the effect of climate change on global security.

  1. Global Climate Change Pilot Course Project

    NASA Astrophysics Data System (ADS)

    Schuenemann, K. C.; Wagner, R.

    2011-12-01

    In fall 2011 a pilot course on "Global Climate Change" is being offered, which has been proposed to educate urban, diverse, undergraduate students about climate change at the introductory level. The course has been approved to fulfill two general college requirements, a natural sciences requirement that focuses on the scientific method, as well as a global diversity requirement. This course presents the science behind global climate change from an Earth systems and atmospheric science perspective. These concepts then provide the basis to explore the effect of global warming on regions throughout the world. Climate change has been taught as a sub-topic in other courses in the past solely using scientific concepts, with little success in altering the climate change misconceptions of the students. This pilot course will see if new, innovative projects described below can make more of an impact on the students' views of climate change. Results of the successes or failures of these projects will be reported, as well as results of a pre- and post-course questionnaire on climate change given to students taking the course. Students in the class will pair off and choose a global region or country that they will research, write papers on, and then represent in four class discussions spaced throughout the semester. The first report will include details on the current climate of their region and how the climate shapes that region's society and culture. The second report will discuss how that region is contributing to climate change and/or sequestering greenhouse gases. Thirdly, students will discuss observed and predicted changes in that region's climate and what impact it has had, and could have, on their society. Lastly, students will report on what role their region has played in mitigating climate change, any policies their region may have implemented, and how their region can or cannot adapt to future climate changes. They will also try to get a feel for the region

  2. Climate variability and climate change vulnerability and adaptation. Workshop summary

    SciTech Connect

    Bhatti, N.; Cirillo, R.R.; Dixon, R.K.

    1995-12-31

    Representatives from fifteen countries met in Prague, Czech Republic, on September 11-15, 1995, to share results from the analysis of vulnerability and adaptation to global climate change. The workshop focused on the issues of global climate change and its impacts on various sectors of a national economy. The U.N. Framework Convention on Climate Change (FCCC), which has been signed by more than 150 governments worldwide, calls on signatory parties to develop and communicate measures they are implementing to respond to global climate change. An analysis of a country`s vulnerability to changes in the climate helps it identify suitable adaptation measures. These analyses are designed to determine the extent of the impacts of global climate change on sensitive sectors such as agricultural crops, forests, grasslands and livestock, water resources, and coastal areas. Once it is determined how vulnerable a country may be to climate change, it is possible to identify adaptation measures for ameliorating some or all of the effects.The objectives of the vulnerability and adaptation workshop were to: The objectives of the vulnerability and adaptation workshop were to: Provide an opportunity for countries to describe their study results; Encourage countries to learn from the experience of the more complete assessments and adjust their studies accordingly; Identify issues and analyses that require further investigation; and Summarize results and experiences for governmental and intergovernmental organizations.

  3. Climate change and ecological public health.

    PubMed

    Goodman, Benny

    2015-02-17

    Climate change has been identified as a serious threat to human health, associated with the sustainability of current practices and lifestyles. Nurses should expand their health promotion role to address current and emerging threats to health from climate change and to address ecological public health. This article briefly outlines climate change and the concept of ecological public health, and discusses a 2012 review of the role of the nurse in health promotion.

  4. Using Web GIS "Climate" for Adaptation to Climate Change

    NASA Astrophysics Data System (ADS)

    Gordova, Yulia; Martynova, Yulia; Shulgina, Tamara

    2015-04-01

    A work is devoted to the application of an information-computational Web GIS "Climate" developed by joint team of the Institute of Monitoring of Climatic and Ecological Systems SB RAS and Tomsk State University to raise awareness about current and future climate change as a basis for further adaptation. Web-GIS "Climate» (http://climate.scert.ru/) based on modern concepts of Web 2.0 provides opportunities to study regional climate change and its consequences by providing access to climate and weather models, a large set of geophysical data and means of processing and visualization. Also, the system is used for the joint development of software applications by distributed research teams, research based on these applications and undergraduate and graduate students training. In addition, the system capabilities allow creating information resources to raise public awareness about climate change, its causes and consequences, which is a necessary step for the subsequent adaptation to these changes. Basic information course on climate change is placed in the public domain and is aimed at local population. Basic concepts and problems of modern climate change and its possible consequences are set out and illustrated in accessible language. Particular attention is paid to regional climate changes. In addition to the information part, the course also includes a selection of links to popular science network resources on current issues in Earth Sciences and a number of practical tasks to consolidate the material. These tasks are performed for a particular territory. Within the tasks users need to analyze the prepared within the "Climate" map layers and answer questions of direct interest to the public: "How did the minimum value of winter temperatures change in your area?", "What are the dynamics of maximum summer temperatures?", etc. Carrying out the analysis of the dynamics of climate change contributes to a better understanding of climate processes and further adaptation

  5. Fostering Hope in Climate Change Educators

    ERIC Educational Resources Information Center

    Swim, Janet K.; Fraser, John

    2013-01-01

    Climate Change is a complex set of issues with large social and ecological risks. Addressing it requires an attentive and climate literate population capable of making informed decisions. Informal science educators are well-positioned to teach climate science and motivate engagement, but many have resisted the topic because of self-doubt about…

  6. Climate change: The IPCC scientific assessment

    SciTech Connect

    Houghton, J.T.; Jenkins, G.J.; Ephraums, J.J.

    1990-01-01

    Book review of the intergovernmental panel on climate change report on global warming and the greenhouse effect. Covers the scientific basis for knowledge of the future climate. Presents chemistry of greenhouse gases and mathematical modelling of the climate system. The book is primarily for government policy makers.

  7. Natural and anthropogenic climate changes. Progress report

    SciTech Connect

    Wang, W.C.; Ronberg, B.; Gutowski, W.; Gutzler, D.; Portman, D.; Li, K.; Wang, S.

    1987-01-06

    This report discusses the following three components of the project: analysis of climate data in US and China to study the regional climate changes; analysis of general circulation model simulations of current and CO{sub 2}-doubled global and regional climates; and studies of desertification in the United States and China.

  8. Climate Change and Agriculture: Effects and Adaptation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This document is a synthesis of science literature on the effects of climate change on agriculture and issues associated with agricultural adaptation to climate change. Information is presented on how long-term changes in air temperatures, precipitation, and atmospheric levels of carbon dioxide wi...

  9. Incorporating Student Activities into Climate Change Education

    NASA Astrophysics Data System (ADS)

    Steele, H.; Kelly, K.; Klein, D.; Cadavid, A. C.

    2013-12-01

    Under a NASA grant, Mathematical and Geospatial Pathways to Climate Change Education, students at California State University, Northridge integrated Geographic Information Systems (GIS), remote sensing, satellite data technologies, and climate modelling into the study of global climate change under a Pathway for studying the Mathematics of Climate Change (PMCC). The PMCC, which is an interdisciplinary option within the BS in Applied Mathematical Sciences, consists of courses offered by the departments of Mathematics, Physics, and Geography and is designed to prepare students for careers and Ph.D. programs in technical fields relevant to global climate change. Under this option students are exposed to the science, mathematics, and applications of climate change science through a variety of methods including hands-on experience with computer modeling and image processing software. In the Geography component of the program, ESRI's ArcGIS and ERDAS Imagine mapping, spatial analysis and image processing software were used to explore NASA satellite data to examine the earth's atmosphere, hydrosphere and biosphere in areas that are affected by climate change or affect climate. These technology tools were incorporated into climate change and remote sensing courses to enhance students' knowledge and understanding of climate change through hands-on application of image processing techniques to NASA data. Several sets of exercises were developed with specific learning objectives in mind. These were (1) to increase student understanding of climate change and climate change processes; (2) to develop student skills in understanding, downloading and processing satellite data; (3) to teach remote sensing technology and GIS through applications to climate change; (4) to expose students to climate data and methods they can apply to solve real world problems and incorporate in future research projects. In the Math and Physics components of the course, students learned about

  10. Climate Change: The Public Health Response

    PubMed Central

    Frumkin, Howard; Hess, Jeremy; Luber, George; Malilay, Josephine; McGeehin, Michael

    2008-01-01

    There is scientific consensus that the global climate is changing, with rising surface temperatures, melting ice and snow, rising sea levels, and increasing climate variability. These changes are expected to have substantial impacts on human health. There are known, effective public health responses for many of these impacts, but the scope, timeline, and complexity of climate change are unprecedented. We propose a public health approach to climate change, based on the essential public health services, that extends to both clinical and population health services and emphasizes the coordination of government agencies (federal, state, and local), academia, the private sector, and nongovernmental organizations. PMID:18235058

  11. Aging, Climate Change, and Legacy Thinking

    PubMed Central

    Fried, Linda; Moody, Rick

    2012-01-01

    Climate change is a complex, long-term public health challenge. Older people are especially susceptible to certain climate change impacts, such as heat waves. We suggest that older people may be a resource for addressing climate change because of their concern for legacy—for leaving behind values, attitudes, and an intact world to their children and grandchildren. We review the theoretical basis for “legacy thinking” among older people. We offer suggestions for research on this phenomenon, and for action to strengthen the sense of legacy. At a time when older populations are growing, understanding and promoting legacy thinking may offer an important strategy for addressing climate change. PMID:22698047

  12. Aging, climate change, and legacy thinking.

    PubMed

    Frumkin, Howard; Fried, Linda; Moody, Rick

    2012-08-01

    Climate change is a complex, long-term public health challenge. Older people are especially susceptible to certain climate change impacts, such as heat waves. We suggest that older people may be a resource for addressing climate change because of their concern for legacy--for leaving behind values, attitudes, and an intact world to their children and grandchildren. We review the theoretical basis for "legacy thinking" among older people. We offer suggestions for research on this phenomenon, and for action to strengthen the sense of legacy. At a time when older populations are growing, understanding and promoting legacy thinking may offer an important strategy for addressing climate change.

  13. Quantitative approaches in climate change ecology

    PubMed Central

    Brown, Christopher J; Schoeman, David S; Sydeman, William J; Brander, Keith; Buckley, Lauren B; Burrows, Michael; Duarte, Carlos M; Moore, Pippa J; Pandolfi, John M; Poloczanska, Elvira; Venables, William; Richardson, Anthony J

    2011-01-01

    Contemporary impacts of anthropogenic climate change on ecosystems are increasingly being recognized. Documenting the extent of these impacts requires quantitative tools for analyses of ecological observations to distinguish climate impacts in noisy data and to understand interactions between climate variability and other drivers of change. To assist the development of reliable statistical approaches, we review the marine climate change literature and provide suggestions for quantitative approaches in climate change ecology. We compiled 267 peer-reviewed articles that examined relationships between climate change and marine ecological variables. Of the articles with time series data (n = 186), 75% used statistics to test for a dependency of ecological variables on climate variables. We identified several common weaknesses in statistical approaches, including marginalizing other important non-climate drivers of change, ignoring temporal and spatial autocorrelation, averaging across spatial patterns and not reporting key metrics. We provide a list of issues that need to be addressed to make inferences more defensible, including the consideration of (i) data limitations and the comparability of data sets; (ii) alternative mechanisms for change; (iii) appropriate response variables; (iv) a suitable model for the process under study; (v) temporal autocorrelation; (vi) spatial autocorrelation and patterns; and (vii) the reporting of rates of change. While the focus of our review was marine studies, these suggestions are equally applicable to terrestrial studies. Consideration of these suggestions will help advance global knowledge of climate impacts and understanding of the processes driving ecological change.

  14. EMS adaptation for climate change

    NASA Astrophysics Data System (ADS)

    Pan, C.; Chang, Y.; Wen, J.; Tsai, M.

    2010-12-01

    The purpose of this study was to find an appropriate scenario of pre-hospital transportation of an emergency medical service (EMS) system for burdensome casualties resulting from extreme climate events. A case of natural catastrophic events in Taiwan, 88 wind-caused disasters, was reviewed and analyzed. A sequential-conveyance method was designed to shorten the casualty transportation time and to promote the efficiency of ambulance services. A proposed mobile emergency medical center was first constructed in a safe area, but nearby the disaster area. The Center consists of professional medical personnel who process the triage of incoming patients and take care of casualties with minor injuries. Ambulances in the Center were ready to sequentially convey the casualties with severer conditions to an assigned hospital that is distant from the disaster area for further treatment. The study suggests that if we could construct a spacious and well-equipped mobile emergency medical center, only a small portion of casualties would need to be transferred to distant hospitals. This would reduce the over-crowding problem in hospital ERs. First-line ambulances only reciprocated between the mobile emergency medical center and the disaster area, saving time and shortening the working distances. Second-line ambulances were highly regulated between the mobile emergency medical center and requested hospitals. The ambulance service of the sequential-conveyance method was found to be more efficient than the conventional method and was concluded to be more profitable and reasonable on paper in adapting to climate change. Therefore, additional practical work should be launched to collect more precise quantitative data.

  15. Applied Climate-Change Analysis: The Climate Wizard Tool

    PubMed Central

    Girvetz, Evan H.; Zganjar, Chris; Raber, George T.; Maurer, Edwin P.; Kareiva, Peter; Lawler, Joshua J.

    2009-01-01

    Background Although the message of “global climate change” is catalyzing international action, it is local and regional changes that directly affect people and ecosystems and are of immediate concern to scientists, managers, and policy makers. A major barrier preventing informed climate-change adaptation planning is the difficulty accessing, analyzing, and interpreting climate-change information. To address this problem, we developed a powerful, yet easy to use, web-based tool called Climate Wizard (http://ClimateWizard.org) that provides non-climate specialists with simple analyses and innovative graphical depictions for conveying how climate has and is projected to change within specific geographic areas throughout the world. Methodology/Principal Findings To demonstrate the Climate Wizard, we explored historic trends and future departures (anomalies) in temperature and precipitation globally, and within specific latitudinal zones and countries. We found the greatest temperature increases during 1951–2002 occurred in northern hemisphere countries (especially during January–April), but the latitude of greatest temperature change varied throughout the year, sinusoidally ranging from approximately 50°N during February-March to 10°N during August-September. Precipitation decreases occurred most commonly in countries between 0–20°N, and increases mostly occurred outside of this latitudinal region. Similarly, a quantile ensemble analysis based on projections from 16 General Circulation Models (GCMs) for 2070–2099 identified the median projected change within countries, which showed both latitudinal and regional patterns in projected temperature and precipitation change. Conclusions/Significance The results of these analyses are consistent with those reported by the Intergovernmental Panel on Climate Change, but at the same time, they provide examples of how Climate Wizard can be used to explore regionally- and temporally-specific analyses of climate

  16. When climate science became climate politics: British media representations of climate change in 1988.

    PubMed

    Jaspal, Rusi; Nerlich, Brigitte

    2014-02-01

    Climate change has become a pressing environmental concern for scientists, social commentators and politicians. Previous social science research has explored media representations of climate change in various temporal and geographical contexts. Through the lens of Social Representations Theory, this article provides a detailed qualitative thematic analysis of media representations of climate change in the 1988 British broadsheet press, given that this year constitutes an important juncture in this transition of climate change from the domain of science to that of the socio-political sphere. The following themes are outlined: (i) "Climate change: a multi-faceted threat"; (ii) "Collectivisation of threat"; (iii) "Climate change and the attribution of blame"; and (iv) "Speculative solutions to a complex socio-environmental problem." The article provides detailed empirical insights into the "starting-point" for present-day disputes concerning climate change and lays the theoretical foundations for tracking the continuities and discontinuities characterising social representations of climate change in the future.

  17. Climate change impacts on global food security.

    PubMed

    Wheeler, Tim; von Braun, Joachim

    2013-08-02

    Climate change could potentially interrupt progress toward a world without hunger. A robust and coherent global pattern is discernible of the impacts of climate change on crop productivity that could have consequences for food availability. The stability of whole food systems may be at risk under climate change because of short-term variability in supply. However, the potential impact is less clear at regional scales, but it is likely that climate variability and change will exacerbate food insecurity in areas currently vulnerable to hunger and undernutrition. Likewise, it can be anticipated that food access and utilization will be affected indirectly via collateral effects on household and individual incomes, and food utilization could be impaired by loss of access to drinking water and damage to health. The evidence supports the need for considerable investment in adaptation and mitigation actions toward a "climate-smart food system" that is more resilient to climate change influences on food security.

  18. Hydrologic refugia, plants, and climate change.

    PubMed

    McLaughlin, Blair C; Ackerly, David D; Klos, P Zion; Natali, Jennifer; Dawson, Todd E; Thompson, Sally E

    2017-03-20

    Climate, physical landscapes, and biota interact to generate heterogeneous hydrologic conditions in space and over time, which are reflected in spatial patterns of species distributions. As these species distributions respond to rapid climate change, microrefugia may support local species persistence in the face of deteriorating climatic suitability. Recent focus on temperature as a determinant of microrefugia insufficiently accounts for the importance of hydrologic processes and changing water availability with changing climate. Where water scarcity is a major limitation now or under future climates, hydrologic microrefugia are likely to prove essential for species persistence, particularly for sessile species and plants. Zones of high relative water availability - mesic microenvironments - are generated by a wide array of hydrologic processes, and may be loosely coupled to climatic processes and therefore buffered from climate change. Here, we review the mechanisms that generate mesic microenvironments and their likely robustness in the face of climate change. We argue that mesic microenvironments will act as species-specific refugia only if the nature and space/time variability in water availability are compatible with the ecological requirements of a target species. We illustrate this argument with case studies drawn from California oak woodland ecosystems. We posit that identification of hydrologic refugia could form a cornerstone of climate-cognizant conservation strategies, but that this would require improved understanding of climate change effects on key hydrologic processes, including frequently cryptic processes such as groundwater flow.

  19. Impacts of climate change on avian populations.

    PubMed

    Jenouvrier, Stephanie

    2013-07-01

    This review focuses on the impacts of climate change on population dynamics. I introduce the MUP (Measuring, Understanding, and Predicting) approach, which provides a general framework where an enhanced understanding of climate-population processes, along with improved long-term data, are merged into coherent projections of future population responses to climate change. This approach can be applied to any species, but this review illustrates its benefit using birds as examples. Birds are one of the best-studied groups and a large number of studies have detected climate impacts on vital rates (i.e., life history traits, such as survival, maturation, or breeding, affecting changes in population size and composition) and population abundance. These studies reveal multifaceted effects of climate with direct, indirect, time-lagged, and nonlinear effects. However, few studies integrate these effects into a climate-dependent population model to understand the respective role of climate variables and their components (mean state, variability, extreme) on population dynamics. To quantify how populations cope with climate change impacts, I introduce a new universal variable: the 'population robustness to climate change.' The comparison of such robustness, along with prospective and retrospective analysis may help to identify the major climate threats and characteristics of threatened avian species. Finally, studies projecting avian population responses to future climate change predicted by IPCC-class climate models are rare. Population projections hinge on selecting a multiclimate model ensemble at the appropriate temporal and spatial scales and integrating both radiative forcing and internal variability in climate with fully specified uncertainties in both demographic and climate processes.

  20. Changes in Southeast Asian Climate: Response to and Feedback onto Global Climate Change

    NASA Astrophysics Data System (ADS)

    Yang, S.

    2015-12-01

    This study is focused on the long-term changes in the climate over Southeast Asia (SEA) and its adjacent regions. The changes in SEA climate are closely related to the changes in global climate, especially via the changes in ENSO and the large-scale Asian monsoon circulation. In the past decades, both ENSO and the monsoon have experienced remarkable long-term changes, leading to significant climate signals over Southeast Asia and its adjacent regions. This study attributes these climate signals to different factors, emphasizing the contributions from water vapor feedback to surface climate signals, and from cloud and atmospheric feedbacks to the changes in the troposphere. On the other hand, SEA and its adjacent regions also exert significant influences on the climate outside the regions. Various experiments with NCAR CESM and other earth system models are applied to investigate the impacts of the regional climate on the climate over Africa, Asian-Pacific-American regions, and the southern hemisphere.

  1. Climate change and agriculture in developing countries

    SciTech Connect

    Antle, J.M.

    1995-08-01

    Most analysts agree that the poorest countries` agricultures are likely to be the most vulnerable to-and least capable of adapting to-climate change or other environmental disruptions. Research has only recently begun to assess what the likely impacts of climate change on developing countries` agricultures may be, how these agricultures might adapt to climate change, and how policies might be designed to facilitate adaptation. This paper begins with a discussion of what researchers currently believe the impacts of climate change could be on developing country agriculture, principally tropical agriculture. Climate changes are expected to occur from thirty to more than one hundred years in the future. These time horizons mean that predictions of the key factors determining impacts and adaptation-population, income, institutions, and technology-are probably as uncertain as predictions of climate change itself. Rates of productivity growth and technological adaptation will be critical to future food supplies, with or without climate change. Continuation of the trend of the past forty years could make so abundant that climate change effects would be inconsequential, but lower rates of growth could result in population growth outstripping food supplies. The second section of this paper addresses the critical issue of predicting the long-term trend in productivity by building on the substantial knowledge we have about the economic factors determining agricultural innovation and adaptation. Considering the time horizons and uncertainties involved in climate change, the wise policy strategy is to pursue investments that are economically justified, whether or not climate change occurs. A better understanding of managed ecosystems would improve our understanding of agricultural sustainability as well as climate change impacts and adaptation. The third section of this paper outlines an economic approach to modeling managed ecosystems. 21 refs.

  2. Being Prepared for Climate Change: Checklists of Potential Climate Change Risks, from Step 3

    EPA Pesticide Factsheets

    The Being Prepared for Climate Change workbook is a guide for constructing a climate change adaptation plan based on identifying risks and their consequences. These checklists (from Step 3 of the workbook) help users identify risks.

  3. Global Distributions of Vulnerability to Climate Change

    SciTech Connect

    Yohe, Gary; Malone, Elizabeth L.; Brenkert, Antoinette L.; Schlesinger, Michael; Meij, Henk; Xiaoshi, Xing

    2006-12-01

    Signatories of the United Nations Framework Convention on Climate Change (UNFCCC) have committed themselves to addressing the “specific needs and special circumstances of developing country parties, especially those that are particularly vulnerable to the adverse effects of climate change”.1 The Intergovernmental Panel on Climate Change (IPCC) has since concluded with high confidence that “developing countries will be more vulnerable to climate change than developed countries”.2 In their most recent report, however, the IPCC notes that “current knowledge of adaptation and adaptive capacity is insufficient for reliable prediction of adaptations” 3 because “the capacity to adapt varies considerably among regions, countries and socioeconomic groups and will vary over time”.4 Here, we respond to the apparent contradiction in these two statements by exploring how variation in adaptive capacity and climate impacts combine to influence the global distribution of vulnerability. We find that all countries will be vulnerable to climate change, even if their adaptive capacities are enhanced. Developing nations are most vulnerable to modest climate change. Reducing greenhouse-gas emissions would diminish their vulnerabilities significantly. Developed countries would benefit most from mitigation for moderate climate change. Extreme climate change overwhelms the abilities of all countries to adapt. These findings should inform both ongoing negotiations for the next commitment period of the Kyoto Protocol and emerging plans for implementing UNFCCC-sponsored adaptation funds.

  4. Undocumented migration in response to climate change.

    PubMed

    Nawrotzki, Raphael J; Riosmena, Fernando; Hunter, Lori M; Runfola, Daniel M

    In the face of climate change induced economic uncertainty, households may employ migration as an adaptation strategy to diversify their livelihood portfolio through remittances. However, it is unclear whether such climate migration will be documented or undocumented. In this study we combine detailed migration histories with daily temperature and precipitation information for 214 weather stations to investigate whether climate change more strongly impacts undocumented or documented migration from 68 rural Mexican municipalities to the U.S. during the years 1986-1999. We employ two measures of climate change, the warm spell duration index (WSDI) and the precipitation during extremely wet days (R99PTOT). Results from multi-level event-history models demonstrate that climate-related international migration from rural Mexico was predominantly undocumented. We conclude that programs to facilitate climate change adaptation in rural Mexico may be more effective in reducing undocumented border crossings than increased border fortification.

  5. Undocumented migration in response to climate change

    PubMed Central

    Riosmena, Fernando; Hunter, Lori M.; Runfola, Daniel M.

    2016-01-01

    In the face of climate change induced economic uncertainty, households may employ migration as an adaptation strategy to diversify their livelihood portfolio through remittances. However, it is unclear whether such climate migration will be documented or undocumented. In this study we combine detailed migration histories with daily temperature and precipitation information for 214 weather stations to investigate whether climate change more strongly impacts undocumented or documented migration from 68 rural Mexican municipalities to the U.S. during the years 1986–1999. We employ two measures of climate change, the warm spell duration index (WSDI) and the precipitation during extremely wet days (R99PTOT). Results from multi-level event-history models demonstrate that climate-related international migration from rural Mexico was predominantly undocumented. We conclude that programs to facilitate climate change adaptation in rural Mexico may be more effective in reducing undocumented border crossings than increased border fortification. PMID:27570840

  6. Regional Climate Tutorial: Assessing Regional Climate Change and Its Impacts

    NASA Astrophysics Data System (ADS)

    Barron, E.; Fisher, A.

    2002-05-01

    Recent scientific progress now enables credible projections of global changes in climate over long time periods. But people will experience global climate change where they live and work, and have difficulty thinking of a future beyond their grandchildren's lifetime. Although the task of projecting climate change and its impacts is far more challenging for regional and relatively near-term time scales, these are the scales at which actions most easily can be taken to moderate negative impacts. This tutorial will summarize what is known about projecting changes in regional climate, and about assessing the impacts for sectors such as forests, agriculture, fresh water quantity and quality, coastal zones, human health, and ecosystems. The Mid-Atlantic Regional Assessment (MARA) is used to provide context and illustrate how adaptation within the region and feedback from other regions influence the impacts that might be experienced.

  7. Climate Change in an IB PYP Classroom

    NASA Astrophysics Data System (ADS)

    da Costa, Ana

    2014-05-01

    Students in elementary school are inherently curious, which allows them to explore, experiment and investigate various themes, while also demonstrating the will to preserve the resources that surround them and take action to contribute to a better world. One of the units taught at International School Carinthia is "climate change" and its impacts on life on Earth. During this unit, grade 4 students conduct research to answer their own inquiries related to this topic. They investigate the different climate zones on our planet, examine why climate change happens, and discover how global warming and climate change are connected and its consequences on living beings.

  8. Climate change and the permafrost carbon feedback

    USGS Publications Warehouse

    Schuur, E.A.G.; McGuire, Anthony; Schädel, C.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Koven, C.D.; Kuhry, P.; Lawrence, D.M.; Natali, Susan M.; Olefeldt, David; Romanovsky, V.E.; Schaefer, K.; Turetsky, M.R.; Treat, C.C.; Vonk, J.E.

    2015-01-01

    Large quantities of organic carbon are stored in frozen soils (permafrost) within Arctic and sub-Arctic regions. A warming climate can induce environmental changes that accelerate the microbial breakdown of organic carbon and the release of the greenhouse gases carbon dioxide and methane. This feedback can accelerate climate change, but the magnitude and timing of greenhouse gas emission from these regions and their impact on climate change remain uncertain. Here we find that current evidence suggests a gradual and prolonged release of greenhouse gas emissions in a warming climate and present a research strategy with which to target poorly understood aspects of permafrost carbon dynamics.

  9. Climate change and the permafrost carbon feedback.

    PubMed

    Schuur, E A G; McGuire, A D; Schädel, C; Grosse, G; Harden, J W; Hayes, D J; Hugelius, G; Koven, C D; Kuhry, P; Lawrence, D M; Natali, S M; Olefeldt, D; Romanovsky, V E; Schaefer, K; Turetsky, M R; Treat, C C; Vonk, J E

    2015-04-09

    Large quantities of organic carbon are stored in frozen soils (permafrost) within Arctic and sub-Arctic regions. A warming climate can induce environmental changes that accelerate the microbial breakdown of organic carbon and the release of the greenhouse gases carbon dioxide and methane. This feedback can accelerate climate change, but the magnitude and timing of greenhouse gas emission from these regions and their impact on climate change remain uncertain. Here we find that current evidence suggests a gradual and prolonged release of greenhouse gas emissions in a warming climate and present a research strategy with which to target poorly understood aspects of permafrost carbon dynamics.

  10. Global climate change and children's health.

    PubMed

    Shea, Katherine M

    2007-11-01

    There is a broad scientific consensus that the global climate is warming, the process is accelerating, and that human activities are very likely (>90% probability) the main cause. This warming will have effects on ecosystems and human health, many of them adverse. Children will experience both the direct and indirect effects of climate change. Actions taken by individuals, communities, businesses, and governments will affect the magnitude and rate of global climate change and resultant health impacts. This technical report reviews the nature of the global problem and anticipated health effects on children and supports the recommendations in the accompanying policy statement on climate change and children's health.

  11. The Status of Mars Climate Change Modeling

    NASA Technical Reports Server (NTRS)

    Haberle, Robert M.

    1997-01-01

    Researchers have reviewed the evidence that the climate of Mars has changed throughout its history. In this paper, the discussion focuses on where we stand in terms of modeling these climate changes. For convenience, three distinct types of climate regimes are considered: very early in the planet's history (more than 3.5 Ga), when warm wet conditions are thought to have prevailed; the bulk of the planet's history (3.5-1 Ga), during which episodic ocean formation has been suggested; and relatively recently in the planet's history (less than 1 Ga), when orbitally induced climate change is thought to have occurred.

  12. Hybrid Zones: Windows on Climate Change

    PubMed Central

    Larson, Erica L.; Harrison, Richard G.

    2016-01-01

    Defining the impacts of anthropogenic climate change on biodiversity and species distributions is currently a high priority. Niche models focus primarily on predicted changes in abiotic factors; however, species interactions and adaptive evolution will impact the ability of species to persist in the face of changing climate. Our review focuses on the use of hybrid zones to monitor species' responses to contemporary climate change. Monitoring hybrid zones provides insight into how range boundaries shift in response to climate change by illuminating the combined effects of species interactions and physiological sensitivity. At the same time, the semi-permeable nature of species boundaries allows us to document adaptive introgression of alleles associated with response to climate change. PMID:25982153

  13. Canadian vegetation response to climate and projected climatic change

    SciTech Connect

    Lenihan, J.M.

    1992-01-01

    The response of Canadian vegetation to climate and climatic change was modeled at three organizational levels of the vegetation mosaic. Snowpack, degree-days, minimum temperature, soil moisture deficit, and actual evapotranspiration are components of climate that physiologically constrain distribution of dominant plant life-forms and species. The rule-based Canadian Climate-Vegetation Model (CCVM) predicts the response of vegetation formations to climate. The CCVM simulation for current climatic conditions is more accurate and detailed than those of other equilibrium models. Ecological response surfaces predict the probability of dominance for eight boreal tree species in Canada with success. Variation in the probability of dominance is related to the species' individualistic response to climatic constraints within different airmass regions. A boreal forest-type classification shows a high degree of geographic correspondence with observed forest-types. Under two doubled-CO[sub 2] climatic scenarios, CCVM predicts a reduction in arctic tundra and subarctic woodland, a northward shift in the distribution of boreal evergreen forest, and an expansion of temperate forest, boreal summergreen woodland, and two prairie formations. The response surfaces predict significant changes in species dominance under both climatic scenarios. Species exhibit an individualistic responses to climatic change. Most of the boreal forest-types derived from future probabilities of dominance are analogous to extant forest-types, but fewer types are distinguished. Geographic correspondence in the simulated boreal forest regions under both the current and projected climates provides a link between the results of the two modelling approaches. Even with constraints, the realism of the vegetation scenarios in this study are arguably the most reliable and comprehensive predictions for Canada.

  14. Global climate change and US agriculture

    NASA Technical Reports Server (NTRS)

    Adams, Richard M.; Rosenzweig, Cynthia; Peart, Robert M.; Ritchie, Joe T.; Mccarl, Bruce A.

    1990-01-01

    Agricultural productivity is expected to be sensitive to global climate change. Models from atmospheric science, plant science, and agricultural economics are linked to explore this sensitivity. Although the results depend on the severity of climate change and the compensating effects of carbon dioxide on crop yields, the simulation suggests that irrigated acreage will expand and regional patterns of U.S. agriculture will shift. The impact of the U.S. economy strongly depends on which climate model is used.

  15. Water Vapor Feedbacks to Climate Change

    NASA Technical Reports Server (NTRS)

    Rind, David

    1999-01-01

    The response of water vapor to climate change is investigated through a series of model studies with varying latitudinal temperature gradients, mean temperatures, and ultimately, actual climate change configurations. Questions to be addressed include: what role does varying convection have in water vapor feedback; do Hadley Circulation differences result in differences in water vapor in the upper troposphere; and, does increased eddy energy result in greater eddy vertical transport of water vapor in varying climate regimes?

  16. Man-Made Climatic Changes

    ERIC Educational Resources Information Center

    Landsberg, Helmut E.

    1970-01-01

    Reviews environmental studies which show that national climatic fluctuations vary over a wide range. Solar radiation, earth temperatures, precipitation, atmospheric gases and suspended particulates are discussed in relation to urban and extraurban effects. Local weather modifications and attempts at climate control by man seem to have substantial…

  17. Physical Controls of the Earth's Climate and Climate change

    NASA Astrophysics Data System (ADS)

    Stephens, Graeme

    2013-03-01

    The Earth's climate system and changes to it are determined by the physical processes that govern the flows of energy to and from the atmosphere and Earth's surface. Although the energy exchanges at the top of the atmosphere are well determined from available satellite measurements, the global character of the energy flows within the climate system, and to and from the Earth's surface in particular, are not directly measured and thus are much more uncertain. The surface energy balance is particularly important since geographical variations of its distribution drives ocean circulations, dictates the amount of water evaporated from the Earth's surface, fuels the planetary hydrological cycle and ultimately controls how this hydrological cycle responds to forced climate change. This talk reviews our state of understanding of the physical processes that determine the energy balance, couple to the Earth's water cycle and are responsible for the most important climate feedbacks that dictate the pace of climate change. Challenges in understanding the mechanisms responsible for feedbacks associated with clouds and precipitation, water vapor, snow cover and carbon will be highlighted. The further complexity and uncertainty that aerosols add to the cloud and precipitation feedbacks will also be reviewed. The effects of uncertainties in our understanding of the physical climate system, and feedbacks within it, will be reviewed in the context of climate change projections.

  18. The Psychological Impacts of Global Climate Change

    ERIC Educational Resources Information Center

    Doherty, Thomas J.; Clayton, Susan

    2011-01-01

    An appreciation of the psychological impacts of global climate change entails recognizing the complexity and multiple meanings associated with climate change; situating impacts within other social, technological, and ecological transitions; and recognizing mediators and moderators of impacts. This article describes three classes of psychological…

  19. Marine viruses and global climate change.

    PubMed

    Danovaro, Roberto; Corinaldesi, Cinzia; Dell'anno, Antonio; Fuhrman, Jed A; Middelburg, Jack J; Noble, Rachel T; Suttle, Curtis A

    2011-11-01

    Sea-surface warming, sea-ice melting and related freshening, changes in circulation and mixing regimes, and ocean acidification induced by the present climate changes are modifying marine ecosystem structure and function and have the potential to alter the cycling of carbon and nutrients in surface oceans. Changing climate has direct and indirect consequences on marine viruses, including cascading effects on biogeochemical cycles, food webs, and the metabolic balance of the ocean. We discuss here a range of case studies of climate change and the potential consequences on virus function, viral assemblages and virus-host interactions. In turn, marine viruses influence directly and indirectly biogeochemical cycles, carbon sequestration capacity of the oceans and the gas exchange between the ocean surface and the atmosphere. We cannot yet predict whether the viruses will exacerbate or attenuate the magnitude of climate changes on marine ecosystems, but we provide evidence that marine viruses interact actively with the present climate change and are a key biotic component that is able to influence the oceans' feedback on climate change. Long-term and wide spatial-scale studies, and improved knowledge of host-virus dynamics in the world's oceans will permit the incorporation of the viral component into future ocean climate models and increase the accuracy of the predictions of the climate change impacts on the function of the oceans.

  20. Global Warming and Climate Change Science

    NASA Astrophysics Data System (ADS)

    Jain, Atul

    2008-03-01

    Global climate change has emerged as a major scientific and political issue within a few short decades. Scientific evidence clearly indicates that this change is a result of a complex interplay between a number of human-related and natural earth systems. While the complexity of the earth-ocean-atmosphere system makes the understanding and prediction of global climate change very difficult, improved scientific knowledge and research capabilities are advancing our understanding of global climate change resulting from rising atmospheric levels of radiatively important (mostly heat-trapping) gases and particles. The effects of climate change can be assessed with climate models, which account for complex physical, chemical and biological processes, and interactions of these processes with human activities, especially the burning of fossil fuels along with land use changes. This presentation begins with a discussion of the current understanding of the concerns about climate change, and then discusses the role climate models in scientific projections of climate change as well as their current strengths and weaknesses.

  1. Climate change and corn susceptibility to mycotoxins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize is an essential part of the world’s grain supply, but climate change has the potential to increase maize susceptibility to mycotoxigenic fungal pathogens and reduce food security and safety. While rising atmospheric [CO2] is a driving force of climate change, our understanding of how elevated ...

  2. Climate change: Update on international negotiations

    SciTech Connect

    Silverman, L.

    1997-12-31

    This paper outlines the following: United Nations` framework convention on climatic change; the United States` climate change action plan; current issues to be resolved (targets/timetables, policies, advancing commitments of all parties, and compliance); and implications for clean coal technologies.

  3. 10 Facts on Climate Change and Health

    MedlinePlus

    World health organization 10 facts on climate change and health Next UNEP/Still Pictures Previous 1 2 3 4 5 6 7 8 9 10 Next Over the last 50 ... more heat in the lower atmosphere. The resulting changes in the global climate bring a range of risks to health, from ...

  4. Singapore Students' Misconceptions of Climate Change

    ERIC Educational Resources Information Center

    Chang, Chew-Hung; Pascua, Liberty

    2016-01-01

    Climate change is an important theme in the investigation of human-environment interactions in geographic education. This study explored the nature of students' understanding of concepts and processes related to climate change. Through semi-structured interviews, data was collected from 27 Secondary 3 (Grade 9) students from Singapore. The data…

  5. Harnessing Homophily to Improve Climate Change Education

    ERIC Educational Resources Information Center

    Monroe, Martha C.; Plate, Richard R.; Adams, Damian C.; Wojcik, Deborah J.

    2015-01-01

    The Cooperative Extension Service (Extension) in the United States is well positioned to educate the public, particularly farmers and foresters, about climate change and to encourage responsible adoption of adaptation and mitigation strategies. However, the climate change attitudes and perceptions of Extension professionals have limited…

  6. Breeding oilseed crops for climate change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oilseed crops are the basis for biological systems that produce edible oils, contribute to renewable energy production, help stabilize greenhouse gases, and mitigate the risk of climate change. Their response to climate change will be dictated by reactions to temperature, carbon dioxide, solar radia...

  7. Climate Change Indicators for the United States

    EPA Science Inventory

    EPA’s publishes the Climate Change Indicators for the United States report to communicate information about the science and impacts of climate change, track trends in environmental quality, and inform de¬cision-making. This report presents a set of key indicators to help readers ...

  8. How Volcanism Controls Climate Change

    NASA Astrophysics Data System (ADS)

    Ward, P. L.

    2013-12-01

    km decrease in tropopause height. Changes in the rates and types of volcanism have been the primary cause of climate change throughout geologic time. Large explosive volcanoes erupting as frequently as once per decade increment the world into ice ages. Extensive, effusive basaltic volcanism warms the world out of ice ages. Twelve of the 13 dated basaltic table mountains in Iceland experienced their final eruptive phase during the last deglaciation when deposits of sulfate and volcanic ash fell over Greenland at their highest rates. Massive flood basalts are typically accompanied by extreme warming, ozone depletion, and major mass extinctions. The Paleocene-Eocene Thermal Maximum occurred when subaerial extrusion of basalts related to the opening of the Greenland-Norwegian Sea suddenly increased to rates greater than 3000 cubic km per km of rift per million years. Dansgaard-Oeschger sudden warming events are contemporaneous with increased volcanism especially in Iceland and last longer when that volcanism lasts longer. Sudden influxes of fresh water often observed in the North Atlantic during these events are most likely caused by extensive sub-glacial volcanism. The Medieval Warm Period, Little Ice Age, major droughts, and many sudden changes in human civilization began with substantial increases in volcanism. Extensive submarine volcanism does not affect climate directly but is linked with increases in ocean acidity and anoxic events.

  9. The physical science behind climate change

    SciTech Connect

    Collins, William; Collins, William; Colman, Robert; Haywood, James; Manning, Martin R.; Mote, Philip

    2007-07-01

    For a scientist studying climate change, 'eureka' moments are unusually rare. Instead progress is generally made by a painstaking piecing together of evidence from every new temperature measurement, satellite sounding or climate-model experiment. Data get checked and rechecked, ideas tested over and over again. Do the observations fit the predicted changes? Could there be some alternative explanation? Good climate scientists, like all good scientists, want to ensure that the highest standards of proof apply to everything they discover. And the evidence of change has mounted as climate records have grown longer, as our understanding of the climate system has improved and as climate models have become ever more reliable. Over the past 20 years, evidence that humans are affecting the climate has accumulated inexorably, and with it has come ever greater certainty across the scientific community in the reality of recent climate change and the potential for much greater change in the future. This increased certainty is starkly reflected in the latest report of the Intergovernmental Panel on Climate Change (IPCC), the fourth in a series of assessments of the state of knowledge on the topic, written and reviewed by hundreds of scientists worldwide. The panel released a condensed version of the first part of the report, on the physical science basis of climate change, in February. Called the 'Summary for Policymakers,' it delivered to policymakers and ordinary people alike an unambiguous message: scientists are more confident than ever that humans have interfered with the climate and that further human-induced climate change is on the way. Although the report finds that some of these further changes are now inevitable, its analysis also confirms that the future, particularly in the longer term, remains largely in our hands--the magnitude of expected change depends on what humans choose to do about greenhouse gas emissions. The physical science assessment focuses on four

  10. Fluoride content in bones of Adelie penguins and environmental media in Antarctica.

    PubMed

    Xie, Zhouqing; Sun, Liguang

    2003-12-01

    Fluoride (F) distribution and its effects (fluorosis) were investigated in Antarctica. Droppings (L) excreta selected of aquatic birds, lake water, soil and moss (Polytrichum alpinum) showed a high F concentration. Although bones of Adelie penguin (Pygiscelis adeliae) and skua (Catharacta maccormicki) showed exceptionally very high F concentration in the range of 832 to 7187 mg kg(-1), their radiographs did not show any evidence of skeletal fluorosis. The possible reason and geochemical aspects of F in Antarctica region are discussed.

  11. Corticosterone responses to capture and restraint in emperor and Adelie penguins in Antarctica.

    PubMed

    Cockrem, John F; Potter, Murray A; Barrett, D Paul; Candy, E Jane

    2008-03-01

    Birds respond to capture, handling and restraint with increased secretion of corticosterone, a glucocorticoid hormone that helps birds adjust to stressful situations. Hoods are reported to calm birds, but possible effects of hoods on corticosterone responses have not been reported for any bird. Corticosterone responses to restraint in Adelie penguins held by their legs with their head covered by a hood were markedly lower than responses of penguins restrained in a mesh bag inside a cardboard box (corticosterone at 30 min 15.69+/-1.72 cf. 28.32+/-2.75 ng/ml). The birds restrained by the two methods were sampled at the same location but in different years, so the differences in corticosterone responses cannot unequivocally be ascribed to an effect of hoods to reduce corticosterone responses. Corticosterone responses have been measured in some penguins, but not in the largest, the emperor penguin (Aptenodytes forsteri). The relationship between body mass and corticosterone responses to capture and restraint in penguins was examined in emperor penguins captured on sea ice in McMurdo Sound and Adelie penguins (Pygoscelis adeliae) captured at Cape Bird, Ross Island, Antarctica. Total integrated corticosterone responses were higher in the emperor than the Adelie penguins, but corrected integrated corticosterone responses, which represent the increase in corticosterone from initial concentrations and hence the corticosterone response to restraint, were the same. The results for the emperor and Adelie penguins, together with data from other penguin species, suggest that there is no relationship between the size of corticosterone responses and body mass in penguins.

  12. Climate change or land use dynamics: do we know what climate change indicators indicate?

    PubMed

    Clavero, Miguel; Villero, Daniel; Brotons, Lluís

    2011-04-21

    Different components of global change can have interacting effects on biodiversity and this may influence our ability to detect the specific consequences of climate change through biodiversity indicators. Here, we analyze whether climate change indicators can be affected by land use dynamics that are not directly determined by climate change. To this aim, we analyzed three community-level indicators of climate change impacts that are based on the optimal thermal environment and average latitude of the distribution of bird species present at local communities. We used multiple regression models to relate the variation in climate change indicators to: i) environmental temperature; and ii) three landscape gradients reflecting important current land use change processes (land abandonment, fire impacts and urbanization), all of them having forest areas at their positive extremes. We found that, with few exceptions, landscape gradients determined the figures of climate change indicators as strongly as temperature. Bird communities in forest habitats had colder-dwelling bird species with more northern distributions than farmland, burnt or urban areas. Our results show that land use changes can reverse, hide or exacerbate our perception of climate change impacts when measured through community-level climate change indicators. We stress the need of an explicit incorporation of the interactions between climate change and land use dynamics to understand what are current climate change indicators indicating and be able to isolate real climate change impacts.

  13. Mesocosms Reveal Ecological Surprises from Climate Change

    PubMed Central

    Fordham, Damien A.

    2015-01-01

    Understanding, predicting, and mitigating the impacts of climate change on biodiversity poses one of the most crucial challenges this century. Currently, we know more about how future climates are likely to shift across the globe than about how species will respond to these changes. Two recent studies show how mesocosm experiments can hasten understanding of the ecological consequences of climate change on species’ extinction risk, community structure, and ecosystem functions. Using a large-scale terrestrial warming experiment, Bestion et al. provide the first direct evidence that future global warming can increase extinction risk for temperate ectotherms. Using aquatic mesocosms, Yvon-Durocher et al. show that human-induced climate change could, in some cases, actually enhance the diversity of local communities, increasing productivity. Blending these theoretical and empirical results with computational models will improve forecasts of biodiversity loss and altered ecosystem processes due to climate change. PMID:26680131

  14. Mesocosms Reveal Ecological Surprises from Climate Change.

    PubMed

    Fordham, Damien A

    2015-12-01

    Understanding, predicting, and mitigating the impacts of climate change on biodiversity poses one of the most crucial challenges this century. Currently, we know more about how future climates are likely to shift across the globe than about how species will respond to these changes. Two recent studies show how mesocosm experiments can hasten understanding of the ecological consequences of climate change on species' extinction risk, community structure, and ecosystem functions. Using a large-scale terrestrial warming experiment, Bestion et al. provide the first direct evidence that future global warming can increase extinction risk for temperate ectotherms. Using aquatic mesocosms, Yvon-Durocher et al. show that human-induced climate change could, in some cases, actually enhance the diversity of local communities, increasing productivity. Blending these theoretical and empirical results with computational models will improve forecasts of biodiversity loss and altered ecosystem processes due to climate change.

  15. Water access, water scarcity, and climate change.

    PubMed

    Mukheibir, Pierre

    2010-05-01

    This article investigates the approaches of the various discourses operating in the water sector and how they address the issues of scarcity and equitable access under projected climate change impacts. Little synergy exists between the different approaches dealing with these issues. Whilst being a sustainable development and water resources management issue, a holistic view of access, scarcity and the projected impacts of climate change is not prevalent in these discourses. The climate change discourse too does not adequately bridge the gap between these issues. The projected impacts of climate change are likely to exacerbate the problems of scarcity and equitable access unless appropriate adaptation strategies are adopted and resilience is built. The successful delivery of accessible water services under projected climate change impacts therefore lies with an extension of the adaptive water management approach to include equitable access as a key driver.

  16. Creating Effective Dialogue Around Climate Change

    NASA Astrophysics Data System (ADS)

    Kiehl, J. T.

    2015-12-01

    Communicating climate change to people from diverse sectors of society has proven to be difficult in the United States. It is widely recognized that difficulties arise from a number of sources, including: basic science understanding, the psychologically affect laden content surrounding climate change, and the diversity of value systems that exist in our society. I explore ways of working with the affect that arises around climate change and describe specific methods to work with the resistance often encountered when communicating this important issue. The techniques I describe are rooted in psychology and group process and provide means for creating more effective narratives to break through the barriers to communicating climate change science. Examples are given from personal experiences in presenting climate change to diverse groups.

  17. Global climate change and infectious diseases.

    PubMed

    Shuman, E K

    2011-01-01

    Climate change is occurring as a result of warming of the earth's atmosphere due to human activity generating excess amounts of greenhouse gases. Because of its potential impact on the hydrologic cycle and severe weather events, climate change is expected to have an enormous effect on human health, including on the burden and distribution of many infectious diseases. The infectious diseases that will be most affected by climate change include those that are spread by insect vectors and by contaminated water. The burden of adverse health effects due to these infectious diseases will fall primarily on developing countries, while it is the developed countries that are primarily responsible for climate change. It is up to governments and individuals to take the lead in halting climate change, and we must increase our understanding of the ecology of infectious diseases in order to protect vulnerable populations.

  18. Climate change is a bioethics problem.

    PubMed

    Macpherson, Cheryl Cox

    2013-07-01

    Climate change harms health and damages and diminishes environmental resources. Gradually it will cause health systems to reduce services, standards of care, and opportunities to express patient autonomy. Prominent public health organizations are responding with preparedness, mitigation, and educational programs. The design and effectiveness of these programs, and of similar programs in other sectors, would be enhanced by greater understanding of the values and tradeoffs associated with activities and public policies that drive climate change. Bioethics could generate such understanding by exposing the harms and benefits in different cultural, socioeconomic, and geographic contexts, and through interdisciplinary risk assessments. Climate change is a bioethics problem because it harms everyone and involves health, values, and responsibilities. This article initiates dialog about the responsibility of bioethics to promote transparency and understanding of the social values and conflicts associated with climate change, and the actions and public policies that allow climate change to worsen.

  19. Terrestrial ecosystem feedbacks to global climate change

    SciTech Connect

    Lashof, D.A.; DeAngelo, B.J.; Saleska, S.R.; Harte, J.

    1997-12-31

    Anthropogenic greenhouse gases are expected to induce changes in global climate that can alter ecosystems in ways that, in turn, may further affect climate. Such climate-ecosystem interactions can generate either positive or negative feedbacks to the climate system, thereby either enhancing or diminishing the magnitude of global climate change. Important terrestrial feedback mechanisms include CO{sub 2} fertilization (negative feedbacks), carbon storage in vegetation and soils (positive and negative feedbacks), vegetation albedo (positive feedbacks), and peatland methane emissions (positive and negative feedbacks). While the processes involved are complex, not readily quantifiable, and demonstrate both positive and negative feedback potential, the authors conclude that the combined effect of the feedback mechanisms reviewed here will likely amplify climate change relative to current projections that have not yet adequately incorporated these mechanisms. 162 refs., 7 figs., 3 tabs.

  20. Adaptation to climate change in developing countries.

    PubMed

    Mertz, Ole; Halsnaes, Kirsten; Olesen, Jørgen E; Rasmussen, Kjeld

    2009-05-01

    Adaptation to climate change is given increasing international attention as the confidence in climate change projections is getting higher. Developing countries have specific needs for adaptation due to high vulnerabilities, and they will in this way carry a great part of the global costs of climate change although the rising atmospheric greenhouse gas concentrations are mainly the responsibility of industrialized countries. This article provides a status of climate change adaptation in developing countries. An overview of observed and projected climate change is given, and recent literature on impacts, vulnerability, and adaptation are reviewed, including the emerging focus on mainstreaming of climate change and adaptation in development plans and programs. The article also serves as an introduction to the seven research articles of this special issue on climate change adaptation in developing countries. It is concluded that although many useful steps have been taken in the direction of ensuring adequate adaptation in developing countries, much work still remains to fully understand the drivers of past adaptation efforts, the need for future adaptation, and how to mainstream climate into general development policies.

  1. Connectivity planning to address climate change.

    PubMed

    Nuñez, Tristan A; Lawler, Joshua J; McRae, Brad H; Pierce, D John; Krosby, Meade B; Kavanagh, Darren M; Singleton, Peter H; Tewksbury, Joshua J

    2013-04-01

    As the climate changes, human land use may impede species from tracking areas with suitable climates. Maintaining connectivity between areas of different temperatures could allow organisms to move along temperature gradients and allow species to continue to occupy the same temperature space as the climate warms. We used a coarse-filter approach to identify broad corridors for movement between areas where human influence is low while simultaneously routing the corridors along present-day spatial gradients of temperature. We modified a cost-distance algorithm to model these corridors and tested the model with data on current land-use and climate patterns in the Pacific Northwest of the United States. The resulting maps identified a network of patches and corridors across which species may move as climates change. The corridors are likely to be robust to uncertainty in the magnitude and direction of future climate change because they are derived from gradients and land-use patterns. The assumptions we applied in our model simplified the stability of temperature gradients and species responses to climate change and land use, but the model is flexible enough to be tailored to specific regions by incorporating other climate variables or movement costs. When used at appropriate resolutions, our approach may be of value to local, regional, and continental conservation initiatives seeking to promote species movements in a changing climate. Planificación de Conectividad para Atender el Cambio Climático.

  2. Megaproject reclamation and climate change

    NASA Astrophysics Data System (ADS)

    Rooney, Rebecca C.; Robinson, Derek T.; Petrone, Rich

    2015-11-01

    Megaprojects such as oil sands mining require large-scale and long-term closure and reclamation plans. Yet these plans are created and approved without considering future climate and hydrological conditions, jeopardizing the sustainability of reclaimed landscapes.

  3. Coal in a changing climate

    SciTech Connect

    Lashof, D.A.; Delano, D.; Devine, J.

    2007-02-15

    The NRDC analysis examines the changing climate for coal production and use in the United States and China, the world's two largest producers and consumers of coal. The authors say that the current coal fuel cycle is among the most destructive activities on earth, placing an unacceptable burden on public health and the environment. There is no such thing as 'clean coal.' Our highest priorities must be to avoid increased reliance on coal and to accelerate the transition to an energy future based on efficient use of renewable resources. Energy efficiency and renewable energy resources are technically capable of meeting the demands for energy services in countries that rely on coal. However, more than 500 conventional coal-fired power plants are expected in China in the next eight years alone, and more than 100 are under development in the United States. Because it is very likely that significant coal use will continue during the transition to renewables, it is important that we also take the necessary steps to minimize the destructive effects of coal use. That requires the U.S. and China to take steps now to end destructive mining practices and to apply state of the art pollution controls, including CO{sub 2} control systems, to sources that use coal. Contents of the report are: Introduction; Background (Coal Production; Coal Use); The Toll from Coal (Environmental Effects of Coal Production; Environmental Effects of Coal Transportation); Environmental Effects of Coal Use (Air Pollutants; Other Pollutants; Environmental Effects of Coal Use in China); What Is the Future for Coal? (Reducing Fossil Fuel Dependence; Reducing the Impacts of Coal Production; Reducing Damage From Coal Use; Global Warming and Coal); and Conclusion. 2 tabs.

  4. Integrating Climate Change into Great Lakes Protection

    NASA Astrophysics Data System (ADS)

    Hedman, S.

    2012-12-01

    Climate change is now recognized as one of the greatest threats to the Great Lakes. Projected climate change impacts to the Great Lakes include increases in surface water and air temperature; decreases in ice cover; shorter winters, early spring, and longer summers; increased frequency of intense storms; more precipitation falling as rain in the winter; less snowfall; and variations in water levels, among other effects. Changing climate conditions may compromise efforts to protect and restore the Great Lakes ecosystem and may lead to irrevocable impacts on the physical, chemical, and biological integrity of the Great Lakes. Examples of such potential impacts include the transformation of coastal wetlands into terrestrial ecosystems; reduced fisheries; increased beach erosion; change in forest species composition as species migrate northward; potential increase in toxic substance concentrations; potential increases in the frequency and extent of algal blooms; degraded water quality; and a potential increase in invasive species. The Great Lakes Restoration Initiative, signed into law by President Obama in 2010, represents the commitment of the federal government to protect, restore, and maintain the Great Lakes ecosystem. The GLRI Action Plan, issued in February 2010, identifies five focus areas: - Toxic Substances and Areas of Concern - Invasive Species - Nearshore Health and Nonpoint Source Pollution - Habitat and Wildlife Protection and Restoration - Accountability, Education, Monitoring, Evaluation, Communication, and Partnerships The Action Plan recognizes that the projected impacts of climate change on the Great Lakes have implications across all focus areas and encourages incorporation of climate change considerations into GLRI projects and programs as appropriate. Under the GLRI, EPA has funded climate change-related work by states, tribes, federal agencies, academics and NGOs through competitive grants, state and tribal capacity grants, and Interagency

  5. Achieving Climate Change Absolute Accuracy in Orbit

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; Bowman, K.; Brindley, H.; Butler, J. J.; Collins, W.; Dykema, J. A.; Doelling, D. R.; Feldman, D. R.; Fox, N.; Huang, X.; Holz, R.; Huang, Y.; Jennings, D.; Jin, Z.; Johnson, D. G.; Jucks, K.; Kato, S.; Kratz, D. P.; Liu, X.; Lukashin, C.; Mannucci, A. J.; Phojanamongkolkij, N.; Roithmayr, C. M.; Sandford, S.; Taylor, P. C.; Xiong, X.

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  6. Urban Runoff Response due to Climate Change

    NASA Astrophysics Data System (ADS)

    Acharya, A.; Piechota, T. C.

    2009-12-01

    Climate change may produce a significant modification in the hydrological response that requires a change in overall water resources planning and management. Climate change particularly the projected change in extreme precipitation is likely to affect the runoff characteristics both regionally and temporally. The research presented here will focus on the changes in flood potential due to climate change, specifically event based storms for urban watersheds. The study site is the Flamingo-Tropicana watershed, one of the major contributors to the Las Vegas Wash in Clark County, Nevada. The output from Global Climate Models (GCMs) considers the three standard scenarios (A1B, A2, B1) for future greenhouse gas emissions. The average and maximum data derived from the entire GCM output for all scenarios will be considered. The combined climate and hydrologic modeling will follow three major steps: (1) selection of hydrological model; (2) selection of flood event and creation of climate scenarios; and (3) application of constructed scenarios to the calibrated hydrologic model. Measured flood data will be transformed to future data to represent the future climate conditions. The statistically downscaled climate projections are made available through World Climate Research Programme’s (WCRP’s) Coupled Model Intercomparison Project Phase 3 (CMIP3) multi-model dataset. The GCM output will be downscaled to simulate the real time future climate scenarios for local impact analysis. The U.S. Army Corp of Engineers ‘HEC’ software will be utilized for modeling the extreme storm event that represents the most severe historical flood event. The analysis will be carried out over future time periods that represents 2010-40, 2040-70 and 2070-2100 (mid 2030’s, 60’s and 90’s). The progressive change in runoff due to future climate trends (precipitation projections) will be used to analyze the adaptability of existing flood control facilities and further improve the design and

  7. Global climate change and children's health.

    PubMed

    Shea, Katherine M

    2007-11-01

    There is broad scientific consensus that Earth's climate is warming rapidly and at an accelerating rate. Human activities, primarily the burning of fossil fuels, are very likely (>90% probability) to be the main cause of this warming. Climate-sensitive changes in ecosystems are already being observed, and fundamental, potentially irreversible, ecological changes may occur in the coming decades. Conservative environmental estimates of the impact of climate changes that are already in process indicate that they will result in numerous health effects to children. The nature and extent of these changes will be greatly affected by actions taken or not taken now at the global level. Physicians have written on the projected effects of climate change on public health, but little has been written specifically on anticipated effects of climate change on children's health. Children represent a particularly vulnerable group that is likely to suffer disproportionately from both direct and indirect adverse health effects of climate change. Pediatric health care professionals should understand these threats, anticipate their effects on children's health, and participate as children's advocates for strong mitigation and adaptation strategies now. Any solutions that address climate change must be developed within the context of overall sustainability (the use of resources by the current generation to meet current needs while ensuring that future generations will be able to meet their needs). Pediatric health care professionals can be leaders in a move away from a traditional focus on disease prevention to a broad, integrated focus on sustainability as synonymous with health. This policy statement is supported by a technical report that examines in some depth the nature of the problem of climate change, likely effects on children's health as a result of climate change, and the critical importance of responding promptly and aggressively to reduce activities that are contributing to

  8. Climate change and species interactions: ways forward.

    PubMed

    Angert, Amy L; LaDeau, Shannon L; Ostfeld, Richard S

    2013-09-01

    With ongoing and rapid climate change, ecologists are being challenged to predict how individual species will change in abundance and distribution, how biotic communities will change in structure and function, and the consequences of these climate-induced changes for ecosystem functioning. It is now well documented that indirect effects of climate change on species abundances and distributions, via climatic effects on interspecific interactions, can outweigh and even reverse the direct effects of climate. However, a clear framework for incorporating species interactions into projections of biological change remains elusive. To move forward, we suggest three priorities for the research community: (1) utilize tractable study systems as case studies to illustrate possible outcomes, test processes highlighted by theory, and feed back into modeling efforts; (2) develop a robust analytical framework that allows for better cross-scale linkages; and (3) determine over what time scales and for which systems prediction of biological responses to climate change is a useful and feasible goal. We end with a list of research questions that can guide future research to help understand, and hopefully mitigate, the negative effects of climate change on biota and the ecosystem services they provide.

  9. Climate change in Central America and Mexico: regional climate model validation and climate change projections

    NASA Astrophysics Data System (ADS)

    Karmalkar, Ambarish V.; Bradley, Raymond S.; Diaz, Henry F.

    2011-08-01

    Central America has high biodiversity, it harbors high-value ecosystems and it's important to provide regional climate change information to assist in adaptation and mitigation work in the region. Here we study climate change projections for Central America and Mexico using a regional climate model. The model evaluation shows its success in simulating spatial and temporal variability of temperature and precipitation and also in capturing regional climate features such as the bimodal annual cycle of precipitation and the Caribbean low-level jet. A variety of climate regimes within the model domain are also better identified in the regional model simulation due to improved resolution of topographic features. Although, the model suffers from large precipitation biases, it shows improvements over the coarse-resolution driving model in simulating precipitation amounts. The model shows a dry bias in the wet season and a wet bias in the dry season suggesting that it's unable to capture the full range of precipitation variability. Projected warming under the A2 scenario is higher in the wet season than that in the dry season with the Yucatan Peninsula experiencing highest warming. A large reduction in precipitation in the wet season is projected for the region, whereas parts of Central America that receive a considerable amount of moisture in the form of orographic precipitation show significant decreases in precipitation in the dry season. Projected climatic changes can have detrimental impacts on biodiversity as they are spatially similar, but far greater in magnitude, than those observed during the El Niño events in recent decades that adversely affected species in the region.

  10. Abrupt climate-independent fire regime changes

    USGS Publications Warehouse

    Pausas, Juli G.; Keeley, Jon E.

    2014-01-01

    Wildfires have played a determining role in distribution, composition and structure of many ecosystems worldwide and climatic changes are widely considered to be a major driver of future fire regime changes. However, forecasting future climatic change induced impacts on fire regimes will require a clearer understanding of other drivers of abrupt fire regime changes. Here, we focus on evidence from different environmental and temporal settings of fire regimes changes that are not directly attributed to climatic changes. We review key cases of these abrupt fire regime changes at different spatial and temporal scales, including those directly driven (i) by fauna, (ii) by invasive plant species, and (iii) by socio-economic and policy changes. All these drivers might generate non-linear effects of landscape changes in fuel structure; that is, they generate fuel changes that can cross thresholds of landscape continuity, and thus drastically change fire activity. Although climatic changes might contribute to some of these changes, there are also many instances that are not primarily linked to climatic shifts. Understanding the mechanism driving fire regime changes should contribute to our ability to better assess future fire regimes.

  11. Advancing Climate Change and Impacts Science Through Climate Informatics

    NASA Astrophysics Data System (ADS)

    Lenhardt, W.; Pouchard, L. C.; King, A. W.; Branstetter, M. L.; Kao, S.; Wang, D.

    2010-12-01

    This poster will outline the work to date on developing a climate informatics capability at Oak Ridge National Laboratory (ORNL). The central proposition of this effort is that the application of informatics and information science to the domain of climate change science is an essential means to bridge the realm of high performance computing (HPC) and domain science. The goal is to facilitate knowledge capture and the creation of new scientific insights. For example, a climate informatics capability will help with the understanding and use of model results in domain sciences that were not originally in the scope. From there, HPC can also benefit from feedback as the new approaches may lead to better parameterization in the models. In this poster we will summarize the challenges associated with climate change science that can benefit from the systematic application of informatics and we will highlight our work to date in creating the climate informatics capability to address these types of challenges. We have identified three areas that are particularly challenging in the context of climate change science: 1) integrating model and observational data across different spatial and temporal scales, 2) model linkages, i.e. climate models linked to other models such as hydrologic models, and 3) model diagnostics. Each of these has a methodological component and an informatics component. Our project under way at ORNL seeks to develop new approaches and tools in the context of linking climate change and water issues. We are basing our work on the following four use cases: 1) Evaluation/test of CCSM4 biases in hydrology (precipitation, soil water, runoff, river discharge) over the Rio Grande Basin. User: climate modeler. 2) Investigation of projected changes in hydrology of Rio Grande Basin using the VIC (Variable Infiltration Capacity Macroscale) Hydrologic Model. User: watershed hydrologist/modeler. 3) Impact of climate change on agricultural productivity of the Rio Grande

  12. Introduction: food crops in a changing climate

    PubMed Central

    Slingo, Julia M; Challinor, Andrew J; Hoskins, Brian J; Wheeler, Timothy R

    2005-01-01

    Changes in both the mean and the variability of climate, whether naturally forced, or due to human activities, pose a threat to crop production globally. This paper summarizes discussions of this issue at a meeting of the Royal Society in April 2005. Recent advances in understanding the sensitivity of crops to weather, climate and the levels of particular gases in the atmosphere indicate that the impact of these factors on crop yields and quality may be more severe than previously thought. There is increasing information on the importance to crop yields of extremes of temperature and rainfall at key stages of crop development. Agriculture will itself impact on the climate system and a greater understanding of these feedbacks is needed. Complex models are required to perform simulations of climate variability and change, together with predictions of how crops will respond to different climate variables. Variability of climate, such as that associated with El Niño events, has large impacts on crop production. If skilful predictions of the probability of such events occurring can be made a season or more in advance, then agricultural and other societal responses can be made. The development of strategies to adapt to variations in the current climate may also build resilience to changes in future climate. Africa will be the part of the world that is most vulnerable to climate variability and change, but knowledge of how to use climate information and the regional impacts of climate variability and change in Africa is rudimentary. In order to develop appropriate adaptation strategies globally, predictions about changes in the quantity and quality of food crops need to be considered in the context of the entire food chain from production to distribution, access and utilization. Recommendations for future research priorities are given. PMID:16433087

  13. Cenozoic climate change influences mammalian evolutionary dynamics

    PubMed Central

    Figueirido, Borja; Janis, Christine M.; Pérez-Claros, Juan A.; De Renzi, Miquel; Palmqvist, Paul

    2012-01-01

    Global climate change is having profound impacts on the natural world. However, climate influence on faunal dynamics at macroevolutionary scales remains poorly understood. In this paper we investigate the influence of climate over deep time on the diversity patterns of Cenozoic North American mammals. We use factor analysis to identify temporally correlated assemblages of taxa, or major evolutionary faunas that we can then study in relation to climatic change over the past 65 million years. These taxa can be grouped into six consecutive faunal associations that show some correspondence with the qualitative mammalian chronofaunas of previous workers. We also show that the diversity pattern of most of these chronofaunas can be correlated with the stacked deep-sea benthic foraminiferal oxygen isotope (δ18O) curve, which strongly suggests climatic forcing of faunal dynamics over a large macroevolutionary timescale. This study demonstrates the profound influence of climate on the diversity patterns of North American terrestrial mammals over the Cenozoic. PMID:22203974

  14. Cenozoic climate change influences mammalian evolutionary dynamics.

    PubMed

    Figueirido, Borja; Janis, Christine M; Pérez-Claros, Juan A; De Renzi, Miquel; Palmqvist, Paul

    2012-01-17

    Global climate change is having profound impacts on the natural world. However, climate influence on faunal dynamics at macroevolutionary scales remains poorly understood. In this paper we investigate the influence of climate over deep time on the diversity patterns of Cenozoic North American mammals. We use factor analysis to identify temporally correlated assemblages of taxa, or major evolutionary faunas that we can then study in relation to climatic change over the past 65 million years. These taxa can be grouped into six consecutive faunal associations that show some correspondence with the qualitative mammalian chronofaunas of previous workers. We also show that the diversity pattern of most of these chronofaunas can be correlated with the stacked deep-sea benthic foraminiferal oxygen isotope (δ(18)O) curve, which strongly suggests climatic forcing of faunal dynamics over a large macroevolutionary timescale. This study demonstrates the profound influence of climate on the diversity patterns of North American terrestrial mammals over the Cenozoic.

  15. Regional Climate Change Hotspots over Africa

    NASA Astrophysics Data System (ADS)

    Anber, U.; Zakey, A.; Abd El Wahab, M.

    2009-04-01

    Regional Climate Change Index (RCCI), is developed based on regional mean precipitation change, mean surface air temperature change, and change in precipitation and temperature interannual variability. The RCCI is a comparative index designed to identify the most responsive regions to climate change, or Hot- Spots. The RCCI is calculated for Seven land regions over North Africa and Arabian region from the latest set of climate change projections by 14 global climates for the A1B, A2 and B1 IPCC emission scenarios. The concept of climate change can be approaches from the viewpoint of vulnerability or from that of climate response. In the former case a Hot-Spot can be defined as a region for which potential climate change impacts on the environment or different activity sectors can be particularly pronounced. In the other case, a Hot-Spot can be defined as a region whose climate is especially responsive to global change. In particular, the characterization of climate change response-based Hot-Spot can provide key information to identify and investigate climate change Hot-Spots based on results from multi-model ensemble of climate change simulations performed by modeling groups from around the world as contributions to the Fourth Assessment Report of Intergovernmental Panel on Climate Change (IPCC). A Regional Climate Change Index (RCCI) is defined based on four variables: change in regional mean surface air temperature relative to the global average temperature change ( or Regional Warming Amplification Factor, RWAF ), change in mean regional precipitation (P % , of present day value ), change in regional surface air temperature interannual variability (T % ,of present day value), change in regional precipitation interannual variability (P % ,of present day value ). In the definition of the RCCI it is important to include quantities other than mean change because often mean changes are not the only important factors for specific impacts. We thus also include inter

  16. Regional Climate Change Hotspots over Africa

    NASA Astrophysics Data System (ADS)

    Anber, U.

    2009-04-01

    Regional Climate Change Index (RCCI), is developed based on regional mean precipitation change, mean surface air temperature change, and change in precipitation and temperature interannual variability. The RCCI is a comparative index designed to identify the most responsive regions to climate change, or Hot- Spots. The RCCI is calculated for Seven land regions over North Africa and Arabian region from the latest set of climate change projections by 14 global climates for the A1B, A2 and B1 IPCC emission scenarios. The concept of climate change can be approaches from the viewpoint of vulnerability or from that of climate response. In the former case a Hot-Spot can be defined as a region for which potential climate change impacts on the environment or different activity sectors can be particularly pronounced. In the other case, a Hot-Spot can be defined as a region whose climate is especially responsive to global change. In particular, the characterization of climate change response-based Hot-Spot can provide key information to identify and investigate climate change Hot-Spots based on results from multi-model ensemble of climate change simulations performed by modeling groups from around the world as contributions to the Assessment Report of Intergovernmental Panel on Climate Change (IPCC). A Regional Climate Change Index (RCCI) is defined based on four variables: change in regional mean surface air temperature relative to the global average temperature change ( or Regional Warming Amplification Factor, RWAF ), change in mean regional precipitation ( , of present day value ), change in regional surface air temperature interannual variability ( ,of present day value), change in regional precipitation interannual variability ( , of present day value ). In the definition of the RCCI it is important to include quantities other than mean change because often mean changes are not the only important factors for specific impacts. We thus also include inter annual

  17. How does climate change cause extinction?

    PubMed

    Cahill, Abigail E; Aiello-Lammens, Matthew E; Fisher-Reid, M Caitlin; Hua, Xia; Karanewsky, Caitlin J; Ryu, Hae Yeong; Sbeglia, Gena C; Spagnolo, Fabrizio; Waldron, John B; Warsi, Omar; Wiens, John J

    2013-01-07

    Anthropogenic climate change is predicted to be a major cause of species extinctions in the next 100 years. But what will actually cause these extinctions? For example, will it be limited physiological tolerance to high temperatures, changing biotic interactions or other factors? Here, we systematically review the proximate causes of climate-change related extinctions and their empirical support. We find 136 case studies of climatic impacts that are potentially relevant to this topic. However, only seven identified proximate causes of demonstrated local extinctions due to anthropogenic climate change. Among these seven studies, the proximate causes vary widely. Surprisingly, none show a straightforward relationship between local extinction and limited tolerances to high temperature. Instead, many studies implicate species interactions as an important proximate cause, especially decreases in food availability. We find very similar patterns in studies showing decreases in abundance associated with climate change, and in those studies showing impacts of climatic oscillations. Collectively, these results highlight our disturbingly limited knowledge of this crucial issue but also support the idea that changing species interactions are an important cause of documented population declines and extinctions related to climate change. Finally, we briefly outline general research strategies for identifying these proximate causes in future studies.

  18. Invertebrates, ecosystem services and climate change.

    PubMed

    Prather, Chelse M; Pelini, Shannon L; Laws, Angela; Rivest, Emily; Woltz, Megan; Bloch, Christopher P; Del Toro, Israel; Ho, Chuan-Kai; Kominoski, John; Newbold, T A Scott; Parsons, Sheena; Joern, A

    2013-05-01

    The sustainability of ecosystem services depends on a firm understanding of both how organisms provide these services to humans and how these organisms will be altered with a changing climate. Unquestionably a dominant feature of most ecosystems, invertebrates affect many ecosystem services and are also highly responsive to climate change. However, there is still a basic lack of understanding of the direct and indirect paths by which invertebrates influence ecosystem services, as well as how climate change will affect those ecosystem services by altering invertebrate populations. This indicates a lack of communication and collaboration among scientists researching ecosystem services and climate change effects on invertebrates, and land managers and researchers from other disciplines, which becomes obvious when systematically reviewing the literature relevant to invertebrates, ecosystem services, and climate change. To address this issue, we review how invertebrates respond to climate change. We then review how invertebrates both positively and negatively influence ecosystem services. Lastly, we provide some critical future directions for research needs, and suggest ways in which managers, scientists and other researchers may collaborate to tackle the complex issue of sustaining invertebrate-mediated services under a changing climate.

  19. Lakes as sentinels of climate change

    PubMed Central

    Adrian, Rita; O’Reilly, Catherine M.; Zagarese, Horacio; Baines, Stephen B.; Hessen, Dag O.; Keller, Wendel; Livingstone, David M.; Sommaruga, Ruben; Straile, Dietmar; Van Donk, Ellen; Weyhenmeyer, Gesa A.; Winder, Monika

    2010-01-01

    While there is a general sense that lakes can act as sentinels of climate change, their efficacy has not been thoroughly analyzed. We identified the key response variables within a lake that act as indicators of the effects of climate change on both the lake and the catchment. These variables reflect a wide range of physical, chemical, and biological responses to climate. However, the efficacy of the different indicators is affected by regional response to climate change, characteristics of the catchment, and lake mixing regimes. Thus, particular indicators or combinations of indicators are more effective for different lake types and geographic regions. The extraction of climate signals can be further complicated by the influence of other environmental changes, such as eutrophication or acidification, and the equivalent reverse phenomena, in addition to other land-use influences. In many cases, however, confounding factors can be addressed through analytical tools such as detrending or filtering. Lakes are effective sentinels for climate change because they are sensitive to climate, respond rapidly to change, and integrate information about changes in the catchment. PMID:20396409

  20. Regional Changes in Extreme Climatic Events

    NASA Astrophysics Data System (ADS)

    Bell, J. L.; Sloan, L. C.; Snyder, M. A.

    2002-12-01

    This study focuses on California as a climatically complex region that is vulnerable to changes in water supply and delivery. A regional climate model is employed to assess changes in the frequency and intensity of extreme temperatures and precipitation. Significant increases in daily minimum and maximum temperatures occur with a doubling of atmospheric carbon dioxide concentration. Increases in daily temperatures lead to increases in prolonged heat waves and length of the growing season. Changes in total and extreme precipitation vary by geographic region.

  1. Ecological response to global climatic change

    USGS Publications Warehouse

    Malanson, G.P.; Butler, D.R.; Walsh, S. J.; Janelle, Donald G.; Warf, Barney; Hansen, Kathy

    2004-01-01

    Climate change and ecological change go hand in hand. Because we value our ecological environment, any change has the potential to be a problem. Geographers have been drawn to this challenge, and have been successful in addressing it, because the primary ecological response to climate changes in the past — the waxing and waning of the great ice sheets over the past 2 million years – was the changing geographic range of the biota. Plants and animals changed their location. Geographers have been deeply involved in documenting the changing biota of the past, and today we are called upon to help assess the possible responses to ongoing and future climatic change and, thus, their impacts. Assessing the potential responses is important for policy makers to judge the outcomes of action or inaction and also sets the stage for preparation for and mitigation of change.

  2. Tools for Teaching Climate Change Studies

    SciTech Connect

    Maestas, A.M.; Jones, L.A.

    2005-03-18

    The Atmospheric Radiation Measurement Climate Research Facility (ACRF) develops public outreach materials and educational resources for schools. Studies prove that science education in rural and indigenous communities improves when educators integrate regional knowledge of climate and environmental issues into school curriculum and public outreach materials. In order to promote understanding of ACRF climate change studies, ACRF Education and Outreach has developed interactive kiosks about climate change for host communities close to the research sites. A kiosk for the North Slope of Alaska (NSA) community was installed at the Iupiat Heritage Center in 2003, and a kiosk for the Tropical Western Pacific locales will be installed in 2005. The kiosks feature interviews with local community elders, regional agency officials, and Atmospheric Radiation Measurement (ARM) Program scientists, which highlight both research and local observations of some aspects of environmental and climatic change in the Arctic and Pacific. The kiosks offer viewers a unique opportunity to learn about the environmental concerns and knowledge of respected community elders, and to also understand state-of-the-art climate research. An archive of interviews from the communities will also be distributed with supplemental lessons and activities to encourage teachers and students to compare and contrast climate change studies and oral history observations from two distinct locations. The U.S. Department of Energy's ACRF supports education and outreach efforts for communities and schools located near its sites. ACRF Education and Outreach has developed interactive kiosks at the request of the communities to provide an opportunity for the public to learn about climate change from both scientific and indigenous perspectives. Kiosks include interviews with ARM scientists and provide users with basic information about climate change studies as well as interviews with elders and community leaders

  3. Adapting agriculture to climate change: a review

    NASA Astrophysics Data System (ADS)

    Anwar, Muhuddin Rajin; Liu, De Li; Macadam, Ian; Kelly, Georgina

    2013-07-01

    The agricultural sector is highly vulnerable to future climate changes and climate variability, including increases in the incidence of extreme climate events. Changes in temperature and precipitation will result in changes in land and water regimes that will subsequently affect agricultural productivity. Given the gradual change of climate in the past, historically, farmers have adapted in an autonomous manner. However, with large and discrete climate change anticipated by the end of this century, planned and transformational changes will be needed. In light of these, the focus of this review is on farm-level and farmers responses to the challenges of climate change both spatially and over time. In this review of adapting agriculture to climate change, the nature, extent, and causes of climate change are analyzed and assessed. These provide the context for adapting agriculture to climate change. The review identifies the binding constraints to adaptation at the farm level. Four major priority areas are identified to relax these constraints, where new initiatives would be required, i.e., information generation and dissemination to enhance farm-level awareness, research and development (R&D) in agricultural technology, policy formulation that facilitates appropriate adaptation at the farm level, and strengthening partnerships among the relevant stakeholders. Forging partnerships among R&D providers, policy makers, extension agencies, and farmers would be at the heart of transformational adaptation to climate change at the farm level. In effecting this transformational change, sustained efforts would be needed for the attendant requirements of climate and weather forecasting and innovation, farmer's training, and further research to improve the quality of information, invention, and application in agriculture. The investment required for these would be highly significant. The review suggests a sequenced approach through grouping research initiatives into short

  4. Conservation and adaptation to climate change.

    PubMed

    Brooke, Cassandra

    2008-12-01

    The need to adapt to climate change has become increasingly apparent, and many believe the practice of biodiversity conservation will need to alter to face this challenge. Conservation organizations are eager to determine how they should adapt their practices to climate change. This involves asking the fundamental question of what adaptation to climate change means. Most studies on climate change and conservation, if they consider adaptation at all, assume it is equivalent to the ability of species to adapt naturally to climate change as stated in Article 2 of the United Nations Framework Convention on Climate Change. Adaptation, however, can refer to an array of activities that range from natural adaptation, at one end of the spectrum, to sustainability science in coupled human and natural systems at the other. Most conservation organizations deal with complex systems in which adaptation to climate change involves making decisions on priorities for biodiversity conservation in the face of dynamic risks and involving the public in these decisions. Discursive methods such as analytic deliberation are useful for integrating scientific knowledge with public perceptions and values, particularly when large uncertainties and risks are involved. The use of scenarios in conservation planning is a useful way to build shared understanding at the science-policy interface. Similarly, boundary organizations-organizations or institutions that bridge different scales or mediate the relationship between science and policy-could prove useful for managing the transdisciplinary nature of adaptation to climate change, providing communication and brokerage services and helping to build adaptive capacity. The fact that some nongovernmental organizations (NGOs) are active across the areas of science, policy, and practice makes them well placed to fulfill this role in integrated assessments of biodiversity conservation and adaptation to climate change.

  5. Natural and anthropogenic climate change. Final report

    SciTech Connect

    Wang, W.C.; Ronberg, B.; Gutowski, W.; Molnar, G.; Li, K.R.

    1986-08-01

    The report describes a one-year research project which was the initial phase of a research program intended: (1) to refine and validate a 2-D climate model for studying the CO/sub 2/ and trace gases climatic effects; and (2) to participate in the United States of America (USA) Department of Energy/The People's Republic of China (PRC) Academia Sinica research project on CO/sub 2/-induced climate changes. The overall objective is to find ways to model regional climate change in a global warming environment potentially induced by CO/sub 2/ increase. The first task has two subtasks: (a) to incorporate a boundary layer parameterization into the 2-D radiative-dynamical model of Wang et al. (1984) and study its impact on climate sensitivity; and (b) to validate the 2-D radiative-dynamical models through comparisons with data and with other more comprehensive climate models so that our confidence in the model simulation of trace gases climatic effects can be increased. The second task is intended to: (a) analyze the climate data to improve our understanding of local/regional climate changes (in particular the desertification problem); and (b) coordinate the various research programs within the USA/PRC CO/sub 2/ project, which is critical in successfully achieving the research project scientific goals.

  6. Abrupt climate change and extinction events

    NASA Technical Reports Server (NTRS)

    Crowley, Thomas J.

    1988-01-01

    There is a growing body of theoretical and empirical support for the concept of instabilities in the climate system, and indications that abrupt climate change may in some cases contribute to abrupt extinctions. Theoretical indications of instabilities can be found in a broad spectrum of climate models (energy balance models, a thermohaline model of deep-water circulation, atmospheric general circulation models, and coupled ocean-atmosphere models). Abrupt transitions can be of several types and affect the environment in different ways. There is increasing evidence for abrupt climate change in the geologic record and involves both interglacial-glacial scale transitions and the longer-term evolution of climate over the last 100 million years. Records from the Cenozoic clearly show that the long-term trend is characterized by numerous abrupt steps where the system appears to be rapidly moving to a new equilibrium state. The long-term trend probably is due to changes associated with plate tectonic processes, but the abrupt steps most likely reflect instabilities in the climate system as the slowly changing boundary conditions caused the climate to reach some threshold critical point. A more detailed analysis of abrupt steps comes from high-resolution studies of glacial-interglacial fluctuations in the Pleistocene. Comparison of climate transitions with the extinction record indicates that many climate and biotic transitions coincide. The Cretaceous-Tertiary extinction is not a candidate for an extinction event due to instabilities in the climate system. It is quite possible that more detailed comparisons and analysis will indicate some flaws in the climate instability-extinction hypothesis, but at present it appears to be a viable candidate as an alternate mechanism for causing abrupt environmental changes and extinctions.

  7. The deep ocean under climate change.

    PubMed

    Levin, Lisa A; Le Bris, Nadine

    2015-11-13

    The deep ocean absorbs vast amounts of heat and carbon dioxide, providing a critical buffer to climate change but exposing vulnerable ecosystems to combined stresses of warming, ocean acidification, deoxygenation, and altered food inputs. Resulting changes may threaten biodiversity and compromise key ocean services that maintain a healthy planet and human livelihoods. There exist large gaps in understanding of the physical and ecological feedbacks that will occur. Explicit recognition of deep-ocean climate mitigation and inclusion in adaptation planning by the United Nations Framework Convention on Climate Change (UNFCCC) could help to expand deep-ocean research and observation and to protect the integrity and functions of deep-ocean ecosystems.

  8. In Brief: Action on climate change urged

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-06-01

    The science academies of the G8 countries-along with those in China, India, Brazil, Mexico, and South Africa-on 10 June issued a joint statement urging leaders at July's G8 Summit in Japan to take action on climate change. The statement indicates, ``Responding to climate change requires both mitigation and adaptation to achieve a transition to a low carbon society and our global sustainability objectives.'' In the statement, the academies urge all nations, and particularly those participating in the summit, to take a series of actions to deal with climate change. The statement is available at http://www.nationalacademies.org/includes/climatechangestatement.pdf.

  9. The deep ocean under climate change

    NASA Astrophysics Data System (ADS)

    Levin, Lisa A.; Le Bris, Nadine

    2015-11-01

    The deep ocean absorbs vast amounts of heat and carbon dioxide, providing a critical buffer to climate change but exposing vulnerable ecosystems to combined stresses of warming, ocean acidification, deoxygenation, and altered food inputs. Resulting changes may threaten biodiversity and compromise key ocean services that maintain a healthy planet and human livelihoods. There exist large gaps in understanding of the physical and ecological feedbacks that will occur. Explicit recognition of deep-ocean climate mitigation and inclusion in adaptation planning by the United Nations Framework Convention on Climate Change (UNFCCC) could help to expand deep-ocean research and observation and to protect the integrity and functions of deep-ocean ecosystems.

  10. Towards predictive understanding of regional climate change

    NASA Astrophysics Data System (ADS)

    Xie, Shang-Ping; Deser, Clara; Vecchi, Gabriel A.; Collins, Matthew; Delworth, Thomas L.; Hall, Alex; Hawkins, Ed; Johnson, Nathaniel C.; Cassou, Christophe; Giannini, Alessandra; Watanabe, Masahiro

    2015-10-01

    Regional information on climate change is urgently needed but often deemed unreliable. To achieve credible regional climate projections, it is essential to understand underlying physical processes, reduce model biases and evaluate their impact on projections, and adequately account for internal variability. In the tropics, where atmospheric internal variability is small compared with the forced change, advancing our understanding of the coupling between long-term changes in upper-ocean temperature and the atmospheric circulation will help most to narrow the uncertainty. In the extratropics, relatively large internal variability introduces substantial uncertainty, while exacerbating risks associated with extreme events. Large ensemble simulations are essential to estimate the probabilistic distribution of climate change on regional scales. Regional models inherit atmospheric circulation uncertainty from global models and do not automatically solve the problem of regional climate change. We conclude that the current priority is to understand and reduce uncertainties on scales greater than 100 km to aid assessments at finer scales.

  11. Implications of Climate Change for State Bioassessment ...

    EPA Pesticide Factsheets

    This draft report uses biological data collected by four states in wadeable rivers and streams to examine the components of state and tribal bioassessment and biomonitoring programs that may be vulnerable to climate change. The study investigates the potential to identify biological response signals to climate change within existing bioassessment data sets; analyzes how biological responses can be categorized and interpreted; and assesses how they may influence decision-making processes. The analyses suggest that several biological indicators may be used to detect climate change effects and such indicators can be used by state bioassessment programs to document changes at high-quality reference sites. The study investigates the potential to identify biological response signals to climate change within existing bioassessment data sets; analyzes how biological responses can be categorized and interpreted; and assesses how they may influence decision-making processes.

  12. Influence of Climate Changes on Health (Review).

    PubMed

    Pop-Jordanova, Nada; Grigorova, Evgenija

    2015-01-01

    Although climate changes are one of the most serious public health risks for all nations, it appears that the medical society in the East European countries is not too much concerned. The aim of this paper is to point out the main treats on health provoked by climate changes. The literature review was the source of information. Based on the PubMed where in 2015 more than 65,000 papers were dedicated to different aspects of the influence of the climate changes on the human health, as well as 3,500 articles for the pediatric population, we present a review of the main health risks. Especially, the impact of the climate changes on the children's health is overviewed. In separate parts, the thermal stress, extreme weather events, changes of infection's pattern, how to measure health risks as well as some mitigation measures are discussed.

  13. Climate change, human health, and sustainable development.

    PubMed Central

    Martens, W. J.; Slooff, R.; Jackson, E. K.

    1997-01-01

    Human-induced climate change threatens ecosystems and human health on a global scale. In order to withstand the worldwide threats to ecosystems, the concept of sustainable development was introduced during the 1980s. Since then, this concept has been widely applied to guide and focus policy-making. The present article reviews the health consequences of human-induced climate change on sustainable development, particularly the potential impact of such change of food supply, natural disasters, infectious diseases, ecosystems, and sea level rise. Discussed is an integrated model containing the key indicators of sustainable development. The relevance of climate change, human health, and sustainable development for international climate change policy is also examined. PMID:9509631

  14. Managing Climate Change Refugia for Biodiversity ...

    EPA Pesticide Factsheets

    Climate change threatens to create fundamental shifts in in the distributions and abundances of species. Given projected losses, increased emphasis on management for ecosystem resilience to help buffer fish and wildlife populations against climate change is emerging. Such efforts stake a claim for an adaptive, anticipatory planning response to the climate change threat. To be effective, approaches will need to address critical uncertainties in both the physical basis for projected landscape changes, as well as the biological responses of organisms. Recent efforts define future potential climate refugia based on air temperatures and associated microclimatic changes. These efforts reflect the relatively strong conceptual foundation for linkages between regional climate change and local responses and thermal dynamics. Yet important questions remain. Drawing on case studies, we illustrate some key uncertainties in the responses of species and their habitats to altered hydro-climatic regimes currently not well addressed by physical or ecological models. These uncertainties need not delay anticipatory planning, but rather highlight the need for identification and communication of actions with high probabilities of success, and targeted research within an adaptive management framework.In this workshop, we will showcase the latest science on climate refugia and participants will interact through small group discussions, relevant examples, and facilitated dialogue to i

  15. Identifying uncertainties in Arctic climate change projections

    NASA Astrophysics Data System (ADS)

    Hodson, Daniel L. R.; Keeley, Sarah P. E.; West, Alex; Ridley, Jeff; Hawkins, Ed; Hewitt, Helene T.

    2013-06-01

    Wide ranging climate changes are expected in the Arctic by the end of the 21st century, but projections of the size of these changes vary widely across current global climate models. This variation represents a large source of uncertainty in our understanding of the evolution of Arctic climate. Here we systematically quantify and assess the model uncertainty in Arctic climate changes in two CO2 doubling experiments: a multimodel ensemble (CMIP3) and an ensemble constructed using a single model (HadCM3) with multiple parameter perturbations (THC-QUMP). These two ensembles allow us to assess the contribution that both structural and parameter variations across models make to the total uncertainty and to begin to attribute sources of uncertainty in projected changes. We find that parameter uncertainty is an major source of uncertainty in certain aspects of Arctic climate. But also that uncertainties in the mean climate state in the 20th century, most notably in the northward Atlantic ocean heat transport and Arctic sea ice volume, are a significant source of uncertainty for projections of future Arctic change. We suggest that better observational constraints on these quantities will lead to significant improvements in the precision of projections of future Arctic climate change.

  16. Vegetation zones shift in changing climate

    NASA Astrophysics Data System (ADS)

    Belda, Michal; Halenka, Tomas; Kalvova, Jaroslava; Holtanova, Eva

    2016-04-01

    The analysis of climate patterns can be performed for each climate variable separately or the data can be aggregated using e.g. some kind of climate classification. These classifications usually correspond to vegetation distribution in the sense that each climate type is dominated by one vegetation zone or eco-region. In case of the Köppen-Trewartha classification it is integrated assessment of temperature and precipitation together with their annual cycle as well. This way climate classifications also represent a convenient tool for the assessment and validation of climate models and for the analysis of simulated future climate changes. The Köppen-Trewartha classification is used on full CMIP5 family of more than 40 GCM simulations and CRU dataset for comparison. This evaluation provides insight on the GCM performance and errors for simulations of the 20th century climate. Common regions are identified, such as Australia or Amazonia, where many state-of-the-art models perform inadequately. Furthermore, the analysis of the CMIP5 ensemble for RCP 4.5 and 8.5 is performed to assess the climate change for future. There are significant changes for some types in most models e.g. increase of savanna and decrease of tundra for the future climate. For some types significant shifts in latitude can be seen when studying their geographical location in selected continental areas, e.g. toward higher latitudes for boreal climate. For Europe, EuroCORDEX results for both 0.11 and 0.44 degree resolution are validated using Köppen-Trewartha types in comparison to E-OBS based classification. ERA-Interim driven simulations are compared to both present conditions of CMIP5 models as well as their downscaling by EuroCORDEX RCMs. Finally, the climate change signal assessment is provided using the individual climate types. In addition to the changes assessed similarly as for GCMs analysis in terms of the area of individual types, in the continental scale some shifts of boundaries

  17. A Cooperative Classroom Investigation of Climate Change

    ERIC Educational Resources Information Center

    Constible, Juanita; Sandro, Luke; Lee, Richard E., Jr.

    2007-01-01

    Scientists have a particularly difficult time explaining warming trends in Antarctica--a region with a relatively short history of scientific observation and a highly variable climate (Clarke et al. 2007). Regardless of the mechanism of warming, however, climate change is having a dramatic impact on Antarctic ecosystems. In this article, the…

  18. Climate Change: The Evidence and Our Options

    ERIC Educational Resources Information Center

    Thompson, Lonnie G.

    2010-01-01

    Glaciers serve as early indicators of climate change. Over the last 35 years, our research team has recovered ice-core records of climatic and environmental variations from the polar regions and from low-latitude high-elevation ice fields from 16 countries. The ongoing widespread melting of high-elevation glaciers and ice caps, particularly in low…

  19. Diagnosis Earth: The Climate Change Debate

    ERIC Educational Resources Information Center

    Anderegg, William R. L.

    2010-01-01

    In the scrum of popular and political discourse on global warming, the scholarship of climate science is often left sitting on the sideline. Yet understanding the science and the scientists presents the best chance of developing an informed opinion about climate change. Confusion about the science, misunderstanding of risk assessment and…

  20. A Record of Climate Change

    ERIC Educational Resources Information Center

    Smith, Zach

    2007-01-01

    The hydrologic cycle is a very basic scientific principle. In this article, background information is presented on how the hydrologic cycle provides scientists with clues to understanding the history of Earth's climate. Also detailed is a web-based activity that allows students to learn about how scientists are able to piece together a record of…

  1. Climate Change, Conflict, and Children

    ERIC Educational Resources Information Center

    Akresh, Richard

    2016-01-01

    We have good reason to predict that a warming climate will produce more conflict and violence. A growing contingent of researchers has been examining the relationship in recent years, and they've found that hotter temperatures and reduced rainfall are linked to increases in conflict at all scales, from interpersonal violence to war. Children are…

  2. Climate change and plant disease management.

    PubMed

    Coakley, S M; Scherm, H; Chakraborty, S

    1999-09-01

    ▪ Abstract  Research on impacts of climate change on plant diseases has been limited, with most work concentrating on the effects of a single atmospheric constituent or meteorological variable on the host, pathogen, or the interaction of the two under controlled conditions. Results indicate that climate change could alter stages and rates of development of the pathogen, modify host resistance, and result in changes in the physiology of host-pathogen interactions. The most likely consequences are shifts in the geographical distribution of host and pathogen and altered crop losses, caused in part by changes in the efficacy of control strategies. Recent developments in experimental and modeling techniques offer considerable promise for developing an improved capability for climate change impact assessment and mitigation. Compared with major technological, environmental, and socioeconomic changes affecting agricultural production during the next century, climate change may be less important; it will, however, add another layer of complexity and uncertainty onto a system that is already exceedingly difficult to manage on a sustainable basis. Intensified research on climate change-related issues could result in improved understanding and management of plant diseases in the face of current and future climate extremes.

  3. Serious Simulation Role-Playing Games for Transformative Climate Change Education: "World Climate" and "Future Climate"

    NASA Astrophysics Data System (ADS)

    Rooney-Varga, J. N.; Sterman, J.; Sawin, E.; Jones, A.; Merhi, H.; Hunt, C.

    2012-12-01

    Climate change, its mitigation, and adaption to its impacts are among the greatest challenges of our times. Despite the importance of societal decisions in determining climate change outcomes, flawed mental models about climate change remain widespread, are often deeply entrenched, and present significant barriers to understanding and decision-making around climate change. Here, we describe two simulation role-playing games that combine active, affective, and analytical learning to enable shifts of deeply held conceptions about climate change. The games, World Climate and Future Climate, use a state-of-the-art decision support simulation, C-ROADS (Climate Rapid Overview and Decision Support) to provide users with immediate feedback on the outcomes of their mitigation strategies at the national level, including global greenhouse gas (GHG) emissions and concentrations, mean temperature changes, sea level rise, and ocean acidification. C-ROADS outcomes are consistent with the atmosphere-ocean general circulation models (AOGCMS), such as those used by the IPCC, but runs in less than one second on ordinary laptops, providing immediate feedback to participants on the consequences of their proposed policies. Both World Climate and Future Climate role-playing games provide immersive, situated learning experiences that motivate active engagement with climate science and policy. In World Climate, participants play the role of United Nations climate treaty negotiators. Participant emissions reductions proposals are continually assessed through interactive exploration of the best available science through C-ROADS. Future Climate focuses on time delays in the climate and energy systems. Participants play the roles of three generations: today's policymakers, today's youth, and 'just born.' The game unfolds in three rounds 25 simulated years apart. In the first round, only today's policymakers make decisions; In the next round, the young become the policymakers and inherit the

  4. Assessing reservoir operations risk under climate change

    USGS Publications Warehouse

    Brekke, L.D.; Maurer, E.P.; Anderson, J.D.; Dettinger, M.D.; Townsley, E.S.; Harrison, A.; Pruitt, T.

    2009-01-01

    Risk-based planning offers a robust way to identify strategies that permit adaptive water resources management under climate change. This paper presents a flexible methodology for conducting climate change risk assessments involving reservoir operations. Decision makers can apply this methodology to their systems by selecting future periods and risk metrics relevant to their planning questions and by collectively evaluating system impacts relative to an ensemble of climate projection scenarios (weighted or not). This paper shows multiple applications of this methodology in a case study involving California's Central Valley Project and State Water Project systems. Multiple applications were conducted to show how choices made in conducting the risk assessment, choices known as analytical design decisions, can affect assessed risk. Specifically, risk was reanalyzed for every choice combination of two design decisions: (1) whether to assume climate change will influence flood-control constraints on water supply operations (and how), and (2) whether to weight climate change scenarios (and how). Results show that assessed risk would motivate different planning pathways depending on decision-maker attitudes toward risk (e.g., risk neutral versus risk averse). Results also show that assessed risk at a given risk attitude is sensitive to the analytical design choices listed above, with the choice of whether to adjust flood-control rules under climate change having considerably more influence than the choice on whether to weight climate scenarios. Copyright 2009 by the American Geophysical Union.

  5. Climate Change and Maize Yield in Iowa

    PubMed Central

    Xu, Hong; Twine, Tracy E.; Girvetz, Evan

    2016-01-01

    Climate is changing across the world, including the major maize-growing state of Iowa in the USA. To maintain crop yields, farmers will need a suite of adaptation strategies, and choice of strategy will depend on how the local to regional climate is expected to change. Here we predict how maize yield might change through the 21st century as compared with late 20th century yields across Iowa, USA, a region representing ideal climate and soils for maize production that contributes substantially to the global maize economy. To account for climate model uncertainty, we drive a dynamic ecosystem model with output from six climate models and two future climate forcing scenarios. Despite a wide range in the predicted amount of warming and change to summer precipitation, all simulations predict a decrease in maize yields from late 20th century to middle and late 21st century ranging from 15% to 50%. Linear regression of all models predicts a 6% state-averaged yield decrease for every 1°C increase in warm season average air temperature. When the influence of moisture stress on crop growth is removed from the model, yield decreases either remain the same or are reduced, depending on predicted changes in warm season precipitation. Our results suggest that even if maize were to receive all the water it needed, under the strongest climate forcing scenario yields will decline by 10–20% by the end of the 21st century. PMID:27219116

  6. The 7 Aarhus Statements on Climate Change

    NASA Astrophysics Data System (ADS)

    Margrethe Basse, Ellen; Svenning, Jens-Christian; Olesen, Jørgen E.; Besenbacher, Flemming; Læssøe, Jeppe; Seidenkrantz, Marit-Solveig; Lange, Lene

    2009-03-01

    More than 1000 prominent representatives from science, industry, politics and NGOs were gathered in Aarhus on 5-7 March 2009 for the international climate conference 'Beyond Kyoto: Addressing the Challenges of Climate Change'. Thematically, Beyond Kyoto was divided into seven areas of particular interest for understanding the effects of the projected future climate change and how the foreseen negative impacts can be counteracted by mitigation and adaptation measures. The themes were: Climate policy: the role of law and economics; Biodiversity and ecosystems; Agriculture and climate change; Nanotechnology solutions for a sustainable future; Citizens and society, and The Arctic. The main responsible scientists for the seven conference themes and representatives from the think-tank CONCITO delivered 'The 7 Aarhus Statements on Climate Change' as part of the closing session of the conference. The statements were also communicated to the Danish Government as well as to the press. This article is the product of the collective subsequent work of the seven theme responsibles and is a presentation of each theme statement in detail, emphasizing the current state of knowledge and how it may be used to minimize the expected negative impacts of future climate change.

  7. Conservation planning with uncertain climate change projections.

    PubMed

    Kujala, Heini; Moilanen, Atte; Araújo, Miguel B; Cabeza, Mar

    2013-01-01

    Climate change is affecting biodiversity worldwide, but conservation responses are constrained by considerable uncertainty regarding the magnitude, rate and ecological consequences of expected climate change. Here we propose a framework to account for several sources of uncertainty in conservation prioritization. Within this framework we account for uncertainties arising from (i) species distributions that shift following climate change, (ii) basic connectivity requirements of species, (iii) alternative climate change scenarios and their impacts, (iv) in the modelling of species distributions, and (v) different levels of confidence about present and future. When future impacts of climate change are uncertain, robustness of decision-making can be improved by quantifying the risks and trade-offs associated with climate scenarios. Sensible prioritization that accounts simultaneously for the present and potential future distributions of species is achievable without overly jeopardising present-day conservation values. Doing so requires systematic treatment of uncertainties and testing of the sensitivity of results to assumptions about climate. We illustrate the proposed framework by identifying priority areas for amphibians and reptiles in Europe.

  8. Assessing reservoir operations risk under climate change

    NASA Astrophysics Data System (ADS)

    Brekke, Levi D.; Maurer, Edwin P.; Anderson, Jamie D.; Dettinger, Michael D.; Townsley, Edwin S.; Harrison, Alan; Pruitt, Tom

    2009-04-01

    Risk-based planning offers a robust way to identify strategies that permit adaptive water resources management under climate change. This paper presents a flexible methodology for conducting climate change risk assessments involving reservoir operations. Decision makers can apply this methodology to their systems by selecting future periods and risk metrics relevant to their planning questions and by collectively evaluating system impacts relative to an ensemble of climate projection scenarios (weighted or not). This paper shows multiple applications of this methodology in a case study involving California's Central Valley Project and State Water Project systems. Multiple applications were conducted to show how choices made in conducting the risk assessment, choices known as analytical design decisions, can affect assessed risk. Specifically, risk was reanalyzed for every choice combination of two design decisions: (1) whether to assume climate change will influence flood-control constraints on water supply operations (and how), and (2) whether to weight climate change scenarios (and how). Results show that assessed risk would motivate different planning pathways depending on decision-maker attitudes toward risk (e.g., risk neutral versus risk averse). Results also show that assessed risk at a given risk attitude is sensitive to the analytical design choices listed above, with the choice of whether to adjust flood-control rules under climate change having considerably more influence than the choice on whether to weight climate scenarios.

  9. Climate Change and Maize Yield in Iowa.

    PubMed

    Xu, Hong; Twine, Tracy E; Girvetz, Evan

    2016-01-01

    Climate is changing across the world, including the major maize-growing state of Iowa in the USA. To maintain crop yields, farmers will need a suite of adaptation strategies, and choice of strategy will depend on how the local to regional climate is expected to change. Here we predict how maize yield might change through the 21st century as compared with late 20th century yields across Iowa, USA, a region representing ideal climate and soils for maize production that contributes substantially to the global maize economy. To account for climate model uncertainty, we drive a dynamic ecosystem model with output from six climate models and two future climate forcing scenarios. Despite a wide range in the predicted amount of warming and change to summer precipitation, all simulations predict a decrease in maize yields from late 20th century to middle and late 21st century ranging from 15% to 50%. Linear regression of all models predicts a 6% state-averaged yield decrease for every 1°C increase in warm season average air temperature. When the influence of moisture stress on crop growth is removed from the model, yield decreases either remain the same or are reduced, depending on predicted changes in warm season precipitation. Our results suggest that even if maize were to receive all the water it needed, under the strongest climate forcing scenario yields will decline by 10-20% by the end of the 21st century.

  10. How does climate change influence Arctic mercury?

    PubMed

    Stern, Gary A; Macdonald, Robie W; Outridge, Peter M; Wilson, Simon; Chételat, John; Cole, Amanda; Hintelmann, Holger; Loseto, Lisa L; Steffen, Alexandra; Wang, Feiyue; Zdanowicz, Christian

    2012-01-01

    Recent studies have shown that climate change is already having significant impacts on many aspects of transport pathways, speciation and cycling of mercury within Arctic ecosystems. For example, the extensive loss of sea-ice in the Arctic Ocean and the concurrent shift from greater proportions of perennial to annual types have been shown to promote changes in primary productivity, shift foodweb structures, alter mercury methylation and demethylation rates, and influence mercury distribution and transport across the ocean-sea-ice-atmosphere interface (bottom-up processes). In addition, changes in animal social behavior associated with changing sea-ice regimes can affect dietary exposure to mercury (top-down processes). In this review, we address these and other possible ramifications of climate variability on mercury cycling, processes and exposure by applying recent literature to the following nine questions; 1) What impact has climate change had on Arctic physical characteristics and processes? 2) How do rising temperatures affect atmospheric mercury chemistry? 3) Will a decrease in sea-ice coverage have an impact on the amount of atmospheric mercury deposited to or emitted from the Arctic Ocean, and if so, how? 4) Does climate affect air-surface mercury flux, and riverine mercury fluxes, in Arctic freshwater and terrestrial systems, and if so, how? 5) How does climate change affect mercury methylation/demethylation in different compartments in the Arctic Ocean and freshwater systems? 6) How will climate change alter the structure and dynamics of freshwater food webs, and thereby affect the bioaccumulation of mercury? 7) How will climate change alter the structure and dynamics of marine food webs, and thereby affect the bioaccumulation of marine mercury? 8) What are the likely mercury emissions from melting glaciers and thawing permafrost under climate change scenarios? and 9) What can be learned from current mass balance inventories of mercury in the Arctic? The

  11. Modelling climate change and malaria transmission.

    PubMed

    Parham, Paul E; Michael, Edwin

    2010-01-01

    The impact of climate change on human health has received increasing attention in recent years, with potential impacts due to vector-borne diseases only now beginning to be understood. As the most severe vector-borne disease, with one million deaths globally in 2006, malaria is thought most likely to be affected by changes in climate variables due to the sensitivity of its transmission dynamics to environmental conditions. While considerable research has been carried out using statistical models to better assess the relationship between changes in environmental variables and malaria incidence, less progress has been made on developing process-based climate-driven mathematical models with greater explanatory power. Here, we develop a simple model of malaria transmission linked to climate which permits useful insights into the sensitivity of disease transmission to changes in rainfall and temperature variables. Both the impact of changes in the mean values of these key external variables and importantly temporal variation in these values are explored. We show that the development and analysis of such dynamic climate-driven transmission models will be crucial to understanding the rate at which P. falciparum and P. vivax may either infect, expand into or go extinct in populations as local environmental conditions change. Malaria becomes endemic in a population when the basic reproduction number R0 is greater than unity and we identify an optimum climate-driven transmission window for the disease, thus providing a useful indicator for determing how transmission risk may change as climate changes. Overall, our results indicate that considerable work is required to better understand ways in which global malaria incidence and distribution may alter with climate change. In particular, we show that the roles of seasonality, stochasticity and variability in environmental variables, as well as ultimately anthropogenic effects, require further study. The work presented here

  12. Bahamians and Climate Change: An Analysis of Risk Perception and Climate Change Literacy

    NASA Astrophysics Data System (ADS)

    Neely, R.; Owens, M. A.

    2011-12-01

    The Commonwealth of the Bahamas is forecasted to be adversely impacted by the effects of climate change. This presentation will present the results of an assessment of the risk perception toward climate change and climate change literacy among Bahamians. 499 Bahamians from the health care and hospitality industries participated in surveys and/or focus groups and three (3) areas of climate change literacy (attitude, behavior and knowledge) were analyzed as well as risk perception. In general, 1) Bahamians demonstrated an elementary understanding of the underlying causes of climate change, 2) possessed positive attitudes toward adopting new climate change policies, and 3) are already adjusting their behaviors in light of the current predictions. This research also resulted in the development of a model of the relationships between the climate literacy subscales (attitude, behavior and knowledge) and risk perception. This study also examined information sources and their impacts on climate change literacy. As the source of information is important in assessing the quality of the information, participants also identified the source(s) of most of their climate change information. The TV news was cited as the most common source for climate change information among Bahamians. As there is limited active research generating specific climate change information in the Bahamas, all the information Bahamians receive as it pertains to climate change is generated abroad. As a result, Bahamians must decipher through to make sense of it on an individual level. From the focus groups, many of the participants have been able to view possible changes through a cultural lens and are willing to make adjustments to maintain the uniqueness and viability of the Bahamas and to preserve it for generations. Continued study of Bahamians' climate change literacy will inform adaption and mitigation policy as well as individual action.

  13. Responses of large mammals to climate change.

    PubMed

    Hetem, Robyn S; Fuller, Andrea; Maloney, Shane K; Mitchell, Duncan

    2014-01-01

    Most large terrestrial mammals, including the charismatic species so important for ecotourism, do not have the luxury of rapid micro-evolution or sufficient range shifts as strategies for adjusting to climate change. The rate of climate change is too fast for genetic adaptation to occur in mammals with longevities of decades, typical of large mammals, and landscape fragmentation and population by humans too widespread to allow spontaneous range shifts of large mammals, leaving only the expression of latent phenotypic plasticity to counter effects of climate change. The expression of phenotypic plasticity includes anatomical variation within the same species, changes in phenology, and employment of intrinsic physiological and behavioral capacity that can buffer an animal against the effects of climate change. Whether that buffer will be realized is unknown, because little is known about the efficacy of the expression of plasticity, particularly for large mammals. Future research in climate change biology requires measurement of physiological characteristics of many identified free-living individual animals for long periods, probably decades, to allow us to detect whether expression of phenotypic plasticity will be sufficient to cope with climate change.

  14. Climate change and health in Earth's future

    NASA Astrophysics Data System (ADS)

    Bowles, Devin C.; Butler, Colin D.; Friel, Sharon

    2014-02-01

    Threats to health from climate change are increasingly recognized, yet little research into the effects upon health systems is published. However, additional demands on health systems are increasingly documented. Pathways include direct weather impacts, such as amplified heat stress, and altered ecological relationships, including alterations to the distribution and activity of pathogens and vectors. The greatest driver of demand on future health systems from climate change may be the alterations to socioeconomic systems; however, these "tertiary effects" have received less attention in the health literature. Increasing demands on health systems from climate change will impede health system capacity. Changing weather patterns and sea-level rise will reduce food production in many developing countries, thus fostering undernutrition and concomitant disease susceptibility. Associated poverty will impede people's ability to access and support health systems. Climate change will increase migration, potentially exposing migrants to endemic diseases for which they have limited resistance, transporting diseases and fostering conditions conducive to disease transmission. Specific predictions of timing and locations of migration remain elusive, hampering planning and misaligning needs and infrastructure. Food shortages, migration, falling economic activity, and failing government legitimacy following climate change are also "risk multipliers" for conflict. Injuries to combatants, undernutrition, and increased infectious disease will result. Modern conflict often sees health personnel and infrastructure deliberately targeted and disease surveillance and eradication programs obstructed. Climate change will substantially impede economic growth, reducing health system funding and limiting health system adaptation. Modern medical care may be snatched away from millions who recently obtained it.

  15. Responses of large mammals to climate change

    PubMed Central

    Hetem, Robyn S; Fuller, Andrea; Maloney, Shane K; Mitchell, Duncan

    2014-01-01

    Most large terrestrial mammals, including the charismatic species so important for ecotourism, do not have the luxury of rapid micro-evolution or sufficient range shifts as strategies for adjusting to climate change. The rate of climate change is too fast for genetic adaptation to occur in mammals with longevities of decades, typical of large mammals, and landscape fragmentation and population by humans too widespread to allow spontaneous range shifts of large mammals, leaving only the expression of latent phenotypic plasticity to counter effects of climate change. The expression of phenotypic plasticity includes anatomical variation within the same species, changes in phenology, and employment of intrinsic physiological and behavioral capacity that can buffer an animal against the effects of climate change. Whether that buffer will be realized is unknown, because little is known about the efficacy of the expression of plasticity, particularly for large mammals. Future research in climate change biology requires measurement of physiological characteristics of many identified free-living individual animals for long periods, probably decades, to allow us to detect whether expression of phenotypic plasticity will be sufficient to cope with climate change. PMID:27583293

  16. Climate change, uncertainty, and natural resource management

    USGS Publications Warehouse

    Nichols, J.D.; Koneff, M.D.; Heglund, P.J.; Knutson, M.G.; Seamans, M.E.; Lyons, J.E.; Morton, J.M.; Jones, M.T.; Boomer, G.S.; Williams, B.K.

    2011-01-01

    Climate change and its associated uncertainties are of concern to natural resource managers. Although aspects of climate change may be novel (e.g., system change and nonstationarity), natural resource managers have long dealt with uncertainties and have developed corresponding approaches to decision-making. Adaptive resource management is an application of structured decision-making for recurrent decision problems with uncertainty, focusing on management objectives, and the reduction of uncertainty over time. We identified 4 types of uncertainty that characterize problems in natural resource management. We examined ways in which climate change is expected to exacerbate these uncertainties, as well as potential approaches to dealing with them. As a case study, we examined North American waterfowl harvest management and considered problems anticipated to result from climate change and potential solutions. Despite challenges expected to accompany the use of adaptive resource management to address problems associated with climate change, we conclude that adaptive resource management approaches will be the methods of choice for managers trying to deal with the uncertainties of climate change. ?? 2010 The Wildlife Society.

  17. Climate change and invasive species: double jeopardy.

    PubMed

    Mainka, Susan A; Howard, Geoffrey W

    2010-06-01

    Two of the key drivers of biodiversity loss today are climate change and invasive species. Climate change is already having a measurable impact on species distributions, reproduction and behavior, and all evidence suggests that things will get worse even if we act tomorrow to mitigate any future increases in greenhouse gas emissions: temperature will increase, precipitation will change, sea level will rise and ocean chemistry will change. At the same time, biological invasions remain an important threat to biodiversity, causing species loss, changes in distribution and habitat degradation. Acting together, the impacts of each of these drivers of change are compounded and interactions between these two threats present even greater challenges to field conservationists as well as policymakers. Similarly, the social and economic impacts of climate change and invasive species, already substantial, will be magnified. Awareness of the links between the two should underpin all biodiversity management planning and policy.

  18. Green cities, smart people and climate change

    NASA Astrophysics Data System (ADS)

    Mansouri Kouhestani, F.; Byrne, J. M.; Hazendonk, P.; Brown, M. B.; Harrison, T.

    2014-12-01

    Climate change will require substantial changes to urban environments. Cities are huge sources of greenhouse gases. Further, cities will suffer tremendously under climate change due to heat stresses, urban flooding, energy and water supply and demand changes, transportation problems, resource supply and demand and a host of other trials and tribulations. Cities that evolve most quickly and efficiently to deal with climate change will likely take advantage of the changes to create enjoyable, healthy and safer living spaces for families and communities. Technology will provide much of the capability to both mitigate and adapt our cities BUT education and coordination of citizen and community lifestyle likely offers equal opportunities to make our cities more sustainable and more enjoyable places to live. This work is the first phase of a major project evaluating urban mitigation and adaptation policies, programs and technologies. All options are considered, from changes in engineering, planning and management; and including a range of citizen and population-based lifestyle practices.

  19. Climate Change Workgroup Reports and Presentations

    EPA Pesticide Factsheets

    Climate Change Workgroup reports and presentations to discuss and identify the major issues and potential barriers to implementing the Prevention of Significant Deterioration program under the Clean Air Act for greenhouse gases.

  20. Transportation, Air Pollution, and Climate Change

    MedlinePlus

    ... Share Facebook Twitter Google+ Pinterest Contact Us Transportation, Air Pollution, and Climate Change Accomplishments & Successes View successes from ... reduce carbon pollution. Carbon pollution from transportation Other Air Pollution Learn about smog, soot, ozone, and other air ...

  1. Chikungunya, climate change, and human rights.

    PubMed

    Meason, Braden; Paterson, Ryan

    2014-06-14

    Chikungunya is a re-emerging arbovirus that causes significant morbidity and some mortality. Global climate change leading to warmer temperatures and changes in rainfall patterns allow mosquito vectors to thrive at altitudes and at locations where they previously have not, ultimately leading to a spread of mosquito-borne diseases. While mutations to the chikungunya virus are responsible for some portion of the re-emergence, chikungunya epidemiology is closely tied with weather patterns in Southeast Asia. Extrapolation of this regional pattern, combined with known climate factors impacting the spread of malaria and dengue, summate to a dark picture of climate change and the spread of this disease from south Asia and Africa into Europe and North America. This review describes chikungunya and collates current data regarding its spread in which climate change plays an important part. We also examine human rights obligations of States and others to protect against this disease.

  2. Psychology: Climate change and group dynamics

    NASA Astrophysics Data System (ADS)

    Postmes, Tom

    2015-03-01

    The characteristics and views of people sceptical about climate change have been analysed extensively. A study now confirms that sceptics in the US have some characteristics of a social movement, but shows that the same group dynamics propel believers.

  3. Complete Lesson 5: Climate Change and You

    EPA Pesticide Factsheets

    Students learn what causes climate change and how we can participate in reducing its harmful effects. Discuss the Solar System, heat and light energy, atmosphere, greenhouse effect and gases, ozone, and energy conservation.

  4. Iowa Climate Change Adaptation and Resilience Report

    EPA Pesticide Factsheets

    The findings of a pilot project to work with stakeholders and governments in Iowa to identify barriers to and incentives for considering regional effects of climate change in hazard mitigation planning and other community planning processes.

  5. NASA Now: Climate Change: Sea Level Rise

    NASA Video Gallery

    Dr. Josh Willis discusses the connection between oceans and global climate change. Learn why NASA measures greenhouse gases and how we detect ocean levels from space. These are crucial vital signs ...

  6. Calendar of Climate Change and Water Events

    EPA Pesticide Factsheets

    Various climate change and water related events happen throughout the year, including conferences, webinars, and meetings. This page is regularly updated with upcoming events and the information about registering and attending them.

  7. Climatic Change--Past, Present & Future

    ERIC Educational Resources Information Center

    Lindholm, Roy C.

    1976-01-01

    Presented is a review of studies investigating factors affecting climatic changes in the Earth's atmosphere--past, present, and future. Dating methods, particularly the Oxygen 18/16 method, are discussed. (SL)

  8. Understanding Climate Change Impacts on Water Resources

    EPA Pesticide Factsheets

    This training module will increase your understanding of the causes of climate change, its potential impacts on water resources, and the challenges it brings. You also will learn about how managers are working to make the United States more resilient..

  9. Climate change: A rewired food web

    NASA Astrophysics Data System (ADS)

    Blanchard, Julia L.

    2015-11-01

    Climate change is causing large fish species to move into arctic marine environments. A network analysis finds that these fishes, with their generalist diets, add links to the existing food web that may alter biodiversity and web stability.

  10. Carbon cycle feedbacks and future climate change.

    PubMed

    Friedlingstein, Pierre

    2015-11-13

    Climate and carbon cycle are tightly coupled on many timescales, from interannual to multi-millennial timescales. Observations always evidence a positive feedback, warming leading to release of carbon to the atmosphere; however, the processes at play differ depending on the timescales. State-of-the-art Earth System Models now represent these climate-carbon cycle feedbacks, always simulating a positive feedback over the twentieth and twenty-first centuries, although with substantial uncertainty. Recent studies now help to reduce this uncertainty. First, on short timescales, El Niño years record larger than average atmospheric CO2 growth rate, with tropical land ecosystems being the main drivers. These climate-carbon cycle anomalies can be used as emerging constraint on the tropical land carbon response to future climate change. Second, centennial variability found in last millennium records can be used to constrain the overall global carbon cycle response to climatic excursions. These independent methods point to climate-carbon cycle feedback at the low-end of the Earth System Models range, indicating that these models overestimate the carbon cycle sensitivity to climate change. These new findings also help to attribute the historical land and ocean carbon sinks to increase in atmospheric CO2 and climate change.

  11. Atmospheric Composition Change: Climate-Chemistry Interactions

    NASA Technical Reports Server (NTRS)

    Isaksen, I.S.A.; Granier, C.; Myhre, G.; Bernsten, T. K.; Dalsoren, S. B.; Gauss, S.; Klimont, Z.; Benestad, R.; Bousquet, P.; Collins, W.; Cox, T.; Eyring, V.; Fowler, D.; Fuzzi, S.; Jockel, P.; Laj, P.; Lohmann, U.; Maione, M.; Monks, T.; Prevot, A. S. H.; Raes, F.; Richter, A.; Rognerud, B.; Schulz, M.; Shindell, D.; Stevenson, D. S.; Storelvmo, T.; Wang, W.-C.; vanWeele, M.; Wild, M.; Wuebbles, D.

    2011-01-01

    Chemically active climate compounds are either primary compounds such as methane (CH4), removed by oxidation in the atmosphere, or secondary compounds such as ozone (O3), sulfate and organic aerosols, formed and removed in the atmosphere. Man-induced climate-chemistry interaction is a two-way process: Emissions of pollutants change the atmospheric composition contributing to climate change through the aforementioned climate components, and climate change, through changes in temperature, dynamics, the hydrological cycle, atmospheric stability, and biosphere-atmosphere interactions, affects the atmospheric composition and oxidation processes in the troposphere. Here we present progress in our understanding of processes of importance for climate-chemistry interactions, and their contributions to changes in atmospheric composition and climate forcing. A key factor is the oxidation potential involving compounds such as O3 and the hydroxyl radical (OH). Reported studies represent both current and future changes. Reported results include new estimates of radiative forcing based on extensive model studies of chemically active climate compounds such as O3, and of particles inducing both direct and indirect effects. Through EU projects such as ACCENT, QUANTIFY, and the AEROCOM project, extensive studies on regional and sector-wise differences in the impact on atmospheric distribution are performed. Studies have shown that land-based emissions have a different effect on climate than ship and aircraft emissions, and different measures are needed to reduce the climate impact. Several areas where climate change can affect the tropospheric oxidation process and the chemical composition are identified. This can take place through enhanced stratospheric-tropospheric exchange of ozone, more frequent periods with stable conditions favouring pollution build up over industrial areas, enhanced temperature-induced biogenic emissions, methane releases from permafrost thawing, and enhanced

  12. Climate Change Influences on Antarctic Bird Populations

    NASA Astrophysics Data System (ADS)

    Korczak-Abshire, Małgorzata

    2010-01-01

    Rapid changes in the major environmental variables like: temperature, wind and precipitation have occurred in the Antarctic region during the last 50 years. In this very sensitive region, even small changes can potentially lead to major environmental perturbations. Then the climate change poses a new challenge to the survival of Antarctic wildlife. As important bioindicators of changes in the ecosystem seabirds and their response to the climate perturbations have been recorded. Atmospheric warming and consequent changes in sea ice conditions have been hypothesized to differentially affect predator populations due to different predator life-history strategies and substantially altered krill recruitment dynamics.

  13. Natural and anthropogenic climate change

    SciTech Connect

    Gutowski, W.J.; Portman, D.A.; Iacono, M.J. ); Wang, W.C. . Atmospheric Sciences Research Center)

    1990-09-30

    This report covers the project progress of grant DE-FG02-86ER60422 for the period March 1, 1990--October 1, 1990. The research program includes three tasks: General Circulation Models (GCM) intercomparison and improvement, climate data-model statistics, and China project science coordination. This work has been performed in collaboration with our subcontractor, Dr. Wei-Chyung Wang, SUNY/Albany. 8 refs.

  14. The Strategic Threat of Inevitable Climate Change

    DTIC Science & Technology

    2013-03-01

    balances that affect US national security.19 United Nations Secretary-General Ban Ki-moon, addressing the 2012 U.N. climate talks in Doha, Qatar... affect the United States and its interests is not new. Climate change took on increasing importance for the US government over the past decade. In...significantly affect the US economy, undermining US strength and security. Rising sea levels, increased temperatures and changing patterns of wind and

  15. Geographic structure of adelie penguin populations: overlap in colony-specific foraging areas

    USGS Publications Warehouse

    Ainley, D.G.; Ribic, C.A.; Ballard, G.; Heath, S.; Gaffney, I.; Karl, B.J.; Barton, K.J.; Wilson, P.R.; Webb, S.

    2004-01-01

    In an investigation of the factors leading to geographic structuring among Ade??lie Penguin (Pygoscelis adeliae) populations, we studied the size and overlap of colony-specific foraging areas within an isolated cluster of colonies. The study area, in the southwestern Ross Sea, included one large and three smaller colonies, ranging in size from 3900 to 135000 nesting pairs, clustered on Ross and Beaufort Islands. We used triangulation of radio signals from transmitters attached to breeding penguins to determine foraging locations and to define colony-specific foraging areas during the chick-provisioning period of four breeding seasons, 1997-2000. Colony populations (nesting pairs) were determined using aerial photography just after egg-laying; reproductive success was estimated by comparing ground counts of chicks fledged to the number of breeding pairs apparent in aerial photos. Foraging-trip duration, meal size, and adult body mass were estimated using RFID (radio frequency identification) tags and an automated reader and weighbridge. Chick growth was assessed by weekly weighing. We related the following variables to colony size: foraging distance, area, and duration; reproductive success; chick meal size and growth rate; and seasonal variation in adult body mass. We found that penguins foraged closest to their respective colonies, particularly at the smaller colonies. However, as the season progressed, foraging distance, duration, and area increased noticeably, especially at the largest colony. The foraging areas of the smaller colonies overlapped broadly, but very little foraging area overlap existed between the large colony and the smaller colonies, even though the foraging area of the large colony was well within range of the smaller colonies. Instead, the foraging areas of the smaller colonies shifted as that of the large colony grew. Colony size was not related to chick meal size, chick growth, or parental body mass. This differed from the year previous to

  16. Climate change, cash transfers and health.

    PubMed

    Pega, Frank; Shaw, Caroline; Rasanathan, Kumanan; Yablonski, Jennifer; Kawachi, Ichiro; Hales, Simon

    2015-08-01

    The forecast consequences of climate change on human health are profound, especially in low- and middle-income countries and among the most disadvantaged populations. Innovative policy tools are needed to address the adverse health effects of climate change. Cash transfers are established policy tools for protecting population health before, during and after climate-related disasters. For example, the Ethiopian Productive Safety Net Programme provides cash transfers to reduce food insecurity resulting from droughts. We propose extending cash transfer interventions to more proactive measures to improve health in the context of climate change. We identify promising cash transfer schemes that could be used to prevent the adverse health consequences of climatic hazards. Cash transfers for using emission-free, active modes of transport - e.g. cash for cycling to work - could prevent future adverse health consequences by contributing to climate change mitigation and, at the same time, improving current population health. Another example is cash transfers provided to communities that decide to move to areas in which their lives and health are not threatened by climatic disasters. More research on such interventions is needed to ensure that they are effective, ethical, equitable and cost-effective.

  17. Framing Climate Change to Account for Values

    NASA Astrophysics Data System (ADS)

    Hassol, S. J.

    2011-12-01

    Belief, trust and values are important but generally overlooked in efforts to communicate climate change. Because climate change has often been framed too narrowly as an environmental issue, it has failed to engage segments of the public for whom environmentalism is not an important value. Worse, for some of these people, environmentalism and the policies that accompany it may be seen as a threat to their core values, such as the importance of personal freedoms and the free market. Climate science educators can improve this situation by more appropriately framing climate change as an issue affecting the economy and our most basic human needs: food, water, shelter, security, health, jobs, and the safety of our families. Further, because people trust and listen to those with whom they share cultural values, climate change educators can stress the kinds of values their audiences share. They can also enlist the support of opinion leaders known for holding these values. In addition, incorporating messages about solutions to climate change and their many benefits to economic prosperity, human health, and other values is an important component of meeting this challenge. We must also recognize that local impacts are of greater concern to most people than changes that feel distant in place and time. Different audiences have different concerns, and effective educators will learn what their audiences care about and tailor their messages accordingly.

  18. Mental health effects of climate change.

    PubMed

    Padhy, Susanta Kumar; Sarkar, Sidharth; Panigrahi, Mahima; Paul, Surender

    2015-01-01

    We all know that 2014 has been declared as the hottest year globally by the Meteorological department of United States of America. Climate change is a global challenge which is likely to affect the mankind in substantial ways. Not only climate change is expected to affect physical health, it is also likely to affect mental health. Increasing ambient temperatures is likely to increase rates of aggression and violent suicides, while prolonged droughts due to climate change can lead to more number of farmer suicides. Droughts otherwise can lead to impaired mental health and stress. Increased frequency of disasters with climate change can lead to posttraumatic stress disorder, adjustment disorder, and depression. Changes in climate and global warming may require population to migrate, which can lead to acculturation stress. It can also lead to increased rates of physical illnesses, which secondarily would be associated with psychological distress. The possible effects of mitigation measures on mental health are also discussed. The paper concludes with a discussion of what can and should be done to tackle the expected mental health issues consequent to climate change.

  19. The global land rush and climate change

    NASA Astrophysics Data System (ADS)

    Davis, Kyle Frankel; Rulli, Maria Cristina; D'Odorico, Paolo

    2015-08-01

    Climate change poses a serious global challenge in the face of rapidly increasing human demand for energy and food. A recent phenomenon in which climate change may play an important role is the acquisition of large tracts of land in the developing world by governments and corporations. In the target countries, where land is relatively inexpensive, the potential to increase crop yields is generally high and property rights are often poorly defined. By acquiring land, investors can realize large profits and countries can substantially alter the land and water resources under their control, thereby changing their outlook for meeting future demand. While the drivers, actors, and impacts involved with land deals have received substantial attention in the literature, we propose that climate change plays an important yet underappreciated role, both through its direct effects on agricultural production and through its influence on mitigative or adaptive policy decisions. Drawing from various literature sources as well as a new global database on reported land deals, we trace the evolution of the global land rush and highlight prominent examples in which the role of climate change is evident. We find that climate change—both historical and anticipated—interacts substantially with drivers of land acquisitions, having important implications for the resilience of communities in targeted areas. As a result of this synthesis, we ultimately contend that considerations of climate change should be integrated into future policy decisions relating to the large-scale land acquisitions.

  20. The radiative heating response to climate change

    NASA Astrophysics Data System (ADS)

    Maycock, Amanda

    2016-04-01

    The structure and magnitude of radiative heating rates in the atmosphere can change markedly in response to climate forcings; diagnosing the causes of these changes can aid in understanding parts of the large-scale circulation response to climate change. This study separates the relative drivers of projected changes in longwave and shortwave radiative heating rates over the 21st century into contributions from radiatively active gases, such as carbon dioxide, ozone and water vapour, and from changes in atmospheric and surface temperatures. Results are shown using novel radiative diagnostics applied to timeslice experiments from the UM-UKCA chemistry-climate model; these online estimates are compared to offline radiative transfer calculations. Line-by-line calculations showing spectrally-resolved changes in heating rates due to different gases will also be presented.

  1. Evaluating Global Climate Change Education Initiative

    NASA Astrophysics Data System (ADS)

    Weston, T. J.

    2011-12-01

    The Global Climate Change Education initiative (GCCE) is a multi-site effort funded by the National Science Foundation to develop web resources. The objective of curricular modules is to improve content knowledge and change attitudes about climate change among undergraduate science students. The two-year evaluation of the project was conducted by Tim Weston from the University of Colorado. The small-scale evaluation first developed measures for attitude and content about climate change, and then administered the measures online. Analysis of results is ongoing. The evaluator wanted to know the attitudes and content knowledge of students after completing the modules, and if attitudes and content knowledge shifted from pre to post. An additional component of the evaluation focused on student understanding of specific global warming topics after completing the modules. Developing the test and survey involved reviewing existing measures, soliciting content from stakeholders in the grant, and then establishing a content framework that covered the important topics in climate change linked to project curricula. The pilot attitude measure contained fourteen agree/disagree items (I believe people should change their lifestyles to help minimize climate change), five self-assessment questions (How informed are you about the different causes of climate change? ), and wo previous experience questions about previous science courses taken, and actions related to climate change. The content measure contained 10 multiple-choice items asking about changes in global average temperature, the scientific methods of climate change, and the primary countries and human activities responsible for climate change. Questions were designed to reflect a mixture of general science literacy about climate change and more specific content related knowledge taught in the curricula. Both content and attitude measures were piloted with students, who answered questions using a think-aloud" interview

  2. Tracking Public Beliefs About Anthropogenic Climate Change.

    PubMed

    Hamilton, Lawrence C; Hartter, Joel; Lemcke-Stampone, Mary; Moore, David W; Safford, Thomas G

    2015-01-01

    A simple question about climate change, with one choice designed to match consensus statements by scientists, was asked on 35 US nationwide, single-state or regional surveys from 2010 to 2015. Analysis of these data (over 28,000 interviews) yields robust and exceptionally well replicated findings on public beliefs about anthropogenic climate change, including regional variations, change over time, demographic bases, and the interacting effects of respondent education and political views. We find that more than half of the US public accepts the scientific consensus that climate change is happening now, caused mainly by human activities. A sizable, politically opposite minority (about 30 to 40%) concede the fact of climate change, but believe it has mainly natural causes. Few (about 10 to 15%) say they believe climate is not changing, or express no opinion. The overall proportions appear relatively stable nationwide, but exhibit place-to-place variations. Detailed analysis of 21 consecutive surveys within one fairly representative state (New Hampshire) finds a mild but statistically significant rise in agreement with the scientific consensus over 2010-2015. Effects from daily temperature are detectable but minor. Hurricane Sandy, which brushed New Hampshire but caused no disaster there, shows no lasting impact on that state's time series-suggesting that non-immediate weather disasters have limited effects. In all datasets political orientation dominates among individual-level predictors of climate beliefs, moderating the otherwise positive effects from education. Acceptance of anthropogenic climate change rises with education among Democrats and Independents, but not so among Republicans. The continuing series of surveys provides a baseline for tracking how future scientific, political, socioeconomic or climate developments impact public acceptance of the scientific consensus.

  3. Climate change impacts on food system

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Cai, X.; Zhu, T.

    2014-12-01

    Food system includes biophysical factors (climate, land and water), human environments (production technologies and food consumption, distribution and marketing), as well as the dynamic interactions within them. Climate change affects agriculture and food systems in various ways. Agricultural production can be influenced directly by climatic factors such as mean temperature rising, change in rainfall patterns, and more frequent extreme events. Eventually, climate change could cause shift of arable land, alteration of water availability, abnormal fluctuation of food prices, and increase of people at risk of malnutrition. This work aims to evaluate how climate change would affect agricultural production biophysically and how these effects would propagate to social factors at the global level. In order to model the complex interactions between the natural and social components, a Global Optimization model of Agricultural Land and Water resources (GOALW) is applied to the analysis. GOALW includes various demands of human society (food, feed, other), explicit production module, and irrigation water availability constraint. The objective of GOALW is to maximize global social welfare (consumers' surplus and producers' surplus).Crop-wise irrigation water use in different regions around the world are determined by the model; marginal value of water (MVW) can be obtained from the model, which implies how much additional welfare benefit could be gained with one unit increase in local water availability. Using GOALW, we will analyze two questions in this presentation: 1) how climate change will alter irrigation requirements and how the social system would buffer that by price/demand adjustment; 2) how will the MVW be affected by climate change and what are the controlling factors. These results facilitate meaningful insights for investment and adaptation strategies in sustaining world's food security under climate change.

  4. The climate change and energy security nexus

    SciTech Connect

    King, Marcus Dubois; Gulledge, Jay

    2013-01-01

    The study of the impacts of climate change on national and interna-tional security has grown as a research field, particularly in the last five years. Within this broad field, academic scholarship has concentrated primarily on whether climate change is, or may become, a driver of violent conflict. This relationship remains highly contested. However, national security policy and many non-governmental organizations have identified climate change as a threat multiplier in conflict situations. The U.S. Department of Defense and the United Kingdom's Ministry of Defense have incorporated these findings into strategic planning documents such as the Quadrennial Defense Review and the Strategic Defence and Security Review. In contrast to the climate-conflict nexus, our analysis found that academic scholarship on the climate change and energy security nexus is small and more disciplinarily focused. In fact, a search of social science litera-ture found few sources, with a significant percentage of these works attribut-able to a single journal. Assuming that policymakers are more likely to rely on broader social science literature than technical or scientific journals, this leaves a limited foundation. This then begged the question: what are these sources? We identified a body of grey literature on the nexus of climate change and energy security of a greater size than the body of peer-reviewed social science literature. We reviewed fifty-eight recent reports, issue briefs, and transcripts to better understand the nexus of climate change and energy security, as well as to gain insight about the questions policymakers need answered by those undertaking the research. In this article, we describe the nature of the sources reviewed, highlight possible climate change and energy security linkages found within those sources, identify emerging risks, and offer conclusions that can guide further research.

  5. Tracking Public Beliefs About Anthropogenic Climate Change

    PubMed Central

    Hamilton, Lawrence C.; Hartter, Joel; Lemcke-Stampone, Mary; Moore, David W.; Safford, Thomas G.

    2015-01-01

    A simple question about climate change, with one choice designed to match consensus statements by scientists, was asked on 35 US nationwide, single-state or regional surveys from 2010 to 2015. Analysis of these data (over 28,000 interviews) yields robust and exceptionally well replicated findings on public beliefs about anthropogenic climate change, including regional variations, change over time, demographic bases, and the interacting effects of respondent education and political views. We find that more than half of the US public accepts the scientific consensus that climate change is happening now, caused mainly by human activities. A sizable, politically opposite minority (about 30 to 40%) concede the fact of climate change, but believe it has mainly natural causes. Few (about 10 to 15%) say they believe climate is not changing, or express no opinion. The overall proportions appear relatively stable nationwide, but exhibit place-to-place variations. Detailed analysis of 21 consecutive surveys within one fairly representative state (New Hampshire) finds a mild but statistically significant rise in agreement with the scientific consensus over 2010–2015. Effects from daily temperature are detectable but minor. Hurricane Sandy, which brushed New Hampshire but caused no disaster there, shows no lasting impact on that state’s time series—suggesting that non-immediate weather disasters have limited effects. In all datasets political orientation dominates among individual-level predictors of climate beliefs, moderating the otherwise positive effects from education. Acceptance of anthropogenic climate change rises with education among Democrats and Independents, but not so among Republicans. The continuing series of surveys provides a baseline for tracking how future scientific, political, socioeconomic or climate developments impact public acceptance of the scientific consensus. PMID:26422694

  6. Projecting Climate Change Impacts on Wildfire Probabilities

    NASA Astrophysics Data System (ADS)

    Westerling, A. L.; Bryant, B. P.; Preisler, H.

    2008-12-01

    We present preliminary results of the 2008 Climate Change Impact Assessment for wildfire in California, part of the second biennial science report to the California Climate Action Team organized via the California Climate Change Center by the California Energy Commission's Public Interest Energy Research Program pursuant to Executive Order S-03-05 of Governor Schwarzenegger. In order to support decision making by the State pertaining to mitigation of and adaptation to climate change and its impacts, we model wildfire occurrence monthly from 1950 to 2100 under a range of climate scenarios from the Intergovernmental Panel on Climate Change. We use six climate change models (GFDL CM2.1, NCAR PCM1, CNRM CM3, MPI ECHAM5, MIROC3.2 med, NCAR CCSM3) under two emissions scenarios--A2 (C02 850ppm max atmospheric concentration) and B1(CO2 550ppm max concentration). Climate model output has been downscaled to a 1/8 degree (~12 km) grid using two alternative methods: a Bias Correction and Spatial Donwscaling (BCSD) and a Constructed Analogues (CA) downscaling. Hydrologic variables have been simulated from temperature, precipitation, wind and radiation forcing data using the Variable Infiltration Capacity (VIC) Macroscale Hydrologic Model. We model wildfire as a function of temperature, moisture deficit, and land surface characteristics using nonlinear logistic regression techniques. Previous work on wildfire climatology and seasonal forecasting has demonstrated that these variables account for much of the inter-annual and seasonal variation in wildfire. The results of this study are monthly gridded probabilities of wildfire occurrence by fire size class, and estimates of the number of structures potentially affected by fires. In this presentation we will explore the range of modeled outcomes for wildfire in California, considering the effects of emissions scenarios, climate model sensitivities, downscaling methods, hydrologic simulations, statistical model specifications for

  7. Climate change adaptation strategies and mitigation policies

    NASA Astrophysics Data System (ADS)

    García Fernández, Cristina

    2015-04-01

    The pace of climate change and the consequent warming of the Earth's surface is increasing vulnerability and decreasing adaptive capacity. Achieving a successful adaptation depends on the development of technology, institutional organization, financing availability and the exchange of information. Populations living in arid and semi-arid zones, low-lying coastal areas, land with water shortages or at risk of overflow or small islands are particularly vulnerable to climate change. Due to increasing population density in sensitive areas, some regions have become more vulnerable to events such as storms, floods and droughts, like the river basins and coastal plains. Human activities have fragmented and increased the vulnerability of ecosystems, which limit both, their natural adaptation and the effectiveness of the measures adopted. Adaptation means to carry out the necessary modifications for society to adapt to new climatic conditions in order to reduce their vulnerability to climate change. Adaptive capacity is the ability of a system to adjust to climate change (including climate variability and extremes) and to moderate potential damages, to take advantage of opportunities or face the consequences. Adaptation reduces the adverse impacts of climate change and enhance beneficial impacts, but will not prevent substantial cost that are produced by all damages. The performances require adaptation actions. These are defined and implemented at national, regional or local levels since many of the impacts and vulnerabilities depend on the particular economic, geographic and social circumstances of each country or region. We will present some adaptation strategies at national and local level and revise some cases of its implementation in several vulnerable areas. However, adaptation to climate change must be closely related to mitigation policies because the degree of change planned in different climatic variables is a function of the concentration levels that are achieved

  8. California Rare Endemics and Climate Change

    NASA Astrophysics Data System (ADS)

    Espinoza, M.

    2010-12-01

    California is known for its wide variety of endemic flora, from its annuals such as the Eschscholzia californica (California poppy) to the perennials like the Arctostaphylos pallida (Alameda manzanita), which happens to be a rare species. Each species plays an important role in the biodiversity of California, yet there are species that are threatened, not only by human interaction and urbanization, but by climate change. Species that we seldom see are now on the verge of becoming eradicated; rare endemics similar to Arctostaphylos pallida are now facing a new challenge that may severely impair their survival. The climate has changed significantly over the twentieth century and it has affected the distribution of rare endemics in California, both geographically as well as within their climatic and edaphic niches. Lilaeopsis masonii is just one rare endemic, however it serves as a representative of the other 23 species that were studied. Using Maxent, a climate-modeling program, it was viable to construct two climate envelopes of the masonii species: the early century envelope (1930-1959) and the later century envelope (1990-2009). When these two climate envelopes were compared, it became clear that the later century climate envelope had contracted radically, reshaping the climate niche of all rare endemics in California due to an increase in temperature. It is possible to conclude that the future of rare endemics hangs in the balance, where one degree higher in temperature is enough to topple the scale.

  9. Enhancing the Communication of Climate Change Science

    NASA Astrophysics Data System (ADS)

    Somerville, R. C.; Hassol, S. J.

    2011-12-01

    Climate scientists have an important role to play in the critical task of informing the public, media and policymakers. Scientists can help in publicizing and illuminating climate science. However, this task requires combining climate science expertise with advanced communication skills. For example, it is entirely possible to convey scientific information accurately without using jargon or technical concepts unfamiliar to non-scientists. However, making this translation into everyday language is a job that few scientists have been trained to do. In this talk, we give examples from our recent experience working with scientists to enhance their ability to communicate well. Our work includes providing training, technical assistance, and communications tools to climate scientists and universities, government agencies, and research centers. Our experience ranges from preparing Congressional testimony to writing major climate science reports to appearing on television. We have also aided journalists in gathering reliable scientific information and identifying trustworthy experts. Additionally, we are involved in developing resources freely available online at climatecommunication.org. These include a feature on the links between climate change and extreme weather, a climate science primer, and graphics and video explaining key developments in climate change science.

  10. Prospects for future climate: A special US/USSR report on climate and climate change

    SciTech Connect

    MacCracken, M.C.; Budyko, M.I.; Hecht, A.D.; Izrael, Y.A.

    1990-01-01

    Starting with the US-USSR Agreement on Protection of the Environment signed in 1972, the two nations have cooperated in joint research on atmospheric and environmental problems. The result of these efforts has been an innovative approach to projecting future climate change based on what has been learned about past warm periods and what can be learned from models. The chapters in this document explore the following: past changes in climate, both paleoclimatology and changes in the recent past; changes in atmospheric composition; estimates of greenhouse-induced change including the use of both empirical methods and climate models; impacts of climate change on water resources and agriculture in the two countries; and prospects for future climate changes.

  11. The climate crisis: An introductory guide to climate change

    NASA Astrophysics Data System (ADS)

    Trenberth, Kevin E.

    2011-06-01

    Human-induced climate change, sometimes called “global warming,” has, unfortunately, become a “hot” topic, embroiled in controversy, misinformation, and claims and counterclaims. It should not be this way, because there are many scientific facts that provide solid information on which to base policy. There is a very strong observational, theoretical, and modeling base in physical science that underpins current understanding of what has happened to Earth's climate and why and what the prospects are for the future under certain assumptions. Moreover, these changes have impacts, which are apt to grow, on the environment and human society. To avoid or reduce these impacts and the economic and human effects of undesirable future climate change requires actions that are strongly opposed by those with vested interests in the status quo, some of whom have funded misinformation campaigns that have successfully confused the public and some politicians, leading to paralysis in political action. Without mitigation of climate change, one would suppose that at least society would plan sensibly for the changes already happening and projected, but such future adaptation plans are also largely in limbo. The implication is that we will suffer the consequences. All of these aspects are addressed in this informative and attractive book, which is written for a fairly general but technically informed audience. The book is strongly based upon the 2007 Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) and therefore has a solid scientific basis. Many figures, graphs, and maps come from the three IPCC working group reports, although the captions often do not explain the detail shown. Given that the IPCC reports totaled nearly 3000 pages, to distill the complex material down to 249 pages is no mean task, and the authors have succeeded quite well.

  12. Solar ultraviolet radiation in a changing climate

    NASA Astrophysics Data System (ADS)

    Williamson, Craig E.; Zepp, Richard G.; Lucas, Robyn M.; Madronich, Sasha; Austin, Amy T.; Ballaré, Carlos L.; Norval, Mary; Sulzberger, Barbara; Bais, Alkiviadis F.; McKenzie, Richard L.; Robinson, Sharon A.; Häder, Donat-P.; Paul, Nigel D.; Bornman, Janet F.

    2014-06-01

    The projected large increases in damaging ultraviolet radiation as a result of global emissions of ozone-depleting substances have been forestalled by the success of the Montreal Protocol. New challenges are now arising in relation to climate change. We highlight the complex interactions between the drivers of climate change and those of stratospheric ozone depletion, and the positive and negative feedbacks among climate, ozone and ultraviolet radiation. These will result in both risks and benefits of exposure to ultraviolet radiation for the environment and human welfare. This Review synthesizes these new insights and their relevance in a world where changes in climate as well as in stratospheric ozone are altering exposure to ultraviolet radiation with largely unknown consequences for the biosphere.

  13. Abrupt climate change: Mechanisms, patterns, and impacts

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-08-01

    In the span of only a few decades, the global temperature can soar by more than a dozen degrees Celsius, a feat that 20 years ago was considered improbable, if not impossible. But recent research in the nascent field of rapid climate change has upended the dominant views of decades past. Focusing primarily on events during and after the most recent glaciation, from 80,000 years ago, the AGU monograph Abrupt Climate Change: Mechanisms, Patterns, and Impacts, edited by Harunur Rashid, Leonid Polyak, and Ellen Mosley-Thompson, explores the transient climate transitions that were only recently uncovered in climate proxies around the world. In this interview, Eos talks to Harunur Rashid about piecing together ancient climes, the effect of abrupt change on historical civilizations, and why younger researchers may be more worried about modern warming than their teachers.

  14. An ecological 'footprint' of climate change.

    PubMed

    Walther, Gian-Reto; Berger, Silje; Sykes, Martin T

    2005-07-22

    Recently, there has been increasing evidence of species' range shifts due to changes in climate. Whereas most of these shifts relate ground truth biogeographic data to a general warming trend in regional or global climate data, we here present a reanalysis of both biogeographic and bioclimatic data of equal spatio-temporal resolution, covering a time span of more than 50 years. Our results reveal a coherent and synchronous shift in both species' distribution and climate. They show not only a shift in the northern margin of a species, which is in concert with gradually increasing winter temperatures in the area, they also confirm the simulated species' distribution changes expected from a bioclimatic model under the recent, relatively moderate climate change.

  15. Climate Change and Interacting Stressors: Implications for ...

    EPA Pesticide Factsheets

    EPA announced the release of the final document, Climate Change and Interacting Stressors: Implications for Coral Reef Management in American Samoa. This report provides a synthesis of information on the interactive effects of climate change and other stressors on the reefs of American Samoa as well as an assessment of potential management responses. This report provides the coral reef managers of American Samoa, as well as other coral reef managers in the Pacific region, with some management options to help enhance the capacity of local coral reefs to resist the negative effects of climate change. This report was designed to take advantage of diverse research and monitoring efforts that are ongoing in American Samoa to: analyze and compile the results of multiple research projects that focus on understanding climate-related stressors and their effects on coral reef ecosystem degradation and recovery; and assess implications for coral reef managment of the combined information, including possible response options.

  16. Amazon deforestation and climate change

    SciTech Connect

    Shukla, J.; Nobre, C.; Sellers, P. )

    1990-03-16

    A coupled numerical model of the global atmosphere and biosphere has been used to assess the effects of Amazon deforestation on the regional and global climate. When the tropical forests in the model were replaced by degraded grass (pasture), there was a significant increase in surface temperature and a decrease in evapotranspiration and precipitation over Amazonia. In the simulation, the length of the dry season also increased; such an increase could make reestablishment of the tropical forests after massive deforestation particularly difficult. 31 refs., 3 figs., 2 tabs.

  17. Navigating Negative Conversations in Climate Change

    NASA Astrophysics Data System (ADS)

    Mandia, S. A.; Abraham, J. P.; Dash, J. W.; Ashley, M. C.

    2012-12-01

    Politically charged public discussions of climate change often lead to polarization as a direct result of many societal, economic, religious and other factors which form opinions. For instance, the general public views climate change as a political discussion rather than a scientific matter. Additionally, many media sources such as websites and mainstream venues and persons have served to promote the "controversy". Scientists who engage in a public discourse of climate change often encounter politically charged environments and audiences. Traditional presentations of the science without attention paid to political, social, or economic matters are likely to worsen the existing divide. An international organization, the Climate Science Rapid Response Team (CSRRT) suggests a strategy that can be used to navigate potentially troublesome situations with divided audiences. This approach can be used during live lecture presentations, and radio, print, or television interviews. The strategy involves identifying alternative motivations for taking action on climate change. The alternative motivations are tailored to the audience and can range from national defense, economic prosperity, religious motivation, patriotism, energy independence, or hunting/fishing reasons. Similar messaging modification can be used to faithfully and accurately convey the importance of taking action on climate change but present the motivations in a way that will be received by the audience.

  18. Challenges in bias correcting climate change simulations

    NASA Astrophysics Data System (ADS)

    Maraun, Douglas; Shepherd, Ted; Zappa, Giuseppe; Gutierrez, Jose; Widmann, Martin; Hagemann, Stefan; Richter, Ingo; Soares, Pedro; Mearns, Linda

    2016-04-01

    Biases in climate model simulations - if these are directly used as input for impact models - will introduce further biases in subsequent impact simulations. In response to this issue, so-called bias correction methods have been developed to post-process climate model output. These methods are now widely used and a crucial component in the generation of high resolution climate change projections. Bias correction is conceptually similar to model output statistics, which has been successfully used for several decades in numerical weather prediction. Yet in climate science, some authors outrightly dismiss any form of bias correction. Starting from this seeming contradiction, we highlight differences between the two contexts and infer consequences and limitations for the applicability of bias correction to climate change projections. We first show that cross validation approaches successfully used to evaluate weather forecasts are fundamentally insufficient to evaluate climate change bias correction. We further demonstrate that different types of model mismatches with observations require different solutions, and some may not sensibly be mitigated. In particular we consider the influence of large-scale circulation biases, biases in the persistence of weather regimes, and regional biases caused by an insufficient representation of the flow-topography interaction. We conclude with a list of recommendations and suggestions for future research to reduce, to post-process, and to cope with climate model biases.

  19. Climate Change Education for Engineering Undergraduate Students

    NASA Astrophysics Data System (ADS)

    Dhaniyala, S.; Powers, S.

    2011-12-01

    The outreach and educational component of my NSF-CAREER grant focused on the development of a new undergraduate course on climate change for engineering undergraduate students and development of project-based course modules for middle and high-school students. Engineering students have minimal formal education on climate issues, but are increasingly finding themselves in positions where they have to participate and address climate change and mitigation issues. Towards this end, we developed a new three-credit course, entitled Global Climate Change: Science, Engineering, and Policy. With a focus on engineering students, this course was structured as a highly quantitative course, taught through an inquiry-based pedagogical approach. The students used a combination of historical climate data from ground-stations and satellites and model results of future climate conditions for different scenarios to ascertain for themselves the current extent of climate change and likely future impacts. Students also combined mitigation efforts, concentrated on geoengineering and alternate energy choices, with climate modeling to determine the immediacy of such efforts. The impacts of the course on the students were assessed with a combination of quantitative and qualitative approaches that used pre-post climate literacy and engineering self-efficacy surveys as well as qualitative focus group discussions at the end of the course. I will discuss our undergraduate course development effort and the primary outcomes of the course. I will also briefly describe our k-12 outreach effort on the development of course modules for project-based learning related to air quality and atmospheric science topics.

  20. Uncertainty in climate change and drought

    USGS Publications Warehouse

    McCabe, Gregory J.; Wolock, David M.; Tasker, Gary D.; Ayers, Mark A.; ,

    1991-01-01

    A series of projections of climate change were applied to a watershed model of the Delaware River basin to identify sources of uncertainty in predicting effects of climate change on drought in the basin as defined by New York City reservoir contents. The watershed model is a calibrated, monthly time-step water-balance model that incorporates the operation of reservoirs and diversion canals, and accounts for all inflows to and outflows from the basin at several key nodes. The model assesses the effects of projected climate change on reservoir contents by calculating the frequency with which the basin enters drought conditions under a range of climate-change conditions. Two primary sources of uncertainty that affect predictions of drought frequency in the Delaware River basin were considered: (1) uncertainty in the amount of change in mean air temperature and precipitation, and (2) uncertainty in the effects of natural climate variability on future temperature and precipitation. Model results indicate that changes in drought frequency in the Delaware River basin are highly sensitive to changes in mean precipitation; therefore, the uncertainty associated with predictions of future precipitation has a large effect on the prediction of future drought frequency in the basin.

  1. Climate change, biotic interactions and ecosystem services.

    PubMed

    Montoya, José M; Raffaelli, Dave

    2010-07-12

    Climate change is real. The wrangling debates are over, and we now need to move onto a predictive ecology that will allow managers of landscapes and policy makers to adapt to the likely changes in biodiversity over the coming decades. There is ample evidence that ecological responses are already occurring at the individual species (population) level. The challenge is how to synthesize the growing list of such observations with a coherent body of theory that will enable us to predict where and when changes will occur, what the consequences might be for the conservation and sustainable use of biodiversity and what we might do practically in order to maintain those systems in as good condition as possible. It is thus necessary to investigate the effects of climate change at the ecosystem level and to consider novel emergent ecosystems composed of new species assemblages arising from differential rates of range shifts of species. Here, we present current knowledge on the effects of climate change on biotic interactions and ecosystem services supply, and summarize the papers included in this volume. We discuss how resilient ecosystems are in the face of the multiple components that characterize climate change, and suggest which current ecological theories may be used as a starting point to predict ecosystem-level effects of climate change.

  2. Climate Change in Voyageurs National Park

    NASA Astrophysics Data System (ADS)

    Seeley, M. W.

    2011-12-01

    Voyageurs National Park was created in 1975. This beautifully forested and lake-dominated landscape shared between Minnesota and Canada has few roads and must be seen by water. The islands and Kabetogama Peninsula are part of the Canadian Shield, some of the oldest exposed rock in the world. Voyageurs National Park boasts many unique landscape and climatic attributes, and like most mid-latitude regions of the northern hemisphere climate change is in play there. The statistical signals of change in the climate record are evident from both temperature and precipitation measurements. The history of these measurements goes back over 100 years. Additionally, studies and measurements of the lakes and general ecosystem already show some consequences of these climate changes. Mean temperature measurements are generally warmer than they once were, most notably in the winter season. Minimum temperatures have changed more than maximum temperatures. Precipitation has trended upward, but has also changed in character with greater frequency and contribution from thunderstorm rainfalls across the park. In addition variability in annual precipitation has become more amplified, as the disparity between wet and dry years has grown wider. Some changes are already in evidence in terms of bird migration patterns, earlier lake ice-out dates, warmer water temperatures with more algal blooms, decline in lake clarity, and somewhat longer frost-free seasons. Climate change will continue to have impacts on Voyageurs National Park, and likely other national parks across the nation. Furthermore scientists may find that the study, presentation, and discussion about climate impacts on our national parks is a particularly engaging way to educate citizens and improve climate literacy as we contemplate what adaptation and mitigation policies should be enacted to preserve the quality of our national parks for future generations.

  3. Projected Climate Change Impacts on Pennsylvania

    NASA Astrophysics Data System (ADS)

    Najjar, R.; Shortle, J.; Abler, D.; Blumsack, S.; Crane, R.; Kaufman, Z.; McDill, M.; Ready, R.; Rydzik, M.; Wagener, T.; Wardrop, D.; Wilson, T.

    2009-05-01

    We present an assessment of the potential impacts of human-induced climate change on the commonwealth of Pennsylvania, U.S.A. We first assess a suite of 21 global climate models for the state, rating them based on their ability to simulate the climate of Pennsylvania on time scales ranging from submonthly to interannual. The multi-model mean is superior to any individual model. Median projections by late century are 2-4 degrees C warming and 5-10 percent precipitation increases (B1 and A2 scenarios), with larger precipitation increases in winter and spring. Impacts on the commonwealth's aquatic and terrestrial ecosystems, water resources, agriculture, forests, energy, outdoor recreation, tourism, and human health, are evaluated. We also examine barriers and opportunities for Pennsylvania created by climate change mitigation. This assessment was sponsored by the Pennsylvania Department of Environmental Protection which, pursuant to the Pennsylvania Climate Change Act, Act 70 of 2008, is required to develop a report on the potential scientific and economic impacts of climate change to Pennsylvania.

  4. Global fish production and climate change

    SciTech Connect

    Brander, K.M.

    2007-12-11

    Current global fisheries production of {approx}160 million tons is rising as a result of increases in aquaculture production. A number of climate-related threats to both capture fisheries and aquaculture are identified, but there is low confidence in predictions of future fisheries production because of uncertainty over future global aquatic net primary production and the transfer of this production through the food chain to human consumption. Recent changes in the distribution and productivity of a number of fish species can be ascribed with high confidence to regional climate variability, such as the El Nino-Southern Oscillation. Future production may increase in some high-latitude regions because of warming and decreased ice cover, but the dynamics in low-latitude regions are giverned by different processes, and production may decline as a result of reduced vertical mixing of the water column and, hence, reduced recycling of nutrients. There are strong interactions between the effects of fishing and the effects of climate because fishing reduces the age, size, and geographic diversity of populations and the biodiversity of marine ecosystems, making both more sensitive to additional stresses such as climate change. Inland fisheries are additionally threatened by changes in precipiation and water management. The frequency and intensity of extreme climate events is likely to have a major impact on future fisheries production in both inland and marine systems. Reducing fishing mortality in the majority of fisheries, which are currently fully exploited or overexploited, is the pricipal feasible means of reducing the impacts of climate change.

  5. Incorporating climate change into systematic conservation planning

    USGS Publications Warehouse

    Groves, Craig R.; Game, Edward T.; Anderson, Mark G.; Cross, Molly; Enquist, Carolyn; Ferdana, Zach; Girvetz, Evan; Gondor, Anne; Hall, Kimberly R.; Higgins, Jonathan; Marshall, Rob; Popper, Ken; Schill, Steve; Shafer, Sarah L.

    2012-01-01

    The principles of systematic conservation planning are now widely used by governments and non-government organizations alike to develop biodiversity conservation plans for countries, states, regions, and ecoregions. Many of the species and ecosystems these plans were designed to conserve are now being affected by climate change, and there is a critical need to incorporate new and complementary approaches into these plans that will aid species and ecosystems in adjusting to potential climate change impacts. We propose five approaches to climate change adaptation that can be integrated into existing or new biodiversity conservation plans: (1) conserving the geophysical stage, (2) protecting climatic refugia, (3) enhancing regional connectivity, (4) sustaining ecosystem process and function, and (5) capitalizing on opportunities emerging in response to climate change. We discuss both key assumptions behind each approach and the trade-offs involved in using the approach for conservation planning. We also summarize additional data beyond those typically used in systematic conservation plans required to implement these approaches. A major strength of these approaches is that they are largely robust to the uncertainty in how climate impacts may manifest in any given region.

  6. Plateau uplift and climatic change

    SciTech Connect

    Ruddiman, W.F. ); Kutzbach, J.E. )

    1991-03-01

    The earth of 40 million years ago was a warm, wet place. Forests abounded; grasslands and deserts were rare. Then the planet began to cool. Regional climate extremes developed. Many causes have been postulated, including continental drift and diminishing atmospheric carbon dioxide. The authors offer a new theory: continental uplift created huge plateaus that altered circulation of the atmosphere. The two largest masses of high, rocky terrain in the Northern Hemisphere today are the area encompassing the Tibetan Plateau and Himalaya Mountains and the broad region of the American West centered on the Colorado Plateau. Geologic evidence indicates that these regions rose substantially during the past 40 million years. The authors focused their research on these plateaus.

  7. Portfolio conservation of metapopulations under climate change.

    PubMed

    Anderson, Sean C; Moore, Jonathan W; McClure, Michelle M; Dulvy, Nicholas K; Cooper, Andrew B

    2015-03-01

    Climate change is likely to lead to increasing population variability and extinction risk. Theoretically, greater population diversity should buffer against rising climate variability, and this theory is often invoked as a reason for greater conservation. However, this has rarely been quantified. Here we show how a portfolio approach to managing population diversity can inform metapopulation conservation priorities in a changing world. We develop a salmon metapopulation model in which productivity is driven by spatially distributed thermal tolerance and patterns of short- and long-term climate change. We then implement spatial conservation scenarios that control population carrying capacities and evaluate the metapopulation portfolios as a financial manager might: along axes of conservation risk and return. We show that preserving a diversity of thermal tolerances minimizes risk, given environmental stochasticity, and ensures persistence, given long-term environmental change. When the thermal tolerances of populations are unknown, doubling the number of populations conserved may nearly halve expected metapopulation variability. However, this reduction in variability can come at the expense of long-term persistence if climate change increasingly restricts available habitat, forcing ecological managers to balance society's desire for short-term stability and long-term viability. Our findings suggest the importance of conserving the processes that promote thermal-tolerance diversity, such as genetic diversity, habitat heterogeneity, and natural disturbance regimes, and demonstrate that diverse natural portfolios may be critical for metapopulation conservation in the face of increasing climate variability and change.

  8. Shifting seasons, climate change and ecosystem consequences

    NASA Astrophysics Data System (ADS)

    Thackeray, Stephen; Henrys, Peter; Hemming, Deborah; Huntingford, Chris; Bell, James; Leech, David; Wanless, Sarah

    2014-05-01

    In recent decades, the seasonal timing of many biological events (e.g. flowering, breeding, migration) has shifted. These phenological changes are believed to be one of the most conspicuous biological indicators of climate change. Rates and directions of phenological change have differed markedly among species, potentially threatening the seasonal synchrony of key species interactions and ultimately ecosystem functioning. Differences in phenological change among-species at different trophic levels, and with respect to other broad species traits, are likely to be driven by variations in the climatic sensitivity of phenological events. However, as yet, inconsistencies in analytical methods have hampered broad-scale assessments of variation in climate sensitivity among taxonomic and functional groups of organisms. In this presentation, results will be presented from a current collaborative project (http://www.ceh.ac.uk/sci_programmes/shifting-seasons-uk.html) in which many UK long-term data sets are being integrated in order to assess relationships between temperature/precipitation, and the timing of seasonal events for a wide range of plants and animals. Our aim is to assess which organism groups (in which locations/habitats) are most sensitive to climate. Furthermore, the role of anthropogenic climate change as a driver of phenological change is being assessed.

  9. Implications of climate change for US agriculture

    SciTech Connect

    Kaiser, H.M.; Crosson, P.

    1995-08-01

    General circulation models of global climate predict that a doubling of current atmospheric concentrations of carbon dioxide (CO{sub 2}) or its equivalent in CO{sub 2} and other greenhouse gases, will increase global average surface temperatures 1.5{degrees}C to 4.5{degrees}C and alter precipitation patterns. The equivalent CO{sub 2} doubling is expected to occur in fifty to one hundred years (Intergovernmental Panel on Climate Change). There is, however, vast scientific uncertainty about all aspects of these predictions, especially concerning regional changes in temperature and precipitation. Whatever these climate changes may turn out to be, it is certain that they will have ramifications for world and U.S. agriculture. Farm-level productivity, resource use, and profitability will be affected, as will food supply, trade, prices, regional comparative advantage, and agricultural policy. The kinds and ultimate extend of these impacts will depend on the magnitude of change in climatic variables, the accompanying indirect environmental effects, and how well society is able to adapt to these changes. In this paper, we examine issues affecting the impacts of climate change on U.S. agriculture and review research results to date on potential impacts. 12 refs.

  10. Can ice sheets trigger abrupt climatic change?

    SciTech Connect

    Hughes, T.

    1996-11-01

    The discovery in recent years of abrupt climatic changes in climate proxy records from Greenland ice cores and North Atlantic sediment cores, and from other sites around the world, has diverted attention from gradual insolation changes caused by Earth`s orbital variations to more rapid processes on Earth`s surface as forcing Quaternary climatic change. In particular, forcing by ice sheets has been quantified for a major ice stream that drained the Laurentide Ice Sheet along Hudson Strait. The history of these recent discoveries leading to an interest in ice sheets is reviewed, and a case is made that ice sheets may drive abrupt climatic change that is virtually synchronous worldwide. Attention is focused on abrupt inception and termination of a Quaternary glaciation cycle, abrupt changes recorded as stadials and interstadials within the cycle, abrupt changes in ice streams that trigger stadials and interstadials, and abrupt changes in the Laurentide Ice Sheet linked to effectively simultaneous abrupt changes in its ice streams. Remaining work needed to quantify further these changes is discussed. 90 refs., 14 figs.

  11. Learning from Expert Elicitation in Climate Change

    NASA Astrophysics Data System (ADS)

    Morgan, M. G.

    2009-12-01

    Since the early 1990's the author has been involved in the design and execution of six detailed expert elicitations that, among other things, have obtained subjective judgments from experts that reflect their best judgment in the form of subjective probability density functions, about the value of key climate variables, climate impacts and a technology for mitigation (Morgan and Keith, 1995; Morgan Pitelka and Shevliakova, 2001; Morgan, Adams and Keith, 2006; Zickfeld et al, 2007; Curtright, Morgan and Keith, 2008; Zickfeld, Morgan Keith and Frame, in review). This paper builds on that experience to draw insights about the design and use of expert elicitation in the assessment and analysis of climate change and its impacts. Several trends in responses will be noted. Methodological pitfalls will be discussed. Comparisons will be drawn with the consensus-based methods employed by IPCC, which appear to have produced tighter uncertainty bounds than individual elicitation. The paper will close with thoughts on the possible use of expert elicitation in future IPCC assessments. Support for this work is from the Climate Decision Making Center through a cooperative agreement between the National Science Foundation (SES-0345798) and Carnegie Mellon University. References: M. Granger Morgan and David Keith, "Subjective Judgments by Climate Experts," Environmental Science & Technology, 29(10), 468A-476A, October 1995. M. Granger Morgan, Louis F. Pitelka and Elena Shevliakova, "Elicitation of Expert Judgments of Climate Change Impacts on Forest Ecosystems," Climatic Change, 49, 279-307, 2001. M. Granger Morgan, Peter Adams, and David W. Keith, "Elicitation of Expert Judgments of Aerosol Forcing," Climatic Change, 75, 195-214, 2006. Kirsten Zickfeld, Anders Levermann, Till Kuhlbrodt. Stefan Rahmstorf, M. Granger Morgan and David Keith, "Expert Judgements on the Response on the Atlantic Meridional Overturning Circulation to Climate Change," Climatic Change, 82, 235-265, 2007

  12. AO/NAO Response to Climate Change. 1; Respective Influences of Stratospheric and Tropospheric Climate Changes

    NASA Technical Reports Server (NTRS)

    Rind, D.; Perlwitz, J.; Lonergan, P.

    2005-01-01

    We utilize the GISS Global Climate Middle Atmosphere Model and 8 different climate change experiments, many of them focused on stratospheric climate forcings, to assess the relative influence of tropospheric and stratospheric climate change on the extratropical circulation indices (Arctic Oscillation, AO; North Atlantic Oscillation, NAO). The experiments are run in two different ways: with variable sea surface temperatures (SSTs) to allow for a full tropospheric climate response, and with specified SSTs to minimize the tropospheric change. The results show that tropospheric warming (cooling) experiments and stratospheric cooling (warming) experiments produce more positive (negative) AO/NAO indices. For the typical magnitudes of tropospheric and stratospheric climate changes, the tropospheric response dominates; results are strongest when the tropospheric and stratospheric influences are producing similar phase changes. Both regions produce their effect primarily by altering wave propagation and angular momentum transports, but planetary wave energy changes accompanying tropospheric climate change are also important. Stratospheric forcing has a larger impact on the NAO than on the AO, and the angular momentum transport changes associated with it peak in the upper troposphere, affecting all wavenumbers. Tropospheric climate changes influence both the A0 and NAO with effects that extend throughout the troposphere. For both forcings there is often vertical consistency in the sign of the momentum transport changes, obscuring the difference between direct and indirect mechanisms for influencing the surface circulation.

  13. Geodynamic contributions to global climatic change

    NASA Technical Reports Server (NTRS)

    Bills, Bruce G.

    1992-01-01

    Orbital and rotational variations perturb the latitudinal and seasonal pattern of incident solar radiation, producing major climatic change on time scales of 10(exp 4)-10(exp 6) years. The orbital variations are oblivious to internal structure and processes, but the rotational variations are not. A program of investigation whose objective would be to explore and quantify three aspects of orbital, rotational, and climatic interactions is described. An important premise of this investigation is the synergism between geodynamics and paleoclimate. Better geophysical models of precessional dynamics are needed in order to accurately reconstruct the radiative input to climate models. Some of the paleoclimate proxy records contain information relevant to solid Earth processes, on time scales which are difficult to constrain otherwise. Specific mechanisms which will be addressed include: (1) climatic consequences of deglacial polar motion; and (2) precessional and climatic consequences of glacially induced perturbations in the gravitational oblateness and partial decoupling of the mantle and core. The approach entails constructing theoretical models of the rotational, deformational, radiative, and climatic response of the Earth to known orbital perturbations, and comparing these with extensive records of paleoclimate proxy data. Several of the mechanisms of interest may participate in previously unrecognized feed-back loops in the climate dynamics system. A new algorithm for estimating climatically diagnostic locations and seasons from the paleoclimate time series is proposed.

  14. Effect of climate change on marine ecosystems

    NASA Astrophysics Data System (ADS)

    Vikebo, F. B.; Sundby, S.; Aadlandsvik, B.; Fiksen, O.

    2003-04-01

    As a part of the INTEGRATION project, headed by Potsdam Institute for Climate Impact Research, funded by the German Research Council, the impact of climate change scenarios on marine fish populations will be addressed on a spesific population basis and will focus on fish populations in the northern North Atlantic with special emphasis on cod. The approach taken will mainly be a modelling study supported by analysis of existing data on fish stocks and climate. Through down-scaling and nesting techniques, various climate change scenarios with reduced THC in the North Atlantic will be investigated with higher spatial resolution for selected shelf areas. The hydrodynamical model used for the regional ocean modeling is ROMS (http://marine.rutgers.edu/po/models/roms/). An individual based model will be implemented into the larval drift module to simulate growth of the larvae along the drift paths.

  15. Thermodynamics of climate change: generalized sensitivities

    NASA Astrophysics Data System (ADS)

    Lucarini, V.; Fraedrich, K.; Lunkeit, F.

    2010-10-01

    Using a recent theoretical approach, we study how global warming impacts the thermodynamics of the climate system by performing experiments with a simplified yet Earth-like climate model. The intensity of the Lorenz energy cycle, the Carnot efficiency, the material entropy production, and the degree of irreversibility of the system change monotonically with the CO2 concentration. Moreover, these quantities feature an approximately linear behaviour with respect to the logarithm of the CO2 concentration in a relatively wide range. These generalized sensitivities suggest that the climate becomes less efficient, more irreversible, and features higher entropy production as it becomes warmer, with changes in the latent heat fluxes playing a predominant role. These results may be of help for explaining recent findings obtained with state of the art climate models regarding how increases in CO2 concentration impact the vertical stratification of the tropical and extratropical atmosphere and the position of the storm tracks.

  16. Remote sensing and global climate change

    SciTech Connect

    Vaughan, A.; Cracknell, A.P.

    1994-12-31

    This book, based on lectures from the Dundee Summer Schools in Remote Sensing in 1992, focuses on aspects of remote sensing related to climatic change. The organization of the book focuses on particular parts of the climate system and then discusses the different satellite systems relevant to their measurement. The following subject areas are included in the book: background information about the climate system and remote sensing; atmospheric applications in both lower and upper atmosphere; land surface including snow and ice, altimetry in Antarctica, land surface energy budget and albedo; marine science; ecological monitoring in St. Petersburg, Russia.

  17. Challenges of climate change: an Arctic perspective.

    PubMed

    Corell, Robert W

    2006-06-01

    Climate change is being experienced particularly intensely in the Arctic. Arctic average temperature has risen at almost twice the rate as that of the rest of the world in the past few decades. Widespread melting of glaciers and sea ice and rising permafrost temperatures present additional evidence of strong Arctic warming. These changes in the Arctic provide an early indication of the environmental and societal significance of global consequences. The Arctic also provides important natural resources to the rest of the world (such as oil, gas, and fish) that will be affected by climate change, and the melting of Arctic glaciers is one of the factors contributing to sea level rise around the globe. An acceleration of these climatic trends is projected to occur during this century, due to ongoing increases in concentrations of greenhouse gases in the Earth's atmosphere. These Arctic changes will, in turn, impact the planet as a whole.

  18. Mars - Epochal climate change and volatile history

    NASA Technical Reports Server (NTRS)

    Fanale, Fraser P.; Postawko, Susan E.; Pollack, James B.; Carr, Michael H.; Pepin, Robert O.

    1992-01-01

    The epochal climate change and volatile history of Mars are examined, with special attention given to evidence for and mechanisms of long-term climate change. Long-term climate change on Mars is indicated most directly by the presence, age, and distribution of the valley networks. They were almost certainly formed by running water, but it seems more likely that they were formed by groundwater sapping than by rainfall. It is argued to be physically plausible that a higher early intensity of surface insolation caused by a CO2 greenhouse effect could have overcompensated for an early weak sun and raised temperatures to the freezing point near the equator under favorable conditions of obliquity and eccentricity. This could account for the morphological changes.

  19. [Climate change and health in the Netherlands].

    PubMed

    Huynen, Maud M T E; van Vliet, Arnold J H

    2009-01-01

    Climate change possibly affects public health in the Netherlands, including changes in (a) temperature-related effects, heat stress and air pollution, (b) allergies, (c) vector borne infectious disease, and (d) food- and waterborne infectious disease. Due to many prevailing uncertainties, opinions differ regarding the exact size of the expected health risks and the speed at which these might occur, as well as regarding to what degree society would need to or could adapt to these potential health effects. Thus, the gaps in our knowledge are substantial. Scientists and experts are clearly concerned about the limited amount of attention being paid to health effects of climate change in the Netherlands. In response, a proposal for a research programme 'Klimaatverandering en Gezondheid' ('Climate change and health') has been developed over the past year.

  20. Global climate change and international security.

    SciTech Connect

    Karas, Thomas H.

    2003-11-01

    This report originates in a workshop held at Sandia National Laboratories, bringing together a variety of external experts with Sandia personnel to discuss 'The Implications of Global Climate Change for International Security.' Whatever the future of the current global warming trend, paleoclimatic history shows that climate change happens, sometimes abruptly. These changes can severely impact human water supplies, agriculture, migration patterns, infrastructure, financial flows, disease prevalence, and economic activity. Those impacts, in turn, can lead to national or international security problems stemming from aggravation of internal conflicts, increased poverty and inequality, exacerbation of existing international conflicts, diversion of national and international resources from international security programs (military or non-military), contribution to global economic decline or collapse, or international realignments based on climate change mitigation policies. After reviewing these potential problems, the report concludes with a brief listing of some research, technology, and policy measures that might mitigate them.

  1. Health of the homeless and climate change.

    PubMed

    Ramin, Brodie; Svoboda, Tomislav

    2009-07-01

    The homeless are amongst the most vulnerable groups in developed regions, suffering from high rates of poorly controlled chronic disease, smoking, respiratory conditions, and mental illness, all of which render them vulnerable to new and resurgent disease processes associated with climate change. To date, there have been no papers reviewing the impacts of climate change on the homeless population. This paper provides a framework for understanding the nature of such an impact. We review four pathways: increased heat waves, increased air pollution, increased severity of floods and storms, and the changing distribution of West Nile Virus. We emphasize the need for further debate and research in this field.

  2. Climate change, water resources and child health.

    PubMed

    Kistin, Elizabeth J; Fogarty, John; Pokrasso, Ryan Shaening; McCally, Michael; McCornick, Peter G

    2010-07-01

    Climate change is occurring and has tremendous consequences for children's health worldwide. This article describes how the rise in temperature, precipitation, droughts, floods, glacier melt and sea levels resulting from human-induced climate change is affecting the quantity, quality and flow of water resources worldwide and impacting child health through dangerous effects on water supply and sanitation, food production and human migration. It argues that paediatricians and healthcare professionals have a critical leadership role to play in motivating and sustaining efforts for policy change and programme implementation at the local, national and international level.

  3. Climate Change, Human Rights, and Social Justice.

    PubMed

    Levy, Barry S; Patz, Jonathan A

    2015-01-01

    The environmental and health consequences of climate change, which disproportionately affect low-income countries and poor people in high-income countries, profoundly affect human rights and social justice. Environmental consequences include increased temperature, excess precipitation in some areas and droughts in others, extreme weather events, and increased sea level. These consequences adversely affect agricultural production, access to safe water, and worker productivity, and, by inundating land or making land uninhabitable and uncultivatable, will force many people to become environmental refugees. Adverse health effects caused by climate change include heat-related disorders, vector-borne diseases, foodborne and waterborne diseases, respiratory and allergic disorders, malnutrition, collective violence, and mental health problems. These environmental and health consequences threaten civil and political rights and economic, social, and cultural rights, including rights to life, access to safe food and water, health, security, shelter, and culture. On a national or local level, those people who are most vulnerable to the adverse environmental and health consequences of climate change include poor people, members of minority groups, women, children, older people, people with chronic diseases and disabilities, those residing in areas with a high prevalence of climate-related diseases, and workers exposed to extreme heat or increased weather variability. On a global level, there is much inequity, with low-income countries, which produce the least greenhouse gases (GHGs), being more adversely affected by climate change than high-income countries, which produce substantially higher amounts of GHGs yet are less immediately affected. In addition, low-income countries have far less capability to adapt to climate change than high-income countries. Adaptation and mitigation measures to address climate change needed to protect human society must also be planned to protect

  4. Selecting global climate models for regional climate change studies.

    PubMed

    Pierce, David W; Barnett, Tim P; Santer, Benjamin D; Gleckler, Peter J

    2009-05-26

    Regional or local climate change modeling studies currently require starting with a global climate model, then downscaling to the region of interest. How should global models be chosen for such studies, and what effect do such choices have? This question is addressed in the context of a regional climate detection and attribution (D&A) study of January-February-March (JFM) temperature over the western U.S. Models are often selected for a regional D&A analysis based on the quality of the simulated regional climate. Accordingly, 42 performance metrics based on seasonal temperature and precipitation, the El Nino/Southern Oscillation (ENSO), and the Pacific Decadal Oscillation are constructed and applied to 21 global models. However, no strong relationship is found between the score of the models on the metrics and results of the D&A analysis. Instead, the importance of having ensembles of runs with enough realizations to reduce the effects of natural internal climate variability is emphasized. Also, the superiority of the multimodel ensemble average (MM) to any 1 individual model, already found in global studies examining the mean climate, is true in this regional study that includes measures of variability as well. Evidence is shown that this superiority is largely caused by the cancellation of offsetting errors in the individual global models. Results with both the MM and models picked randomly confirm the original D&A results of anthropogenically forced JFM temperature changes in the western U.S. Future projections of temperature do not depend on model performance until the 2080s, after which the better performing models show warmer temperatures.

  5. Selecting global climate models for regional climate change studies

    PubMed Central

    Pierce, David W.; Barnett, Tim P.; Santer, Benjamin D.; Gleckler, Peter J.

    2009-01-01

    Regional or local climate change modeling studies currently require starting with a global climate model, then downscaling to the region of interest. How should global models be chosen for such studies, and what effect do such choices have? This question is addressed in the context of a regional climate detection and attribution (D&A) study of January-February-March (JFM) temperature over the western U.S. Models are often selected for a regional D&A analysis based on the quality of the simulated regional climate. Accordingly, 42 performance metrics based on seasonal temperature and precipitation, the El Nino/Southern Oscillation (ENSO), and the Pacific Decadal Oscillation are constructed and applied to 21 global models. However, no strong relationship is found between the score of the models on the metrics and results of the D&A analysis. Instead, the importance of having ensembles of runs with enough realizations to reduce the effects of natural internal climate variability is emphasized. Also, the superiority of the multimodel ensemble average (MM) to any 1 individual model, already found in global studies examining the mean climate, is true in this regional study that includes measures of variability as well. Evidence is shown that this superiority is largely caused by the cancellation of offsetting errors in the individual global models. Results with both the MM and models picked randomly confirm the original D&A results of anthropogenically forced JFM temperature changes in the western U.S. Future projections of temperature do not depend on model performance until the 2080s, after which the better performing models show warmer temperatures. PMID:19439652

  6. Approaching the Edge of Abrupt Climate Change

    NASA Astrophysics Data System (ADS)

    Ramadhin, C.; Yi, C.

    2015-12-01

    The phenomenon of Abrupt Climate Change (ACC) became evident as paleoclimate data analyses began revealing that Earth's climate has the ability to rapidly switch from one state to the next in just a few decades after thresholds are crossed. Previously paleo-climatologists thought these switches were gradual but now there is growing concern to identify thresholds and the dominant feedback mechanisms that propel systems toward thresholds. Current human civilization relies heavily on climate stability and ACC threatens immense disruption with potentially disastrous consequences for all ecosystems. Therefore, prediction of the climate system's approach to threshold values would prove vital for the resilience of civilization through development of appropriate adaptation strategies when that shift occurs. Numerous studies now establish that earth systems are experiencing dramatic changes both by system interactions and anthropogenic sources adding urgency for comprehensive knowledge of tipping point identification. Despite this, predictions are difficult due to the immensity of interactions among feedback mechanisms. In this paper, we attempt to narrow this broad spectrum of critical feedback mechanisms by reviewing several publications on role of feedbacks in initiating past climate transitions establishing the most critical ones and significance in current climate changes. Using a compilation of paleoclimate datasets we compared the rates of deglaciations with that of glacial inceptions, which are approximately 5-10 times slower. We hypothesize that the critical feedbacks are unique to each type of transition such that warmings are dominated by the ice-albedo feedback while coolings are a combination of temperature - CO2 and temperature-precipitation followed by the ice-albedo feedbacks. Additionally, we propose the existence of a commonality in the dominant trigger feedbacks for astronomical and millennial timescale abrupt climate shifts and as such future studies

  7. Global lightning activity and climate change

    SciTech Connect

    Price, C.G.

    1993-12-31

    The relationship between global lightning frequencies and global climate change is examined in this thesis. In order to study global impacts of climate change, global climate models or General Circulations Models (GCMs) need to be utilized. Since these models have coarse resolutions many atmospheric phenomena that occur at subgrid scales, such as lightning, need to be parameterized whenever possible. We begin with a simple parameterization used to Simulate total (intracloud and cloud-to-ground) lightning frequencies. The parameterization uses convective cloud top height to approximate lightning frequencies. Then we consider a parameterization for simulating cloud-to-ground (CG) lightning around the globe. This parameterization uses the thickness of the cold cloud sector in thunderstorms (0{degrees}C to cloud top) to calculate the proportion of CG flashes in a particular thunderstorm. We model lightning in the Goddard Institute for Space Studies (GISS) GCM. We present two climate change scenarios. One for a climate where the solar constant is reduced by 2% (5.9{degrees}C global cooling), and one for a climate with twice the present concentration of CO{sub 2} in the atmosphere (4.2{degrees}C global warming). The results imply a 24%/30% decrease/increase in global lightning frequencies for the cooler/warmer climate. The possibility of using the above findings to monitor future global warming is discussed. The earth`s ionospheric potential, which is regulated by global thunderstorm activity, could supply valuable information regarding global surface temperature fluctuations. Finally, we look at the implications of changes in both lightning frequencies and the hydrological cycle, as a result of global warming, on natural forest fires. In the U.S. the annual mean number of lightning fires could increase by 40% while the area burned may increase by 65% in a 2{times}CO{sub 2} climate. On a global scale the largest increase in lightning fires can be expected in the tropics.

  8. Climate Change Accuracy: Requirements and Economic Value

    NASA Astrophysics Data System (ADS)

    Wielicki, B. A.; Cooke, R.; Mlynczak, M. G.; Lukashin, C.; Thome, K. J.; Baize, R. R.

    2014-12-01

    Higher than normal accuracy is required to rigorously observe decadal climate change. But what level is needed? How can this be quantified? This presentation will summarize a new more rigorous and quantitative approach to determining the required accuracy for climate change observations (Wielicki et al., 2013, BAMS). Most current global satellite observations cannot meet this accuracy level. A proposed new satellite mission to resolve this challenge is CLARREO (Climate Absolute Radiance and Refractivity Observatory). CLARREO is designed to achieve advances of a factor of 10 for reflected solar spectra and a factor of 3 to 5 for thermal infrared spectra (Wielicki et al., Oct. 2013 BAMS). The CLARREO spectrometers are designed to serve as SI traceable benchmarks for the Global Satellite Intercalibration System (GSICS) and to greatly improve the utility of a wide range of LEO and GEO infrared and reflected solar passive satellite sensors for climate change observations (e.g. CERES, MODIS, VIIIRS, CrIS, IASI, Landsat, SPOT, etc). Providing more accurate decadal change trends can in turn lead to more rapid narrowing of key climate science uncertainties such as cloud feedback and climate sensitivity. A study has been carried out to quantify the economic benefits of such an advance as part of a rigorous and complete climate observing system. The study concludes that the economic value is $12 Trillion U.S. dollars in Net Present Value for a nominal discount rate of 3% (Cooke et al. 2013, J. Env. Sys. Dec.). A brief summary of these two studies and their implications for the future of climate science will be presented.

  9. Climate Change Research in View of Bibliometrics.

    PubMed

    Haunschild, Robin; Bornmann, Lutz; Marx, Werner

    2016-01-01

    This bibliometric study of a large publication set dealing with research on climate change aims at mapping the relevant literature from a bibliometric perspective and presents a multitude of quantitative data: (1) The growth of the overall publication output as well as (2) of some major subfields, (3) the contributing journals and countries as well as their citation impact, and (4) a title word analysis aiming to illustrate the time evolution and relative importance of specific research topics. The study is based on 222,060 papers (articles and reviews only) published between 1980 and 2014. The total number of papers shows a strong increase with a doubling every 5-6 years. Continental biomass related research is the major subfield, closely followed by climate modeling. Research dealing with adaptation, mitigation, risks, and vulnerability of global warming is comparatively small, but their share of papers increased exponentially since 2005. Research on vulnerability and on adaptation published the largest proportion of very important papers (in terms of citation impact). Climate change research has become an issue also for disciplines beyond the natural sciences. The categories Engineering and Social Sciences show the strongest field-specific relative increase. The Journal of Geophysical Research, the Journal of Climate, the Geophysical Research Letters, and Climatic Change appear at the top positions in terms of the total number of papers published. Research on climate change is quantitatively dominated by the USA, followed by the UK, Germany, and Canada. The citation-based indicators exhibit consistently that the UK has produced the largest proportion of high impact papers compared to the other countries (having published more than 10,000 papers). Also, Switzerland, Denmark and also The Netherlands (with a publication output between around 3,000 and 6,000 papers) perform top-the impact of their contributions is on a high level. The title word analysis shows that

  10. Climate Change Research in View of Bibliometrics

    PubMed Central

    Haunschild, Robin; Bornmann, Lutz; Marx, Werner

    2016-01-01

    This bibliometric study of a large publication set dealing with research on climate change aims at mapping the relevant literature from a bibliometric perspective and presents a multitude of quantitative data: (1) The growth of the overall publication output as well as (2) of some major subfields, (3) the contributing journals and countries as well as their citation impact, and (4) a title word analysis aiming to illustrate the time evolution and relative importance of specific research topics. The study is based on 222,060 papers (articles and reviews only) published between 1980 and 2014. The total number of papers shows a strong increase with a doubling every 5–6 years. Continental biomass related research is the major subfield, closely followed by climate modeling. Research dealing with adaptation, mitigation, risks, and vulnerability of global warming is comparatively small, but their share of papers increased exponentially since 2005. Research on vulnerability and on adaptation published the largest proportion of very important papers (in terms of citation impact). Climate change research has become an issue also for disciplines beyond the natural sciences. The categories Engineering and Social Sciences show the strongest field-specific relative increase. The Journal of Geophysical Research, the Journal of Climate, the Geophysical Research Letters, and Climatic Change appear at the top positions in terms of the total number of papers published. Research on climate change is quantitatively dominated by the USA, followed by the UK, Germany, and Canada. The citation-based indicators exhibit consistently that the UK has produced the largest proportion of high impact papers compared to the other countries (having published more than 10,000 papers). Also, Switzerland, Denmark and also The Netherlands (with a publication output between around 3,000 and 6,000 papers) perform top—the impact of their contributions is on a high level. The title word analysis shows

  11. CLIMATE VARIABILITY, CHANGE, AND CONSEQUENCES IN ESTUARIES

    EPA Science Inventory

    Climate change operates at global, hemispheric, and regional scales, sometimes involving rapid shifts in ocean and atmospheric circulation. Changes of global scope occurred in the transition into the Little Ice Age (1350-1880) and subsequent warming during the 20th century. In th...

  12. How nature copes with climate change.

    PubMed

    Gross, Michael

    2015-11-16

    As the world is about to find out whether or not our civilisation is up to the challenge of dealing with climate change, research shows a wide range of responses from other species, which may benefit or suffer from the change, and mitigate it or make it worse. Michael Gross reports.

  13. Effects of climate change on croplands

    EPA Science Inventory

    This talk will describe likely changes in temperature and precipitation expected in the northwestern US with global climate change, and their potential impacts on Oregon croplands. The focus will be on the effects of temperature and carbon dioxide on crop productivity, weed cont...

  14. Global Climate Change and Children's Health.

    PubMed

    2015-11-01

    Rising global temperatures are causing major physical, chemical, and ecological changes in the planet. There is wide consensus among scientific organizations and climatologists that these broad effects, known as "climate change," are the result of contemporary human activity. Climate change poses threats to human health, safety, and security, and children are uniquely vulnerable to these threats. The effects of climate change on child health include: physical and psychological sequelae of weather disasters; increased heat stress; decreased air quality; altered disease patterns of some climate-sensitive infections; and food, water, and nutrient insecurity in vulnerable regions. The social foundations of children's mental and physical health are threatened by the specter of far-reaching effects of unchecked climate change, including community and global instability, mass migrations, and increased conflict. Given this knowledge, failure to take prompt, substantive action would be an act of injustice to all children. A paradigm shift in production and consumption of energy is both a necessity and an opportunity for major innovation, job creation, and significant, immediate associated health benefits. Pediatricians have a uniquely valuable role to play in the societal response to this global challenge.

  15. Projected climate change impact on oceanic acidification

    PubMed Central

    McNeil, Ben I; Matear, Richard J

    2006-01-01

    Background Anthropogenic CO2 uptake by the ocean decreases the pH of seawater, leading to an 'acidification' which may have potential detrimental consequences on marine organisms [1]. Ocean warming or circulation alterations induced by climate change has the potential to slowdown the rate of acidification of ocean waters by decreasing the amount of CO2 uptake by the ocean [2]. However, a recent study showed that climate change affected the decrease in pH insignificantly [3]. Here, we examine the sensitivity of future oceanic acidification to climate change feedbacks within a coupled atmosphere-ocean model and find that ocean warming dominates the climate change feedbacks. Results Our results show that the direct decrease in pH due to ocean warming is approximately equal to but opposite in magnitude to the indirect increase in pH associated with ocean warming (ie reduced DIC concentration of the upper ocean caused by lower solubility of CO2). Conclusion As climate change feedbacks on pH approximately cancel, future oceanic acidification will closely follow future atmospheric CO2 concentrations. This suggests the only way to slowdown or mitigate the potential biological consequences of future ocean acidification is to significantly reduce fossil-fuel emissions of CO2 to the atmosphere. PMID:16930458

  16. The psychological impacts of global climate change.

    PubMed

    Doherty, Thomas J; Clayton, Susan

    2011-01-01

    An appreciation of the psychological impacts of global climate change entails recognizing the complexity and multiple meanings associated with climate change; situating impacts within other social, technological, and ecological transitions; and recognizing mediators and moderators of impacts. This article describes three classes of psychological impacts: direct (e.g., acute or traumatic effects of extreme weather events and a changed environment); indirect (e.g., threats to emotional well-being based on observation of impacts and concern or uncertainty about future risks); and psychosocial (e.g., chronic social and community effects of heat, drought, migrations, and climate-related conflicts, and postdisaster adjustment). Responses include providing psychological interventions in the wake of acute impacts and reducing the vulnerabilities contributing to their severity; promoting emotional resiliency and empowerment in the context of indirect impacts; and acting at systems and policy levels to address broad psychosocial impacts. The challenge of climate change calls for increased ecological literacy, a widened ethical responsibility, investigations into a range of psychological and social adaptations, and an allocation of resources and training to improve psychologists' competency in addressing climate change-related impacts.

  17. Multidisciplinary approaches to climate change questions

    USGS Publications Warehouse

    Middleton, Beth A.; LePage, Ben A.

    2011-01-01

    Multidisciplinary approaches are required to address the complex environmental problems of our time. Solutions to climate change problems are good examples of situations requiring complex syntheses of ideas from a vast set of disciplines including science, engineering, social science, and the humanities. Unfortunately, most ecologists have narrow training, and are not equipped to bring their environmental skills to the table with interdisciplinary teams to help solve multidisciplinary problems. To address this problem, new graduate training programs and workshops sponsored by various organizations are providing opportunities for scientists and others to learn to work together in multidisciplinary teams. Two examples of training in multidisciplinary thinking include those organized by the Santa Fe Institute and Dahlem Workshops. In addition, many interdisciplinary programs have had successes in providing insight into climate change problems including the International Panel on Climate Change, the Joint North American Carbon Program, the National Academy of Science Research Grand Challenges Initiatives, and the National Academy of Science. These programs and initiatives have had some notable success in outlining some of the problems and solutions to climate change. Scientists who can offer their specialized expertise to interdisciplinary teams will be more successful in helping to solve the complex problems related to climate change.

  18. Biological invasions, climate change and genomics

    PubMed Central

    Chown, Steven L; Hodgins, Kathryn A; Griffin, Philippa C; Oakeshott, John G; Byrne, Margaret; Hoffmann, Ary A

    2015-01-01

    The rate of biological invasions is expected to increase as the effects of climate change on biological communities become widespread. Climate change enhances habitat disturbance which facilitates the establishment of invasive species, which in turn provides opportunities for hybridization and introgression. These effects influence local biodiversity that can be tracked through genetic and genomic approaches. Metabarcoding and metagenomic approaches provide a way of monitoring some types of communities under climate change for the appearance of invasives. Introgression and hybridization can be followed by the analysis of entire genomes so that rapidly changing areas of the genome are identified and instances of genetic pollution monitored. Genomic markers enable accurate tracking of invasive species’ geographic origin well beyond what was previously possible. New genomic tools are promoting fresh insights into classic questions about invading organisms under climate change, such as the role of genetic variation, local adaptation and climate pre-adaptation in successful invasions. These tools are providing managers with often more effective means to identify potential threats, improve surveillance and assess impacts on communities. We provide a framework for the application of genomic techniques within a management context and also indicate some important limitations in what can be achieved. PMID:25667601

  19. Biological invasions, climate change and genomics.

    PubMed

    Chown, Steven L; Hodgins, Kathryn A; Griffin, Philippa C; Oakeshott, John G; Byrne, Margaret; Hoffmann, Ary A

    2015-01-01

    The rate of biological invasions is expected to increase as the effects of climate change on biological communities become widespread. Climate change enhances habitat disturbance which facilitates the establishment of invasive species, which in turn provides opportunities for hybridization and introgression. These effects influence local biodiversity that can be tracked through genetic and genomic approaches. Metabarcoding and metagenomic approaches provide a way of monitoring some types of communities under climate change for the appearance of invasives. Introgression and hybridization can be followed by the analysis of entire genomes so that rapidly changing areas of the genome are identified and instances of genetic pollution monitored. Genomic markers enable accurate tracking of invasive species' geographic origin well beyond what was previously possible. New genomic tools are promoting fresh insights into classic questions about invading organisms under climate change, such as the role of genetic variation, local adaptation and climate pre-adaptation in successful invasions. These tools are providing managers with often more effective means to identify potential threats, improve surveillance and assess impacts on communities. We provide a framework for the application of genomic techniques within a management context and also indicate some important limitations in what can be achieved.

  20. Will Abundant Natural Gas Solve Climate Change?

    NASA Astrophysics Data System (ADS)

    McJeon, H. C.; Edmonds, J.; Bauer, N.; Leon, C.; Fisher, B.; Flannery, B.; Hilaire, J.; Krey, V.; Marangoni, G.; Mi, R.; Riahi, K.; Rogner, H.; Tavoni, M.

    2015-12-01

    The rapid deployment of hydraulic fracturing and horizontal drilling technologies enabled the production of previously uneconomic shale gas resources in North America. Global deployment of these advanced gas production technologies could bring large influx of economically competitive unconventional gas resources to the energy system. It has been hoped that abundant natural gas substituting for coal could reduce carbon dioxide (CO2) emissions, which in turn could reduce climate forcing. Other researchers countered that the non-CO2 greenhouse gas (GHG) emissions associated with shale gas production make its lifecycle emissions higher than those of coal. In this study, we employ five state-of-the-art integrated assessment models (IAMs) of energy-economy-climate systems to assess the full impact of abundant gas on climate change. The models show large additional natural gas consumption up to +170% by 2050. The impact on CO2 emissions, however, is found to be much smaller (from -2% to +11%), and a majority of the models reported a small increase in climate forcing (from -0.3% to +7%) associated with the increased use of abundant gas. Our results show that while globally abundant gas may substantially change the future energy market equilibrium, it will not significantly mitigate climate change on its own in the absence of climate policies.

  1. Introduction to Federal and EPA Climate Change Web Resources

    EPA Science Inventory

    Presentation provides an overview of four climate data and tool websites: the US Global Change Research Program (USGCRP) and Climate Resilience Toolkit (interagency websites); the main EPA climate change website; and the internal EPA Adaptation Resource Center website.

  2. Deflecting Disinformation about Climate Change

    NASA Astrophysics Data System (ADS)

    Oreskes, N.

    2006-12-01

    A study by the Pew Center in the summer of 2006 showed that only 41 per cent of Americans have views consistent with the scientific facts about global warming. Nearly half of all Americans believe that there is "no solid" evidence of global warming, or that if warming is happening it can be attributed to natural variability. And an ABC/Time poll showed that two-thirds of Americans think that "there is a lot of disagreement among scientists" as to whether or not global warming is occurring. Scientists are apt to attribute such public misunderstandings to scientific illiteracy, and to think that the remedy is better communication. But public confusion over climate science is the result—at least in part--of organized campaigns designed to create confusion. The goal has been to create an impression of scientific disagreement, and thereby delay political action. This is a tactic that was previously employed in efforts to deny the reality of acid rain, the human role in ozone depletion, and the link between tobacco and cancer, in some cases by the same individuals who now deny the reality of global warming. In short, there is a pattern of which scientists need to be aware. Good faith efforts to explain the science are likely to fail in the face of bad-faith efforts to misrepresent it.

  3. Extreme Weather in a Changing Climate

    NASA Astrophysics Data System (ADS)

    Wuebbles, D. J.

    2015-12-01

    It is a real honor for me to get the opportunity to pay homage to Steve Schneider and his extensive accomplishments. I also treasured his friendship. Steve was known for being a great communicator and for his expertise in climate policy and solutions, along with being an outstanding scientist with many contributions to understanding the Earth's climate system. One of the major challenges today to all of these areas is the changing trends in extreme weather under a changing climate. My focus in this presentation is to examine these issues by drawing on new research from my own team at Illinois. For example, climate change amplification in the Arctic has raised questions regarding its potential effects on extreme weather at mid-latitudes, especially the United States. In our studies, we find a statistically significant relationship between summer sea ice north of Alaska and geopotential height anomalies in the north Pacific during subsequent winter and spring months. The frequency of these semi-persistent height anomalies exhibits a long-term upward trend that amplify the jet stream off the West Coast of the U.S., driving more persistent precipitation patterns over certain regions of the United States, specifically in the West and Midwest parts of the country. Our results suggest that as sea ice in the Arctic north of Alaska continues to decrease, a more persistent ridge will form in areas adjacent to this location and affect storm tracks over the continental United States. In other studies, we are examining the effects of the changing climate on trends in extreme events throughout the continental U.S. We are also investigating changes in historical severe convective weather over the United States using reanalysis data, the NEXRAD/in situ gauge Climate Data Record (CDR) data set, and storm reports. After analyzing the ability of global climate models to represent the observed trends in severe-thunderstorm environments, projected future trends are also to be analyzed.

  4. Is nuance possible in climate change communication?

    NASA Astrophysics Data System (ADS)

    Donner, S. D.

    2015-12-01

    One of the core challenges of climate communication is finding the balance between honestly portraying the science, with all its complexity, and effectively engaging the audience. At a time when all politics are partisan and the media measures value in clicks, complicated stories can become black-and-white. This loss of nuance is acute in tales told of climate change impacts in the developing world, particularly in the low-lying island states of the Pacific. Atoll countries like Kiribati, Tuvalu, the Marshall Islands and the Maldives are certainly existentially threatened by climate change and sea-level rise. Yet the islands and their residents are also more resilient than the dramatic headlines about sinking islands would have you think. Casting the people as helpless victims, however well-intentioned, can actually hurt their ability to respond to climate change. This presentation examines the risks and benefits of providing such nuance on a climate issue that the public and policy-makers generally view as black-and-white. Drawing on efforts a decade of research in Kiribati and other small island developing states in the Pacific, I describe how a mix of cultural differences, geopolitics, and the legacy of colonialism has made the Pacific Islands a narrative device in a western discussion about climate change. I then describe in detail the challenging process of writing a popular magazine story which questions that narrative - but not the long-term threat of sea-level rise - and the personal and political aftermath of its publication. Building upon this humbling experience and findings from psychology, communications and science and technology studies, I outline the key benefits and risks of engaging publicly with the nuances of a climate change issue, and provide a template for effectively communicating nuance in a politically charged atmosphere.

  5. Climate impacts of Australian land cover change

    NASA Astrophysics Data System (ADS)

    Lawrence, P. J.

    2004-05-01

    Australian land cover has been dramatically altered since European settlement primarily for agricultural utilization, with native vegetation widely replaced or modified for cropping and intensive animal production. While there have been numerous investigations into the regional and near surface climate impacts of Australian land cover change, these investigation have not included the climate impacts of larger-scale changes in atmospheric circulation and their associated feedbacks, or the impacts of longer-term soil moisture feedbacks. In this research the CSIRO General Circulation Model (GCM) was used to investigate the climate impacts of Australian land cover change, with larger-scale and longer-term feedbacks. To avoid the common problem of overstating the magnitude and spatial extent of changes in land surface conditions prescribed in land cover change experiments, the current Australian land surface properties were described from finer-scale, satellite derived land cover datasets, with land surface conditions extrapolating from remnant native vegetation to pre-clearing extents to recreate the pre-clearing land surface properties. Aggregation rules were applied to the fine-scale data to generate the land surface parameters of the GCM, ensuring the equivalent sub-grid heterogeneity and land surface biogeophysics were captured in both the current and pre-clearing land surface parameters. The differences in climate simulated in the pre-clearing and current experiments were analyzed for changes in Australian continental and regional climate to assess the modeled climate impacts of Australian land cover change. The changes in modeled climate were compared to observed changes in Australian precipitation over the last 50 and 100 years to assess whether modeled results could be detected in the historical record. The differences in climate simulation also were analyzed at the global scale to assess the impacts of local changes on larger scale circulation and climate at

  6. The Pace of Perceivable Extreme Climate Change

    NASA Astrophysics Data System (ADS)

    Tan, X.; Gan, T. Y.

    2015-12-01

    When will the signal of obvious changes in extreme climate emerge over climate variability (Time of Emergence, ToE) is a key question for planning and implementing measures to mitigate the potential impact of climate change to natural and human systems that are generally adapted to potential changes from current variability. We estimated ToEs for the magnitude, duration and frequency of global extreme climate represented by 24 extreme climate indices (16 for temperature and 8 for precipitation) with different thresholds of the signal-to-noise (S/N) ratio based on projections of CMIP5 global climate models under RCP8.5 and RCP4.5 for the 21st century. The uncertainty of ToE is assessed by using 3 different methods to calculate S/N for each extreme index. Results show that ToEs of the projected extreme climate indices based on the RCP4.5 climate scenarios are generally projected to happen about 20 years later than that for the RCP8.5 climate scenarios. Under RCP8.5, the projected magnitude, duration and frequency of extreme temperature on Earth will all exceed 2 standard deviations by 2100, and the empirical 50th percentile of the global ToE for the frequency and magnitude of hot (cold) extreme are about 2040 and 2054 (2064 and 2054) for S/N > 2, respectively. The 50th percentile of global ToE for the intensity of extreme precipitation is about 2030 and 2058 for S/N >0.5 and S/N >1, respectively. We further evaluated the exposure of ecosystems and human societies to the pace of extreme climate change by determining the year of ToE for various extreme climate indices projected to occur over terrestrial biomes, marine realms and major urban areas with large populations. This was done by overlaying terrestrial, ecoregions and population maps with maps of ToE derived, to extract ToEs for these regions. Possible relationships between GDP per person and ToE are also investigated by relating the mean ToE for each country and its average value of GDP per person.

  7. General Chemistry Students' Understanding of Climate Change and the Chemistry Related to Climate Change

    ERIC Educational Resources Information Center

    Versprille, Ashley N.; Towns, Marcy H.

    2015-01-01

    While much is known about secondary students' perspectives of climate change, rather less is known about undergraduate students' perspectives. The purpose of this study is to investigate general chemistry students' understanding of the chemistry underlying climate change. Findings that emerged from the analysis of the 24 interviews indicate that…

  8. Climate Change Education as an Integral Part of the United Nations Framework Convention on Climate Change

    ERIC Educational Resources Information Center

    Journal of Education for Sustainable Development, 2012

    2012-01-01

    The United Nations Framework Convention on Climate Change (UNFCCC), through its Article 6, and the Convention's Kyoto Protocol, through its Article 10 (e), call on governments to develop and implement educational programmes on climate change and its effects. In particular, Article 6 of the Convention, which addresses the issue of climate…

  9. Climate Change Impacts in the Amazon. Review of scientific literature

    SciTech Connect

    2006-04-15

    The Amazon's hydrological cycle is a key driver of global climate, and global climate is therefore sensitive to changes in the Amazon. Climate change threatens to substantially affect the Amazon region, which in turn is expected to alter global climate and increase the risk of biodiversity loss. In this literature review the following subjects can be distinguished: Observed Climatic Change and Variability, Predicted Climatic Change, Impacts, Forests, Freshwater, Agriculture, Health, and Sea Level Rise.

  10. The North American Regional Climate Change Assessment Program: Overview of Climate Change Results

    NASA Astrophysics Data System (ADS)

    Mearns, L. O.

    2011-12-01

    The North American Regional Climate Change Assessment Program (NARCCAP) is an international program that is serving the climate scenario needs of the United States, Canada, and northern Mexico. We are systematically investigating the uncertainties in regional scale projections of future climate and producing high resolution climate change scenarios using multiple regional climate models (RCMs) and multiple global model responses by nesting the RCMs within atmosphere ocean general circulation models (AOGCMs) forced with a medium-high emissions scenario, over a domain covering the conterminous US, northern Mexico, and most of Canada. The project also includes a validation component through nesting the participating RCMs within the NCEP reanalysis R2. The basic spatial resolution of the RCM simulations is 50 km. This program includes six different RCMs that have been used in various intercomparison programs in Europe and the United States. Four different AOGCMs provide boundary conditions to drive the RCMS for 30 years in the current climate and 30 years for the mid 21st century. The resulting climate model simulations form the basis for multiple high resolution climate scenarios that can be used in climate change impacts and adaptation assessments over North America. Eleven of the planned 12 sets of current and future simulations have been completed. Measures of uncertainty across the multiple simulations are being developed by geophysical statisticians. In this overview talk, results from the climate change experiments for various subregions, along with measures of uncertainty, will be presented.

  11. The North American Regional Climate Change Assessment Program: Overview of Climate Change Results

    NASA Astrophysics Data System (ADS)

    Mearns, L. O.

    2012-12-01

    The North American Regional Climate Change Assessment Program (NARCCAP) is an international program that is serving the climate scenario needs of the United States, Canada, and northern Mexico. We are systematically investigating the uncertainties in regional scale projections of future climate and producing high resolution climate change scenarios using multiple regional climate models (RCMs) and multiple global model responses by nesting the RCMs within atmosphere ocean general circulation models (AOGCMs) forced with a medium-high emissions scenario, over a domain covering the conterminous US, northern Mexico, and most of Canada. The project also includes a validation component through nesting the participating RCMs within the NCEP reanalysis R2. The basic spatial resolution of the RCM simulations is 50 km. This program includes six different RCMs that have been used in various intercomparison programs in Europe and the United States. Four different AOGCMs provide boundary conditions to drive the RCMS for 30 years in the current climate and 30 years for the mid 21st century. The resulting climate model simulations form the basis for multiple high resolution climate scenarios that can be used in climate change impacts and adaptation assessments over North America. All 12 sets of current and future simulations have been completed. Measures of uncertainty across the multiple simulations are being developed by geophysical statisticians. In this overview talk, results from the various climate change experiments for various subregions, along with measures of uncertainty, will be presented

  12. Engaging the public on climate change issues

    NASA Astrophysics Data System (ADS)

    Bean, Alice

    2016-03-01

    As a Jefferson Science Fellow from August 2014-August 2015, Alice Bean worked with the Office of Religion and Global Affairs at the U.S. Department of State on climate change and environmental issues. The Office of Religion and Global Affairs works to implement the National Strategy on Religious Leader and Faith Community Engagement which includes building partnerships on environmental issues. With the United Nations Framework Convention on Climate Change Conference of the Parties meeting 21 in December, 2015 in Paris, there were and continue to be great opportunities for physicists to interact with policy makers and the general public. As an experimental particle physicist, much was learned about climate change science, how the public views scientists, how science can influence policy, but most especially how to communicate about science.

  13. Nursing and climate change: An emerging connection.

    PubMed

    Adlong, William; Dietsch, Elaine

    2015-01-01

    Awareness of the importance of climate change to public health has been growing. Calls for health professionals, including nurses, to take action to prepare for, and mitigate, climate change have been coming from a number of credible sources. This paper will assist nurses to recognise the health consequences of climate change, to generate and disseminate knowledge about these health consequences, to be active in mitigating emissions locally and within their organisations and to advocate and have input into policy processes. It is valuable for nurses to understand the health co-benefits of emission mitigation and the current health costs of fossil fuels. As advocates for evidence-based public health initiatives, nurses have a role to play in communicating to the public and to policy makers accurate information, including about the health costs of fossil fuel policies and the affordability of renewable energy technologies.

  14. Impact of Climate Change on Elder Health

    PubMed Central

    Staats, David; Willcox, Bradley J.

    2014-01-01

    Demographers predict human life expectancy will continue to increase over the coming century. These forecasts are based on two critical assumptions: advances in medical technology will continue apace and the environment that sustains us will remain unchanged. The consensus of the scientific community is that human activity contributes to global climate change. That change will degrade air and water quality, and global temperature could rise 11.5°F by 2100. If nothing is done to alter this climatic trajectory, humans will be confronted by a broad spectrum of radical environmental challenges. Historically, children and the elderly adults account for most of the death toll during times of severe environmental stress. This article makes an assessment from a geriatric viewpoint of the adverse health consequences that global climate change will bring to the older segments of future populations in the United States. PMID:24158763

  15. Climate Change, Soils, and Human Health

    NASA Astrophysics Data System (ADS)

    Brevik, Eric C.

    2013-04-01

    According to the Intergovernmental Panel on Climate Change, global temperatures are expected to increase 1.1 to 6.4 degrees C during the 21st century and precipitation patterns will be altered by climate change (IPCC, 2007). Soils are intricately linked to the atmospheric/climate system through the carbon, nitrogen, and hydrologic cycles. Altered climate will, therefore, have an effect on soil processes and properties. Studies into the effects of climate change on soil processes and properties are still incomplete, but have revealed that climate change will impact soil organic matter dynamics including soil organisms and the multiple soil properties that are tied to organic matter, soil water, and soil erosion. The exact direction and magnitude of those impacts will be dependent on the amount of change in atmospheric gases, temperature, and precipitation amounts and patterns. Recent studies give reason to believe at least some soils may become net sources of atmospheric carbon as temperatures rise; this is particularly true of high latitude regions with permanently frozen soils. Soil erosion by both wind and water is also likely to increase. These soil changes will lead to both direct and indirect impacts on human health. Possible indirect impacts include temperature extremes, food safety and air quality issues, increased and/or expanded disease incidences, and occupational health issues. Potential direct impacts include decreased food security and increased atmospheric dust levels. However, there are still many things we need to know more about. How climate change will affect the nitrogen cycle and, in turn, how the nitrogen cycle will affect carbon sequestration in soils is a major research need, as is a better understanding of soil water-CO2 level-temperature relationships. Knowledge of the response of plants to elevated atmospheric CO2 given limitations in nutrients like nitrogen and phosphorus and how that affects soil organic matter dynamics is a critical

  16. Mitigating Climate Change in the American Southwest

    NASA Astrophysics Data System (ADS)

    McCarthy, Patrick D.; Enquist, Carolyn A. F.; Garfin, Gregg

    2008-01-01

    New Mexico Climate Change Ecology and Adaptation Workshop; Albuquerque, New Mexico, 22 October 2007; Climate change has had greater impacts on the American Southwest than perhaps anywhere else in the contiguous United States. The future likely holds even more dramatic impacts for the region's ecosystems. Managers of deserts, forests, grasslands, rivers, and streams in this vast and scenic region are under pressure to respond to the unprecedented wildfires, forest dieback, and insect outbreaks that have resulted from years of record warm temperatures and drought. Already faced with urban encroachment and water shortages, managers need to better understand the regional implications of global climate change in order to take informed action to build the adaptive capacity of the landscapes that provide ecosystem services to our communities and habitat for a great diversity of species.

  17. Impact of climate change on elder health.

    PubMed

    Carnes, Bruce A; Staats, David; Willcox, Bradley J

    2014-09-01

    Demographers predict human life expectancy will continue to increase over the coming century. These forecasts are based on two critical assumptions: advances in medical technology will continue apace and the environment that sustains us will remain unchanged. The consensus of the scientific community is that human activity contributes to global climate change. That change will degrade air and water quality, and global temperature could rise 11.5°F by 2100. If nothing is done to alter this climatic trajectory, humans will be confronted by a broad spectrum of radical environmental challenges. Historically, children and the elderly adults account for most of the death toll during times of severe environmental stress. This article makes an assessment from a geriatric viewpoint of the adverse health consequences that global climate change will bring to the older segments of future populations in the United States.

  18. Illinois task force on global climate change

    SciTech Connect

    Griffin, B.S.

    1996-12-31

    The purpose of this report is to document progress in the areas of national policy development, emissions reduction, research and education, and adaptation, and to identify specific actions that will be undertaken to implement the Illinois state action plan. The task force has been tracking national and international climate change policy, and helping shape national policy agenda. Identification and implementation of cost-effective mitigation measures has been performed for emissions reduction. In the area of research and education, the task force is developing the capacity to measure climate change indicators, maintaining and enhancing Illinois relevant research, and strengthening climate change education. Activities relevant to adaptation to new policy include strengthening water laws and planning for adaptation. 6 figs., 4 tabs.

  19. Regional climate change and national responsibilities

    NASA Astrophysics Data System (ADS)

    Hansen, James; Sato, Makiko

    2016-03-01

    Global warming over the past several decades is now large enough that regional climate change is emerging above the noise of natural variability, especially in the summer at middle latitudes and year-round at low latitudes. Despite the small magnitude of warming relative to weather fluctuations, effects of the warming already have notable social and economic impacts. Global warming of 2 °C relative to preindustrial would shift the ‘bell curve’ defining temperature anomalies a factor of three larger than observed changes since the middle of the 20th century, with highly deleterious consequences. There is striking incongruity between the global distribution of nations principally responsible for fossil fuel CO2 emissions, known to be the main cause of climate change, and the regions suffering the greatest consequences from the warming, a fact with substantial implications for global energy and climate policies.

  20. The changing seasonal climate in the Arctic.

    PubMed

    Bintanja, R; van der Linden, E C

    2013-01-01

    Ongoing and projected greenhouse warming clearly manifests itself in the Arctic regions, which warm faster than any other part of the world. One of the key features of amplified Arctic warming concerns Arctic winter warming (AWW), which exceeds summer warming by at least a factor of 4. Here we use observation-driven reanalyses and state-of-the-art climate models in a variety of standardised climate change simulations to show that AWW is strongly linked to winter sea ice retreat through the associated release of surplus ocean heat gained in summer through the ice-albedo feedback (~25%), and to infrared radiation feedbacks (~75%). Arctic summer warming is surprisingly modest, even after summer sea ice has completely disappeared. Quantifying the seasonally varying changes in Arctic temperature and sea ice and the associated feedbacks helps to more accurately quantify the likelihood of Arctic's climate changes, and to assess their impact on local ecosystems and socio-economic activities.

  1. Understanding complex biogeographic responses to climate change

    PubMed Central

    Seabra, Rui; Wethey, David S.; Santos, António M.; Lima, Fernando P.

    2015-01-01

    Predicting the extent and direction of species’ range shifts is a major priority for scientists and resource managers. Seminal studies have fostered the notion that biological systems responding to climate change-impacted variables (e.g., temperature, precipitation) should exhibit poleward range shifts but shifts contrary to that expectation have been frequently reported. Understanding whether those shifts are indeed contrary to climate change predictions involves understanding the most basic mechanisms determining the distribution of species. We assessed the patterns of ecologically relevant temperature metrics (e.g., daily range, min, max) along the European Atlantic coast. Temperature metrics have contrasting geographical patterns and latitude or the grand mean are poor predictors for many of them. Our data suggest that unless the appropriate metrics are analysed, the impact of climate change in even a single metric of a single stressor may lead to range shifts in directions that would otherwise be classified as “contrary to prediction”. PMID:26245256

  2. Permafrost Meta-Omics and Climate Change

    NASA Astrophysics Data System (ADS)

    Mackelprang, Rachel; Saleska, Scott R.; Jacobsen, Carsten Suhr; Jansson, Janet K.; Taş, Neslihan

    2016-06-01

    Permanently frozen soil, or permafrost, covers a large portion of the Earth's terrestrial surface and represents a unique environment for cold-adapted microorganisms. As permafrost thaws, previously protected organic matter becomes available for microbial degradation. Microbes that decompose soil carbon produce carbon dioxide and other greenhouse gases, contributing substantially to climate change. Next-generation sequencing and other -omics technologies offer opportunities to discover the mechanisms by which microbial communities regulate the loss of carbon and the emission of greenhouse gases from thawing permafrost regions. Analysis of nucleic acids and proteins taken directly from permafrost-associated soils has provided new insights into microbial communities and their functions in Arctic environments that are increasingly impacted by climate change. In this article we review current information from various molecular -omics studies on permafrost microbial ecology and explore the relevance of these insights to our current understanding of the dynamics of permafrost loss due to climate change.

  3. Transatlantic flight times and climate change

    NASA Astrophysics Data System (ADS)

    Williams, Paul

    2016-04-01

    Aircraft do not fly through a vacuum, but through an atmosphere whose meteorological characteristics are changing because of global warming. The impacts of aviation on climate change have long been recognised, but the impacts of climate change on aviation have only recently begun to emerge. These impacts include intensified turbulence (Williams and Joshi 2013) and increased take-off weight restrictions. A forthcoming study (Williams 2016) investigates the influence of climate change on flight routes and journey times. This is achieved by feeding synthetic atmospheric wind fields generated from climate model simulations into a routing algorithm of the type used operationally by flight planners. The focus is on transatlantic flights between London and New York, and how they change when the atmospheric concentration of carbon dioxide is doubled. It is found that a strengthening of the prevailing jet-stream winds causes eastbound flights to significantly shorten and westbound flights to significantly lengthen in all seasons, causing round-trip journey times to increase. Eastbound and westbound crossings in winter become approximately twice as likely to take under 5h 20m and over 7h 00m, respectively. The early stages of this effect perhaps contributed to a well-publicised British Airways flight from New York to London on 8 January 2015, which took a record time of only 5h 16m because of a strong tailwind from an unusually fast jet stream. Even assuming no future growth in aviation, extrapolation of our results to all transatlantic traffic suggests that aircraft may collectively be airborne for an extra 2,000 hours each year, burning an extra 7.2 million gallons of jet fuel at a cost of US 22 million, and emitting an extra 70 million kg of carbon dioxide. These findings provide further evidence of the two-way interaction between aviation and climate change. References Williams PD (2016) Transatlantic flight times and climate change. Environmental Research Letters, in

  4. Public Perception of Climate Change and the New Climate Dice

    NASA Technical Reports Server (NTRS)

    Hansen, James; Sato, Makiko; Ruedy, Reto

    2012-01-01

    "Climate dice", describing the chance of unusually warm or cool seasons, have become more and more "loaded" in the past 30 years, coincident with rapid global warming. The distribution of seasonal mean temperature anomalies has shifted toward higher temperatures and the range of anomalies has increased. An important change is the emergence of a category of summertime extremely hot outliers, more than three standard deviations (3 sigma) warmer than the climatology of the 1951-1980 base period. This hot extreme, which covered much less than 1% of Earth's surface during the base period, now typically covers about 10% of the land area. It follows that we can state, with a high degree of confidence, that extreme anomalies such as those in Texas and Oklahoma in 2011 and Moscow in 2010 were a consequence of global warming, because their likelihood in the absence of global warming was exceedingly small. We discuss practical implications of this substantial, growing, climate change.

  5. Grapevine phenology and climate change in Georgia

    NASA Astrophysics Data System (ADS)

    Cola, G.; Failla, O.; Maghradze, D.; Megrelidze, L.; Mariani, L.

    2016-10-01

    While the climate of Western Europe has been deeply affected by the abrupt climate change that took place in the late `1980s of the twentieth century, a similar signal is detected only few years later, in 1994, in Georgia. Grapevine phenology is deeply influenced by climate and this paper aimed to analyze how phenological timing changed before and after the climatic change of 1994. Availability of thermal resources in the two climatic phases for the five altitudinal belts in the 0-1250-m range was analyzed. A phenological dataset gathered in two experimental sites during the period 2012-2014, and a suitable thermal dataset was used to calibrate a phenological model based on the normal approach and able to describe BBCH phenological stages 61 (beginning of flowering), 71 (fruit set), and 81 (veraison). Calibration was performed for four relevant Georgian varieties (Mtsvane Kakhuri, Rkatsiteli, Ojaleshi, and Saperavi). The model validation was performed on an independent 3-year dataset gathered in Gorizia (Italy). Furthermore, in the case of variety Rkatsiteli, the model was applied to the 1974-2013 thermal time series in order to obtain phenological maps of the Georgian territory. Results show that after the climate change of 1994, Rkatsiteli showed an advance, more relevant at higher altitudes where the whole increase of thermal resource was effectively translated in phenological advance. For instance the average advance of veraison was 5.9 days for 250-500 m asl belt and 18.1 days for 750-1000 m asl). On the other hand, at lower altitudes, phenological advance was depleted by superoptimal temperatures. As a final result, some suggestions for the adaptation of viticultural practices to the current climatic phase are provided.

  6. Grapevine phenology and climate change in Georgia.

    PubMed

    Cola, G; Failla, O; Maghradze, D; Megrelidze, L; Mariani, L

    2017-04-01

    While the climate of Western Europe has been deeply affected by the abrupt climate change that took place in the late '1980s of the twentieth century, a similar signal is detected only few years later, in 1994, in Georgia. Grapevine phenology is deeply influenced by climate and this paper aimed to analyze how phenological timing changed before and after the climatic change of 1994. Availability of thermal resources in the two climatic phases for the five altitudinal belts in the 0-1250-m range was analyzed. A phenological dataset gathered in two experimental sites during the period 2012-2014, and a suitable thermal dataset was used to calibrate a phenological model based on the normal approach and able to describe BBCH phenological stages 61 (beginning of flowering), 71 (fruit set), and 81 (veraison). Calibration was performed for four relevant Georgian varieties (Mtsvane Kakhuri, Rkatsiteli, Ojaleshi, and Saperavi). The model validation was performed on an independent 3-year dataset gathered in Gorizia (Italy). Furthermore, in the case of variety Rkatsiteli, the model was applied to the 1974-2013 thermal time series in order to obtain phenological maps of the Georgian territory. Results show that after the climate change of 1994, Rkatsiteli showed an advance, more relevant at higher altitudes where the whole increase of thermal resource was effectively translated in phenological advance. For instance the average advance of veraison was 5.9 days for 250-500 m asl belt and 18.1 days for 750-1000 m asl). On the other hand, at lower altitudes, phenological advance was depleted by superoptimal temperatures. As a final result, some suggestions for the adaptation of viticultural practices to the current climatic phase are provided.

  7. Vegetation: A mechanism of climate change?

    SciTech Connect

    Dutton, J.F.; Barron, E.J.

    1997-11-01

    Globally averaged surface temperature has decreased over the last 60 million years and has been attributed to continental shifting, decreasing atmospheric CO2, and changing ocean circulations. However, the cooling mechanism has never been fully determined and is most likely a combination of factors. Global climate models (GCMs) of tropical deforestation have shown that vegetation can play a significant role in local, regional and even global climates through changes in surface energy budgets. Other studies have shown significant feedbacks between the Boreal forest and Northern Hemisphere warmth. These studies imply that realistic vegetation distributions in paleoclimate simulations, as opposed to a uniform distribution, may be necessary. A study using the GENESIS GCM shows that differing vegetation distributions can affect the globally averaged surface temperature by up to 1C and regional temperatures by up to 12C. Knowing the above information about globally averaged surface temperature over time, the effect of vegetation on climate, and the sensitivity of the GENESIS global climate model, what could the effect of realistic vegetation character and distribution changes in earth history have been? A model study of the effect of changes in vegetation character and distribution on climate from the early Miocene to the present was conducted. The Miocene time period was chosen because both grasslands and the tundra biome developed during this period. The effect of a reconstructed Miocene vegetation distribution is compared to a present-day vegetation distribution. The globally averaged surface temperature decreased 1.9C between the two simulations. The surface cooling effect is enhanced at high latitudes due to a stronger snow/albedo effect associated with tundra. The study indicates that changes in vegetation distribution and character caused by biological innovation contributed to cooling in the late Cenozoic, and are a mechanism of climate change. 16 refs., 5 figs.

  8. Online Impact Prioritization of Essential Climate Variables on Climate Change

    NASA Astrophysics Data System (ADS)

    Forsythe-Newell, S. P.; Barkstrom, B. B.; Roberts, K. P.

    2007-12-01

    The National Oceanic & Atmospheric Administration (NOAA)'s NCDC Scientific Data Stewardship (SDS) Team has developed an online prototype that is capable of displaying the "big picture" perspective of all Essential Climate Variable (ECV) impacts on society and value to the IPCC. This prototype ECV-Model provides the ability to visualize global ECV information with options to drill down in great detail. It offers a quantifiable prioritization of ECV impacts that potentially may significantly enhance collaboration with respect to dealing effectively with climate change. The ECV-Model prototype assures anonymity and provides an online input mechanism for subject matter experts and decision makers to access, review and submit: (1) ranking of ECV"s, (2) new ECV's and associated impact categories and (3) feedback about ECV"s, satellites, etc. Input and feedback are vetted by experts before changes or additions are implemented online. The SDS prototype also provides an intuitive one-stop web site that displays past, current and planned launches of satellites; and general as well as detailed information in conjunction with imagery. NCDC's version 1.0 release will be available to the public and provide an easy "at-a-glance" interface to rapidly identify gaps and overlaps of satellites and associated instruments monitoring climate change ECV's. The SDS version 1.1 will enhance depiction of gaps and overlaps with instruments associated with In-Situ and Satellites related to ECVs. NOAA's SDS model empowers decision makers and the scientific community to rapidly identify weaknesses and strengths in monitoring climate change ECV's and potentially significantly enhance collaboration.

  9. Vulnerability to Climate Change in Rural Nicaragua

    NASA Astrophysics Data System (ADS)

    Byrne, T. R.; Townshend, I.; Byrne, J. M.; McDaniel, S. A.

    2013-12-01

    While there is a growing recognition of the impact that climate change may have on human development, there has been a shift in focus from an impacts-led assessment approach towards a vulnerability-led assessment approach. This research operationalizes the IPCC's definition of vulnerability in a sub-national assessment to understand how different factors that shape vulnerability to climate change vary spatially across rural Nicaragua. The research utilizes the Food and Agriculture Organization of the United Nations' (FAO UN) CropWat model to evaluate how the annual yield of two of Nicaragua's staple crops may change under projected changes in temperature and precipitation. This analysis of agricultural sensitivity under exposure to climate change is then overlain with an indicator-based assessment of adaptive capacity in rural Nicaraguan farming households. Adaptive capacity was evaluated using household survey data from the 2001 National Household Survey on Living Standards Measurement, which was provided to us by the FAO UN. The result is a map representing current vulnerability to future climate change, and can serve as a basis for targeting policy interventions in rural Nicaragua.

  10. Making Climate Change Education Place Based and Relevant: Minnesota's Changing Climate Education Project

    NASA Astrophysics Data System (ADS)

    Poppleton, K. L.

    2012-12-01

    Climate change is the environmental issue of our time and it has become increasingly important to develop education materials that are accessible to teachers and effective for teaching students. In order to inspire interest and an understanding of the personal relevance of this complex issue, and with funding allocated through Minnesota's Environment and Natural Resource Trust Fund, the Will Steger Foundation developed Minnesota's Changing Climate curriculum, online classroom, and professional development opportunities. Minnesota's Changing Climate is based on the tenants of environmental and place based education- knowing that deep understanding and connection to this issue begins with a local connection and sense of appreciation towards the natural environment. The Grades 3-8 and 9-12 curricula gives students the opportunity to explore and learn about Minnesota's unique biomes and what a changing climate means for the state through 6 hands on and interdisciplinary lessons. The online classroom features opportunities to interact with Minnesota's four biomes through panoramas and short videos featuring the biomes and ongoing climate research there. During the first two years of this project over 300 educators have attending professional development opportunities on Minnesota's Changing Climate. Evaluation results show that over 90% of educators found the curriculum and online classroom useful for teaching climate change, The project was selected as the Environmental Education Award Recipient for 2012 by Minnesota Environmental Initiative an organization that honors innovative projects that have achieved extraordinary environmental results by harnessing the power of partnership.; Screen shot of Minnesota's Changing Climate online classroom. ;

  11. Changing climate and Caribbean coastlines

    SciTech Connect

    Gable, F.

    1987-01-01

    This paper examines the significance of rising relative sea level to the Caribbean region. The various factors contributing to rising relative sea level are explained -- rising eustatic sea level from atmospheric warming, natural subsidence, and manmade subsidence. The possibility of changes in storms is also raised. Possible impacts are discussed, for both wetlands and urban areas. Some developing government policies are described, such as restrictions on coastal development. International research agendas are described. A list of recommended tide-gage stations is presented.

  12. Projected change in global fisheries revenues under climate change

    PubMed Central

    Lam, Vicky W. Y.; Cheung, William W. L.; Reygondeau, Gabriel; Sumaila, U. Rashid

    2016-01-01

    Previous studies highlight the winners and losers in fisheries under climate change based on shifts in biomass, species composition and potential catches. Understanding how climate change is likely to alter the fisheries revenues of maritime countries is a crucial next step towards the development of effective socio-economic policy and food sustainability strategies to mitigate and adapt to climate change. Particularly, fish prices and cross-oceans connections through distant water fishing operations may largely modify the projected climate change impacts on fisheries revenues. However, these factors have not formally been considered in global studies. Here, using climate-living marine resources simulation models, we show that global fisheries revenues could drop by 35% more than the projected decrease in catches by the 2050 s under high CO2 emission scenarios. Regionally, the projected increases in fish catch in high latitudes may not translate into increases in revenues because of the increasing dominance of low value fish, and the decrease in catches by these countries’ vessels operating in more severely impacted distant waters. Also, we find that developing countries with high fisheries dependency are negatively impacted. Our results suggest the need to conduct full-fledged economic analyses of the potential economic effects of climate change on global marine fisheries. PMID:27600330

  13. Projected change in global fisheries revenues under climate change.

    PubMed

    Lam, Vicky W Y; Cheung, William W L; Reygondeau, Gabriel; Sumaila, U Rashid

    2016-09-07

    Previous studies highlight the winners and losers in fisheries under climate change based on shifts in biomass, species composition and potential catches. Understanding how climate change is likely to alter the fisheries revenues of maritime countries is a crucial next step towards the development of effective socio-economic policy and food sustainability strategies to mitigate and adapt to climate change. Particularly, fish prices and cross-oceans connections through distant water fishing operations may largely modify the projected climate change impacts on fisheries revenues. However, these factors have not formally been considered in global studies. Here, using climate-living marine resources simulation models, we show that global fisheries revenues could drop by 35% more than the projected decrease in catches by the 2050 s under high CO2 emission scenarios. Regionally, the projected increases in fish catch in high latitudes may not translate into increases in revenues because of the increasing dominance of low value fish, and the decrease in catches by these countries' vessels operating in more severely impacted distant waters. Also, we find that developing countries with high fisheries dependency are negatively impacted. Our results suggest the need to conduct full-fledged economic analyses of the potential economic effects of climate change on global marine fisheries.

  14. Projected change in global fisheries revenues under climate change

    NASA Astrophysics Data System (ADS)

    Lam, Vicky W. Y.; Cheung, William W. L.; Reygondeau, Gabriel; Sumaila, U. Rashid

    2016-09-01

    Previous studies highlight the winners and losers in fisheries under climate change based on shifts in biomass, species composition and potential catches. Understanding how climate change is likely to alter the fisheries revenues of maritime countries is a crucial next step towards the development of effective socio-economic policy and food sustainability strategies to mitigate and adapt to climate change. Particularly, fish prices and cross-oceans connections through distant water fishing operations may largely modify the projected climate change impacts on fisheries revenues. However, these factors have not formally been considered in global studies. Here, using climate-living marine resources simulation models, we show that global fisheries revenues could drop by 35% more than the projected decrease in catches by the 2050 s under high CO2 emission scenarios. Regionally, the projected increases in fish catch in high latitudes may not translate into increases in revenues because of the increasing dominance of low value fish, and the decrease in catches by these countries’ vessels operating in more severely impacted distant waters. Also, we find that developing countries with high fisheries dependency are negatively impacted. Our results suggest the need to conduct full-fledged economic analyses of the potential economic effects of climate change on global marine fisheries.

  15. Weather anomalies affect Climate Change microblogging intensity

    NASA Astrophysics Data System (ADS)

    Molodtsova, T.; Kirilenko, A.

    2012-12-01

    There is a huge gap between the scientific consensus and public understanding of climate change. Climate change has become a political issue and a "hot" topic in mass media that only adds the complexity to forming the public opinion. Scientists operate in scientific terms, not necessarily understandable by general public, while it is common for people to perceive the latest weather anomaly as an evidence of climate change. In 1998 Hansen et al. introduced a concept of an objectively measured subjective climate change indicator, which can relate public feeling that the climate is changing to the observed meteorological parameters. We tested this concept in a simple example of a temperature-based index, which we related to microblogging activity. Microblogging is a new form of communication in which the users describe their current status in short Internet messages. Twitter (http://twitter.com), is currently the most popular microblogging platform. There are multiple reasons, why this data is particularly valuable to the researches interested in social dynamics: microblogging is widely used to publicize one's opinion with the public; has broad, diverse audience, represented by users from many countries speaking different languages; finally, Twitter contains an enormous number of data, e.g., there were 1,284,579 messages related to climate change from 585,168 users in the January-May data collection. We collected the textual data entries, containing words "climate change" or "global warming" from the 1st of January, 2012. The data was retrieved from the Internet every 20 minutes using a specially developed Python code. Using geolocational information, blog entries originating from the New York urbanized area were selected. These entries, used as a source of public opinion on climate change, were related to the surface temperature, obtained from La Guardia airport meteorological station. We defined the "significant change" in the temperature index as deviation of the

  16. Climatic change on the terrestrial planets

    NASA Technical Reports Server (NTRS)

    Pollack, J. B.

    1979-01-01

    Observational data related to climatic change on Venus, earth and Mars are reviewed. The channel features on Mars suggest an early to intermediate epoch of warmer and wetter climate, while the layered polar deposits imply more recent periodic variations in climate. A more reducing atmosphere, which would have produced an enhanced greenhouse effect, may have been responsible for warmer periods in the early history of Mars and earth. Detailed calculations relating atmospheric pressure and composition to the temperature state of Mars are presented. The possibility of a runaway greenhouse effect on Venus resulting in the emplacement of volatiles entirely in the atmosphere is also examined. Periodic variations in orbital eccentricity and axial obliquity may have contributed to alternating glacial and interglacial periods on earth. Mechanisms accounting for the laminated terrain of Mars, and the influence of Martian tectonic distortions on the planet's climate also receive attention.

  17. Indian Ocean warming modulates Pacific climate change.

    PubMed

    Luo, Jing-Jia; Sasaki, Wataru; Masumoto, Yukio

    2012-11-13

    It has been widely believed that the tropical Pacific trade winds weakened in the last century and would further decrease under a warmer climate in the 21st century. Recent high-quality observations, however, suggest that the tropical Pacific winds have actually strengthened in the past two decades. Precise causes of the recent Pacific climate shift are uncertain. Here we explore how the enhanced tropical Indian Ocean warming in recent decades favors stronger trade winds in the western Pacific via the atmosphere and hence is likely to have contributed to the La Niña-like state (with enhanced east-west Walker circulation) through the Pacific ocean-atmosphere interactions. Further analysis, based on 163 climate model simulations with centennial historical and projected external radiative forcing, suggests that the Indian Ocean warming relative to the Pacific's could play an important role in modulating the Pacific climate changes in the 20th and 21st centuries.

  18. Soils, climate change and the OECD.

    PubMed

    Lynch, J M; Schepers, J S

    2008-01-01

    Some concepts of sustainability applied to soils are given in relation to the Organisation for Economic Co-operation and Development (OECD) Co-operative Research Programme 'Biological Resource Management for Sustainable Agricultural Systems'. The application of these concepts to climate change will be discussed in relation to seven high-profile papers published over the past 12 months. It is argued that multi-disciplinary (including social science) approaches are needed to address the issues. There is also a brief discussion on biomass energy in terms of soil sustainability and climate change.

  19. Economic Growth, Climate Change, and Obesity.

    PubMed

    Minos, Dimitrios; Butzlaff, Iris; Demmler, Kathrin Maria; Rischke, Ramona

    2016-12-01

    Human and planetary health as well as economic growth are firmly interlinked and subject to complex interaction effects. In this paper, we provide an overview of interlinkages between economic growth, climate change, and obesity focusing on recent advances in the literature. In addition to empirical findings, we discuss different theoretical frameworks used to conceptualize these complex links and highlight policy options and challenges. We conclude that policies addressing both climate change and obesity simultaneously are particularly promising and often suitable for ensuring sustainable development.

  20. FEASIBILITY STUDY OF CLIMATE CHANGE IMPACTS ON ...

    EPA Pesticide Factsheets

    The objective of this study is to explore the feasibility of studying potential effects of climate change on impairments resulting from nitrogen loadings in the salt water embayments of Cape Cod. The report includes a recommended plan for studying these impacts, an estimate of the costs and level of effort required; a tally of data, information, and modeling requirements; an assessment of the strengths and weaknesses of the plan; and recommendations for the appropriate use of results. Study to determine feasibility of studying climate change effects on nitrogen impaired estuarine embayments