Sample records for climate change compared

  1. Population trends influence species ability to track climate change.

    PubMed

    Ralston, Joel; DeLuca, William V; Feldman, Richard E; King, David I

    2017-04-01

    Shifts of distributions have been attributed to species tracking their fundamental climate niches through space. However, several studies have now demonstrated that niche tracking is imperfect, that species' climate niches may vary with population trends, and that geographic distributions may lag behind rapid climate change. These reports of imperfect niche tracking imply shifts in species' realized climate niches. We argue that quantifying climate niche shifts and analyzing them for a suite of species reveal general patterns of niche shifts and the factors affecting species' ability to track climate change. We analyzed changes in realized climate niche between 1984 and 2012 for 46 species of North American birds in relation to population trends in an effort to determine whether species differ in the ability to track climate change and whether differences in niche tracking are related to population trends. We found that increasingly abundant species tended to show greater levels of niche expansion (climate space occupied in 2012 but not in 1980) compared to declining species. Declining species had significantly greater niche unfilling (climate space occupied in 1980 but not in 2012) compared to increasing species due to an inability to colonize new sites beyond their range peripheries after climate had changed at sites of occurrence. Increasing species, conversely, were better able to colonize new sites and therefore showed very little niche unfilling. Our results indicate that species with increasing trends are better able to geographically track climate change compared to declining species, which exhibited lags relative to changes in climate. These findings have important implications for understanding past changes in distribution, as well as modeling dynamic species distributions in the face of climate change. © 2016 John Wiley & Sons Ltd.

  2. The Distribution of Climate Change Public Opinion in Canada.

    PubMed

    Mildenberger, Matto; Howe, Peter; Lachapelle, Erick; Stokes, Leah; Marlon, Jennifer; Gravelle, Timothy

    2016-01-01

    While climate scientists have developed high resolution data sets on the distribution of climate risks, we still lack comparable data on the local distribution of public climate change opinions. This paper provides the first effort to estimate local climate and energy opinion variability outside the United States. Using a multi-level regression and post-stratification (MRP) approach, we estimate opinion in federal electoral districts and provinces. We demonstrate that a majority of the Canadian public consistently believes that climate change is happening. Belief in climate change's causes varies geographically, with more people attributing it to human activity in urban as opposed to rural areas. Most prominently, we find majority support for carbon cap and trade policy in every province and district. By contrast, support for carbon taxation is more heterogeneous. Compared to the distribution of US climate opinions, Canadians believe climate change is happening at higher levels. This new opinion data set will support climate policy analysis and climate policy decision making at national, provincial and local levels.

  3. Solar Variability in the Context of Other Climate Forcing Mechanisms

    NASA Technical Reports Server (NTRS)

    Hansen, James E.

    1999-01-01

    I compare and contrast climate forcings due to solar variability with climate forcings due to other mechanisms of climate change, interpretation of the role of the sun in climate change depends upon climate sensitivity and upon the net forcing by other climate change mechanisms. Among the potential indirect climate forcings due to solar variability, only that due to solar cycle induced ozone changes has been well quantified. There is evidence that the sun has been a significant player in past climate change on decadal to century time scales, and that it has the potential to contribute to climate change in the 21st century.

  4. The Distribution of Climate Change Public Opinion in Canada

    PubMed Central

    Gravelle, Timothy

    2016-01-01

    While climate scientists have developed high resolution data sets on the distribution of climate risks, we still lack comparable data on the local distribution of public climate change opinions. This paper provides the first effort to estimate local climate and energy opinion variability outside the United States. Using a multi-level regression and post-stratification (MRP) approach, we estimate opinion in federal electoral districts and provinces. We demonstrate that a majority of the Canadian public consistently believes that climate change is happening. Belief in climate change’s causes varies geographically, with more people attributing it to human activity in urban as opposed to rural areas. Most prominently, we find majority support for carbon cap and trade policy in every province and district. By contrast, support for carbon taxation is more heterogeneous. Compared to the distribution of US climate opinions, Canadians believe climate change is happening at higher levels. This new opinion data set will support climate policy analysis and climate policy decision making at national, provincial and local levels. PMID:27486659

  5. A comparative analysis of the impacts of climate change and irrigation on land surface and subsurface hydrology in the North China Plain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leng, Guoyong; Tang, Qiuhong; Huang, Maoyi

    The Community Land Model 4.0 (CLM4) was used to investigate and compare the effects of climate change and irrigation on terrestrial water cycle. Three climate change scenarios and one irrigation scenario (IRRIG) were simulated in the North China Plain (NCP), which is one of the most vulnerable regions to climate change and human perturbations in China. The climate change scenarios consist of (1) HOT (i.e. temperature increase by 2oC); (2) HOTWET (same with HOT but with an increase of precipitation by 15%); (3) HOTDRY (same with HOT but with a decrease of precipitation by 15%). In the IRRIG scenario, themore » irrigation scheme was calibrated to simulate irrigation amounts that match the actual irrigation amounts and irrigation was divided between surface water and groundwater withdrawals based on census data. Our results show that the impacts of climate change were more widespread while those of irrigation were concentrated only over the agricultural regions. Specifically, the mean water table depth was simulated to decline persistently by over 1 m annually due to groundwater exploitation during the period of 1980-2000, while much smaller effects were induced by climate change. Although irrigation has comparable effects on surface fluxes and surface soil moisture as climate change, it has much greater effects on water table depth and groundwater storage. Moreover, irrigation has much larger effects on the top layer soil moisture whereas increase in precipitation associated with climate change exerts more influence on lower layer soil moisture. This study emphasizes the need to accurately account for irrigation impacts in adapting to climate change.« less

  6. Human Impacts on the Hydrologic Cycle: Comparing Global Climate Change and Local Water Management

    NASA Astrophysics Data System (ADS)

    Ferguson, I. M.; Maxwell, R. M.

    2010-12-01

    Anthropogenic climate change is significantly altering the hydrologic cycle at global and regional scales, with potentially devastating impacts on water resources. Recent studies demonstrate that hydrologic response to climate change will depend on local-scale feedbacks between groundwater, surface water, and land surface processes. These studies suggest that local water management practices that alter the quantity and distribution of water in the terrestrial system—e.g., groundwater pumping and irrigation—may also feed back across the hydrologic cycle, with impacts on land-atmosphere fluxes and thus weather and climate. Here we use an integrated hydrologic model to compare the impacts of large-scale climate change and local water management practices on water and energy budgets at local and watershed scales. We consider three climate scenarios (hot, hot+wet, and hot+dry) and three management scenarios (pumping only, irrigation only, and pumping+irrigation). Results demonstrate that impacts of local water management on basin-integrated groundwater storage, evapotranspiration, and stream discharge are comparable to those of changing climate conditions. However, impacts of climate change are shown to have a smaller magnitude and greater spatial extent, while impacts of pumping and irrigation are shown to have a greater magnitude but are local to areas where pumping and irrigation occur. These results have important implications regarding the scales of human impacts on both water resources and climate and the sustainability of water resources.

  7. Health Consequence Scales for Use in Health Impact Assessments of Climate Change

    PubMed Central

    Brown, Helen; Spickett, Jeffery

    2014-01-01

    While health impact assessment (HIA) has typically been applied to projects, plans or policies, it has significant potential with regard to strategic considerations of major health issues facing society such as climate change. Given the complexity of climate change, assessing health impacts presents new challenges that may require different approaches compared to traditional applications of HIA. This research focuses on the development of health consequence scales suited to assessing and comparing health effects associated with climate change and applied within a HIA framework. This assists in setting priorities for adaptation plans to minimize the public health impacts of climate change. The scales presented in this paper were initially developed for a HIA of climate change in Perth in 2050, but they can be applied across spatial and temporal scales. The design is based on a health effects pyramid with health measures expressed in orders of magnitude and linked to baseline population and health data. The health consequence measures are combined with a measure of likelihood to determine the level of risk associated with each health potential health impact. In addition, a simple visual framework that can be used to collate, compare and communicate the level of health risks associated with climate change has been developed. PMID:25229697

  8. Targeting climate diversity in conservation planning to build resilience to climate change

    USGS Publications Warehouse

    Heller, Nicole E.; Kreitler, Jason R.; Ackerly, David; Weiss, Stuart; Recinos, Amanda; Branciforte, Ryan; Flint, Lorraine E.; Flint, Alan L.; Micheli, Elisabeth

    2015-01-01

    Climate change is raising challenging concerns for systematic conservation planning. Are methods based on the current spatial patterns of biodiversity effective given long-term climate change? Some conservation scientists argue that planning should focus on protecting the abiotic diversity in the landscape, which drives patterns of biological diversity, rather than focusing on the distribution of focal species, which shift in response to climate change. Climate is one important abiotic driver of biodiversity patterns, as different climates host different biological communities and genetic pools. We propose conservation networks that capture the full range of climatic diversity in a region will improve the resilience of biotic communities to climate change compared to networks that do not. In this study we used historical and future hydro-climate projections from the high resolution Basin Characterization Model to explore the utility of directly targeting climatic diversity in planning. Using the spatial planning tool, Marxan, we designed conservation networks to capture the diversity of climate types, at the regional and sub-regional scale, and compared them to networks we designed to capture the diversity of vegetation types. By focusing on the Conservation Lands Network (CLN) of the San Francisco Bay Area as a real-world case study, we compared the potential resilience of networks by examining two factors: the range of climate space captured, and climatic stability to 18 future climates, reflecting different emission scenarios and global climate models. We found that the climate-based network planned at the sub-regional scale captured a greater range of climate space and showed higher climatic stability than the vegetation and regional based-networks. At the same time, differences among network scenarios are small relative to the variance in climate stability across global climate models. Across different projected futures, topographically heterogeneous areas consistently show greater climate stability than homogenous areas. The analysis suggests that utilizing high-resolution climate and hydrological data in conservation planning improves the likely resilience of biodiversity to climate change. We used these analyses to suggest new conservation priorities for the San Francisco Bay Area.

  9. Regional Climate Change Hotspots over Africa

    NASA Astrophysics Data System (ADS)

    Anber, U.

    2009-04-01

    Regional Climate Change Index (RCCI), is developed based on regional mean precipitation change, mean surface air temperature change, and change in precipitation and temperature interannual variability. The RCCI is a comparative index designed to identify the most responsive regions to climate change, or Hot- Spots. The RCCI is calculated for Seven land regions over North Africa and Arabian region from the latest set of climate change projections by 14 global climates for the A1B, A2 and B1 IPCC emission scenarios. The concept of climate change can be approaches from the viewpoint of vulnerability or from that of climate response. In the former case a Hot-Spot can be defined as a region for which potential climate change impacts on the environment or different activity sectors can be particularly pronounced. In the other case, a Hot-Spot can be defined as a region whose climate is especially responsive to global change. In particular, the characterization of climate change response-based Hot-Spot can provide key information to identify and investigate climate change Hot-Spots based on results from multi-model ensemble of climate change simulations performed by modeling groups from around the world as contributions to the Assessment Report of Intergovernmental Panel on Climate Change (IPCC). A Regional Climate Change Index (RCCI) is defined based on four variables: change in regional mean surface air temperature relative to the global average temperature change ( or Regional Warming Amplification Factor, RWAF ), change in mean regional precipitation ( , of present day value ), change in regional surface air temperature interannual variability ( ,of present day value), change in regional precipitation interannual variability ( , of present day value ). In the definition of the RCCI it is important to include quantities other than mean change because often mean changes are not the only important factors for specific impacts. We thus also include inter annual variability, which is critical for many activity sectors, such as agriculture and water management. The RCCI is calculated for the above mentioned set of global climate change simulations and is inter compared across regions to identify climate change, Hot- Spots, that is regions with the largest values of RCCI. It is important to stress that, as will be seen, the RCCI is a comparative index, that is a small RCCI value does not imply a small absolute change, but only a small climate response compared to other regions. The models used are: CCMA-3-T47 CNRM-CM3 CSIRO-MK3 GFDL-CM2-0 GISS-ER INMCM3 IPSL-CM4 MIROC3-2M MIUB-ECHO-G MPI-ECHAM5 MRI-CGCM2 NCAR-CCSM3 NCAR-PCM1 UKMO-HADCM3 Note that the 3 IPCC emission scenarios, A1B, B1 and A2 almost encompass the entire IPCC scenario range, the A2 being close to the high end of the range, the B1 close to the low end and the A1B lying toward the middle of the range. The model data are obtained from the IPCC site and are interpolated onto a common 1 degree grid to facilitate intercomparison. The RCCI is here defined as in Giorgi (2006), except that the entire yea is devided into two six months periods, D J F M A M and J J A S O N. RCCI=[n(∆P)+n(∆σP)+n(RWAF)+n(∆σT)]D...M + [n(∆P)+n(∆σP)+n(RWAF)+n(∆σT)]J…N (1)

  10. Projecting species’ vulnerability to climate change: Which uncertainty sources matter most and extrapolate best?

    USGS Publications Warehouse

    Steen, Valerie; Sofaer, Helen R.; Skagen, Susan K.; Ray, Andrea J.; Noon, Barry R

    2017-01-01

    Species distribution models (SDMs) are commonly used to assess potential climate change impacts on biodiversity, but several critical methodological decisions are often made arbitrarily. We compare variability arising from these decisions to the uncertainty in future climate change itself. We also test whether certain choices offer improved skill for extrapolating to a changed climate and whether internal cross-validation skill indicates extrapolative skill. We compared projected vulnerability for 29 wetland-dependent bird species breeding in the climatically dynamic Prairie Pothole Region, USA. For each species we built 1,080 SDMs to represent a unique combination of: future climate, class of climate covariates, collinearity level, and thresholding procedure. We examined the variation in projected vulnerability attributed to each uncertainty source. To assess extrapolation skill under a changed climate, we compared model predictions with observations from historic drought years. Uncertainty in projected vulnerability was substantial, and the largest source was that of future climate change. Large uncertainty was also attributed to climate covariate class with hydrological covariates projecting half the range loss of bioclimatic covariates or other summaries of temperature and precipitation. We found that choices based on performance in cross-validation improved skill in extrapolation. Qualitative rankings were also highly uncertain. Given uncertainty in projected vulnerability and resulting uncertainty in rankings used for conservation prioritization, a number of considerations appear critical for using bioclimatic SDMs to inform climate change mitigation strategies. Our results emphasize explicitly selecting climate summaries that most closely represent processes likely to underlie ecological response to climate change. For example, hydrological covariates projected substantially reduced vulnerability, highlighting the importance of considering whether water availability may be a more proximal driver than precipitation. However, because cross-validation results were correlated with extrapolation results, the use of cross-validation performance metrics to guide modeling choices where knowledge is limited was supported.

  11. Projecting species' vulnerability to climate change: Which uncertainty sources matter most and extrapolate best?

    PubMed

    Steen, Valerie; Sofaer, Helen R; Skagen, Susan K; Ray, Andrea J; Noon, Barry R

    2017-11-01

    Species distribution models (SDMs) are commonly used to assess potential climate change impacts on biodiversity, but several critical methodological decisions are often made arbitrarily. We compare variability arising from these decisions to the uncertainty in future climate change itself. We also test whether certain choices offer improved skill for extrapolating to a changed climate and whether internal cross-validation skill indicates extrapolative skill. We compared projected vulnerability for 29 wetland-dependent bird species breeding in the climatically dynamic Prairie Pothole Region, USA. For each species we built 1,080 SDMs to represent a unique combination of: future climate, class of climate covariates, collinearity level, and thresholding procedure. We examined the variation in projected vulnerability attributed to each uncertainty source. To assess extrapolation skill under a changed climate, we compared model predictions with observations from historic drought years. Uncertainty in projected vulnerability was substantial, and the largest source was that of future climate change. Large uncertainty was also attributed to climate covariate class with hydrological covariates projecting half the range loss of bioclimatic covariates or other summaries of temperature and precipitation. We found that choices based on performance in cross-validation improved skill in extrapolation. Qualitative rankings were also highly uncertain. Given uncertainty in projected vulnerability and resulting uncertainty in rankings used for conservation prioritization, a number of considerations appear critical for using bioclimatic SDMs to inform climate change mitigation strategies. Our results emphasize explicitly selecting climate summaries that most closely represent processes likely to underlie ecological response to climate change. For example, hydrological covariates projected substantially reduced vulnerability, highlighting the importance of considering whether water availability may be a more proximal driver than precipitation. However, because cross-validation results were correlated with extrapolation results, the use of cross-validation performance metrics to guide modeling choices where knowledge is limited was supported.

  12. Direct and indirect effects of climate change on projected future fire regimes in the western United States.

    PubMed

    Liu, Zhihua; Wimberly, Michael C

    2016-01-15

    We asked two research questions: (1) What are the relative effects of climate change and climate-driven vegetation shifts on different components of future fire regimes? (2) How does incorporating climate-driven vegetation change into future fire regime projections alter the results compared to projections based only on direct climate effects? We used the western United States (US) as study area to answer these questions. Future (2071-2100) fire regimes were projected using statistical models to predict spatial patterns of occurrence, size and spread for large fires (>400 ha) and a simulation experiment was conducted to compare the direct climatic effects and the indirect effects of climate-driven vegetation change on fire regimes. Results showed that vegetation change amplified climate-driven increases in fire frequency and size and had a larger overall effect on future total burned area in the western US than direct climate effects. Vegetation shifts, which were highly sensitive to precipitation pattern changes, were also a strong determinant of the future spatial pattern of burn rates and had different effects on fire in currently forested and grass/shrub areas. Our results showed that climate-driven vegetation change can exert strong localized effects on fire occurrence and size, which in turn drive regional changes in fire regimes. The effects of vegetation change for projections of the geographic patterns of future fire regimes may be at least as important as the direct effects of climate change, emphasizing that accounting for changing vegetation patterns in models of future climate-fire relationships is necessary to provide accurate projections at continental to global scales. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Cross - Scale Intercomparison of Climate Change Impacts Simulated by Regional and Global Hydrological Models in Eleven Large River Basins

    NASA Technical Reports Server (NTRS)

    Hattermann, F. F.; Krysanova, V.; Gosling, S. N.; Dankers, R.; Daggupati, P.; Donnelly, C.; Florke, M.; Huang, S.; Motovilov, Y.; Buda, S.; hide

    2017-01-01

    Ideally, the results from models operating at different scales should agree in trend direction and magnitude of impacts under climate change. However, this implies that the sensitivity to climate variability and climate change is comparable for impact models designed for either scale. In this study, we compare hydrological changes simulated by 9 global and 9 regional hydrological models (HM) for 11 large river basins in all continents under reference and scenario conditions. The foci are on model validation runs, sensitivity of annual discharge to climate variability in the reference period, and sensitivity of the long-term average monthly seasonal dynamics to climate change. One major result is that the global models, mostly not calibrated against observations, often show a considerable bias in mean monthly discharge, whereas regional models show a better reproduction of reference conditions. However, the sensitivity of the two HM ensembles to climate variability is in general similar. The simulated climate change impacts in terms of long-term average monthly dynamics evaluated for HM ensemble medians and spreads show that the medians are to a certain extent comparable in some cases, but have distinct differences in other cases, and the spreads related to global models are mostly notably larger. Summarizing, this implies that global HMs are useful tools when looking at large-scale impacts of climate change and variability. Whenever impacts for a specific river basin or region are of interest, e.g. for complex water management applications, the regional-scale models calibrated and validated against observed discharge should be used.

  14. Using an Integrated Approach to Supporting Climate Change Literacy for Pre-Service Teachers

    NASA Astrophysics Data System (ADS)

    Miller, H. R.; Mattox, S.; Llerandi-Román, P. A.; Dobson, C.

    2014-12-01

    Educating future Americans has long been a debate; with the Next Generation Science Standards (NGSS) now being adopted, climate literacy has become a more dominant discussion in both the classroom and in our society where climate education has often been non-existent or dismal at best. With these new education standards climate literacy is now fundamental to science education, this means understanding climate needs to begin with those headed into the classroom with these future Americans. These educators are expected to be skilled and confident in all subject areas, including science, where they might receive less training. To address this challenge, we have focused on an interdisciplinary approach to climate literacy, which is facilitated through cross-cutting concepts in both Earth and life sciences and parallels NGSS standards. We used the Yale Project on Climate Change Communication to gauge our student's strengths and weaknesses and compare them to the general public's understanding of climate change and complex Earth processes, such as beliefs about climate change, understanding the greenhouse effect, weather versus climate, climate change past and present, impacts and solutions. After a semester of this interdisciplinary course our students felt 95% confident that they are informed about global climate change as compared to 62% of Americans that were surveyed. Our students could define and describe greenhouse effect and 82% of them could classify greenhouse gases as compared to 66% and 45% of Americans respectively. While these non-science, education students were generally more knowledgeable about climate change, the areas where they did not significantly outperform the general public allowed us to refocus our course to aid them in understanding this complex issue where our hopes are that they will be prepared to teach science in their future classroom which will allow their students to be competitive in today's rapidly evolving global economy.

  15. Natural versus anthropogenic climate change: Swedish farmers' joint construction of climate perceptions.

    PubMed

    Asplund, Therese

    2016-07-01

    While previous research into understandings of climate change has usually examined general public perceptions, this study offers an audience-specific departure point. This article analyses how Swedish farmers perceive climate change and how they jointly shape their understandings. The agricultural sector is of special interest because it both contributes to and is directly affected by climate change. Through focus group discussions with Swedish farmers, this study finds that (1) farmers relate to and understand climate change through their own experiences, (2) climate change is understood either as a natural process subject to little or no human influence or as anthropogenic and (3) various communication tools contribute to the formation of natural and anthropogenic climate change frames. The article ends by discussing frame resonance and frame clash in public understanding of climate change and by comparing potential similarities and differences in how various segments of the public make sense of climate change. © The Author(s) 2014.

  16. Climate Impacts on Tropospheric Ozone and Hydroxyl

    NASA Technical Reports Server (NTRS)

    Shindell, Drew T.; Bell, N.; Faluvegi, G.

    2003-01-01

    Climate change may influence tropospheric ozone and OH via several main pathways: (1) altering chemistry via temperature and humidity changes, (2) changing ozone and precursor sources via surface emissions, stratosphere-troposphere exchange, and light- ning, and (3) affecting trace gas sinks via the hydrological cycle and dry deposition. We report results from a set of coupled chemistry-climate model simulations designed to systematically study these effects. We compare the various effects with one another and with past and projected future changes in anthropogenic and natural emissions of ozone precursors. We find that white the overall impact of climate on ozone is probably small compared to emission changes, some significant seasonal and regional effects are apparent. The global effect on hydroxyl is quite large, however, similar in size to the effect of emission changes. Additionally, we show that many of the chemistry-climate links that are not yet adequately modeled are potentially important.

  17. Comparative risk assessment of the burden of disease from climate change.

    PubMed

    Campbell-Lendrum, Diarmid; Woodruff, Rosalie

    2006-12-01

    The World Health Organization has developed standardized comparative risk assessment methods for estimating aggregate disease burdens attributable to different risk factors. These have been applied to existing and new models for a range of climate-sensitive diseases in order to estimate the effect of global climate change on current disease burdens and likely proportional changes in the future. The comparative risk assessment approach has been used to assess the health consequences of climate change worldwide, to inform decisions on mitigating greenhouse gas emissions, and in a regional assessment of the Oceania region in the Pacific Ocean to provide more location-specific information relevant to local mitigation and adaptation decisions. The approach places climate change within the same criteria for epidemiologic assessment as other health risks and accounts for the size of the burden of climate-sensitive diseases rather than just proportional change, which highlights the importance of small proportional changes in diseases such as diarrhea and malnutrition that cause a large burden. These exercises help clarify important knowledge gaps such as a relatively poor understanding of the role of nonclimatic factors (socioeconomic and other) that may modify future climatic influences and a lack of empiric evidence and methods for quantifying more complex climate-health relationships, which consequently are often excluded from consideration. These exercises highlight the need for risk assessment frameworks that make the best use of traditional epidemiologic methods and that also fully consider the specific characteristics of climate change. These include the longterm and uncertain nature of the exposure and the effects on multiple physical and biotic systems that have the potential for diverse and widespread effects, including high-impact events.

  18. Modelling the combined impacts of climate change and direct anthropogenic drivers on the ecosystem of the northwest European continental shelf

    NASA Astrophysics Data System (ADS)

    Wakelin, Sarah L.; Artioli, Yuri; Butenschön, Momme; Allen, J. Icarus; Holt, Jason T.

    2015-12-01

    The potential response of the marine ecosystem of the northwest European continental shelf to climate change under a medium emissions scenario (SRES A1B) is investigated using the coupled hydrodynamics-ecosystem model POLCOMS-ERSEM. Changes in the near future (2030-2040) and the far future (2082-2099) are compared to the recent past (1983-2000). The sensitivity of the ecosystem to potential changes in multiple anthropogenic drivers (river nutrient loads and benthic trawling) in the near future is compared to the impact of changes in climate. With the exception of the biomass of benthic organisms, the influence of the anthropogenic drivers only exceeds the impact of climate change in coastal regions. Increasing river nitrogen loads has a limited impact on the ecosystem whilst reducing river nitrogen and phosphate concentrations affects net primary production (netPP) and phytoplankton and zooplankton biomass. Direct anthropogenic forcing is seen to mitigate/amplify the effects of climate change. Increasing river nitrogen has the potential to amplify the effects of climate change at the coast by increasing netPP. Reducing river nitrogen and phosphate mitigates the effects of climate change for netPP and the biomass of small phytoplankton and large zooplankton species but amplifies changes in the biomass of large phytoplankton and small zooplankton.

  19. Data Sparsity Considerations in Climate Impact Analysis for the Water Sector (Invited)

    NASA Astrophysics Data System (ADS)

    Asante, K. O.; Khimsara, P.; Chan, A.

    2013-12-01

    Scientists and planners are helping governments and communities around the world to prepare for climate change by performing local impact studies and developing adaptation plans. Most studies begin by analyzing global climate models outputs to estimate the magnitude of projected change, assessing vulnerabilities and proposing adaptation measures. In these studies, climate projections from the Intergovernmental Panel on Climate Change (IPCC) Data Distribution Centre (DDC) are either used directly or downscaled using regional models. Since climate projections cover the entire global, climate change analysis can be performed for any location. However, selection of climate projections for use in historically data sparse regions presents special challenges. Key questions arise about the impact of historical data sparsity on quality of climate projections, spatial consistency of results and suitability for applications such as water resource planning. In this paper, a water-sector climate study conducted in a data-rich setting in California is compared to a similar study conducted a data-sparse setting in Mozambique. The challenges of selecting projections, performing analysis and interpreting the results for climate adaption planning are compared to illustrate the decision process and challenges encountered in these two very different settings.

  20. Comparison and Evaluation of Global Scale Studies of Vulnerability and Risks to Climate Change

    NASA Astrophysics Data System (ADS)

    Muccione, Veruska; Allen, Simon K.; Huggel, Christian; Birkmann, Joern

    2015-04-01

    Understanding the present and future distribution of different climate change impacts and vulnerability to climate change is a central subject in the context of climate justice and international climate policy. Commonly, it is claimed that poor countries that contributed little to anthropogenic climate change are those most affected and most vulnerable to climate change. Such statements are backed by a number of global-scale vulnerability studies, which identified poor countries as most vulnerable. However, some studies have challenged this view, likewise highlighting the high vulnerability of richer countries. Overall, no consensus has been reached so far about which concept of vulnerability should be applied and what type of indicators should be considered. Furthermore, there is little agreement which specific countries are most vulnerable. This is a major concern in view of the need to inform international climate policy, all the more if such assessments should contribute to allocate climate adaptation funds as was invoked at some instances. We argue that next to the analysis of who is most vulnerable, it is also important to better understand and compare different vulnerability profiles assessed in present global studies. We perform a systematic literature review of global vulnerability assessments with the scope to highlight vulnerability distribution patterns. We then compare these distributions with global risk distributions in line with revised and adopted concepts by most recent IPCC reports. It emerges that improved differentiation of key drivers of risk and the understanding of different vulnerability profiles are important contributions, which can inform future adaptation policies at the regional and national level. This can change the perspective on, and basis for distributional issues in view of climate burden share, and therefore can have implications for UNFCCC financing instruments (e.g. Green Climate Fund). However, in order to better compare traditional vulnerability distributions with more recent conceptualisation of risks, more research should be devoted to global assessments of climate change risk distributions.

  1. Alignment between Informal Educator Perceptions and Audience Expectations of Climate Change Education

    ERIC Educational Resources Information Center

    Stylinski, Cathlyn; Heimlich, Joe; Palmquist, Sasha; Wasserman, Deborah; Youngs, Renae

    2017-01-01

    To understand the complexities of climate change on educator-visitor relationships, we compared educators' perceptions with audiences' expectations for informal science education institutions. Our findings suggest two disconnects: (a) a professional recognition that climate change education is related to institutional mission but a lack of…

  2. Comparing Mid-Century Climate Change Projections at Convective Resolving Scales (2-km) for Life Zones Within Puerto Rico

    NASA Astrophysics Data System (ADS)

    Bowden, J.; Wootten, A.; Terando, A. J.; Boyles, R.; Misra, V.; Bhardwaj, A.

    2016-12-01

    Puerto Rico is home to over 3.5 million people and numerous endemic plant and animal species that may be at risk as a result of anthropogenic climate change. This study downscales three CMIP5 Global Circulation Models (GCMs) to a 2-km horizontal resolution using different regional climate models (RCMs) to resolve the island's climate. Here we compare projected climate change from a single GCM, CCSM4, from two RCMs centered on the mid-century, 2041-2060, for a high greenhouse gas emission scenario, RCP8.5. We will discuss similarities and differences in ecologically relevant climate variables, which were selected based on dialogue with experts who have knowledge about potential biological impacts of climate change for current life zones within Puerto Rico. Notable differences appear between the RCMs and include regions with critical ecosystems, such as the El Yunque National Forest in northeast Puerto Rico. This study helps to highlight RCMs structural uncertainty at convective resolving scales.

  3. The Effectiveness of a Geospatial Technologies-Integrated Curriculum to Promote Climate Literacy

    NASA Astrophysics Data System (ADS)

    Anastasio, D. J.; Bodzin, A. M.; Peffer, T.; Sahagian, D. L.; Cirucci, L.

    2011-12-01

    This study examined the effectiveness of a geospatial technologies - integrated climate change curriculum (http://www.ei.lehigh.edu/eli/cc/) to promote climate literacy in an urban school district. Five 8th grade Earth and Space Science classes in an urban middle school (Bethlehem, Pennsylvania) consisting of three different ability level tracks participated in the study. Data gathering methods included pre/posttest assessments, daily classroom observations, daily teacher meetings, and examination of student produced artifacts. Data was gathered using a climate change literacy assessment instrument designed to measure students' climate change content knowledge. The items included distractors that address misunderstandings and knowledge deficits about climate change from the existing literature. Paired-sample t-test analyses were conducted to compare the pre- and post-test assessment results. The results of these analyses were used to compare overall gains as well as ability level track groups. Overall results regarding the use of the climate change curriculum showed significant improvement in urban middle school students' understanding of climate change concepts. Effect sizes were large (ES>0.8) and significant (p<0.001) for the entire assessment and for each ability level subgroup. Findings from classroom observations, assessments embedded in the curriculum, and the examination of all student artifacts revealed that the use of geospatial technologies enable middle school students to improve their knowledge of climate change and improve their spatial thinking and reasoning skills.

  4. Comparative study on Climate Change Policies in the EU and China

    NASA Astrophysics Data System (ADS)

    Bray, M.; Han, D.

    2012-04-01

    Both the EU and China are among the largest CO2 emitters in the world; their climate actions and policies have profound impacts on global climate change and may influence the activities in other countries. Evidence of climate change has been observed across Europe and China. Despite the many differences between the two regions, the European Commission and Chinese government support climate change actions. The EU has three priority areas in climate change: 1) understanding, monitoring and predicting climate change and its impact; 2) providing tools to analyse the effectiveness, cost and benefits of different policy options for mitigating climate change and adapting to its impacts; 3) improving, demonstrating and deploying existing climate friendly technologies and developing the technologies of the future. China is very vulnerable to climate change, because of its vast population, fast economic development, and fragile ecological environment. The priority policies in China are: 1) Carbon Trading Policy; 2) Financing Loan Policy (Special Funds for Renewable Energy Development); 3) Energy Efficiency Labelling Policy; 4) Subsidy Policy. In addition, China has formulated the "Energy Conservation Law", "Renewable Energy Law", "Cleaner Production Promotion Law" and "Circular Economy Promotion Law". Under the present EU Framework Programme FP7 there is a large number of funded research activities linked to climate change research. Current climate change research projects concentrate on the carbon cycle, water quality and availability, climate change predictors, predicting future climate and understanding past climates. Climate change-related scientific and technological projects in China are mostly carried out through national scientific and technological research programs. Areas under investigation include projections and impact of global climate change, the future trends of living environment change in China, countermeasures and supporting technologies of global environment change, formation mechanism and prediction theory of major climate and weather disasters in China, technologies of efficient use of clean energy, energy conservation and improvement of energy efficiency, development and utilisation technology of renewable energy and new energy. The EU recognises that developing countries, such as China and India, need to strengthen their economies through industrialisation. However this needs to be achieved at the same time as protecting the environment and sustainable use of energy. The EU has committed itself to assisting developing countries to achieve their goals in four priority areas: 1) raising the policy profile of climate change; 2) support for adaption to climate change; 3) support for mitigation of climate change; and 4) capacity development. This comparative study is part of the EU funded SPRING project which seeks to understand and assess Chinese and European competencies, with the aim of facilitating greater cooperation in future climate and environment research.

  5. Managing air and water quality in the face of uncertain futures: perspectives, perceptions, reported action, and needs for climate adaptation at the local level

    NASA Astrophysics Data System (ADS)

    Bedsworth, L. W.; Ekstrom, J.

    2017-12-01

    As the climate continues to shift, projections show amplified and more frequent extreme events, including coastal and inland flooding, wildfires, prolonged droughts, and heatwaves. Vital public goods, both air quality and water quality, can be critically affected by such extreme events. Climate change will make it increasingly difficult for managers to achieve public health targets for air and water quality. Successfully preparing governance structures developed to maintain and improve air and water quality may benefit from preventative strategies to avoid public health impacts and costs of climate change locally. Perceptions of climate change and its risks, actions taken so far, and perceived barriers to adaptation give insight into the needs of managers for preparing for climate change impacts. This paper compares results of two surveys that looked at local level management of air quality and water quality in California. Air quality managers consistently reported to recognize the risks of climate change on their sector, where water quality managers' perceptions varied between no concern to high concern. We explore the differences in governance, capacity influence the ill-defined responsibility and assumed roles of water and air districts in adaptation to extreme events increasing with climate change. The chain and network of managing air quality is compared with that of water quality - laying out similarities and differences. Then we compare how the survey respondents differed in terms of extreme weather-influenced threats to environmental quality. We end with a discussion of responsibility - where in the chain of managing these life-critical ecosystem services, is the need greatest for adapting to climate change and what does this mean for the other levels in the chain beyond the local management.

  6. Sensitivity of Regulated Flow Regimes to Climate Change in the Western United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Tian; Voisin, Nathalie; Leng, Guoyong

    Water management activities or flow regulations modify water fluxes at the land surface and affect water resources in space and time. We hypothesize that flow regulations change the sensitivity of river flow to climate change with respect to unmanaged water resources. Quantifying these changes in sensitivity could help elucidate the impacts of water management at different spatiotemporal scales and inform climate adaptation decisions. In this study, we compared the emergence of significant changes in natural and regulated river flow regimes across the Western United States from simulations driven by multiple climate models and scenarios. We find that significant climate change-inducedmore » alterations in natural flow do not cascade linearly through water management activities. At the annual time scale, 50% of the Hydrologic Unit Code 4 (HUC4) sub-basins over the Western U.S. regions tend to have regulated flow regime more sensitive to the climate change than natural flow regime. Seasonality analyses show that the sensitivity varies remarkably across the seasons. We also find that the sensitivity is related to the level of water management. For 35% of the HUC4 sub-basins with the highest level of water management, the summer and winter flows tend to show a heightened sensitivity to climate change due to the complexity of joint reservoir operations. We further demonstrate that the impacts of considering water management in models are comparable to those that arises from uncertainties across climate models and emission scenarios. This prompts further climate adaptation studies research about nonlinearity effects of climate change through water management activities.« less

  7. Stability in a changing world - palm community dynamics in the hyperdiverse western Amazon over 17 years.

    PubMed

    Olivares, Ingrid; Svenning, Jens-Christian; van Bodegom, Peter M; Valencia, Renato; Balslev, Henrik

    2017-03-01

    Are the hyperdiverse local forests of the western Amazon undergoing changes linked to global and local drivers such as climate change, or successional dynamics? We analyzed local climatic records to assess potential climatic changes in Yasuní National Park, Ecuador, and compared two censuses (1995, 2012) of a palm community to assess changes in community structure and composition. Over 17 years, the structure and composition of this palm community remained remarkably stable. Soil humidity was significantly lower and canopy conditions were significantly more open in 2012 compared to 1995, but local climatic records showed that no significant changes in precipitation, temperature or river level have occurred during the last decade. Thus, we found no evidence of recent directional shifts in climate or the palm community in Yasuní. The absence of changes in local climate and plant community dynamics in Yasuní contrasts with recent findings from eastern Amazon, where environmental change is driving significant changes in ecosystem dynamics. Our findings suggest that until now, local forests in the northwest Amazon may have escaped pressure from climate change. The stability of this rich palm community embedded in the hyperdiverse Yasuní National Park underlines its uniqueness as a sanctuary for the protection of Amazonian diversity from global change impacts. © 2016 John Wiley & Sons Ltd.

  8. Polarizing news? Representations of threat and efficacy in leading US newspapers' coverage of climate change.

    PubMed

    Feldman, Lauren; Hart, P Sol; Milosevic, Tijana

    2017-05-01

    This study examines non-editorial news coverage in leading US newspapers as a source of ideological differences on climate change. A quantitative content analysis compared how the threat of climate change and efficacy for actions to address it were represented in climate change coverage across The New York Times, The Wall Street Journal, The Washington Post, and USA Today between 2006 and 2011. Results show that The Wall Street Journal was least likely to discuss the impacts of and threat posed by climate change and most likely to include negative efficacy information and use conflict and negative economic framing when discussing actions to address climate change. The inclusion of positive efficacy information was similar across newspapers. Also, across all newspapers, climate impacts and actions to address climate change were more likely to be discussed separately than together in the same article. Implications for public engagement and ideological polarization are discussed.

  9. Modelling the influence of climate change on the chemical concentrations in the Baltic Sea region with the POPCYCLING-Baltic model.

    PubMed

    Kong, Deguo; MacLeod, Matthew; Cousins, Ian T

    2014-09-01

    The effect of projected future changes in temperature, wind speed, precipitation and particulate organic carbon on concentrations of persistent organic chemicals in the Baltic Sea regional environment is evaluated using the POPCYCLING-Baltic multimedia chemical fate model. Steady-state concentrations of hypothetical perfectly persistent chemicals with property combinations that encompass the entire plausible range for non-ionizing organic substances are modelled under two alternative climate change scenarios (IPCC A2 and B2) and compared to a baseline climate scenario. The contributions of individual climate parameters are deduced in model experiments in which only one of the four parameters is changed from the baseline scenario. Of the four selected climate parameters, temperature is the most influential, and wind speed is least. Chemical concentrations in the Baltic region are projected to change by factors of up to 3.0 compared to the baseline climate scenario. For chemicals with property combinations similar to legacy persistent organic pollutants listed by the Stockholm Convention, modelled concentration ratios between two climate change scenarios and the baseline scenario range from factors of 0.5 to 2.0. This study is a first step toward quantitatively assessing climate change-induced changes in the environmental concentrations of persistent organic chemicals in the Baltic Sea region. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Comparative Synthesis of Current and Future Urban Stormwater Runoff Scenarios in Tampa Bay Basin under a Changing Climate

    NASA Astrophysics Data System (ADS)

    Khan, M.; Abdul-Aziz, O. I.

    2016-12-01

    Changes in climatic regimes and basin characteristics such as imperviousness, roughness and land use types would lead to potential changes in stormwater budget. In this study we quantified reference sensitivities of stormwater runoff to the potential climatic and land use/cover changes by developing a large-scale, mechanistic rainfall-runoff model for the Tampa Bay Basin of Florida using the US EPA Storm Water Management Model (SWMM 5.1). Key processes of urban hydrology, its dynamic interactions with groundwater and sea level, hydro-climatic variables and land use/cover characteristics were incorporated within the model. The model was calibrated and validated with historical streamflow data. We then computed the historical (1970-2000) and potential 2050s stormwater budgets for the Tampa Bay Basin. Climatic scenario projected by the global climate models (GCMs) and the regional climate models (RCMs), along with sea level and land use/cover projections, were utilized to anticipate the future stormwater budget. The comparative assessment of current and future stormwater scenario will aid a proactive management of stormwater runoff under a changing climate in the Tampa Bay Basin and similar urban basins around the world.

  11. The resilience of postglacial hunter-gatherers to abrupt climate change.

    PubMed

    Blockley, Simon; Candy, Ian; Matthews, Ian; Langdon, Pete; Langdon, Cath; Palmer, Adrian; Lincoln, Paul; Abrook, Ashley; Taylor, Barry; Conneller, Chantal; Bayliss, Alex; MacLeod, Alison; Deeprose, Laura; Darvill, Chris; Kearney, Rebecca; Beavan, Nancy; Staff, Richard; Bamforth, Michael; Taylor, Maisie; Milner, Nicky

    2018-05-01

    Understanding the resilience of early societies to climate change is an essential part of exploring the environmental sensitivity of human populations. There is significant interest in the role of abrupt climate events as a driver of early Holocene human activity, but there are very few well-dated records directly compared with local climate archives. Here, we present evidence from the internationally important Mesolithic site of Star Carr showing occupation during the early Holocene, which is directly compared with a high-resolution palaeoclimate record from neighbouring lake beds. We show that-once established-there was intensive human activity at the site for several hundred years when the community was subject to multiple, severe, abrupt climate events that impacted air temperatures, the landscape and the ecosystem of the region. However, these results show that occupation and activity at the site persisted regardless of the environmental stresses experienced by this society. The Star Carr population displayed a high level of resilience to climate change, suggesting that postglacial populations were not necessarily held hostage to the flickering switch of climate change. Instead, we show that local, intrinsic changes in the wetland environment were more significant in determining human activity than the large-scale abrupt early Holocene climate events.

  12. 'Weather Value at Risk': A uniform approach to describe and compare sectoral income risks from climate change.

    PubMed

    Prettenthaler, Franz; Köberl, Judith; Bird, David Neil

    2016-02-01

    We extend the concept of 'Weather Value at Risk' - initially introduced to measure the economic risks resulting from current weather fluctuations - to describe and compare sectoral income risks from climate change. This is illustrated using the examples of wheat cultivation and summer tourism in (parts of) Sardinia. Based on climate scenario data from four different regional climate models we study the change in the risk of weather-related income losses between some reference (1971-2000) and some future (2041-2070) period. Results from both examples suggest an increase in weather-related risks of income losses due to climate change, which is somewhat more pronounced for summer tourism. Nevertheless, income from wheat cultivation is at much higher risk of weather-related losses than income from summer tourism, both under reference and future climatic conditions. A weather-induced loss of at least 5% - compared to the income associated with average reference weather conditions - shows a 40% (80%) probability of occurrence in the case of wheat cultivation, but only a 0.4% (16%) probability of occurrence in the case of summer tourism, given reference (future) climatic conditions. Whereas in the agricultural example increases in the weather-related income risks mainly result from an overall decrease in average wheat yields, the heightened risk in the tourism example stems mostly from a change in the weather-induced variability of tourism incomes. With the extended 'Weather Value at Risk' concept being able to capture both, impacts from changes in the mean and the variability of the climate, it is a powerful tool for presenting and disseminating the results of climate change impact assessments. Due to its flexibility, the concept can be applied to any economic sector and therefore provides a valuable tool for cross-sectoral comparisons of climate change impacts, but also for the assessment of the costs and benefits of adaptation measures. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Comparison of In-Person vs. Digital Climate Education Program

    NASA Astrophysics Data System (ADS)

    Anderson, R. K.; Flora, J. A.; Saphir, M.

    2017-12-01

    In 2014, ACE (Alliance for Climate Education) evaluated the impact of its 45-minute live climate edutainment education program on the knowledge, attitudes and behavior of high school students with respect to climate change. The results showed gains in knowledge, increased engagement, as well as increased communication about climate change with number of students reporting talking about climate change with friends and family more than doubling. In 2016, ACE launched a digital version of its in-person edutainment education program, a 40-minute video version of the live program. This digital version, Our Climate Our Future (OCOF), has now been used by nearly 4,000 teachers nationwide and viewed by over 150,000 students. We experimentally tested the impact of the digital program (OCOF) compared to the live program and a control group. The experiment was conducted with 709 students in 27 classes at two North Carolina public high schools. Classes were assigned to one of three conditions: digital, live and control. In the digital version, students watched the 40-minute OCOF video featuring the same educator that presented the live program. In the live version, students received an identical 40-minute live presentation by an ACE staff educator The control group received neither treatment. When compared to controls, both programs were effective in positively increasing climate change knowledge, climate justice knowledge, perceived self-efficacy to make climate-friendly behavior changes, and beliefs about climate change (all statistically significant at or above P<.01). In the areas of hope that people can solve climate change and intent to change behavior, only the live program showed significant increases. In these two areas, it may be that an in-person experience is key to affecting change. In light of these positive results, ACE plans to increase the use of OCOF in schools across the country to assist teachers in their efforts to teach about climate change.

  14. Comparison of In-Person vs. Digital Climate Education Program

    NASA Astrophysics Data System (ADS)

    Anbar, A. D.; Elkins-Tanton, L. T.; Klug Boonstra, S.; Ben-Naim, D.

    2016-12-01

    In 2014, ACE (Alliance for Climate Education) evaluated the impact of its 45-minute live climate edutainment education program on the knowledge, attitudes and behavior of high school students with respect to climate change. The results showed gains in knowledge, increased engagement, as well as increased communication about climate change with number of students reporting talking about climate change with friends and family more than doubling. In 2016, ACE launched a digital version of its in-person edutainment education program, a 40-minute video version of the live program. This digital version, Our Climate Our Future (OCOF), has now been used by nearly 4,000 teachers nationwide and viewed by over 150,000 students. We experimentally tested the impact of the digital program (OCOF) compared to the live program and a control group. The experiment was conducted with 709 students in 27 classes at two North Carolina public high schools. Classes were assigned to one of three conditions: digital, live and control. In the digital version, students watched the 40-minute OCOF video featuring the same educator that presented the live program. In the live version, students received an identical 40-minute live presentation by an ACE staff educator The control group received neither treatment. When compared to controls, both programs were effective in positively increasing climate change knowledge, climate justice knowledge, perceived self-efficacy to make climate-friendly behavior changes, and beliefs about climate change (all statistically significant at or above P<.01). In the areas of hope that people can solve climate change and intent to change behavior, only the live program showed significant increases. In these two areas, it may be that an in-person experience is key to affecting change. In light of these positive results, ACE plans to increase the use of OCOF in schools across the country to assist teachers in their efforts to teach about climate change.

  15. Engaging Visitors in Climate Change Communication: A Case Study of Southern Florida's National Parks and Wildlife Refuges

    ERIC Educational Resources Information Center

    Beard, Caroline A.; Thompson, Jessica Leigh

    2012-01-01

    Through the lens of place-based climate change communication, this manuscript compares results from internal and external assessments of capacity to communicate about climate change at national parks and refuges in southern Florida. The internal survey sample included agency staff, stakeholders, community partners, and concessionaires; the…

  16. Climate change is projected to outpace rates of niche change in grasses.

    PubMed

    Cang, F Alice; Wilson, Ashley A; Wiens, John J

    2016-09-01

    Climate change may soon threaten much of global biodiversity, especially if species cannot adapt to changing climatic conditions quickly enough. A critical question is how quickly climatic niches change, and if this speed is sufficient to prevent extinction as climates warm. Here, we address this question in the grass family (Poaceae). Grasses are fundamental to one of Earth's most widespread biomes (grasslands), and provide roughly half of all calories consumed by humans (including wheat, rice, corn and sorghum). We estimate rates of climatic niche change in 236 species and compare these with rates of projected climate change by 2070. Our results show that projected climate change is consistently faster than rates of niche change in grasses, typically by more than 5000-fold for temperature-related variables. Although these results do not show directly what will happen under global warming, they have troubling implications for a major biome and for human food resources. © 2016 The Author(s).

  17. Decision analysis of shoreline protection under climate change uncertainty

    NASA Astrophysics Data System (ADS)

    Chao, Philip T.; Hobbs, Benjamin F.

    1997-04-01

    If global warming occurs, it could significantly affect water resource distribution and availability. Yet it is unclear whether the prospect of such change is relevant to water resources management decisions being made today. We model a shoreline protection decision problem with a stochastic dynamic program (SDP) to determine whether consideration of the possibility of climate change would alter the decision. Three questions are addressed with the SDP: (l) How important is climate change compared to other uncertainties?, (2) What is the economic loss if climate change uncertainty is ignored?, and (3) How does belief in climate change affect the timing of the decision? In the case study, sensitivity analysis shows that uncertainty in real discount rates has a stronger effect upon the decision than belief in climate change. Nevertheless, a strong belief in climate change makes the shoreline protection project less attractive and often alters the decision to build it.

  18. Linking models of human behaviour and climate alters projected climate change

    DOE PAGES

    Beckage, Brian; Gross, Louis J.; Lacasse, Katherine; ...

    2018-01-01

    Although not considered in climate models, perceived risk stemming from extreme climate events may induce behavioural changes that alter greenhouse gas emissions. Here, we link the C-ROADS climate model to a social model of behavioural change to examine how interactions between perceived risk and emissions behaviour influence projected climate change. Our coupled climate and social model resulted in a global temperature change ranging from 3.4–6.2 °C by 2100 compared with 4.9 °C for the C-ROADS model alone, and led to behavioural uncertainty that was of a similar magnitude to physical uncertainty (2.8 °C versus 3.5 °C). Model components with themore » largest influence on temperature were the functional form of response to extreme events, interaction of perceived behavioural control with perceived social norms, and behaviours leading to sustained emissions reductions. Lastly, our results suggest that policies emphasizing the appropriate attribution of extreme events to climate change and infrastructural mitigation may reduce climate change the most.« less

  19. Linking models of human behaviour and climate alters projected climate change

    NASA Astrophysics Data System (ADS)

    Beckage, Brian; Gross, Louis J.; Lacasse, Katherine; Carr, Eric; Metcalf, Sara S.; Winter, Jonathan M.; Howe, Peter D.; Fefferman, Nina; Franck, Travis; Zia, Asim; Kinzig, Ann; Hoffman, Forrest M.

    2018-01-01

    Although not considered in climate models, perceived risk stemming from extreme climate events may induce behavioural changes that alter greenhouse gas emissions. Here, we link the C-ROADS climate model to a social model of behavioural change to examine how interactions between perceived risk and emissions behaviour influence projected climate change. Our coupled climate and social model resulted in a global temperature change ranging from 3.4-6.2 °C by 2100 compared with 4.9 °C for the C-ROADS model alone, and led to behavioural uncertainty that was of a similar magnitude to physical uncertainty (2.8 °C versus 3.5 °C). Model components with the largest influence on temperature were the functional form of response to extreme events, interaction of perceived behavioural control with perceived social norms, and behaviours leading to sustained emissions reductions. Our results suggest that policies emphasizing the appropriate attribution of extreme events to climate change and infrastructural mitigation may reduce climate change the most.

  20. Linking models of human behaviour and climate alters projected climate change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckage, Brian; Gross, Louis J.; Lacasse, Katherine

    Although not considered in climate models, perceived risk stemming from extreme climate events may induce behavioural changes that alter greenhouse gas emissions. Here, we link the C-ROADS climate model to a social model of behavioural change to examine how interactions between perceived risk and emissions behaviour influence projected climate change. Our coupled climate and social model resulted in a global temperature change ranging from 3.4–6.2 °C by 2100 compared with 4.9 °C for the C-ROADS model alone, and led to behavioural uncertainty that was of a similar magnitude to physical uncertainty (2.8 °C versus 3.5 °C). Model components with themore » largest influence on temperature were the functional form of response to extreme events, interaction of perceived behavioural control with perceived social norms, and behaviours leading to sustained emissions reductions. Lastly, our results suggest that policies emphasizing the appropriate attribution of extreme events to climate change and infrastructural mitigation may reduce climate change the most.« less

  1. Transplantation of subalpine wood-pasture turfs along a natural climatic gradient reveals lower resistance of unwooded pastures to climate change compared to wooded ones.

    PubMed

    Gavazov, Konstantin; Spiegelberger, Thomas; Buttler, Alexandre

    2014-04-01

    Climate change could impact strongly on cold-adapted mountain ecosystems, but little is known about its interaction with traditional land-use practices. We used an altitudinal gradient to simulate a year-round warmer and drier climate for semi-natural subalpine grasslands across a landscape of contrasting land-use management. Turf mesocosms from three pasture-woodland land-use types-unwooded pasture, sparsely wooded pasture, and densely wooded pasture-spanning a gradient from high to low management intensity were transplanted downslope to test their resistance to two intensities of climate change. We found strong overall effects of intensive (+4 K) experimental climate change (i.e., warming and reduced precipitation) on plant community structure and function, while moderate (+2 K) climate change did not substantially affect the studied land-use types, thus indicating an ecosystem response threshold to moderate climate perturbation. The individual land-use types were affected differently under the +4 K scenario, with a 60% decrease in aboveground biomass (AGB) in unwooded pasture turfs, a 40% decrease in sparsely wooded pasture turfs, and none in densely wooded ones. Similarly, unwooded pasture turfs experienced a 30% loss of species, advanced (by 30 days) phenological development, and a mid-season senescence due to drought stress, while no such effects were recorded for the other land-use types. The observed contrasting effects of climate change across the pasture-woodland landscape have important implications for future decades. The reduced impact of climate change on wooded pastures as compared to unwooded ones should promote the sustainable land use of wooded pastures by maintaining low management intensity and a sparse forest canopy, which buffer the immediate impacts of climate change on herbaceous vegetation.

  2. Spatial heterogeneity of climate change as an experiential basis for skepticism

    PubMed Central

    Kaufmann, Robert K.; Mann, Michael L.; Gopal, Sucharita; Liederman, Jackie A.; Howe, Peter D.; Pretis, Felix; Gilmore, Michelle

    2017-01-01

    We postulate that skepticism about climate change is partially caused by the spatial heterogeneity of climate change, which exposes experiential learners to climate heuristics that differ from the global average. This hypothesis is tested by formalizing an index that measures local changes in climate using station data and comparing this index with survey-based model estimates of county-level opinion about whether global warming is happening. Results indicate that more stations exhibit cooling and warming than predicted by random chance and that spatial variations in these changes can account for spatial variations in the percentage of the population that believes that “global warming is happening.” This effect is diminished in areas that have experienced more record low temperatures than record highs since 2005. Together, these results suggest that skepticism about climate change is driven partially by personal experiences; an accurate heuristic for local changes in climate identifies obstacles to communicating ongoing changes in climate to the public and how these communications might be improved. PMID:27994143

  3. Spatial heterogeneity of climate change as an experiential basis for skepticism.

    PubMed

    Kaufmann, Robert K; Mann, Michael L; Gopal, Sucharita; Liederman, Jackie A; Howe, Peter D; Pretis, Felix; Tang, Xiaojing; Gilmore, Michelle

    2017-01-03

    We postulate that skepticism about climate change is partially caused by the spatial heterogeneity of climate change, which exposes experiential learners to climate heuristics that differ from the global average. This hypothesis is tested by formalizing an index that measures local changes in climate using station data and comparing this index with survey-based model estimates of county-level opinion about whether global warming is happening. Results indicate that more stations exhibit cooling and warming than predicted by random chance and that spatial variations in these changes can account for spatial variations in the percentage of the population that believes that "global warming is happening." This effect is diminished in areas that have experienced more record low temperatures than record highs since 2005. Together, these results suggest that skepticism about climate change is driven partially by personal experiences; an accurate heuristic for local changes in climate identifies obstacles to communicating ongoing changes in climate to the public and how these communications might be improved.

  4. Where’s the beef? Predicting the effects of climate change on cattle production in western U.S. rangelands

    Treesearch

    Sue Miller; Matt Reeves; Karen Bagne; John Tanaka

    2017-01-01

    Cattle production capacity on western rangelands is potentially vulnerable to climate change through impacts on the amount of forage, changes in vegetation type, heat stress, and year-to-year forage variability. The researchers in this study projected climate change effects to rangelands through 2100 and compared them to a present-day baseline to estimate vulnerability...

  5. Risk Analysis of Near-Coastal Species of the U.S. Pacific Coast: Case Study Comparing Risks Associated with Two Future Climate Scenarios

    EPA Science Inventory

    Fundamental questions for climate change policy and adaptation strategies are to what extent does ecological risk change under different climate scenarios and how do any changes in risk vary among taxa and geographically. To evaluate these questions, we developed a rule-based fra...

  6. Farmers and Climate Change: A Cross-National Comparison of Beliefs and Risk Perceptions in High-Income Countries.

    PubMed

    Prokopy, Linda S; Arbuckle, J G; Barnes, Andrew P; Haden, V R; Hogan, Anthony; Niles, Meredith T; Tyndall, John

    2015-08-01

    Climate change has serious implications for the agricultural industry-both in terms of the need to adapt to a changing climate and to modify practices to mitigate for the impacts of climate change. In high-income countries where farming tends to be very intensive and large scale, it is important to understand farmers' beliefs and concerns about climate change in order to develop appropriate policies and communication strategies. Looking across six study sites-Scotland, Midwestern United States, California, Australia, and two locations in New Zealand-this paper finds that over half of farmers in each location believe that climate change is occurring. However, there is a wide range of beliefs regarding the anthropogenic nature of climate change; only in Australia do a majority of farmers believe that climate change is anthropogenic. In all locations, a majority of farmers believe that climate change is not a threat to local agriculture. The different policy contexts and existing impacts from climate change are discussed as possible reasons for the variation in beliefs. This study compared varying surveys from the different locations and concludes that survey research on farmers and climate change in diverse locations should strive to include common questions to facilitate comparisons.

  7. Weathercasters' views on climate change: A state-of-the-community review

    NASA Astrophysics Data System (ADS)

    Timm, K.; Perkins, D. R., IV; Myers, T.; Maibach, E.

    2017-12-01

    As a community of practice, TV weathercasters are positioned at a crucial intersection between climate scientists and the general public. Weathercasters have the opportunity to use their scientific training and public communication skills to educate viewers about climate change. Though early research found high rates of skepticism about climate change among TV weathercasters, the most current and comprehensive analysis to date of TV weathercasters' views on climate change suggests that their views have evolved in several important ways. Surveys of all working TV weathercasters in the United States conducted in 2015, 2016 and 2017 show that the weathercaster community now holds views of climate change that are similar to that of climate scientists—in particular, that human-caused climate change is happening today and it is impacting American communities in many harmful ways. Ninety-five percent of TV weathercasters now believe that climate change (as defined by the American Meteorological Society) is occurring, and certainty in that belief has grown. Nearly 50% of TV weathercasters believe the climate change that has occurred over the past 50 years has been caused mostly (34%), or largely to entirely (15%), by human activity. Additionally, surveys suggest that weathercasters tend to underestimate the scientific consensus on climate change. Weathercasters, on average, estimate 75% of climate scientists believe humans have caused the majority of recent climate change as compared to the actual value of 97%. Despite convergence in weathercasters' climate change beliefs, this analysis suggests that opportunities remain for building climate literacy among America's TV weathercasters. Increasing this personal knowledge of climate change is one of several factors that empower weathercasters to become public climate educators to increase understanding of climate change causes in communities around the country.

  8. Cross-scale intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large river basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hattermann, F. F.; Krysanova, V.; Gosling, S. N.

    Ideally, the results from models operating at different scales should agree in trend direction and magnitude of impacts under climate change. However, this implies that the sensitivity of impact models designed for either scale to climate variability and change is comparable. In this study, we compare hydrological changes simulated by 9 global and 9 regional hydrological models (HM) for 11 large river basins in all continents under reference and scenario conditions. The foci are on model validation runs, sensitivity of annual discharge to climate variability in the reference period, and sensitivity of the long-term average monthly seasonal dynamics to climatemore » change. One major result is that the global models, mostly not calibrated against observations, often show a considerable bias in mean monthly discharge, whereas regional models show a much better reproduction of reference conditions. However, the sensitivity of two HM ensembles to climate variability is in general similar. The simulated climate change impacts in terms of long-term average monthly dynamics evaluated for HM ensemble medians and spreads show that the medians are to a certain extent comparable in some cases with distinct differences in others, and the spreads related to global models are mostly notably larger. Summarizing, this implies that global HMs are useful tools when looking at large-scale impacts of climate change and variability, but whenever impacts for a specific river basin or region are of interest, e.g. for complex water management applications, the regional-scale models validated against observed discharge should be used.« less

  9. [Climate change risk of nature reserve and its assessment: A case study of Dalinuoer National Nature Reserve in Inner Mongolia Autonomous Region].

    PubMed

    Zhao, Wei; Shen, Wei Shou; Liu, Hai Yue

    2016-12-01

    According to the theoretical framework of addressing climate change based on risk mana-gement and the challenge to nature reserve management under climate change, climate change risk of nature reserve was analyzed and defined. Focus on birds and water habitat, grassland habitat, forest habitat, wetland habitat in Dalinuoer Nature Reserve, risk assessment method of nature reserve under climate change was formulated, climate change risks to Dalinuoer Nature Reserve and its habitats were assessed and predicted. The results showed that, during the period from 1997 to 2010, there was significant volatility in dynamic changes of climate change risks to Dalinuoer Nature Reserve and waterbody, grassland, forest, wetland in the region, Dalinuoer Nature Reserve and its habitats were in status of risk in 1999, 2001, 2005 and 2008, wetland habitat was also in status of risk in 2002 and 2004. Under scenario A, B and C, climate change risks to Dalinuoer Nature Reserve and waterbody, grassland, forest, wetland in the region would be more serious in 2020 and 2030, compared with the 2010 level. Climate change risks to different habitats were different significantly, with most serious climate change risk to wetland habitat due to its sensitivity to climate change and rich bird resources. The effect of climate change on nature reserve and related risk would be aggravated by excess utilization of water resource and grassland resource. As climate change risks had appeared in Dalinuoer Nature Reserve, risk management associated with climate change could greatly help to maintain and enhance biodiversity protection function of nature reserves.

  10. Climatic change controls productivity variation in global grasslands

    PubMed Central

    Gao, Qingzhu; Zhu, Wenquan; Schwartz, Mark W.; Ganjurjav, Hasbagan; Wan, Yunfan; Qin, Xiaobo; Ma, Xin; Williamson, Matthew A.; Li, Yue

    2016-01-01

    Detection and identification of the impacts of climate change on ecosystems have been core issues in climate change research in recent years. In this study, we compared average annual values of the normalized difference vegetation index (NDVI) with theoretical net primary productivity (NPP) values based on temperature and precipitation to determine the effect of historic climate change on global grassland productivity from 1982 to 2011. Comparison of trends in actual productivity (NDVI) with climate-induced potential productivity showed that the trends in average productivity in nearly 40% of global grassland areas have been significantly affected by climate change. The contribution of climate change to variability in grassland productivity was 15.2–71.2% during 1982–2011. Climate change contributed significantly to long-term trends in grassland productivity mainly in North America, central Eurasia, central Africa, and Oceania; these regions will be more sensitive to future climate change impacts. The impacts of climate change on variability in grassland productivity were greater in the Western Hemisphere than the Eastern Hemisphere. Confirmation of the observed trends requires long-term controlled experiments and multi-model ensembles to reduce uncertainties and explain mechanisms. PMID:27243565

  11. Dynamic models of farmers adaptation to climate change (case of rice farmers in Cemoro Watershed, Central Java, Indonesia)

    NASA Astrophysics Data System (ADS)

    Sugihardjo; Sutrisno, J.; Setyono, P.; Suntoro

    2018-03-01

    Farming activities are generally very sensitive to climate change variations. Global climate change will result in changes of patterns and distribution of rainfall. The impact of changing patterns and distribution of rainfall is the occurrence of early season shifts and periods of planting. Therefore, farmers need to adapt to the occurrence of climate change to avoid the decrease productivity on the farm land. This study aims to examine the impacts of climate change adaptation that farmers practiced on the farming productivity. The analysis is conducted dynamically using the Powersim 2.5. The result of analysis shows that the use of Planting Calendar and Integrated Crops Management technology can increase the rice productivity of certain area unity. Both technologies are the alternatives for farmers to adapt to climate change. Both farmers who adapt to climate change and do not adapt to climate change, experience an increase in rice production, time after time. However, farmers who adapt to climate change, increase their production faster than farmers who do not adapt to climate change. The use of the Planting Calendar and Integrated Crops Management strategy together as a farmers’ adaptation strategy is able to increase production compared to non-adaptive farmers.

  12. Climate Trends and Farmers' Perceptions of Climate Change in Zambia.

    PubMed

    Mulenga, Brian P; Wineman, Ayala; Sitko, Nicholas J

    2017-02-01

    A number of studies use meteorological records to analyze climate trends and assess the impact of climate change on agricultural yields. While these provide quantitative evidence on climate trends and the likely effects thereof, they incorporate limited qualitative analysis of farmers' perceptions of climate change and/or variability. The present study builds on the quantitative methods used elsewhere to analyze climate trends, and in addition compares local narratives of climate change with evidence found in meteorological records in Zambia. Farmers offer remarkably consistent reports of a rainy season that is growing shorter and less predictable. For some climate parameters-notably, rising average temperature-there is a clear overlap between farmers' observations and patterns found in the meteorological records. However, the data do not support the perception that the rainy season used to begin earlier, and we generally do not detect a reported increase in the frequency of dry spells. Several explanations for these discrepancies are offered. Further, we provide policy recommendations to help farmers adapt to climate change/variability, as well as suggestions to shape future climate change policies, programs, and research in developing countries.

  13. Making climate change tangible for strategic adaptation planning: The Climate Corridor Approach

    NASA Astrophysics Data System (ADS)

    Orlowsky, Boris; Calanca, Pierluigi; Ali, Irshad; Ali, Jawad; Elguera Hilares, Agustin; Huggel, Christian; Khan, Inamullah; Neukom, Raphael; Nizami, Arjumand; Qazi, Muhammad Abbas; Robledo, Carmenza; Rohrer, Mario; Salzmann, Nadine; Schmidt, Kaspar

    2017-04-01

    Climate change is a global phenomenon and difficult to grasp. Although its importance is generally acknowledged, impacts of (future) climate change on human activities are in many cases not taken into account explicitly, in particular when planning development projects. This is due to technical and conceptual challenges, missing financial and human resources and competing priorities. Neglecting climate change can become problematic, if a proposed activity requires specific climatological conditions under which it becomes feasible, a simple example being crop cultivation that needs certain temperature an d precipitation ranges. Comparing such ``climate corridors'' to future climate projections provides an intuitive and low-cost yet quantitative means for assessing needs for, and viability of, adaptation activities under climate change - a "poor man's approach" to climate suitability analysis. A chief advantage of this approach is its modest demand on data. Three case studies from Pakistan, Peru and Tajikistan show that climate corridor analysis can deliver robust results and can be used to efficiently communicate risks and challenges of climate change to partners and stakeholders in the developing countries.

  14. Development of risk matrices for evaluating climatic change responses of forested habitats

    Treesearch

    Louis R. Iverson; Stephen N. Matthews; Anantha M. Prasad; Matthew P. Peters; Gary. Yohe

    2012-01-01

    We present an approach to assess and compare risk from climate change among multiple species through a risk matrix, in which managers can quickly prioritize for species that need to have strategies developed, evaluated further, or watched. We base the matrix upon earlier work towards the National Climate Assessment for potential damage to infrastructures from climate...

  15. Domestic and International Climate Migration from Rural Mexico

    PubMed Central

    Nawrotzki, Raphael J.; Runfola, Daniel M.; Hunter, Lori M.; Riosmena, Fernando

    2016-01-01

    Evidence is increasing that climate change and variability may influence human migration patterns. However, there is less agreement regarding the type of migration streams most strongly impacted. This study tests whether climate change more strongly impacted international compared to domestic migration from rural Mexico during 1986-99. We employ eight temperature and precipitation-based climate change indices linked to detailed migration histories obtained from the Mexican Migration Project. Results from multilevel discrete-time event-history models challenge the assumption that climate-related migration will be predominantly short distance and domestic, but instead show that climate change more strongly impacted international moves from rural Mexico. The stronger climate impact on international migration may be explained by the self-insurance function of international migration, the presence of strong migrant networks, and climate-related changes in wage difference. While a warming in temperature increased international outmigration, higher levels of precipitation declined the odds of an international move. PMID:28439146

  16. Domestic and International Climate Migration from Rural Mexico.

    PubMed

    Nawrotzki, Raphael J; Runfola, Daniel M; Hunter, Lori M; Riosmena, Fernando

    2016-12-01

    Evidence is increasing that climate change and variability may influence human migration patterns. However, there is less agreement regarding the type of migration streams most strongly impacted. This study tests whether climate change more strongly impacted international compared to domestic migration from rural Mexico during 1986-99. We employ eight temperature and precipitation-based climate change indices linked to detailed migration histories obtained from the Mexican Migration Project. Results from multilevel discrete-time event-history models challenge the assumption that climate-related migration will be predominantly short distance and domestic, but instead show that climate change more strongly impacted international moves from rural Mexico. The stronger climate impact on international migration may be explained by the self-insurance function of international migration, the presence of strong migrant networks, and climate-related changes in wage difference. While a warming in temperature increased international outmigration, higher levels of precipitation declined the odds of an international move.

  17. Adapting to the Changing Climate: An Assessment of Local Health Department Preparations for Climate Change-Related Health Threats, 2008-2012

    PubMed Central

    Roser-Renouf, Connie; Maibach, Edward W.; Li, Jennifer

    2016-01-01

    Background Climate change poses a major public health threat. A survey of U.S. local health department directors in 2008 found widespread recognition of the threat, but limited adaptive capacity, due to perceived lack of expertise and other resources. Methods We assessed changes between 2008 and 2012 in local public health departments' preparedness for the public health threats of climate change, in light of increasing national polarization on the issue, and widespread funding cutbacks for public health. A geographically representative online survey of directors of local public health departments was conducted in 2011–2012 (N = 174; response rate = 50%), and compared to the 2008 telephone survey results (N = 133; response rate = 61%). Results Significant polarization had occurred: more respondents in 2012 were certain that the threat of local climate change impacts does/does not exist, and fewer were unsure. Roughly 10% said it is not a threat, compared to 1% in 2008. Adaptation capacity decreased in several areas: perceived departmental expertise in climate change risk assessment; departmental prioritization of adaptation; and the number of adaptation-related programs and services departments provided. In 2008, directors' perceptions of local impacts predicted the number of adaptation-related programs and services their departments offered, but in 2012, funding predicted programming and directors' impact perceptions did not. This suggests that budgets were constraining directors' ability to respond to local climate change-related health threats. Results also suggest that departmental expertise may mitigate funding constraints. Strategies for overcoming these obstacles to local public health departments' preparations for climate change are discussed. PMID:26991658

  18. Adapting to the Changing Climate: An Assessment of Local Health Department Preparations for Climate Change-Related Health Threats, 2008-2012.

    PubMed

    Roser-Renouf, Connie; Maibach, Edward W; Li, Jennifer

    2016-01-01

    Climate change poses a major public health threat. A survey of U.S. local health department directors in 2008 found widespread recognition of the threat, but limited adaptive capacity, due to perceived lack of expertise and other resources. We assessed changes between 2008 and 2012 in local public health departments' preparedness for the public health threats of climate change, in light of increasing national polarization on the issue, and widespread funding cutbacks for public health. A geographically representative online survey of directors of local public health departments was conducted in 2011-2012 (N = 174; response rate = 50%), and compared to the 2008 telephone survey results (N = 133; response rate = 61%). Significant polarization had occurred: more respondents in 2012 were certain that the threat of local climate change impacts does/does not exist, and fewer were unsure. Roughly 10% said it is not a threat, compared to 1% in 2008. Adaptation capacity decreased in several areas: perceived departmental expertise in climate change risk assessment; departmental prioritization of adaptation; and the number of adaptation-related programs and services departments provided. In 2008, directors' perceptions of local impacts predicted the number of adaptation-related programs and services their departments offered, but in 2012, funding predicted programming and directors' impact perceptions did not. This suggests that budgets were constraining directors' ability to respond to local climate change-related health threats. Results also suggest that departmental expertise may mitigate funding constraints. Strategies for overcoming these obstacles to local public health departments' preparations for climate change are discussed.

  19. A Climatic Stability Approach to Prioritizing Global Conservation Investments

    PubMed Central

    Iwamura, Takuya; Wilson, Kerrie A.; Venter, Oscar; Possingham, Hugh P.

    2010-01-01

    Climate change is impacting species and ecosystems globally. Many existing templates to identify the most important areas to conserve terrestrial biodiversity at the global scale neglect the future impacts of climate change. Unstable climatic conditions are predicted to undermine conservation investments in the future. This paper presents an approach to developing a resource allocation algorithm for conservation investment that incorporates the ecological stability of ecoregions under climate change. We discover that allocating funds in this way changes the optimal schedule of global investments both spatially and temporally. This allocation reduces the biodiversity loss of terrestrial endemic species from protected areas due to climate change by 22% for the period of 2002–2052, when compared to allocations that do not consider climate change. To maximize the resilience of global biodiversity to climate change we recommend that funding be increased in ecoregions located in the tropics and/or mid-elevation habitats, where climatic conditions are predicted to remain relatively stable. Accounting for the ecological stability of ecoregions provides a realistic approach to incorporating climate change into global conservation planning, with potential to save more species from extinction in the long term. PMID:21152095

  20. Modeling Soil Carbon Dynamics in Northern Forests: Effects of Spatial and Temporal Aggregation of Climatic Input Data.

    PubMed

    Dalsgaard, Lise; Astrup, Rasmus; Antón-Fernández, Clara; Borgen, Signe Kynding; Breidenbach, Johannes; Lange, Holger; Lehtonen, Aleksi; Liski, Jari

    2016-01-01

    Boreal forests contain 30% of the global forest carbon with the majority residing in soils. While challenging to quantify, soil carbon changes comprise a significant, and potentially increasing, part of the terrestrial carbon cycle. Thus, their estimation is important when designing forest-based climate change mitigation strategies and soil carbon change estimates are required for the reporting of greenhouse gas emissions. Organic matter decomposition varies with climate in complex nonlinear ways, rendering data aggregation nontrivial. Here, we explored the effects of temporal and spatial aggregation of climatic and litter input data on regional estimates of soil organic carbon stocks and changes for upland forests. We used the soil carbon and decomposition model Yasso07 with input from the Norwegian National Forest Inventory (11275 plots, 1960-2012). Estimates were produced at three spatial and three temporal scales. Results showed that a national level average soil carbon stock estimate varied by 10% depending on the applied spatial and temporal scale of aggregation. Higher stocks were found when applying plot-level input compared to country-level input and when long-term climate was used as compared to annual or 5-year mean values. A national level estimate for soil carbon change was similar across spatial scales, but was considerably (60-70%) lower when applying annual or 5-year mean climate compared to long-term mean climate reflecting the recent climatic changes in Norway. This was particularly evident for the forest-dominated districts in the southeastern and central parts of Norway and in the far north. We concluded that the sensitivity of model estimates to spatial aggregation will depend on the region of interest. Further, that using long-term climate averages during periods with strong climatic trends results in large differences in soil carbon estimates. The largest differences in this study were observed in central and northern regions with strongly increasing temperatures.

  1. Modeling Soil Carbon Dynamics in Northern Forests: Effects of Spatial and Temporal Aggregation of Climatic Input Data

    PubMed Central

    Dalsgaard, Lise; Astrup, Rasmus; Antón-Fernández, Clara; Borgen, Signe Kynding; Breidenbach, Johannes; Lange, Holger; Lehtonen, Aleksi; Liski, Jari

    2016-01-01

    Boreal forests contain 30% of the global forest carbon with the majority residing in soils. While challenging to quantify, soil carbon changes comprise a significant, and potentially increasing, part of the terrestrial carbon cycle. Thus, their estimation is important when designing forest-based climate change mitigation strategies and soil carbon change estimates are required for the reporting of greenhouse gas emissions. Organic matter decomposition varies with climate in complex nonlinear ways, rendering data aggregation nontrivial. Here, we explored the effects of temporal and spatial aggregation of climatic and litter input data on regional estimates of soil organic carbon stocks and changes for upland forests. We used the soil carbon and decomposition model Yasso07 with input from the Norwegian National Forest Inventory (11275 plots, 1960–2012). Estimates were produced at three spatial and three temporal scales. Results showed that a national level average soil carbon stock estimate varied by 10% depending on the applied spatial and temporal scale of aggregation. Higher stocks were found when applying plot-level input compared to country-level input and when long-term climate was used as compared to annual or 5-year mean values. A national level estimate for soil carbon change was similar across spatial scales, but was considerably (60–70%) lower when applying annual or 5-year mean climate compared to long-term mean climate reflecting the recent climatic changes in Norway. This was particularly evident for the forest-dominated districts in the southeastern and central parts of Norway and in the far north. We concluded that the sensitivity of model estimates to spatial aggregation will depend on the region of interest. Further, that using long-term climate averages during periods with strong climatic trends results in large differences in soil carbon estimates. The largest differences in this study were observed in central and northern regions with strongly increasing temperatures. PMID:26901763

  2. Global synthesis of the documented and projected effects of climate change on inland fishes

    USGS Publications Warehouse

    Myers, Bonnie; Lynch, Abigail; Bunnell, David; Chu, Cindy; Falke, Jeffrey A.; Kovach, Ryan; Krabbenhoft, Trevor J.; Kwak, Thomas J.; Paukert, Craig P.

    2017-01-01

    Although climate change is an important factor affecting inland fishes globally, a comprehensive review of how climate change has impacted and will continue to impact inland fishes worldwide does not currently exist. We conducted an extensive, systematic primary literature review to identify English-language, peer-reviewed journal publications with projected and documented examples of climate change impacts on inland fishes globally. Since the mid-1980s, scientists have projected the effects of climate change on inland fishes, and more recently, documentation of climate change impacts on inland fishes has increased. Of the thousands of title and abstracts reviewed, we selected 624 publications for a full text review: 63 of these publications documented an effect of climate change on inland fishes, while 116 publications projected inland fishes’ response to future climate change. Documented and projected impacts of climate change varied, but several trends emerged including differences between documented and projected impacts of climate change on salmonid abundance (P = 0.0002). Salmonid abundance decreased in 89.5% of documented effects compared to 35.7% of projected effects, where variable effects were more commonly reported (64.3%). Studies focused on responses of salmonids (61% of total) to climate change in North America and Europe, highlighting major gaps in the literature for taxonomic groups and geographic focus. Elucidating global patterns and identifying knowledge gaps of climate change effects on inland fishes will help managers better anticipate local changes in fish populations and assemblages, resulting in better development of management plans, particularly in systems with little information on climate change effects on fish.

  3. An Objective Approach to Select Climate Scenarios when Projecting Species Distribution under Climate Change

    PubMed Central

    Casajus, Nicolas; Périé, Catherine; Logan, Travis; Lambert, Marie-Claude; de Blois, Sylvie; Berteaux, Dominique

    2016-01-01

    An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one. PMID:27015274

  4. An Objective Approach to Select Climate Scenarios when Projecting Species Distribution under Climate Change.

    PubMed

    Casajus, Nicolas; Périé, Catherine; Logan, Travis; Lambert, Marie-Claude; de Blois, Sylvie; Berteaux, Dominique

    2016-01-01

    An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one.

  5. Comparison of the impacts of urban development and climate change on exposing European cities to pluvial flooding

    NASA Astrophysics Data System (ADS)

    Skougaard Kaspersen, Per; Høegh Ravn, Nanna; Arnbjerg-Nielsen, Karsten; Madsen, Henrik; Drews, Martin

    2017-08-01

    The economic and human consequences of extreme precipitation and the related flooding of urban areas have increased rapidly over the past decades. Some of the key factors that affect the risks to urban areas include climate change, the densification of assets within cities and the general expansion of urban areas. In this paper, we examine and compare quantitatively the impact of climate change and recent urban development patterns on the exposure of four European cities to pluvial flooding. In particular, we investigate the degree to which pluvial floods of varying severity and in different geographical locations are influenced to the same extent by changes in urban land cover and climate change. We have selected the European cities of Odense, Vienna, Strasbourg and Nice for analyses to represent different climatic conditions, trends in urban development and topographical characteristics. We develop and apply a combined remote-sensing and flood-modelling approach to simulate the extent of pluvial flooding for a range of extreme precipitation events for historical (1984) and present-day (2014) urban land cover and for two climate-change scenarios (i.e. representative concentration pathways, RCP 4.5 and RCP 8.5). Changes in urban land cover are estimated using Landsat satellite imagery for the period 1984-2014. We combine the remote-sensing analyses with regionally downscaled estimates of precipitation extremes of current and expected future climate to enable 2-D overland flow simulations and flood-hazard assessments. The individual and combined impacts of urban development and climate change are quantified by examining the variations in flooding between the different simulations along with the corresponding uncertainties. In addition, two different assumptions are examined with regards to the development of the capacity of the urban drainage system in response to urban development and climate change. In the stationary approach, the capacity resembles present-day design, while it is updated in the evolutionary approach to correspond to changes in imperviousness and precipitation intensities due to urban development and climate change respectively. For all four cities, we find an increase in flood exposure corresponding to an observed absolute growth in impervious surfaces of 7-12 % during the past 30 years of urban development. Similarly, we find that climate change increases exposure to pluvial flooding under both the RCP 4.5 and RCP 8.5 scenarios. The relative importance of urban development and climate change on flood exposure varies considerably between the cities. For Odense, the impact of urban development is comparable to that of climate change under an RCP 8.5 scenario (2081-2100), while for Vienna and Strasbourg it is comparable to the impacts of an RCP 4.5 scenario. For Nice, climate change dominates urban development as the primary driver of changes in exposure to flooding. The variation between geographical locations is caused by differences in soil infiltration properties, historical trends in urban development and the projected regional impacts of climate change on extreme precipitation. Developing the capacity of the urban drainage system in relation to urban development is found to be an effective adaptation measure as it fully compensates for the increase in run-off caused by additional sealed surfaces. On the other hand, updating the drainage system according to changes in precipitation intensities caused by climate change only marginally reduces flooding for the most extreme events.

  6. Climate change and One Health.

    PubMed

    Zinsstag, Jakob; Crump, Lisa; Schelling, Esther; Hattendorf, Jan; Maidane, Yahya Osman; Ali, Kadra Osman; Muhummed, Abdifatah; Umer, Abdurezak Adem; Aliyi, Ferzua; Nooh, Faisal; Abdikadir, Mohammed Ibrahim; Ali, Seid Mohammed; Hartinger, Stella; Mäusezahl, Daniel; de White, Monica Berger Gonzalez; Cordon-Rosales, Celia; Castillo, Danilo Alvarez; McCracken, John; Abakar, Fayiz; Cercamondi, Colin; Emmenegger, Sandro; Maier, Edith; Karanja, Simon; Bolon, Isabelle; de Castañeda, Rafael Ruiz; Bonfoh, Bassirou; Tschopp, Rea; Probst-Hensch, Nicole; Cissé, Guéladio

    2018-06-01

    The journal The Lancet recently published a countdown on health and climate change. Attention was focused solely on humans. However, animals, including wildlife, livestock and pets, may also be impacted by climate change. Complementary to the high relevance of awareness rising for protecting humans against climate change, here we present a One Health approach, which aims at the simultaneous protection of humans, animals and the environment from climate change impacts (climate change adaptation). We postulate that integrated approaches save human and animal lives and reduce costs when compared to public and animal health sectors working separately. A One Health approach to climate change adaptation may significantly contribute to food security with emphasis on animal source foods, extensive livestock systems, particularly ruminant livestock, environmental sanitation, and steps towards regional and global integrated syndromic surveillance and response systems. The cost of outbreaks of emerging vector-borne zoonotic pathogens may be much lower if they are detected early in the vector or in livestock rather than later in humans. Therefore, integrated community-based surveillance of zoonoses is a promising avenue to reduce health effects of climate change.

  7. Why do some people do "more" to mitigate climate change than others? Exploring heterogeneity in psycho-social associations.

    PubMed

    Ortega-Egea, José Manuel; García-de-Frutos, Nieves; Antolín-López, Raquel

    2014-01-01

    The urgency of climate change mitigation calls for a profound shift in personal behavior. This paper investigates psycho-social correlates of extra mitigation behavior in response to climate change, while also testing for potential (unobserved) heterogeneity in European citizens' decision-making. A person's extra mitigation behavior in response to climate change is conceptualized--and differentiated from common mitigation behavior--as some people's broader and greater levels of behavioral engagement (compared to others) across specific self-reported mitigation actions and behavioral domains. Regression analyses highlight the importance of environmental psychographics (i.e., attitudes, motivations, and knowledge about climate change) and socio-demographics (especially country-level variables) in understanding extra mitigation behavior. By looking at the data through the lens of segmentation, significant heterogeneity is uncovered in the associations of attitudes and knowledge about climate change--but not in motivational or socio-demographic links--with extra mitigation behavior in response to climate change, across two groups of environmentally active respondents. The study has implications for promoting more ambitious behavioral responses to climate change, both at the individual level and across countries.

  8. Climate change and One Health

    PubMed Central

    Crump, Lisa; Schelling, Esther; Hattendorf, Jan; Maidane, Yahya Osman; Ali, Kadra Osman; Muhummed, Abdifatah; Umer, Abdurezak Adem; Aliyi, Ferzua; Nooh, Faisal; Abdikadir, Mohammed Ibrahim; Ali, Seid Mohammed; Hartinger, Stella; Mäusezahl, Daniel; de White, Monica Berger Gonzalez; Cordon-Rosales, Celia; Castillo, Danilo Alvarez; McCracken, John; Abakar, Fayiz; Cercamondi, Colin; Emmenegger, Sandro; Maier, Edith; Karanja, Simon; Bolon, Isabelle; de Castañeda, Rafael Ruiz; Bonfoh, Bassirou; Tschopp, Rea; Probst-Hensch, Nicole; Cissé, Guéladio

    2018-01-01

    Abstract The journal The Lancet recently published a countdown on health and climate change. Attention was focused solely on humans. However, animals, including wildlife, livestock and pets, may also be impacted by climate change. Complementary to the high relevance of awareness rising for protecting humans against climate change, here we present a One Health approach, which aims at the simultaneous protection of humans, animals and the environment from climate change impacts (climate change adaptation). We postulate that integrated approaches save human and animal lives and reduce costs when compared to public and animal health sectors working separately. A One Health approach to climate change adaptation may significantly contribute to food security with emphasis on animal source foods, extensive livestock systems, particularly ruminant livestock, environmental sanitation, and steps towards regional and global integrated syndromic surveillance and response systems. The cost of outbreaks of emerging vector-borne zoonotic pathogens may be much lower if they are detected early in the vector or in livestock rather than later in humans. Therefore, integrated community-based surveillance of zoonoses is a promising avenue to reduce health effects of climate change. PMID:29790983

  9. Multi-model approach to assess the impact of climate change on runoff

    NASA Astrophysics Data System (ADS)

    Dams, J.; Nossent, J.; Senbeta, T. B.; Willems, P.; Batelaan, O.

    2015-10-01

    The assessment of climate change impacts on hydrology is subject to uncertainties related to the climate change scenarios, stochastic uncertainties of the hydrological model and structural uncertainties of the hydrological model. This paper focuses on the contribution of structural uncertainty of hydrological models to the overall uncertainty of the climate change impact assessment. To quantify the structural uncertainty of hydrological models, four physically based hydrological models (SWAT, PRMS and a semi- and fully distributed version of the WetSpa model) are set up for a catchment in Belgium. Each model is calibrated using four different objective functions. Three climate change scenarios with a high, mean and low hydrological impact are statistically perturbed from a large ensemble of climate change scenarios and are used to force the hydrological models. This methodology allows assessing and comparing the uncertainty introduced by the climate change scenarios with the uncertainty introduced by the hydrological model structure. Results show that the hydrological model structure introduces a large uncertainty on both the average monthly discharge and the extreme peak and low flow predictions under the climate change scenarios. For the low impact climate change scenario, the uncertainty range of the mean monthly runoff is comparable to the range of these runoff values in the reference period. However, for the mean and high impact scenarios, this range is significantly larger. The uncertainty introduced by the climate change scenarios is larger than the uncertainty due to the hydrological model structure for the low and mean hydrological impact scenarios, but the reverse is true for the high impact climate change scenario. The mean and high impact scenarios project increasing peak discharges, while the low impact scenario projects increasing peak discharges only for peak events with return periods larger than 1.6 years. All models suggest for all scenarios a decrease of the lowest flows, except for the SWAT model with the mean hydrological impact climate change scenario. The results of this study indicate that besides the uncertainty introduced by the climate change scenarios also the hydrological model structure uncertainty should be taken into account in the assessment of climate change impacts on hydrology. To make it more straightforward and transparent to include model structural uncertainty in hydrological impact studies, there is a need for hydrological modelling tools that allow flexible structures and methods to validate model structures in their ability to assess impacts under unobserved future climatic conditions.

  10. Dispersal will limit ability of mammals to track climate change in the Western Hemisphere

    PubMed Central

    Schloss, Carrie A.; Nuñez, Tristan A.; Lawler, Joshua J.

    2012-01-01

    As they have in response to past climatic changes, many species will shift their distributions in response to modern climate change. However, due to the unprecedented rapidity of projected climatic changes, some species may not be able to move their ranges fast enough to track shifts in suitable climates and associated habitats. Here, we investigate the ability of 493 mammals to keep pace with projected climatic changes in the Western Hemisphere. We modeled the velocities at which species will likely need to move to keep pace with projected changes in suitable climates. We compared these velocities with the velocities at which species are able to move as a function of dispersal distances and dispersal frequencies. Across the Western Hemisphere, on average, 9.2% of mammals at a given location will likely be unable to keep pace with climate change. In some places, up to 39% of mammals may be unable to track shifts in suitable climates. Eighty-seven percent of mammalian species are expected to experience reductions in range size and 20% of these range reductions will likely be due to limited dispersal abilities as opposed to reductions in the area of suitable climate. Because climate change will likely outpace the response capacity of many mammals, mammalian vulnerability to climate change may be more extensive than previously anticipated. PMID:22586104

  11. Does internal climate variability overwhelm climate change signals in streamflow? The upper Po and Rhone basin case studies.

    PubMed

    Fatichi, S; Rimkus, S; Burlando, P; Bordoy, R

    2014-09-15

    Projections of climate change effects in streamflow are increasingly required to plan water management strategies. These projections are however largely uncertain due to the spread among climate model realizations, internal climate variability, and difficulties in transferring climate model results at the spatial and temporal scales required by catchment hydrology. A combination of a stochastic downscaling methodology and distributed hydrological modeling was used in the ACQWA project to provide projections of future streamflow (up to year 2050) for the upper Po and Rhone basins, respectively located in northern Italy and south-western Switzerland. Results suggest that internal (stochastic) climate variability is a fundamental source of uncertainty, typically comparable or larger than the projected climate change signal. Therefore, climate change effects in streamflow mean, frequency, and seasonality can be masked by natural climatic fluctuations in large parts of the analyzed regions. An exception to the overwhelming role of stochastic variability is represented by high elevation catchments fed by glaciers where streamflow is expected to be considerably reduced due to glacier retreat, with consequences appreciable in the main downstream rivers in August and September. Simulations also identify regions (west upper Rhone and Toce, Ticino river basins) where a strong precipitation increase in the February to April period projects streamflow beyond the range of natural climate variability during the melting season. This study emphasizes the importance of including internal climate variability in climate change analyses, especially when compared to the limited uncertainty that would be accounted for by few deterministic projections. The presented results could be useful in guiding more specific impact studies, although design or management decisions should be better based on reliability and vulnerability criteria as suggested by recent literature. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. How early can the seeding dates of spring wheat be under current and future climate in Saskatchewan, Canada?

    PubMed

    He, Yong; Wang, Hong; Qian, Budong; McConkey, Brian; DePauw, Ron

    2012-01-01

    Shorter growing season and water stress near wheat maturity are the main factors that presumably limit the yield potential of spring wheat due to late seeding in Saskatchewan, Canada. Advancing seeding dates can be a strategy to help producers mitigate the impact of climate change on spring wheat. It is unknown, however, how early farmers can seed while minimizing the risk of spring frost damage and the soil and machinery constraints. This paper explores early seeding dates of spring wheat on the Canadian Prairies under current and projected future climate. To achieve this, (i) weather records from 1961 to 1990 were gathered at three sites with different soil and climate conditions in Saskatchewan, Canada; (ii) four climate databases that included a baseline (treated as historic weather climate during the period of 1961-1990) and three climate change scenarios (2040-2069) developed by the Canadian global climate model (GCM) with the forcing of three greenhouse gas (GHG) emission scenarios (A2, A1B and B1); (iii) seeding dates of spring wheat (Triticum aestivum L.) under baseline and projected future climate were predicted. Compared with the historical record of seeding dates, the predicted seeding dates were advanced under baseline climate for all sites using our seeding date model. Driven by the predicted temperature increase of the scenarios compared with baseline climate, all climate change scenarios projected significantly earlier seeding dates than those currently used. Compared to the baseline conditions, there is no reduction in grain yield because precipitation increases during sensitive growth stages of wheat, suggesting that there is potential to shift seeding to an earlier date. The average advancement of seeding dates varied among sites and chosen scenarios. The Swift Current (south-west) site has the highest potential for earlier seeding (7 to 11 days) whereas such advancement was small in the Melfort (north-east, 2 to 4 days) region. The extent of projected climate change in Saskatchewan indicates that growers in this region have the potential of earlier seeding. The results obtained in this study may be used for adaptation assessments of seeding dates under possible climate change to mitigate the impact of potential warming.

  13. CLIMATE VARIABILITY, ANTHROPOGENIC CHANGE, AND CONSEQUENCES IN THE MID-ATLANTIC

    EPA Science Inventory

    When compared to the preceding millennium, the rate of temperature change over the past century strongly suggests that we are in a period of rapid global climate change. Globally, continued anthropogenic increases in concentrations of atmospheric greenhouse gases probably will re...

  14. Country Contributions to Climate Change

    NASA Astrophysics Data System (ADS)

    Schuenemann, K. C.

    2016-12-01

    An assignment called "Country Contributions to Climate Change" is used in an introductory Global Climate Change course and answers the question, "Who is responsible for climate change?" This assignment is used about a third of the way into the course, which fulfills a science requirement, but also a Global Diversity requirement within the university. The assignment involves taking a trip to the computer lab to learn how to create graphs in Excel. Two graphs are created, the Keeling Curve, and a graph on total carbon emissions by country since 1900. Students are given data for a few key countries, then are sent to the Carbon Dioxide Information Analysis Center (CDIAC) website to find data on their assigned country. Students create a graph to compare emissions over time from each of these countries. Using this data and the data from the CDIAC, students are asked to draw conclusions about which country is the largest emitter, then on a per capita basis, which people are the largest emitters. Later in the semester they will calculate their own carbon footprint and compare to these numbers. Finally, students are asked to add up emissions by country since 1900 to find out how the countries compare in cumulative emissions, and we learn why this number is relevant. Students also learn the difference between carbon emissions and concentrations, tying together some lessons on the carbon cycle. Students discover the complex role of several countries in climate change, showing them how complicated a climate change solution policy can be.

  15. Projecting climate change impacts on hydrology: the potential role of daily GCM output

    NASA Astrophysics Data System (ADS)

    Maurer, E. P.; Hidalgo, H. G.; Das, T.; Dettinger, M. D.; Cayan, D.

    2008-12-01

    A primary challenge facing resource managers in accommodating climate change is determining the range and uncertainty in regional and local climate projections. This is especially important for assessing changes in extreme events, which will drive many of the more severe impacts of a changed climate. Since global climate models (GCMs) produce output at a spatial scale incompatible with local impact assessment, different techniques have evolved to downscale GCM output so locally important climate features are expressed in the projections. We compared skill and hydrologic projections using two statistical downscaling methods and a distributed hydrology model. The downscaling methods are the constructed analogues (CA) and the bias correction and spatial downscaling (BCSD). CA uses daily GCM output, and can thus capture GCM projections for changing extreme event occurrence, while BCSD uses monthly output and statistically generates historical daily sequences. We evaluate the hydrologic impacts projected using downscaled climate (from the NCEP/NCAR reanalysis as a surrogate GCM) for the late 20th century with both methods, comparing skill in projecting soil moisture, snow pack, and streamflow at key locations in the Western United States. We include an assessment of a new method for correcting for GCM biases in a hybrid method combining the most important characteristics of both methods.

  16. An assessment of irrigation needs and crop yield for the United States under potential climate changes

    USGS Publications Warehouse

    Brumbelow, Kelly; Georgakakos, Aris P.

    2000-01-01

    Past assessments of climate change on U.S. agriculture have mostly focused on changes in crop yield. Few studies have included the entire conterminous U.S., and few studies have assessed changing irrigation requirements. None have included the effects of changing soil moisture characteristics as determined by changing climatic forcing. This study assesses changes in irrigation requirements and crop yields for five crops in the areas of the U.S. where they have traditionally been grown. Physiologically-based crop models are used to incorporate inputs of climate, soils, agricultural management, and drought stress tolerance. Soil moisture values from a macroscale hydrologic model run under a future climate scenario are used to initialize soil moisture content at the beginning of each growing season. Historical crop yield data is used to calibrate model parameters and determine locally acceptable drought stress as a management parameter. Changes in irrigation demand and crop yield are assessed for both means and extremes by comparing results for atmospheric forcing close to the present climate with those for a future climate scenario. Assessments using the Canadian Center for Climate Modeling and Analysis General Circulation Model (CGCM1) indicate greater irrigation demands in the southern U.S. and decreased irrigation demands in the northern and western U.S. Crop yields typically increase except for winter wheat in the southern U.S. and corn. Variability in both irrigation demands and crop yields increases in most cases. Assessment results for the CGCM1 climate scenario are compared to those for the Hadley Centre for Climate Prediction and Research GCM (HadCM2) scenario for southwestern Georgia. The comparison shows significant differences in irrigation and yield trends, both in magnitude and direction. The differences reflect the high forecast uncertainty of current GCMs. Nonetheless, both GCMs indicate higher variability in future climatic forcing and, consequently, in the response of agricultural systems.

  17. Accounting for multiple climate components when estimating climate change exposure and velocity

    USGS Publications Warehouse

    Nadeau, Christopher P.; Fuller, Angela K.

    2015-01-01

    The effect of anthropogenic climate change on organisms will likely be related to climate change exposure and velocity at local and regional scales. However, common methods to estimate climate change exposure and velocity ignore important components of climate that are known to affect the ecology and evolution of organisms.We develop a novel index of climate change (climate overlap) that simultaneously estimates changes in the means, variation and correlation between multiple weather variables. Specifically, we estimate the overlap between multivariate normal probability distributions representing historical and current or projected future climates. We provide methods for estimating the statistical significance of climate overlap values and methods to estimate velocity using climate overlap.We show that climates have changed significantly across 80% of the continental United States in the last 32 years and that much of this change is due to changes in the variation and correlation between weather variables (two statistics that are rarely incorporated into climate change studies). We also show that projected future temperatures are predicted to be locally novel (<1·5% overlap) across most of the global land surface and that exposure is likely to be highest in areas with low historical climate variation. Last, we show that accounting for changes in the variation and correlation between multiple weather variables can dramatically affect velocity estimates; mean velocity estimates in the continental United States were between 3·1 and 19·0 km yr−1when estimated using climate overlap compared to 1·4 km yr−1 when estimated using traditional methods.Our results suggest that accounting for changes in the means, variation and correlation between multiple weather variables can dramatically affect estimates of climate change exposure and velocity. These climate components are known to affect the ecology and evolution of organisms, but are ignored by most measures of climate change. We conclude with a set of future directions and recommend future work to determine which measures of climate change exposure and velocity are most related to biological responses to climate change.

  18. A dynamic modelling approach for estimating critical loads of nitrogen based on plant community changes under a changing climate.

    PubMed

    Belyazid, Salim; Kurz, Dani; Braun, Sabine; Sverdrup, Harald; Rihm, Beat; Hettelingh, Jean-Paul

    2011-03-01

    A dynamic model of forest ecosystems was used to investigate the effects of climate change, atmospheric deposition and harvest intensity on 48 forest sites in Sweden (n = 16) and Switzerland (n = 32). The model was used to investigate the feasibility of deriving critical loads for nitrogen (N) deposition based on changes in plant community composition. The simulations show that climate and atmospheric deposition have comparably important effects on N mobilization in the soil, as climate triggers the release of organically bound nitrogen stored in the soil during the elevated deposition period. Climate has the most important effect on plant community composition, underlining the fact that this cannot be ignored in future simulations of vegetation dynamics. Harvest intensity has comparatively little effect on the plant community in the long term, while it may be detrimental in the short term following cutting. This study shows: that critical loads of N deposition can be estimated using the plant community as an indicator; that future climatic changes must be taken into account; and that the definition of the reference deposition is critical for the outcome of this estimate. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Can "Ozzie" the Ostrich Prepare the Public for Better Learning about Climate Change?

    NASA Astrophysics Data System (ADS)

    Chen, R. F.; Lustick, D. S.; Lohmeier, J.; Lockwood, L.

    2016-02-01

    Climate change is one of the most pressing societal issues today, and educators are struggling with how to inform people of all ages and backgrounds about the reality and relevance of climate change. ScienceToGo.org has designed 12 posters that were placed on the Boston subways over the course of 15 months. Surveys of T-riders suggest that Ozzie the Ostrich is highly recognizable, is non-threatening, and is connecting Boston with climate change impacts and solutions. We hypothesize that our advertising campaign not only raises awareness about climate change in Boston and engages the public in thinking and talking about climate change, but also prepares them for learning more about climate change in the future. By exposing students to the 12 posters, we think that fears associated with climate change are lessened, and that students are more willing to explore a variety of media (newspaper articles, internet postings, peer-reviewed journal articles, data, and graphs) compared to students that are not exposed to the posters. Students will complete an initial survey, be exposed (or not exposed) to Ozzie posters, asked to explore a variety of media related to climate change, then surveyed again. Finally, focus groups will be conducted to gain insights on how students interact about climate change with or without exposure to Ozzie. We are interested in learning if exposure to brief, engaging, and humorous advertising messages will change the way students learn about climate change. This presentation will present initial results of this study.

  20. Simulating post-wildfire forest trajectories under alternative climate and management scenarios.

    PubMed

    Tarancón, Alicia Azpeleta; Fulé, Peter Z; Shive, Kristen L; Sieg, Carolyn H; Meador, Andrew Sánchez; Strom, Barbara

    Post-fire predictions of forest recovery under future climate change and management actions are necessary for forest managers to make decisions about treatments. We applied the Climate-Forest Vegetation Simulator (Climate-FVS), a new version of a widely used forest management model, to compare alternative climate and management scenarios in a severely burned multispecies forest of Arizona, USA. The incorporation of seven combinations of General Circulation Models (GCM) and emissions scenarios altered long-term (100 years) predictions of future forest condition compared to a No Climate Change (NCC) scenario, which forecast a gradual increase to high levels of forest density and carbon stock. In contrast, emissions scenarios that included continued high greenhouse gas releases led to near-complete deforestation by 2111. GCM-emissions scenario combinations that were less severe reduced forest structure and carbon stock relative to NCC. Fuel reduction treatments that had been applied prior to the severe wildfire did have persistent effects, especially under NCC, but were overwhelmed by increasingly severe climate change. We tested six management strategies aimed at sustaining future forests: prescribed burning at 5, 10, or 20-year intervals, thinning 40% or 60% of stand basal area, and no treatment. Severe climate change led to deforestation under all management regimes, but important differences emerged under the moderate scenarios: treatments that included regular prescribed burning fostered low density, wildfire-resistant forests composed of the naturally dominant species, ponderosa pine. Non-fire treatments under moderate climate change were forecast to become dense and susceptible to severe wildfire, with a shift to dominance by sprouting species. Current U.S. forest management requires modeling of future scenarios but does not mandate consideration of climate change effects. However, this study showed substantial differences in model outputs depending on climate and management actions. Managers should incorporate climate change into the process of analyzing the environmental effects of alternative actions.

  1. Combining analytical frameworks to assess livelihood vulnerability to climate change and analyse adaptation options.

    PubMed

    Reed, M S; Podesta, G; Fazey, I; Geeson, N; Hessel, R; Hubacek, K; Letson, D; Nainggolan, D; Prell, C; Rickenbach, M G; Ritsema, C; Schwilch, G; Stringer, L C; Thomas, A D

    2013-10-01

    Experts working on behalf of international development organisations need better tools to assist land managers in developing countries maintain their livelihoods, as climate change puts pressure on the ecosystem services that they depend upon. However, current understanding of livelihood vulnerability to climate change is based on a fractured and disparate set of theories and methods. This review therefore combines theoretical insights from sustainable livelihoods analysis with other analytical frameworks (including the ecosystem services framework, diffusion theory, social learning, adaptive management and transitions management) to assess the vulnerability of rural livelihoods to climate change. This integrated analytical framework helps diagnose vulnerability to climate change, whilst identifying and comparing adaptation options that could reduce vulnerability, following four broad steps: i) determine likely level of exposure to climate change, and how climate change might interact with existing stresses and other future drivers of change; ii) determine the sensitivity of stocks of capital assets and flows of ecosystem services to climate change; iii) identify factors influencing decisions to develop and/or adopt different adaptation strategies, based on innovation or the use/substitution of existing assets; and iv) identify and evaluate potential trade-offs between adaptation options. The paper concludes by identifying interdisciplinary research needs for assessing the vulnerability of livelihoods to climate change.

  2. Combining analytical frameworks to assess livelihood vulnerability to climate change and analyse adaptation options☆

    PubMed Central

    Reed, M.S.; Podesta, G.; Fazey, I.; Geeson, N.; Hessel, R.; Hubacek, K.; Letson, D.; Nainggolan, D.; Prell, C.; Rickenbach, M.G.; Ritsema, C.; Schwilch, G.; Stringer, L.C.; Thomas, A.D.

    2013-01-01

    Experts working on behalf of international development organisations need better tools to assist land managers in developing countries maintain their livelihoods, as climate change puts pressure on the ecosystem services that they depend upon. However, current understanding of livelihood vulnerability to climate change is based on a fractured and disparate set of theories and methods. This review therefore combines theoretical insights from sustainable livelihoods analysis with other analytical frameworks (including the ecosystem services framework, diffusion theory, social learning, adaptive management and transitions management) to assess the vulnerability of rural livelihoods to climate change. This integrated analytical framework helps diagnose vulnerability to climate change, whilst identifying and comparing adaptation options that could reduce vulnerability, following four broad steps: i) determine likely level of exposure to climate change, and how climate change might interact with existing stresses and other future drivers of change; ii) determine the sensitivity of stocks of capital assets and flows of ecosystem services to climate change; iii) identify factors influencing decisions to develop and/or adopt different adaptation strategies, based on innovation or the use/substitution of existing assets; and iv) identify and evaluate potential trade-offs between adaptation options. The paper concludes by identifying interdisciplinary research needs for assessing the vulnerability of livelihoods to climate change. PMID:25844020

  3. The interplay of climate and land use change affects the distribution of EU bumblebees.

    PubMed

    Marshall, Leon; Biesmeijer, Jacobus C; Rasmont, Pierre; Vereecken, Nicolas J; Dvorak, Libor; Fitzpatrick, Una; Francis, Frédéric; Neumayer, Johann; Ødegaard, Frode; Paukkunen, Juho P T; Pawlikowski, Tadeusz; Reemer, Menno; Roberts, Stuart P M; Straka, Jakub; Vray, Sarah; Dendoncker, Nicolas

    2018-01-01

    Bumblebees in Europe have been in steady decline since the 1900s. This decline is expected to continue with climate change as the main driver. However, at the local scale, land use and land cover (LULC) change strongly affects the occurrence of bumblebees. At present, LULC change is rarely included in models of future distributions of species. This study's objective is to compare the roles of dynamic LULC change and climate change on the projected distribution patterns of 48 European bumblebee species for three change scenarios until 2100 at the scales of Europe, and Belgium, Netherlands and Luxembourg (BENELUX). We compared three types of models: (1) only climate covariates, (2) climate and static LULC covariates and (3) climate and dynamic LULC covariates. The climate and LULC change scenarios used in the models include, extreme growth applied strategy (GRAS), business as might be usual and sustainable European development goals. We analysed model performance, range gain/loss and the shift in range limits for all bumblebees. Overall, model performance improved with the introduction of LULC covariates. Dynamic models projected less range loss and gain than climate-only projections, and greater range loss and gain than static models. Overall, there is considerable variation in species responses and effects were most pronounced at the BENELUX scale. The majority of species were predicted to lose considerable range, particularly under the extreme growth scenario (GRAS; overall mean: 64% ± 34). Model simulations project a number of local extinctions and considerable range loss at the BENELUX scale (overall mean: 56% ± 39). Therefore, we recommend species-specific modelling to understand how LULC and climate interact in future modelling. The efficacy of dynamic LULC change should improve with higher thematic and spatial resolution. Nevertheless, current broad scale representations of change in major land use classes impact modelled future distribution patterns. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  4. Twitter Analytics: Are the U.S. Coastal Regions Prepared for Climate Change in 2017?

    NASA Astrophysics Data System (ADS)

    Singleton, S. L.; Kumar, S.

    2017-12-01

    According to the U.S. National Climate Assessment, the Southeast Coast and Gulf Coast of the United States are particularly susceptible to sea level rise, heat waves, hurricanes and less accessibility to clean water due to climate change. This is because of the extreme variation of topography in these two regions. Preparation for climate change consequences can only occur with conversation, which is a method of bringing awareness to the issue. Over the past decade, social media has taken over the spectrum of information exchange in the United States. Social Network Analysis (SNA) is a field that is emerging with the growth in popularity of social media. SNA is the practice of analyzing trends in volume and opinion of a population of social media users. Twitter, one popular social media platform, is one of the largest microblogging sites in the world, and it provides an abundance of data related to the trending topics such as climate change. Twitter analytics is a type of SNA performed on data from the tweets of Twitter users. In this work, Twitter analytics is performed on the data generated from the Twitter users in the United States, who were talking about climate change, global warming and/or CO2, over the course of one year (July 2016 - June 2017). Specifically, a regional comparative analysis on the coastal U.S. regions was conducted to recognize which region(s) is/are falling behind on the conversation about climate change. Sentiment analysis was also performed to understand the trends in opinion about climate change that vary over time. Experimental results determined that the southeast coast of the United States is deficient in their discussion about climate change compared to the other coastal regions. Igniting the conversation about this issue in these regions will mitigate the disasters due to climate change by increasing awareness in the people of these regions so they can properly prepare.

  5. Changes of climate regimes during the last millennium and the twenty-first century simulated by the Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Feng, Song; Liu, Chang; Chen, Jie; Chen, Jianhui; Chen, Fahu

    2018-01-01

    This study examines the shifts in terrestrial climate regimes using the Köppen-Trewartha (K-T) climate classification by analyzing the Community Earth System Model Last Millennium Ensemble (CESM-LME) simulations for the period 850-2005 and CESM Medium Ensemble (CESM-ME), CESM Large Ensemble (CESM-LE) and CESM with fixed aerosols Medium Ensemble (CESM-LE_FixA) simulations for the period 1920-2080. We compare K-T climate types from the Medieval Climate Anomaly (MCA) (950-1250) with the Little Ice Age (LIA) (1550-1850), from present day (PD) (1971-2000) with the last millennium (LM) (850-1850), and from the future (2050-2080) with the LM in order to place anthropogenic changes in the context of changes due to natural forcings occurring during the last millennium. For CESM-LME, we focused on the simulations with all forcings, though the impacts of individual forcings (e.g., solar activities, volcanic eruptions, greenhouse gases, aerosols and land use changes) were also analyzed. We found that the climate types changed slightly between the MCA and the LIA due to weak changes in temperature and precipitation. The climate type changes in PD relative to the last millennium have been largely driven by greenhouse gas-induced warming, but anthropogenic aerosols have also played an important role on regional scales. At the end of the twenty-first century, the anthropogenic forcing has a much greater effect on climate types than the PD. Following the reduction of aerosol emissions, the impact of greenhouse gases will further promote global warming in the future. Compared to precipitation, changes in climate types are dominated by greenhouse gas-induced warming. The large shift in climate types by the end of this century suggests possible wide-spread redistribution of surface vegetation and a significant change in species distributions.

  6. Linear and nonlinear effects of temperature and precipitation on ecosystem properties in tidal saline wetlands

    USGS Publications Warehouse

    Feher, Laura C.; Osland, Michael J.; Griffith, Kereen T.; Grace, James B.; Howard, Rebecca J.; Stagg, Camille L.; Enwright, Nicholas M.; Krauss, Ken W.; Gabler, Christopher A.; Day, Richard H.; Rogers, Kerrylee

    2017-01-01

    Climate greatly influences the structure and functioning of tidal saline wetland ecosystems. However, there is a need to better quantify the effects of climatic drivers on ecosystem properties, particularly near climate-sensitive ecological transition zones. Here, we used climate- and literature-derived ecological data from tidal saline wetlands to test hypotheses regarding the influence of climatic drivers (i.e., temperature and precipitation regimes) on the following six ecosystem properties: canopy height, biomass, productivity, decomposition, soil carbon density, and soil carbon accumulation. Our analyses quantify and elucidate linear and nonlinear effects of climatic drivers. We quantified positive linear relationships between temperature and above-ground productivity and strong positive nonlinear (sigmoidal) relationships between (1) temperature and above-ground biomass and canopy height and (2) precipitation and canopy height. Near temperature-controlled mangrove range limits, small changes in temperature are expected to trigger comparatively large changes in biomass and canopy height, as mangrove forests grow, expand, and, in some cases, replace salt marshes. However, within these same transition zones, temperature-induced changes in productivity are expected to be comparatively small. Interestingly, despite the significant above-ground height, biomass, and productivity relationships across the tropical–temperate mangrove–marsh transition zone, the relationships between temperature and soil carbon density or soil carbon accumulation were not significant. Our literature review identifies several ecosystem properties and many regions of the world for which there are insufficient data to fully evaluate the influence of climatic drivers, and the identified data gaps can be used by scientists to guide future research. Our analyses indicate that near precipitation-controlled transition zones, small changes in precipitation are expected to trigger comparatively large changes in canopy height. However, there are scant data to evaluate the influence of precipitation on other ecosystem properties. There is a need for more decomposition data across climatic gradients, and to advance understanding of the influence of changes in precipitation and freshwater availability, additional ecological data are needed from tidal saline wetlands in arid climates. Collectively, our results can help scientists and managers better anticipate the linear and nonlinear ecological consequences of climate change for coastal wetlands.

  7. Can increasing carbon dioxide cause climate change?

    PubMed Central

    Lindzen, Richard S.

    1997-01-01

    The realistic physical functioning of the greenhouse effect is reviewed, and the role of dynamic transport and water vapor is identified. Model errors and uncertainties are quantitatively compared with the forcing due to doubling CO2, and they are shown to be too large for reliable model evaluations of climate sensitivities. The possibility of directly measuring climate sensitivity is reviewed. A direct approach using satellite data to relate changes in globally averaged radiative flux changes at the top of the atmosphere to naturally occurring changes in global mean temperature is described. Indirect approaches to evaluating climate sensitivity involving the response to volcanic eruptions and Eocene climate change are also described. Finally, it is explained how, in principle, a climate that is insensitive to gross radiative forcing as produced by doubling CO2 might still be able to undergo major changes of the sort associated with ice ages and equable climates. PMID:11607742

  8. Global and Mediterranean climate change: a short summary.

    PubMed

    Ciardini, Virginia; Contessa, Gian Marco; Falsaperla, Rosaria; Gómez-Amo, José Luis; Meloni, Daniela; Monteleone, Francesco; Pace, Giandomenico; Piacentino, Salvatore; Sferlazzo, Damiano; di Sarra, Alcide

    2016-01-01

    Observed changes at the global scale. An increase of the annual mean global temperature and changes of other climate parameters have been observed in the last century. The global temperature and the atmospheric concentration of greenhouse gases are changing at a very fast pace compared to those found in palaeoclimate records. Changes in the Mediterranean. Variations of some climate change indicators can be much larger at the local than at the global scale, and the Mediterranean has been indicated among the regions most sensitive to climate change, also due to the increasing anthropogenic pressure. Model projections for the Mediterranean foresee further warming, droughts, and long-lasting modifications. Regional climate changes impact health and ecosystems, creating new risks, determined not only by weather events, but also by changing exposures and vulnerabilities. These issues, and in particular those regarding occupational safety, have not been sufficiently addressed to date.

  9. Impacts of Autonomous Adaptations on the Hydrological Drought Under Climate Change Condition

    NASA Astrophysics Data System (ADS)

    Oki, T.; Satoh, Y.; Pokhrel, Y. N.; KIM, H.; Yoshimura, K.

    2014-12-01

    Because of expected effects of climate changes on quantity and spatial distribution of available water resources, assessment of the changes in the balance between the demand and supply of water resources is critical for some regions. Historically, water deficiencies were overcome by planned water management such as dam regulation and irrigation. But only few studies have investigated the effect of anthropogenic factors on the risk of imbalance of water demand and supply under climate change conditions. Therefore, estimation of the potential deficiency in existing infrastructures under water-environment change is needed to support our society to adapt against future climate changes. This study aims to estimate the impacts of climate changes on the risk of water scarcity projected based on CMIP5 RCP scenarios and the efficiency of autonomous adaptation by anthropogenic water management, such as reservoir operation and irrigation using ground water. First, tendencies of the changes in water scarcity under climate change are estimated by an improved land surface model, which integrates natural water cycles and human activities. Second, the efficiencies of human-developed infrastructure are analyzed by comparing the naturalized and fully anthropogenic offline simulations. It was found that number of hydrological drought days will be increased and decreased in approximately 70 % and 24 % of global land, respectively, considering anthropogenic water management, however, they are approximately 82 % and 16 %, respectively, under naturalized condition without anthropogenic water management. The differences indicate how autonomous adaptation through anthropogenic water management can reduce the impacts of climate change. Also, adequate enhancement of infrastructure is necessary against expected water scarcity under climate change because such positive and negative effects of artificial water regulation show comparable impact on water scarcity risk to that of climate change in regions where human activity is significant, even if it is under the worst-case RCP8.5 scenario. More realistic assessment of the impacts of climate change on water resources and the cost estimation of how much economic investments are needed to maintain the current level of the risks of water scarcity are necessary.

  10. On The Impact of Climate Change to Agricultural Productivity in East Java

    NASA Astrophysics Data System (ADS)

    Kuswanto, Heri; Salamah, Mutiah; Mumpuni Retnaningsih, Sri; Dwi Prastyo, Dedy

    2018-03-01

    Many researches showed that climate change has significant impact on agricultural sector, which threats the food security especially in developing countries. It has been observed also that the climate change increases the intensity of extreme events. This research investigated the impact climate to the agricultural productivity in East Java, as one of the main rice producers in Indonesia. Standard regression as well as panel regression models have been performed in order to find the best model which is able to describe the climate change impact. The analysis found that the fixed effect model of panel regression outperforms the others showing that climate change had negatively impacted the rice productivity in East Java. The effect in Malang and Pasuruan were almost the same, while the impact in Sumenep was the least one compared to other districts.

  11. Evolution of carbon sinks in a changing climate.

    PubMed

    Fung, Inez Y; Doney, Scott C; Lindsay, Keith; John, Jasmin

    2005-08-09

    Climate change is expected to influence the capacities of the land and oceans to act as repositories for anthropogenic CO2 and hence provide a feedback to climate change. A series of experiments with the National Center for Atmospheric Research-Climate System Model 1 coupled carbon-climate model shows that carbon sink strengths vary with the rate of fossil fuel emissions, so that carbon storage capacities of the land and oceans decrease and climate warming accelerates with faster CO2 emissions. Furthermore, there is a positive feedback between the carbon and climate systems, so that climate warming acts to increase the airborne fraction of anthropogenic CO2 and amplify the climate change itself. Globally, the amplification is small at the end of the 21st century in this model because of its low transient climate response and the near-cancellation between large regional changes in the hydrologic and ecosystem responses. Analysis of our results in the context of comparable models suggests that destabilization of the tropical land sink is qualitatively robust, although its degree is uncertain.

  12. Evolution of carbon sinks in a changing climate

    PubMed Central

    Fung, Inez Y.; Doney, Scott C.; Lindsay, Keith; John, Jasmin

    2005-01-01

    Climate change is expected to influence the capacities of the land and oceans to act as repositories for anthropogenic CO2 and hence provide a feedback to climate change. A series of experiments with the National Center for Atmospheric Research–Climate System Model 1 coupled carbon–climate model shows that carbon sink strengths vary with the rate of fossil fuel emissions, so that carbon storage capacities of the land and oceans decrease and climate warming accelerates with faster CO2 emissions. Furthermore, there is a positive feedback between the carbon and climate systems, so that climate warming acts to increase the airborne fraction of anthropogenic CO2 and amplify the climate change itself. Globally, the amplification is small at the end of the 21st century in this model because of its low transient climate response and the near-cancellation between large regional changes in the hydrologic and ecosystem responses. Analysis of our results in the context of comparable models suggests that destabilization of the tropical land sink is qualitatively robust, although its degree is uncertain. PMID:16061800

  13. Assessments of species' vulnerability to climate change: From pseudo to science

    USGS Publications Warehouse

    Wade, Alisa A.; Hand, Brian K.; Kovach, Ryan; Muhlfeld, Clint C.; Waples, Robin S.; Luikart, Gordon

    2017-01-01

    Climate change vulnerability assessments (CCVAs) are important tools to plan for and mitigate potential impacts of climate change. However, CCVAs often lack scientific rigor, which can ultimately lead to poor conservation prioritization and associated ecological and economic costs. We discuss the need to improve comparability and consistency of CCVAs and either validate their findings or improve assessment of CCVA uncertainty and sensitivity to methodological assumptions.

  14. A value orientation approach to assess and compare climate change risk perception among trout anglers in Georgia, USA

    Treesearch

    Ramesh Paudyal; Neelam C. Poudyal; J.M. Bowker; Adrienne M. Dorison; Stanley J. Zarnoch; Gary T. Green

    2015-01-01

    Trout in Georgia could experience early impacts from climate change as the streams in the region are located at the southern most edge of their North American home range. This study surveyed trout anglers in Georgia to understand how anglers perceive the potential impact of climate change on trout, and whether and how their perception and response to declines in trout...

  15. Projected climate and vegetation changes and potential biotic effects for Fort Benning, Georgia; Fort Hood, Texas; and Fort Irwin, California

    USGS Publications Warehouse

    Shafer, S.L.; Atkins, J.; Bancroft, B.A.; Bartlein, P.J.; Lawler, J.J.; Smith, B.; Wilsey, C.B.

    2012-01-01

    The responses of species and ecosystems to future climate changes will present challenges for conservation and natural resource managers attempting to maintain both species populations and essential habitat. This report describes projected future changes in climate and vegetation for three study areas surrounding the military installations of Fort Benning, Georgia, Fort Hood, Texas, and Fort Irwin, California. Projected climate changes are described for the time period 2070–2099 (30-year mean) as compared to 1961–1990 (30-year mean) for each study area using data simulated by the coupled atmosphere-ocean general circulation models CCSM3, CGCM3.1(T47), and UKMO-HadCM3, run under the B1, A1B, and A2 future greenhouse gas emissions scenarios. These climate data are used to simulate potential changes in important components of the vegetation for each study area using LPJ, a dynamic global vegetation model, and LPJ-GUESS, a dynamic vegetation model optimized for regional studies. The simulated vegetation results are compared with observed vegetation data for the study areas. Potential effects of the simulated future climate and vegetation changes for species and habitats of management concern are discussed in each study area, with a particular focus on federally listed threatened and endangered species.

  16. Comparing Climate Change and Species Invasions as Drivers of Coldwater Fish Population Extirpations

    PubMed Central

    Sharma, Sapna; Vander Zanden, M. Jake; Magnuson, John J.; Lyons, John

    2011-01-01

    Species are influenced by multiple environmental stressors acting simultaneously. Our objective was to compare the expected effects of climate change and invasion of non-indigenous rainbow smelt (Osmerus mordax) on cisco (Coregonus artedii) population extirpations at a regional level. We assembled a database of over 13,000 lakes in Wisconsin, USA, summarising fish occurrence, lake morphology, water chemistry, and climate. We used A1, A2, and B1 scenarios from the Intergovernmental Panel on Climate Change (IPCC) of future temperature conditions for 15 general circulation models in 2046–2065 and 2081–2100 totalling 78 projections. Logistic regression indicated that cisco tended to occur in cooler, larger, and deeper lakes. Depending upon the amount of warming, 25–70% of cisco populations are predicted to be extirpated by 2100. In addition, cisco are influenced by the invasion of rainbow smelt, which prey on young cisco. Projecting current estimates of rainbow smelt spread and impact into the future will result in the extirpation of about 1% of cisco populations by 2100 in Wisconsin. Overall, the effect of climate change is expected to overshadow that of species invasion as a driver of coldwater fish population extirpations. Our results highlight the potentially dominant role of climate change as a driver of biotic change. PMID:21860661

  17. Comparing climate change and species invasions as drivers of coldwater fish population extirpations.

    PubMed

    Sharma, Sapna; Vander Zanden, M Jake; Magnuson, John J; Lyons, John

    2011-01-01

    Species are influenced by multiple environmental stressors acting simultaneously. Our objective was to compare the expected effects of climate change and invasion of non-indigenous rainbow smelt (Osmerus mordax) on cisco (Coregonus artedii) population extirpations at a regional level. We assembled a database of over 13,000 lakes in Wisconsin, USA, summarising fish occurrence, lake morphology, water chemistry, and climate. We used A1, A2, and B1 scenarios from the Intergovernmental Panel on Climate Change (IPCC) of future temperature conditions for 15 general circulation models in 2046-2065 and 2081-2100 totalling 78 projections. Logistic regression indicated that cisco tended to occur in cooler, larger, and deeper lakes. Depending upon the amount of warming, 25-70% of cisco populations are predicted to be extirpated by 2100. In addition, cisco are influenced by the invasion of rainbow smelt, which prey on young cisco. Projecting current estimates of rainbow smelt spread and impact into the future will result in the extirpation of about 1% of cisco populations by 2100 in Wisconsin. Overall, the effect of climate change is expected to overshadow that of species invasion as a driver of coldwater fish population extirpations. Our results highlight the potentially dominant role of climate change as a driver of biotic change.

  18. Climate Forcing Growth Rates: Doubling Down on Our Faustian Bargain

    NASA Technical Reports Server (NTRS)

    Hansen, James; Kharecha, Pushker; Sato, Makiko

    2013-01-01

    Rahmstorf et al 's (2012) conclusion that observed climate change is comparable to projections, and in some cases exceeds projections, allows further inferences if we can quantify changing climate forcings and compare those with projections. The largest climate forcing is caused by well-mixed long-lived greenhouse gases. Here we illustrate trends of these gases and their climate forcings, and we discuss implications. We focus on quantities that are accurately measured, and we include comparison with fixed scenarios, which helps reduce common misimpressions about how climate forcings are changing. Annual fossil fuel CO2 emissions have shot up in the past decade at about 3/yr, double the rate of the prior three decades (figure 1). The growth rate falls above the range of the IPCC (2001) 'Marker' scenarios, although emissions are still within the entire range considered by the IPCC SRES (2000). The surge in emissions is due to increased coal use (blue curve in figure 1), which now accounts for more than 40 of fossil fuel CO2 emissions.

  19. Comparison and interactions between the long-term pursuit of energy independence and climate policies

    NASA Astrophysics Data System (ADS)

    Jewell, Jessica; Vinichenko, Vadim; McCollum, David; Bauer, Nico; Riahi, Keywan; Aboumahboub, Tino; Fricko, Oliver; Harmsen, Mathijs; Kober, Tom; Krey, Volker; Marangoni, Giacomo; Tavoni, Massimo; van Vuuren, Detlef P.; van der Zwaan, Bob; Cherp, Aleh

    2016-06-01

    Ensuring energy security and mitigating climate change are key energy policy priorities. The recent Intergovernmental Panel on Climate Change Working Group III report emphasized that climate policies can deliver energy security as a co-benefit, in large part through reducing energy imports. Using five state-of-the-art global energy-economy models and eight long-term scenarios, we show that although deep cuts in greenhouse gas emissions would reduce energy imports, the reverse is not true: ambitious policies constraining energy imports would have an insignificant impact on climate change. Restricting imports of all fuels would lower twenty-first-century emissions by only 2-15% against the Baseline scenario as compared with a 70% reduction in a 450 stabilization scenario. Restricting only oil imports would have virtually no impact on emissions. The modelled energy independence targets could be achieved at policy costs comparable to those of existing climate pledges but a fraction of the cost of limiting global warming to 2 ∘C.

  20. The fate of Amazonian ecosystems over the coming century arising from changes in climate, atmospheric CO2, and land use.

    PubMed

    Zhang, Ke; de Almeida Castanho, Andrea D; Galbraith, David R; Moghim, Sanaz; Levine, Naomi M; Bras, Rafael L; Coe, Michael T; Costa, Marcos H; Malhi, Yadvinder; Longo, Marcos; Knox, Ryan G; McKnight, Shawna; Wang, Jingfeng; Moorcroft, Paul R

    2015-02-20

    There is considerable interest in understanding the fate of the Amazon over the coming century in the face of climate change, rising atmospheric CO 2 levels, ongoing land transformation, and changing fire regimes within the region. In this analysis, we explore the fate of Amazonian ecosystems under the combined impact of these four environmental forcings using three terrestrial biosphere models (ED2, IBIS, and JULES) forced by three bias-corrected IPCC AR4 climate projections (PCM1, CCSM3, and HadCM3) under two land-use change scenarios. We assess the relative roles of climate change, CO 2 fertilization, land-use change, and fire in driving the projected changes in Amazonian biomass and forest extent. Our results indicate that the impacts of climate change are primarily determined by the direction and severity of projected changes in regional precipitation: under the driest climate projection, climate change alone is predicted to reduce Amazonian forest cover by an average of 14%. However, the models predict that CO 2 fertilization will enhance vegetation productivity and alleviate climate-induced increases in plant water stress, and, as a result, sustain high biomass forests, even under the driest climate scenario. Land-use change and climate-driven changes in fire frequency are predicted to cause additional aboveground biomass loss and reductions in forest extent. The relative impact of land use and fire dynamics compared to climate and CO 2 impacts varies considerably, depending on both the climate and land-use scenario, and on the terrestrial biosphere model used, highlighting the importance of improved quantitative understanding of all four factors - climate change, CO 2 fertilization effects, fire, and land use - to the fate of the Amazon over the coming century. © 2015 John Wiley & Sons Ltd.

  1. The impact of climate change on photovoltaic power generation in Europe

    PubMed Central

    Jerez, Sonia; Tobin, Isabelle; Vautard, Robert; Montávez, Juan Pedro; López-Romero, Jose María; Thais, Françoise; Bartok, Blanka; Christensen, Ole Bøssing; Colette, Augustin; Déqué, Michel; Nikulin, Grigory; Kotlarski, Sven; van Meijgaard, Erik; Teichmann, Claas; Wild, Martin

    2015-01-01

    Ambitious climate change mitigation plans call for a significant increase in the use of renewables, which could, however, make the supply system more vulnerable to climate variability and changes. Here we evaluate climate change impacts on solar photovoltaic (PV) power in Europe using the recent EURO-CORDEX ensemble of high-resolution climate projections together with a PV power production model and assuming a well-developed European PV power fleet. Results indicate that the alteration of solar PV supply by the end of this century compared with the estimations made under current climate conditions should be in the range (−14%;+2%), with the largest decreases in Northern countries. Temporal stability of power generation does not appear as strongly affected in future climate scenarios either, even showing a slight positive trend in Southern countries. Therefore, despite small decreases in production expected in some parts of Europe, climate change is unlikely to threaten the European PV sector. PMID:26658608

  2. The impact of greenhouse climate change on the energetics and hydrologic processes of mid-latitude transient eddies

    NASA Technical Reports Server (NTRS)

    Branscome, Lee E.; Gutowski, William J., Jr.

    1991-01-01

    Atmospheric transient eddies contribute significantly to mid-latitude energy and water vapor transports. Changes in the global climate, as induced by greenhouse enhancement, will likely alter transient eddy behavior. Unraveling all the feedbacks that occur in general circulation models (GCMs) can be difficult. The transient eddies are isolated from the feedbacks and are focused on the response of the eddies to zonal-mean climate changes that result from CO2-doubling. Using a primitive-equation spectral model, the impact of climate change on the life cycles of transient eddies is examined. Transient eddy behavior in experiments is compared with initial conditions that are given by the zonal-mean climates of the GCMs with current and doubled amounts of CO2. The smaller meridional temperature gradient in a doubled CO2 climate leads to a reduction in eddy kinetic energy, especially in the subtropics. The decrease in subtropical eddy energy is related to a substantial reduction in equatorward flux of eddy activity during the latter part of the life cycle. The reduction in equatorward energy flux alters the moisture cycle. Eddy meridional transport of water vapor is shifted slightly poleward and subtropical precipitation is reduced. The water vapor transport exhibits a relatively small change in magnitude, compared to changes in eddy energy, due to the compensating effect of higher specific humidity in the doubled-CO2 climate. An increase in high-latitude precipitation is related to the poleward shift in eddy water vapor flux. Surface evaporation amplifies climatic changes in water vapor transport and precipitation in the experiments.

  3. Recent ecological responses to climate change support predictions of high extinction risk

    PubMed Central

    Maclean, Ilya M. D.; Wilson, Robert J.

    2011-01-01

    Predicted effects of climate change include high extinction risk for many species, but confidence in these predictions is undermined by a perceived lack of empirical support. Many studies have now documented ecological responses to recent climate change, providing the opportunity to test whether the magnitude and nature of recent responses match predictions. Here, we perform a global and multitaxon metaanalysis to show that empirical evidence for the realized effects of climate change supports predictions of future extinction risk. We use International Union for Conservation of Nature (IUCN) Red List criteria as a common scale to estimate extinction risks from a wide range of climate impacts, ecological responses, and methods of analysis, and we compare predictions with observations. Mean extinction probability across studies making predictions of the future effects of climate change was 7% by 2100 compared with 15% based on observed responses. After taking account of possible bias in the type of climate change impact analyzed and the parts of the world and taxa studied, there was less discrepancy between the two approaches: predictions suggested a mean extinction probability of 10% across taxa and regions, whereas empirical evidence gave a mean probability of 14%. As well as mean overall extinction probability, observations also supported predictions in terms of variability in extinction risk and the relative risk associated with broad taxonomic groups and geographic regions. These results suggest that predictions are robust to methodological assumptions and provide strong empirical support for the assertion that anthropogenic climate change is now a major threat to global biodiversity. PMID:21746924

  4. Recent ecological responses to climate change support predictions of high extinction risk.

    PubMed

    Maclean, Ilya M D; Wilson, Robert J

    2011-07-26

    Predicted effects of climate change include high extinction risk for many species, but confidence in these predictions is undermined by a perceived lack of empirical support. Many studies have now documented ecological responses to recent climate change, providing the opportunity to test whether the magnitude and nature of recent responses match predictions. Here, we perform a global and multitaxon metaanalysis to show that empirical evidence for the realized effects of climate change supports predictions of future extinction risk. We use International Union for Conservation of Nature (IUCN) Red List criteria as a common scale to estimate extinction risks from a wide range of climate impacts, ecological responses, and methods of analysis, and we compare predictions with observations. Mean extinction probability across studies making predictions of the future effects of climate change was 7% by 2100 compared with 15% based on observed responses. After taking account of possible bias in the type of climate change impact analyzed and the parts of the world and taxa studied, there was less discrepancy between the two approaches: predictions suggested a mean extinction probability of 10% across taxa and regions, whereas empirical evidence gave a mean probability of 14%. As well as mean overall extinction probability, observations also supported predictions in terms of variability in extinction risk and the relative risk associated with broad taxonomic groups and geographic regions. These results suggest that predictions are robust to methodological assumptions and provide strong empirical support for the assertion that anthropogenic climate change is now a major threat to global biodiversity.

  5. Consequences of changes in vegetation and snow cover for climate feedbacks in Alaska and northwest Canada

    NASA Astrophysics Data System (ADS)

    Euskirchen, E. S.; Bennett, A. P.; Breen, A. L.; Genet, H.; Lindgren, M. A.; Kurkowski, T. A.; McGuire, A. D.; Rupp, T. S.

    2016-10-01

    Changes in vegetation and snow cover may lead to feedbacks to climate through changes in surface albedo and energy fluxes between the land and atmosphere. In addition to these biogeophysical feedbacks, biogeochemical feedbacks associated with changes in carbon (C) storage in the vegetation and soils may also influence climate. Here, using a transient biogeographic model (ALFRESCO) and an ecosystem model (DOS-TEM), we quantified the biogeophysical feedbacks due to changes in vegetation and snow cover across continuous permafrost to non-permafrost ecosystems in Alaska and northwest Canada. We also computed the changes in carbon storage in this region to provide a general assessment of the direction of the biogeochemical feedback. We considered four ecoregions, or Landscape Conservations Cooperatives (LCCs; including the Arctic, North Pacific, Western Alaska, and Northwest Boreal). We examined the 90 year period from 2010 to 2099 using one future emission scenario (A1B), under outputs from two general circulation models (MPI-ECHAM5 and CCCMA-CGCM3.1). We found that changes in snow cover duration, including both the timing of snowmelt in the spring and snow return in the fall, provided the dominant positive biogeophysical feedback to climate across all LCCs, and was greater for the ECHAM (+3.1 W m-2 decade-1 regionally) compared to the CCCMA (+1.3 W m-2 decade-1 regionally) scenario due to an increase in loss of snow cover in the ECHAM scenario. The greatest overall negative feedback to climate from changes in vegetation cover was due to fire in spruce forests in the Northwest Boreal LCC and fire in shrub tundra in the Western LCC (-0.2 to -0.3 W m-2 decade-1). With the larger positive feedbacks associated with reductions in snow cover compared to the smaller negative feedbacks associated with shifts in vegetation, the feedback to climate warming was positive (total feedback of +2.7 W m-2 decade regionally in the ECHAM scenario compared to +0.76 W m-2 decade regionally in the CCCMA scenario). Overall, increases in C storage in the vegetation and soils across the study region would act as a negative feedback to climate. By exploring these feedbacks to climate, we can reach a more integrated understanding of the manner in which climate change may impact interactions between high-latitude ecosystems and the global climate system.

  6. Quantitative approaches in climate change ecology

    PubMed Central

    Brown, Christopher J; Schoeman, David S; Sydeman, William J; Brander, Keith; Buckley, Lauren B; Burrows, Michael; Duarte, Carlos M; Moore, Pippa J; Pandolfi, John M; Poloczanska, Elvira; Venables, William; Richardson, Anthony J

    2011-01-01

    Contemporary impacts of anthropogenic climate change on ecosystems are increasingly being recognized. Documenting the extent of these impacts requires quantitative tools for analyses of ecological observations to distinguish climate impacts in noisy data and to understand interactions between climate variability and other drivers of change. To assist the development of reliable statistical approaches, we review the marine climate change literature and provide suggestions for quantitative approaches in climate change ecology. We compiled 267 peer-reviewed articles that examined relationships between climate change and marine ecological variables. Of the articles with time series data (n = 186), 75% used statistics to test for a dependency of ecological variables on climate variables. We identified several common weaknesses in statistical approaches, including marginalizing other important non-climate drivers of change, ignoring temporal and spatial autocorrelation, averaging across spatial patterns and not reporting key metrics. We provide a list of issues that need to be addressed to make inferences more defensible, including the consideration of (i) data limitations and the comparability of data sets; (ii) alternative mechanisms for change; (iii) appropriate response variables; (iv) a suitable model for the process under study; (v) temporal autocorrelation; (vi) spatial autocorrelation and patterns; and (vii) the reporting of rates of change. While the focus of our review was marine studies, these suggestions are equally applicable to terrestrial studies. Consideration of these suggestions will help advance global knowledge of climate impacts and understanding of the processes driving ecological change.

  7. Rates of projected climate change dramatically exceed past rates of climatic niche evolution among vertebrate species.

    PubMed

    Quintero, Ignacio; Wiens, John J

    2013-08-01

    A key question in predicting responses to anthropogenic climate change is: how quickly can species adapt to different climatic conditions? Here, we take a phylogenetic approach to this question. We use 17 time-calibrated phylogenies representing the major tetrapod clades (amphibians, birds, crocodilians, mammals, squamates, turtles) and climatic data from distributions of > 500 extant species. We estimate rates of change based on differences in climatic variables between sister species and estimated times of their splitting. We compare these rates to predicted rates of climate change from 2000 to 2100. Our results are striking: matching projected changes for 2100 would require rates of niche evolution that are > 10,000 times faster than rates typically observed among species, for most variables and clades. Despite many caveats, our results suggest that adaptation to projected changes in the next 100 years would require rates that are largely unprecedented based on observed rates among vertebrate species. © 2013 John Wiley & Sons Ltd/CNRS.

  8. Preparedness for climate change among local health department officials in New York state: a comparison with national survey results.

    PubMed

    Carr, Jessie L; Sheffield, Perry E; Kinney, Patrick L

    2012-01-01

    Climate-change adaptation strategies that address locally specific climate hazards are critical for preventing negative health outcomes, and local public health care officials are key foci for adaptation planning. To assess New York State Local Health Department officials' perceptions and preparedness related to climate-sensitive health areas, and compare these with a national sample. Online survey instrument, originally used in a national survey of local health department (LHD) officials. New York State. Eligible participants included all New York State city and county LHD officials, 1 respondent per LHD. LHD officials' perceptions of (1) local climate-related public health effects, (2) preparation status and programming areas of LHDs, and (3) necessary resources to better address climate-related health risks. : Survey participants, representing a 54% response rate (with 93% of respondents completing more than 90% of the questions), perceived climate change as relevant to public health, and most noted that some of their existing programs already use or are planning to use climate adaptation strategies. Overall, fewer New York State respondents identified concerns or related expertise compared with the previous national survey. Many respondents expressed uncertainty regarding necessary additional resources. This type of assessment makes clear the high variability in perceived impacts and capacity at the level of LHD jurisdictions, and underscores the importance of sustained support for local climate-change preparedness programming. The implications of these findings are germane to other states with similar decentralized jurisdiction of public health. Findings from such surveys can bolster existing LHD programs, as well as inform long-term and emergency planning for climate change.

  9. Inter-comparison of multiple statistically downscaled climate datasets for the Pacific Northwest, USA

    PubMed Central

    Jiang, Yueyang; Kim, John B.; Still, Christopher J.; Kerns, Becky K.; Kline, Jeffrey D.; Cunningham, Patrick G.

    2018-01-01

    Statistically downscaled climate data have been widely used to explore possible impacts of climate change in various fields of study. Although many studies have focused on characterizing differences in the downscaling methods, few studies have evaluated actual downscaled datasets being distributed publicly. Spatially focusing on the Pacific Northwest, we compare five statistically downscaled climate datasets distributed publicly in the US: ClimateNA, NASA NEX-DCP30, MACAv2-METDATA, MACAv2-LIVNEH and WorldClim. We compare the downscaled projections of climate change, and the associated observational data used as training data for downscaling. We map and quantify the variability among the datasets and characterize the spatio-temporal patterns of agreement and disagreement among the datasets. Pair-wise comparisons of datasets identify the coast and high-elevation areas as areas of disagreement for temperature. For precipitation, high-elevation areas, rainshadows and the dry, eastern portion of the study area have high dissimilarity among the datasets. By spatially aggregating the variability measures into watersheds, we develop guidance for selecting datasets within the Pacific Northwest climate change impact studies. PMID:29461513

  10. Inter-comparison of multiple statistically downscaled climate datasets for the Pacific Northwest, USA.

    PubMed

    Jiang, Yueyang; Kim, John B; Still, Christopher J; Kerns, Becky K; Kline, Jeffrey D; Cunningham, Patrick G

    2018-02-20

    Statistically downscaled climate data have been widely used to explore possible impacts of climate change in various fields of study. Although many studies have focused on characterizing differences in the downscaling methods, few studies have evaluated actual downscaled datasets being distributed publicly. Spatially focusing on the Pacific Northwest, we compare five statistically downscaled climate datasets distributed publicly in the US: ClimateNA, NASA NEX-DCP30, MACAv2-METDATA, MACAv2-LIVNEH and WorldClim. We compare the downscaled projections of climate change, and the associated observational data used as training data for downscaling. We map and quantify the variability among the datasets and characterize the spatio-temporal patterns of agreement and disagreement among the datasets. Pair-wise comparisons of datasets identify the coast and high-elevation areas as areas of disagreement for temperature. For precipitation, high-elevation areas, rainshadows and the dry, eastern portion of the study area have high dissimilarity among the datasets. By spatially aggregating the variability measures into watersheds, we develop guidance for selecting datasets within the Pacific Northwest climate change impact studies.

  11. Challenges at the Intersection of Energy, Economy, Environment, & Security and the Role of the Defense Sector in Addressing Them

    DTIC Science & Technology

    2011-11-29

    economies need in ways that are imperiling  the  climate  its environment needs. 2 The climate - change dimension • Global climate is changing rapidly compared...cloudy & clear • humid & dry • drizzles & downpours • snowfall, snowpack, & snowmelt • breezes, blizzards, tornadoes, & typhoons Climate change means...droughts • heat waves • pest outbreaks • coastal erosion • coral bleaching events • power of typhoons & hurricanes • geographic range of tropical pathogens

  12. VALUE - Validating and Integrating Downscaling Methods for Climate Change Research

    NASA Astrophysics Data System (ADS)

    Maraun, Douglas; Widmann, Martin; Benestad, Rasmus; Kotlarski, Sven; Huth, Radan; Hertig, Elke; Wibig, Joanna; Gutierrez, Jose

    2013-04-01

    Our understanding of global climate change is mainly based on General Circulation Models (GCMs) with a relatively coarse resolution. Since climate change impacts are mainly experienced on regional scales, high-resolution climate change scenarios need to be derived from GCM simulations by downscaling. Several projects have been carried out over the last years to validate the performance of statistical and dynamical downscaling, yet several aspects have not been systematically addressed: variability on sub-daily, decadal and longer time-scales, extreme events, spatial variability and inter-variable relationships. Different downscaling approaches such as dynamical downscaling, statistical downscaling and bias correction approaches have not been systematically compared. Furthermore, collaboration between different communities, in particular regional climate modellers, statistical downscalers and statisticians has been limited. To address these gaps, the EU Cooperation in Science and Technology (COST) action VALUE (www.value-cost.eu) has been brought into life. VALUE is a research network with participants from currently 23 European countries running from 2012 to 2015. Its main aim is to systematically validate and develop downscaling methods for climate change research in order to improve regional climate change scenarios for use in climate impact studies. Inspired by the co-design idea of the international research initiative "future earth", stakeholders of climate change information have been involved in the definition of research questions to be addressed and are actively participating in the network. The key idea of VALUE is to identify the relevant weather and climate characteristics required as input for a wide range of impact models and to define an open framework to systematically validate these characteristics. Based on a range of benchmark data sets, in principle every downscaling method can be validated and compared with competing methods. The results of this exercise will directly provide end users with important information about the uncertainty of regional climate scenarios, and will furthermore provide the basis for further developing downscaling methods. This presentation will provide background information on VALUE and discuss the identified characteristics and the validation framework.

  13. Climate change in safety assessment of a surface disposal facility

    NASA Astrophysics Data System (ADS)

    Leterme, B.

    2012-04-01

    The Belgian Agency for Radioactive Waste and Enriched Fissile Materials (ONDRAF/NIRAS) aims to develop a surface disposal facility for LILW-SL in Dessel (North-East of Belgium). Given the time scale of interest for the safety assessment (several millennia), a number of parameters in the modelling chain near field - geosphere - biosphere may be influenced by climate change. The present study discusses how potential climate change impact was accounted for the following quantities: (i) near field infiltration through the repository earth cover, (ii) partial pressure of CO2 in the water infiltrating the cover and draining the concrete, and (iii) groundwater recharge in the vicinity of the site. For these three parameters, the impact of climate change is assessed using climatic analogue stations, i.e. stations presently under climatic conditions corresponding to a given climate state. Results indicate that : (i) Using Gijon (Spain) as representative analogue station for the next millennia, infiltration at the bottom of the soil layer towards the modules of the facility is expected to increase (from 346 to 413 mm/y) under a subtropical climate. Although no colder climate is foreseen in the next 10 000 years, the approach was also tested with analogue stations for a colder climate state. Using Sisimiut (Greenland) as representative analogue station, infiltration is expected to decrease (109 mm/y). (ii) Due to changes of the partial pressure of CO2 in the soil water, cement degradation is estimated to occur more rapidly under a warmer climate. (iii) A decrease of long-term annual average groundwater recharge by 12% was simulated using Gijon representative analogue (from 314 to 276 mm), although total rainfall was higher (947 mm) in the warmer climate compared to the current temperate climate (899 mm). For a colder climate state, groundwater recharge simulated for the representative analogue Sisimiut showed a decrease by 69% compared to current climate conditions. The advantages and weaknesses of using analogue stations are also discussed.

  14. Functional Resilience against Climate-Driven Extinctions – Comparing the Functional Diversity of European and North American Tree Floras

    PubMed Central

    Liebergesell, Mario; Stahl, Ulrike; Freiberg, Martin; Welk, Erik; Kattge, Jens; Cornelissen, J. Hans C.; Peñuelas, Josep

    2016-01-01

    Future global change scenarios predict a dramatic loss of biodiversity for many regions in the world, potentially reducing the resistance and resilience of ecosystem functions. Once before, during Plio-Pleistocene glaciations, harsher climatic conditions in Europe as compared to North America led to a more depauperate tree flora. Here we hypothesize that this climate driven species loss has also reduced functional diversity in Europe as compared to North America. We used variation in 26 traits for 154 North American and 66 European tree species and grid-based co-occurrences derived from distribution maps to compare functional diversity patterns of the two continents. First, we identified similar regions with respect to contemporary climate in the temperate zone of North America and Europe. Second, we compared the functional diversity of both continents and for the climatically similar sub-regions using the functional dispersion-index (FDis) and the functional richness index (FRic). Third, we accounted in these comparisons for grid-scale differences in species richness, and, fourth, investigated the associated trait spaces using dimensionality reduction. For gymnosperms we find similar functional diversity on both continents, whereas for angiosperms functional diversity is significantly greater in Europe than in North America. These results are consistent across different scales, for climatically similar regions and considering species richness patterns. We decomposed these differences in trait space occupation into differences in functional diversity vs. differences in functional identity. We show that climate-driven species loss on a continental scale might be decoupled from or at least not linearly related to changes in functional diversity. This might be important when analyzing the effects of climate-driven biodiversity change on ecosystem functioning. PMID:26848836

  15. Land use compounds habitat losses under projected climate change in a threatened California ecosystem.

    PubMed

    Riordan, Erin Coulter; Rundel, Philip W

    2014-01-01

    Given the rapidly growing human population in mediterranean-climate systems, land use may pose a more immediate threat to biodiversity than climate change this century, yet few studies address the relative future impacts of both drivers. We assess spatial and temporal patterns of projected 21(st) century land use and climate change on California sage scrub (CSS), a plant association of considerable diversity and threatened status in the mediterranean-climate California Floristic Province. Using a species distribution modeling approach combined with spatially-explicit land use projections, we model habitat loss for 20 dominant shrub species under unlimited and no dispersal scenarios at two time intervals (early and late century) in two ecoregions in California (Central Coast and South Coast). Overall, projected climate change impacts were highly variable across CSS species and heavily dependent on dispersal assumptions. Projected anthropogenic land use drove greater relative habitat losses compared to projected climate change in many species. This pattern was only significant under assumptions of unlimited dispersal, however, where considerable climate-driven habitat gains offset some concurrent climate-driven habitat losses. Additionally, some of the habitat gained with projected climate change overlapped with projected land use. Most species showed potential northern habitat expansion and southern habitat contraction due to projected climate change, resulting in sharply contrasting patterns of impact between Central and South Coast Ecoregions. In the Central Coast, dispersal could play an important role moderating losses from both climate change and land use. In contrast, high geographic overlap in habitat losses driven by projected climate change and projected land use in the South Coast underscores the potential for compounding negative impacts of both drivers. Limiting habitat conversion may be a broadly beneficial strategy under climate change. We emphasize the importance of addressing both drivers in conservation and resource management planning.

  16. Determining the importance of model calibration for forecasting absolute/relative changes in streamflow from LULC and climate changes

    USGS Publications Warehouse

    Niraula, Rewati; Meixner, Thomas; Norman, Laura M.

    2015-01-01

    Land use/land cover (LULC) and climate changes are important drivers of change in streamflow. Assessing the impact of LULC and climate changes on streamflow is typically done with a calibrated and validated watershed model. However, there is a debate on the degree of calibration required. The objective of this study was to quantify the variation in estimated relative and absolute changes in streamflow associated with LULC and climate changes with different calibration approaches. The Soil and Water Assessment Tool (SWAT) was applied in an uncalibrated (UC), single outlet calibrated (OC), and spatially-calibrated (SC) mode to compare the relative and absolute changes in streamflow at 14 gaging stations within the Santa Cruz River Watershed in southern Arizona, USA. For this purpose, the effect of 3 LULC, 3 precipitation (P), and 3 temperature (T) scenarios were tested individually. For the validation period, Percent Bias (PBIAS) values were >100% with the UC model for all gages, the values were between 0% and 100% with the OC model and within 20% with the SC model. Changes in streamflow predicted with the UC and OC models were compared with those of the SC model. This approach implicitly assumes that the SC model is “ideal”. Results indicated that the magnitude of both absolute and relative changes in streamflow due to LULC predicted with the UC and OC results were different than those of the SC model. The magnitude of absolute changes predicted with the UC and SC models due to climate change (both P and T) were also significantly different, but were not different for OC and SC models. Results clearly indicated that relative changes due to climate change predicted with the UC and OC were not significantly different than that predicted with the SC models. This result suggests that it is important to calibrate the model spatially to analyze the effect of LULC change but not as important for analyzing the relative change in streamflow due to climate change. This study also indicated that model calibration in not necessary to determine the direction of change in streamflow due to LULC and climate change.

  17. Measuring the economic impact of climate change on major South African field crops: a Ricardian approach

    NASA Astrophysics Data System (ADS)

    Gbetibouo, G. A.; Hassan, R. M.

    2005-07-01

    This study employed a Ricardian model to measure the impact of climate change on South Africa's field crops and analysed potential future impacts of further changes in the climate. A regression of farm net revenue on climate, soil and other socio-economic variables was conducted to capture farmer-adapted responses to climate variations. The analysis was based on agricultural data for seven field crops (maize, wheat, sorghum, sugarcane, groundnut, sunflower and soybean), climate and edaphic data across 300 districts in South Africa. Results indicate that production of field crops was sensitive to marginal changes in temperature as compared to changes in precipitation. Temperature rise positively affects net revenue whereas the effect of reduction in rainfall is negative. The study also highlights the importance of season and location in dealing with climate change showing that the spatial distribution of climate change impact and consequently needed adaptations will not be uniform across the different agro-ecological regions of South Africa. Results of simulations of climate change scenarios indicate many impacts that would induce (or require) very distinct shifts in farming practices and patterns in different regions. Those include major shifts in crop calendars and growing seasons, switching between crops to the possibility of complete disappearance of some field crops from some region.

  18. Beyond Quarterly Earnings: Preparing the Business Community for Long-term Climate Risks

    NASA Astrophysics Data System (ADS)

    Carlson, C.; Goldman, G. T.

    2014-12-01

    The business community stands to be highly impacted by climate change. In both short and long-term timescales, climate change presents material and financial risks to companies in diverse economic sectors. How the private sector accounts for long-term risks while making short-term decisions about operations is a complex challenge. Companies are accountable to shareholders and must report performance to them on a quarterly basis. At the same time, company investors are exposed to long-term climate-related risks and face losses if companies fail to prepare for climate impacts. The US Securities and Exchange Commission (SEC) obligates publicly traded companies to discuss risks that might materially affect their business and since 2010, the agency recommends that companies consider and discuss any significant risks to their business from climate change. Some companies have complied with this guidance and comprehensively analyze potential climate change impacts, yet others fail to consider climate change at all. Such omissions leave companies without plans for addressing future risks and expose investors and the public to potential catastrophic events from climate change impacts. Climate risk projections can inform companies about the vulnerability of their facilities, supply chains, transportation pathways, and other assets. Such projections can help put climate-related risks in terms of material costs for companies and their investors. Focusing on the vulnerability of coastal facilities, we will use climate change impact projections to demonstrate the economic impacts of climate change faced by the private sector. These risks are then compared to company disclosures to the SEC to assess the degree to which companies have considered their vulnerability to climate change. Finally, we will discuss ways that companies can better assess and manage long-term climate risks.

  19. Anthropogenic range contractions bias species climate change forecasts

    NASA Astrophysics Data System (ADS)

    Faurby, Søren; Araújo, Miguel B.

    2018-03-01

    Forecasts of species range shifts under climate change most often rely on ecological niche models, in which characterizations of climate suitability are highly contingent on the species range data used. If ranges are far from equilibrium under current environmental conditions, for instance owing to local extinctions in otherwise suitable areas, modelled environmental suitability can be truncated, leading to biased estimates of the effects of climate change. Here we examine the impact of such biases on estimated risks from climate change by comparing models of the distribution of North American mammals based on current ranges with ranges accounting for historical information on species ranges. We find that estimated future diversity, almost everywhere, except in coastal Alaska, is drastically underestimated unless the full historical distribution of the species is included in the models. Consequently forecasts of climate change impacts on biodiversity for many clades are unlikely to be reliable without acknowledging anthropogenic influences on contemporary ranges.

  20. Drivers and uncertainties of forecasted range shifts for warm-water fishes under climate and land cover change

    USGS Publications Warehouse

    Bouska, Kristen; Whitledge, Gregory W.; Lant, Christopher; Schoof, Justin

    2018-01-01

    Land cover is an important determinant of aquatic habitat and is projected to shift with climate changes, yet climate-driven land cover changes are rarely factored into climate assessments. To quantify impacts and uncertainty of coupled climate and land cover change on warm-water fish species’ distributions, we used an ensemble model approach to project distributions of 14 species. For each species, current range projections were compared to 27 scenario-based projections and aggregated to visualize uncertainty. Multiple regression and model selection techniques were used to identify drivers of range change. Novel, or no-analogue, climates were assessed to evaluate transferability of models. Changes in total probability of occurrence ranged widely across species, from a 63% increase to a 65% decrease. Distributional gains and losses were largely driven by temperature and flow variables and underscore the importance of habitat heterogeneity and connectivity to facilitate adaptation to changing conditions. Finally, novel climate conditions were driven by mean annual maximum temperature, which stresses the importance of understanding the role of temperature on fish physiology and the role of temperature-mitigating management practices.

  1. Earth as humans’ habitat: global climate change and the health of populations

    PubMed Central

    McMichael, Anthony J

    2014-01-01

    Human-induced climate change, with such rapid and continuing global-scale warming, is historically unprecedented and signifies that human pressures on Earth’s life-supporting natural systems now exceed the planet’s bio-geo-capacity. The risks from climate change to health and survival in populations are diverse, as are the social and political ramifications. Although attributing observed health changes in a population to the recent climatic change is difficult, a coherent pattern of climate- and weather-associated changes is now evident in many regions of the world. The risks impinge unevenly, especially on poorer and vulnerable regions, and are amplified by pre-existing high rates of climate-sensitive diseases and conditions. If, as now appears likely, the world warms by 3-5oC by 2100, the health consequences, directly and via massive social and economic disruption, will be severe. The health sector has an important message to convey, comparing the health risks and benefits of enlightened action to avert climate change and to achieve sustainable ways of living versus the self-interested or complacent inaction. PMID:24596901

  2. climwin: An R Toolbox for Climate Window Analysis.

    PubMed

    Bailey, Liam D; van de Pol, Martijn

    2016-01-01

    When studying the impacts of climate change, there is a tendency to select climate data from a small set of arbitrary time periods or climate windows (e.g., spring temperature). However, these arbitrary windows may not encompass the strongest periods of climatic sensitivity and may lead to erroneous biological interpretations. Therefore, there is a need to consider a wider range of climate windows to better predict the impacts of future climate change. We introduce the R package climwin that provides a number of methods to test the effect of different climate windows on a chosen response variable and compare these windows to identify potential climate signals. climwin extracts the relevant data for each possible climate window and uses this data to fit a statistical model, the structure of which is chosen by the user. Models are then compared using an information criteria approach. This allows users to determine how well each window explains variation in the response variable and compare model support between windows. climwin also contains methods to detect type I and II errors, which are often a problem with this type of exploratory analysis. This article presents the statistical framework and technical details behind the climwin package and demonstrates the applicability of the method with a number of worked examples.

  3. Global Priority Conservation Areas in the Face of 21st Century Climate Change

    PubMed Central

    Li, Junsheng; Lin, Xin; Chen, Anping; Peterson, Townsend; Ma, Keping; Bertzky, Monika; Ciais, Philippe; Kapos, Valerie; Peng, Changhui; Poulter, Benjamin

    2013-01-01

    In an era when global biodiversity is increasingly impacted by rapidly changing climate, efforts to conserve global biodiversity may be compromised if we do not consider the uneven distribution of climate-induced threats. Here, via a novel application of an aggregate Regional Climate Change Index (RCCI) that combines changes in mean annual temperature and precipitation with changes in their interannual variability, we assess multi-dimensional climate changes across the “Global 200” ecoregions – a set of priority ecoregions designed to “achieve the goal of saving a broad diversity of the Earth’s ecosystems” – over the 21st century. Using an ensemble of 62 climate scenarios, our analyses show that, between 1991–2010 and 2081–2100, 96% of the ecoregions considered will be likely (more than 66% probability) to face moderate-to-pronounced climate changes, when compared to the magnitudes of change during the past five decades. Ecoregions at high northern latitudes are projected to experience most pronounced climate change, followed by those in the Mediterranean Basin, Amazon Basin, East Africa, and South Asia. Relatively modest RCCI signals are expected over ecoregions in Northwest South America, West Africa, and Southeast Asia, yet with considerable uncertainties. Although not indicative of climate-change impacts per se, the RCCI-based assessment can help policy-makers gain a quantitative and comprehensive overview of the unevenly distributed climate risks across the G200 ecoregions. Whether due to significant climate change signals or large uncertainties, the ecoregions highlighted in the assessment deserve special attention in more detailed impact assessments to inform effective conservation strategies under future climate change. PMID:23359638

  4. Impact of climate change on ozone-related mortality and morbidity in Europe.

    PubMed

    Orru, Hans; Andersson, Camilla; Ebi, Kristie L; Langner, Joakim; Aström, Christofer; Forsberg, Bertil

    2013-02-01

    Ozone is a highly oxidative pollutant formed from precursors in the presence of sunlight, associated with respiratory morbidity and mortality. All else being equal, concentrations of ground-level ozone are expected to increase due to climate change. Ozone-related health impacts under a changing climate are projected using emission scenarios, models and epidemiological data. European ozone concentrations are modelled with the model of atmospheric transport and chemistry (MATCH)-RCA3 (50×50 km). Projections from two climate models, ECHAM4 and HadCM3, are applied under greenhouse gas emission scenarios A2 and A1B, respectively. We applied a European-wide exposure-response function to gridded population data and country-specific baseline mortality and morbidity. Comparing the current situation (1990-2009) with the baseline period (1961-1990), the largest increase in ozone-associated mortality and morbidity due to climate change (4-5%) have occurred in Belgium, Ireland, the Netherlands and the UK. Comparing the baseline period and the future periods (2021-2050 and 2041-2060), much larger increases in ozone-related mortality and morbidity are projected for Belgium, France, Spain and Portugal, with the impact being stronger using the climate projection from ECHAM4 (A2). However, in Nordic and Baltic countries the same magnitude of decrease is projected. The current study suggests that projected effects of climate change on ozone concentrations could differentially influence mortality and morbidity across Europe.

  5. What's New | USDA Plant Hardiness Zone Map

    Science.gov Websites

    water may provide milder winter weather and be in a warmer zone. Climate Change Climate changes are year), changes in zones are not reliable evidence of whether there has been global warming. Compared a result of a more recent averaging period (1974-1986 vs. 1976-2005). However, some of the changes

  6. Long-term (in)stability of the climate-streamflow relationship

    NASA Astrophysics Data System (ADS)

    Saft, Margarita; Peel, Murray; Coxon, Gemma; Freer, Jim; Parajka, Juraj; Woods, Ross

    2017-04-01

    Land use changes have long been known to alter streamflow production for a given climatic input. Recently, extended shifts in climate were also shown to be capable of altering catchment internal functioning and streamflow production for a given climatic input. This study investigates the stability of climate-streamflow relationships in natural catchments in different regions of the world for the first time, using datasets of natural/reference catchments from Europe, US, and Australia. Changes in climate-streamflow relationships are investigated statistically on the interannual to interdecadal timescale and related to interdecadal climate variability. We compare the frequency and magnitude of shifts in climate-streamflow relationship between different regions, and discuss what any differences in shift frequency and magnitude might be related to. This study draws attention to the issues of catchment vulnerability to changes in external factors, catchment-climate co-evolution, and long-term catchment memory.

  7. Climate change effects on extreme flows of water supply area in Istanbul: utility of regional climate models and downscaling method.

    PubMed

    Kara, Fatih; Yucel, Ismail

    2015-09-01

    This study investigates the climate change impact on the changes of mean and extreme flows under current and future climate conditions in the Omerli Basin of Istanbul, Turkey. The 15 regional climate model output from the EU-ENSEMBLES project and a downscaling method based on local implications from geophysical variables were used for the comparative analyses. Automated calibration algorithm is used to optimize the parameters of Hydrologiska Byråns Vattenbalansavdel-ning (HBV) model for the study catchment using observed daily temperature and precipitation. The calibrated HBV model was implemented to simulate daily flows using precipitation and temperature data from climate models with and without downscaling method for reference (1960-1990) and scenario (2071-2100) periods. Flood indices were derived from daily flows, and their changes throughout the four seasons and year were evaluated by comparing their values derived from simulations corresponding to the current and future climate. All climate models strongly underestimate precipitation while downscaling improves their underestimation feature particularly for extreme events. Depending on precipitation input from climate models with and without downscaling the HBV also significantly underestimates daily mean and extreme flows through all seasons. However, this underestimation feature is importantly improved for all seasons especially for spring and winter through the use of downscaled inputs. Changes in extreme flows from reference to future increased for the winter and spring and decreased for the fall and summer seasons. These changes were more significant with downscaling inputs. With respect to current time, higher flow magnitudes for given return periods will be experienced in the future and hence, in the planning of the Omerli reservoir, the effective storage and water use should be sustained.

  8. Why Do Some People Do “More” to Mitigate Climate Change than Others? Exploring Heterogeneity in Psycho-Social Associations

    PubMed Central

    Ortega-Egea, José Manuel; García-de-Frutos, Nieves; Antolín-López, Raquel

    2014-01-01

    The urgency of climate change mitigation calls for a profound shift in personal behavior. This paper investigates psycho-social correlates of extra mitigation behavior in response to climate change, while also testing for potential (unobserved) heterogeneity in European citizens' decision-making. A person's extra mitigation behavior in response to climate change is conceptualized—and differentiated from common mitigation behavior—as some people's broader and greater levels of behavioral engagement (compared to others) across specific self-reported mitigation actions and behavioral domains. Regression analyses highlight the importance of environmental psychographics (i.e., attitudes, motivations, and knowledge about climate change) and socio-demographics (especially country-level variables) in understanding extra mitigation behavior. By looking at the data through the lens of segmentation, significant heterogeneity is uncovered in the associations of attitudes and knowledge about climate change—but not in motivational or socio-demographic links—with extra mitigation behavior in response to climate change, across two groups of environmentally active respondents. The study has implications for promoting more ambitious behavioral responses to climate change, both at the individual level and across countries. PMID:25191841

  9. [Responses of boreal forest landscape in northern Great Xing'an Mountains of Northeast China to climate change].

    PubMed

    Li, Xiao-Na; He, Hong-Shi; Wu, Zhi-Wei; Liang, Yu

    2012-12-01

    With the combination of forest landscape model (LANDIS) and forest gap model (LINKAGES), this paper simulated the effects of climate change on the boreal forest landscape in the Great Xing'an Mountains, and compared the direct effects of climate change and the effects of climate warming-induced fires on the forest landscape. The results showed that under the current climate conditions and fire disturbances, the forest landscape in the study area could maintain its dynamic balance, and Larix gmelinii was still the dominant tree species. Under the future climate and fire disturbances scenario, the distribution area of L. gmelinii and Pinus pumila would be decreased, while that of Betula platyphylla, Populus davidiana, Populus suaveolens, Chosenia arbutifolia, and Pinus sylvestris var. mongolica would be increased, and the forest fragmentation and forest diversity would have an increase. The changes of the forest landscape lagged behind climate change. Climate warming would increase the growth of most tree species except L. gmelinii, while the increased fires would increase the distribution area of P. davidiana, P. suaveolens, and C. arbutifolia and decrease the distribution area of L. gmelinii, P. sylvestris var. mongolica, and P. pumila. The effects of climate warming-induced fires on the forest landscape were almost equal to the direct effects of climate change, and aggravated the direct effects of climate change on forest composition, forest landscape fragmentation, and forest landscape diversity.

  10. The Promise and Limitations of Using Analogies to Improve Decision-Relevant Understanding of Climate Change.

    PubMed

    Raimi, Kaitlin T; Stern, Paul C; Maki, Alexander

    2017-01-01

    To make informed choices about how to address climate change, members of the public must develop ways to consider established facts of climate science and the uncertainties about its future trajectories, in addition to the risks attendant to various responses, including non-response, to climate change. One method suggested for educating the public about these issues is the use of simple mental models, or analogies comparing climate change to familiar domains such as medical decision making, disaster preparedness, or courtroom trials. Two studies were conducted using online participants in the U.S.A. to test the use of analogies to highlight seven key decision-relevant elements of climate change, including uncertainties about when and where serious damage may occur, its unprecedented and progressive nature, and tradeoffs in limiting climate change. An internal meta-analysis was then conducted to estimate overall effect sizes across the two studies. Analogies were not found to inform knowledge about climate literacy facts. However, results suggested that people found the medical analogy helpful and that it led people-especially political conservatives-to better recognize several decision-relevant attributes of climate change. These effects were weak, perhaps reflecting a well-documented and overwhelming effect of political ideology on climate change communication and education efforts in the U.S.A. The potential of analogies and similar education tools to improve understanding and communication in a polarized political environment are discussed.

  11. Effects of Projected Future Climate Change on Groundwater Recharge and Storage for Two Coastal Aquifers in Guanacaste Province, Costa Rica

    NASA Astrophysics Data System (ADS)

    Kolb, C.

    2017-12-01

    Climate change is expected to pose a significant threat to water resources in the future. Guanacaste Province, located in northwestern Costa Rica, has a unique climate that is influenced by the Pacific Ocean and Caribbean Sea, as well as the Central Cordillera mountain range. Although the region experiences a marked rainy season between May and November, the hot, dry summers often stress water resources. Climate change projections suggest increased temperatures and reduced precipitation for the region, which will further stress water supplies. This study focuses on the effects of climate change on groundwater resources for two coastal aquifers, Potrero and Brasilito. The UZF model package coupled with the finite difference groundwater flow model MODFLOW were used to evaluate the effect of climate change on groundwater recharge and storage. A potential evapotranspiration model was used to estimate groundwater infiltration rates used in the MODFLOW model. Climate change projections for temperature, precipitation, and sea level rise were used to develop climate scenarios, which were compared to historical data. Preliminary results indicate that climate change could reduce future recharge, especially during the dry season. Additionally, the coastal aquifers are at increased risk of reduced storage and increased salinization due to the reductions in groundwater recharge and sea level rise. Climate change could also affect groundwater quality in the region, disrupting the ecosystem and impairing a primary source of drinking water.

  12. Variation in adult stress resistance does not explain vulnerability to climate change in copper butterflies.

    PubMed

    Klockmann, Michael; Wallmeyer, Leonard; Fischer, Klaus

    2017-03-15

    Ongoing climate change is a major threat to biodiversity. However, although many species clearly suffer from ongoing climate change, others benefit from it, for example, by showing range expansions. However, which specific features determine a species' vulnerability to climate change? Phenotypic plasticity, which has been described as the first line of defence against environmental change, may be of utmost importance here. Against this background, we here compare plasticity in stress tolerance in 3 copper butterfly species, which differ arguably in their vulnerability to climate change. Specifically, we investigated heat, cold and desiccation resistance after acclimatization to different temperatures in the adult stage. We demonstrate that acclimation at a higher temperature increased heat but decreased cold tolerance and desiccation resistance. Contrary to our predictions, species did not show pronounced variation in stress resistance, though plastic capacities in temperature stress resistance did vary across species. Overall, our results seemed to reflect population-rather than species-specific patterns. We conclude that the geographical origin of the populations used should be considered even in comparative studies. However, our results suggest that, in the 3 species studied here, vulnerability to climate change is not in the first place determined by stress resistance in the adult stage. As entomological studies focus all too often on adults only, we argue that more research effort should be dedicated to other developmental stages when trying to understand insect responses to environmental change. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  13. Drinking-water treatment, climate change, and childhood gastrointestinal illness projections for northern Wisconsin (USA) communities drinking untreated groundwater

    NASA Astrophysics Data System (ADS)

    Uejio, Christopher K.; Christenson, Megan; Moran, Colleen; Gorelick, Mark

    2017-06-01

    This study examined the relative importance of climate change and drinking-water treatment for gastrointestinal illness incidence in children (age <5 years) from period 2046-2065 compared to 1991-2010. The northern Wisconsin (USA) study focused on municipalities distributing untreated groundwater. A time-series analysis first quantified the observed (1991-2010) precipitation and gastrointestinal illness associations after controlling for seasonality and temporal trends. Precipitation likely transported pathogens into drinking-water sources or into leaking water-distribution networks. Building on observed relationships, the second analysis projected how climate change and drinking-water treatment installation may alter gastrointestinal illness incidence. Future precipitation values were modeled by 13 global climate models and three greenhouse-gas emissions levels. The second analysis was rerun using three pathways: (1) only climate change, (2) climate change and the same slow pace of treatment installation observed over 1991-2010, and (3) climate change and the rapid rate of installation observed over 2011-2016. The results illustrate the risks that climate change presents to small rural groundwater municipalities without drinking water treatment. Climate-change-related seasonal precipitation changes will marginally increase the gastrointestinal illness incidence rate (mean: ˜1.5%, range: -3.6-4.3%). A slow pace of treatment installation somewhat decreased precipitation-associated gastrointestinal illness incidence (mean: ˜3.0%, range: 0.2-7.8%) in spite of climate change. The rapid treatment installation rate largely decreases the gastrointestinal illness incidence (mean: ˜82.0%, range: 82.0-83.0%).

  14. The Impact of Different Absolute Solar Irradiance Values on Current Climate Model Simulations

    NASA Technical Reports Server (NTRS)

    Rind, David H.; Lean, Judith L.; Jonas, Jeffrey

    2014-01-01

    Simulations of the preindustrial and doubled CO2 climates are made with the GISS Global Climate Middle Atmosphere Model 3 using two different estimates of the absolute solar irradiance value: a higher value measured by solar radiometers in the 1990s and a lower value measured recently by the Solar Radiation and Climate Experiment. Each of the model simulations is adjusted to achieve global energy balance; without this adjustment the difference in irradiance produces a global temperature change of 0.48C, comparable to the cooling estimated for the Maunder Minimum. The results indicate that by altering cloud cover the model properly compensates for the different absolute solar irradiance values on a global level when simulating both preindustrial and doubled CO2 climates. On a regional level, the preindustrial climate simulations and the patterns of change with doubled CO2 concentrations are again remarkably similar, but there are some differences. Using a higher absolute solar irradiance value and the requisite cloud cover affects the model's depictions of high-latitude surface air temperature, sea level pressure, and stratospheric ozone, as well as tropical precipitation. In the climate change experiments it leads to an underestimation of North Atlantic warming, reduced precipitation in the tropical western Pacific, and smaller total ozone growth at high northern latitudes. Although significant, these differences are typically modest compared with the magnitude of the regional changes expected for doubled greenhouse gas concentrations. Nevertheless, the model simulations demonstrate that achieving the highest possible fidelity when simulating regional climate change requires that climate models use as input the most accurate (lower) solar irradiance value.

  15. Awareness of Climate Change and the Dietary Choices of Young Adults in Finland: A Population-Based Cross-Sectional Study

    PubMed Central

    Korkala, Essi A. E.; Hugg, Timo T.; Jaakkola, Jouni J. K.

    2014-01-01

    Climate change is a major public health threat that is exacerbated by food production. Food items differ substantially in the amount of greenhouse gases their production generates and therefore individuals, if willing, can mitigate climate change through dietary choices. We conducted a population-based cross-sectional study to assess if the understanding of climate change, concern over climate change or socio-economic characteristics are reflected in the frequencies of climate-friendly food choices. The study population comprised 1623 young adults in Finland who returned a self-administered questionnaire (response rate 64.0%). We constructed a Climate-Friendly Diet Score (CFDS) ranging theoretically from −14 to 14 based on the consumption of 14 food items. A higher CFDS indicated a climate-friendlier diet. Multivariate linear regression analyses on the determinants of CFDS revealed that medium concern raised CFDS on average by 0.51 points (95% confidence interval (CI) 0.03, 0.98) and high concern by 1.30 points (95% CI 0.80, 1.80) compared to low concern. Understanding had no effect on CFDS on its own. Female gender raised CFDS by 1.92 (95% CI 1.59, 2.25). Unemployment decreased CFDS by 0.92 (95% CI −1.68, −0.15). Separate analyses of genders revealed that high concern over climate change brought about a greater increase in CFDS in females than in males. Good understanding of climate change was weakly connected to climate-friendly diet among females only. Our results indicate that increasing awareness of climate change could lead to increased consumption of climate-friendly food, reduction in GHG emissions, and thus climate change mitigation. PMID:24824363

  16. Connecting today's climates to future climate analogs to facilitate movement of species under climate change.

    PubMed

    Littlefield, Caitlin E; McRae, Brad H; Michalak, Julia L; Lawler, Joshua J; Carroll, Carlos

    2017-12-01

    Increasing connectivity is an important strategy for facilitating species range shifts and maintaining biodiversity in the face of climate change. To date, however, few researchers have included future climate projections in efforts to prioritize areas for increasing connectivity. We identified key areas likely to facilitate climate-induced species' movement across western North America. Using historical climate data sets and future climate projections, we mapped potential species' movement routes that link current climate conditions to analogous climate conditions in the future (i.e., future climate analogs) with a novel moving-window analysis based on electrical circuit theory. In addition to tracing shifting climates, the approach accounted for landscape permeability and empirically derived species' dispersal capabilities. We compared connectivity maps generated with our climate-change-informed approach with maps of connectivity based solely on the degree of human modification of the landscape. Including future climate projections in connectivity models substantially shifted and constrained priority areas for movement to a smaller proportion of the landscape than when climate projections were not considered. Potential movement, measured as current flow, decreased in all ecoregions when climate projections were included, particularly when dispersal was limited, which made climate analogs inaccessible. Many areas emerged as important for connectivity only when climate change was modeled in 2 time steps rather than in a single time step. Our results illustrate that movement routes needed to track changing climatic conditions may differ from those that connect present-day landscapes. Incorporating future climate projections into connectivity modeling is an important step toward facilitating successful species movement and population persistence in a changing climate. © 2017 Society for Conservation Biology.

  17. Wintertime urban heat island modified by global climate change over Japan

    NASA Astrophysics Data System (ADS)

    Hara, M.

    2015-12-01

    Urban thermal environment change, especially, surface air temperature (SAT) rise in metropolitan areas, is one of the major recent issues in urban areas. The urban thermal environmental change affects not only human health such as heat stroke, but also increasing infectious disease due to spreading out virus vectors habitat and increase of industry and house energy consumption. The SAT rise is mostly caused by global climate change and urban heat island (hereafter UHI) by urbanization. The population in Tokyo metropolitan area is over 30 millions and the Tokyo metropolitan area is one of the biggest megacities in the world. The temperature rise due to urbanization seems comparable to the global climate change in the major megacities. It is important to project how the urbanization and the global climate change affect to the future change of urban thermal environment to plan the adaptation and mitigation policy. To predict future SAT change in urban scale, we should estimate future UHI modified by the global climate change. This study investigates change in UHI intensity (UHII) of major metropolitan areas in Japan by effects of the global climate change. We performed a series of climate simulations. Present climate simulations with and without urban process are conducted for ten seasons using a high-resolution numerical climate model, the Weather Research and Forecasting (WRF) model. Future climate projections with and without urban process are also conducted. The future projections are performed using the pseudo global warming method, assuming 2050s' initial and boundary conditions estimated by a GCM under the RCP scenario. Simulation results indicated that UHII would be enhanced more than 30% in Tokyo during the night due to the global climate change. The enhancement of urban heat island is mostly caused by change of lower atmospheric stability.

  18. Managing the Risks of Climate Change and Terrorism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosa, Eugene; Dietz, Tom; Moss, Richard H.

    2012-04-07

    The article describes challenges to comparative risk assessment, a key approach for managing uncertainty in decision making, across diverse threats such as terrorism and climate change and argues new approaches will be particularly important in addressing decisions related to sustainability.

  19. The radiative heating response to climate change

    NASA Astrophysics Data System (ADS)

    Maycock, Amanda

    2016-04-01

    The structure and magnitude of radiative heating rates in the atmosphere can change markedly in response to climate forcings; diagnosing the causes of these changes can aid in understanding parts of the large-scale circulation response to climate change. This study separates the relative drivers of projected changes in longwave and shortwave radiative heating rates over the 21st century into contributions from radiatively active gases, such as carbon dioxide, ozone and water vapour, and from changes in atmospheric and surface temperatures. Results are shown using novel radiative diagnostics applied to timeslice experiments from the UM-UKCA chemistry-climate model; these online estimates are compared to offline radiative transfer calculations. Line-by-line calculations showing spectrally-resolved changes in heating rates due to different gases will also be presented.

  20. Malaria and global change: Insights, uncertainties and possible surprises

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, P.H.; Steel, A.

    Malaria may change with global change. Indeed, global change may affect malaria risk and malaria epidemiology. Malaria risk may change in response to a greenhouse warming; malaria epidemiology, in response to the social, economic, and political developments which a greenhouse warming may trigger. To date, malaria receptivity and epidemiology futures have been explored within the context of equilibrium studies. Equilibrium studies of climate change postulate an equilibrium present climate (the starting point) and a doubled-carbon dioxide climate (the end point), simulate conditions in both instances, and compare the two. What happens while climate changes, i.e., between the starting point andmore » the end point, is ignored. The present paper focuses on malaria receptivity and addresses what equilibrium studies miss, namely transient malaria dynamics.« less

  1. Eco-hydrologic model cascades: Simulating land use and climate change impacts on hydrology, hydraulics and habitats for fish and macroinvertebrates.

    PubMed

    Guse, Björn; Kail, Jochem; Radinger, Johannes; Schröder, Maria; Kiesel, Jens; Hering, Daniel; Wolter, Christian; Fohrer, Nicola

    2015-11-15

    Climate and land use changes affect the hydro- and biosphere at different spatial scales. These changes alter hydrological processes at the catchment scale, which impact hydrodynamics and habitat conditions for biota at the river reach scale. In order to investigate the impact of large-scale changes on biota, a cascade of models at different scales is required. Using scenario simulations, the impact of climate and land use change can be compared along the model cascade. Such a cascade of consecutively coupled models was applied in this study. Discharge and water quality are predicted with a hydrological model at the catchment scale. The hydraulic flow conditions are predicted by hydrodynamic models. The habitat suitability under these hydraulic and water quality conditions is assessed based on habitat models for fish and macroinvertebrates. This modelling cascade was applied to predict and compare the impacts of climate- and land use changes at different scales to finally assess their effects on fish and macroinvertebrates. Model simulations revealed that magnitude and direction of change differed along the modelling cascade. Whilst the hydrological model predicted a relevant decrease of discharge due to climate change, the hydraulic conditions changed less. Generally, the habitat suitability for fish decreased but this was strongly species-specific and suitability even increased for some species. In contrast to climate change, the effect of land use change on discharge was negligible. However, land use change had a stronger impact on the modelled nitrate concentrations affecting the abundances of macroinvertebrates. The scenario simulations for the two organism groups illustrated that direction and intensity of changes in habitat suitability are highly species-dependent. Thus, a joined model analysis of different organism groups combined with the results of hydrological and hydrodynamic models is recommended to assess the impact of climate and land use changes on river ecosystems. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. A hydrologic drying bias in water-resource impact analyses of anthropogenic climate change

    USGS Publications Warehouse

    Milly, Paul; Dunne, Krista A.

    2017-01-01

    For water-resource planning, sensitivity of freshwater availability to anthropogenic climate change (ACC) often is analyzed with “offline” hydrologic models that use precipitation and potential evapotranspiration (Ep) as inputs. Because Ep is not a climate-model output, an intermediary model of Ep must be introduced to connect the climate model to the hydrologic model. Several Ep methods are used. The suitability of each can be assessed by noting a credible Ep method for offline analyses should be able to reproduce climate models’ ACC-driven changes in actual evapotranspiration in regions and seasons of negligible water stress (Ew). We quantified this ability for seven commonly used Ep methods and for a simple proportionality with available energy (“energy-only” method). With the exception of the energy-only method, all methods tend to overestimate substantially the increase in Ep associated with ACC. In an offline hydrologic model, the Ep-change biases produce excessive increases in actual evapotranspiration (E), whether the system experiences water stress or not, and thence strong negative biases in runoff change, as compared to hydrologic fluxes in the driving climate models. The runoff biases are comparable in magnitude to the ACC-induced runoff changes themselves. These results suggest future hydrologic drying (wetting) trends likely are being systematically and substantially overestimated (underestimated) in many water-resource impact analyses.

  3. Climate change versus deforestation: Implications for tree species distribution in the dry forests of southern Ecuador

    PubMed Central

    Hildebrandt, Patrick; Cueva, Jorge; Espinosa, Carlos Iván; Stimm, Bernd; Günter, Sven

    2017-01-01

    Seasonally dry forests in the neotropics are heavily threatened by a combination of human disturbances and climate change; however, the severity of these threats is seldom contrasted. This study aims to quantify and compare the effects of deforestation and climate change on the natural spatial ranges of 17 characteristic tree species of southern Ecuador dry deciduous forests, which are heavily fragmented and support high levels of endemism as part of the Tumbesian ecoregion. We used 660 plant records to generate species distribution models and land-cover data to project species ranges for two time frames: a simulated deforestation scenario from 2008 to 2014 with native forest to anthropogenic land-use conversion, and an extreme climate change scenario (CCSM4.0, RCP 8.5) for 2050, which assumed zero change from human activities. To assess both potential threats, we compared the estimated annual rates of species loss (i.e., range shifts) affecting each species. Deforestation loss for all species averaged approximately 71 km2/year, while potential climate-attributed loss was almost 21 km2/year. Moreover, annual area loss rates due to deforestation were significantly higher than those attributed to climate-change (P < 0.01). However, projections into the future scenario show evidence of diverging displacement patterns, indicating the potential formation of novel ecosystems, which is consistent with other species assemblage predictions as result of climate change. Furthermore, we provide recommendations for management and conservation, prioritizing the most threatened species such as Albizia multiflora, Ceiba trichistandra, and Cochlospermum vitifolium. PMID:29267357

  4. Climate change versus deforestation: Implications for tree species distribution in the dry forests of southern Ecuador.

    PubMed

    Manchego, Carlos E; Hildebrandt, Patrick; Cueva, Jorge; Espinosa, Carlos Iván; Stimm, Bernd; Günter, Sven

    2017-01-01

    Seasonally dry forests in the neotropics are heavily threatened by a combination of human disturbances and climate change; however, the severity of these threats is seldom contrasted. This study aims to quantify and compare the effects of deforestation and climate change on the natural spatial ranges of 17 characteristic tree species of southern Ecuador dry deciduous forests, which are heavily fragmented and support high levels of endemism as part of the Tumbesian ecoregion. We used 660 plant records to generate species distribution models and land-cover data to project species ranges for two time frames: a simulated deforestation scenario from 2008 to 2014 with native forest to anthropogenic land-use conversion, and an extreme climate change scenario (CCSM4.0, RCP 8.5) for 2050, which assumed zero change from human activities. To assess both potential threats, we compared the estimated annual rates of species loss (i.e., range shifts) affecting each species. Deforestation loss for all species averaged approximately 71 km2/year, while potential climate-attributed loss was almost 21 km2/year. Moreover, annual area loss rates due to deforestation were significantly higher than those attributed to climate-change (P < 0.01). However, projections into the future scenario show evidence of diverging displacement patterns, indicating the potential formation of novel ecosystems, which is consistent with other species assemblage predictions as result of climate change. Furthermore, we provide recommendations for management and conservation, prioritizing the most threatened species such as Albizia multiflora, Ceiba trichistandra, and Cochlospermum vitifolium.

  5. Coupling climate and hydrological models to evaluate the impact of climate change on run of the river hydropower schemes from UK study sites

    NASA Astrophysics Data System (ADS)

    Pasten-Zapata, Ernesto; Jones, Julie; Moggridge, Helen

    2015-04-01

    As climate change is expected to generate variations on the Earth's precipitation and temperature, the water cycle will also experience changes. Consequently, water users will have to be prepared for possible changes in future water availability. The main objective of this research is to evaluate the impacts of climate change on river regimes and the implications to the operation and feasibility of run of the river hydropower schemes by analyzing four UK study sites. Run of the river schemes are selected for analysis due to their higher dependence to the available river flow volumes when compared to storage hydropower schemes that can rely on previously accumulated water volumes (linked to poster in session HS5.3). Global Climate Models (GCMs) represent the main tool to assess future climate change. In this research, Regional Climate Models (RCMs), which dynamically downscale GCM outputs providing higher resolutions, are used as starting point to evaluate climate change within the study catchments. RCM daily temperature and precipitation will be downscaled to an appropriate scale for impact studies and bias corrected using different statistical methods: linear scaling, local intensity scaling, power transformation, variance scaling and delta change correction. The downscaled variables will then be coupled to hydrological models that have been previously calibrated and validated against observed daily river flow data. The coupled hydrological and climate models will then be used to simulate historic river flows that are compared to daily observed values in order to evaluate the model accuracy. As this research will employ several different RCMs (from the EURO-CORDEX simulations), downscaling and bias correction methodologies, greenhouse emission scenarios and hydrological models, the uncertainty of each element will be estimated. According to their uncertainty magnitude, a prediction of the best downscaling approach (or approaches) is expected to be obtained. The current progress of the project will be presented along with the steps to be followed in the future.

  6. Early Holocene hydroclimate of Baffin Bay: Understanding the interplay between abrupt climate change events and ice sheet fluctuations

    NASA Astrophysics Data System (ADS)

    Corcoran, M. C.; Thomas, E. K.; Castañeda, I. S.; Briner, J. P.

    2017-12-01

    Understanding the causes of ice sheet fluctuations resulting in sea level rise is essential in today's warming climate. In high-latitude ice-sheet-proximal environments such as Baffin Bay, studying both the cause and the rate of ice sheet variability during past abrupt climate change events aids in predictions. Past climate reconstructions are used to understand ice sheet responses to changes in temperature and precipitation. The 9,300 and 8,200 yr BP events are examples of abrupt climate change events in the Baffin Bay region during which there were multiple re-advances of the Greenland and Laurentide ice sheets. High-resolution (decadal-scale) hydroclimate variability near the ice sheet margins during these abrupt climate change events is still unknown. We will generate a decadal-scale record of early Holocene temperature and precipitation using leaf wax hydrogen isotopes, δ2Hwax, from a lake sediment archive on Baffin Island, western Baffin Bay, to better understand abrupt climate change in this region. Shifts in temperature and moisture source result in changes in environmental water δ2H, which in turn is reflected in δ2Hwax, allowing for past hydroclimate to be determined from these compound-specific isotopes. The combination of terrestrial and aquatic δ2Hwax is used to determine soil evaporation and is ultimately used to reconstruct moisture variability. We will compare our results with a previous analysis of δ2Hwax and branched glycerol dialkyl glycerol tetraethers, a temperature and pH proxy, in lake sediment from western Greenland, eastern Baffin Bay, which indicates that cool and dry climate occurred in response to freshwater forcing events in the Labrador Sea. Reconstructing and comparing records on both the western and eastern sides of Baffin Bay during the early Holocene will allow for a spatial understanding of temperature and moisture balance changes during abrupt climate events, aiding in ice sheet modeling and predictions of future sea level rise.

  7. Modelling the future impacts of climate and land-use change on suspended sediment transport in the River Thames (UK)

    NASA Astrophysics Data System (ADS)

    Bussi, Gianbattista; Dadson, Simon J.; Prudhomme, Christel; Whitehead, Paul G.

    2016-11-01

    The effects of climate change and variability on river flows have been widely studied. However the impacts of such changes on sediment transport have received comparatively little attention. In part this is because modelling sediment production and transport processes introduces additional uncertainty, but it also results from the fact that, alongside the climate change signal, there have been and are projected to be significant changes in land cover which strongly affect sediment-related processes. Here we assess the impact of a range of climatic variations and land covers on the River Thames catchment (UK). We first calculate a response of the system to climatic stressors (average precipitation, average temperature and increase in extreme precipitation) and land-cover stressors (change in the extent of arable land). To do this we use an ensemble of INCA hydrological and sediment behavioural models. The resulting system response, which reveals the nature of interactions between the driving factors, is then compared with climate projections originating from the UKCP09 assessment (UK Climate Projections 2009) to evaluate the likelihood of the range of projected outcomes. The results show that climate and land cover each exert an individual control on sediment transport. Their effects vary depending on the land use and on the level of projected climate change. The suspended sediment yield of the River Thames in its lowermost reach is expected to change by -4% (-16% to +13%, confidence interval, p = 0.95) under the A1FI emission scenario for the 2030s, although these figures could be substantially altered by an increase in extreme precipitation, which could raise the suspended sediment yield up to an additional +10%. A 70% increase in the extension of the arable land is projected to increase sediment yield by around 12% in the lowland reaches. A 50% reduction is projected to decrease sediment yield by around 13%.

  8. Tolerance adaptation and precipitation changes complicate latitudinal patterns of climate change impacts.

    PubMed

    Bonebrake, Timothy C; Mastrandrea, Michael D

    2010-07-13

    Global patterns of biodiversity and comparisons between tropical and temperate ecosystems have pervaded ecology from its inception. However, the urgency in understanding these global patterns has been accentuated by the threat of rapid climate change. We apply an adaptive model of environmental tolerance evolution to global climate data and climate change model projections to examine the relative impacts of climate change on different regions of the globe. Our results project more adverse impacts of warming on tropical populations due to environmental tolerance adaptation to conditions of low interannual variability in temperature. When applied to present variability and future forecasts of precipitation data, the tolerance adaptation model found large reductions in fitness predicted for populations in high-latitude northern hemisphere regions, although some tropical regions had comparable reductions in fitness. We formulated an evolutionary regional climate change index (ERCCI) to additionally incorporate the predicted changes in the interannual variability of temperature and precipitation. Based on this index, we suggest that the magnitude of climate change impacts could be much more heterogeneous across latitude than previously thought. Specifically, tropical regions are likely to be just as affected as temperate regions and, in some regions under some circumstances, possibly more so.

  9. Farmers perceptions on climate change in lowland and highland vegetable production centers of South Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Adiyoga, W.

    2018-02-01

    A survey was carried out in South Sulawesi, Indonesia interviewing 220 vegetable farmers. It was aimed at examining the vegetable farmers’ perception of climate change and assessing the consistency of farmers’ perception with available time series meteorological data. Results suggest that meteorological data analysis is in agreement with farmers’ perception regarding faster start, longer ending, and longer duration of rainy season. Further data analysis supports the claim of most farmers who perceive the occurrence of increasing air temperature, changing or shifting of the hottest and coldest month. Most respondents also suggest that climate change has affected vegetable farm yield and profitability. Other respondents even predict that climate change may affect the quality of life of their future descendants. Meanwhile, significant number of farmers is quite optimistic that they can cope with climate change problems through adaptation strategy. However, the attitude of farmers towards climate change is mostly negative as compared to positive or neutral feeling. Informative and educational campaign should be continuously carried out to encourage farmers in developing positive attitude or positive thinking towards climate change. Positive attitude may eventually lead to constructive behavior in selecting and implementing adaptation options.

  10. Economic impacts of climate change on agriculture: the AgMIP approach

    NASA Astrophysics Data System (ADS)

    Delincé, Jacques; Ciaian, Pavel; Witzke, Heinz-Peter

    2015-01-01

    The current paper investigates the long-term global impacts on crop productivity under different climate scenarios using the AgMIP approach (Agricultural Model Intercomparison and Improvement Project). The paper provides horizontal model intercomparison from 11 economic models as well as a more detailed analysis of the simulated effects from the Common Agricultural Policy Regionalized Impact (CAPRI) model to systematically compare its performance with other AgMIP models and specifically for the Chinese agriculture. CAPRI is a comparative static partial equilibrium model extensively used for medium and long-term economic and environmental policy impact applications. The results indicate that, at the global level, the climate change will cause an agricultural productivity decrease (between -2% and -15% by 2050), a food price increase (between 1.3% and 56%) and an expansion of cultivated area (between 1% and 4%) by 2050. The results for China indicate that the climate change effects tend to be smaller than the global impacts. The CAPRI-simulated effects are, in general, close to the median across all AgMIP models. Model intercomparison analyses reveal consistency in terms of direction of change to climate change but relatively strong heterogeneity in the magnitude of the effects between models.

  11. Population response to climate change: linear vs. non-linear modeling approaches.

    PubMed

    Ellis, Alicia M; Post, Eric

    2004-03-31

    Research on the ecological consequences of global climate change has elicited a growing interest in the use of time series analysis to investigate population dynamics in a changing climate. Here, we compare linear and non-linear models describing the contribution of climate to the density fluctuations of the population of wolves on Isle Royale, Michigan from 1959 to 1999. The non-linear self excitatory threshold autoregressive (SETAR) model revealed that, due to differences in the strength and nature of density dependence, relatively small and large populations may be differentially affected by future changes in climate. Both linear and non-linear models predict a decrease in the population of wolves with predicted changes in climate. Because specific predictions differed between linear and non-linear models, our study highlights the importance of using non-linear methods that allow the detection of non-linearity in the strength and nature of density dependence. Failure to adopt a non-linear approach to modelling population response to climate change, either exclusively or in addition to linear approaches, may compromise efforts to quantify ecological consequences of future warming.

  12. Climate impacts of energy technologies depend on emissions timing

    NASA Astrophysics Data System (ADS)

    Edwards, Morgan R.; Trancik, Jessika E.

    2014-05-01

    Energy technologies emit greenhouse gases with differing radiative efficiencies and atmospheric lifetimes. Standard practice for evaluating technologies, which uses the global warming potential (GWP) to compare the integrated radiative forcing of emitted gases over a fixed time horizon, does not acknowledge the importance of a changing background climate relative to climate change mitigation targets. Here we demonstrate that the GWP misvalues the impact of CH4-emitting technologies as mid-century approaches, and we propose a new class of metrics to evaluate technologies based on their time of use. The instantaneous climate impact (ICI) compares gases in an expected radiative forcing stabilization year, and the cumulative climate impact (CCI) compares their time-integrated radiative forcing up to a stabilization year. Using these dynamic metrics, we quantify the climate impacts of technologies and show that high-CH4-emitting energy sources become less advantageous over time. The impact of natural gas for transportation, with CH4 leakage, exceeds that of gasoline within 1-2 decades for a commonly cited 3 W m-2 stabilization target. The impact of algae biodiesel overtakes that of corn ethanol within 2-3 decades, where algae co-products are used to produce biogas and corn co-products are used for animal feed. The proposed metrics capture the changing importance of CH4 emissions as a climate threshold is approached, thereby addressing a major shortcoming of the GWP for technology evaluation.

  13. Hydrological Impacts of Land Use Change and Climate Variability in the Headwater Region of the Heihe River Basin, Northwest China

    PubMed Central

    Zhang, Ling; Nan, Zhuotong; Xu, Yi; Li, Shuo

    2016-01-01

    Land use change and climate variability are two key factors impacting watershed hydrology, which is strongly related to the availability of water resources and the sustainability of local ecosystems. This study assessed separate and combined hydrological impacts of land use change and climate variability in the headwater region of a typical arid inland river basin, known as the Heihe River Basin, northwest China, in the recent past (1995–2014) and near future (2015–2024), by combining two land use models (i.e., Markov chain model and Dyna-CLUE) with a hydrological model (i.e., SWAT). The potential impacts in the near future were explored using projected land use patterns and hypothetical climate scenarios established on the basis of analyzing long-term climatic observations. Land use changes in the recent past are dominated by the expansion of grassland and a decrease in farmland; meanwhile the climate develops with a wetting and warming trend. Land use changes in this period induce slight reductions in surface runoff, groundwater discharge and streamflow whereas climate changes produce pronounced increases in them. The joint hydrological impacts are similar to those solely induced by climate changes. Spatially, both the effects of land use change and climate variability vary with the sub-basin. The influences of land use changes are more identifiable in some sub-basins, compared with the basin-wide impacts. In the near future, climate changes tend to affect the hydrological regimes much more prominently than land use changes, leading to significant increases in all hydrological components. Nevertheless, the role of land use change should not be overlooked, especially if the climate becomes drier in the future, as in this case it may magnify the hydrological responses. PMID:27348224

  14. Hydrological Impacts of Land Use Change and Climate Variability in the Headwater Region of the Heihe River Basin, Northwest China.

    PubMed

    Zhang, Ling; Nan, Zhuotong; Xu, Yi; Li, Shuo

    2016-01-01

    Land use change and climate variability are two key factors impacting watershed hydrology, which is strongly related to the availability of water resources and the sustainability of local ecosystems. This study assessed separate and combined hydrological impacts of land use change and climate variability in the headwater region of a typical arid inland river basin, known as the Heihe River Basin, northwest China, in the recent past (1995-2014) and near future (2015-2024), by combining two land use models (i.e., Markov chain model and Dyna-CLUE) with a hydrological model (i.e., SWAT). The potential impacts in the near future were explored using projected land use patterns and hypothetical climate scenarios established on the basis of analyzing long-term climatic observations. Land use changes in the recent past are dominated by the expansion of grassland and a decrease in farmland; meanwhile the climate develops with a wetting and warming trend. Land use changes in this period induce slight reductions in surface runoff, groundwater discharge and streamflow whereas climate changes produce pronounced increases in them. The joint hydrological impacts are similar to those solely induced by climate changes. Spatially, both the effects of land use change and climate variability vary with the sub-basin. The influences of land use changes are more identifiable in some sub-basins, compared with the basin-wide impacts. In the near future, climate changes tend to affect the hydrological regimes much more prominently than land use changes, leading to significant increases in all hydrological components. Nevertheless, the role of land use change should not be overlooked, especially if the climate becomes drier in the future, as in this case it may magnify the hydrological responses.

  15. Paleoecology and high-resolution paleohydrology of a kettle peatland in upper Michigan

    NASA Astrophysics Data System (ADS)

    Booth, Robert K.; Jackson, Stephen T.; Gray, Catherine E. D.

    2004-01-01

    We investigated the developmental and hydrological history of a Sphagnum-dominated, kettle peatland in Upper Michigan using testate amoebae, plant macrofossils, and pollen. Our primary objective was to determine if the paleohydrological record of the peatland represents a record of past climate variability at subcentennial to millennial time scales. To assess the role of millennial-scale climate variability on peatland paleohydrology, we compared the timing of peatland and upland vegetation changes. To investigate the role of higher-frequency climate variability on peatland paleohydrology, we used testate amoebae to reconstruct a high-resolution, hydrologic history of the peatland for the past 5100 years, and compared this record to other regional records of paleoclimate and vegetation. Comparisons revealed coherent patterns of hydrological, vegetational, and climatic changes, suggesting that peatland paleohydrology responded to climate variability at millennial to sub-centennial time scales. Although ombrotrophic peatlands have been the focus of most high-resolution peatland paleoclimate research, paleohydrological records from Sphagnum-dominated, closed-basin peatlands record high-frequency and low-magnitude climatic changes and thus represent a significant source of unexplored paleoclimate data.

  16. Patterns and biases of climate change threats in the IUCN Red List.

    PubMed

    Trull, Nicholas; Böhm, Monika; Carr, Jamie

    2018-02-01

    International Union for Conservation of Nature (IUCN) Red List assessments rely on published data and expert inputs, and biases can be introduced where underlying definitions and concepts are ambiguous. Consideration of climate change threat is no exception, and recently numerous approaches to assessing the threat of climate change to species have been developed. We explored IUCN Red List assessments of amphibians and birds to determine whether species listed as threatened by climate change display distinct patterns in terms of habitat occupied and additional nonclimatic threats faced. We compared IUCN Red List data with a published data set of species' biological and ecological traits believed to infer high vulnerability to climate change and determined whether distributions of climate change-threatened species on the IUCN Red List concur with those of climate change-threatened species identified with the trait-based approach and whether species possessing these traits are more likely to have climate change listed as a threat on the IUCN Red List. Species in some ecosystems (e.g., grassland, shrubland) and subject to particular threats (e.g., invasive species) were more likely to have climate change as a listed threat. Geographical patterns of climate change-threatened amphibians and birds on the IUCN Red List were incongruent with patterns of global species richness and patterns identified using trait-based approaches. Certain traits were linked to increases or decreases in the likelihood of a species being threatened by climate change. Broad temperature tolerance of a species was consistently related to an increased likelihood of climate change threat, indicating counterintuitive relationships in IUCN assessments. To improve the robustness of species assessments of the vulnerability or extinction risk associated with climate change, we suggest IUCN adopt a more cohesive approach whereby specific traits highlighted by our results are considered in Red List assessments. To achieve this and to strengthen the climate change-vulnerability assessments approach, it is necessary to identify and implement logical avenues for further research into traits that make species vulnerable to climate change (including population-level threats). © 2017 Society for Conservation Biology.

  17. Consequences of changes in vegetation and snow cover for climate feedbacks in Alaska and northwest Canada

    USGS Publications Warehouse

    Euskirchen, Eugénie S.; Bennett, A. P.; Breen, Amy L.; Genet, Helene; Lindgren, Michael A.; Kurkowski, Tom; McGuire, A. David; Rupp, T. Scott

    2016-01-01

    Changes in vegetation and snow cover may lead to feedbacks to climate through changes in surface albedo and energy fluxes between the land and atmosphere. In addition to these biogeophysical feedbacks, biogeochemical feedbacks associated with changes in carbon (C) storage in the vegetation and soils may also influence climate. Here, using a transient biogeographic model (ALFRESCO) and an ecosystem model (DOS-TEM), we quantified the biogeophysical feedbacks due to changes in vegetation and snow cover across continuous permafrost to non-permafrost ecosystems in Alaska and northwest Canada. We also computed the changes in carbon storage in this region to provide a general assessment of the direction of the biogeochemical feedback. We considered four ecoregions, or Landscape Conservations Cooperatives (LCCs; including the Arctic, North Pacific, Western Alaska, and Northwest Boreal). We examined the 90 year period from 2010 to 2099 using one future emission scenario (A1B), under outputs from two general circulation models (MPI-ECHAM5 and CCCMA-CGCM3.1). We found that changes in snow cover duration, including both the timing of snowmelt in the spring and snow return in the fall, provided the dominant positive biogeophysical feedback to climate across all LCCs, and was greater for the ECHAM (+3.1 W m−2 decade−1regionally) compared to the CCCMA (+1.3 W m−2 decade−1 regionally) scenario due to an increase in loss of snow cover in the ECHAM scenario. The greatest overall negative feedback to climate from changes in vegetation cover was due to fire in spruce forests in the Northwest Boreal LCC and fire in shrub tundra in the Western LCC (−0.2 to −0.3 W m−2 decade−1). With the larger positive feedbacks associated with reductions in snow cover compared to the smaller negative feedbacks associated with shifts in vegetation, the feedback to climate warming was positive (total feedback of +2.7 W m−2decade regionally in the ECHAM scenario compared to +0.76 W m−2 decade regionally in the CCCMA scenario). Overall, increases in C storage in the vegetation and soils across the study region would act as a negative feedback to climate. By exploring these feedbacks to climate, we can reach a more integrated understanding of the manner in which climate change may impact interactions between high-latitude ecosystems and the global climate system.

  18. Simulating post-wildfire forest trajectories under alternative climate and management scenarios

    Treesearch

    Alicia Azpeleta Tarancon; Peter Z. Fule; Kristen L. Shive; Carolyn H. Sieg; Andrew Sanchez Meador; Barbara Strom

    2014-01-01

    Post-fire predictions of forest recovery under future climate change and management actions are necessary for forest managers to make decisions about treatments. We applied the Climate-Forest Vegetation Simulator (Climate-FVS), a new version of a widely used forest management model, to compare alternative climate and management scenarios in a severely burned...

  19. Does the weather influence public opinion about climate change?

    NASA Astrophysics Data System (ADS)

    Donner, S. D.; McDaniel, J.

    2010-12-01

    Public opinion in North America about the science of anthropogenic climate change and the motivation for policy action has been variable over the past twenty years. The trends in public opinion over time have been attributed the general lack of pressing public concern about climate change to a range of political, economic and psychological factors. One driving force behind the variability in polling data from year to year may be the weather itself. The difference between what we “expect” - the climate - and what we “get” - the weather - can be a major source of confusion and obfuscation in the public discourse about climate change. For example, reaction to moderate global temperatures in 2007 and 2008 may have helped prompt the spread of a “global cooling” meme in the public and the news media. At the same time, a decrease in the belief in the science of climate change and the need for action has been noted in opinion polls. This study analyzes the relationship between public opinion about climate change and the weather in the U.S. since the mid-1980s using historical polling data from several major organizations (e.g. Gallup, Pew, Harris Interactive, ABC News), historical monthly air temperature (NCDC) and a survey of opinion articles from major U.S. newspapers (Washington Post, New York Times, Wall Street Journal, Houston Chronicle, USA Today). Seasonal and annual monthly temperature anomalies for the northeastern U.S and the continental U.S are compared with available national opinion data for three general categories of questions: i) Is the climate warming?, ii) Is the observed warming due to human activity?, and iii) Are you concerned about climate change? The variability in temperature and public opinion over time is also compared with the variability in the fraction of opinion articles in the newspapers (n ~ 7000) which express general agreement or disagreement with IPCC Summary for Policymakers consensus statements on climate change (“most of the observed increase in global average temperature is very likely to be due to the observed increase in anthropogenic greenhouse gas concentrations”). The results reveal a possible link between opinion leaders, particularly in the northeastern U.S, public confusion about the difference between weather and climate, and the evolution of U.S. public opinion about climate change.

  20. Comparative study of different stochastic weather generators for long-term climate data simulation

    USDA-ARS?s Scientific Manuscript database

    Climate is one of the single most important factors affecting watershed ecosystems and water resources. The effect of climate variability and change has been studied extensively in some places; in many places, however, assessments are hampered by limited availability of long term continuous climate ...

  1. Characterizing Vegetation Model Skill and Uncertainty in Simulated Ecosystem Response to Climate Change in the United States

    NASA Astrophysics Data System (ADS)

    Drapek, R. J.; Kim, J. B.

    2013-12-01

    We simulated ecosystem response to climate change in the USA and Canada at a 5 arc-minute grid resolution using the MC1 dynamic global vegetation model and nine CMIP3 future climate projections as input. The climate projections were produced by 3 GCMs simulating 3 SRES emissions scenarios. We examined MC1 outputs for the conterminous USA by summarizing them by EPA level II and III ecoregions to characterize model skill and evaluate the magnitude and uncertainties of simulated ecosystem response to climate change. First, we evaluated model skill by comparing outputs from the recent historical period with benchmark datasets. Distribution of potential natural vegetation simulated by MC1 was compared with Kuchler's map. Above ground live carbon simulated by MC1 was compared with the National Biomass and Carbon Dataset. Fire return intervals calculated by MC1 were compared with maximum and minimum values compiled for the United States. Each EPA Level III Ecoregion was scored for average agreement with corresponding benchmark data and an average score was calculated for all three types of output. Greatest agreement with benchmark data happened in the Western Cordillera, the Ozark / Ouachita-Appalachian Forests, and the Southeastern USA Plains (EPA Level II Ecoregions). The lowest agreement happened in the Everglades and the Tamaulipas-Texas Semiarid Plain. For simulated ecosystem response to future climate projections we examined MC1 output for shifts in vegetation type, vegetation carbon, runoff, and biomass consumed by fire. Each ecoregion was scored for the amount of change from historical conditions for each variable and an average score was calculated. Smallest changes were forecast for Western Cordillera and Marine West Coast Forest ecosystems. Largest changes were forecast for the Cold Deserts, the Mixed Wood Plains, and the Central USA Plains. By combining scores of model skill for the historical period for each EPA Level 3 Ecoregion with scores representing the magnitude of ecosystem changes in the future, we identified high and low uncertainty ecoregions. The largest anticipated changes and the lowest measures of model skill coincide in the Central USA Plains and the Mixed Wood Plains. The combination of low model skill and high degree of ecosystem change elevate the importance of our uncertainty in this ecoregion. The highest projected changes coincide with relatively high model skill in the Cold Deserts. Climate adaptation efforts are the most likely to pay off in these regions. Finally, highest model skill and lowest anticipated changes coincide in the Western Cordillera and the Marine West Coast Forests. These regions may be relatively low-risk for climate change impacts when compared to the other ecoregions. These results represent only the first step in this type of analysis; there exist many ways to strengthen it. One, MC1 calibrations can be optimized using a structured optimization technique. Two, a larger set of climate projections can be used to capture a fuller range of GCMs and emissions scenarios. And three, employing an ensemble of vegetation models would make the analysis more robust.

  2. Stability of the Martian climate system under the seasonal change condition of solar radiation

    NASA Astrophysics Data System (ADS)

    Nakamura, Takasumi; Tajika, Eiichi

    2002-11-01

    Previous studies on stability of the Martian climate system used essentially zero-dimensional energy balance climate models (EBMs) under the condition of annual mean solar radiation income. However, areal extent of polar ice caps should affect the Martian climate through the energy balance and the CO2 budget, and results under the seasonal change condition of solar radiation will be different from those under the annual mean condition. We therefore construct a one-dimensional energy balance climate model with CO2-dependent outgoing radiation, seasonal changes of solar radiation income, changes of areal extent of CO2 ice caps, and adsorption of CO2 by regolith. We have investigated behaviors of the Martian climate system and, in particular, examined the effect of the seasonal changes of solar radiation by comparing the results of previous studies under the condition of annual mean solar radiation. One of the major discrepancies between them is the condition for multiple solutions of the Martian climate system. Although the Martian climate system always has multiple solutions under the annual mean condition, under the seasonal change condition, existence of multiple solutions depends on the present amounts of CO2 in the ice caps and the regolith.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nugent, Philip J; Omitaomu, Olufemi A; Parish, Esther S

    The urban climate is changing rapidly. Therefore, climate change and its projected impacts on environmental conditions must be considered in assessing and comparing urban planning alternatives. In this paper, we present an integrated framework for urban climate adaptation tool (Urban-CAT) that will help cities to plan for, rather than react to, possible risks. Urban-CAT will be developed as a scenario planning tool that is locally relevant to existing urban decision-making processes.

  4. Predicting the Impacts of Climate Change on Central American Agriculture

    NASA Astrophysics Data System (ADS)

    Winter, J. M.; Ruane, A. C.; Rosenzweig, C.

    2011-12-01

    Agriculture is a vital component of Central America's economy. Poor crop yields and harvest reliability can produce food insecurity, malnutrition, and conflict. Regional climate models (RCMs) and agricultural models have the potential to greatly enhance the efficiency of Central American agriculture and water resources management under both current and future climates. A series of numerical experiments was conducted using Regional Climate Model Version 3 (RegCM3) and the Weather Research and Forecasting Model (WRF) to evaluate the ability of RCMs to reproduce the current climate of Central America and assess changes in temperature and precipitation under multiple future climate scenarios. Control simulations were thoroughly compared to a variety of observational datasets, including local weather station data, gridded meteorological data, and high-resolution satellite-based precipitation products. Future climate simulations were analyzed for both mean shifts in climate and changes in climate variability, including extreme events (droughts, heat waves, floods). To explore the impacts of changing climate on maize, bean, and rice yields in Central America, RCM output was used to force the Decision Support System for Agrotechnology Transfer Model (DSSAT). These results were synthesized to create climate change impacts predictions for Central American agriculture that explicitly account for evolving distributions of precipitation and temperature extremes.

  5. The effects of climate change and land-use change on demographic rates and population viability.

    PubMed

    Selwood, Katherine E; McGeoch, Melodie A; Mac Nally, Ralph

    2015-08-01

    Understanding the processes that lead to species extinctions is vital for lessening pressures on biodiversity. While species diversity, presence and abundance are most commonly used to measure the effects of human pressures, demographic responses give a more proximal indication of how pressures affect population viability and contribute to extinction risk. We reviewed how demographic rates are affected by the major anthropogenic pressures, changed landscape condition caused by human land use, and climate change. We synthesized the results of 147 empirical studies to compare the relative effect size of climate and landscape condition on birth, death, immigration and emigration rates in plant and animal populations. While changed landscape condition is recognized as the major driver of species declines and losses worldwide, we found that, on average, climate variables had equally strong effects on demographic rates in plant and animal populations. This is significant given that the pressures of climate change will continue to intensify in coming decades. The effects of climate change on some populations may be underestimated because changes in climate conditions during critical windows of species life cycles may have disproportionate effects on demographic rates. The combined pressures of land-use change and climate change may result in species declines and extinctions occurring faster than otherwise predicted, particularly if their effects are multiplicative. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.

  6. Can changes in the distributions of resident birds in China over the past 50 years be attributed to climate change?

    PubMed Central

    Wu, Jianguo; Zhang, Guobin

    2015-01-01

    The distributions of bird species have changed over the past 50 years in China. To evaluate whether the changes can be attributed to the changing climate, we analyzed the distributions of 20 subspecies of resident birds in relation to climate change. Long-term records of bird distributions, gray relational analysis, fuzzy-set classification techniques, and attribution methods were used. Among the 20 subspecies of resident birds, the northern limits of over half of the subspecies have shifted northward since the 1960s, and most changes have been related to the thermal index. Driven by climate change over the past 50 years, the suitable range and latitude or longitude of the distribution centers of certain birds have exhibited increased fluctuations. The northern boundaries of over half of the subspecies have shifted northward compared with those in the 1960s. The consistency between the observed and predicted changes in the range limits was quite high for some subspecies. The changes in the northern boundaries or the latitudes of the centers of distribution of nearly half of the subspecies can be attributed to climate change. The results suggest that climate change has affected the distributions of particular birds. The method used to attribute changes in bird distributions to climate change may also be effective for other animals. PMID:26078858

  7. Can changes in the distributions of resident birds in China over the past 50 years be attributed to climate change?

    PubMed

    Wu, Jianguo; Zhang, Guobin

    2015-06-01

    The distributions of bird species have changed over the past 50 years in China. To evaluate whether the changes can be attributed to the changing climate, we analyzed the distributions of 20 subspecies of resident birds in relation to climate change. Long-term records of bird distributions, gray relational analysis, fuzzy-set classification techniques, and attribution methods were used. Among the 20 subspecies of resident birds, the northern limits of over half of the subspecies have shifted northward since the 1960s, and most changes have been related to the thermal index. Driven by climate change over the past 50 years, the suitable range and latitude or longitude of the distribution centers of certain birds have exhibited increased fluctuations. The northern boundaries of over half of the subspecies have shifted northward compared with those in the 1960s. The consistency between the observed and predicted changes in the range limits was quite high for some subspecies. The changes in the northern boundaries or the latitudes of the centers of distribution of nearly half of the subspecies can be attributed to climate change. The results suggest that climate change has affected the distributions of particular birds. The method used to attribute changes in bird distributions to climate change may also be effective for other animals.

  8. Probabilistic Climate Scenario Information for Risk Assessment

    NASA Astrophysics Data System (ADS)

    Dairaku, K.; Ueno, G.; Takayabu, I.

    2014-12-01

    Climate information and services for Impacts, Adaptation and Vulnerability (IAV) Assessments are of great concern. In order to develop probabilistic regional climate information that represents the uncertainty in climate scenario experiments in Japan, we compared the physics ensemble experiments using the 60km global atmospheric model of the Meteorological Research Institute (MRI-AGCM) with multi-model ensemble experiments with global atmospheric-ocean coupled models (CMIP3) of SRES A1b scenario experiments. The MRI-AGCM shows relatively good skills particularly in tropics for temperature and geopotential height. Variability in surface air temperature of physical ensemble experiments with MRI-AGCM was within the range of one standard deviation of the CMIP3 model in the Asia region. On the other hand, the variability of precipitation was relatively well represented compared with the variation of the CMIP3 models. Models which show the similar reproducibility in the present climate shows different future climate change. We couldn't find clear relationships between present climate and future climate change in temperature and precipitation. We develop a new method to produce probabilistic information of climate change scenarios by weighting model ensemble experiments based on a regression model (Krishnamurti et al., Science, 1999). The method can be easily applicable to other regions and other physical quantities, and also to downscale to finer-scale dependent on availability of observation dataset. The prototype of probabilistic information in Japan represents the quantified structural uncertainties of multi-model ensemble experiments of climate change scenarios. Acknowledgments: This study was supported by the SOUSEI Program, funded by Ministry of Education, Culture, Sports, Science and Technology, Government of Japan.

  9. The effect of climate policy on the impacts of climate change on river flows in the UK

    NASA Astrophysics Data System (ADS)

    Arnell, Nigel W.; Charlton, Matthew B.; Lowe, Jason A.

    2014-03-01

    This paper compares the effects of two indicative climate mitigation policies on river flows in six catchments in the UK with two scenarios representing un-mitigated emissions. It considers the consequences of uncertainty in both the pattern of catchment climate change as represented by different climate models and hydrological model parameterisation on the effects of mitigation policy. Mitigation policy has little effect on estimated flow magnitudes in 2030. By 2050 a mitigation policy which achieves a 2 °C temperature rise target reduces impacts on low flows by 20-25% compared to a business-as-usual emissions scenario which increases temperatures by 4 °C by the end of the 21st century, but this is small compared to the range in impacts between different climate model scenarios. However, the analysis also demonstrates that an early peak in emissions would reduce impacts by 40-60% by 2080 (compared with the 4 °C pathway), easing the adaptation challenge over the long term, and can delay by several decades the impacts that would be experienced from around 2050 in the absence of policy. The estimated proportion of impacts avoided varies between climate model patterns and, to a lesser extent, hydrological model parameterisations, due to variations in the projected shape of the relationship between climate forcing and hydrological response.

  10. Two takes on the ecosystem impacts of climate change and fishing: Comparing a size-based and a species-based ecosystem model in the central North Pacific

    NASA Astrophysics Data System (ADS)

    Woodworth-Jefcoats, Phoebe A.; Polovina, Jeffrey J.; Howell, Evan A.; Blanchard, Julia L.

    2015-11-01

    We compare two ecosystem model projections of 21st century climate change and fishing impacts in the central North Pacific. Both a species-based and a size-based ecosystem modeling approach are examined. While both models project a decline in biomass across all sizes in response to climate change and a decline in large fish biomass in response to increased fishing mortality, the models vary significantly in their handling of climate and fishing scenarios. For example, based on the same climate forcing the species-based model projects a 15% decline in catch by the end of the century while the size-based model projects a 30% decline. Disparities in the models' output highlight the limitations of each approach by showing the influence model structure can have on model output. The aspects of bottom-up change to which each model is most sensitive appear linked to model structure, as does the propagation of interannual variability through the food web and the relative impact of combined top-down and bottom-up change. Incorporating integrated size- and species-based ecosystem modeling approaches into future ensemble studies may help separate the influence of model structure from robust projections of ecosystem change.

  11. Designing ecological climate change impact assessments to reflect key climatic drivers

    USGS Publications Warehouse

    Sofaer, Helen R.; Barsugli, Joseph J.; Jarnevich, Catherine S.; Abatzoglou, John T.; Talbert, Marian; Miller, Brian W.; Morisette, Jeffrey T.

    2017-01-01

    Identifying the climatic drivers of an ecological system is a key step in assessing its vulnerability to climate change. The climatic dimensions to which a species or system is most sensitive – such as means or extremes – can guide methodological decisions for projections of ecological impacts and vulnerabilities. However, scientific workflows for combining climate projections with ecological models have received little explicit attention. We review Global Climate Model (GCM) performance along different dimensions of change and compare frameworks for integrating GCM output into ecological models. In systems sensitive to climatological means, it is straightforward to base ecological impact assessments on mean projected changes from several GCMs. Ecological systems sensitive to climatic extremes may benefit from what we term the ‘model space’ approach: a comparison of ecological projections based on simulated climate from historical and future time periods. This approach leverages the experimental framework used in climate modeling, in which historical climate simulations serve as controls for future projections. Moreover, it can capture projected changes in the intensity and frequency of climatic extremes, rather than assuming that future means will determine future extremes. Given the recent emphasis on the ecological impacts of climatic extremes, the strategies we describe will be applicable across species and systems. We also highlight practical considerations for the selection of climate models and data products, emphasizing that the spatial resolution of the climate change signal is generally coarser than the grid cell size of downscaled climate model output. Our review illustrates how an understanding of how climate model outputs are derived and downscaled can improve the selection and application of climatic data used in ecological modeling.

  12. Designing ecological climate change impact assessments to reflect key climatic drivers.

    PubMed

    Sofaer, Helen R; Barsugli, Joseph J; Jarnevich, Catherine S; Abatzoglou, John T; Talbert, Marian K; Miller, Brian W; Morisette, Jeffrey T

    2017-07-01

    Identifying the climatic drivers of an ecological system is a key step in assessing its vulnerability to climate change. The climatic dimensions to which a species or system is most sensitive - such as means or extremes - can guide methodological decisions for projections of ecological impacts and vulnerabilities. However, scientific workflows for combining climate projections with ecological models have received little explicit attention. We review Global Climate Model (GCM) performance along different dimensions of change and compare frameworks for integrating GCM output into ecological models. In systems sensitive to climatological means, it is straightforward to base ecological impact assessments on mean projected changes from several GCMs. Ecological systems sensitive to climatic extremes may benefit from what we term the 'model space' approach: a comparison of ecological projections based on simulated climate from historical and future time periods. This approach leverages the experimental framework used in climate modeling, in which historical climate simulations serve as controls for future projections. Moreover, it can capture projected changes in the intensity and frequency of climatic extremes, rather than assuming that future means will determine future extremes. Given the recent emphasis on the ecological impacts of climatic extremes, the strategies we describe will be applicable across species and systems. We also highlight practical considerations for the selection of climate models and data products, emphasizing that the spatial resolution of the climate change signal is generally coarser than the grid cell size of downscaled climate model output. Our review illustrates how an understanding of how climate model outputs are derived and downscaled can improve the selection and application of climatic data used in ecological modeling. © 2017 John Wiley & Sons Ltd.

  13. Choice of baseline climate data impacts projected species' responses to climate change.

    PubMed

    Baker, David J; Hartley, Andrew J; Butchart, Stuart H M; Willis, Stephen G

    2016-07-01

    Climate data created from historic climate observations are integral to most assessments of potential climate change impacts, and frequently comprise the baseline period used to infer species-climate relationships. They are often also central to downscaling coarse resolution climate simulations from General Circulation Models (GCMs) to project future climate scenarios at ecologically relevant spatial scales. Uncertainty in these baseline data can be large, particularly where weather observations are sparse and climate dynamics are complex (e.g. over mountainous or coastal regions). Yet, importantly, this uncertainty is almost universally overlooked when assessing potential responses of species to climate change. Here, we assessed the importance of historic baseline climate uncertainty for projections of species' responses to future climate change. We built species distribution models (SDMs) for 895 African bird species of conservation concern, using six different climate baselines. We projected these models to two future periods (2040-2069, 2070-2099), using downscaled climate projections, and calculated species turnover and changes in species-specific climate suitability. We found that the choice of baseline climate data constituted an important source of uncertainty in projections of both species turnover and species-specific climate suitability, often comparable with, or more important than, uncertainty arising from the choice of GCM. Importantly, the relative contribution of these factors to projection uncertainty varied spatially. Moreover, when projecting SDMs to sites of biodiversity importance (Important Bird and Biodiversity Areas), these uncertainties altered site-level impacts, which could affect conservation prioritization. Our results highlight that projections of species' responses to climate change are sensitive to uncertainty in the baseline climatology. We recommend that this should be considered routinely in such analyses. © 2016 John Wiley & Sons Ltd.

  14. Making Sense of Palaeoclimate Sensitivity

    NASA Technical Reports Server (NTRS)

    Rohling, E. J.; Sluijs, A.; DeConto, R.; Drijfhout, S. S.; Fedorov, A.; Foster, G. L.; Ganopolski, A.; Hansen, J.; Honisch, B.; Hooghiemstra, H.; hide

    2012-01-01

    Many palaeoclimate studies have quantified pre-anthropogenic climate change to calculate climate sensitivity (equilibrium temperature change in response to radiative forcing change), but a lack of consistent methodologies produces a wide range of estimates and hinders comparability of results. Here we present a stricter approach, to improve intercomparison of palaeoclimate sensitivity estimates in a manner compatible with equilibrium projections for future climate change. Over the past 65 million years, this reveals a climate sensitivity (in K W-1 m2) of 0.3-1.9 or 0.6-1.3 at 95% or 68% probability, respectively. The latter implies a warming of 2.2-4.8 K per doubling of atmospheric CO2, which agrees with IPCC estimates.

  15. Comparative Assessment of the Effects of Climate Change on Heat- and Cold-Related Mortality in the United Kingdom and Australia

    PubMed Central

    Dear, Keith; Hajat, Shakoor; Heaviside, Clare; Eggen, Bernd; McMichael, Anthony J.

    2014-01-01

    Background: High and low ambient temperatures are associated with increased mortality in temperate and subtropical climates. Temperature-related mortality patterns are expected to change throughout this century because of climate change. Objectives: We compared mortality associated with heat and cold in UK regions and Australian cities for current and projected climates and populations. Methods: Time-series regression analyses were carried out on daily mortality in relation to ambient temperatures for UK regions and Australian cities to estimate relative risk functions for heat and cold and variations in risk parameters by age. Excess deaths due to heat and cold were estimated for future climates. Results: In UK regions, cold-related mortality currently accounts for more than one order of magnitude more deaths than heat-related mortality (around 61 and 3 deaths per 100,000 population per year, respectively). In Australian cities, approximately 33 and 2 deaths per 100,000 population are associated every year with cold and heat, respectively. Although cold-related mortality is projected to decrease due to climate change to approximately 42 and 19 deaths per 100,000 population per year in UK regions and Australian cities, heat-related mortality is projected to increase to around 9 and 8 deaths per 100,000 population per year, respectively, by the 2080s, assuming no changes in susceptibility and structure of the population. Conclusions: Projected changes in climate are likely to lead to an increase in heat-related mortality in the United Kingdom and Australia over this century, but also to a decrease in cold-related deaths. Future temperature-related mortality will be amplified by aging populations. Health protection from hot weather will become increasingly necessary in both countries, while protection from cold weather will be still needed. Citation: Vardoulakis S, Dear K, Hajat S, Heaviside C, Eggen B, McMichael AJ. 2014. Comparative assessment of the effects of climate change on heat- and cold-related mortality in the United Kingdom and Australia. Environ Health Perspect 122:1285–1292; http://dx.doi.org/10.1289/ehp.1307524 PMID:25222967

  16. Contribution of human and climate change impacts to changes in streamflow of Canada.

    PubMed

    Tan, Xuezhi; Gan, Thian Yew

    2015-12-04

    Climate change exerts great influence on streamflow by changing precipitation, temperature, snowpack and potential evapotranspiration (PET), while human activities in a watershed can directly alter the runoff production and indirectly through affecting climatic variables. However, to separate contribution of anthropogenic and natural drivers to observed changes in streamflow is non-trivial. Here we estimated the direct influence of human activities and climate change effect to changes of the mean annual streamflow (MAS) of 96 Canadian watersheds based on the elasticity of streamflow in relation to precipitation, PET and human impacts such as land use and cover change. Elasticities of streamflow for each watershed are analytically derived using the Budyko Framework. We found that climate change generally caused an increase in MAS, while human impacts generally a decrease in MAS and such impact tends to become more severe with time, even though there are exceptions. Higher proportions of human contribution, compared to that of climate change contribution, resulted in generally decreased streamflow of Canada observed in recent decades. Furthermore, if without contributions from retreating glaciers to streamflow, human impact would have resulted in a more severe decrease in Canadian streamflow.

  17. Modeling future flows of the Volta River system: Impacts of climate change and socio-economic changes.

    PubMed

    Jin, Li; Whitehead, Paul G; Appeaning Addo, Kwasi; Amisigo, Barnabas; Macadam, Ian; Janes, Tamara; Crossman, Jill; Nicholls, Robert J; McCartney, Matthew; Rodda, Harvey J E

    2018-10-01

    As the scientific consensus concerning global climate change has increased in recent decades, research on potential impacts of climate change on water resources has been given high importance. However in Sub-Saharan Africa, few studies have fully evaluated the potential implications of climate change to their water resource systems. The Volta River is one of the major rivers in Africa covering six riparian countries (mainly Ghana and Burkina Faso). It is a principal water source for approximately 24 million people in the region. The catchment is primarily agricultural providing food supplies to rural areas, demonstrating the classic water, food, energy nexus. In this study an Integrated Catchment Model (INCA) was applied to the whole Volta River system to simulate flow in the rivers and at the outlet of the artificial Lake Volta. High-resolution climate scenarios downscaled from three different Global Climate Models (CNRM-CM5, HadGEM2-ES and CanESM2), have been used to drive the INCA model and to assess changes in flow by 2050s and 2090s under the high climate forcing scenario RCP8.5. Results show that peak flows during the monsoon months could increase into the future. The duration of high flow could become longer compared to the recent condition. In addition, we considered three different socio-economic scenarios. As an example, under the combined impact from climate change from downscaling CNRM-CM5 and medium+ (high economic growth) socio-economic changes, the extreme high flows (Q5) of the Black Volta River are projected to increase 11% and 36% at 2050s and 2090s, respectively. Lake Volta outflow would increase +1% and +5% at 2050s and 2090s, respectively, under the same scenario. The effects of changing socio-economic conditions on flow are minor compared to the climate change impact. These results will provide valuable information assisting future water resource development and adaptive strategies in the Volta Basin. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Climate change mitigation: comparative assessment of Malaysian and ASEAN scenarios.

    PubMed

    Rasiah, Rajah; Ahmed, Adeel; Al-Amin, Abul Quasem; Chenayah, Santha

    2017-01-01

    This paper analyses empirically the optimal climate change mitigation policy of Malaysia with the business as usual scenario of ASEAN to compare their environmental and economic consequences over the period 2010-2110. A downscaling empirical dynamic model is constructed using a dual multidisciplinary framework combining economic, earth science, and ecological variables to analyse the long-run consequences. The model takes account of climatic variables, including carbon cycle, carbon emission, climatic damage, carbon control, carbon concentration, and temperature. The results indicate that without optimal climate policy and action, the cumulative cost of climate damage for Malaysia and ASEAN as a whole over the period 2010-2110 would be MYR40.1 trillion and MYR151.0 trillion, respectively. Under the optimal policy, the cumulative cost of climatic damage for Malaysia would fall to MYR5.3 trillion over the 100 years. Also, the additional economic output of Malaysia will rise from MYR2.1 billion in 2010 to MYR3.6 billion in 2050 and MYR5.5 billion in 2110 under the optimal climate change mitigation scenario. The additional economic output for ASEAN would fall from MYR8.1 billion in 2010 to MYR3.2 billion in 2050 before rising again slightly to MYR4.7 billion in 2110 in the business as usual ASEAN scenario.

  19. Impacts of climate variability and change on crop yield in sub-Sahara Africa

    NASA Astrophysics Data System (ADS)

    Pan, S.; Zhang, J.; Yang, J.; Chen, G.; Xu, R.; Zhang, B.; Lou, Y.

    2017-12-01

    Much concern has been raised about the impacts of climate change and climate extremes on Africa's food security. The impact of climate change on Africa's agriculture is likely to be severe compared to other continents due to high rain-fed agricultural dependence, and limited ability to mitigate and adapt to climate change. In recent decades, warming in Africa is more pronounced and faster than the global average and this trend is likely to continue in the future. However, quantitative assessment on impacts of climate extremes and climate change on crop yield has not been well investigated yet. By using an improved agricultural module of the Dynamic Land Ecosystem Model (DLEM-AG2) driven by spatially-explicit information on land use, climate and other environmental changes, we have assessed impacts of historical climate variability and future climate change on food crop yield across the sub-Sahara Africa during1980-2016 and the rest of the 21st century (2017-2099). Our simulated results indicate that African crop yield in the past three decades shows an increasing trend primarily due to cropland expansion. However, crop yield shows substantially spatial and temporal variation due to inter-annual and inter-decadal climate variability and spatial heterogeneity of environmental drivers. Droughts have largely reduced crop yield in the most vulnerable regions of Sub-Sahara Africa. Future projections with DLEM-AG2 show that food crop production in Sub-Sahara Africa would be favored with limiting end-of-century warming to below 1.50 C.

  20. Communicating uncertainty in circulation aspects of climate change

    NASA Astrophysics Data System (ADS)

    Shepherd, Ted

    2017-04-01

    The usual way of representing uncertainty in climate change is to define a likelihood range of possible futures, conditioned on a particular pathway of greenhouse gas concentrations (RCPs). Typically these likelihood ranges are derived from multi-model ensembles. However, there is no obvious basis for treating such ensembles as probability distributions. Moreover, for aspects of climate related to atmospheric circulation, such an approach generally leads to large uncertainty and low confidence in projections. Yet this does not mean that the associated climate risks are small. We therefore need to develop suitable ways of communicating climate risk whilst acknowledging the uncertainties. This talk will outline an approach based on conditioning the purely thermodynamic aspects of climate change, concerning which there is comparatively high confidence, on circulation-related aspects, and treating the latter through non-probabilistic storylines.

  1. The Promise and Limitations of Using Analogies to Improve Decision-Relevant Understanding of Climate Change

    PubMed Central

    Stern, Paul C.; Maki, Alexander

    2017-01-01

    To make informed choices about how to address climate change, members of the public must develop ways to consider established facts of climate science and the uncertainties about its future trajectories, in addition to the risks attendant to various responses, including non-response, to climate change. One method suggested for educating the public about these issues is the use of simple mental models, or analogies comparing climate change to familiar domains such as medical decision making, disaster preparedness, or courtroom trials. Two studies were conducted using online participants in the U.S.A. to test the use of analogies to highlight seven key decision-relevant elements of climate change, including uncertainties about when and where serious damage may occur, its unprecedented and progressive nature, and tradeoffs in limiting climate change. An internal meta-analysis was then conducted to estimate overall effect sizes across the two studies. Analogies were not found to inform knowledge about climate literacy facts. However, results suggested that people found the medical analogy helpful and that it led people—especially political conservatives—to better recognize several decision-relevant attributes of climate change. These effects were weak, perhaps reflecting a well-documented and overwhelming effect of political ideology on climate change communication and education efforts in the U.S.A. The potential of analogies and similar education tools to improve understanding and communication in a polarized political environment are discussed. PMID:28135337

  2. Public perceptions of climate change and extreme weather events

    NASA Astrophysics Data System (ADS)

    Bruine de Bruin, W.; Dessai, S.; Morgan, G.; Taylor, A.; Wong-Parodi, G.

    2013-12-01

    Climate experts face a serious communication challenge. Public debate about climate change continues, even though at the same time people seem to complain about extreme weather events becoming increasingly common. As compared to the abstract concept of ';climate change,' (changes in) extreme weather events are indeed easier to perceive, more vivid, and personally relevant. Public perception research in different countries has suggested that people commonly expect that climate change will lead to increases in temperature, and that unseasonably warm weather is likely to be interpreted as evidence of climate change. However, relatively little is known about whether public concerns about climate change may also be driven by changes in other types of extreme weather events, such as exceptional amounts of precipitation or flooding. We therefore examined how perceptions of and personal experiences with changes in these specific weather events are related to public concerns about climate change. In this presentation, we will discuss findings from two large public perception surveys conducted in flood-prone Pittsburgh, Pennsylvania (US) and with a national sample in the UK, where extreme flooding has recently occurred across the country. Participants completed questions about their perceptions of and experiences with specific extreme weather events, and their beliefs about climate change. We then conducted linear regressions to predict individual differences in climate-change beliefs, using perceptions of and experiences with specific extreme weather events as predictors, while controlling for demographic characteristics. The US study found that people (a) perceive flood chances to be increasing over the decades, (b) believe climate change to play a role in increases in future flood chances, and (c) would interpret future increases in flooding as evidence for climate change. The UK study found that (a) UK residents are more likely to perceive increases in ';wet' events such as flooding and heavy rainfall than in ';hot' events such as heatwaves, (b) perceptions of these ';wet' weather events are more strongly associated with climate-change beliefs than were extremely ';hot' weather events, and (c) personal experiences with the negative consequences of specific extreme weather events are associated with stronger climate-change beliefs. Hence, which specific weather events people interpret as evidence of climate change may depend on their personal perceptions and experiences - which may not involve the temperature increases that are commonly the focus of climate-change communications. Overall, these findings suggest that climate experts should consider focusing their public communications on extreme weather events that are relevant to their intended audience. We will discuss strategies for designing and evaluating communications about climate change and adaptation.

  3. The impact of climate change on photovoltaic power generation in Europe

    NASA Astrophysics Data System (ADS)

    Jerez, Sonia; Tobin, Isabelle; Vautard, Robert; Montávez, Juan Pedro; María López-Romero, Jose; Thais, Françoise; Bartok, Blanka; Bøssing Christensen, Ole; Colette, Augustin; Déqué, Michel; Nikulin, Grigory; Kotlarski, Sven; van Meijgaard, Erik; Teichmann, Claas; Wild, Martin

    2016-04-01

    Ambitious climate change mitigation plans call for a significant increase in use of renewables, which could, however, make the supply system more vulnerable to climate variability and changes. Here we evaluate climate change impacts on solar photovoltaic (PV) power in Europe using the recent EURO-CORDEX ensemble of high-resolution climate projections together with a PV power production model and assuming a well-developed European PV power fleet. Results indicate that the alteration of solar PV supply by the end of this century compared to the estimations made under current climate conditions should be in the range [-14%;+2%], with the largest decreases in Northern countries. Temporal stability of power generation does not appear as strongly affected in future climate scenarios either, even showing a slight positive trend in Southern countries. Therefore, despite small decreases in production expected in some parts of Europe, climate change is unlikely to threaten the European PV sector. Reference: S. Jerez, I. Tobin, R. Vautard, J.P. Montávez, J.M. López-Romero, F. Thais, B. Bartok, O.B. Christensen, A. Colette, M. Déqué, G. Nikulin, S. Kotlarski, E. van Meijgaard, C. Teichmann and M. Wild (2015). The impact of climate change on photovoltaic power generation in Europe. Nature Communications, 6, 10014, doi: 10.1038/ncomms10014.

  4. Projected asymmetric response of Adélie penguins to Antarctic climate change

    NASA Astrophysics Data System (ADS)

    Cimino, Megan A.; Lynch, Heather J.; Saba, Vincent S.; Oliver, Matthew J.

    2016-06-01

    The contribution of climate change to shifts in a species’ geographic distribution is a critical and often unresolved ecological question. Climate change in Antarctica is asymmetric, with cooling in parts of the continent and warming along the West Antarctic Peninsula (WAP). The Adélie penguin (Pygoscelis adeliae) is a circumpolar meso-predator exposed to the full range of Antarctic climate and is undergoing dramatic population shifts coincident with climate change. We used true presence-absence data on Adélie penguin breeding colonies to estimate past and future changes in habitat suitability during the chick-rearing period based on historic satellite observations and future climate model projections. During the contemporary period, declining Adélie penguin populations experienced more years with warm sea surface temperature compared to populations that are increasing. Based on this relationship, we project that one-third of current Adélie penguin colonies, representing ~20% of their current population, may be in decline by 2060. However, climate model projections suggest refugia may exist in continental Antarctica beyond 2099, buffering species-wide declines. Climate change impacts on penguins in the Antarctic will likely be highly site specific based on regional climate trends, and a southward contraction in the range of Adélie penguins is likely over the next century.

  5. Land management strategies for improving water quality in biomass production under changing climate

    NASA Astrophysics Data System (ADS)

    Ha, Miae; Wu, May

    2017-03-01

    The Corn Belt states are the largest corn-production areas in the United States because of their fertile land and ideal climate. This attribute is particularly important as the region also plays a key role in the production of bioenergy feedstock. This study focuses on potential change in streamflow, sediment, nitrogen, and phosphorus due to climate change and land management practices in the South Fork Iowa River (SFIR) watershed, Iowa. The watershed is covered primarily with annual crops (corn and soybeans). With cropland conversion to switchgrass, stover harvest, and implementation of best management practices (BMPs) (such as establishing riparian buffers and applying cover crops), significant reductions in nutrients were observed in the SFIR watershed under historical climate and future climate scenarios. Under a historical climate scenario, suspended sediment (SS), total nitrogen (N), and phosphorus (P) at the outlet point of the SFIR watershed could decrease by up to 56.7%, 32.0%, and 16.5%, respectively, compared with current land use when a portion of the cropland is converted to switchgrass and a cover crop is in place. Climate change could cause increases of 9.7% in SS, 4.1% in N, and 7.2% in P compared to current land use. Under future climate scenarios, nutrients including SS, N, and P were reduced through land management and practices and BMPs by up to 54.0% (SS), 30.4% (N), and 7.1% (P). Water footprint analysis further revealed changes in green water that are highly dependent on land management scenarios. The study highlights the versatile approaches in landscape management that are available to address climate change adaptation and acknowledged the complex nature of different perspectives in water sustainability. Further study involving implementing landscape design and management by using long-term monitoring data from field to watershed is necessary to verify the findings and move toward watershed-specific regional programs for climate adaptation.

  6. Actual evapotranspiration for a reference crop within measured and future changing climate periods in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Katerji, Nader; Rana, Gianfranco; Ferrara, Rossana Monica

    2017-08-01

    The study compares two formulas for calculating the daily evapotranspiration ET0 for a reference crop. The first formula was proposed by Allen et al. (AL), while the second one was proposed by Katerji and Perrier with the addition of the carbon dioxide (CO2) effect on evapotranspiration (KP). The study analyses the impact of the calculation by the two formulas on the irrigation requirement (IR). Both formulas are based on the Penman-Monteith equation but adopt different approaches for parameterising the canopy resistance r c . In the AL formula, r c is assumed constant and not sensitive to climate change, whereas in the KP formula, r c is first parameterised as a function of climatic variables, then ET0 is corrected for the air CO2 concentration. The two formulas were compared in two periods. The first period involves data from two sites in the Mediterranean region within a measured climate change period (1981-2006) when all the input climatic variables were measured. The second period (2070-2100) involves data from a future climate change period at one site when the input climatic variables were forecasted for two future climate scenarios (A2 and B2). The annual cumulated values of ET0 calculated by the AL formula are systematically lower than those determined by the KP formula. The differences between the ET0 estimation with the AL and KP formulas have a strong impact on the determination of the IR for the reference crop. In fact, for the two periods, the annual values of IR when ET0 is calculated by the AL formula are systematically lower than those calculated by the KP formula. For the actual measured climate change period, this reduction varied from 26 to 28 %, while for the future climate change period, it varied based on the scenario from 16 % (A2) to 20 % (B2).

  7. Evaluation of high-resolution climate simulations for West Africa using COSMO-CLM

    NASA Astrophysics Data System (ADS)

    Dieng, Diarra; Smiatek, Gerhard; Bliefernicht, Jan; Laux, Patrick; Heinzeller, Dominikus; Kunstmann, Harald; Sarr, Abdoulaye; Thierno Gaye, Amadou

    2017-04-01

    The climate change modeling activities within the WASCAL program (West African Science Service Center on Climate Change and Adapted Land Use) concentrate on the provisioning of future climate change scenario data at high spatial and temporal resolution and quality in West Africa. Such information is highly required for impact studies in water resources and agriculture for the development of reliable climate change adaptation and mitigation strategies. In this study, we present a detailed evaluation of high simulation runs based on the regional climate model, COSMO model in CLimate Mode (COSMO-CLM). The model is applied over West Africa in a nested approach with two simulation domains at 0.44° and 0.11° resolution using reanalysis data from ERA-Interim (1979-2013). The models runs are compared to several state-of-the-art observational references (e.g., CRU, CHIRPS) including daily precipitation data provided by national meteorological services in West Africa. Special attention is paid to the reproduction of the dynamics of the West African Monsoon (WMA), its associated precipitation patterns and crucial agro-climatological indices such as the onset of the rainy season. In addition, first outcomes of the regional climate change simulations driven by MPI-ESM-LR are presented for a historical period (1980 to 2010) and two future periods (2020 to 2050, 2070 to 2100). The evaluation of the reanalysis runs shows that COSMO-CLM is able to reproduce the observed major climate characteristics including the West African Monsoon within the range of comparable RCM evaluations studies. However, substantial uncertainties remain, especially in the Sahel zone. The added value of the higher resolution of the nested run is reflected in a smaller bias in extreme precipitation statistics with respect to the reference data.

  8. Estimated effects of projected climate change on the basic reproductive number of the Lyme disease vector Ixodes scapularis.

    PubMed

    Ogden, Nicholas H; Radojevic, Milka; Wu, Xiaotian; Duvvuri, Venkata R; Leighton, Patrick A; Wu, Jianhong

    2014-06-01

    The extent to which climate change may affect human health by increasing risk from vector-borne diseases has been under considerable debate. We quantified potential effects of future climate change on the basic reproduction number (R0) of the tick vector of Lyme disease, Ixodes scapularis, and explored their importance for Lyme disease risk, and for vector-borne diseases in general. We applied observed temperature data for North America and projected temperatures using regional climate models to drive an I. scapularis population model to hindcast recent, and project future, effects of climate warming on R0. Modeled R0 increases were compared with R0 ranges for pathogens and parasites associated with variations in key ecological and epidemiological factors (obtained by literature review) to assess their epidemiological importance. R0 for I. scapularis in North America increased during the years 1971-2010 in spatio-temporal patterns consistent with observations. Increased temperatures due to projected climate change increased R0 by factors (2-5 times in Canada and 1.5-2 times in the United States), comparable to observed ranges of R0 for pathogens and parasites due to variations in strains, geographic locations, epidemics, host and vector densities, and control efforts. Climate warming may have co-driven the emergence of Lyme disease in northeastern North America, and in the future may drive substantial disease spread into new geographic regions and increase tick-borne disease risk where climate is currently suitable. Our findings highlight the potential for climate change to have profound effects on vectors and vector-borne diseases, and the need to refocus efforts to understand these effects.

  9. Regulation of snow-fed rivers affects flow regimes more than climate change.

    PubMed

    Arheimer, B; Donnelly, C; Lindström, G

    2017-07-05

    River flow is mainly controlled by climate, physiography and regulations, but their relative importance over large landmasses is poorly understood. Here we show from computational modelling that hydropower regulation is a key driver of flow regime change in snow-dominated regions and is more important than future climate changes. This implies that climate adaptation needs to include regulation schemes. The natural river regime in snowy regions has low flow when snow is stored and a pronounced peak flow when snow is melting. Global warming and hydropower regulation change this temporal pattern similarly, causing less difference in river flow between seasons. We conclude that in snow-fed rivers globally, the future climate change impact on flow regime is minor compared to regulation downstream of large reservoirs, and of similar magnitude over large landmasses. Our study not only highlights the impact of hydropower production but also that river regulation could be turned into a measure for climate adaptation to maintain biodiversity on floodplains under climate change.Global warming and hydropower regulations are major threats to future fresh-water availability and biodiversity. Here, the authors show that their impact on flow regime over a large landmass result in similar changes, but hydropower is more critical locally and may have potential for climate adaptation in floodplains.

  10. A comparative review of multi-risk modelling methodologies for climate change adaptation in mountain regions

    NASA Astrophysics Data System (ADS)

    Terzi, Stefano; Torresan, Silvia; Schneiderbauer, Stefan

    2017-04-01

    Keywords: Climate change, mountain regions, multi-risk assessment, climate change adaptation. Climate change has already led to a wide range of impacts on the environment, the economy and society. Adaptation actions are needed to cope with the impacts that have already occurred (e.g. storms, glaciers melting, floods, droughts) and to prepare for future scenarios of climate change. Mountain environment is particularly vulnerable to the climate changes due to its exposure to recent climate warming (e.g. water regime changes, thawing of permafrost) and due to the high degree of specialization of both natural and human systems (e.g. alpine species, valley population density, tourism-based economy). As a consequence, the mountain local governments are encouraged to undertake territorial governance policies to climate change, considering multi-risks and opportunities for the mountain economy and identifying the best portfolio of adaptation strategies. This study aims to provide a literature review of available qualitative and quantitative tools, methodological guidelines and best practices to conduct multi-risk assessments in the mountain environment within the context of climate change. We analyzed multi-risk modelling and assessment methods applied in alpine regions (e.g. event trees, Bayesian Networks, Agent Based Models) in order to identify key concepts (exposure, resilience, vulnerability, risk, adaptive capacity), climatic drivers, cause-effect relationships and socio-ecological systems to be integrated in a comprehensive framework. The main outcomes of the review, including a comparison of existing techniques based on different criteria (e.g. scale of analysis, targeted questions, level of complexity) and a snapshot of the developed multi-risk framework for climate change adaptation will be here presented and discussed.

  11. Land Use Compounds Habitat Losses under Projected Climate Change in a Threatened California Ecosystem

    PubMed Central

    Riordan, Erin Coulter; Rundel, Philip W.

    2014-01-01

    Given the rapidly growing human population in mediterranean-climate systems, land use may pose a more immediate threat to biodiversity than climate change this century, yet few studies address the relative future impacts of both drivers. We assess spatial and temporal patterns of projected 21st century land use and climate change on California sage scrub (CSS), a plant association of considerable diversity and threatened status in the mediterranean-climate California Floristic Province. Using a species distribution modeling approach combined with spatially-explicit land use projections, we model habitat loss for 20 dominant shrub species under unlimited and no dispersal scenarios at two time intervals (early and late century) in two ecoregions in California (Central Coast and South Coast). Overall, projected climate change impacts were highly variable across CSS species and heavily dependent on dispersal assumptions. Projected anthropogenic land use drove greater relative habitat losses compared to projected climate change in many species. This pattern was only significant under assumptions of unlimited dispersal, however, where considerable climate-driven habitat gains offset some concurrent climate-driven habitat losses. Additionally, some of the habitat gained with projected climate change overlapped with projected land use. Most species showed potential northern habitat expansion and southern habitat contraction due to projected climate change, resulting in sharply contrasting patterns of impact between Central and South Coast Ecoregions. In the Central Coast, dispersal could play an important role moderating losses from both climate change and land use. In contrast, high geographic overlap in habitat losses driven by projected climate change and projected land use in the South Coast underscores the potential for compounding negative impacts of both drivers. Limiting habitat conversion may be a broadly beneficial strategy under climate change. We emphasize the importance of addressing both drivers in conservation and resource management planning. PMID:24466116

  12. What Climate Sensitivity Index Is Most Useful for Projections?

    NASA Astrophysics Data System (ADS)

    Grose, Michael R.; Gregory, Jonathan; Colman, Robert; Andrews, Timothy

    2018-02-01

    Transient climate response (TCR), transient response at 140 years (T140), and equilibrium climate sensitivity (ECS) indices are intended as benchmarks for comparing the magnitude of climate response projected by climate models. It is generally assumed that TCR or T140 would explain more variability between models than ECS for temperature change over the 21st century, since this timescale is the realm of transient climate change. Here we find that TCR explains more variability across Coupled Model Intercomparison Project phase 5 than ECS for global temperature change since preindustrial, for 50 or 100 year global trends up to the present, and for projected change under representative concentration pathways in regions of delayed warming such as the Southern Ocean. However, unexpectedly, we find that ECS correlates higher than TCR for projected change from the present in the global mean and in most regions. This higher correlation does not relate to aerosol forcing, and the physical cause requires further investigation.

  13. Biodiversity funds and conservation needs in the EU under climate change

    PubMed Central

    Lung, Tobias; Meller, Laura; van Teeffelen, Astrid J.A.; Thuiller, Wilfried; Cabeza, Mar

    2014-01-01

    Despite ambitious biodiversity policy goals, less than a fifth of the European Union’s (EU) legally protected species and habitats show a favorable conservation status. The recent EU biodiversity strategy recognizes that climate change adds to the challenge of halting biodiversity loss, and that an optimal distribution of financial resources is needed. Here, we analyze recent EU biodiversity funding from a climate change perspective. We compare the allocation of funds to the distribution of both current conservation priorities (within and beyond Natura 2000) and future conservation needs at the level of NUTS-2 regions, using modelled bird distributions as indicators of conservation value. We find that funding is reasonably well aligned with current conservation efforts but poorly fit with future needs under climate change, indicating obstacles for implementing adaptation measures. We suggest revising EU biodiversity funding instruments for the 2014-2020 budget period to better account for potential climate change impacts on biodiversity. PMID:25264456

  14. Biodiversity funds and conservation needs in the EU under climate change.

    PubMed

    Lung, Tobias; Meller, Laura; van Teeffelen, Astrid J A; Thuiller, Wilfried; Cabeza, Mar

    2014-07-01

    Despite ambitious biodiversity policy goals, less than a fifth of the European Union's (EU) legally protected species and habitats show a favorable conservation status. The recent EU biodiversity strategy recognizes that climate change adds to the challenge of halting biodiversity loss, and that an optimal distribution of financial resources is needed. Here, we analyze recent EU biodiversity funding from a climate change perspective. We compare the allocation of funds to the distribution of both current conservation priorities (within and beyond Natura 2000) and future conservation needs at the level of NUTS-2 regions, using modelled bird distributions as indicators of conservation value. We find that funding is reasonably well aligned with current conservation efforts but poorly fit with future needs under climate change, indicating obstacles for implementing adaptation measures. We suggest revising EU biodiversity funding instruments for the 2014-2020 budget period to better account for potential climate change impacts on biodiversity.

  15. Sensible heat has significantly affected the global hydrological cycle over the historical period.

    PubMed

    Myhre, G; Samset, B H; Hodnebrog, Ø; Andrews, T; Boucher, O; Faluvegi, G; Fläschner, D; Forster, P M; Kasoar, M; Kharin, V; Kirkevåg, A; Lamarque, J-F; Olivié, D; Richardson, T B; Shawki, D; Shindell, D; Shine, K P; Stjern, C W; Takemura, T; Voulgarakis, A

    2018-05-15

    Globally, latent heating associated with a change in precipitation is balanced by changes to atmospheric radiative cooling and sensible heat fluxes. Both components can be altered by climate forcing mechanisms and through climate feedbacks, but the impacts of climate forcing and feedbacks on sensible heat fluxes have received much less attention. Here we show, using a range of climate modelling results, that changes in sensible heat are the dominant contributor to the present global-mean precipitation change since preindustrial time, because the radiative impact of forcings and feedbacks approximately compensate. The model results show a dissimilar influence on sensible heat and precipitation from various drivers of climate change. Due to its strong atmospheric absorption, black carbon is found to influence the sensible heat very differently compared to other aerosols and greenhouse gases. Our results indicate that this is likely caused by differences in the impact on the lower tropospheric stability.

  16. Climate change: The 2015 Paris Agreement thresholds and Mediterranean basin ecosystems.

    PubMed

    Guiot, Joel; Cramer, Wolfgang

    2016-10-28

    The United Nations Framework Convention on Climate Change Paris Agreement of December 2015 aims to maintain the global average warming well below 2°C above the preindustrial level. In the Mediterranean basin, recent pollen-based reconstructions of climate and ecosystem variability over the past 10,000 years provide insights regarding the implications of warming thresholds for biodiversity and land-use potential. We compare scenarios of climate-driven future change in land ecosystems with reconstructed ecosystem dynamics during the past 10,000 years. Only a 1.5°C warming scenario permits ecosystems to remain within the Holocene variability. At or above 2°C of warming, climatic change will generate Mediterranean land ecosystem changes that are unmatched in the Holocene, a period characterized by recurring precipitation deficits rather than temperature anomalies. Copyright © 2016, American Association for the Advancement of Science.

  17. Amplified plant turnover in response to climate change forecast by Late Quaternary records

    NASA Astrophysics Data System (ADS)

    Nogués-Bravo, D.; Veloz, S.; Holt, B. G.; Singarayer, J.; Valdes, P.; Davis, B.; Brewer, S. C.; Williams, J. W.; Rahbek, C.

    2016-12-01

    Conservation decisions are informed by twenty-first-century climate impact projections that typically predict high extinction risk. Conversely, the palaeorecord shows strong sensitivity of species abundances and distributions to past climate changes, but few clear instances of extinctions attributable to rising temperatures. However, few studies have incorporated palaeoecological data into projections of future distributions. Here we project changes in abundance and conservation status under a climate warming scenario for 187 European and North American plant taxa using niche-based models calibrated against taxa-climate relationships for the past 21,000 years. We find that incorporating long-term data into niche-based models increases the magnitude of projected future changes for plant abundances and community turnover. The larger projected changes in abundances and community turnover translate into different, and often more threatened, projected IUCN conservation status for declining tree taxa, compared with traditional approaches. An average of 18.4% (North America) and 15.5% (Europe) of taxa switch IUCN categories when compared with single-time model results. When taxa categorized as `Least Concern' are excluded, the palaeo-calibrated models increase, on average, the conservation threat status of 33.2% and 56.8% of taxa. Notably, however, few models predict total disappearance of taxa, suggesting resilience for these taxa, if climate were the only extinction driver. Long-term studies linking palaeorecords and forecasting techniques have the potential to improve conservation assessments.

  18. Climate impact and adaptation of husbandry on the Mongolian plateau: A review

    NASA Astrophysics Data System (ADS)

    Miao, L.; Cui, X.

    2015-12-01

    There has been an evolution in the treatment of regional aspects of climate and land use change: from a patchwork of case examples towards a more systematic coverage of regional issues at continental and sub-continental scales in the latest Intergovernmental panel on climate change, especially in arid and semi-arid areas. The region of Inner Asia has long been characterised by important cultural, economic, and ecological ties that transcend international borders, including a common steppe environment, a long history of mobile pastoralism, as well as comparable experiences of socialist and postsocialist transformation. In this research, we focused on the study of the Mongolian Plateau located in eastern Inner Asia, since climate change has already had large impacts on grassland and local households. We explored how the vegetation and animal husbandry responses to climate change in comparison between Inner Mongolia and Mongolia. Our central question then was: how are people in different parts of Inner Mongolia and the Republic of Mongolia are experiencing and responding to climate change across a common grassland environment as a result of the differing social, economic, political, and ecological conditions within each particular state? We believe that comparative and interdisciplinary investigation offers the best prospect for the evaluation of the differing trajectories currently being followed by each Inner Asian state, and the anticipation of the likely effects on the societies and environment of the region in the future.

  19. The complex relationship between climate and sugar maple health: Climate change implications in Vermont for a key northern hardwood species

    Treesearch

    Evan M. Oswald; Jennifer Pontius; Shelly A. Rayback; Paul G. Schaberg; Sandra H. Wilmot; Lesley-Ann Dupigny-Giroux

    2018-01-01

    This study compared 141 ecologically relevant climate metrics to field assessments of sugar maple (Acer saccharum Marsh.) canopy condition across Vermont, USA from 1988 to 2012. After removing the influence of disturbance events during this time period to isolate the impact of climate, we identified five climate metrics that were significantly...

  20. Climate change will restrict ponderosa pine forest regeneration in the 21st century in absence of disturbance

    NASA Astrophysics Data System (ADS)

    Petrie, M. D.; Bradford, J. B.; Hubbard, R. M.; Lauenroth, W. K.; Andrews, C.

    2016-12-01

    The persistence of ponderosa pine forests and the ability for these forests to colonize new habitats in the 21st century will be influenced by how climate change supports ponderosa pine regeneration through the demographic processes of seed production, germination and survival. Yet, the way that climate change may support or restrict the frequency of successful regeneration is unclear. We developed a quantitative, criteria-based framework to estimate ponderosa pine regeneration potential (RP: a metric from 0-1) in response to climate forcings and environmental conditions. We used the SOILWAT ecosystem water balance model to simulate drivers of air and soil temperature, evaporation and soil moisture availability for 47 ponderosa pine sites across the western United States, using meteorological data from 1910-2014, and projections from nine General Circulation Models and the RCP 8.5 emissions scenario for 2020-2099. Climate change simulations increased the success of early developmental stages of seed production and germination, and supported 49.7% higher RP in 2020-2059 compared to averages from 1910-2014. As temperatures increased in 2060-2099, survival scores decreased, and RP was reduced by 50.3% compared to 1910-2014. Although the frequency of years with high RP did not change in 2060-2099 (12% of years), the frequency of years with very low RP increased from 25% to 58% of years. Thus, climate change will initially support higher RP and more favorable years in 2020-2059, yet will reduce average RP and the frequency of years with moderate regeneration support in 2060-2099. Forest regeneration is complex and not fully-understood, but our results suggest it is likely that climate change alone will instigate restrictions to the persistence and expansion of ponderosa pine in the 21st century.

  1. Amplification or suppression: Social networks and the climate change-migration association in rural Mexico.

    PubMed

    Nawrotzki, Raphael J; Riosmena, Fernando; Hunter, Lori M; Runfola, Daniel M

    2015-11-01

    Increasing rates of climate migration may be of economic and national concern to sending and destination countries. It has been argued that social networks - the ties connecting an origin and destination - may operate as "migration corridors" with the potential to strongly facilitate climate change-related migration. This study investigates whether social networks at the household and community levels amplify or suppress the impact of climate change on international migration from rural Mexico. A novel set of 15 climate change indices was generated based on daily temperature and precipitation data for 214 weather stations across Mexico. Employing geostatistical interpolation techniques, the climate change values were linked to 68 rural municipalities for which sociodemographic data and detailed migration histories were available from the Mexican Migration Project. Multi-level discrete-time event-history models were used to investigate the effect of climate change on international migration between 1986 and 1999. At the household level, the effect of social networks was approximated by comparing the first to the last move, assuming that through the first move a household establishes internal social capital. At the community level, the impact of social capital was explored through interactions with a measure of the proportion of adults with migration experience. The results show that rather than amplifying , social capital may suppress the sensitivity of migration to climate triggers, suggesting that social networks could facilitate climate change adaptation in place.

  2. Predicting the evolutionary dynamics of seasonal adaptation to novel climates in Arabidopsis thaliana

    PubMed Central

    Fournier-Level, Alexandre; Perry, Emily O.; Wang, Jonathan A.; Braun, Peter T.; Migneault, Andrew; Cooper, Martha D.; Metcalf, C. Jessica E.; Schmitt, Johanna

    2016-01-01

    Predicting whether and how populations will adapt to rapid climate change is a critical goal for evolutionary biology. To examine the genetic basis of fitness and predict adaptive evolution in novel climates with seasonal variation, we grew a diverse panel of the annual plant Arabidopsis thaliana (multiparent advanced generation intercross lines) in controlled conditions simulating four climates: a present-day reference climate, an increased-temperature climate, a winter-warming only climate, and a poleward-migration climate with increased photoperiod amplitude. In each climate, four successive seasonal cohorts experienced dynamic daily temperature and photoperiod variation over a year. We measured 12 traits and developed a genomic prediction model for fitness evolution in each seasonal environment. This model was used to simulate evolutionary trajectories of the base population over 50 y in each climate, as well as 100-y scenarios of gradual climate change following adaptation to a reference climate. Patterns of plastic and evolutionary fitness response varied across seasons and climates. The increased-temperature climate promoted genetic divergence of subpopulations across seasons, whereas in the winter-warming and poleward-migration climates, seasonal genetic differentiation was reduced. In silico “resurrection experiments” showed limited evolutionary rescue compared with the plastic response of fitness to seasonal climate change. The genetic basis of adaptation and, consequently, the dynamics of evolutionary change differed qualitatively among scenarios. Populations with fewer founding genotypes and populations with genetic diversity reduced by prior selection adapted less well to novel conditions, demonstrating that adaptation to rapid climate change requires the maintenance of sufficient standing variation. PMID:27140640

  3. Predicting the evolutionary dynamics of seasonal adaptation to novel climates in Arabidopsis thaliana.

    PubMed

    Fournier-Level, Alexandre; Perry, Emily O; Wang, Jonathan A; Braun, Peter T; Migneault, Andrew; Cooper, Martha D; Metcalf, C Jessica E; Schmitt, Johanna

    2016-05-17

    Predicting whether and how populations will adapt to rapid climate change is a critical goal for evolutionary biology. To examine the genetic basis of fitness and predict adaptive evolution in novel climates with seasonal variation, we grew a diverse panel of the annual plant Arabidopsis thaliana (multiparent advanced generation intercross lines) in controlled conditions simulating four climates: a present-day reference climate, an increased-temperature climate, a winter-warming only climate, and a poleward-migration climate with increased photoperiod amplitude. In each climate, four successive seasonal cohorts experienced dynamic daily temperature and photoperiod variation over a year. We measured 12 traits and developed a genomic prediction model for fitness evolution in each seasonal environment. This model was used to simulate evolutionary trajectories of the base population over 50 y in each climate, as well as 100-y scenarios of gradual climate change following adaptation to a reference climate. Patterns of plastic and evolutionary fitness response varied across seasons and climates. The increased-temperature climate promoted genetic divergence of subpopulations across seasons, whereas in the winter-warming and poleward-migration climates, seasonal genetic differentiation was reduced. In silico "resurrection experiments" showed limited evolutionary rescue compared with the plastic response of fitness to seasonal climate change. The genetic basis of adaptation and, consequently, the dynamics of evolutionary change differed qualitatively among scenarios. Populations with fewer founding genotypes and populations with genetic diversity reduced by prior selection adapted less well to novel conditions, demonstrating that adaptation to rapid climate change requires the maintenance of sufficient standing variation.

  4. Impacts of Model Bias on the Climate Change Signal and Effects of Weighted Ensembles of Regional Climate Model Simulations: A Case Study over Southern Québec, Canada

    DOE PAGES

    Eum, Hyung-Il; Gachon, Philippe; Laprise, René

    2016-01-01

    This study examined the impact of model biases on climate change signals for daily precipitation and for minimum and maximum temperatures. Through the use of multiple climate scenarios from 12 regional climate model simulations, the ensemble mean, and three synthetic simulations generated by a weighting procedure, we investigated intermodel seasonal climate change signals between current and future periods, for both median and extreme precipitation/temperature values. A significant dependence of seasonal climate change signals on the model biases over southern Québec in Canada was detected for temperatures, but not for precipitation. This suggests that the regional temperature change signal is affectedmore » by local processes. Seasonally, model bias affects future mean and extreme values in winter and summer. In addition, potentially large increases in future extremes of temperature and precipitation values were projected. For three synthetic scenarios, systematically less bias and a narrow range of mean change for all variables were projected compared to those of climate model simulations. In addition, synthetic scenarios were found to better capture the spatial variability of extreme cold temperatures than the ensemble mean scenario. Finally, these results indicate that the synthetic scenarios have greater potential to reduce the uncertainty of future climate projections and capture the spatial variability of extreme climate events.« less

  5. Impacts of Model Bias on the Climate Change Signal and Effects of Weighted Ensembles of Regional Climate Model Simulations: A Case Study over Southern Québec, Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eum, Hyung-Il; Gachon, Philippe; Laprise, René

    This study examined the impact of model biases on climate change signals for daily precipitation and for minimum and maximum temperatures. Through the use of multiple climate scenarios from 12 regional climate model simulations, the ensemble mean, and three synthetic simulations generated by a weighting procedure, we investigated intermodel seasonal climate change signals between current and future periods, for both median and extreme precipitation/temperature values. A significant dependence of seasonal climate change signals on the model biases over southern Québec in Canada was detected for temperatures, but not for precipitation. This suggests that the regional temperature change signal is affectedmore » by local processes. Seasonally, model bias affects future mean and extreme values in winter and summer. In addition, potentially large increases in future extremes of temperature and precipitation values were projected. For three synthetic scenarios, systematically less bias and a narrow range of mean change for all variables were projected compared to those of climate model simulations. In addition, synthetic scenarios were found to better capture the spatial variability of extreme cold temperatures than the ensemble mean scenario. Finally, these results indicate that the synthetic scenarios have greater potential to reduce the uncertainty of future climate projections and capture the spatial variability of extreme climate events.« less

  6. Diverse effects of crop distribution and climate change on crop production in the agro-pastoral transitional zone of China

    NASA Astrophysics Data System (ADS)

    Qiao, Jianmin; Yu, Deyong; Wang, Qianfeng; Liu, Yupeng

    2018-06-01

    Both crop distribution and climate change are important drivers for crop production and can affect food security, which is an important requirement for sustainable development. However, their effects on crop production are confounded and warrant detailed investigation. As a key area for food production that is sensitive to climate change, the agro-pastoral transitional zone (APTZ) plays a significant role in regional food security. To investigate the respective effects of crop distribution and climate change on crop production, the well-established GIS-based Environmental Policy Integrated Climate (EPIC) model was adopted with different scenario designs in this study. From 1980 to 2010, the crop distribution for wheat, maize, and rice witnessed a dramatic change due to agricultural policy adjustments and ecological engineering-related construction in the APTZ. At the same time, notable climate change was observed. The simulation results indicated that the climate change had a positive impact on the crop production of wheat, maize, and rice, while the crop distribution change led to an increase in the production of maize and rice, but a decrease in the wheat production. Comparatively, crop distribution change had a larger impact on wheat (-1.71 × 106 t) and maize (8.53 × 106 t) production, whereas climate change exerted a greater effect on rice production (0.58 × 106 t), during the period from 1980 to 2010 in the APTZ. This study is helpful to understand the mechanism of the effects of crop distribution and climate change on crop production, and aid policy makers in reducing the threat of future food insecurity.

  7. Diverse effects of crop distribution and climate change on crop production in the agro-pastoral transitional zone of China

    NASA Astrophysics Data System (ADS)

    Qiao, Jianmin; Yu, Deyong; Wang, Qianfeng; Liu, Yupeng

    2017-07-01

    Both crop distribution and climate change are important drivers for crop production and can affect food security, which is an important requirement for sustainable development. However, their effects on crop production are confounded and warrant detailed investigation. As a key area for food production that is sensitive to climate change, the agro-pastoral transitional zone (APTZ) plays a significant role in regional food security. To investigate the respective effects of crop distribution and climate change on crop production, the well-established GIS-based Environmental Policy Integrated Climate (EPIC) model was adopted with different scenario designs in this study. From 1980 to 2010, the crop distribution for wheat, maize, and rice witnessed a dramatic change due to agricultural policy adjustments and ecological engineering-related construction in the APTZ. At the same time, notable climate change was observed. The simulation results indicated that the climate change had a positive impact on the crop production of wheat, maize, and rice, while the crop distribution change led to an increase in the production of maize and rice, but a decrease in the wheat production. Comparatively, crop distribution change had a larger impact on wheat (-1.71 × 106 t) and maize (8.53 × 106 t) production, whereas climate change exerted a greater effect on rice production (0.58 × 106 t), during the period from 1980 to 2010 in the APTZ. This study is helpful to understand the mechanism of the effects of crop distribution and climate change on crop production, and aid policy makers in reducing the threat of future food insecurity.

  8. Climate Change? When? Where?

    ERIC Educational Resources Information Center

    Boon, Helen

    2009-01-01

    Regional Australian students were surveyed to explore their understanding and knowledge of the greenhouse effect, ozone depletion and climate change. Results were compared with a parallel study undertaken in 1991 in a regional UK city. The comparison was conducted to investigate whether more awareness and understanding of these issues is…

  9. Modelling climate change impacts on tourism demand: A comparative study from Sardinia (Italy) and Cap Bon (Tunisia).

    PubMed

    Köberl, Judith; Prettenthaler, Franz; Bird, David Neil

    2016-02-01

    Tourism represents an important source of income and employment in many Mediterranean regions, including the island of Sardinia (Italy) and the Cap Bon peninsula (Tunisia). Climate change may however impact tourism in both regions, for example, by altering the regions' climatic suitability for common tourism types or affecting water availability. This paper assesses the potential impacts of climate change on tourism in the case study regions of Sardinia and Cap Bon. Direct impacts are studied in a quantitative way by applying a range of climate scenario data on the empirically estimated relationship between climatic conditions and tourism demand, using two different approaches. Results indicate a potential for climate-induced tourism revenue gains especially in the shoulder seasons during spring and autumn, but also a threat of climate-induced revenue losses in the summer months due to increased heat stress. Annual direct net impacts are nevertheless suggested to be (slightly) positive in both case study regions. Significant climate-induced reductions in total available water may however somewhat counteract the positive direct impacts of climate change by putting additional water costs on the tourism industry. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. SEEPLUS: A SIMPLE ONLINE CLIMATE MODEL

    NASA Astrophysics Data System (ADS)

    Tsutsui, Junichi

    A web application for a simple climate model - SEEPLUS (a Simple climate model to Examine Emission Pathways Leading to Updated Scenarios) - has been developed. SEEPLUS consists of carbon-cycle and climate-change modules, through which it provides the information infrastructure required to perform climate-change experiments, even on a millennial-timescale. The main objective of this application is to share the latest scientific knowledge acquired from climate modeling studies among the different stakeholders involved in climate-change issues. Both the carbon-cycle and climate-change modules employ impulse response functions (IRFs) for their key processes, thereby enabling the model to integrate the outcome from an ensemble of complex climate models. The current IRF parameters and forcing manipulation are basically consistent with, or within an uncertainty range of, the understanding of certain key aspects such as the equivalent climate sensitivity and ocean CO2 uptake data documented in representative literature. The carbon-cycle module enables inverse calculation to determine the emission pathway required in order to attain a given concentration pathway, thereby providing a flexible way to compare the module with more advanced modeling studies. The module also enables analytical evaluation of its equilibrium states, thereby facilitating the long-term planning of global warming mitigation.

  11. Tracking lags in historical plant species' shifts in relation to regional climate change.

    PubMed

    Ash, Jeremy D; Givnish, Thomas J; Waller, Donald M

    2017-03-01

    Can species shift their distributions fast enough to track changes in climate? We used abundance data from the 1950s and the 2000s in Wisconsin to measure shifts in the distribution and abundance of 78 forest-understory plant species over the last half-century and compare these shifts to changes in climate. We estimated temporal shifts in the geographic distribution of each species using vectors to connect abundance-weighted centroids from the 1950s and 2000s. These shifts in distribution reflect colonization, extirpation, and changes in abundance within sites, separately quantified here. We then applied climate analog analyses to compute vectors representing the climate change that each species experienced. Species shifted mostly to the northwest (mean: 49 ± 29 km) primarily reflecting processes of colonization and changes in local abundance. Analog climates for these species shifted even further to the northwest, however, exceeding species' shifts by an average of 90 ± 40 km. Most species thus failed to match recent rates of climate change. These lags decline in species that have colonized more sites and those with broader site occupancy, larger seed mass, and higher habitat fidelity. Thus, species' traits appear to affect their responses to climate change, but relationships are weak. As climate change accelerates, these lags will likely increase, potentially threatening the persistence of species lacking the capacity to disperse to new sites or locally adapt. However, species with greater lags have not yet declined more in abundance. The extent of these threats will likely depend on how other drivers of ecological change and interactions among species affect their responses to climate change. © 2016 John Wiley & Sons Ltd.

  12. Parenthood and Worrying About Climate Change: The Limitations of Previous Approaches.

    PubMed

    Ekholm, Sara; Olofsson, Anna

    2017-02-01

    The present study considers the correlation between parenthood and worry about the consequences of climate change. Two approaches to gauging people's perceptions of the risks of climate change are compared: the classic approach, which measures risk perception, and the emotion-based approach, which measures feelings toward a risk object. The empirical material is based on a questionnaire-based survey of 3,529 people in Sweden, of whom 1,376 answered, giving a response rate of 39%. The results show that the correlation of parenthood and climate risk is significant when the emotional aspect is raised, but not when respondents were asked to do cognitive estimates of risk. Parenthood proves significant in all three questions that measure feelings, demonstrating that it is a determinant that serves to increase worry about climate change. © 2016 Society for Risk Analysis.

  13. The Importance of Contexts in Strategies of Environmental Organizations with Regard to Climate Change

    PubMed

    Pleune

    1997-09-01

    / The purpose of the study was to investigate the extent to which strategies of environmental organizations depend on contexts. I examined this dependence by analyzing the strategies of five environmental organizations in the Netherlands with regard to climate change. These strategies were investigated over time and compared with the strategies these organizations had used in relation to ozone depletion and acidification. The results indicate that several of the organizations changed their strategies with respect to climate change over time. Furthermore, different strategies were used simultaneously in relation to the three problems. The findings suggest that strategies concerning climate change were to a considerable extent determined by the dominant framing of the problem in society. This framing was defined mainly by actors other than environmental organizations. The initial framing of climate change as a CO2 problem, which brought the issue into the energy debate, as well as the more general definition of the problem in the late 1980s as a greenhouse problem, were very important for determining the strategies of the organizations. It can be concluded that strategies of Dutch environmental organizations with regard to climate change were strongly dependent on the context.KEY WORDS: Environmental organization; Strategy; Climate change; Man-nature relationship; Problem definition; Context

  14. Declining body size: a third universal response to warming?

    PubMed

    Gardner, Janet L; Peters, Anne; Kearney, Michael R; Joseph, Leo; Heinsohn, Robert

    2011-06-01

    A recently documented correlate of anthropogenic climate change involves reductions in body size, the nature and scale of the pattern leading to suggestions of a third universal response to climate warming. Because body size affects thermoregulation and energetics, changing body size has implications for resilience in the face of climate change. A review of recent studies shows heterogeneity in the magnitude and direction of size responses, exposing a need for large-scale phylogenetically controlled comparative analyses of temporal size change. Integrative analyses of museum data combined with new theoretical models of size-dependent thermoregulatory and metabolic responses will increase both understanding of the underlying mechanisms and physiological consequences of size shifts and, therefore, the ability to predict the sensitivities of species to climate change. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Potential Distribution Predicted for Rhynchophorus ferrugineus in China under Different Climate Warming Scenarios.

    PubMed

    Ge, Xuezhen; He, Shanyong; Wang, Tao; Yan, Wei; Zong, Shixiang

    2015-01-01

    As the primary pest of palm trees, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) has caused serious harm to palms since it first invaded China. The present study used CLIMEX 1.1 to predict the potential distribution of R. ferrugineus in China according to both current climate data (1981-2010) and future climate warming estimates based on simulated climate data for the 2020s (2011-2040) provided by the Tyndall Center for Climate Change Research (TYN SC 2.0). Additionally, the Ecoclimatic Index (EI) values calculated for different climatic conditions (current and future, as simulated by the B2 scenario) were compared. Areas with a suitable climate for R. ferrugineus distribution were located primarily in central China according to the current climate data, with the northern boundary of the distribution reaching to 40.1°N and including Tibet, north Sichuan, central Shaanxi, south Shanxi, and east Hebei. There was little difference in the potential distribution predicted by the four emission scenarios according to future climate warming estimates. The primary prediction under future climate warming models was that, compared with the current climate model, the number of highly favorable habitats would increase significantly and expand into northern China, whereas the number of both favorable and marginally favorable habitats would decrease. Contrast analysis of EI values suggested that climate change and the density of site distribution were the main effectors of the changes in EI values. These results will help to improve control measures, prevent the spread of this pest, and revise the targeted quarantine areas.

  16. Potential Distribution Predicted for Rhynchophorus ferrugineus in China under Different Climate Warming Scenarios

    PubMed Central

    Ge, Xuezhen; He, Shanyong; Wang, Tao; Yan, Wei; Zong, Shixiang

    2015-01-01

    As the primary pest of palm trees, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) has caused serious harm to palms since it first invaded China. The present study used CLIMEX 1.1 to predict the potential distribution of R. ferrugineus in China according to both current climate data (1981–2010) and future climate warming estimates based on simulated climate data for the 2020s (2011–2040) provided by the Tyndall Center for Climate Change Research (TYN SC 2.0). Additionally, the Ecoclimatic Index (EI) values calculated for different climatic conditions (current and future, as simulated by the B2 scenario) were compared. Areas with a suitable climate for R. ferrugineus distribution were located primarily in central China according to the current climate data, with the northern boundary of the distribution reaching to 40.1°N and including Tibet, north Sichuan, central Shaanxi, south Shanxi, and east Hebei. There was little difference in the potential distribution predicted by the four emission scenarios according to future climate warming estimates. The primary prediction under future climate warming models was that, compared with the current climate model, the number of highly favorable habitats would increase significantly and expand into northern China, whereas the number of both favorable and marginally favorable habitats would decrease. Contrast analysis of EI values suggested that climate change and the density of site distribution were the main effectors of the changes in EI values. These results will help to improve control measures, prevent the spread of this pest, and revise the targeted quarantine areas. PMID:26496438

  17. Assessing ExxonMobil's Climate Change Communications (1977-2014)

    NASA Astrophysics Data System (ADS)

    Supran, G.; Oreskes, N.

    2017-12-01

    Coal, oil, and gas companies have operated - and continue to operate - across myriad facets of the climate problem: scientific, political, and public. Efforts to engage the fossil fuel industry in addressing climate change should therefore be informed by this broad historical context. In this paper, we present an empirical document-by-document textual content analysis and comparison of 187 diverse climate change communications from ExxonMobil spanning 1977 to 2014, including peer-reviewed and non-peer-reviewed publications, internal company documents, and paid, editorial-style advertisements ("advertorials") in The New York Times. We examine whether these communications sent consistent messages about the state of climate science and its implications - specifically, we compare their positions on climate change as real, human-caused, serious, and solvable. In all four cases, we find that as documents become more publicly accessible, they increasingly communicate doubt. That is, ExxonMobil contributed to advancing climate science - by way of its scientists' academic publications - but promoted doubt about it in advertorials. Our findings shed light on one oil and gas company's multivalent strategic responses to climate change. They offer a cautionary tale against myopic engagement with the fossil fuel industry, demonstrating the importance of evaluating the full spectrum of a company's claims and activities.

  18. Climate implications of including albedo effects in terrestrial carbon policy

    NASA Astrophysics Data System (ADS)

    Jones, A. D.; Collins, W.; Torn, M. S.; Calvin, K. V.

    2012-12-01

    Proposed strategies for managing terrestrial carbon in order to mitigate anthropogenic climate change, such as financial incentives for afforestation, soil carbon sequestration, or biofuel production, largely ignore the direct effects of land use change on climate via biophysical processes that alter surface energy and water budgets. Subsequent influences on temperature, hydrology, and atmospheric circulation at regional and global scales could potentially help or hinder climate stabilization efforts. Because these policies often rely on payments or credits expressed in units of CO2-equivalents, accounting for biophysical effects would require a metric for comparing the strength of biophysical climate perturbation from land use change to that of emitting CO2. One such candidate metric that has been suggested in the literature on land use impacts is radiative forcing, which underlies the global warming potential metric used to compare the climate effects of various greenhouse gases with one another. Expressing land use change in units of radiative forcing is possible because albedo change results in a net top-of-atmosphere radiative flux change. However, this approach has also been critiqued on theoretical grounds because not all climatic changes associated with land use change are principally radiative in nature, e.g. changes in hydrology or the vertical distribution of heat within the atmosphere, and because the spatial scale of land use change forcing differs from that of well-mixed greenhouse gases. To explore the potential magnitude of this discrepancy in the context of plausible scenarios of future land use change, we conduct three simulations with the Community Climate System Model 4 (CCSM4) utilizing a slab ocean model. Each simulation examines the effect of a stepwise change in forcing relative to a pre-industrial control simulation: 1) widespread conversion of forest land to crops resulting in approximately 1 W/m2 global-mean radiative forcing from albedo change, 2) an increase in CO2 concentrations that exactly balances the forcing from land use change at the global level, and 3) a simulation combining the first two effects, resulting in net zero global-mean forcing as would occur in an idealized carbon cap-and-trade scheme that accounts for the albedo effect of land use change. The pattern of land use change that we examine is derived from an integrated assessment model that accounts for population, demographic, technological, and policy changes over the 21st century. We find significant differences in the pattern of climate change associated with each of these forcing scenarios, demonstrating the non-additivity of radiative forcing from land-use change and greenhouse gases in the context of a hypothetical scenario of future land use change. These results have implications for the development of land use and climate policies.

  19. Impact of climate variability on runoff in the north-central United States

    USGS Publications Warehouse

    Ryberg, Karen R.; Lin, Wei; Vecchia, Aldo V.

    2014-01-01

    Large changes in runoff in the north-central United States have occurred during the past century, with larger floods and increases in runoff tending to occur from the 1970s to the present. The attribution of these changes is a subject of much interest. Long-term precipitation, temperature, and streamflow records were used to compare changes in precipitation and potential evapotranspiration (PET) to changes in runoff within 25 stream basins. The basins studied were organized into four groups, each one representing basins similar in topography, climate, and historic patterns of runoff. Precipitation, PET, and runoff data were adjusted for near-decadal scale variability to examine longer-term changes. A nonlinear water-balance analysis shows that changes in precipitation and PET explain the majority of multidecadal spatial/temporal variability of runoff and flood magnitudes, with precipitation being the dominant driver. Historical changes in climate and runoff in the region appear to be more consistent with complex transient shifts in seasonal climatic conditions than with gradual climate change. A portion of the unexplained variability likely stems from land-use change.

  20. Climate change, air pollution and human health in Sydney, Australia: A review of the literature

    NASA Astrophysics Data System (ADS)

    Dean, Annika; Green, Donna

    2018-05-01

    Sydney is Australia’s largest city and is growing rapidly. Although Sydney’s air quality is relatively good compared to the major cities in many industrialised countries, particulate matter (PM) and ozone (O3) occasionally exceed the national health standards and are the cause of premature mortalities and hospital admissions. Numerous studies from overseas (e.g. North America and continental Europe) suggest that climate change may impact air quality to the detriment of human health. There is limited knowledge about how climate change may impact air quality in Sydney. This study reviews the available literature on the impacts of climate change on air quality related health impacts in Sydney to identify knowledge and research gaps. Where no studies are available for Sydney, it draws on relevant studies from other Australian cities and overseas. Our findings summarise what is known about how climate change may impact air quality in Sydney and where research gaps exist. This approach can facilitate research agendas, policies and planning strategies that mitigate public health impacts and tackle climate change and air pollution in a coordinated way.

  1. Climate change adaptation in Tanjung Mas – Semarang: a comparison between male- and female-headed households

    NASA Astrophysics Data System (ADS)

    Handayani, W.; Ananda, M. R.; Esariti, L.; Anggraeni, M.

    2018-03-01

    Mainly due to its complexity, the effort to mainstream gender in addressing climate change issues has been far from the satisfying result. However, there is an urgent call to accommodate gender lens issues and to become more gender sensitive in an attempt to have an effective intervention in responding climate change impact. To enrich the reports on gender and climate change adaptation in city-based case, this paper aims to elaborate climate change adaptation in Tanjung Mas – Semarang city focusing on the gender perspective analysis in male- and female-headed households. The quantitative descriptive method is applied to carry out the analyses, including adaptive strategy and gender role analyses. The research result indicates there are not any significant differences in the climate change adaptation strategies applied in male- and female-headed households. This shows that women in the female-headed households, with their double burden, performed well in managing their roles. Therefore, in particular perspective, it may not be relevant to state that woman and female-headed households are likely to be more vulnerable compared with their counterparts.

  2. Now what do people know about global climate change? Survey studies of educated laypeople.

    PubMed

    Reynolds, Travis William; Bostrom, Ann; Read, Daniel; Morgan, M Granger

    2010-10-01

    In 1992, a mental-models-based survey in Pittsburgh, Pennsylvania, revealed that educated laypeople often conflated global climate change and stratospheric ozone depletion, and appeared relatively unaware of the role of anthropogenic carbon dioxide emissions in global warming. This study compares those survey results with 2009 data from a sample of similarly well-educated laypeople responding to the same survey instrument. Not surprisingly, following a decade of explosive attention to climate change in politics and in the mainstream media, survey respondents in 2009 showed higher awareness and comprehension of some climate change causes. Most notably, unlike those in 1992, 2009 respondents rarely mentioned ozone depletion as a cause of global warming. They were also far more likely to correctly volunteer energy use as a major cause of climate change; many in 2009 also cited natural processes and historical climatic cycles as key causes. When asked how to address the problem of climate change, while respondents in 1992 were unable to differentiate between general "good environmental practices" and actions specific to addressing climate change, respondents in 2009 have begun to appreciate the differences. Despite this, many individuals in 2009 still had incorrect beliefs about climate change, and still did not appear to fully appreciate key facts such as that global warming is primarily due to increased concentrations of carbon dioxide in the atmosphere, and the single most important source of this carbon dioxide is the combustion of fossil fuels. © 2010 Society for Risk Analysis.

  3. Drought Tolerance during Reproductive Development is Important for Increasing wheat yield Potential under Climate change in Europe.

    PubMed

    Senapati, Nimai; Stratonovitch, Pierre; Paul, Matthew J; Semenov, Mikhail A

    2018-06-12

    Drought stress during reproductive development could drastically reduce grain number and wheat yield, but quantitative evaluation of such effect is unknown under climate change. The objectives of this study were to a) evaluate potential yield benefits of drought tolerance during reproductive development for wheat ideotypes under climate change in Europe, and b) identify potential cultivar parameters for improvement. We used the Sirius wheat model to optimise drought tolerant (DT) and drought sensitive (DS) wheat ideotypes under future 2050 climate scenario at 13 contrasting sites, representing major wheat growing regions in Europe. Averaged over the sites, DT ideotypes achieved 13.4% greater yield compared to DS, with the double yield stability for DT. However, the performances of the ideotypes were site dependent. Mean yield of DT was 28-37% greater compared to DS in southern Europe. In contrast, no yield difference (≤ 1%) between ideotypes was found in north-western Europe. An intermediate yield benefit of 10-23% was found due to drought tolerance in central and eastern Europe. We conclude that tolerance to drought stress during reproductive development is important for high yield potentials and greater yield stability of wheat under climate change in Europe.

  4. Climate Change Impacts on Electricity Demand and Supply in the United States: A Multi-Model Comparison

    EPA Science Inventory

    This paper compares the climate change impacts on U.S. electricity demand and supply from three models: the Integrated Planning Model (IPM), the Regional Energy Deployment System (ReEDS) model, and GCAM. Rising temperatures cause an appreciable net increase in electricity demand....

  5. Adapting to Mother Nature's changing climatic conditions: Flexible stocking for enhancing profitability of Wyoming ranchers

    USDA-ARS?s Scientific Manuscript database

    Ranching is a dynamic business in which profitability is impacted by changing weather and climatic conditions. A ranch-level model using a representative ranch in southeastern Wyoming was used to compare economic outcomes from growing season precipitation scenarios of: 1) historical precipitation da...

  6. Distinguishing Complex Ideas about Climate Change: Knowledge Integration vs. Specific Guidance

    ERIC Educational Resources Information Center

    Vitale, Jonathan M.; McBride, Elizabeth; Linn, Marcia C.

    2016-01-01

    We compared two forms of automated guidance to support students' understanding of climate change in an online inquiry science unit. For "specific" guidance, we directly communicated ideas that were missing or misrepresented in student responses. For "knowledge integration" guidance, we provided hints or suggestions to motivate…

  7. Canadian Federal Support for Climate Change and Health Research Compared With the Risks Posed

    PubMed Central

    Smith, Tanya R.; Berrang-Ford, Lea

    2011-01-01

    For emerging public health risks such as climate change, the Canadian federal government has a mandate to provide information and resources to protect citizens' health. Research is a key component of this mandate and is essential if Canada is to moderate the health effects of a changing climate. We assessed whether federal support for climate change and health research is consistent with the risks posed. We audited projects receiving federal support between 1999 and 2009, representing an investment of Can$16 million in 105 projects. Although funding has increased in recent years, it remains inadequate, with negligible focus on vulnerable populations, limited research on adaptation, and volatility in funding allocations. A federal strategy to guide research support is overdue. PMID:21490335

  8. Rapid shifts in plant distribution with recent climate change.

    PubMed

    Kelly, Anne E; Goulden, Michael L

    2008-08-19

    A change in climate would be expected to shift plant distribution as species expand in newly favorable areas and decline in increasingly hostile locations. We compared surveys of plant cover that were made in 1977 and 2006-2007 along a 2,314-m elevation gradient in Southern California's Santa Rosa Mountains. Southern California's climate warmed at the surface, the precipitation variability increased, and the amount of snow decreased during the 30-year period preceding the second survey. We found that the average elevation of the dominant plant species rose by approximately 65 m between the surveys. This shift cannot be attributed to changes in air pollution or fire frequency and appears to be a consequence of changes in regional climate.

  9. Climate-change-driven accelerated sea-level rise detected in the altimeter era.

    PubMed

    Nerem, R S; Beckley, B D; Fasullo, J T; Hamlington, B D; Masters, D; Mitchum, G T

    2018-02-27

    Using a 25-y time series of precision satellite altimeter data from TOPEX/Poseidon, Jason-1, Jason-2, and Jason-3, we estimate the climate-change-driven acceleration of global mean sea level over the last 25 y to be 0.084 ± 0.025 mm/y 2 Coupled with the average climate-change-driven rate of sea level rise over these same 25 y of 2.9 mm/y, simple extrapolation of the quadratic implies global mean sea level could rise 65 ± 12 cm by 2100 compared with 2005, roughly in agreement with the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5) model projections. Copyright © 2018 the Author(s). Published by PNAS.

  10. The impact of climate change on the BRICS economies: The case of insurance demand.

    NASA Astrophysics Data System (ADS)

    Ranger, N.; Surminski, S.

    2012-04-01

    Session ERE5.1 Climate change impact on economical and industrial activities The impact of climate change on the BRICS economies: The case of insurance demand. Over the past decade, growth in the BRICS (Brazil, Russia, India, China and South Africa) economies has been a key driver of global economic growth. Current forecasts suggest that these markets will continue to be areas of significant growth for a large number of industries. We consider how climate change may influence these trends in the period to 2030, a time horizon that is long in terms of strategic planning in industry, but relatively short for climate change analysis, where the impacts are predicted to be most significant beyond around 2050. Based on current evidence, we expect climate change to affect the BRICS economies in four main ways: 1. The impact of physical climatic changes on the productivity of climate-sensitive economic activity, the local environment, human health and wellbeing, and damages from extreme weather. 2. Changing patterns of investment in climate risk management and adaptation 3. Changing patterns of investments in areas affected by greenhouse gas (GHG) mitigation policy, 4. The impacts of the above globally, including on international trade, growth, investment, policy, migration and commodity prices, and their impacts on the BRICS. We review the evidence on the impacts of climate change in the BRICS and then apply this to one particular industry sector: non-life insurance. We propose five potential pathways through which climate change could influence insurance demand: economic growth; willingness to pay for insurance; public policy and regulation; the insurability of natural catastrophe risks; and new opportunities associated with adaptation and greenhouse gas mitigation. We conclude that, with the exception of public policy and regulation, the influence of climate change on insurance demand to 2030 is likely to be small when compared with the expected growth due to rising incomes. The scale of the impacts and their direction depend to some extent on (re)insurer responses to the challenges of climate change. We outline five actions that could pave the way for future opportunities in the industry. Authors of the paper: Ranger, Nicola (Centre for Climate Change Economics and Policy/ Grantham Research Institute, London School of Economics, London, UK) and Surminski, Swenja (Centre for Climate Change Economics and Policy/ Grantham Research Institute, London School of Economics, London, UK)

  11. Impacts of Climate Change on Surface Ozone and Intercontinental Ozone Pollution: A Multi-Model Study

    NASA Technical Reports Server (NTRS)

    Doherty, R. M.; Wild, O.; Shindell, D. T.; Zeng, G.; MacKenzie, I. A.; Collins, W. J.; Fiore, A. M.; Stevenson, D. S.; Dentener, F. J.; Schultz, M. G.; hide

    2013-01-01

    The impact of climate change between 2000 and 2095 SRES A2 climates on surface ozone (O)3 and on O3 source-receptor (S-R) relationships is quantified using three coupled climate-chemistry models (CCMs). The CCMs exhibit considerable variability in the spatial extent and location of surface O3 increases that occur within parts of high NOx emission source regions (up to 6 ppbv in the annual average and up to 14 ppbv in the season of maximum O3). In these source regions, all three CCMs show a positive relationship between surface O3 change and temperature change. Sensitivity simulations show that a combination of three individual chemical processes-(i) enhanced PAN decomposition, (ii) higher water vapor concentrations, and (iii) enhanced isoprene emission-largely reproduces the global spatial pattern of annual-mean surface O3 response due to climate change (R2 = 0.52). Changes in climate are found to exert a stronger control on the annual-mean surface O3 response through changes in climate-sensitive O3 chemistry than through changes in transport as evaluated from idealized CO-like tracer concentrations. All three CCMs exhibit a similar spatial pattern of annual-mean surface O3 change to 20% regional O3 precursor emission reductions under future climate compared to the same emission reductions applied under present-day climate. The surface O3 response to emission reductions is larger over the source region and smaller downwind in the future than under present-day conditions. All three CCMs show areas within Europe where regional emission reductions larger than 20% are required to compensate climate change impacts on annual-mean surface O3.

  12. Projecting Future Land Use Changes in West Africa Driven by Climate and Socioeconomic Factors: Uncertainties and Implications for Adaptation

    NASA Astrophysics Data System (ADS)

    Wang, G.; Ahmed, K. F.; You, L.

    2015-12-01

    Land use changes constitute an important regional climate change forcing in West Africa, a region of strong land-atmosphere coupling. At the same time, climate change can be an important driver for land use, although its importance relative to the impact of socio-economic factors may vary significant from region to region. This study compares the contributions of climate change and socioeconomic development to potential future changes of agricultural land use in West Africa and examines various sources of uncertainty using a land use projection model (LandPro) that accounts for the impact of socioeconomic drivers on the demand side and the impact of climate-induced crop yield changes on the supply side. Future crop yield changes were simulated by a process-based crop model driven with future climate projections from a regional climate model, and future changes of food demand is projected using a model for policy analysis of agricultural commodities and trade. The impact of human decision-making on land use was explicitly considered through multiple "what-if" scenarios to examine the range of uncertainties in projecting future land use. Without agricultural intensification, the climate-induced decrease of crop yield together with increase of food demand are found to cause a significant increase in agricultural land use at the expense of forest and grassland by the mid-century, and the resulting land use land cover changes are found to feed back to the regional climate in a way that exacerbates the negative impact of climate on crop yield. Analysis of results from multiple decision-making scenarios suggests that human adaptation characterized by science-informed decision making to minimize land use could be very effective in many parts of the region.

  13. Life history trade-off moderates model predictions of diversity loss from climate change.

    PubMed

    Moor, Helen

    2017-01-01

    Climate change can trigger species range shifts, local extinctions and changes in diversity. Species interactions and dispersal capacity are important mediators of community responses to climate change. The interaction between multispecies competition and variation in dispersal capacity has recently been shown to exacerbate the effects of climate change on diversity and to increase predictions of extinction risk dramatically. Dispersal capacity, however, is part of a species' overall ecological strategy and are likely to trade off with other aspects of its life history that influence population growth and persistence. In plants, a well-known example is the trade-off between seed mass and seed number. The presence of such a trade-off might buffer the diversity loss predicted by models with random but neutral (i.e. not impacting fitness otherwise) differences in dispersal capacity. Using a trait-based metacommunity model along a warming climatic gradient the effect of three different dispersal scenarios on model predictions of diversity change were compared. Adding random variation in species dispersal capacity caused extinctions by the introduction of strong fitness differences due an inherent property of the dispersal kernel. Simulations including a fitness-equalising trade-off based on empirical relationships between seed mass (here affecting dispersal distance, establishment probability, and seedling biomass) and seed number (fecundity) maintained higher initial species diversity and predicted lower extinction risk and diversity loss during climate change than simulations with variable dispersal capacity. Large seeded species persisted during climate change, but developed lags behind their climate niche that may cause extinction debts. Small seeded species were more extinction-prone during climate change but tracked their niches through dispersal and colonisation, despite competitive resistance from residents. Life history trade-offs involved in coexistence mechanisms may increase community resilience to future climate change and are useful guides for model development.

  14. Unleashing Expert Judgment in the IPCC's Fifth Assessment Report

    NASA Astrophysics Data System (ADS)

    Freeman, P. T.; Mach, K. J.; Mastrandrea, M.; Field, C. B.

    2016-12-01

    IPCC assessments are critical vehicles for evaluating and synthesizing existing knowledge about climate change, its impacts, and potential options for adaptation and mitigation. In these assessments, rigorous expert judgment is essential for characterizing current scientific understanding including persistent and complex uncertainties related to climate change. Over its history the IPCC has iteratively developed frameworks for evaluating and communicating what is known and what is not known about climate change science. In this presentation, we explore advances and challenges in approaches to evaluating and communicating expert judgment in the Intergovernmental Panel on Climate Change's Fifth Assessment Report (IPCC AR5). We present an analysis of the frequency of the use of calibrated degree-of-certainty terms in the policymaker summaries from the IPCC's AR5 and Fourth Assessment Report (AR4). We find that revised guidance for IPCC author teams in the AR5 improved the development of balanced judgments on scientific evidence across disciplines. Overall, degree-of-certainty terms are more abundant in the AR5 policymaker summaries compared to those of the AR4, demonstrating an increased commitment to extensively and transparently characterizing expert judgments underpinning report conclusions. This analysis also shows that while working groups still favor different degree-of-certainty scales in the AR5, authors employed a wider array of degree-of-certainty scales to communicate expert judgment supporting report findings compared to the policymaker summaries of the AR4. Finally, our analysis reveals greater inclusion of lower-certainty findings in the AR5 as compared to the AR4, critical for communicating a fuller range of possible climate change impacts and response options. Building on our findings we propose a simpler, more transparent, and more rigorous framework for developing and communicating expert judgments in future climate and environmental assessments.

  15. Can trait patterns along gradients predict plant community responses to climate change?

    PubMed

    Guittar, John; Goldberg, Deborah; Klanderud, Kari; Telford, Richard J; Vandvik, Vigdis

    2016-10-01

    Plant functional traits vary consistently along climate gradients and are therefore potential predictors of plant community response to climate change. We test this space-for-time assumption by combining a spatial gradient study with whole-community turf transplantation along temperature and precipitation gradients in a network of 12 grassland sites in Southern Norway. Using data on eight traits for 169 species and annual vegetation censuses of 235 turfs over 5 yr, we quantify trait-based responses to climate change by comparing observed community dynamics in transplanted turfs to field-parameterized null model simulations. Three traits related to species architecture (maximum height, number of dormant meristems, and ramet-ramet connection persistence) varied consistently along spatial temperature gradients and also correlated to changes in species abundances in turfs transplanted to warmer climates. Two traits associated with resource acquisition strategy (SLA, leaf area) increased along spatial temperature gradients but did not correlate to changes in species abundances following warming. No traits correlated consistently with precipitation. Our study supports the hypothesis that spatial associations between plant traits and broad-scale climate variables can be predictive of community response to climate change, but it also suggests that not all traits with clear patterns along climate gradients will necessarily influence community response to an equal degree. © 2016 by the Ecological Society of America.

  16. Impacts of climate change on current methodologies for flood risk analysis: Watershed-scale analyses using the Soil and Water Assessment Tool (SWAT)

    NASA Astrophysics Data System (ADS)

    Spellman, P.; Griffis, V. W.; LaFond, K.

    2013-12-01

    A changing climate brings about new challenges for flood risk analysis and water resources planning and management. Current methods for estimating flood risk in the US involve fitting the Pearson Type III (P3) probability distribution to the logarithms of the annual maximum flood (AMF) series using the method of moments. These methods are employed under the premise of stationarity, which assumes that the fitted distribution is time invariant and variables affecting stream flow such as climate do not fluctuate. However, climate change would bring about shifts in meteorological forcings which can alter the summary statistics (mean, variance, skew) of flood series used for P3 parameter estimation, resulting in erroneous flood risk projections. To ascertain the degree to which future risk may be misrepresented by current techniques, we use climate scenarios generated from global climate models (GCMs) as input to a hydrological model to explore how relative changes to current climate affect flood response for watersheds in the northeastern United States. The watersheds were calibrated and run on a daily time step using the continuous, semi-distributed, process based Soil and Water Assessment Tool (SWAT). Nash Sutcliffe Efficiency (NSE), RMSE to Standard Deviation ratio (RSR) and Percent Bias (PBIAS) were all used to assess model performance. Eight climate scenarios were chosen from GCM output based on relative precipitation and temperature changes from the current climate of the watershed and then further bias-corrected. Four of the scenarios were selected to represent warm-wet, warm-dry, cool-wet and cool-dry future climates, and the other four were chosen to represent more extreme, albeit possible, changes in precipitation and temperature. We quantify changes in response by comparing the differences in total mass balance and summary statistics of the logarithms of the AMF series from historical baseline values. We then compare forecasts of flood quantiles from fitting a P3 distribution to the logs of historical AMF data to that of generated AMF series.

  17. A fractal analysis of quaternary, Cenozoic-Mesozoic, and Late Pennsylvanian sea level changes

    NASA Technical Reports Server (NTRS)

    Hsui, Albert T.; Rust, Kelly A.; Klein, George D.

    1993-01-01

    Sea level changes are related to both climatic variations and tectonic movements. The fractal dimensions of several sea level curves were compared to a modern climatic fractal dimension of 1.26 established for annual precipitation records. A similar fractal dimension (1.22) based on delta(O-18/O-16) in deep-sea sediments has been suggested to characterize climatic change during the past 2 m.y. Our analysis indicates that sea level changes over the past 150,000 to 250,000 years also exhibit comparable fractal dimensions. Sea level changes for periods longer than about 30 m.y. are found to produce fractal dimensions closer to unity and Missourian (Late Pennsylvanian) sea level changes yield a fractal dimension of 1.41. The fact that these sea level curves all possess fractal dimensions less than 1.5 indicates that sea level changes exhibit nonperiodic, long-run persistence. The different fractal dimensions calculated for the various time periods could be the result of a characteristic overprinting of the sediment recored by prevailing processes during deposition. For example, during the Quaternary, glacio-eustatic sea level changes correlate well with the present climatic signature. During the Missourian, however, mechanisms such as plate reorganization may have dominated, resulting in a significantly different fractal dimension.

  18. Climate, Water and Renewable Energy in the Nordic Countries

    NASA Astrophysics Data System (ADS)

    Snorrason, A.; Jonsdottir, J. F.

    2004-05-01

    Climate and Energy (CE) is a new Nordic research project with funding from Nordic Energy Research (NEFP) and the Nordic energy sector. The project has the objective of a comprehensive assessment of the impact of climate variability and change on Nordic renewable energy resources including hydropower, wind power, bio-fuels and solar energy. This will include assessment of the power production of the hydropower dominated Nordic energy system and its sensitivity and vulnerability to climate change on both temporal and spatial scales; assessment of the impacts of extremes including floods, droughts, storms, seasonal patterns and variability. Within the CE project several thematic groups work on specific issues of climatic change and their impacts on renewable energy. A primary aim of the CE climate group is to supply a standard set of common scenarios of climate change in northern Europe and Greenland, based on recent global and regional climate change experiments. The snow and ice group has chosen glaciers from Greenland, Iceland, Norway and Sweden for an analysis of the response of glaciers to climate changes. Mass balance and dynamical changes, corresponding to the common scenario for climate changes, will be modelled and effects on glacier hydrology will be estimated. Preliminary work with dynamic modelling and climate scenarios shows a dramatic response of glacial runoff to increased temperature and precipitation. The statistical analysis group has reported on the status of time series analysis in the Nordic countries. The group has selected and quality controlled time series of stream flow to be included in the Nordic component of the database FRIEND. Also the group will collect information on time series for other variables and these series will be systematically analysed with respect to trend and other long-term changes. Preliminary work using multivariate analysis on stream flow and climate variables shows strong linkages with the long term atmospheric circulation in the North Atlantic. The hydrological modelling group has already reported on "Climate change impacts on water resources in the Nordic countries - State of the art and discussion of principles". The group will compare different approaches of transferring the climate change signal into hydrological models and discuss uncertainties in models and climate scenarios. Furthermore, comprehensive assessment and mapping of impact of climate change will be produced for the whole Nordic region based on the scenarios from the CE-climate group.

  19. Stress testing hydrologic models using bottom-up climate change assessment

    NASA Astrophysics Data System (ADS)

    Stephens, C.; Johnson, F.; Marshall, L. A.

    2017-12-01

    Bottom-up climate change assessment is a promising approach for understanding the vulnerability of a system to potential future changes. The technique has been utilised successfully in risk-based assessments of future flood severity and infrastructure vulnerability. We find that it is also an ideal tool for assessing hydrologic model performance in a changing climate. In this study, we applied bottom-up climate change to compare the performance of two different hydrologic models (an event-based and a continuous model) under increasingly severe climate change scenarios. This allowed us to diagnose likely sources of future prediction error in the two models. The climate change scenarios were based on projections for southern Australia, which indicate drier average conditions with increased extreme rainfall intensities. We found that the key weakness in using the event-based model to simulate drier future scenarios was the model's inability to dynamically account for changing antecedent conditions. This led to increased variability in model performance relative to the continuous model, which automatically accounts for the wetness of a catchment through dynamic simulation of water storages. When considering more intense future rainfall events, representation of antecedent conditions became less important than assumptions around (non)linearity in catchment response. The linear continuous model we applied may underestimate flood risk in a future climate with greater extreme rainfall intensity. In contrast with the recommendations of previous studies, this indicates that continuous simulation is not necessarily the key to robust flood modelling under climate change. By applying bottom-up climate change assessment, we were able to understand systematic changes in relative model performance under changing conditions and deduce likely sources of prediction error in the two models.

  20. Role of Perturbing Ocean Initial Condition in Simulated Regional Sea Level Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Aixue; Meehl, Gerald; Stammer, Detlef

    Multiple lines of observational evidence indicate that the global climate has been getting warmer since the early 20th century. This warmer climate has led to a global mean sea level rise of about 18 cm during the 20th century, and over 6 cm for the first 15 years of the 21st century. Regionally the sea level rise is not uniform due in large part to internal climate variability. To better serve the community, the uncertainties of predicting/projecting regional sea level changes associated with internal climate variability need to be quantified. Previous research on this topic has used single-model large ensemblesmore » with perturbed atmospheric initial conditions (ICs). Here we compare uncertainties associated with perturbing ICs in just the atmosphere and just the ocean using a state-of-the-art coupled climate model. We find that by perturbing the oceanic ICs, the uncertainties in regional sea level changes increase compared to those with perturbed atmospheric ICs. In order for us to better assess the full spectrum of the impacts of such internal climate variability on regional and global sea level rise, approaches that involve perturbing both atmospheric and oceanic initial conditions are thus necessary.« less

  1. Role of Perturbing Ocean Initial Condition in Simulated Regional Sea Level Change

    DOE PAGES

    Hu, Aixue; Meehl, Gerald; Stammer, Detlef; ...

    2017-06-05

    Multiple lines of observational evidence indicate that the global climate has been getting warmer since the early 20th century. This warmer climate has led to a global mean sea level rise of about 18 cm during the 20th century, and over 6 cm for the first 15 years of the 21st century. Regionally the sea level rise is not uniform due in large part to internal climate variability. To better serve the community, the uncertainties of predicting/projecting regional sea level changes associated with internal climate variability need to be quantified. Previous research on this topic has used single-model large ensemblesmore » with perturbed atmospheric initial conditions (ICs). Here we compare uncertainties associated with perturbing ICs in just the atmosphere and just the ocean using a state-of-the-art coupled climate model. We find that by perturbing the oceanic ICs, the uncertainties in regional sea level changes increase compared to those with perturbed atmospheric ICs. In order for us to better assess the full spectrum of the impacts of such internal climate variability on regional and global sea level rise, approaches that involve perturbing both atmospheric and oceanic initial conditions are thus necessary.« less

  2. Climate Change Research in View of Bibliometrics

    PubMed Central

    Haunschild, Robin; Bornmann, Lutz; Marx, Werner

    2016-01-01

    This bibliometric study of a large publication set dealing with research on climate change aims at mapping the relevant literature from a bibliometric perspective and presents a multitude of quantitative data: (1) The growth of the overall publication output as well as (2) of some major subfields, (3) the contributing journals and countries as well as their citation impact, and (4) a title word analysis aiming to illustrate the time evolution and relative importance of specific research topics. The study is based on 222,060 papers (articles and reviews only) published between 1980 and 2014. The total number of papers shows a strong increase with a doubling every 5–6 years. Continental biomass related research is the major subfield, closely followed by climate modeling. Research dealing with adaptation, mitigation, risks, and vulnerability of global warming is comparatively small, but their share of papers increased exponentially since 2005. Research on vulnerability and on adaptation published the largest proportion of very important papers (in terms of citation impact). Climate change research has become an issue also for disciplines beyond the natural sciences. The categories Engineering and Social Sciences show the strongest field-specific relative increase. The Journal of Geophysical Research, the Journal of Climate, the Geophysical Research Letters, and Climatic Change appear at the top positions in terms of the total number of papers published. Research on climate change is quantitatively dominated by the USA, followed by the UK, Germany, and Canada. The citation-based indicators exhibit consistently that the UK has produced the largest proportion of high impact papers compared to the other countries (having published more than 10,000 papers). Also, Switzerland, Denmark and also The Netherlands (with a publication output between around 3,000 and 6,000 papers) perform top—the impact of their contributions is on a high level. The title word analysis shows that the term climate change comes forward with time. Furthermore, the term impact arises and points to research dealing with the various effects of climate change. The discussion of the question of human induced climate change towards a clear fact (for the majority of the scientific community) stimulated research on future pathways for adaptation and mitigation. Finally, the term model and related terms prominently appear independent of time, indicating the high relevance of climate modeling. PMID:27472663

  3. Climate Change and its Impacts on Water Resources and Management of Tarbela Reservoir under IPCC Climate Change Scenarios in Upper Indus Basin, Pakistan

    NASA Astrophysics Data System (ADS)

    Khan, Firdos; Pilz, Jürgen

    2014-05-01

    Water resources play a vital role in agriculture, energy, industry, households and ecological balance. The main source of water to rivers is the Himalaya-Karakorum-Hindukush (HKH) glaciers and rainfall in Upper Indus Basin (UIB). There is high uncertainty in the availability of water in the rivers due to the variability of the monsoon, Western Disturbances, prolonged droughts and melting of glaciers in the HKH region. Therefore, proper management of water resources is undeniably important. Due to the growing population, urbanization and increased industrialization, the situation is likely to get worse. For the assessment of possible climate change, maximum temperature, minimum temperature and precipitation were investigated and evidence was found in favor of climate change in the region. Due to large differences between historical meteorological data and Regional Climate Model (RCM) simulated data, different statistical techniques were used for bias correction in temperature and precipitation. The hydrological model was calibrated for the period of 1995-2004 and validated for the period of 1990-1994 with almost 90 % efficiencies. After the application of bias correction techniques output of RCM, Providing Regional Climate for Impact Studies (PRECIS) were used as input data to the hydrological model to produce inflow projections at Tarbela reservoir on Indus River. For climate change assessment, the results show that the above mentioned variables have greater increasing trend under A2 scenario compared to B2 scenario. The projections of inflow to Tarbela reservoir show that overall 59.42 % and 34.27 % inflow increasing to Tarbela Reservoir during 2040-2069 under A2 and B2 scenarios will occur, respectively. Highest inflow and comparatively more shortage of water is noted in the 2020s under A2 scenario. Finally, the impacts of changing climate are investigated on the operation of the Tarbela reservoir. The results show that there will be shortage of water in some months over different years. There are no chances of overtopping of the dam during the 2020s and the 2050s under A2 and B2 scenarios. _______________________________________________________________________________KEY WORDS: Climate Model, Climate Change, Hydrological Model, Climate Change Scenarios, Tarbela Reservoir, Inflow, Outflow, Evaporation, Indus River, Calibration, Bias Correction.

  4. Climate Change Research in View of Bibliometrics.

    PubMed

    Haunschild, Robin; Bornmann, Lutz; Marx, Werner

    2016-01-01

    This bibliometric study of a large publication set dealing with research on climate change aims at mapping the relevant literature from a bibliometric perspective and presents a multitude of quantitative data: (1) The growth of the overall publication output as well as (2) of some major subfields, (3) the contributing journals and countries as well as their citation impact, and (4) a title word analysis aiming to illustrate the time evolution and relative importance of specific research topics. The study is based on 222,060 papers (articles and reviews only) published between 1980 and 2014. The total number of papers shows a strong increase with a doubling every 5-6 years. Continental biomass related research is the major subfield, closely followed by climate modeling. Research dealing with adaptation, mitigation, risks, and vulnerability of global warming is comparatively small, but their share of papers increased exponentially since 2005. Research on vulnerability and on adaptation published the largest proportion of very important papers (in terms of citation impact). Climate change research has become an issue also for disciplines beyond the natural sciences. The categories Engineering and Social Sciences show the strongest field-specific relative increase. The Journal of Geophysical Research, the Journal of Climate, the Geophysical Research Letters, and Climatic Change appear at the top positions in terms of the total number of papers published. Research on climate change is quantitatively dominated by the USA, followed by the UK, Germany, and Canada. The citation-based indicators exhibit consistently that the UK has produced the largest proportion of high impact papers compared to the other countries (having published more than 10,000 papers). Also, Switzerland, Denmark and also The Netherlands (with a publication output between around 3,000 and 6,000 papers) perform top-the impact of their contributions is on a high level. The title word analysis shows that the term climate change comes forward with time. Furthermore, the term impact arises and points to research dealing with the various effects of climate change. The discussion of the question of human induced climate change towards a clear fact (for the majority of the scientific community) stimulated research on future pathways for adaptation and mitigation. Finally, the term model and related terms prominently appear independent of time, indicating the high relevance of climate modeling.

  5. Seafarer citizen scientist ocean transparency data as a resource for phytoplankton and climate research.

    PubMed

    Seafarers, Secchi Disk; Lavender, Samantha; Beaugrand, Gregory; Outram, Nicholas; Barlow, Nigel; Crotty, David; Evans, Jake; Kirby, Richard

    2017-01-01

    The oceans' phytoplankton that underpin the marine food chain appear to be changing in abundance due to global climate change. Here, we compare the first four years of data from a citizen science ocean transparency study, conducted by seafarers using home-made Secchi Disks and a free Smartphone application called Secchi, with contemporaneous satellite ocean colour measurements. Our results show seafarers collect useful Secchi Disk measurements of ocean transparency that could help future assessments of climate-induced changes in the phytoplankton when used to extend historical Secchi Disk data.

  6. Is There a Temperate Bias in Our Understanding of How Climate Change Will Alter Plant-Herbivore Interactions? A Meta-analysis of Experimental Studies.

    PubMed

    Mundim, Fabiane M; Bruna, Emilio M

    2016-09-01

    Climate change can drive major shifts in community composition and interactions between resident species. However, the magnitude of these changes depends on the type of interactions and the biome in which they take place. We review the existing conceptual framework for how climate change will influence tropical plant-herbivore interactions and formalize a similar framework for the temperate zone. We then conduct the first biome-specific tests of how plant-herbivore interactions change in response to climate-driven changes in temperature, precipitation, ambient CO2, and ozone. We used quantitative meta-analysis to compare predicted and observed changes in experimental studies. Empirical studies were heavily biased toward temperate systems, so testing predicted changes in tropical plant-herbivore interactions was virtually impossible. Furthermore, most studies investigated the effects of CO2 with limited plant and herbivore species. Irrespective of location, most studies manipulated only one climate change factor despite the fact that different factors can act in synergy to alter responses of plants and herbivores. Finally, studies of belowground plant-herbivore interactions were also rare; those conducted suggest that climate change could have major effects on belowground subsystems. Our results suggest that there is a disconnection between the growing literature proposing how climate change will influence plant-herbivore interactions and the studies testing these predictions. General conclusions will also be hampered without better integration of above- and belowground systems, assessing the effects of multiple climate change factors simultaneously, and using greater diversity of species in experiments.

  7. Contribution of crop model structure, parameters and climate projections to uncertainty in climate change impact assessments.

    PubMed

    Tao, Fulu; Rötter, Reimund P; Palosuo, Taru; Gregorio Hernández Díaz-Ambrona, Carlos; Mínguez, M Inés; Semenov, Mikhail A; Kersebaum, Kurt Christian; Nendel, Claas; Specka, Xenia; Hoffmann, Holger; Ewert, Frank; Dambreville, Anaelle; Martre, Pierre; Rodríguez, Lucía; Ruiz-Ramos, Margarita; Gaiser, Thomas; Höhn, Jukka G; Salo, Tapio; Ferrise, Roberto; Bindi, Marco; Cammarano, Davide; Schulman, Alan H

    2018-03-01

    Climate change impact assessments are plagued with uncertainties from many sources, such as climate projections or the inadequacies in structure and parameters of the impact model. Previous studies tried to account for the uncertainty from one or two of these. Here, we developed a triple-ensemble probabilistic assessment using seven crop models, multiple sets of model parameters and eight contrasting climate projections together to comprehensively account for uncertainties from these three important sources. We demonstrated the approach in assessing climate change impact on barley growth and yield at Jokioinen, Finland in the Boreal climatic zone and Lleida, Spain in the Mediterranean climatic zone, for the 2050s. We further quantified and compared the contribution of crop model structure, crop model parameters and climate projections to the total variance of ensemble output using Analysis of Variance (ANOVA). Based on the triple-ensemble probabilistic assessment, the median of simulated yield change was -4% and +16%, and the probability of decreasing yield was 63% and 31% in the 2050s, at Jokioinen and Lleida, respectively, relative to 1981-2010. The contribution of crop model structure to the total variance of ensemble output was larger than that from downscaled climate projections and model parameters. The relative contribution of crop model parameters and downscaled climate projections to the total variance of ensemble output varied greatly among the seven crop models and between the two sites. The contribution of downscaled climate projections was on average larger than that of crop model parameters. This information on the uncertainty from different sources can be quite useful for model users to decide where to put the most effort when preparing or choosing models or parameters for impact analyses. We concluded that the triple-ensemble probabilistic approach that accounts for the uncertainties from multiple important sources provide more comprehensive information for quantifying uncertainties in climate change impact assessments as compared to the conventional approaches that are deterministic or only account for the uncertainties from one or two of the uncertainty sources. © 2017 John Wiley & Sons Ltd.

  8. Impacts of boundary condition changes on regional climate projections over West Africa

    NASA Astrophysics Data System (ADS)

    Kim, Jee Hee; Kim, Yeonjoo; Wang, Guiling

    2017-06-01

    Future projections using regional climate models (RCMs) are driven with boundary conditions (BCs) typically derived from global climate models. Understanding the impact of the various BCs on regional climate projections is critical for characterizing their robustness and uncertainties. In this study, the International Center for Theoretical Physics Regional Climate Model Version 4 (RegCM4) is used to investigate the impact of different aspects of boundary conditions, including lateral BCs and sea surface temperature (SST), on projected future changes of regional climate in West Africa, and BCs from the coupled European Community-Hamburg Atmospheric Model 5/Max Planck Institute Ocean Model are used as an example. Historical, future, and several sensitivity experiments are conducted with various combinations of BCs and CO2 concentration, and differences among the experiments are compared to identify the most important drivers for RCMs. When driven by changes in all factors, the RegCM4-produced future climate changes include significantly drier conditions in Sahel and wetter conditions along the Guinean coast. Changes in CO2 concentration within the RCM domain alone or changes in wind vectors at the domain boundaries alone have minor impact on projected future climate changes. Changes in the atmospheric humidity alone at the domain boundaries lead to a wetter Sahel due to the northward migration of rain belts during summer. This impact, although significant, is offset and dominated by changes of other BC factors (primarily temperature) that cause a drying signal. Future changes of atmospheric temperature at the domain boundaries combined with SST changes over oceans are sufficient to cause a future climate that closely resembles the projection that accounts for all factors combined. Therefore, climate variability and changes simulated by RCMs depend primarily on the variability and change of temperature aspects of the RCM BCs. Moreover, it is found that the response of the RCM climate to different climate change factors is roughly linear in that the projected changes driven by combined factors are close to the sum of projected changes due to each individual factor alone at least for long-term averages. Findings from this study are important for understanding the source(s) of uncertainties in regional climate projections and for designing innovative approaches to climate downscaling and impact assessment.

  9. Environmental and economic risks assessment under climate changes for three land uses scenarios analysis across Teshio watershed, northernmost of Japan.

    PubMed

    Fan, Min; Shibata, Hideaki; Chen, Li

    2017-12-01

    Land use and climate changes affect on the economy and environment with different patterns and magnitudes in the watershed. This study used risk analysis model stochastic efficiency with respect to a function (SERF) to evaluate economic and environmental risks caused by four climate change scenarios (baseline, small-, mid- and large changes) and three land uses (paddy dominated, paddy-farmland mixture and farmland dominated for agriculture) in Teshio watershed in northern Hokkaido, Japan. Under the baseline climate conditions, the lower ranking of economic income of crop yield and higher ranking of pollutant load from agricultural land were both predicted in paddy dominated for agriculture, suggesting that the paddy dominated system caused higher risks of economic and environmental variables compared to other two land uses. Increase of temperature and precipitation increased crop yields under all three climate changes which resulted in increase of the ranking of economic income, indicating that those climate changes could reduce economic risk. The increased temperature and precipitation also accelerated mineralization of organic nutrient and nutrient leaching to river course of Teshio which resulted in increase of the ranking of pollutant load, suggesting that those climate changes could lead to more environmental risk. The rankings of economic income in mid- and large changes of climate were lower than that in small change of climate under paddy-farmland mixture and farmland dominated systems due to decrease of crop yield, suggesting that climate change led to more economic risk. In summary, the results suggested that increase in temperature and precipitation caused higher risks of both economic and environmental perspectives, and the impacts was higher than those of land use changes in the studied watershed. Those findings would help producers and watershed managers to measure the tradeoffs between environmental protection and agricultural economic development for making decision under land use and climate changes. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Modelling climate change effects on Atlantic salmon: Implications for mitigation in regulated rivers.

    PubMed

    Sundt-Hansen, L E; Hedger, R D; Ugedal, O; Diserud, O H; Finstad, A G; Sauterleute, J F; Tøfte, L; Alfredsen, K; Forseth, T

    2018-08-01

    Climate change is expected to alter future temperature and discharge regimes of rivers. These regimes have a strong influence on the life history of most aquatic river species, and are key variables controlling the growth and survival of Atlantic salmon. This study explores how the future abundance of Atlantic salmon may be influenced by climate-induced changes in water temperature and discharge in a regulated river, and investigates how negative impacts in the future can be mitigated by applying different regulated discharge regimes during critical periods for salmon survival. A spatially explicit individual-based model was used to predict juvenile Atlantic salmon population abundance in a regulated river under a range of future water temperature and discharge scenarios (derived from climate data predicted by the Hadley Centre's Global Climate Model (GCM) HadAm3H and the Max Plank Institute's GCM ECHAM4), which were then compared with populations predicted under control scenarios representing past conditions. Parr abundance decreased in all future scenarios compared to the control scenarios due to reduced wetted areas (with the effect depending on climate scenario, GCM, and GCM spatial domain). To examine the potential for mitigation of climate change-induced reductions in wetted area, simulations were run with specific minimum discharge regimes. An increase in abundance of both parr and smolt occurred with an increase in the limit of minimum permitted discharge for three of the four GCM/GCM spatial domains examined. This study shows that, in regulated rivers with upstream storage capacity, negative effects of climate change on Atlantic salmon populations can potentially be mitigated by release of water from reservoirs during critical periods for juvenile salmon. Copyright © 2018. Published by Elsevier B.V.

  11. Climate Twins - a tool to explore future climate impacts by assessing real world conditions: Exploration principles, underlying data, similarity conditions and uncertainty ranges

    NASA Astrophysics Data System (ADS)

    Loibl, Wolfgang; Peters-Anders, Jan; Züger, Johann

    2010-05-01

    To achieve public awareness and thorough understanding about expected climate changes and their future implications, ways have to be found to communicate model outputs to the public in a scientifically sound and easily understandable way. The newly developed Climate Twins tool tries to fulfil these requirements via an intuitively usable web application, which compares spatial patterns of current climate with future climate patterns, derived from regional climate model results. To get a picture of the implications of future climate in an area of interest, users may click on a certain location within an interactive map with underlying future climate information. A second map depicts the matching Climate Twin areas according to current climate conditions. In this way scientific output can be communicated to the public which allows for experiencing climate change through comparison with well-known real world conditions. To identify climatic coincidence seems to be a simple exercise, but the accuracy and applicability of the similarity identification depends very much on the selection of climate indicators, similarity conditions and uncertainty ranges. Too many indicators representing various climate characteristics and too narrow uncertainty ranges will judge little or no area as regions with similar climate, while too little indicators and too wide uncertainty ranges will address too large regions as those with similar climate which may not be correct. Similarity cannot be just explored by comparing mean values or by calculating correlation coefficients. As climate change triggers an alteration of various indicators, like maxima, minima, variation magnitude, frequency of extreme events etc., the identification of appropriate similarity conditions is a crucial question to be solved. For Climate Twins identification, it is necessary to find a right balance of indicators, similarity conditions and uncertainty ranges, unless the results will be too vague conducting a useful Climate Twins regions search. The Climate Twins tool works actually comparing future climate conditions of a certain source area in the Greater Alpine Region with current climate conditions of entire Europe and the neighbouring southern as well south-eastern areas as target regions. A next version will integrate web crawling features for searching information about climate-related local adaptations observed today in the target region which may turn out as appropriate solution for the source region under future climate conditions. The contribution will present the current tool functionally and will discuss which indicator sets, similarity conditions and uncertainty ranges work best to deliver scientifically sound climate comparisons and distinct mapping results.

  12. Examining Educational Climate Change Technology: How Group Inquiry Work with Realistic Scientific Technology Alters Classroom Learning

    ERIC Educational Resources Information Center

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2018-01-01

    This study with 79 students in Montreal, Quebec, compared the educational use of a National Aeronautics and Space Administration (NASA) global climate model (GCM) to climate education technologies developed for classroom use that included simpler interfaces and processes. The goal was to show how differing climate education technologies succeed…

  13. Dual impacts of climate change: forest migration and turnover through life history

    Treesearch

    Kai Zhu; Christopher W. Woodall; Souparno Ghosh; Alan E. Gelfand; James S. Clark

    2014-01-01

    Tree species are predicted to track future climate by shifting their geographic distributions, but climate-mediated migrations are not apparent in a recent continental-scale analysis. To better understand the mechanisms of a possible migration lag, we analyzed relative recruitment patterns by comparing juvenile and adult tree abundances in climate space. One would...

  14. Quantifying the climate impacts of albedo changes due to biofuel production: a comparison with biogeochemical effects

    NASA Astrophysics Data System (ADS)

    Caiazzo, Fabio; Malina, Robert; Staples, Mark D.; Wolfe, Philip J.; Yim, Steve H. L.; Barrett, Steven R. H.

    2014-01-01

    Lifecycle analysis is a tool widely used to evaluate the climate impact of greenhouse gas emissions attributable to the production and use of biofuels. In this paper we employ an augmented lifecycle framework that includes climate impacts from changes in surface albedo due to land use change. We consider eleven land-use change scenarios for the cultivation of biomass for middle distillate fuel production, and compare our results to previous estimates of lifecycle greenhouse gas emissions for the same set of land-use change scenarios in terms of CO2e per unit of fuel energy. We find that two of the land-use change scenarios considered demonstrate a warming effect due to changes in surface albedo, compared to conventional fuel, the largest of which is for replacement of desert land with salicornia cultivation. This corresponds to 222 gCO2e/MJ, equivalent to 3890% and 247% of the lifecycle GHG emissions of fuels derived from salicornia and crude oil, respectively. Nine of the land-use change scenarios considered demonstrate a cooling effect, the largest of which is for the replacement of tropical rainforests with soybean cultivation. This corresponds to - 161 gCO2e/MJ, or - 28% and - 178% of the lifecycle greenhouse gas emissions of fuels derived from soybean and crude oil, respectively. These results indicate that changes in surface albedo have the potential to dominate the climate impact of biofuels, and we conclude that accounting for changes in surface albedo is necessary for a complete assessment of the aggregate climate impacts of biofuel production and use.

  15. Recent Climate and Ice-Sheet Changes in West Antarctica Compared with the Past 2,000 Years

    NASA Technical Reports Server (NTRS)

    Steig, Eric J.; Ding, Qinghua; White, James W.; Kuttel, Marcel; Rupper, Summer B.; Neumann, Thomas Allen; Neff, Peter D.; Gallant, Ailie J. E.; Mayewski, Paul A.; Taylor, Kendrick C.; hide

    2013-01-01

    Changes in atmospheric circulation over the past five decades have enhanced the wind-driven inflow of warm ocean water onto the Antarctic continental shelf, where it melts ice shelves from below1-3. Atmospheric circulation changes have also caused rapid warming4 over the West Antarctic Ice Sheet, and contributed to declining sea-ice cover in the adjacent Amundsen-Bellingshausen seas5. It is unknown whether these changes are part of a longer-term trend. Here, we use waterisotope (Delta O-18) data from an array of ice-core records to place recent West Antarctic climate changes in the context of the past two millennia. We find that the d18O of West Antarctic precipitation has increased significantly in the past 50 years, in parallel with the trend in temperature, and was probably more elevated during the 1990s than at any other time during the past 200 years. However, Delta O-18 anomalies comparable to those of recent decades occur about 1% of the time over the past 2,000 years. General circulation model simulations suggest that recent trends in Delta O-18 and climate in West Antarctica cannot be distinguished from decadal variability that originates in the tropics. We conclude that the uncertain trajectory of tropical climate variability represents a significant source of uncertainty in projections of West Antarctic climate and ice-sheet change.

  16. Reservoir adaptive operating rules based on both of historical streamflow and future projections

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Liu, Pan; Wang, Hao; Chen, Jie; Lei, Xiaohui; Feng, Maoyuan

    2017-10-01

    Climate change is affecting hydrological variables and consequently is impacting water resources management. Historical strategies are no longer applicable under climate change. Therefore, adaptive management, especially adaptive operating rules for reservoirs, has been developed to mitigate the possible adverse effects of climate change. However, to date, adaptive operating rules are generally based on future projections involving uncertainties under climate change, yet ignoring historical information. To address this, we propose an approach for deriving adaptive operating rules considering both historical information and future projections, namely historical and future operating rules (HAFOR). A robustness index was developed by comparing benefits from HAFOR with benefits from conventional operating rules (COR). For both historical and future streamflow series, maximizations of both average benefits and the robustness index were employed as objectives, and four trade-offs were implemented to solve the multi-objective problem. Based on the integrated objective, the simulation-based optimization method was used to optimize the parameters of HAFOR. Using the Dongwushi Reservoir in China as a case study, HAFOR was demonstrated to be an effective and robust method for developing adaptive operating rules under the uncertain changing environment. Compared with historical or projected future operating rules (HOR or FPOR), HAFOR can reduce the uncertainty and increase the robustness for future projections, especially regarding results of reservoir releases and volumes. HAFOR, therefore, facilitates adaptive management in the context that climate change is difficult to predict accurately.

  17. Beyond just sea-level rise: Considering macroclimatic drivers within coastal wetland vulnerability assessments to climate change

    USGS Publications Warehouse

    Osland, Michael J.; Enwright, Nicholas M.; Day, Richard H.; Gabler, Christopher A.; Stagg, Camille L.; Grace, James B.

    2016-01-01

    Due to their position at the land-sea interface, coastal wetlands are vulnerable to many aspects of climate change. However, climate change vulnerability assessments for coastal wetlands generally focus solely on sea-level rise without considering the effects of other facets of climate change. Across the globe and in all ecosystems, macroclimatic drivers (e.g., temperature and rainfall regimes) greatly influence ecosystem structure and function. Macroclimatic drivers have been the focus of climate-change related threat evaluations for terrestrial ecosystems, but largely ignored for coastal wetlands. In some coastal wetlands, changing macroclimatic conditions are expected to result in foundation plant species replacement, which would affect the supply of certain ecosystem goods and services and could affect ecosystem resilience. As examples, we highlight several ecological transition zones where small changes in macroclimatic conditions would result in comparatively large changes in coastal wetland ecosystem structure and function. Our intent in this communication is not to minimize the importance of sea-level rise. Rather, our overarching aim is to illustrate the need to also consider macroclimatic drivers within vulnerability assessments for coastal wetlands.

  18. Adaptation to Climate Change: A Comparative Analysis of Modeling Methods for Heat-Related Mortality.

    PubMed

    Gosling, Simon N; Hondula, David M; Bunker, Aditi; Ibarreta, Dolores; Liu, Junguo; Zhang, Xinxin; Sauerborn, Rainer

    2017-08-16

    Multiple methods are employed for modeling adaptation when projecting the impact of climate change on heat-related mortality. The sensitivity of impacts to each is unknown because they have never been systematically compared. In addition, little is known about the relative sensitivity of impacts to "adaptation uncertainty" (i.e., the inclusion/exclusion of adaptation modeling) relative to using multiple climate models and emissions scenarios. This study had three aims: a ) Compare the range in projected impacts that arises from using different adaptation modeling methods; b ) compare the range in impacts that arises from adaptation uncertainty with ranges from using multiple climate models and emissions scenarios; c ) recommend modeling method(s) to use in future impact assessments. We estimated impacts for 2070-2099 for 14 European cities, applying six different methods for modeling adaptation; we also estimated impacts with five climate models run under two emissions scenarios to explore the relative effects of climate modeling and emissions uncertainty. The range of the difference (percent) in impacts between including and excluding adaptation, irrespective of climate modeling and emissions uncertainty, can be as low as 28% with one method and up to 103% with another (mean across 14 cities). In 13 of 14 cities, the ranges in projected impacts due to adaptation uncertainty are larger than those associated with climate modeling and emissions uncertainty. Researchers should carefully consider how to model adaptation because it is a source of uncertainty that can be greater than the uncertainty in emissions and climate modeling. We recommend absolute threshold shifts and reductions in slope. https://doi.org/10.1289/EHP634.

  19. Economic Evidence on the Health Impacts of Climate Change in Europe

    PubMed Central

    Hutton, Guy; Menne, Bettina

    2014-01-01

    BACKGROUND In responding to the health impacts of climate change, economic evidence and tools inform decision makers of the efficiency of alternative health policies and interventions. In a time when sweeping budget cuts are affecting all tiers of government, economic evidence on health protection from climate change spending enables comparison with other public spending. METHODS The review included 53 countries of the World Health Organization (WHO) European Region. Literature was obtained using a Medline and Internet search of key terms in published reports and peer-reviewed literature, and from institutions working on health and climate change. Articles were included if they provided economic estimation of the health impacts of climate change or adaptation measures to protect health from climate change in the WHO European Region. Economic studies are classified under health impact cost, health adaptation cost, and health economic evaluation (comparing both costs and impacts). RESULTS A total of 40 relevant studies from Europe were identified, covering the health damage or adaptation costs related to the health effects of climate change and response measures to climate-sensitive diseases. No economic evaluation studies were identified of response measures specific to the impacts of climate change. Existing studies vary in terms of the economic outcomes measured and the methods for evaluation of health benefits. The lack of robust health impact data underlying economic studies significantly affects the availability and precision of economic studies. CONCLUSIONS Economic evidence in European countries on the costs of and response to climate-sensitive diseases is extremely limited and fragmented. Further studies are urgently needed that examine health impacts and the costs and efficiency of alternative responses to climate-sensitive health conditions, in particular extreme weather events (other than heat) and potential emerging diseases and other conditions threatening Europe. PMID:25452694

  20. Economic evidence on the health impacts of climate change in europe.

    PubMed

    Hutton, Guy; Menne, Bettina

    2014-01-01

    In responding to the health impacts of climate change, economic evidence and tools inform decision makers of the efficiency of alternative health policies and interventions. In a time when sweeping budget cuts are affecting all tiers of government, economic evidence on health protection from climate change spending enables comparison with other public spending. The review included 53 countries of the World Health Organization (WHO) European Region. Literature was obtained using a Medline and Internet search of key terms in published reports and peer-reviewed literature, and from institutions working on health and climate change. Articles were included if they provided economic estimation of the health impacts of climate change or adaptation measures to protect health from climate change in the WHO European Region. Economic studies are classified under health impact cost, health adaptation cost, and health economic evaluation (comparing both costs and impacts). A total of 40 relevant studies from Europe were identified, covering the health damage or adaptation costs related to the health effects of climate change and response measures to climate-sensitive diseases. No economic evaluation studies were identified of response measures specific to the impacts of climate change. Existing studies vary in terms of the economic outcomes measured and the methods for evaluation of health benefits. The lack of robust health impact data underlying economic studies significantly affects the availability and precision of economic studies. Economic evidence in European countries on the costs of and response to climate-sensitive diseases is extremely limited and fragmented. Further studies are urgently needed that examine health impacts and the costs and efficiency of alternative responses to climate-sensitive health conditions, in particular extreme weather events (other than heat) and potential emerging diseases and other conditions threatening Europe.

  1. Impacts of Climate and Land-cover Changes on Water Resources in a Humid Subtropical Watershed: a Case Study from East Texas, USA

    NASA Astrophysics Data System (ADS)

    Heo, J.

    2015-12-01

    This study investigates an interconnected system of climate change - land cover - water resources for a watershed in humid subtropical climate from 1970 to 2009. A 0.7°C increase in temperature and a 16.3% increase in precipitation were observed in our study area where temperature had no obvious increase trend and precipitation showed definite increasing trend compared to previous studies. The main trend of land-cover change was conversion of vegetation and barren lands to developed and crop lands affected by human intervention, and forest and grass to bush/shrub which considered to be caused by natural climate system. Precipitation contribution to the other hydrologic parameters for a humid subtropical basin is estimated to be 51.9% of evapotranspiration, 16.3% of surface runoff, 0.9% of groundwater discharge, 19.3% of soil water content, and 11.6% of water storage. It shows little higher evapotranspiration and considerably lower surface runoff compare to other humid climate area due to vegetation dominance of land cover. Hydrologic responses to climate and land cover changes are increases of surface runoff, soil water content, evapotranspiration by 15.0%, 2.7%, and 20.1%, respectively, and decrease of groundwater discharge decreased by 9.2%. Surface runoff is relatively stable with precipitation while groundwater discharge and soil water content are sensitive to land cover changes especially human intervention. If temperature is relatively stable, it is considered to be land cover plays important role in evapotranspiration. Citation: Heo, J., J. Yu, J. R. Giardino, and H. Cho (2015), Impacts of climate and land-cover changes on water resources in a humid subtropical watershed: a case study from East Texas, USA, Water Environ. J., 29, doi:10.1111/wej.12096

  2. Life stage, not climate change, explains observed tree range shifts.

    PubMed

    Máliš, František; Kopecký, Martin; Petřík, Petr; Vladovič, Jozef; Merganič, Ján; Vida, Tomáš

    2016-05-01

    Ongoing climate change is expected to shift tree species distribution and therefore affect forest biodiversity and ecosystem services. To assess and project tree distributional shifts, researchers may compare the distribution of juvenile and adult trees under the assumption that differences between tree life stages reflect distributional shifts triggered by climate change. However, the distribution of tree life stages could differ within the lifespan of trees, therefore, we hypothesize that currently observed distributional differences could represent shifts over ontogeny as opposed to climatically driven changes. Here, we test this hypothesis with data from 1435 plots resurveyed after more than three decades across the Western Carpathians. We compared seedling, sapling and adult distribution of 12 tree species along elevation, temperature and precipitation gradients. We analyzed (i) temporal shifts between the surveys and (ii) distributional differences between tree life stages within both surveys. Despite climate warming, tree species distribution of any life stage did not shift directionally upward along elevation between the surveys. Temporal elevational shifts were species specific and an order of magnitude lower than differences among tree life stages within the surveys. Our results show that the observed range shifts among tree life stages are more consistent with ontogenetic differences in the species' environmental requirements than with responses to recent climate change. The distribution of seedlings substantially differed from saplings and adults, while the distribution of saplings did not differ from adults, indicating a critical transition between seedling and sapling tree life stages. Future research has to take ontogenetic differences among life stages into account as we found that distributional differences recently observed worldwide may not reflect climate change but rather the different environmental requirements of tree life stages. © 2016 John Wiley & Sons Ltd.

  3. Life-stage, not climate change, explains observed tree range shifts

    PubMed Central

    Máliš, František; Kopecký, Martin; Petřík, Petr; Vladovič, Jozef; Merganič, Ján; Vida, Tomáš

    2017-01-01

    Ongoing climate change is expected to shift tree species distribution and therefore affect forest biodiversity and ecosystem services. To assess and project tree distributional shifts, researchers may compare the distribution of juvenile and adult trees under the assumption that differences between tree life-stages reflect distributional shifts triggered by climate change. However, the distribution of tree life-stages could differ within the lifespan of trees, therefore we hypothesize that currently observed distributional differences could represent shifts over ontogeny as opposed to climatically driven changes. Here we test this hypothesis with data from 1435 plots resurveyed after more than three decades across the Western Carpathians. We compared seedling, sapling and adult distribution of 12 tree species along elevation, temperature and precipitation gradients. We analyzed i) temporal shifts between the surveys and ii) distributional differences between tree life-stages within both surveys. Despite climate warming, tree species distribution of any life-stage did not shift directionally upward along elevation between the surveys. Temporal elevational shifts were species-specific and an order of magnitude lower than differences among tree life-stages within the surveys. Our results show that the observed range shifts among tree life-stages are more consistent with ontogenetic differences in the species’ environmental requirements than with responses to recent climate change. The distribution of seedlings substantially differed from saplings and adults, while the distribution of saplings did not differ from adults, indicating a critical transition between seedling and sapling tree life-stages. Future research has to take ontogenetic differences among life-stages into account as we found that distributional differences recently observed worldwide may not reflect climate change but rather the different environmental requirements of tree life-stages. PMID:26725258

  4. Changes in plant community composition lag behind climate warming in lowland forests.

    PubMed

    Bertrand, Romain; Lenoir, Jonathan; Piedallu, Christian; Riofrío-Dillon, Gabriela; de Ruffray, Patrice; Vidal, Claude; Pierrat, Jean-Claude; Gégout, Jean-Claude

    2011-10-19

    Climate change is driving latitudinal and altitudinal shifts in species distribution worldwide, leading to novel species assemblages. Lags between these biotic responses and contemporary climate changes have been reported for plants and animals. Theoretically, the magnitude of these lags should be greatest in lowland areas, where the velocity of climate change is expected to be much greater than that in highland areas. We compared temperature trends to temperatures reconstructed from plant assemblages (observed in 76,634 surveys) over a 44-year period in France (1965-2008). Here we report that forest plant communities had responded to 0.54 °C of the effective increase of 1.07 °C in highland areas (500-2,600 m above sea level), while they had responded to only 0.02 °C of the 1.11 °C warming trend in lowland areas. There was a larger temperature lag (by 3.1 times) between the climate and plant community composition in lowland forests than in highland forests. The explanation of such disparity lies in the following properties of lowland, as compared to highland, forests: the higher proportion of species with greater ability for local persistence as the climate warms, the reduced opportunity for short-distance escapes, and the greater habitat fragmentation. Although mountains are currently considered to be among the ecosystems most threatened by climate change (owing to mountaintop extinction), the current inertia of plant communities in lowland forests should also be noted, as it could lead to lowland biotic attrition. ©2011 Macmillan Publishers Limited. All rights reserved

  5. Projections of Ocean Acidification Under the U.N. Framework Convention of Climate Change Using a Reduced-Form Climate Carbon-Cycle Model

    NASA Astrophysics Data System (ADS)

    Hartin, C.

    2016-02-01

    Ocean chemistry is quickly changing in response to continued anthropogenic emissions of carbon to the atmosphere. Mean surface ocean pH has already decreased by 0.1 units relative to the preindustrial era. We use an open-source, simple climate and carbon cycle model ("Hector") to investigate future changes in ocean acidification (pH and calcium carbonate saturations) under the climate agreement from the United Nations Convention on Climate Change Conference (UNFCCC) of Parties in Paris 2015 (COP 21). Hector is a reduced-form, very fast-executing model that can emulate the global mean climate of the CMIP5 models, as well as the inorganic carbon cycle in the upper ocean, allowing us to investigate future changes in ocean acidification. We ran Hector under three different emissions trajectories, using a sensitivity analysis approach to quantify model uncertainty and capture a range of possible ocean acidification changes. The first trajectory is a business-as-usual scenario comparable to a Representative Concentration Pathway (RCP) 8.5, the second a scenario with the COP 21 commitments enacted, and the third an idealized scenario keeping global temperature change to 2°C, comparable to a RCP 2.6. Preliminary results suggest that under the COP 21 agreements ocean pH at 2100 will decrease by 0.2 units and surface saturations of aragonite (calcite) will decrease by 0.9 (1.4) units relative to 1850. Under the COP 21 agreement the world's oceans will be committed to a degree of ocean acidification, however, these changes may be within the range of natural variability evident in some paleo records.

  6. VALUE - A Framework to Validate Downscaling Approaches for Climate Change Studies

    NASA Astrophysics Data System (ADS)

    Maraun, Douglas; Widmann, Martin; Gutiérrez, José M.; Kotlarski, Sven; Chandler, Richard E.; Hertig, Elke; Wibig, Joanna; Huth, Radan; Wilke, Renate A. I.

    2015-04-01

    VALUE is an open European network to validate and compare downscaling methods for climate change research. VALUE aims to foster collaboration and knowledge exchange between climatologists, impact modellers, statisticians, and stakeholders to establish an interdisciplinary downscaling community. A key deliverable of VALUE is the development of a systematic validation framework to enable the assessment and comparison of both dynamical and statistical downscaling methods. Here, we present the key ingredients of this framework. VALUE's main approach to validation is user-focused: starting from a specific user problem, a validation tree guides the selection of relevant validation indices and performance measures. Several experiments have been designed to isolate specific points in the downscaling procedure where problems may occur: what is the isolated downscaling skill? How do statistical and dynamical methods compare? How do methods perform at different spatial scales? Do methods fail in representing regional climate change? How is the overall representation of regional climate, including errors inherited from global climate models? The framework will be the basis for a comprehensive community-open downscaling intercomparison study, but is intended also to provide general guidance for other validation studies.

  7. VALUE: A framework to validate downscaling approaches for climate change studies

    NASA Astrophysics Data System (ADS)

    Maraun, Douglas; Widmann, Martin; Gutiérrez, José M.; Kotlarski, Sven; Chandler, Richard E.; Hertig, Elke; Wibig, Joanna; Huth, Radan; Wilcke, Renate A. I.

    2015-01-01

    VALUE is an open European network to validate and compare downscaling methods for climate change research. VALUE aims to foster collaboration and knowledge exchange between climatologists, impact modellers, statisticians, and stakeholders to establish an interdisciplinary downscaling community. A key deliverable of VALUE is the development of a systematic validation framework to enable the assessment and comparison of both dynamical and statistical downscaling methods. In this paper, we present the key ingredients of this framework. VALUE's main approach to validation is user- focused: starting from a specific user problem, a validation tree guides the selection of relevant validation indices and performance measures. Several experiments have been designed to isolate specific points in the downscaling procedure where problems may occur: what is the isolated downscaling skill? How do statistical and dynamical methods compare? How do methods perform at different spatial scales? Do methods fail in representing regional climate change? How is the overall representation of regional climate, including errors inherited from global climate models? The framework will be the basis for a comprehensive community-open downscaling intercomparison study, but is intended also to provide general guidance for other validation studies.

  8. 2700 years of Mediterranean environmental change in central Italy: a synthesis of sedimentary and cultural records to interpret past impacts of climate on society

    NASA Astrophysics Data System (ADS)

    Mensing, Scott A.; Tunno, Irene; Sagnotti, Leonardo; Florindo, Fabio; Noble, Paula; Archer, Claire; Zimmerman, Susan; Pavón-Carrasco, Francisco Javier; Cifani, Gabriele; Passigli, Susanna; Piovesan, Gianluca

    2015-05-01

    Abrupt climate change in the past is thought to have disrupted societies by accelerating environmental degradation, potentially leading to cultural collapse. Linking climate change directly to societal disruption is challenging because socioeconomic factors also play a large role, with climate being secondary or sometimes inconsequential. Combining paleolimnologic, historical, and archaeological methods provides for a more secure basis for interpreting the past impacts of climate on society. We present pollen, non-pollen palynomorph, geochemical, paleomagnetic and sedimentary data from a high-resolution 2700 yr lake sediment core from central Italy and compare these data with local historical documents and archeological surveys to reconstruct a record of environmental change in relation to socioeconomic history and climatic fluctuations. Here we document cases in which environmental change is strongly linked to changes in local land management practices in the absence of clear climatic change, as well as examples when climate change appears to have been a strong catalyst that resulted in significant environmental change that impacted local communities. During the Imperial Roman period, despite a long period of stable, mild climate, and a large urban population in nearby Rome, our site shows only limited evidence for environmental degradation. Warm and mild climate during the Medieval Warm period, on the other hand, led to widespread deforestation and erosion. The ability of the Romans to utilize imported resources through an extensive trade network may have allowed for preservation of the environment near the Roman capital, whereas during medieval time, the need to rely on local resources led to environmental degradation. Cool wet climate during the Little Ice Age led to a breakdown in local land use practices, widespread land abandonment and rapid reforestation. Our results present a high-resolution regional case study that explores the effect of climate change on society for an under-documented region of Europe.

  9. The value of seasonal forecasting and crop mix adaptation to climate variability for agriculture under climate change

    NASA Astrophysics Data System (ADS)

    Choi, H. S.; Schneider, U.; Schmid, E.; Held, H.

    2012-04-01

    Changes to climate variability and frequency of extreme weather events are expected to impose damages to the agricultural sector. Seasonal forecasting and long range prediction skills have received attention as an option to adapt to climate change because seasonal climate and yield predictions could improve farmers' management decisions. The value of seasonal forecasting skill is assessed with a crop mix adaptation option in Spain where drought conditions are prevalent. Yield impacts of climate are simulated for six crops (wheat, barely, cotton, potato, corn and rice) with the EPIC (Environmental Policy Integrated Climate) model. Daily weather data over the period 1961 to 1990 are used and are generated by the regional climate model REMO as reference period for climate projection. Climate information and its consequent yield variability information are given to the stochastic agricultural sector model to calculate the value of climate information in the agricultural market. Expected consumers' market surplus and producers' revenue is compared with and without employing climate forecast information. We find that seasonal forecasting benefits not only consumers but also producers if the latter adopt a strategic crop mix. This mix differs from historical crop mixes by having higher shares of crops which fare relatively well under climate change. The corresponding value of information is highly sensitive to farmers' crop mix choices.

  10. Accounting for adaptive capacity and uncertainty in assessments of species' climate-change vulnerability.

    PubMed

    Wade, Alisa A; Hand, Brian K; Kovach, Ryan P; Luikart, Gordon; Whited, Diane C; Muhlfeld, Clint C

    2017-02-01

    Climate-change vulnerability assessments (CCVAs) are valuable tools for assessing species' vulnerability to climatic changes, yet failure to include measures of adaptive capacity and to account for sources of uncertainty may limit their effectiveness. We took a more comprehensive approach that incorporates exposure, sensitivity, and capacity to adapt to climate change. We applied our approach to anadromous steelhead trout (Oncorhynchus mykiss) and nonanadromous bull trout (Salvelinus confluentus), threatened salmonids within the Columbia River Basin (U.S.A.). We quantified exposure on the basis of scenarios of future stream temperature and flow, and we represented sensitivity and capacity to adapt to climate change with metrics of habitat quality, demographic condition, and genetic diversity. Both species were found to be highly vulnerable to climate change at low elevations and in their southernmost habitats. However, vulnerability rankings varied widely depending on the factors (climate, habitat, demographic, and genetic) included in the CCVA and often differed for the 2 species at locations where they were sympatric. Our findings illustrate that CCVA results are highly sensitive to data inputs and that spatial differences can complicate multispecies conservation. Based on our results, we suggest that CCVAs be considered within a broader conceptual and computational framework and be used to refine hypotheses, guide research, and compare plausible scenarios of species' vulnerability to climate change. © 2016 Society for Conservation Biology.

  11. AgMIP: New Results from Sub-Saharan Africa and South Asia Regional Integrated Assessments

    NASA Astrophysics Data System (ADS)

    Rosenzweig, C.

    2014-12-01

    AgMIP conducted the first set of comprehensive regional integrated assessments of climate change impacts on smallholder farmers in Sub-Saharan Africa and South Asia led by researchers from the regions themselves. The project developed new methods integrating climate, crop, livestock and economic models to conduct climate change impact assessments that characterize impacts on smallholder groups. AgMIP projections of climate change impacts on agriculture are more realistic than previous assessments because they take agricultural development into account. Using the best available data and models, the assessments directly evaluated yield, income, and poverty outcomes including the effects of adaptation packages and development pathways. Results show that even with agricultural development, climate change generally will exert negative pressure on yields of smallholder farmers in Sub-Saharan Africa and South Asia. Without adaptation, climate change leads to increased poverty in some locations in Sub-Saharan Africa and South Asia compared to a future in which climate change does not occur. Adaptation can significantly improve smallholder farmer responses to climate change. AgMIP expert teams identified improved varieties, sowing practices, fertilizer application, and irrigation applications as prioritized adaptation strategies. These targeted adaptation packages were able to overcome a portion of detrimental impacts but could not compensate completely in many locations. Even in cases where average impact is near zero, vulnerability (i.e., those at risk of loss) can be substantial even when mean impacts are positive.

  12. Assessing the impacts of climate change and nitrogen deposition on Norway spruce (Picea abies L. Karst) growth in Austria with BIOME-BGC.

    PubMed

    Eastaugh, Chris S; Pötzelsberger, Elisabeth; Hasenauer, Hubert

    2011-03-01

    The aim of this paper is to determine whether a detectable impact of climate change is apparent in Austrian forests. In regions of complex terrain such as most of Austria, climatic trends over the past 50 years show marked geographic variability. As climate is one of the key drivers of forest growth, a comparison of growth characteristics between regions with different trends in temperature and precipitation can give insights into the impact of climatic change on forests. This study uses data from several hundred climate recording stations, interpolated to measurement sites of the Austrian National Forest Inventory (NFI). Austria as a whole shows a warming trend over the past 50 years and little overall change in precipitation. The warming trends, however, vary considerably across certain regions and regional precipitation trends vary widely in both directions, which cancel out on the national scale These differences allow the delineation of 'climatic change zones' with internally consistent climatic trends that differ from other zones. This study applies the species-specific adaptation of the biogeochemical model BIOME-BGC to Norway spruce (Picea abies (L.) Karst) across a range of Austrian climatic change zones, using input data from a number of national databases. The relative influence of extant climate change on forest growth is quantified, and compared with the far greater impact of non-climatic factors. At the national scale, climate change is found to have negligible effect on Norway spruce productivity, due in part to opposing effects at the regional level. The magnitudes of the modeled non-climatic influences on aboveground woody biomass increment increases are consistent with previously reported values of 20-40 kg of added stem carbon sequestration per kilogram of additional nitrogen deposition, while climate responses are of a magnitude difficult to detect in NFI data.

  13. Hopes and challenges for giant panda conservation under climate change in the Qinling Mountains of China.

    PubMed

    Gong, Minghao; Guan, Tianpei; Hou, Meng; Liu, Gang; Zhou, Tianyuan

    2017-01-01

    One way that climate change will impact animal distributions is by altering habitat suitability and habitat fragmentation. Understanding the impacts of climate change on currently threatened species is of immediate importance because complex conservation planning will be required. Here, we mapped changes to the distribution, suitability, and fragmentation of giant panda habitat under climate change and quantified the direction and elevation of habitat shift and fragmentation patterns. These data were used to develop a series of new conservation strategies for the giant panda. Qinling Mountains, Shaanxi, China. Data from the most recent giant panda census, habitat factors, anthropogenic disturbance, climate variables, and climate predictions for the year 2050 (averaged across four general circulation models) were used to project giant panda habitat in Maxent. Differences in habitat patches were compared between now and 2050. While climate change will cause a 9.1% increase in suitable habitat and 9% reduction in subsuitable habitat by 2050, no significant net variation in the proportion of suitable and subsuitable habitat was found. However, a distinct climate change-induced habitat shift of 11 km eastward by 2050 is predicted firstly. Climate change will reduce the fragmentation of suitable habitat at high elevations and exacerbate the fragmentation of subsuitable habitat below 1,900 m above sea level. Reduced fragmentation at higher elevations and worsening fragmentation at lower elevations have the potential to cause overcrowding of giant pandas at higher altitudes, further exacerbating habitat shortage in the central Qinling Mountains. The habitat shift to the east due to climate change may provide new areas for giant pandas but poses severe challenges for future conservation.

  14. Assessing Potential Future Carbon Dynamics with Climate Change and Fire Management in a Mountainous Landscape on the Olympic Peninsula, Washington, USA

    NASA Astrophysics Data System (ADS)

    Kennedy, R. S.

    2010-12-01

    Forests of the mountainous landscapes of the maritime Pacific Northwestern USA may have high carbon sequestration potential via their high productivity and moderate to infrequent fire regimes. With climate change, there may be shifts in incidence and severity of fire, especially in the drier areas of the region, via changes to forest productivity and hydrology, and consequent effects to C sequestration and forest structure. To explore this issue, I assessed potential effects of fire management (little fire suppression/wildland fire management/highly effective fire suppression) under two climate change scenarios on future C sequestration dynamics (amounts and spatial pattern) in Olympic National Park, WA, over a 500-year simulation period. I used the simulation platform FireBGCv2, which contains a mechanistic, individual tree succession model, a spatially explicit climate-based biophysical model that uses daily weather data, and a spatially explicit fire model incorporating ignition, spread, and effects on ecosystem components. C sequestration patterns varied over time and spatial and temporal patterns differed somewhat depending on the climate change scenario applied and the fire management methods employed. Under the more extreme climate change scenario with little fire suppression, fires were most frequent and severe and C sequestration decreased. General trends were similar under the more moderate climate change scenario, as compared to current climate, but spatial patterns differed. Both climate change scenarios under highly effective fire suppression showed about 50% of starting total C after the initial transition phase, whereas with 10% fire suppression both scenarios exhibited about 10% of starting amounts. Areas of the landscape that served as refugia for older forest under increasing frequency of high severity fire were also hotspots for C sequestration in a landscape experiencing increasing frequency of disturbance with climate change.

  15. How Teachers' Beliefs About Climate Change Influence Their Instruction and Resulting Student Outcomes

    NASA Astrophysics Data System (ADS)

    Nation, M.; Feldman, A.; Smith, G.

    2017-12-01

    The purpose of the study was to understand the relationship between teachers' beliefs and understandings of climate change and their instructional practices to determine if and how they impact student outcomes. Limited research has been done in the area of teacher beliefs on climate change, their instruction, and resulting student outcomes. This study contributes to the greater understanding of teachers' beliefs and impact on climate change curriculum implementation. The study utilized a mixed methods approach to data collection and analysis. Data were collected in the form of classroom observations, surveys, and interviews from teachers and students participating in the study over a four-month period. Qualitative and quantitative findings were analyzed through thematic coding and descriptive analysis and compared in an effort to triangulate findings. The results of the study suggest teachers and students believe climate change is occurring and humans are largely to blame. Personal beliefs are important when teaching controversial topics, such as climate change, but participants maintained neutrality within their instruction of the topic, as not to appear biased or influence students' decisions about climate change, and avoid political controversy in the classroom. Overall, the study found teachers' level of understandings and beliefs about climate change had little impact on their instruction and resulting student outcomes. Based on the findings, simply adding climate change to the existing science curriculum is not sufficient for teachers or students. Teachers need to be better prepared about effective pedagogical practices of the content in order to effectively teach a climate-centered curriculum. The barriers that exist for the inclusion of teachers' personal beliefs need to be removed in order for teachers to assert their own personal beliefs about climate change within their classroom instruction. Administrators and stakeholders need to support science teachers' beliefs about climate change, and uphold the efforts of the scientific community, regardless of political hierarchy. Students are loosing an opportunity for insight into educated, knowledgeable mentors, and are by-in-large left to the opinions of climate change that overwhelm news media, which may not be as trustworthy.

  16. SIMULATING REGIONAL-SCALE AIR QUALITY WITH DYNAMIC CHANGES IN REGIONAL CLIMATE AND CHEMICAL BOUNDARY CONDITIONS

    EPA Science Inventory

    This poster compares air quality modeling simulations under current climate and a future (approximately 2050) climate scenario. Differences in predicted ozone episodes and daily average PM2.5 concentrations are presented, along with vertical ozone profiles. Modeling ...

  17. Modelling the influence of land-use changes on biophysical and biochemical interactions at regional and global scales.

    PubMed

    Devaraju, N; Bala, G; Nemani, R

    2015-09-01

    Land-use changes since the start of the industrial era account for nearly one-third of the cumulative anthropogenic CO2 emissions. In addition to the greenhouse effect of CO2 emissions, changes in land use also affect climate via changes in surface physical properties such as albedo, evapotranspiration and roughness length. Recent modelling studies suggest that these biophysical components may be comparable with biochemical effects. In regard to climate change, the effects of these two distinct processes may counterbalance one another both regionally and, possibly, globally. In this article, through hypothetical large-scale deforestation simulations using a global climate model, we contrast the implications of afforestation on ameliorating or enhancing anthropogenic contributions from previously converted (agricultural) land surfaces. Based on our review of past studies on this subject, we conclude that the sum of both biophysical and biochemical effects should be assessed when large-scale afforestation is used for countering global warming, and the net effect on global mean temperature change depends on the location of deforestation/afforestation. Further, although biochemical effects trigger global climate change, biophysical effects often cause strong local and regional climate change. The implication of the biophysical effects for adaptation and mitigation of climate change in agriculture and agroforestry sectors is discussed. © 2014 John Wiley & Sons Ltd.

  18. Simulating climate change with interactive stratospheric ozone

    NASA Astrophysics Data System (ADS)

    Lin, P.; Ming, Y.

    2017-12-01

    We compare the simulated climate changes with and without interactive ozone in GFDL AM4. We also compare the simulations with a fully interactive stratospheric chemistry scheme versus those with a simplified scheme in which ozone is treated as a passive tracer. Despite its simplicity, the ozone tracer is sufficient to represent the ozone changes in response to changes in the stratospheric circulation as well as the zonally asymmetric distribution of ozone concentration. With interactive ozone, the model simulates a stronger cooling in the tropical lower stratosphere and less stratospheric moistening in response to surface warming. We further investigate how the different stratospheric response translate into different responses in the tropospheric circulations.

  19. Comparing the model-simulated global warming signal to observations using empirical estimates of unforced noise

    USDA-ARS?s Scientific Manuscript database

    The comparison of observed global mean surface air temperature (GMT) change to the mean change simulated by climate models has received much attention. For a given global warming signal produced by a climate model ensemble, there exists an envelope of GMT values representing the range of possible un...

  20. Climate Change? Who Knows? A Comparison of Secondary Students and Pre-Service Teachers

    ERIC Educational Resources Information Center

    Boon, Helen J.

    2010-01-01

    In the context of recently published academic discrepancies between Queensland students and students from other Australian states, final year pre-service teachers were surveyed to explore their understanding and knowledge of climate change. Their responses were compared to those of secondary students to discern any significant gains in knowledge…

  1. Scale-dependent complementarity of climatic velocity and environmental diversity for identifying priority areas for conservation under climate change.

    PubMed

    Carroll, Carlos; Roberts, David R; Michalak, Julia L; Lawler, Joshua J; Nielsen, Scott E; Stralberg, Diana; Hamann, Andreas; Mcrae, Brad H; Wang, Tongli

    2017-11-01

    As most regions of the earth transition to altered climatic conditions, new methods are needed to identify refugia and other areas whose conservation would facilitate persistence of biodiversity under climate change. We compared several common approaches to conservation planning focused on climate resilience over a broad range of ecological settings across North America and evaluated how commonalities in the priority areas identified by different methods varied with regional context and spatial scale. Our results indicate that priority areas based on different environmental diversity metrics differed substantially from each other and from priorities based on spatiotemporal metrics such as climatic velocity. Refugia identified by diversity or velocity metrics were not strongly associated with the current protected area system, suggesting the need for additional conservation measures including protection of refugia. Despite the inherent uncertainties in predicting future climate, we found that variation among climatic velocities derived from different general circulation models and emissions pathways was less than the variation among the suite of environmental diversity metrics. To address uncertainty created by this variation, planners can combine priorities identified by alternative metrics at a single resolution and downweight areas of high variation between metrics. Alternately, coarse-resolution velocity metrics can be combined with fine-resolution diversity metrics in order to leverage the respective strengths of the two groups of metrics as tools for identification of potential macro- and microrefugia that in combination maximize both transient and long-term resilience to climate change. Planners should compare and integrate approaches that span a range of model complexity and spatial scale to match the range of ecological and physical processes influencing persistence of biodiversity and identify a conservation network resilient to threats operating at multiple scales. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  2. Climate change and the economics of biomass energy feedstocks in semi-arid agricultural landscapes: A spatially explicit real options analysis.

    PubMed

    Regan, Courtney M; Connor, Jeffery D; Raja Segaran, Ramesh; Meyer, Wayne S; Bryan, Brett A; Ostendorf, Bertram

    2017-05-01

    The economics of establishing perennial species as renewable energy feedstocks has been widely investigated as a climate change adapted diversification option for landholders, primarily using net present value (NPV) analysis. NPV does not account for key uncertainties likely to influence relevant landholder decision making. While real options analysis (ROA) is an alternative method that accounts for the uncertainty over future conditions and the large upfront irreversible investment involved in establishing perennials, there have been limited applications of ROA to evaluating land use change decision economics and even fewer applications considering climate change risks. Further, while the influence of spatially varying climate risk on biomass conversion economic has been widely evaluated using NPV methods, effects of spatial variability and climate on land use change have been scarcely assessed with ROA. In this study we applied a simulation-based ROA model to evaluate a landholder's decision to convert land from agriculture to biomass. This spatially explicit model considers price and yield risks under baseline climate and two climate change scenarios over a geographically diverse farming region. We found that underlying variability in primary productivity across the study area had a substantial effect on conversion thresholds required to trigger land use change when compared to results from NPV analysis. Areas traditionally thought of as being quite similar in average productive capacity can display large differences in response to the inclusion of production and price risks. The effects of climate change, broadly reduced returns required for land use change to biomass in low and medium rainfall zones and increased them in higher rainfall areas. Additionally, the risks posed by climate change can further exacerbate the tendency for NPV methods to underestimate true conversion thresholds. Our results show that even under severe drying and warming where crop yield variability is more affected than perennial biomass plantings, comparatively little of the study area is economically viable for conversion to biomass under $200/DM t, and it is not until prices exceed $200/DM t that significant areas become profitable for biomass plantings. We conclude that for biomass to become a valuable diversification option the synchronisation of products and services derived from biomass and the development of markets is vital. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Low-frequency climate anomalies, changes in synoptic scale circulation patterns and statistics of extreme events over south-east Poland during the Last Millennium

    NASA Astrophysics Data System (ADS)

    Slawinska, J. M.; Bartoszek, K.; Gabriel, C. J.

    2016-12-01

    Long-term predictions of changes in extreme event frequency are of utmost importance due to their high societal and economic impact. Yet, current projections are of limited skills as they rely on satellite records that are relatively short compared to the timescale of interest, and also due to the presence of a significant anthropogenic trend superimposed onto other low-frequency variabilities. Novel simulations of past climates provide unique opportunity to separate external perturbations from internal climate anomalies and to attribute the latter to systematic changes in different types of synoptic scale circulation and distributions of high-frequency events. Here we study such changes by employing the Last Millennium Ensemble of climate simulations carried out with the Community Earth System Model (CESM) at the U.S. National Center for Atmospheric Research, focusing in particular on decadal changes in frequency of extreme precipitation events over south-east Poland. We analyze low-frequency modulations of dominant patterns of synoptic scale circulations over Europe and their dependence on the Atlantic Meridional Overturning Circulation, along with their coupling with the North Atlantic Oscillation. Moreover, we examine whether some decades of persistently anomalous statistics of extreme events can be attributed to externally forced (e.g., via volcanic eruptions) perturbations of the North Atlantic climate. In the end, we discuss the possible linkages and physical mechanisms connecting volcanic eruptions, low-frequency variabilities of North Atlantic climate and changes in statistics of high impact weather, and compare briefly our results with some historical and paleontological records.

  4. Climate Change Impact on Air Quality in High Resolution Simulation for Central Europe

    NASA Astrophysics Data System (ADS)

    Halenka, T.; Huszar, P.; Belda, M.

    2009-04-01

    Recently the effects of climate change on air-quality and vice-versa are studied quite extensively. In fact, even at regional and local scale especially the impact of climate change on the atmospheric composition and photochemical smog formation conditions can be significant when expecting e.g. more frequent appearance of heat waves etc. For the purpose of qualifying and quantifying the magnitude of such effects and to study the potential of climate forcing due to atmospheric chemistry/aerosols on regional scale, chemistry-transport model was coupled to RegCM on the Department of Meteorology and Environmental Protection, Faculty of Mathematics and Physics, Charles University in Prague, for the simulations in framework of the EC FP6 Project CECILIA. Off-line one way coupling enables the simulation of distribution of pollutants over 1991-2001 in very high resolution of 10 km is compared to the EMEP observations for the area of Central Europe. Simulations driven by climate change boundary conditions for time slices 1991-2000, 2041-2050 and 2091-2100 are presented to show the effect of climate change on the air quality in the region.

  5. Rainfall variability and extremes over southern Africa: Assessment of a climate model to reproduce daily extremes

    NASA Astrophysics Data System (ADS)

    Williams, C. J. R.; Kniveton, D. R.; Layberry, R.

    2009-04-01

    It is increasingly accepted that that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA). This dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. The ability of a climate model to simulate current climate provides some indication of how much confidence can be applied to its future predictions. In this paper, simulations of current climate from the UK Meteorological Office Hadley Centre's climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. This concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of rainfall variability over southern Africa. Secondly, the ability of the model to reproduce daily rainfall extremes will be assessed, again by a comparison with extremes from the MIRA dataset. The paper will conclude by discussing the user needs of satellite rainfall retrievals from a climate change modelling prospective.

  6. Past and future climatic changes in the Mediterranean area under various global warming scenarios

    NASA Astrophysics Data System (ADS)

    Guiot, Joel

    2016-04-01

    Past climatic changes and their impacts on the natural vegetation can be used as a reference for the climatic changes projected by ensembles of climate models for the 21st century. The study of the Holocene shows that he Mediterranean has known several precipitation falls equivalent to what is projected for the end of the 21st century. These droughts were often correlated with the decline or collapse of Mediterranean civilisations, particularly in the eastern Basin. Nevertheless, while the past droughts were not characterized by particularly high temperature, future temperature increase will more or less significant according to the scenario. This will much intensify the water deficit for natural and artificial ecosystems. As a consequence, the projected climatic change can be considered as unprecedented during the last 10,000 years. We explore how they compare with the various scenarios corresponding to a 1.5°C, 2°C and 3°C global warming according to the pre-industrial mean temperature, and we will determine the degree of dissimilarity of the Mediterranean climate under these global thresholds according to the long term climate variability.

  7. Shifts in comparative advantages for maize, oat and wheat cropping under climate change in Europe.

    PubMed

    Elsgaard, L; Børgesen, C D; Olesen, J E; Siebert, S; Ewert, F; Peltonen-Sainio, P; Rötter, R P; Skjelvåg, A O

    2012-01-01

    Climate change is anticipated to affect European agriculture, including the risk of emerging or re-emerging feed and food hazards. Indirectly, climate change may influence such hazards (e.g. the occurrence of mycotoxins) due to geographic shifts in the distribution of major cereal cropping systems and the consequences this may have for crop rotations. This paper analyses the impact of climate on cropping shares of maize, oat and wheat on a 50-km square grid across Europe (45-65°N) and provides model-based estimates of the changes in cropping shares in response to changes in temperature and precipitation as projected for the time period around 2040 by two regional climate models (RCM) with a moderate and a strong climate change signal, respectively. The projected cropping shares are based on the output from the two RCMs and on algorithms derived for the relation between meteorological data and observed cropping shares of maize, oat and wheat. The observed cropping shares show a south-to-north gradient, where maize had its maximum at 45-55°N, oat had its maximum at 55-65°N, and wheat was more evenly distributed along the latitudes in Europe. Under the projected climate changes, there was a general increase in maize cropping shares, whereas for oat no areas showed distinct increases. For wheat, the projected changes indicated a tendency towards higher cropping shares in the northern parts and lower cropping shares in the southern parts of the study area. The present modelling approach represents a simplification of factors determining the distribution of cereal crops, and also some uncertainties in the data basis were apparent. A promising way of future model improvement could be through a systematic analysis and inclusion of other variables, such as key soil properties and socio-economic conditions, influencing the comparative advantages of specific crops.

  8. The sensitivity of Alpine summer convection to surrogate climate change: an intercomparison between convection-parameterizing and convection-resolving models

    NASA Astrophysics Data System (ADS)

    Keller, Michael; Kröner, Nico; Fuhrer, Oliver; Lüthi, Daniel; Schmidli, Juerg; Stengel, Martin; Stöckli, Reto; Schär, Christoph

    2018-04-01

    Climate models project an increase in heavy precipitation events in response to greenhouse gas forcing. Important elements of such events are rain showers and thunderstorms, which are poorly represented in models with parameterized convection. In this study, simulations with 12 km horizontal grid spacing (convection-parameterizing model, CPM) and 2 km grid spacing (convection-resolving model, CRM) are employed to investigate the change in the diurnal cycle of convection with warmer climate. For this purpose, simulations of 11 days in June 2007 with a pronounced diurnal cycle of convection are compared with surrogate simulations from the same period. The surrogate climate simulations mimic a future climate with increased temperatures but unchanged relative humidity and similar synoptic-scale circulation. Two temperature scenarios are compared: one with homogeneous warming (HW) using a vertically uniform warming and the other with vertically dependent warming (VW) that enables changes in lapse rate. The two sets of simulations with parameterized and explicit convection exhibit substantial differences, some of which are well known from the literature. These include differences in the timing and amplitude of the diurnal cycle of convection, and the frequency of precipitation with low intensities. The response to climate change is much less studied. We can show that stratification changes have a strong influence on the changes in convection. Precipitation is strongly increasing for HW but decreasing for the VW simulations. For cloud type frequencies, virtually no changes are found for HW, but a substantial reduction in high clouds is found for VW. Further, we can show that the climate change signal strongly depends upon the horizontal resolution. In particular, significant differences between CPM and CRM are found in terms of the radiative feedbacks, with CRM exhibiting a stronger negative feedback in the top-of-the-atmosphere energy budget.

  9. Climate change adaptation in regulated water utilities

    NASA Astrophysics Data System (ADS)

    Vicuna, S.; Melo, O.; Harou, J. J.; Characklis, G. W.; Ricalde, I.

    2017-12-01

    Concern about climate change impacts on water supply systems has grown in recent years. However, there are still few examples of pro-active interventions (e.g. infrastructure investment or policy changes) meant to address plausible future changes. Deep uncertainty associated with climate impacts, future demands, and regulatory constraints might explain why utility planning in a range of contexts doesn't explicitly consider climate change scenarios and potential adaptive responses. Given the importance of water supplies for economic development and the cost and longevity of many water infrastructure investments, large urban water supply systems could suffer from lack of pro-active climate change adaptation. Water utilities need to balance the potential for high regret stranded assets on the one side, with insufficient supplies leading to potentially severe socio-economic, political and environmental failures on the other, and need to deal with a range of interests and constraints. This work presents initial findings from a project looking at how cities in Chile, the US and the UK are developing regulatory frameworks that incorporate utility planning under uncertainty. Considering for example the city of Santiago, Chile, recent studies have shown that although high scarcity cost scenarios are plausible, pre-emptive investment to guard from possible water supply failures is still remote and not accommodated by current planning practice. A first goal of the project is to compare and contrast regulatory approaches to utility risks considering climate change adaptation measures. Subsequently we plan to develop and propose a custom approach for the city of Santiago based on lessons learned from other contexts. The methodological approach combines institutional assessment of water supply regulatory frameworks with simulation-based decision-making under uncertainty approaches. Here we present initial work comparing the regulatory frameworks in Chile, UK and USA evaluating their ability to incorporate uncertain climate and other changes into long-term infrastructure investment planning. The potential for regulatory and financial adaptive measures is explored in addition to a discussion on evaluating their appropriateness via various modelling-based intervention decision-making approaches.

  10. Flood projections within the Niger River Basin under future land use and climate change.

    PubMed

    Aich, Valentin; Liersch, Stefan; Vetter, Tobias; Fournet, Samuel; Andersson, Jafet C M; Calmanti, Sandro; van Weert, Frank H A; Hattermann, Fred F; Paton, Eva N

    2016-08-15

    This study assesses future flood risk in the Niger River Basin (NRB), for the first time considering the simultaneous effects of both projected climate change and land use changes. For this purpose, an ecohydrological process-based model (SWIM) was set up and validated for past climate and land use dynamics of the entire NRB. Model runs for future flood risks were conducted with an ensemble of 18 climate models, 13 of them dynamically downscaled from the CORDEX Africa project and five statistically downscaled Earth System Models. Two climate and two land use change scenarios were used to cover a broad range of potential developments in the region. Two flood indicators (annual 90th percentile and the 20-year return flood) were used to assess the future flood risk for the Upper, Middle and Lower Niger as well as the Benue. The modeling results generally show increases of flood magnitudes when comparing a scenario period in the near future (2021-2050) with a base period (1976-2005). Land use effects are more uncertain, but trends and relative changes for the different catchments of the NRB seem robust. The dry areas of the Sahelian and Sudanian regions of the basin show a particularly high sensitivity to climatic and land use changes, with an alarming increase of flood magnitudes in parts. A scenario with continuing transformation of natural vegetation into agricultural land and urbanization intensifies the flood risk in all parts of the NRB, while a "regreening" scenario can reduce flood magnitudes to some extent. Yet, land use change effects were smaller when compared to the effects of climate change. In the face of an already existing adaptation deficit to catastrophic flooding in the region, the authors argue for a mix of adaptation and mitigation efforts in order to reduce the flood risk in the NRB. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Impact of Climate Change on Food Security in Kenya

    NASA Astrophysics Data System (ADS)

    Yator, J. J.

    2016-12-01

    This study sought to address the existing gap on the impact of climate change on food security in support of policy measures to avert famine catastrophes. Fixed and random effects regressions for crop food security were estimated. The study simulated the expected impact of future climate change on food insecurity based on the Representative Concentration Pathways scenario (RCPs). The study makes use of county-level yields estimates (beans, maize, millet and sorghum) and daily climate data (1971 to 2010). Climate variability affects food security irrespective of how food security is defined. Rainfall during October-November-December (OND), as well as during March-April-May (MAM) exhibit an inverted U-shaped relationship with most food crops; the effects are most pronounced for maize and sorghum. Beans and Millet are found to be largely unresponsive to climate variability and also to time-invariant factors. OND rains and fall and summer temperature exhibit a U-shaped relationship with yields for most crops, while MAM rains temperature exhibits an inverted U-shaped relationship. However, winter temperatures exhibit a hill-shaped relationship with most crops. Project future climate change scenarios on crop productivity show that climate change will adversely affect food security, with up to 69% decline in yields by the year 2100. Climate variables have a non-linear relationship with food insecurity. Temperature exhibits an inverted U-shaped relationship with food insecurity, suggesting that increased temperatures will increase crop food insecurity. However, maize and millet, benefit from increased summer and winter temperatures. The simulated effects of different climate change scenarios on food insecurity suggest that adverse climate change will increase food insecurity in Kenya. The largest increases in food insecurity are predicted for the RCP 8.5Wm2, compared to RCP 4.5Wm2. Climate change is likely to have the greatest effects on maize insecurity, which is likely to increase by between 8.56% and 21% by the year 2100. There exists a need for policies that safeguard agriculture against the adverse effects of climate change to alleviate food insecurity in Kenya. Therefore, it is important that climate change mitigation is given much more priority in policy planning and also implementation.

  12. Climate Risk and Vulnerability in the Caribbean and Gulf of Mexico Region: Interactions with Spatial Population and Land Cover Change

    NASA Astrophysics Data System (ADS)

    Chen, R. S.; Levy, M.; Baptista, S.; Adamo, S.

    2010-12-01

    Vulnerability to climate variability and change will depend on dynamic interactions between different aspects of climate, land-use change, and socioeconomic trends. Measurements and projections of these changes are difficult at the local scale but necessary for effective planning. New data sources and methods make it possible to assess land-use and socioeconomic changes that may affect future patterns of climate vulnerability. In this paper we report on new time series data sets that reveal trends in the spatial patterns of climate vulnerability in the Caribbean/Gulf of Mexico Region. Specifically, we examine spatial time series data for human population over the period 1990-2000, time series data on land use and land cover over 2000-2009, and infant mortality rates as a proxy for poverty for 2000-2008. We compare the spatial trends for these measures to the distribution of climate-related natural disaster risk hotspots (cyclones, floods, landslides, and droughts) in terms of frequency, mortality, and economic losses. We use these data to identify areas where climate vulnerability appears to be increasing and where it may be decreasing. Regions where trends and patterns are especially worrisome include coastal areas of Guatemala and Honduras.

  13. Climate Change, Disaster and Sentiment Analysis over Social Media Mining

    NASA Astrophysics Data System (ADS)

    Lee, J.; McCusker, J. P.; McGuinness, D. L.

    2012-12-01

    Accelerated climate change causes disasters and disrupts people living all over the globe. Disruptive climate events are often reflected in expressed sentiments of the people affected. Monitoring changes in these sentiments during and after disasters can reveal relationships between climate change and mental health. We developed a semantic web tool that uses linked data principles and semantic web technologies to integrate data from multiple sources and analyze them together. We are converting statistical data on climate change and disaster records obtained from the World Bank data catalog and the International Disaster Database into a Resource Description Framework (RDF) representation that was annotated with the RDF Data Cube vocabulary. We compare these data with a dataset of tweets that mention terms from the Emotion Ontology to get a sense of how disasters can impact the affected populations. This dataset is being gathered using an infrastructure we developed that extracts term uses in Twitter with controlled vocabularies. This data was also converted to RDF structure so that statistical data on the climate change and disasters is analyzed together with sentiment data. To visualize and explore relationship of the multiple data across the dimensions of time and location, we use the qb.js framework. We are using this approach to investigate the social and emotional impact of climate change. We hope that this will demonstrate the use of social media data as a valuable source of understanding on global climate change.

  14. The Climate Literacy and Energy Awareness Network (CLEAN) - Enabling Collective Impact on Climate and Energy Literacy

    NASA Astrophysics Data System (ADS)

    Ledley, T. S.; Gold, A. U.; Niepold, F., III

    2015-12-01

    Numerous climate change education efforts exist that aim to enable citizens and society to make informed decisions addressing environmental and societal issues arising from climate change. To extend the reach and impact of these efforts, it is necessary to coordinate them in order to reach a greater collective impact. The Collective Impact model, as described by Kania & Kramer (2011), requires five elements: 1) a common agenda; 2) shared measurement systems; 3) mutually reinforcing activities; 4) continuous communication; and 5) a well-funded backbone support organization. The CLEAN Network, as an example of a rudimentary form of such an organization, engages in continuous communication through weekly teleconferences, an active listserv and other activities to share resources, activities, and ideas that is moving the network to develop common understandings that will likely lead to the development of effective collective impact on increasing climate and energy literacy. A Spring 2013 survey of the CLEAN Network provided insight as to how the CLEAN Network was addressing member needs and identified what other support was needed to increase its collective impact. In addition, community discussions identified the components needed for an effective overarching backbone support organization. A Fall 2015 survey of the CLEAN Network and the broader climate change education community is being conducted to examine 1) how the CLEAN Network make up and needs have evolved and how they compare to the broader community, and 2) to gather further input into the shaping of the elements of collective impact on climate and energy literacy. This presentation will describe the results from the 2015 survey and compare them to the 2013 survey and the community discussions. This will include describing the CLEAN Network's evolving professional make up, engagement of its members network activities, the importance of the network to members; how the findings compare with the broader climate change education community, and how the collective impact can be increased.

  15. Impacts of land cover changes on climate trends in Jiangxi province China.

    PubMed

    Wang, Qi; Riemann, Dirk; Vogt, Steffen; Glaser, Rüdiger

    2014-07-01

    Land-use/land-cover (LULC) change is an important climatic force, and is also affected by climate change. In the present study, we aimed to assess the regional scale impact of LULC on climate change using Jiangxi Province, China, as a case study. To obtain reliable climate trends, we applied the standard normal homogeneity test (SNHT) to surface air temperature and precipitation data for the period 1951-1999. We also compared the temperature trends computed from Global Historical Climatology Network (GHCN) datasets and from our analysis. To examine the regional impacts of land surface types on surface air temperature and precipitation change integrating regional topography, we used the observation minus reanalysis (OMR) method. Precipitation series were found to be homogeneous. Comparison of GHCN and our analysis on adjusted temperatures indicated that the resulting climate trends varied slightly from dataset to dataset. OMR trends associated with surface vegetation types revealed a strong surface warming response to land barrenness and weak warming response to land greenness. A total of 81.1% of the surface warming over vegetation index areas (0-0.2) was attributed to surface vegetation type change and regional topography. The contribution of surface vegetation type change decreases as land cover greenness increases. The OMR precipitation trend has a weak dependence on surface vegetation type change. We suggest that LULC integrating regional topography should be considered as a force in regional climate modeling.

  16. On the limitations of General Circulation Climate Models

    NASA Technical Reports Server (NTRS)

    Stone, Peter H.; Risbey, James S.

    1990-01-01

    General Circulation Models (GCMs) by definition calculate large-scale dynamical and thermodynamical processes and their associated feedbacks from first principles. This aspect of GCMs is widely believed to give them an advantage in simulating global scale climate changes as compared to simpler models which do not calculate the large-scale processes from first principles. However, it is pointed out that the meridional transports of heat simulated GCMs used in climate change experiments differ from observational analyses and from other GCMs by as much as a factor of two. It is also demonstrated that GCM simulations of the large scale transports of heat are sensitive to the (uncertain) subgrid scale parameterizations. This leads to the question whether current GCMs are in fact superior to simpler models for simulating temperature changes associated with global scale climate change.

  17. Simulation of growth of Adirondack conifers in relation to global climate change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Y.; Raynal, D.J.

    1993-06-01

    Several conifer species grown in plantations in the southeastern Adirondack mountains of New York were chosen to model tree growth. In the models, annual xylem growth was decomposed into several components that reflect various intrinsic or extrinsic factors. Growth signals indicative of climatic effects were used to construct response functions using both multivariate analysis and Kalman filter methods. Two models were used to simulate tree growth response to future CO[sub 2]-induced climate change projected by GCMs. The comparable results of both models indicate that different conifer species have individualistic growth responses to future climatic change. The response behaviors of treesmore » are affected greatly by local stand conditions. The results suggest possible changes in future growth and distributions of naturally occurring conifers in this region.« less

  18. Does the stress tolerance of mixed grassland communities change in a future climate? A test with heavy metal stress (zinc pollution).

    PubMed

    Van den Berge, Joke; Naudts, Kim; Janssens, Ivan A; Ceulemans, Reinhart; Nijs, Ivan

    2011-12-01

    Will species that are sensitive/tolerant to Zn pollution still have the same sensitivity/tolerance in a future climate? To answer this question we analysed the response of constructed grassland communities to five levels of zinc (Zn) supply, ranging from 0 to 354 mg Zn kg(-1) dry soil, under a current climate and a future climate (elevated CO2 and warming). Zn concentrations increased in roots and shoots with Zn addition but this increase did not differ between climates. Light-saturated net CO2 assimilation rate (A(sat)) of the species, on the other hand, responded differently to Zn addition depending on climate. Still, current and future climate communities have comparable biomass responses to Zn, i.e., no change in root biomass and a 13% decrease of above-ground biomass. Provided that the different response of A(sat) in a future climate will not compromise productivity and survival on the long term, sensitivity is not altered by climate change. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Increasing drought in Jordan: Climate change and cascading Syrian land-use impacts on reducing transboundary flow.

    PubMed

    Rajsekhar, Deepthi; Gorelick, Steven M

    2017-08-01

    In countries where severe drought is an anticipated effect of climate change and in those that heavily depend on upstream nations for fresh water, the effect of drier conditions and consequent changes in the transboundary streamflow regime induced by anthropogenic interventions and disasters leads to uncertainty in regional water security. As a case in point, we analyze Jordan's surface water resources and agricultural water demand through 2100, considering the combined impacts of climate change and land-use change driven by the Syrian conflict. We use bias-corrected regional climate simulations as input to high-resolution hydrologic models to assess three drought types: meteorological (rainfall decrease), agricultural (soil moisture deficit), and hydrologic (streamflow decline) under future scenarios. The historical baseline period (1981-2010) is compared to the future (2011-2100), divided into three 30-year periods. Comparing the baseline period to 2070-2100, average temperature increases by 4.5°C, rainfall decreases by 30%, and multiple drought-type occurrences increase from ~8 in 30 years to ~25 in 30 years. There is a significant increase in the contemporaneous occurrence of multiple drought types along with an 80% increase in simultaneous warm and dry events. Watershed simulations of future transboundary Yarmouk-Jordan River flow from Syria show that Jordan would receive 51 to 75% less Yarmouk water compared to historical flow. Recovery of Syrian irrigated agriculture to pre-conflict conditions would produce twice the decline in transboundary flow as that due to climate change. In Jordan, the confluence of limited water supply, future drought, and transboundary hydrologic impacts of land use severely challenges achieving freshwater sustainability.

  20. Increasing drought in Jordan: Climate change and cascading Syrian land-use impacts on reducing transboundary flow

    PubMed Central

    Rajsekhar, Deepthi; Gorelick, Steven M.

    2017-01-01

    In countries where severe drought is an anticipated effect of climate change and in those that heavily depend on upstream nations for fresh water, the effect of drier conditions and consequent changes in the transboundary streamflow regime induced by anthropogenic interventions and disasters leads to uncertainty in regional water security. As a case in point, we analyze Jordan’s surface water resources and agricultural water demand through 2100, considering the combined impacts of climate change and land-use change driven by the Syrian conflict. We use bias-corrected regional climate simulations as input to high-resolution hydrologic models to assess three drought types: meteorological (rainfall decrease), agricultural (soil moisture deficit), and hydrologic (streamflow decline) under future scenarios. The historical baseline period (1981–2010) is compared to the future (2011–2100), divided into three 30-year periods. Comparing the baseline period to 2070–2100, average temperature increases by 4.5°C, rainfall decreases by 30%, and multiple drought-type occurrences increase from ~8 in 30 years to ~25 in 30 years. There is a significant increase in the contemporaneous occurrence of multiple drought types along with an 80% increase in simultaneous warm and dry events. Watershed simulations of future transboundary Yarmouk-Jordan River flow from Syria show that Jordan would receive 51 to 75% less Yarmouk water compared to historical flow. Recovery of Syrian irrigated agriculture to pre-conflict conditions would produce twice the decline in transboundary flow as that due to climate change. In Jordan, the confluence of limited water supply, future drought, and transboundary hydrologic impacts of land use severely challenges achieving freshwater sustainability. PMID:28875164

  1. Climate change and the global malaria recession.

    PubMed

    Gething, Peter W; Smith, David L; Patil, Anand P; Tatem, Andrew J; Snow, Robert W; Hay, Simon I

    2010-05-20

    The current and potential future impact of climate change on malaria is of major public health interest. The proposed effects of rising global temperatures on the future spread and intensification of the disease, and on existing malaria morbidity and mortality rates, substantively influence global health policy. The contemporary spatial limits of Plasmodium falciparum malaria and its endemicity within this range, when compared with comparable historical maps, offer unique insights into the changing global epidemiology of malaria over the last century. It has long been known that the range of malaria has contracted through a century of economic development and disease control. Here, for the first time, we quantify this contraction and the global decreases in malaria endemicity since approximately 1900. We compare the magnitude of these changes to the size of effects on malaria endemicity proposed under future climate scenarios and associated with widely used public health interventions. Our findings have two key and often ignored implications with respect to climate change and malaria. First, widespread claims that rising mean temperatures have already led to increases in worldwide malaria morbidity and mortality are largely at odds with observed decreasing global trends in both its endemicity and geographic extent. Second, the proposed future effects of rising temperatures on endemicity are at least one order of magnitude smaller than changes observed since about 1900 and up to two orders of magnitude smaller than those that can be achieved by the effective scale-up of key control measures. Predictions of an intensification of malaria in a warmer world, based on extrapolated empirical relationships or biological mechanisms, must be set against a context of a century of warming that has seen marked global declines in the disease and a substantial weakening of the global correlation between malaria endemicity and climate.

  2. Regional climate projection of the Maritime Continent using the MIT Regional Climate Model

    NASA Astrophysics Data System (ADS)

    IM, E. S.; Eltahir, E. A. B.

    2014-12-01

    Given that warming of the climate system is unequivocal (IPCC AR5), accurate assessment of future climate is essential to understand the impact of climate change due to global warming. Modelling the climate change of the Maritime Continent is particularly challenge, showing a high degree of uncertainty. Compared to other regions, model agreement of future projections in response to anthropogenic emission forcings is much less. Furthermore, the spatial and temporal behaviors of climate projections seem to vary significantly due to a complex geographical condition and a wide range of scale interactions. For the fine-scale climate information (27 km) suitable for representing the complexity of climate change over the Maritime Continent, dynamical downscaling is performed using the MIT regional climate model (MRCM) during two thirty-year period for reference (1970-1999) and future (2070-2099) climate. Initial and boundary conditions are provided by Community Earth System Model (CESM) simulations under the emission scenarios projected by MIT Integrated Global System Model (IGSM). Changes in mean climate as well as the frequency and intensity of extreme climate events are investigated at various temporal and spatial scales. Our analysis is primarily centered on the different behavior of changes in convective and large-scale precipitation over land vs. ocean during dry vs. wet season. In addition, we attempt to find the added value to downscaled results over the Maritime Continent through the comparison between MRCM and CESM projection. Acknowledgements.This research was supported by the National Research Foundation Singapore through the Singapore MIT Alliance for Research and Technology's Center for Environmental Sensing and Modeling interdisciplinary research program.

  3. Comparative genetic responses to climate in the varieties of Pinus ponderosa and Pseudotsuga menziesii: reforestation

    Treesearch

    Gerald E. Rehfeldt; Barry C. Jaquish; Cuauhtemoc Saenz-Romero; Dennis G. Joyce; Laura P. Leites; J. Bradley St Clair; Javier Lopez-Upton

    2014-01-01

    Impacts of climate change on the climatic niche of the sub-specific varieties of Pinus ponderosa and Pseudotsuga menziesii and on the adaptedness of their populations are considered from the viewpoint of reforestation. In using climate projections from an ensemble of 17 general circulation models targeting the decade surrounding 2060, our analyses suggest that a...

  4. Climatology of salt transitions and implications for stone weathering.

    PubMed

    Grossi, C M; Brimblecombe, P; Menéndez, B; Benavente, D; Harris, I; Déqué, M

    2011-06-01

    This work introduces the notion of salt climatology. It shows how climate affects salt thermodynamic and the potential to relate long-term salt damage to climate types. It mainly focuses on specific sites in Western Europe, which include some cities in France and Peninsular Spain. Salt damage was parameterised using the number of dissolution-crystallisation events for unhydrated (sodium chloride) and hydrated (sodium sulphate) systems. These phase transitions have been calculated using daily temperature and relative humidity from observation meteorological data and Climate Change models' output (HadCM3 and ARPEGE). Comparing the number of transitions with meteorological seasonal data allowed us to develop techniques to estimate the frequency of salt transitions based on the local climatology. Results show that it is possible to associate the Köppen-Geiger climate types with potential salt weathering. Temperate fully humid climates seem to offer the highest potential for salt damage and possible higher number of transitions in summer. Climates with dry summers tend to show a lesser frequency of transitions in summer. The analysis of temperature, precipitation and relative output from Climate Change models suggests changes in the Köppen-Geiger climate types and changes in the patterns of salt damage. For instance, West Europe areas with a fully humid climate may change to a more Mediterranean like or dry climates, and consequently the seasonality of different salt transitions. The accuracy and reliability of the projections might be improved by simultaneously running multiple climate models (ensembles). Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Impacts of Climate Change/Variability and Human Activities on Contemporary Vegetation Productivity across Africa

    NASA Astrophysics Data System (ADS)

    Ugbaje, S. U.; Odeh, I. A.; Bishop, T.

    2015-12-01

    Vegetation productivity is increasingly being impacted upon by climate change/variability and anthropogenic activities, especially in developing countries, where many livelihoods depend on the natural resource base. Despite these impacts, the individual and combined roles of climate and anthropogenic factors on vegetation dynamics have rarely been quantified in many ecosystems and regions of the world. This paper analyzes recent trend in vegetation productivity across Africa and quantified the relative roles of climate change/variability and human activities in driving this trend over 2000-2014 using net primary productivity (NPP) as an indicator. The relative roles of these factors to vegetation productivity change were quantified by comparing the trend slope (p<0.1) and total change in interannual actual NPP (NPPA), potential NPP (NPPP), and human appropriated NPP (NPPH). NPP significantly increased across Africa relative to NPP decline, though the extent of NPP decline is also quite appreciable. Whereas estimated NPP declined by 207 Tg C over 140 X 104 km of land area, vegetation productivity was estimated to improve by 1415 Tg C over 786 X 104 km of land area. NPP improvement is largely concentrated in equatorial and northern hemispheric Africa, while subequatorial Africa exhibited the most NPP decline. Generally, anthropogenic activities dominated climate change/variability in improving or degrading vegetation productivity. Of the estimated total NPP gained over the study period, 32.6, 8.8, and 58.6 % were due to individual human, climate and combined impacts respectively. The contributions of the factors to NPP decline in the same order are: 50.7, 16.0 and 33.3 %. The Central Africa region is where human activities had the greatest impact on NPP improvement; whereas the Sahel and the coastlines of west northern Africa are areas associated with the greatest influence of climate-driven NPP gain. Areas with humans dominating NPP degradation include eastern Angola, western Zambia, and Liberia; whereas climate-driven NPP loss is pronounced in Zambia and Mozambique. Results from this study indicate that, compared to climate change/variability, contemporary anthropogenic activities are contributing more to the decline of Africa's vegetation productivity than to vegetation improvement.

  6. A reversal of fortunes: climate change ‘winners’ and ‘losers’ in Antarctic Peninsula penguins

    PubMed Central

    Clucas, Gemma V.; Dunn, Michael J.; Dyke, Gareth; Emslie, Steven D.; Levy, Hila; Naveen, Ron; Polito, Michael J.; Pybus, Oliver G.; Rogers, Alex D.; Hart, Tom

    2014-01-01

    Climate change is a major threat to global biodiversity. Antarctic ecosystems are no exception. Investigating past species responses to climatic events can distinguish natural from anthropogenic impacts. Climate change produces ‘winners’, species that benefit from these events and ‘losers’, species that decline or become extinct. Using molecular techniques, we assess the demographic history and population structure of Pygoscelis penguins in the Scotia Arc related to climate warming after the Last Glacial Maximum (LGM). All three pygoscelid penguins responded positively to post-LGM warming by expanding from glacial refugia, with those breeding at higher latitudes expanding most. Northern (Pygoscelis papua papua) and Southern (Pygoscelis papua ellsworthii) gentoo sub-species likely diverged during the LGM. Comparing historical responses with the literature on current trends, we see Southern gentoo penguins are responding to current warming as they did during post-LGM warming, expanding their range southwards. Conversely, Adélie and chinstrap penguins are experiencing a ‘reversal of fortunes’ as they are now declining in the Antarctic Peninsula, the opposite of their response to post-LGM warming. This suggests current climate warming has decoupled historic population responses in the Antarctic Peninsula, favoring generalist gentoo penguins as climate change ‘winners’, while Adélie and chinstrap penguins have become climate change ‘losers’. PMID:24865774

  7. A reversal of fortunes: climate change 'winners' and 'losers' in Antarctic Peninsula penguins.

    PubMed

    Clucas, Gemma V; Dunn, Michael J; Dyke, Gareth; Emslie, Steven D; Naveen, Ron; Polito, Michael J; Pybus, Oliver G; Rogers, Alex D; Hart, Tom

    2014-06-12

    Climate change is a major threat to global biodiversity. Antarctic ecosystems are no exception. Investigating past species responses to climatic events can distinguish natural from anthropogenic impacts. Climate change produces 'winners', species that benefit from these events and 'losers', species that decline or become extinct. Using molecular techniques, we assess the demographic history and population structure of Pygoscelis penguins in the Scotia Arc related to climate warming after the Last Glacial Maximum (LGM). All three pygoscelid penguins responded positively to post-LGM warming by expanding from glacial refugia, with those breeding at higher latitudes expanding most. Northern (Pygoscelis papua papua) and Southern (Pygoscelis papua ellsworthii) gentoo sub-species likely diverged during the LGM. Comparing historical responses with the literature on current trends, we see Southern gentoo penguins are responding to current warming as they did during post-LGM warming, expanding their range southwards. Conversely, Adélie and chinstrap penguins are experiencing a 'reversal of fortunes' as they are now declining in the Antarctic Peninsula, the opposite of their response to post-LGM warming. This suggests current climate warming has decoupled historic population responses in the Antarctic Peninsula, favoring generalist gentoo penguins as climate change 'winners', while Adélie and chinstrap penguins have become climate change 'losers'.

  8. Changes in Concurrent Precipitation and Temperature Extremes

    DOE PAGES

    Hao, Zengchao; AghaKouchak, Amir; Phillips, Thomas J.

    2013-08-01

    While numerous studies have addressed changes in climate extremes, analyses of concurrence of climate extremes are scarce, and climate change effects on joint extremes are rarely considered. This study assesses the occurrence of joint (concurrent) monthly continental precipitation and temperature extremes in Climate Research Unit (CRU) and University of Delaware (UD) observations, and in 13 Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate simulations. Moreover, the joint occurrences of precipitation and temperature extremes simulated by CMIP5 climate models are compared with those derived from the CRU and UD observations for warm/wet, warm/dry, cold/wet, and cold/dry combinations of joint extremes.more » The number of occurrences of these four combinations during the second half of the 20th century (1951–2004) is assessed on a common global grid. CRU and UD observations show substantial increases in the occurrence of joint warm/dry and warm/wet combinations for the period 1978–2004 relative to 1951–1977. The results show that with respect to the sign of change in the concurrent extremes, the CMIP5 climate model simulations are in reasonable overall agreement with observations. The results reveal notable discrepancies between regional patterns and the magnitude of change in individual climate model simulations relative to the observations of precipitation and temperature.« less

  9. Global and regional health effects of future food production under climate change: a modelling study.

    PubMed

    Springmann, Marco; Mason-D'Croz, Daniel; Robinson, Sherman; Garnett, Tara; Godfray, H Charles J; Gollin, Douglas; Rayner, Mike; Ballon, Paola; Scarborough, Peter

    2016-05-07

    One of the most important consequences of climate change could be its effects on agriculture. Although much research has focused on questions of food security, less has been devoted to assessing the wider health impacts of future changes in agricultural production. In this modelling study, we estimate excess mortality attributable to agriculturally mediated changes in dietary and weight-related risk factors by cause of death for 155 world regions in the year 2050. For this modelling study, we linked a detailed agricultural modelling framework, the International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT), to a comparative risk assessment of changes in fruit and vegetable consumption, red meat consumption, and bodyweight for deaths from coronary heart disease, stroke, cancer, and an aggregate of other causes. We calculated the change in the number of deaths attributable to climate-related changes in weight and diets for the combination of four emissions pathways (a high emissions pathway, two medium emissions pathways, and a low emissions pathway) and three socioeconomic pathways (sustainable development, middle of the road, and more fragmented development), which each included six scenarios with variable climatic inputs. The model projects that by 2050, climate change will lead to per-person reductions of 3·2% (SD 0·4%) in global food availability, 4·0% (0·7%) in fruit and vegetable consumption, and 0·7% (0·1%) in red meat consumption. These changes will be associated with 529,000 climate-related deaths worldwide (95% CI 314,000-736,000), representing a 28% (95% CI 26-33) reduction in the number of deaths that would be avoided because of changes in dietary and weight-related risk factors between 2010 and 2050. Twice as many climate-related deaths were associated with reductions in fruit and vegetable consumption than with climate-related increases in the prevalence of underweight, and most climate-related deaths were projected to occur in south and east Asia. Adoption of climate-stabilisation pathways would reduce the number of climate-related deaths by 29-71%, depending on their stringency. The health effects of climate change from changes in dietary and weight-related risk factors could be substantial, and exceed other climate-related health impacts that have been estimated. Climate change mitigation could prevent many climate-related deaths. Strengthening of public health programmes aimed at preventing and treating diet and weight-related risk factors could be a suitable climate change adaptation strategy. Oxford Martin Programme on the Future of Food. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The I.A.G. / A.I.G. SEDIBUD Book Project: Source-to-Sink Fluxes in Undisturbed Cold Environments

    NASA Astrophysics Data System (ADS)

    Beylich, Achim A.; Dixon, John C.; Zwolinski, Zbigniew

    2015-04-01

    The currently prepared SEDIBUD Book on "Source-to-Sink Fluxes in Undisturbed Cold Environments" (edited by Achim A. Beylich, John C. Dixon and Zbigniew Zwolinski and published by Cambridge University Press) is summarizing and synthesizing the achievements of the International Association of Geomorphologists` (I.A.G./A.I.G.) Working Group SEDIBUD (Sediment Budgets in Cold Environments), which has been active since 2005 (http://www.geomorph.org/wg/wgsb.html). Amplified climate change and ecological sensitivity of largely undisturbed polar and high-altitude cold climate environments have been highlighted as key global environmental issues. The effects of projected climate change will change surface environments in cold regions and will alter the fluxes of sediments, nutrients and solutes, but the absence of quantitative data and coordinated geomorphic process monitoring and analysis to understand the sensitivity of the Earth surface environment in these largely undisturbed environments is acute. Our book addresses this existing key knowledge gap. The applied approach of integrating comparable and longer-term field datasets on contemporary solute and sedimentary fluxes from a number of different defined cold climate catchment geosystems for better understanding (i) the environmental drivers and rates of contemporary denudational surface processes and (ii) possible effects of projected climate change in cold regions is unique in the field of geomorphology. Largely undisturbed cold climate environments can provide baseline data for modeling the effects of environmental change. The book synthesizes work carried out by numerous SEDIBUD Members over the last decade in numerous cold climate catchment geosystems worldwide. For reaching a global cover of different cold climate environments the book is - after providing an introduction part and a basic part on climate change in cold environments and general implications for solute and sedimentary fluxes - dealing in different defined parts with Sub-Arctic and Arctic Environments, Sub-Antarctic and Antarctic Environments, and Alpine / Mountain Environments. The book includes a synthesis key chapter where comparable datasets on contemporary solute and sedimentary fluxes generated during the conducted coordinated research efforts in different cold climate catchment geosystems are integrated with the key goals to (i) identify the main environmental drivers and rates of contemporary solute and sedimentary fluxes, and (ii) model possible effects of projected climate change on solute and sedimentary fluxes in cold climate environments. The SEDIBUD Book provides new key findings on environmental drivers and rates of contemporary solute and sedimentary fluxes, and on spatial variability within global cold climate environments. The book will go in production in July 2015.

  11. Climate Change and Expected Impacts on the Global Water Cycle

    NASA Technical Reports Server (NTRS)

    Rind, David; Hansen, James E. (Technical Monitor)

    2002-01-01

    How the elements of the global hydrologic cycle may respond to climate change is reviewed, first from a discussion of the physical sensitivity of these elements to changes in temperature, and then from a comparison of observations of hydrologic changes over the past 100 million years. Observations of current changes in the hydrologic cycle are then compared with projected future changes given the prospect of global warming. It is shown that some of the projections come close to matching the estimated hydrologic changes that occurred long ago when the earth was very warm.

  12. Widespread rapid reductions in body size of adult salamanders in response to climate change.

    PubMed

    Caruso, Nicholas M; Sears, Michael W; Adams, Dean C; Lips, Karen R

    2014-06-01

    Reduction in body size is a major response to climate change, yet evidence in globally imperiled amphibians is lacking. Shifts in average population body size could indicate either plasticity in the growth response to changing climates through changes in allocation and energetics, or through selection for decreased size where energy is limiting. We compared historic and contemporary size measurements in 15 Plethodon species from 102 populations (9450 individuals) and found that six species exhibited significant reductions in body size over 55 years. Biophysical models, accounting for actual changes in moisture and air temperature over that period, showed a 7.1-7.9% increase in metabolic expenditure at three latitudes but showed no change in annual duration of activity. Reduced size was greatest at southern latitudes in regions experiencing the greatest drying and warming. Our results are consistent with a plastic response of body size to climate change through reductions in body size as mediated through increased metabolism. These rapid reductions in body size over the past few decades have significance for the susceptibility of amphibians to environmental change, and relevance for whether adaptation can keep pace with climate change in the future. © 2014 John Wiley & Sons Ltd.

  13. Progressive Climate Change on Titan: Implications for Habitability

    NASA Technical Reports Server (NTRS)

    Moore, J. M.; A. D. Howard

    2014-01-01

    Titan's landscape is profoundly shaped by its atmosphere and comparable in magnitude perhaps with only the Earth and Mars amongst the worlds of the Solar System. Like the Earth, climate dictates the intensity and relative roles of fluvial and aeolian activity from place to place and over geologic time. Thus Titan's landscape is the record of climate change. We have investigated three broad classes of Titan climate evolution hypotheses (Steady State, Progressive, and Cyclic), regulated by the role, sources, and availability of methane. We favor the Progressive hypotheses, which we will outline here, then discuss their implication for habitability.

  14. Climate and tourism in the Black Forest during the warm season.

    PubMed

    Endler, Christina; Matzarakis, Andreas

    2011-03-01

    Climate, climate change and tourism all interact. Part of the public discussion about climate change focusses on the tourism sector, with direct and indirect impacts being of equally high relevance. Climate and tourism are closely linked. Thus, climate is a very decisive factor in choices both of destination and of type of journey (active holidays, wellness, and city tours) in the tourism sector. However, whether choices about destinations or types of trip will alter with climate change is difficult to predict. Future climates can be simulated and projected, and the tendencies of climate parameters can be estimated using global and regional climate models. In this paper, the focus is on climate change in the mountainous regions of southwest Germany - the Black Forest. The Black Forest is one of the low mountain ranges where both winter and summer tourism are vulnerable to climate change due to its southern location; the strongest climatic changes are expected in areas covering the south and southwest of Germany. Moreover, as the choice of destination is highly dependent on good weather, a climatic assessment for tourism is essential. Thus, the aim of this study was to estimate climatic changes in mountainous regions during summer, especially for tourism and recreation. The assessment method was based on human-biometeorology as well as tourism-climatologic approaches. Regional climate simulations based on the regional climate model REMO were used for tourism-related climatic analyses. Emission scenarios A1B and B1 were considered for the time period 2021 to 2050, compared to the 30-year base period of 1971-2000, particularly for the warm period of the year, defined here as the months of March-November. In this study, we quantified the frequency, but not the means, of climate parameters. The study results show that global and regional warming is reflected in an increase in annual mean air temperature, especially in autumn. Changes in the spring show a slight negative trend, which is in line with the trend of a decrease in physiologically equivalent temperature as well as in thermal comfort conditions. Due to the rising air temperature, heat stress as well as sultry conditions are projected to become more frequent, affecting human health and recreation, especially at lower lying altitudes. The tops of the mountains and higher elevated areas still have the advantage of offering comfortable climatic conditions.

  15. Rainfall variability and extremes over southern Africa: assessment of a climate model to reproduce daily extremes

    NASA Astrophysics Data System (ADS)

    Williams, C.; Kniveton, D.; Layberry, R.

    2009-04-01

    It is increasingly accepted that that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA). This dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. The ability of a climate model to simulate current climate provides some indication of how much confidence can be applied to its future predictions. In this paper, simulations of current climate from the UK Meteorological Office Hadley Centre's climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. This concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of rainfall variability over southern Africa. Secondly, the ability of the model to reproduce daily rainfall extremes will be assessed, again by a comparison with extremes from the MIRA dataset.

  16. Projected changes of the southwest Australian wave climate under two atmospheric greenhouse gas concentration pathways

    NASA Astrophysics Data System (ADS)

    Wandres, Moritz; Pattiaratchi, Charitha; Hemer, Mark A.

    2017-09-01

    Incident wave energy flux is responsible for sediment transport and coastal erosion in wave-dominated regions such as the southwestern Australian (SWA) coastal zone. To evaluate future wave climates under increased greenhouse gas concentration scenarios, past studies have forced global wave simulations with wind data sourced from global climate model (GCM) simulations. However, due to the generally coarse spatial resolution of global climate and wave simulations, the effects of changing offshore wave conditions and sea level rise on the nearshore wave climate are still relatively unknown. To address this gap of knowledge, we investigated the projected SWA offshore, shelf, and nearshore wave climate under two potential future greenhouse gas concentration trajectories (representative concentration pathways RCP4.5 and RCP8.5). This was achieved by downscaling an ensemble of global wave simulations, forced with winds from GCMs participating in the Coupled Model Inter-comparison Project (CMIP5), into two regional domains, using the Simulating WAves Nearshore (SWAN) wave model. The wave climate is modeled for a historical 20-year time slice (1986-2005) and a projected future 20-year time-slice (2081-2100) for both scenarios. Furthermore, we compare these scenarios to the effects of considering sea-level rise (SLR) alone (stationary wave climate), and to the effects of combined SLR and projected wind-wave change. Results indicated that the SWA shelf and nearshore wave climate is more sensitive to changes in offshore mean wave direction than offshore wave heights. Nearshore, wave energy flux was projected to increase by ∼10% in exposed areas and decrease by ∼10% in sheltered areas under both climate scenarios due to a change in wave directions, compared to an overall increase of 2-4% in offshore wave heights. With SLR, the annual mean wave energy flux was projected to increase by up to 20% in shallow water (< 30 m) as a result of decreased wave dissipation. In winter months, the longshore wave energy flux, which is responsible for littoral drift, is expected to increase by up to 39% (62%) under the RCP4.5 (RCP8.5) greenhouse gas concentration pathway with SLR. The study highlights the importance of using high-resolution wave simulations to evaluate future regional wave climates, since the coastal wave climate is more responsive to changes in wave direction and sea level than offshore wave heights.

  17. Climate-change influences on the response of macroinvertebrate communities to pesticide contamination in the Sacramento River, California watershed.

    PubMed

    Chiu, Ming-Chih; Hunt, Lisa; Resh, Vincent H

    2017-03-01

    Limited studies have addressed how future climate-change scenarios may alter the effects of pesticides on biotic assemblages or the effects of exposures to repeated pulses of pesticide mixtures. We used reported pesticide-use data as input to a hydrological fate and transport model (Soil and Water Assessment Tool) under multiple climate-change scenarios to simulate spatiotemporal dynamics of pesticides mixtures in streams on a daily time-step in the Sacramento River watershed of California. We predicted that there will be increased pesticide application with warming across the watershed, especially in upstream areas. Using a statistical model describing the relationship between macroinvertebrate communities and pesticide dynamics, we found that compared to the baseline period of 1970-1999: (1) most climate-change scenarios predicted increased rainfall and warming across the watershed during 2070-2099; and (2) increasing pesticide contamination and increased impact on macroinvertebrates will likely occur in most areas of the watershed by 2070-2099; and (3) lower increases in effects of pesticides on macroinvertebrates were predicted for the downstream areas with intensive agriculture compared to some upstream areas with less-intensive agriculture. Future efforts on practical adaptation and mitigation strategies can be improved by awareness of altered threats of pesticide mixtures under future climate-change conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Large Scale Relationship between Aquatic Insect Traits and Climate.

    PubMed

    Bhowmik, Avit Kumar; Schäfer, Ralf B

    2015-01-01

    Climate is the predominant environmental driver of freshwater assemblage pattern on large spatial scales, and traits of freshwater organisms have shown considerable potential to identify impacts of climate change. Although several studies suggest traits that may indicate vulnerability to climate change, the empirical relationship between freshwater assemblage trait composition and climate has been rarely examined on large scales. We compared the responses of the assumed climate-associated traits from six grouping features to 35 bioclimatic indices (~18 km resolution) for five insect orders (Diptera, Ephemeroptera, Odonata, Plecoptera and Trichoptera), evaluated their potential for changing distribution pattern under future climate change and identified the most influential bioclimatic indices. The data comprised 782 species and 395 genera sampled in 4,752 stream sites during 2006 and 2007 in Germany (~357,000 km² spatial extent). We quantified the variability and spatial autocorrelation in the traits and orders that are associated with the combined and individual bioclimatic indices. Traits of temperature preference grouping feature that are the products of several other underlying climate-associated traits, and the insect order Ephemeroptera exhibited the strongest response to the bioclimatic indices as well as the highest potential for changing distribution pattern. Regarding individual traits, insects in general and ephemeropterans preferring very cold temperature showed the highest response, and the insects preferring cold and trichopterans preferring moderate temperature showed the highest potential for changing distribution. We showed that the seasonal radiation and moisture are the most influential bioclimatic aspects, and thus changes in these aspects may affect the most responsive traits and orders and drive a change in their spatial distribution pattern. Our findings support the development of trait-based metrics to predict and detect climate-related changes of freshwater assemblages.

  19. Potential effect of climate change on malaria transmission in Africa.

    PubMed

    Tanser, Frank C; Sharp, Brian; le Sueur, David

    2003-11-29

    Climate change is likely to affect transmission of vector-borne diseases such as malaria. We quantitatively estimated current malaria exposure and assessed the potential effect of projected climate scenarios on malaria transmission. We produced a spatiotemporally validated (against 3791 parasite surveys) model of Plasmodium falciparum malaria transmission in Africa. Using different climate scenarios from the Hadley Centre global climate model (HAD CM3) climate experiments, we projected the potential effect of climate change on transmission patterns. Our model showed sensitivity and specificity of 63% and 96%, respectively (within 1 month temporal accuracy), when compared with the parasite surveys. We estimate that on average there are 3.1 billion person-months of exposure (445 million people exposed) in Africa per year. The projected scenarios would estimate a 5-7% potential increase (mainly altitudinal) in malaria distribution with surprisingly little increase in the latitudinal extents of the disease by 2100. Of the overall potential increase (although transmission will decrease in some countries) of 16-28% in person-months of exposure (assuming a constant population), a large proportion will be seen in areas of existing transmission. The effect of projected climate change indicates that a prolonged transmission season is as important as geographical expansion in correct assessment of the effect of changes in transmission patterns. Our model constitutes a valid baseline against which climate scenarios can be assessed and interventions planned.

  20. Perceptions of climate change across the Canadian forest sector: The key factors of institutional and geographical environment.

    PubMed

    Ameztegui, Aitor; Solarik, Kevin A; Parkins, John R; Houle, Daniel; Messier, Christian; Gravel, Dominique

    2018-01-01

    Assessing the perception of key stakeholders within the forest sector is critical to evaluating their readiness to engage in adapting to climate change. Here, we report the results of the most comprehensive survey carried out in the Canadian forestry sector to date regarding perceptions of climate change. A total of 1158 individuals, representing a wide range of stakeholders across the five most important forestry provinces in Canada, were asked about climate change, its impact on forest ecosystems, and the suitability of current forest management for addressing future impacts. Overall, we found that respondents were more concerned about climate change than the general population. More than 90% of respondents agreed with the anthropogenic origins of climate change, and > 50% considered it a direct threat to their welfare. Political view was the main driver of general beliefs about the causes of climate change and its future consequences, while the province of origin proved to be the best predictor of perceived current impacts on forest ecosystems and its associated risks; and type of stakeholder was the main driver of perceived need for adaptation. Industrial stakeholders were the most skeptical about the anthropogenic cause(s) of climate change (18% disagreed with this statement, compared to an average of 8% in the other stakeholders), its impacts on forest ecosystems (28% for industry vs. 10% for other respondents), and the need for new management practices (18% vs. 7%). Although the degree of awareness and the willingness to implement adaptive practices were high even for the most skeptical groups, our study identified priority sectors or areas for action when designing awareness campaigns. We suggest that the design of a strategic framework for implementing climate adaptation within the Canadian forest sector should focus on the relationship between climate change and changes in disturbance regimes, and above all on the economic consequences of these changes, but it should also take into account the positions shown by each of the actors in each province.

  1. Perceptions of climate change across the Canadian forest sector: The key factors of institutional and geographical environment

    PubMed Central

    Parkins, John R.; Houle, Daniel; Messier, Christian; Gravel, Dominique

    2018-01-01

    Assessing the perception of key stakeholders within the forest sector is critical to evaluating their readiness to engage in adapting to climate change. Here, we report the results of the most comprehensive survey carried out in the Canadian forestry sector to date regarding perceptions of climate change. A total of 1158 individuals, representing a wide range of stakeholders across the five most important forestry provinces in Canada, were asked about climate change, its impact on forest ecosystems, and the suitability of current forest management for addressing future impacts. Overall, we found that respondents were more concerned about climate change than the general population. More than 90% of respondents agreed with the anthropogenic origins of climate change, and > 50% considered it a direct threat to their welfare. Political view was the main driver of general beliefs about the causes of climate change and its future consequences, while the province of origin proved to be the best predictor of perceived current impacts on forest ecosystems and its associated risks; and type of stakeholder was the main driver of perceived need for adaptation. Industrial stakeholders were the most skeptical about the anthropogenic cause(s) of climate change (18% disagreed with this statement, compared to an average of 8% in the other stakeholders), its impacts on forest ecosystems (28% for industry vs. 10% for other respondents), and the need for new management practices (18% vs. 7%). Although the degree of awareness and the willingness to implement adaptive practices were high even for the most skeptical groups, our study identified priority sectors or areas for action when designing awareness campaigns. We suggest that the design of a strategic framework for implementing climate adaptation within the Canadian forest sector should focus on the relationship between climate change and changes in disturbance regimes, and above all on the economic consequences of these changes, but it should also take into account the positions shown by each of the actors in each province. PMID:29897977

  2. The impacts of land use, radiative forcing, and biological changes on regional climate in Japan

    NASA Astrophysics Data System (ADS)

    Dairaku, K.; Pielke, R. A., Sr.

    2013-12-01

    Because regional responses of surface hydrological and biogeochemical changes are particularly complex, it is necessary to develop assessment tools for regional scale adaptation to climate. We developed a dynamical downscaling method using the regional climate model (NIED-RAMS) over Japan. The NIED-RAMS model includes a plant model that considers biological processes, the General Energy and Mass Transfer Model (GEMTM) which adds spatial resolution to accurately assess critical interactions within the regional climate system for vulnerability assessments to climate change. We digitalized a potential vegetation map that formerly existed only on paper into Geographic Information System data. It quantified information on the reduction of green spaces and the expansion of urban and agricultural areas in Japan. We conducted regional climate sensitivity experiments of land use and land cover (LULC) change, radiative forcing, and biological effects by using the NIED-RAMS with horizontal grid spacing of 20 km. We investigated regional climate responses in Japan for three experimental scenarios: 1. land use and land cover is changed from current to potential vegetation; 2. radiative forcing is changed from 1 x CO2 to 2 x CO2; and 3. biological CO2 partial pressures in plants are doubled. The experiments show good accuracy in reproducing the surface air temperature and precipitation. The experiments indicate the distinct change of hydrological cycles in various aspects due to anthropogenic LULC change, radiative forcing, and biological effects. The relative impacts of those changes are discussed and compared. Acknowledgments This study was conducted as part of the research subject "Vulnerability and Adaptation to Climate Change in Water Hazard Assessed Using Regional Climate Scenarios in the Tokyo Region' (National Research Institute for Earth Science and Disaster Prevention; PI: Koji Dairaku) of Research Program on Climate Change Adaptation (RECCA), and was supported by the SOUSEI Program, funded by Ministry of Education, Culture, Sports, Science and Technology, Government of Japan.

  3. Seafarer citizen scientist ocean transparency data as a resource for phytoplankton and climate research

    PubMed Central

    Seafarers, Secchi Disk; Lavender, Samantha; Beaugrand, Gregory; Crotty, David; Evans, Jake

    2017-01-01

    The oceans’ phytoplankton that underpin the marine food chain appear to be changing in abundance due to global climate change. Here, we compare the first four years of data from a citizen science ocean transparency study, conducted by seafarers using home-made Secchi Disks and a free Smartphone application called Secchi, with contemporaneous satellite ocean colour measurements. Our results show seafarers collect useful Secchi Disk measurements of ocean transparency that could help future assessments of climate-induced changes in the phytoplankton when used to extend historical Secchi Disk data. PMID:29211734

  4. Can metric-based approaches really improve multi-model climate projections? A perfect model framework applied to summer temperature change in France.

    NASA Astrophysics Data System (ADS)

    Boé, Julien; Terray, Laurent

    2014-05-01

    Ensemble approaches for climate change projections have become ubiquitous. Because of large model-to-model variations and, generally, lack of rationale for the choice of a particular climate model against others, it is widely accepted that future climate change and its impacts should not be estimated based on a single climate model. Generally, as a default approach, the multi-model ensemble mean (MMEM) is considered to provide the best estimate of climate change signals. The MMEM approach is based on the implicit hypothesis that all the models provide equally credible projections of future climate change. This hypothesis is unlikely to be true and ideally one would want to give more weight to more realistic models. A major issue with this alternative approach lies in the assessment of the relative credibility of future climate projections from different climate models, as they can only be evaluated against present-day observations: which present-day metric(s) should be used to decide which models are "good" and which models are "bad" in the future climate? Once a supposedly informative metric has been found, other issues arise. What is the best statistical method to combine multiple models results taking into account their relative credibility measured by a given metric? How to be sure in the end that the metric-based estimate of future climate change is not in fact less realistic than the MMEM? It is impossible to provide strict answers to those questions in the climate change context. Yet, in this presentation, we propose a methodological approach based on a perfect model framework that could bring some useful elements of answer to the questions previously mentioned. The basic idea is to take a random climate model in the ensemble and treat it as if it were the truth (results of this model, in both past and future climate, are called "synthetic observations"). Then, all the other members from the multi-model ensemble are used to derive thanks to a metric-based approach a posterior estimate of climate change, based on the synthetic observation of the metric. Finally, it is possible to compare the posterior estimate to the synthetic observation of future climate change to evaluate the skill of the method. The main objective of this presentation is to describe and apply this perfect model framework to test different methodological issues associated with non-uniform model weighting and similar metric-based approaches. The methodology presented is general, but will be applied to the specific case of summer temperature change in France, for which previous works have suggested potentially useful metrics associated with soil-atmosphere and cloud-temperature interactions. The relative performances of different simple statistical approaches to combine multiple model results based on metrics will be tested. The impact of ensemble size, observational errors, internal variability, and model similarity will be characterized. The potential improvements associated with metric-based approaches compared to the MMEM is terms of errors and uncertainties will be quantified.

  5. Amplification or suppression: Social networks and the climate change—migration association in rural Mexico

    PubMed Central

    Riosmena, Fernando; Hunter, Lori M.; Runfola, Daniel M.

    2015-01-01

    Increasing rates of climate migration may be of economic and national concern to sending and destination countries. It has been argued that social networks – the ties connecting an origin and destination – may operate as “migration corridors” with the potential to strongly facilitate climate change-related migration. This study investigates whether social networks at the household and community levels amplify or suppress the impact of climate change on international migration from rural Mexico. A novel set of 15 climate change indices was generated based on daily temperature and precipitation data for 214 weather stations across Mexico. Employing geostatistical interpolation techniques, the climate change values were linked to 68 rural municipalities for which sociodemographic data and detailed migration histories were available from the Mexican Migration Project. Multi-level discrete-time event-history models were used to investigate the effect of climate change on international migration between 1986 and 1999. At the household level, the effect of social networks was approximated by comparing the first to the last move, assuming that through the first move a household establishes internal social capital. At the community level, the impact of social capital was explored through interactions with a measure of the proportion of adults with migration experience. The results show that rather than amplifying, social capital may suppress the sensitivity of migration to climate triggers, suggesting that social networks could facilitate climate change adaptation in place. PMID:26692656

  6. The Green Sahara: Climate Change, Hydrologic History and Human Occupation

    NASA Technical Reports Server (NTRS)

    Blom, Ronald G.; Farr, Tom G.; Feynmann, Joan; Ruzmaikin, Alexander; Paillou, Philippe

    2009-01-01

    Archaeology can provide insight into interactions of climate change and human activities in sensitive areas such as the Sahara, to the benefit of both disciplines. Such analyses can help set bounds on climate change projections, perhaps identify elements of tipping points, and provide constraints on models. The opportunity exists to more precisely constrain the relationship of natural solar and climate interactions, improving understanding of present and future anthropogenic forcing. We are beginning to explore the relationship of human occupation of the Sahara and long-term solar irradiance variations synergetic with changes in atmospheric-ocean circulation patterns. Archaeological and climate records for the last 12 K years are gaining adequate precision to make such comparisons possible. We employ a range of climate records taken over the globe (e.g. Antarctica, Greenland, Cariaco Basin, West African Ocean cores, records from caves) to identify the timing and spatial patterns affecting Saharan climate to compare with archaeological records. We see correlation in changing ocean temperature patterns approx. contemporaneous with drying of the Sahara approx. 6K years BP. The role of radar images and other remote sensing in this work includes providing a geographically comprehensive geomorphic overview of this key area. Such coverage is becoming available from the Japanese PALSAR radar system, which can guide field work to collect archaeological and climatic data to further constrain the climate change chronology and link to models. Our initial remote sensing efforts concentrate on the Gilf Kebir area of Egypt.

  7. Climate suitability for European ticks: assessing species distribution models against null models and projection under AR5 climate.

    PubMed

    Williams, Hefin Wyn; Cross, Dónall Eoin; Crump, Heather Louise; Drost, Cornelis Jan; Thomas, Christopher James

    2015-08-28

    There is increasing evidence that the geographic distribution of tick species is changing. Whilst correlative Species Distribution Models (SDMs) have been used to predict areas that are potentially suitable for ticks, models have often been assessed without due consideration for spatial patterns in the data that may inflate the influence of predictor variables on species distributions. This study used null models to rigorously evaluate the role of climate and the potential for climate change to affect future climate suitability for eight European tick species, including several important disease vectors. We undertook a comparative assessment of the performance of Maxent and Mahalanobis Distance SDMs based on observed data against those of null models based on null species distributions or null climate data. This enabled the identification of species whose distributions demonstrate a significant association with climate variables. Latest generation (AR5) climate projections were subsequently used to project future climate suitability under four Representative Concentration Pathways (RCPs). Seven out of eight tick species exhibited strong climatic signals within their observed distributions. Future projections intimate varying degrees of northward shift in climate suitability for these tick species, with the greatest shifts forecasted under the most extreme RCPs. Despite the high performance measure obtained for the observed model of Hyalomma lusitanicum, it did not perform significantly better than null models; this may result from the effects of non-climatic factors on its distribution. By comparing observed SDMs with null models, our results allow confidence that we have identified climate signals in tick distributions that are not simply a consequence of spatial patterns in the data. Observed climate-driven SDMs for seven out of eight species performed significantly better than null models, demonstrating the vulnerability of these tick species to the effects of climate change in the future.

  8. Adaptation to Climate Change: A Comparative Analysis of Modeling Methods for Heat-Related Mortality

    PubMed Central

    Hondula, David M.; Bunker, Aditi; Ibarreta, Dolores; Liu, Junguo; Zhang, Xinxin; Sauerborn, Rainer

    2017-01-01

    Background: Multiple methods are employed for modeling adaptation when projecting the impact of climate change on heat-related mortality. The sensitivity of impacts to each is unknown because they have never been systematically compared. In addition, little is known about the relative sensitivity of impacts to “adaptation uncertainty” (i.e., the inclusion/exclusion of adaptation modeling) relative to using multiple climate models and emissions scenarios. Objectives: This study had three aims: a) Compare the range in projected impacts that arises from using different adaptation modeling methods; b) compare the range in impacts that arises from adaptation uncertainty with ranges from using multiple climate models and emissions scenarios; c) recommend modeling method(s) to use in future impact assessments. Methods: We estimated impacts for 2070–2099 for 14 European cities, applying six different methods for modeling adaptation; we also estimated impacts with five climate models run under two emissions scenarios to explore the relative effects of climate modeling and emissions uncertainty. Results: The range of the difference (percent) in impacts between including and excluding adaptation, irrespective of climate modeling and emissions uncertainty, can be as low as 28% with one method and up to 103% with another (mean across 14 cities). In 13 of 14 cities, the ranges in projected impacts due to adaptation uncertainty are larger than those associated with climate modeling and emissions uncertainty. Conclusions: Researchers should carefully consider how to model adaptation because it is a source of uncertainty that can be greater than the uncertainty in emissions and climate modeling. We recommend absolute threshold shifts and reductions in slope. https://doi.org/10.1289/EHP634 PMID:28885979

  9. Testing For The Linearity of Responses To Multiple Anthropogenic Climate Forcings

    NASA Astrophysics Data System (ADS)

    Forest, C. E.; Stone, P. H.; Sokolov, A. P.

    To test whether climate forcings are additive, we compare climate model simulations in which anthropogenic forcings are applied individually and in combination. Tests are performed with different values for climate system properties (climate sensitivity and rate of heat uptake by the deep ocean) as well as for different strengths of the net aerosol forcing, thereby testing for the dependence of linearity on these properties. The MIT 2D Land-Ocean Climate Model used in this study consists of a zonally aver- aged statistical-dynamical atmospheric model coupled to a mixed-layer Q-flux ocean model, with heat anomalies diffused into the deep ocean. Following our previous stud- ies, the anthropogenic forcings are the changes in concentrations of greenhouse gases (1860-1995), sulfate aerosol (1860-1995), and stratospheric and tropospheric ozone (1979-1995). The sulfate aerosol forcing is applied as a surface albedo change. For an aerosol forcing of -1.0 W/m2 and an effective ocean diffusitivity of 2.5 cm2/s, the nonlinearity of the response of global-mean surface temperatures to the combined forcing shows a strong dependence on climate sensitivity. The fractional change in decadal averages ([(TG + TS + TO) - TGSO]/TGSO) for the 1986-1995 period compared to pre-industrial times are 0.43, 0.90, and 1.08 with climate sensitiv- ities of 3.0, 4.5, and 6.2 C, respectively. The values of TGSO for these three cases o are 0.52, 0.62, and 0.76 C. The dependence of linearity on climate system properties, o the role of climate system feedbacks, and the implications for the detection of climate system's response to individual forcings will be presented. Details of the model and forcings can be found at http://web.mit.edu/globalchange/www/.

  10. Testing for the linearity of responses to multiple anthropogenic climate forcings

    NASA Astrophysics Data System (ADS)

    Forest, C. E.; Stone, P. H.; Sokolov, A. P.

    2001-12-01

    To test whether climate forcings are additive, we compare climate model simulations in which anthropogenic forcings are applied individually and in combination. Tests are performed with different values for climate system properties (climate sensitivity and rate of heat uptake by the deep ocean) as well as for different strengths of the net aerosol forcing, thereby testing for the dependence of linearity on these properties. The MIT 2D Land-Ocean Climate Model used in this study consists of a zonally averaged statistical-dynamical atmospheric model coupled to a mixed-layer Q-flux ocean model, with heat anomalies diffused into the deep ocean. Following our previous studies, the anthropogenic forcings are the changes in concentrations of greenhouse gases (1860-1995), sulfate aerosol (1860-1995), and stratospheric and tropospheric ozone (1979-1995). The sulfate aerosol forcing is applied as a surface albedo change. For an aerosol forcing of -1.0 W/m2 and an effective ocean diffusitivity of 2.5 cm2/s, the nonlinearity of the response of global-mean surface temperatures to the combined forcing shows a strong dependence on climate sensitivity. The fractional change in decadal averages ([(Δ TG + Δ TS + Δ TO) - Δ TGSO ]/ Δ TGSO) for the 1986-1995 period compared to pre-industrial times are 0.43, 0.90, and 1.08 with climate sensitivities of 3.0, 4.5, and 6.2 oC, respectively. The values of Δ TGSO for these three cases are 0.52, 0.62, and 0.76 oC. The dependence of linearity on climate system properties, the role of climate system feedbacks, and the implications for the detection of climate system's response to individual forcings will be presented. Details of the model and forcings can be found at http://web.mit.edu/globalchange/www/.

  11. The Effect of Mitigation Policy on Regional Climate Impacts on the U.S. Electric Sector

    NASA Astrophysics Data System (ADS)

    Cohen, S. M.; Sun, Y.; Strzepek, K.; McFarland, J.; Boehlert, B.; Fant, C.

    2017-12-01

    Climate change can influence the U.S. electricity sector in many ways, the nature of which can be shaped by energy and environmental policy choices. Changing temperatures affect electricity demand largely through heating and cooling needs, and temperatures also affect generation and transmission system performance. Altered precipitation patterns affect the regional and seasonal distribution of surface water runoff, which changes hydropower operation and thermal cooling water availability. The extent to which these stimuli influence U.S. power sector operation and planning will depend to some extent on whether or not proactive policies are enacted to mitigate these impacts. Mitigation policies such as CO2 emissions limits or technology restrictions can change the makeup of the electricity system while reducing the extent of climate change itself. We use the National Renewable Energy Laboratory's Regional Energy Deployment System (ReEDS), a U.S. electric sector capacity expansion model, to explore electric sector evolution through 2050 under alternative climate and policy assumptions. The model endogenously represents climate impacts on load, power system performance, cooling water availability, and hydropower, allowing internally consistent system responses to climate change along with projected technology, market, and policy conditions. We compare climate impacts across 5 global circulation models for a 8.5 W/m2 representative concentration pathway (RCP) without a climate mitigation policy and a 4.5 W/m2 RCP with climate mitigation. Climate drivers affect the capacity and generation mix at the national and regional levels, with relative growth of wind, solar, and natural gas-based technologies depending on local electricity system characteristics. These differences affect regional economic impacts, measured here as changes to electricity price and system costs. Mitigation policy reduces the economic and system impacts of climate change largely by moderating temperature-induced load but also by lessening water- and temperature-based performance constraints. Policy impacts are nuanced and region-specific, and this analysis underscores the importance of climate mitigation policy to regional electricity system planning decisions.

  12. Impacts of future climate change on urban flood volumes in Hohhot in northern China: benefits of climate change mitigation and adaptations

    NASA Astrophysics Data System (ADS)

    Zhou, Qianqian; Leng, Guoyong; Huang, Maoyi

    2018-01-01

    As China becomes increasingly urbanised, flooding has become a regular occurrence in its major cities. Assessing the effects of future climate change on urban flood volumes is crucial to informing better management of such disasters given the severity of the devastating impacts of flooding (e.g. the 2016 flooding events across China). Although recent studies have investigated the impacts of future climate change on urban flooding, the effects of both climate change mitigation and adaptation have rarely been accounted for together in a consistent framework. In this study, we assess the benefits of mitigating climate change by reducing greenhouse gas (GHG) emissions and locally adapting to climate change by modifying drainage systems to reduce urban flooding under various climate change scenarios through a case study conducted in northern China. The urban drainage model - Storm Water Management Model - was used to simulate urban flood volumes using current and two adapted drainage systems (i.e. pipe enlargement and low-impact development, LID), driven by bias-corrected meteorological forcing from five general circulation models in the Coupled Model Intercomparison Project Phase 5 archive. Results indicate that urban flood volume is projected to increase by 52 % over 2020-2040 compared to the volume in 1971-2000 under the business-as-usual scenario (i.e. Representative Concentration Pathway (RCP) 8.5). The magnitudes of urban flood volumes are found to increase nonlinearly with changes in precipitation intensity. On average, the projected flood volume under RCP 2.6 is 13 % less than that under RCP 8.5, demonstrating the benefits of global-scale climate change mitigation efforts in reducing local urban flood volumes. Comparison of reduced flood volumes between climate change mitigation and local adaptation (by improving drainage systems) scenarios suggests that local adaptation is more effective than climate change mitigation in reducing future flood volumes. This has broad implications for the research community relative to drainage system design and modelling in a changing environment. This study highlights the importance of accounting for local adaptation when coping with future urban floods.

  13. Impacts of future climate change on urban flood volumes in Hohhot in northern China: benefits of climate change mitigation and adaptations

    DOE PAGES

    Zhou, Qianqian; Leng, Guoyong; Huang, Maoyi

    2018-01-15

    As China becomes increasingly urbanised, flooding has become a regular occurrence in its major cities. Assessing the effects of future climate change on urban flood volumes is crucial to informing better management of such disasters given the severity of the devastating impacts of flooding (e.g. the 2016 flooding events across China). Although recent studies have investigated the impacts of future climate change on urban flooding, the effects of both climate change mitigation and adaptation have rarely been accounted for together in a consistent framework. In this study, we assess the benefits of mitigating climate change by reducing greenhouse gas (GHG)more » emissions and locally adapting to climate change by modifying drainage systems to reduce urban flooding under various climate change scenarios through a case study conducted in northern China. The urban drainage model – Storm Water Management Model – was used to simulate urban flood volumes using current and two adapted drainage systems (i.e. pipe enlargement and low-impact development, LID), driven by bias-corrected meteorological forcing from five general circulation models in the Coupled Model Intercomparison Project Phase 5 archive. Results indicate that urban flood volume is projected to increase by 52 % over 2020–2040 compared to the volume in 1971–2000 under the business-as-usual scenario (i.e. Representative Concentration Pathway (RCP) 8.5). The magnitudes of urban flood volumes are found to increase nonlinearly with changes in precipitation intensity. On average, the projected flood volume under RCP 2.6 is 13 % less than that under RCP 8.5, demonstrating the benefits of global-scale climate change mitigation efforts in reducing local urban flood volumes. Comparison of reduced flood volumes between climate change mitigation and local adaptation (by improving drainage systems) scenarios suggests that local adaptation is more effective than climate change mitigation in reducing future flood volumes. This has broad implications for the research community relative to drainage system design and modelling in a changing environment. Furthermore, this study highlights the importance of accounting for local adaptation when coping with future urban floods.« less

  14. Impacts of future climate change on urban flood volumes in Hohhot in northern China: benefits of climate change mitigation and adaptations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Qianqian; Leng, Guoyong; Huang, Maoyi

    As China becomes increasingly urbanised, flooding has become a regular occurrence in its major cities. Assessing the effects of future climate change on urban flood volumes is crucial to informing better management of such disasters given the severity of the devastating impacts of flooding (e.g. the 2016 flooding events across China). Although recent studies have investigated the impacts of future climate change on urban flooding, the effects of both climate change mitigation and adaptation have rarely been accounted for together in a consistent framework. In this study, we assess the benefits of mitigating climate change by reducing greenhouse gas (GHG)more » emissions and locally adapting to climate change by modifying drainage systems to reduce urban flooding under various climate change scenarios through a case study conducted in northern China. The urban drainage model – Storm Water Management Model – was used to simulate urban flood volumes using current and two adapted drainage systems (i.e. pipe enlargement and low-impact development, LID), driven by bias-corrected meteorological forcing from five general circulation models in the Coupled Model Intercomparison Project Phase 5 archive. Results indicate that urban flood volume is projected to increase by 52 % over 2020–2040 compared to the volume in 1971–2000 under the business-as-usual scenario (i.e. Representative Concentration Pathway (RCP) 8.5). The magnitudes of urban flood volumes are found to increase nonlinearly with changes in precipitation intensity. On average, the projected flood volume under RCP 2.6 is 13 % less than that under RCP 8.5, demonstrating the benefits of global-scale climate change mitigation efforts in reducing local urban flood volumes. Comparison of reduced flood volumes between climate change mitigation and local adaptation (by improving drainage systems) scenarios suggests that local adaptation is more effective than climate change mitigation in reducing future flood volumes. This has broad implications for the research community relative to drainage system design and modelling in a changing environment. Furthermore, this study highlights the importance of accounting for local adaptation when coping with future urban floods.« less

  15. Evaluating the relative impact of climate and economic changes on forest and agricultural ecosystem services in mountain regions.

    PubMed

    Briner, Simon; Elkin, Ché; Huber, Robert

    2013-11-15

    Provisioning of ecosystem services (ES) in mountainous regions is predicted to be influenced by i) the direct biophysical impacts of climate change, ii) climate mediated land use change, and iii) socioeconomic driven changes in land use. The relative importance and the spatial distribution of these factors on forest and agricultural derived ES, however, is unclear, making the implementation of ES management schemes difficult. Using an integrated economic-ecological modeling framework, we evaluated the impact of these driving forces on the provision of forest and agricultural ES in a mountain region of southern Switzerland. Results imply that forest ES will be strongly influenced by the direct impact of climate change, but that changes in land use will have a comparatively small impact. The simulation of direct impacts of climate change affects forest ES at all elevations, while land use changes can only be found at high elevations. In contrast, changes to agricultural ES were found to be primarily due to shifts in economic conditions that alter land use and land management. The direct influence of climate change on agriculture is only predicted to be substantial at high elevations, while socioeconomic driven shifts in land use are projected to affect agricultural ES at all elevations. Our simulation results suggest that policy schemes designed to mitigate the negative impact of climate change on forests should focus on suitable adaptive management plans, accelerating adaptation processes for currently forested areas. To maintain provision of agricultural ES policy needs to focus on economic conditions rather than on supporting adaptation to new climate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Uncertainty of simulated groundwater levels arising from stochastic transient climate change scenarios

    NASA Astrophysics Data System (ADS)

    Goderniaux, Pascal; Brouyère, Serge; Blenkinsop, Stephen; Burton, Aidan; Fowler, Hayley; Dassargues, Alain

    2010-05-01

    The evaluation of climate change impact on groundwater reserves represents a difficult task because both hydrological and climatic processes are complex and difficult to model. In this study, we present an innovative methodology that combines the use of integrated surface - subsurface hydrological models with advanced stochastic transient climate change scenarios. This methodology is applied to the Geer basin (480 km²) in Belgium, which is intensively exploited to supply the city of Liège (Belgium) with drinking water. The physically-based, spatially-distributed, surface-subsurface flow model has been developed with the finite element model HydroGeoSphere . The simultaneous solution of surface and subsurface flow equations in HydroGeoSphere, as well as the internal calculation of the actual evapotranspiration as a function of the soil moisture at each node of the evaporative zone, enables a better representation of interconnected processes in all domains of the catchment (fully saturated zone, partially saturated zone, surface). Additionally, the use of both surface and subsurface observed data to calibrate the model better constrains the calibration of the different water balance terms. Crucially, in the context of climate change impacts on groundwater resources, the evaluation of groundwater recharge is improved. . This surface-subsurface flow model is combined with advanced climate change scenarios for the Geer basin. Climate change simulations were obtained from six regional climate model (RCM) scenarios assuming the SRES A2 greenhouse gases emission (medium-high) scenario. These RCM scenarios were statistically downscaled using a transient stochastic weather generator technique, combining 'RainSim' and the 'CRU weather generator' for temperature and evapotranspiration time series. This downscaling technique exhibits three advantages compared with the 'delta change' method usually used in groundwater impact studies. (1) Corrections to climate model output are applied not only to the mean of climatic variables, but also across the statistical distributions of these variables. This is important as these distributions are expected to change in the future, with more extreme rainfall events, separated by longer dry periods. (2) The novel approach used in this study can simulate transient climate change from 2010 to 2085, rather than time series representative of a stationary climate for the period 2071-2100. (3) The weather generator is used to generate a large number of equiprobable climate change scenarios for each RCM, representative of the natural variability of the weather. All of these scenarios are applied as input to the Geer basin model to assess the projected impact of climate change on groundwater levels, the uncertainty arising for different RCM projections and the uncertainty linked to natural climatic variability. Using the output results from all scenarios, 95% confidence intervals are calculated for each year and month between 2010 and 2085. The climate change scenarios for the Geer basin model predict hotter and drier summers and warmer and wetter winters. Considering the results of this study, it is very likely that groundwater levels and surface flow rates in the Geer basin will decrease by the end of the century. This is of concern because it also means that groundwater quantities available for abstraction will also decrease. However, this study also shows that the uncertainty of these projections is relatively large compared to the projected changes so that it remains difficult to confidently determine the magnitude of the decrease. The use and combination of an integrated surface - subsurface model and stochastic climate change scenarios has never been used in previous climate change impact studies on groundwater resources. It constitutes an innovation and is an important tool for helping water managers to take decisions.

  17. Enhanced economic connectivity to foster heat stress-related losses.

    PubMed

    Wenz, Leonie; Levermann, Anders

    2016-06-01

    Assessing global impacts of unexpected meteorological events in an increasingly connected world economy is important for estimating the costs of climate change. We show that since the beginning of the 21st century, the structural evolution of the global supply network has been such as to foster an increase of climate-related production losses. We compute first- and higher-order losses from heat stress-induced reductions in productivity under changing economic and climatic conditions between 1991 and 2011. Since 2001, the economic connectivity has augmented in such a way as to facilitate the cascading of production loss. The influence of this structural change has dominated over the effect of the comparably weak climate warming during this decade. Thus, particularly under future warming, the intensification of international trade has the potential to amplify climate losses if no adaptation measures are taken.

  18. Enhanced economic connectivity to foster heat stress–related losses

    PubMed Central

    Wenz, Leonie; Levermann, Anders

    2016-01-01

    Assessing global impacts of unexpected meteorological events in an increasingly connected world economy is important for estimating the costs of climate change. We show that since the beginning of the 21st century, the structural evolution of the global supply network has been such as to foster an increase of climate-related production losses. We compute first- and higher-order losses from heat stress–induced reductions in productivity under changing economic and climatic conditions between 1991 and 2011. Since 2001, the economic connectivity has augmented in such a way as to facilitate the cascading of production loss. The influence of this structural change has dominated over the effect of the comparably weak climate warming during this decade. Thus, particularly under future warming, the intensification of international trade has the potential to amplify climate losses if no adaptation measures are taken. PMID:27386555

  19. Assessment of production risks for winter wheat in different German regions under climate change conditions

    NASA Astrophysics Data System (ADS)

    Kersebaum, K. C.; Gandorfer, M.; Wegehenkel, M.

    2012-04-01

    The study shows climate change impacts on wheat production in selected regions across Germany. To estimate yield and economic effects the agro-ecosystem model HERMES was used. The model performed runs using 2 different releases of the model WETTREG providing statistically downscaled climate change scenarios for the weather station network of the German Weather Service. Simulations were done using intersected GIS information on soil types and land use identifying the most relevant sites for wheat production. The production risks for wheat yields at the middle of this century were compared to a reference of the present climate. The irrigation demand was determined by the model using an automatic irrigation mode. Production risks with and without irrigation were assessed and the economic feasibility to reduce production risks by irrigation was evaluated. Costs and benefits were compared. Additionally, environmental effects, e.g. groundwater recharge and nitrogen emissions were assessed for irrigated and rain fed systems. Results show that positive and negative effects of climate change occur within most regions depending on the site conditions. Water holding capacity and groundwater distance were the most important factors which determined the vulnerability of sites. Under climate change condition in the middle of the next century we can expect especially at sites with low water holding capacity decreasing average gross margins, higher production risks and a reduced nitrogen use efficiency under rainfed conditions. Irrigation seems to be profitable and risk reducing at those sites, provided that water for irrigation is available. Additionally, the use of irrigation can also increase nitrogen use efficiency which reduced emissions by leaching. Despite the site conditions results depend strongly on the used regional climate scenario and the model approach to consider the effect of elevated CO2 in the atmosphere.

  20. Impacts of impervious cover, water withdrawals, and climate change on river flows in the conterminous US

    NASA Astrophysics Data System (ADS)

    Caldwell, P. V.; Sun, G.; McNulty, S. G.; Cohen, E. C.; Moore Myers, J. A.

    2012-08-01

    Rivers are essential to aquatic ecosystem and societal sustainability, but are increasingly impacted by water withdrawals, land-use change, and climate change. The relative and cumulative effects of these stressors on continental river flows are relatively unknown. In this study, we used an integrated water balance and flow routing model to evaluate the impacts of impervious cover and water withdrawal on river flow across the conterminous US at the 8-digit Hydrologic Unit Code (HUC) watershed scale. We then estimated the impacts of projected change in withdrawals, impervious cover, and climate under the B1 "Low" and A2 "High" emission scenarios on river flows by 2060. Our results suggest that compared to no impervious cover, 2010 levels of impervious cover increased river flows by 9.9% on average with larger impacts in and downstream of major metropolitan areas. In contrast, compared to no water withdrawals, 2005 withdrawals decreased river flows by 1.4% on average with larger impacts in heavily irrigated arid regions of Western US. By 2060, impacts of climate change were predicted to overwhelm the potential gain in river flow due to future changes in impervious cover and add to the potential reduction in river flows from withdrawals, decreasing mean annual river flows from 2010 levels by 16% on average. However, increases in impervious cover by 2060 may offset the impact of climate change during the growing season in some watersheds. Large water withdrawals will aggravate the predicted impact of climate change on river flows, particularly in the Western US. Predicted ecohydrological impacts of land cover, water withdrawal, and climate change will likely include alteration of the terrestrial water balance, stream channel habitat, riparian and aquatic community structure in snow-dominated basins, and fish and mussel extirpations in heavily impacted watersheds. These changes may also require new infrastructure to support increasing anthropogenic demand for water, relocation of agricultural production, and/or water conservation measures. Given that the impacts of land use, withdrawals and climate may be either additive or offsetting in different magnitudes, integrated and spatially explicit modeling and management approaches are necessary to effectively manage water resources for aquatic life and human use in the face of global change.

  1. The response of land-falling tropical cyclone characteristics to projected climate change in northeast Australia

    NASA Astrophysics Data System (ADS)

    Parker, Chelsea L.; Bruyère, Cindy L.; Mooney, Priscilla A.; Lynch, Amanda H.

    2018-01-01

    Land-falling tropical cyclones along the Queensland coastline can result in serious and widespread damage. However, the effects of climate change on cyclone characteristics such as intensity, trajectory, rainfall, and especially translation speed and size are not well-understood. This study explores the relative change in the characteristics of three case studies by comparing the simulated tropical cyclones under current climate conditions with simulations of the same systems under future climate conditions. Simulations are performed with the Weather Research and Forecasting Model and environmental conditions for the future climate are obtained from the Community Earth System Model using a pseudo global warming technique. Results demonstrate a consistent response of increasing intensity through reduced central pressure (by up to 11 hPa), increased wind speeds (by 5-10% on average), and increased rainfall (by up to 27% for average hourly rainfall rates). The responses of other characteristics were variable and governed by either the location and trajectory of the current climate cyclone or the change in the steering flow. The cyclone that traveled furthest poleward encountered a larger climate perturbation, resulting in a larger proportional increase in size, rainfall rate, and wind speeds. The projected monthly average change in the 500 mb winds with climate change governed the alteration in the both the trajectory and translation speed for each case. The simulated changes have serious implications for damage to coastal settlements, infrastructure, and ecosystems through increased wind speeds, storm surge, rainfall, and potentially increased size of some systems.

  2. Preliminary Comparison of March-May Radiosonde Soundings with March-May Climatological Profiles for Yuma, Arizona

    DTIC Science & Technology

    2017-02-01

    difference from the climate -based METCM. The Tv changes are shown in Fig. 5, but given the smaller relative changes only the ±2 SD curves are presented...planning and in field tests when sounding data are not available. However, the use of climate mean profiles may lead to wide differences from actual...individual atmospheric profiles. This brief report investigates the variation of a series of soundings as compared to climate mean soundings and

  3. Climate change impacts on crop yield: evidence from China.

    PubMed

    Wei, Taoyuan; Cherry, Todd L; Glomrød, Solveig; Zhang, Tianyi

    2014-11-15

    When estimating climate change impact on crop yield, a typical assumption is constant elasticity of yield with respect to a climate variable even though the elasticity may be inconstant. After estimating both constant and inconstant elasticities with respect to temperature and precipitation based on provincial panel data in China 1980-2008, our results show that during that period, the temperature change contributes positively to total yield growth by 1.3% and 0.4% for wheat and rice, respectively, but negatively by 12% for maize. The impacts of precipitation change are marginal. We also compare our estimates with other studies and highlight the implications of the inconstant elasticities for crop yield, harvest and food security. We conclude that climate change impact on crop yield would not be an issue in China if positive impacts of other socio-economic factors continue in the future. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Erosion of Northern Hemisphere blanket peatlands under 21st-century climate change

    NASA Astrophysics Data System (ADS)

    Li, Pengfei; Holden, Joseph; Irvine, Brian; Mu, Xingmin

    2017-04-01

    Peatlands are important terrestrial carbon stores particularly in the Northern Hemisphere. Many peatlands, such as those in the British Isles, Sweden, and Canada, have undergone increased erosion, resulting in degraded water quality and depleted soil carbon stocks. It is unclear how climate change may impact future peat erosion. Here we use a physically based erosion model (Pan-European Soil Erosion Risk Assessment-PEAT), driven by seven different global climate models (GCMs), to predict fluvial blanket peat erosion in the Northern Hemisphere under 21st-century climate change. After an initial decline, total hemispheric blanket peat erosion rates are found to increase during 2070-2099 (2080s) compared with the baseline period (1961-1990) for most of the GCMs. Regional erosion variability is high with changes to baseline ranging between -1.27 and +21.63 t ha-1 yr-1 in the 2080s. These responses are driven by effects of temperature (generally more dominant) and precipitation change on weathering processes. Low-latitude and warm blanket peatlands are at most risk to fluvial erosion under 21st-century climate change.

  5. A preliminary study of mechanistic approach in pavement design to accommodate climate change effects

    NASA Astrophysics Data System (ADS)

    Harnaeni, S. R.; Pramesti, F. P.; Budiarto, A.; Setyawan, A.

    2018-03-01

    Road damage is caused by some factors, including climate changes, overload, and inappropriate procedure for material and development process. Meanwhile, climate change is a phenomenon which cannot be avoided. The effects observed include air temperature rise, sea level rise, rainfall changes, and the intensity of extreme weather phenomena. Previous studies had shown the impacts of climate changes on road damage. Therefore, several measures to anticipate the damage should be considered during the planning and construction in order to reduce the cost of road maintenance. There are three approaches generally applied in the design of flexible pavement thickness, namely mechanistic approach, mechanistic-empirical (ME) approach and empirical approach. The advantages of applying mechanistic approach or mechanistic-empirical (ME) approaches are its efficiency and reliability in the design of flexible pavement thickness as well as its capacity to accommodate climate changes in compared to empirical approach. However, generally, the design of flexible pavement thickness in Indonesia still applies empirical approach. This preliminary study aimed to emphasize the importance of the shifting towards a mechanistic approach in the design of flexible pavement thickness.

  6. Assessing Impacts of Climate Change on Forests: The State of Biological Modeling

    DOE R&D Accomplishments Database

    Dale, V. H.; Rauscher, H. M.

    1993-04-06

    Models that address the impacts to forests of climate change are reviewed by four levels of biological organization: global, regional or landscape, community, and tree. The models are compared as to their ability to assess changes in greenhouse gas flux, land use, maps of forest type or species composition, forest resource productivity, forest health, biodiversity, and wildlife habitat. No one model can address all of these impacts, but landscape transition models and regional vegetation and land-use models consider the largest number of impacts. Developing landscape vegetation dynamics models of functional groups is suggested as a means to integrate the theory of both landscape ecology and individual tree responses to climate change. Risk assessment methodologies can be adapted to deal with the impacts of climate change at various spatial and temporal scales. Four areas of research development are identified: (1) linking socioeconomic and ecologic models, (2) interfacing forest models at different scales, (3) obtaining data on susceptibility of trees and forest to changes in climate and disturbance regimes, and (4) relating information from different scales.

  7. Prospects for Environmental Communication Based on 25 Years of Newspaper Coverage of Climate Change and Eutrophication in Finland

    ERIC Educational Resources Information Center

    Lyytimäki, Jari

    2015-01-01

    Research on long-term media coverage of environmental issues has focused predominantly on English-speaking industrialized countries and on single isolated topics. This article presents a comparative analysis of the Finnish newspaper coverage of climate change and eutrophication from 1990-2014. The coverage of eutrophication showed an annual cycle…

  8. Evidence of tree species’ range shifts in a complex landscape

    Treesearch

    Vicente J. Monleon; Heather E. Lintz; Sylvain Delzon

    2015-01-01

    Climate change is expected to change the distribution of species. For long-lived, sessile species such as trees, tracking the warming climate depends on seedling colonization of newly favorable areas. We compare the distribution of seedlings and mature trees for all but the rarest tree species in California, Oregon and Washington, United States of America, a large,...

  9. Climate Change Course Impacts on the Individual, Their Future, and Interactions with Others

    ERIC Educational Resources Information Center

    Yanascavage, Christina

    2012-01-01

    This report explores the impacts a university climate change course has on those enrolled in the course. The research quantitatively measures and compares opinions, attitudes, and knowledge among groups, then qualitatively explores the responses of the group to identify course impacts. The results show reasons people enroll in the course, how they…

  10. Evaluations of alternative methods for monitoring and estimating responses of salmon productivity in the North Pacific to future climatic change and other processes: A simulation study

    EPA Science Inventory

    Estimation of the relative influence of climate change, compared to other human activities, on dynamics of Pacific salmon (Oncorhynchus spp.) populations can help management agencies take appropriate management actions. We used empirically based simulation modelling of 48 sockeye...

  11. Physio-climatic controls on vulnerability of watersheds to climate and land use change across the U. S.

    NASA Astrophysics Data System (ADS)

    Deshmukh, Ankit; Singh, Riddhi

    2016-11-01

    Understanding how a watershed's physio-climatic characteristics affect its vulnerability to environmental (climatic and land use) change is crucial for managing these complex systems. In this study, we combine the strengths of recently developed exploratory modeling frameworks and comparative hydrology to quantify the relationship between watershed's vulnerability and its physio-climatic characteristics. We propose a definition of vulnerability that can be used by a diverse range of water system managers and is useful in the presence of large uncertainties in drivers of environmental change. This definition is related to adverse climate change and land use thresholds that are quantified using a recently developed exploratory modeling approach. In this way, we estimate the vulnerability of 69 watersheds in the United States to climate and land use change. We explore definitions of vulnerability that describe average or extreme flow conditions, as well as others that are relevant from the point of view of instream organisms. In order to understand the dominant controls on vulnerability, we correlate these indices with watershed's characteristics describing its topography, geology, drainage, climate, and land use. We find that mean annual flow is more vulnerable to reductions in precipitation in watersheds with lower average soil permeability, lower baseflow index, lower forest cover, higher topographical wetness index, and vice-versa. Our results also indicate a potential mediation of climate change impacts by regional groundwater systems. By developing such relationships across a large range of watersheds, such information can potentially be used to assess the vulnerability of ungauged watersheds to uncertain environmental change.

  12. The Dependencies of Ecosystem Pattern, Structure, and Dynamics on Climate, Climate Variability, and Climate Change

    NASA Astrophysics Data System (ADS)

    Flanagan, S.; Hurtt, G. C.; Fisk, J. P.; Rourke, O.

    2012-12-01

    A robust understanding of the sensitivity of the pattern, structure, and dynamics of ecosystems to climate, climate variability, and climate change is needed to predict ecosystem responses to current and projected climate change. We present results of a study designed to first quantify the sensitivity of ecosystems to climate through the use of climate and ecosystem data, and then use the results to test the sensitivity of the climate data in a state-of the art ecosystem model. A database of available ecosystem characteristics such as mean canopy height, above ground biomass, and basal area was constructed from sources like the National Biomass and Carbon Dataset (NBCD). The ecosystem characteristics were then paired by latitude and longitude with the corresponding climate characteristics temperature, precipitation, photosynthetically active radiation (PAR) and dew point that were retrieved from the North American Regional Reanalysis (NARR). The average yearly and seasonal means of the climate data, and their associated maximum and minimum values, over the 1979-2010 time frame provided by NARR were constructed and paired with the ecosystem data. The compiled results provide natural patterns of vegetation structure and distribution with regard to climate data. An advanced ecosystem model, the Ecosystem Demography model (ED), was then modified to allow yearly alterations to its mechanistic climate lookup table and used to predict the sensitivities of ecosystem pattern, structure, and dynamics to climate data. The combined ecosystem structure and climate data results were compared to ED's output to check the validity of the model. After verification, climate change scenarios such as those used in the last IPCC were run and future forest structure changes due to climate sensitivities were identified. The results of this study can be used to both quantify and test key relationships for next generation models. The sensitivity of ecosystem characteristics to climate data shown in the database construction and by the model reinforces the need for high-resolution datasets and stresses the importance of understanding and incorporating climate change scenarios into earth system models.

  13. Disentangling the effects of a century of eutrophication and climate warming on freshwater lake fish assemblages

    PubMed Central

    Hansen, Gretchen J. A.; Bethke, Bethany J.; Cross, Timothy K.

    2017-01-01

    Eutrophication and climate warming are profoundly affecting fish in many freshwater lakes. Understanding the specific effects of these stressors is critical for development of effective adaptation and remediation strategies for conserving fish populations in a changing environment. Ecological niche models that incorporated the individual effects of nutrient concentration and climate were developed for 25 species of fish sampled in standard gillnet surveys from 1,577 Minnesota lakes. Lake phosphorus concentrations and climates were hindcasted to a pre-disturbance period of 1896–1925 using existing land use models and historical temperature data. Then historical fish assemblages were reconstructed using the ecological niche models. Substantial changes were noted when reconstructed fish assemblages were compared to those from the contemporary period (1981–2010). Disentangling the sometimes opposing, sometimes compounding, effects of eutrophication and climate warming was critical for understanding changes in fish assemblages. Reconstructed abundances of eutrophication-tolerant, warmwater taxa increased in prairie lakes that experienced significant eutrophication and climate warming. Eutrophication-intolerant, warmwater taxa abundance increased in forest lakes where primarily climate warming was the stressor. Coolwater fish declined in abundance in both ecoregions. Large changes in modeled abundance occurred when the effects of both climate and eutrophication operated in the same direction for some species. Conversely, the effects of climate warming and eutrophication operated in opposing directions for other species and dampened net changes in abundance. Quantifying the specific effects of climate and eutrophication will allow water resource managers to better understand how lakes have changed and provide expectations for sustainable fish assemblages in the future. PMID:28777816

  14. Beyond just sea-level rise: considering macroclimatic drivers within coastal wetland vulnerability assessments to climate change.

    PubMed

    Osland, Michael J; Enwright, Nicholas M; Day, Richard H; Gabler, Christopher A; Stagg, Camille L; Grace, James B

    2016-01-01

    Due to their position at the land-sea interface, coastal wetlands are vulnerable to many aspects of climate change. However, climate change vulnerability assessments for coastal wetlands generally focus solely on sea-level rise without considering the effects of other facets of climate change. Across the globe and in all ecosystems, macroclimatic drivers (e.g., temperature and rainfall regimes) greatly influence ecosystem structure and function. Macroclimatic drivers have been the focus of climate change-related threat evaluations for terrestrial ecosystems, but largely ignored for coastal wetlands. In some coastal wetlands, changing macroclimatic conditions are expected to result in foundation plant species replacement, which would affect the supply of certain ecosystem goods and services and could affect ecosystem resilience. As examples, we highlight several ecological transition zones where small changes in macroclimatic conditions would result in comparatively large changes in coastal wetland ecosystem structure and function. Our intent in this communication is not to minimize the importance of sea-level rise. Rather, our overarching aim is to illustrate the need to also consider macroclimatic drivers within vulnerability assessments for coastal wetlands. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  15. Climate change adaptation benefits of potential conservation partnerships.

    PubMed

    Monahan, William B; Theobald, David M

    2018-01-01

    We evaluate the world terrestrial network of protected areas (PAs) for its partnership potential in responding to climate change. That is, if a PA engaged in collaborative, trans-boundary management of species, by investing in conservation partnerships with neighboring areas, what climate change adaptation benefits might accrue? We consider core tenets of conservation biology related to protecting large areas with high environmental heterogeneity and low climate change velocity and ask how a series of biodiversity adaptation indicators change across spatial scales encompassing potential PA and non-PA partners. Less than 1% of current world terrestrial PAs equal or exceed the size of established and successful conservation partnerships. Partnering at this scale would increase the biodiversity adaptation indicators by factors up to two orders of magnitude, compared to a null model in which each PA is isolated. Most partnership area surrounding PAs is comprised of non-PAs (70%), indicating the importance of looking beyond the current network of PAs when promoting climate change adaptation. Given monumental challenges with PA-based species conservation in the face of climate change, partnerships provide a logical and achievable strategy for helping areas adapt. Our findings identify where strategic partnering efforts in highly vulnerable areas of the world may prove critical in safeguarding biodiversity.

  16. Evaluating the effects of climate change on summertime ozone using a relative response factor approach for policymakers.

    PubMed

    Avise, Jeremy; Abraham, Rodrigo Gonzalez; Chung, Serena H; Chen, Jack; Lamb, Brian; Salathé, Eric P; Zhang, Yongxin; Nolte, Christopher G; Loughlin, Daniel H; Guenther, Alex; Wiedinmyer, Christine; Duhl, Tiffany

    2012-09-01

    The impact of climate change on surface-level ozone is examined through a multiscale modeling effort that linked global and regional climate models to drive air quality model simulations. Results are quantified in terms of the relative response factor (RRF(E)), which estimates the relative change in peak ozone concentration for a given change in pollutant emissions (the subscript E is added to RRF to remind the reader that the RRF is due to emission changes only). A matrix of model simulations was conducted to examine the individual and combined effects offuture anthropogenic emissions, biogenic emissions, and climate on the RRF(E). For each member in the matrix of simulations the warmest and coolest summers were modeled for the present-day (1995-2004) and future (2045-2054) decades. A climate adjustment factor (CAF(C) or CAF(CB) when biogenic emissions are allowed to change with the future climate) was defined as the ratio of the average daily maximum 8-hr ozone simulated under a future climate to that simulated under the present-day climate, and a climate-adjusted RRF(EC) was calculated (RRF(EC) = RRF(E) x CAF(C)). In general, RRF(EC) > RRF(E), which suggests additional emission controls will be required to achieve the same reduction in ozone that would have been achieved in the absence of climate change. Changes in biogenic emissions generally have a smaller impact on the RRF(E) than does future climate change itself The direction of the biogenic effect appears closely linked to organic-nitrate chemistry and whether ozone formation is limited by volatile organic compounds (VOC) or oxides of nitrogen (NO(x) = NO + NO2). Regions that are generally NO(x) limited show a decrease in ozone and RRF(EC), while VOC-limited regions show an increase in ozone and RRF(EC). Comparing results to a previous study using different climate assumptions and models showed large variability in the CAF(CB). We present a methodology for adjusting the RRF to account for the influence of climate change on ozone. The findings of this work suggest that in some geographic regions, climate change has the potential to negate decreases in surface ozone concentrations that would otherwise be achieved through ozone mitigation strategies. In regions of high biogenic VOC emissions relative to anthropogenic NO(x) emissions, the impact of climate change is somewhat reduced, while the opposite is true in regions of high anthropogenic NO(x) emissions relative to biogenic VOC emissions. Further, different future climate realizations are shown to impact ozone in different ways.

  17. Ocean Carbon Cycle Feedbacks Under Negative Emissions

    NASA Astrophysics Data System (ADS)

    Schwinger, Jörg; Tjiputra, Jerry

    2018-05-01

    Negative emissions will most likely be needed to achieve ambitious climate targets, such as limiting global warming to 1.5°. Here we analyze the ocean carbon-concentration and carbon-climate feedback in an Earth system model under an idealized strong CO2 peak and decline scenario. We find that the ocean carbon-climate feedback is not reversible by means of negative emissions on decadal to centennial timescales. When preindustrial surface climate is restored, the oceans, due to the carbon-climate feedback, still contain about 110 Pg less carbon compared to a simulation without climate change. This result is unsurprising but highlights an issue with a widely used carbon cycle feedback metric. We show that this metric can be greatly improved by using ocean potential temperature as a proxy for climate change. The nonlinearity (nonadditivity) of climate and CO2-driven feedbacks continues to grow after the atmospheric CO2 peak.

  18. Comparing impacts of climate change and mitigation on global agriculture by 2050

    NASA Astrophysics Data System (ADS)

    van Meijl, Hans; Havlik, Petr; Lotze-Campen, Hermann; Stehfest, Elke; Witzke, Peter; Pérez Domínguez, Ignacio; Bodirsky, Benjamin Leon; van Dijk, Michiel; Doelman, Jonathan; Fellmann, Thomas; Humpenöder, Florian; Koopman, Jason F. L.; Müller, Christoph; Popp, Alexander; Tabeau, Andrzej; Valin, Hugo; van Zeist, Willem-Jan

    2018-06-01

    Systematic model inter-comparison helps to narrow discrepancies in the analysis of the future impact of climate change on agricultural production. This paper presents a set of alternative scenarios by five global climate and agro-economic models. Covering integrated assessment (IMAGE), partial equilibrium (CAPRI, GLOBIOM, MAgPIE) and computable general equilibrium (MAGNET) models ensures a good coverage of biophysical and economic agricultural features. These models are harmonized with respect to basic model drivers, to assess the range of potential impacts of climate change on the agricultural sector by 2050. Moreover, they quantify the economic consequences of stringent global emission mitigation efforts, such as non-CO2 emission taxes and land-based mitigation options, to stabilize global warming at 2 °C by the end of the century under different Shared Socioeconomic Pathways. A key contribution of the paper is a vis-à-vis comparison of climate change impacts relative to the impact of mitigation measures. In addition, our scenario design allows assessing the impact of the residual climate change on the mitigation challenge. From a global perspective, the impact of climate change on agricultural production by mid-century is negative but small. A larger negative effect on agricultural production, most pronounced for ruminant meat production, is observed when emission mitigation measures compliant with a 2 °C target are put in place. Our results indicate that a mitigation strategy that embeds residual climate change effects (RCP2.6) has a negative impact on global agricultural production relative to a no-mitigation strategy with stronger climate impacts (RCP6.0). However, this is partially due to the limited impact of the climate change scenarios by 2050. The magnitude of price changes is different amongst models due to methodological differences. Further research to achieve a better harmonization is needed, especially regarding endogenous food and feed demand, including substitution across individual commodities, and endogenous technological change.

  19. Life history trade-off moderates model predictions of diversity loss from climate change

    PubMed Central

    2017-01-01

    Climate change can trigger species range shifts, local extinctions and changes in diversity. Species interactions and dispersal capacity are important mediators of community responses to climate change. The interaction between multispecies competition and variation in dispersal capacity has recently been shown to exacerbate the effects of climate change on diversity and to increase predictions of extinction risk dramatically. Dispersal capacity, however, is part of a species’ overall ecological strategy and are likely to trade off with other aspects of its life history that influence population growth and persistence. In plants, a well-known example is the trade-off between seed mass and seed number. The presence of such a trade-off might buffer the diversity loss predicted by models with random but neutral (i.e. not impacting fitness otherwise) differences in dispersal capacity. Using a trait-based metacommunity model along a warming climatic gradient the effect of three different dispersal scenarios on model predictions of diversity change were compared. Adding random variation in species dispersal capacity caused extinctions by the introduction of strong fitness differences due an inherent property of the dispersal kernel. Simulations including a fitness-equalising trade-off based on empirical relationships between seed mass (here affecting dispersal distance, establishment probability, and seedling biomass) and seed number (fecundity) maintained higher initial species diversity and predicted lower extinction risk and diversity loss during climate change than simulations with variable dispersal capacity. Large seeded species persisted during climate change, but developed lags behind their climate niche that may cause extinction debts. Small seeded species were more extinction-prone during climate change but tracked their niches through dispersal and colonisation, despite competitive resistance from residents. Life history trade-offs involved in coexistence mechanisms may increase community resilience to future climate change and are useful guides for model development. PMID:28520770

  20. Climate Change Impacts on the Potential Distribution and Abundance of the Brown Marmorated Stink Bug (Hemiptera: Pentatomidae) With Special Reference to North America and Europe.

    PubMed

    Kistner, Erica Jean

    2017-12-08

    The invasive brown marmorated stink bug, Halyomorpha halys (Stål; Hemiptera: Pentatomidae), has recently emerged as a harmful pest of horticultural crops in North America and Europe. Native to East Asia, this highly polyphagous insect is spreading rapidly worldwide. Climate change will add further complications to managing this species in terms of both geographic distribution and population growth. This study used CLIMEX to compare potential H. halys distribution under recent and future climate models using one emission scenario (A2) with two different global circulation models, CSIRO Mk3.0 and MIROC-H. Simulated changes in seasonal phenology and voltinism were examined. Under the possible future climate scenarios, suitable range in Europe expands northward. In North America, the suitable H. halys range shifts northward into Canada and contracts from its southern temperature range limits in the United States due to increased heat stress. Prolonged periods of warm temperatures resulted in longer H. halys growing seasons. However, future climate scenarios indicated that rising summer temperatures decrease H. halys growth potential compared to recent climatic conditions, which in turn, may reduce mid-summer crop damage. Climate change may increase the number of H. halys generations produced annually, thereby enabling the invasive insect to become multivoltine in the northern latitudes of North America and Europe where it is currently reported to be univoltine. These results indicate prime horticultural production areas in Europe, the northeastern United States, and southeastern Canada are at greatest risk from H. halys under both current and possible future climates. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  1. Distribution of Cenozoic plant relicts in China explained by drought in dry season.

    PubMed

    Huang, Yongjiang; Jacques, Frédéric M B; Su, Tao; Ferguson, David K; Tang, Hui; Chen, Wenyun; Zhou, Zhekun

    2015-09-15

    Cenozoic plant relicts are those groups that were once widespread in the Northern Hemisphere but are now restricted to some small isolated areas as a result of drastic climatic changes. They are good proxies to study how plants respond to climatic changes since their modern climatic requirements are known. Herein we look at the modern distribution of 65 palaeoendemic genera in China and compare it with the Chinese climatic pattern, in order to find a link between the plant distribution and climate. Central China and Taiwan Island are shown to be diversity centres of Cenozoic relict genera, consistent with the fact that these two regions have a shorter dry season with comparatively humid autumn and spring in China. Species distribution models indicate that the precipitation parameters are the most important variables to explain the distribution of relict genera. The Cenozoic wide-scale distribution of relict plants in the Northern Hemisphere is therefore considered to be linked to the widespread humid climate at that time, and the subsequent contraction of their distributional ranges was probably caused by the drying trend along with global cooling.

  2. Distribution of Cenozoic plant relicts in China explained by drought in dry season

    PubMed Central

    Huang, Yongjiang; Jacques, Frédéric M. B.; Su, Tao; Ferguson, David K.; Tang, Hui; Chen, Wenyun; Zhou, Zhekun

    2015-01-01

    Cenozoic plant relicts are those groups that were once widespread in the Northern Hemisphere but are now restricted to some small isolated areas as a result of drastic climatic changes. They are good proxies to study how plants respond to climatic changes since their modern climatic requirements are known. Herein we look at the modern distribution of 65 palaeoendemic genera in China and compare it with the Chinese climatic pattern, in order to find a link between the plant distribution and climate. Central China and Taiwan Island are shown to be diversity centres of Cenozoic relict genera, consistent with the fact that these two regions have a shorter dry season with comparatively humid autumn and spring in China. Species distribution models indicate that the precipitation parameters are the most important variables to explain the distribution of relict genera. The Cenozoic wide-scale distribution of relict plants in the Northern Hemisphere is therefore considered to be linked to the widespread humid climate at that time, and the subsequent contraction of their distributional ranges was probably caused by the drying trend along with global cooling. PMID:26369980

  3. Health impact assessment of global climate change: expanding on comparative risk assessment approaches for policy making.

    PubMed

    Patz, Jonathan; Campbell-Lendrum, Diarmid; Gibbs, Holly; Woodruff, Rosalie

    2008-01-01

    Climate change is projected to have adverse impacts on public health. Cobenefits may be possible from more upstream mitigation of greenhouse gases causing climate change. To help measure such cobenefits alongside averted disease-specific risks, a health impact assessment (HIA) framework can more comprehensively serve as a decision support tool. HIA also considers health equity, clearly part of the climate change problem. New choices for energy must be made carefully considering such effects as additional pressure on the world's forests through large-scale expansion of soybean and oil palm plantations, leading to forest clearing, biodiversity loss and disease emergence, expulsion of subsistence farmers, and potential increases in food prices and emissions of carbon dioxide to the atmosphere. Investigators must consider the full range of policy options, supported by more comprehensive, flexible, and transparent assessment methods.

  4. Adapting to the impacts of climate change on food security among Inuit in the Western Canadian Arctic.

    PubMed

    Wesche, Sonia D; Chan, Hing Man

    2010-09-01

    This study examined critical impacts of climate change on Inuit diet and nutritional health in four Inuit communities in the Inuvialuit Settlement Region, Western Arctic, Canada. The first objective was to combine data from community observation studies and dietary interview studies to determine potential climate change impacts on nutritional quality. The second objective was to address the scale of data collection and/or availability to compare local versus regional trends, and identify implications for adaptation planning. Information was compiled from 5 reports (4 community reports and 1 synthesis report) of climate change observations, impacts and adaptations in 12 Inuit communities (2005-2006), and from a dietary report of food use from 18 Inuit communities (1997-2000). Changing access to, availability of, quality of, and ability to use traditional food resources has implications for quality of diet. Nutritional implications of lower traditional food use include likely reductions in iron, zinc, protein, vitamin D, and omega-3 fatty acids, among others. The vulnerability of each community to changing food security is differentially influenced by a range of factors, including current harvesting trends, levels of reliance on individual species, opportunities for access to other traditional food species, and exposure to climate change hazards. Understanding linkages between climate change and traditional food security provides a basis for strengthening adaptive capacity and determining effective adaptation options to respond to future change.

  5. Changes in Landscape Greenness and Climatic Factors over ...

    EPA Pesticide Factsheets

    Monitoring and quantifying changes in vegetation cover over large areas using remote sensing can be achieved using the Normalized Difference Vegetation Index (NDVI), an indicator of greenness. However, distinguishing gradual shifts in NDVI (e.g. climate change) versus direct and rapid changes (e.g., fire, land development) is challenging as changes can be confounded by time-dependent patterns, and variation associated with climatic factors. In the present study we leveraged a method, that we previously developed for a pilot study, to address these confounding factors by evaluating NDVI change using autoregression techniques that compare results from univariate (NDVI vs. time) and multivariate analyses (NDVI vs. time and climatic factors) for ~7,660,636 1-km2 pixels comprising the 48 contiguous states of the USA, over a 25-year period (1989−2013). NDVI changed significantly for 48% of the nation over the 25-year in the univariate analyses where most significant trends (85%) indicated an increase in greenness over time. By including climatic factors in the multivariate analyses of NDVI over time, the detection of significant NDVI trends increased to 53% (an increase of 5%). Comparisons of univariate and multivariate analyses for each pixel showed that less than 4% of the pixels had a significant NDVI trend attributable to gradual climatic changes while the remainder of pixels with a significant NDVI trend indicated that changes were due to direct factors. Whi

  6. Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario

    PubMed Central

    Keller, David P.; Feng, Ellias Y.; Oschlies, Andreas

    2014-01-01

    The realization that mitigation efforts to reduce carbon dioxide emissions have, until now, been relatively ineffective has led to an increasing interest in climate engineering as a possible means of preventing the potentially catastrophic consequences of climate change. While many studies have addressed the potential effectiveness of individual methods there have been few attempts to compare them. Here we use an Earth system model to compare the effectiveness and side effects of afforestation, artificial ocean upwelling, ocean iron fertilization, ocean alkalinization and solar radiation management during a high carbon dioxide-emission scenario. We find that even when applied continuously and at scales as large as currently deemed possible, all methods are, individually, either relatively ineffective with limited (<8%) warming reductions, or they have potentially severe side effects and cannot be stopped without causing rapid climate change. Our simulations suggest that the potential for these types of climate engineering to make up for failed mitigation may be very limited. PMID:24569320

  7. Biofuel Induced Land Use Change effects on Watershed Hydrology and Water Quality

    NASA Astrophysics Data System (ADS)

    Chaubey, I.; Cibin, R.; Frankenberger, J.; Cherkauer, K. A.; Volenec, J. J.; Brouder, S. M.

    2015-12-01

    High yielding perennial grasses such as Miscanthus and switchgrass, and crop residues such as corn stover are expected to play a significant role in meeting US biofuel production targets. We have evaluated the potential impacts of biofuel induced land use changes on hydrology, water quality, and ecosystem services. The bioenergy production scenarios, included: production of Miscanthus × giganteus and switchgrass on highly erodible landscape positions, agricultural marginal land areas, and pastures; removal of corn stover at various rates; and combinations of these scenarios. The hydrology and water quality impacts of land use change scenarios were estimated for two watersheds in Midwest USA (1) Wildcat Creek watershed (drainage area of 2,083 km2) located in north-central Indiana and (2) St. Joseph River watershed (drainage area of 2,809 km2) located in Indiana, Ohio, and Michigan. We have also simulated the impacts of climate change and variability on environmental sustainability and have compared climate change impacts with land use change impacts. The study results indicated improved water quality with perennial grass scenarios compared to current row crop production impacts. Erosion reduction with perennial energy crop production scenarios ranged between 0.2% and 59%. Stream flow at the watershed outlet were reduced between 0.2 and 8% among various bioenergy crop production scenarios. Stover removal scenarios indicated increased erosion compared to baseline condition due reduced soil cover after stover harvest. Stream flow and nitrate loading were reduced with stover removal due to increased soil evaporation and reduced mineralization. A comparison of land use and climate change impacts indicates that land use changes will have considerably larger impacts on hydrology, water quality and environmental sustainability compared to climate change and variability. Our results indicate that production of biofuel crops can be optimized at the landscape level to provide adequate supply of biomass while improving water quality and environmental sustainability.

  8. Long-term soil transplant simulating climate change with latitude significantly alters microbial temporal turnover.

    PubMed

    Liang, Yuting; Jiang, Yuji; Wang, Feng; Wen, Chongqing; Deng, Ye; Xue, Kai; Qin, Yujia; Yang, Yunfeng; Wu, Liyou; Zhou, Jizhong; Sun, Bo

    2015-12-01

    To understand soil microbial community stability and temporal turnover in response to climate change, a long-term soil transplant experiment was conducted in three agricultural experiment stations over large transects from a warm temperate zone (Fengqiu station in central China) to a subtropical zone (Yingtan station in southern China) and a cold temperate zone (Hailun station in northern China). Annual soil samples were collected from these three stations from 2005 to 2011, and microbial communities were analyzed by sequencing microbial 16S ribosomal RNA gene amplicons using Illumina MiSeq technology. Our results revealed a distinctly differential pattern of microbial communities in both northward and southward transplantations, along with an increase in microbial richness with climate cooling and a corresponding decrease with climate warming. The microbial succession rate was estimated by the slope (w value) of linear regression of a log-transformed microbial community similarity with time (time-decay relationship). Compared with the low turnover rate of microbial communities in situ (w=0.046, P<0.001), the succession rate at the community level was significantly higher in the northward transplant (w=0.058, P<0.001) and highest in the southward transplant (w=0.094, P<0.001). Climate warming lead to a faster succession rate of microbial communities as well as lower species richness and compositional changes compared with in situ and climate cooling, which may be related to the high metabolic rates and intense competition under higher temperature. This study provides new insights into the impacts of climate change on the fundamental temporal scaling of soil microbial communities and microbial phylogenetic biodiversity.

  9. Climate perceptions of local communities validated through scientific signals in Sikkim Himalaya, India.

    PubMed

    Sharma, R K; Shrestha, D G

    2016-10-01

    Sikkim, a tiny Himalayan state situated in the north-eastern region of India, records limited research on the climate change. Understanding the changes in climate based on the perceptions of local communities can provide important insights for the preparedness against the unprecedented consequences of climate change. A total of 228 households in 12 different villages of Sikkim, India, were interviewed using eight climate change indicators. The results from the public opinions showed a significant increase in temperature compared to a decade earlier, winters are getting warmer, water springs are drying up, change in concept of spring-water recharge (locally known as Mul Phutnu), changes in spring season, low crop yields, incidences of mosquitoes during winter, and decrease in rainfall in last 10 years. In addition, study also showed significant positive correlations of increase in temperature with other climate change indicators viz. spring-water recharge concept (R (2) = 0.893), warmer winter (R (2) = 0.839), drying up of water springs (R (2) = 0.76), changes in spring season (R (2) = 0.68), low crop yields (R (2) = 0.68), decrease in rainfall (R (2) = 0.63), and incidences of mosquitoes in winter (R (2) = 0.50). The air temperature for two meteorological stations of Sikkim indicated statistically significant increasing trend in mean minimum temperature and mean minimum winter temperature (DJF). The observed climate change is consistent with the people perceptions. This information can help in planning specific adaptation strategies to cope with the impacts of climate change by framing village-level action plan.

  10. Meta-analysis of climate impacts and uncertainty on crop yields in Europe

    NASA Astrophysics Data System (ADS)

    Knox, Jerry; Daccache, Andre; Hess, Tim; Haro, David

    2016-11-01

    Future changes in temperature, rainfall and soil moisture could threaten agricultural land use and crop productivity in Europe, with major consequences for food security. We assessed the projected impacts of climate change on the yield of seven major crop types (viz wheat, barley, maize, potato, sugar beet, rice and rye) grown in Europe using a systematic review (SR) and meta-analysis of data reported in 41 original publications from an initial screening of 1748 studies. Our approach adopted an established SR procedure developed by the Centre for Evidence Based Conservation constrained by inclusion criteria and defined methods for literature searches, data extraction, meta-analysis and synthesis. Whilst similar studies exist to assess climate impacts on crop yield in Africa and South Asia, surprisingly, no comparable synthesis has been undertaken for Europe. Based on the reported results (n = 729) we show that the projected change in average yield in Europe for the seven crops by the 2050s is +8%. For wheat and sugar beet, average yield changes of +14% and +15% are projected, respectively. There were strong regional differences with crop impacts in northern Europe being higher (+14%) and more variable compared to central (+6%) and southern (+5) Europe. Maize is projected to suffer the largest negative mean change in southern Europe (-11%). Evidence of climate impacts on yield was extensive for wheat, maize, sugar beet and potato, but very limited for barley, rice and rye. The implications for supporting climate adaptation policy and informing climate impacts crop science research in Europe are discussed.

  11. Assessing the impact of climate change upon hydrology and agriculture in the Indrawati Basin, Nepal.

    NASA Astrophysics Data System (ADS)

    Palazzoli, Irene; Bocchiola, Daniele; Nana, Ester; Maskey, Shreedhar; Uhlenbrook, Stefan

    2014-05-01

    Agriculture is sensitive to climate change, especially to temperature and precipitation changes. The purpose of this study was to evaluate the climate change impacts upon rain-fed crops production in the Indrawati river basin, Nepal. The Soil and Water Assessment Tool SWAT model was used to model hydrology and cropping systems in the catchment, and to predict the influence of different climate change scenarios therein. Daily weather data collected from about 13 weather stations during 4 decades were used to constrain the SWAT model, and data from two hydrometric stations used to calibrate/validate it. Then management practices (crop calendar) were applied to specific Hydrological Response Units (HRUs) for the main crops of the region, rice, corn and wheat. Manual calibration of crop production was also carried, against values of crop yield in the area from literature. The calibrated and validated model was further applied to assess the impact of three future climate change scenarios (RCPs) upon the crop productivity in the region. Three climate models (GCMs) were adopted, each with three RCPs (2.5, 4.5, 8.5). Hence, impacts of climate change were assessed considering three time windows, namely a baseline period (1995-2004), the middle of century (2045-2054) and the end of century (2085-2094). For each GCM and RCP future hydrology and yield was compared to baseline scenario. The results displayed slightly modified hydrological cycle, and somewhat small variation in crop production, variable with models and RCPs, and for crop type, the largest being for wheat. Keywords: Climate Change, Nepal, hydrological cycle, crop yield.

  12. Grassland responses to increased rainfall depend on the timescale of forcing.

    PubMed

    Sullivan, Martin J P; Thomsen, Meredith A; Suttle, K B

    2016-04-01

    Forecasting impacts of future climate change is an important challenge to biologists, both for understanding the consequences of different emissions trajectories and for developing adaptation measures that will minimize biodiversity loss. Existing variation provides a window into the effects of climate on species and ecosystems, but in many places does not encompass the levels or timeframes of forcing expected under directional climatic change. Experiments help us to fill in these uncertainties, simulating directional shifts to examine outcomes of new levels and sustained changes in conditions. Here, we explore the translation between short-term responses to climate variability and longer-term trajectories that emerge under directional climatic change. In a decade-long experiment, we compare effects of short-term and long-term forcings across three trophic levels in grassland plots subjected to natural and experimental variation in precipitation. For some biological responses (plant productivity), responses to long-term extension of the rainy season were consistent with short-term responses, while for others (plant species richness, abundance of invertebrate herbivores and predators), there was pronounced divergence of long-term trajectories from short-term responses. These differences between biological responses mean that sustained directional changes in climate can restructure ecological relationships characterizing a system. Importantly, a positive relationship between plant diversity and productivity turned negative under one scenario of climate change, with a similar change in the relationship between plant productivity and consumer biomass. Inferences from experiments such as this form an important part of wider efforts to understand the complexities of climate change responses. © 2016 John Wiley & Sons Ltd.

  13. A simple integrated assessment approach to global change simulation and evaluation

    NASA Astrophysics Data System (ADS)

    Ogutu, Keroboto; D'Andrea, Fabio; Ghil, Michael

    2016-04-01

    We formulate and study the Coupled Climate-Economy-Biosphere (CoCEB) model, which constitutes the basis of our idealized integrated assessment approach to simulating and evaluating global change. CoCEB is composed of a physical climate module, based on Earth's energy balance, and an economy module that uses endogenous economic growth with physical and human capital accumulation. A biosphere model is likewise under study and will be coupled to the existing two modules. We concentrate on the interactions between the two subsystems: the effect of climate on the economy, via damage functions, and the effect of the economy on climate, via a control of the greenhouse gas emissions. Simple functional forms of the relation between the two subsystems permit simple interpretations of the coupled effects. The CoCEB model is used to make hypotheses on the long-term effect of investment in emission abatement, and on the comparative efficacy of different approaches to abatement, in particular by investing in low carbon technology, in deforestation reduction or in carbon capture and storage (CCS). The CoCEB model is very flexible and transparent, and it allows one to easily formulate and compare different functional representations of climate change mitigation policies. Using different mitigation measures and their cost estimates, as found in the literature, one is able to compare these measures in a coherent way.

  14. International collaboration and comparative research on ocean top predators under CLIOTOP

    NASA Astrophysics Data System (ADS)

    Hobday, Alistair J.; Arrizabalaga, Haritz; Evans, Karen; Scales, Kylie L.; Senina, Inna; Weng, Kevin C.

    2017-06-01

    Oceanic top predators have ecological, social and economic value of global significance. These wide-ranging marine species, which include sharks, tunas and billfishes, marine mammals, turtles and seabirds, are the focus of international research attention under the Climate Impacts on Oceanic Top Predators (CLIOTOP) science programme, one of the Integrated Marine Biosphere Research (IMBeR) projects. Over more than a decade, research conducted under CLIOTOP has involved scientists from more than 30 countries, with international collaboration increasing markedly over time, and comparative analyses resulting in new knowledge and understanding of oceanic top predators. This special issue presents 27 papers arising from the 3rd CLIOTOP symposium, held in San Sebastián, Spain in September 2015, spanning topics such as conservation biology, trophic ecology, fisheries science, climate change, and adaptive management. The maturation and synthesis of CLIOTOP's collaborative research is now resulting in real-world management applications and improving understanding of potential ecological and socio-economic impacts of climate change in oceanic systems. The ultimate CLIOTOP goal of preparing both climate-sensitive predator populations and the human societies dependent on them for the impending impacts of climate change is now within reach.

  15. The ACER pollen and charcoal database: a global resource to document vegetation and fire response to abrupt climate changes during the last glacial period

    NASA Astrophysics Data System (ADS)

    Sánchez Goñi, María Fernanda; Desprat, Stéphanie; Daniau, Anne-Laure; Bassinot, Frank C.; Polanco-Martínez, Josué M.; Harrison, Sandy P.; Allen, Judy R. M.; Anderson, R. Scott; Behling, Hermann; Bonnefille, Raymonde; Burjachs, Francesc; Carrión, José S.; Cheddadi, Rachid; Clark, James S.; Combourieu-Nebout, Nathalie; Mustaphi, Colin. J. Courtney; Debusk, Georg H.; Dupont, Lydie M.; Finch, Jemma M.; Fletcher, William J.; Giardini, Marco; González, Catalina; Gosling, William D.; Grigg, Laurie D.; Grimm, Eric C.; Hayashi, Ryoma; Helmens, Karin; Heusser, Linda E.; Hill, Trevor; Hope, Geoffrey; Huntley, Brian; Igarashi, Yaeko; Irino, Tomohisa; Jacobs, Bonnie; Jiménez-Moreno, Gonzalo; Kawai, Sayuri; Kershaw, A. Peter; Kumon, Fujio; Lawson, Ian T.; Ledru, Marie-Pierre; Lézine, Anne-Marie; Liew, Ping Mei; Magri, Donatella; Marchant, Robert; Margari, Vasiliki; Mayle, Francis E.; Merna McKenzie, G.; Moss, Patrick; Müller, Stefanie; Müller, Ulrich C.; Naughton, Filipa; Newnham, Rewi M.; Oba, Tadamichi; Pérez-Obiol, Ramón; Pini, Roberta; Ravazzi, Cesare; Roucoux, Katy H.; Rucina, Stephen M.; Scott, Louis; Takahara, Hikaru; Tzedakis, Polichronis C.; Urrego, Dunia H.; van Geel, Bas; Valencia, B. Guido; Vandergoes, Marcus J.; Vincens, Annie; Whitlock, Cathy L.; Willard, Debra A.; Yamamoto, Masanobu

    2017-09-01

    Quaternary records provide an opportunity to examine the nature of the vegetation and fire responses to rapid past climate changes comparable in velocity and magnitude to those expected in the 21st-century. The best documented examples of rapid climate change in the past are the warming events associated with the Dansgaard-Oeschger (D-O) cycles during the last glacial period, which were sufficiently large to have had a potential feedback through changes in albedo and greenhouse gas emissions on climate. Previous reconstructions of vegetation and fire changes during the D-O cycles used independently constructed age models, making it difficult to compare the changes between different sites and regions. Here, we present the ACER (Abrupt Climate Changes and Environmental Responses) global database, which includes 93 pollen records from the last glacial period (73-15 ka) with a temporal resolution better than 1000 years, 32 of which also provide charcoal records. A harmonized and consistent chronology based on radiometric dating (14C, 234U/230Th, optically stimulated luminescence (OSL), 40Ar/39Ar-dated tephra layers) has been constructed for 86 of these records, although in some cases additional information was derived using common control points based on event stratigraphy. The ACER database compiles metadata including geospatial and dating information, pollen and charcoal counts, and pollen percentages of the characteristic biomes and is archived in Microsoft AccessTM at https://doi.org/10.1594/PANGAEA.870867.

  16. The Impact of Urban Growth and Climate Change on Heat Stress in an Australian City

    NASA Astrophysics Data System (ADS)

    Chapman, S.; Mcalpine, C. A.; Thatcher, M. J.; Salazar, A.; Watson, J. R.

    2017-12-01

    Over half of the world's population lives in urban areas. Most people will therefore be exposed to climate change in an urban environment. One of the climate risks facing urban residents is heat stress, which can lead to illness and death. Urban residents are at increased risk of heat stress due to the urban heat island effect. The urban heat island is a modification of the urban environment and increases temperatures on average by 2°C, though the increase can be much higher, up to 8°C when wind speeds and cloud cover are low. The urban heat island is also expected to increase in the future due to urban growth and intensification, further exacerbating urban heat stress. Climate change alters the urban heat island due to changes in weather (wind speed and cloudiness) and evapotranspiration. Future urban heat stress will therefore be affected by urban growth and climate change. The aim of this study was to examine the impact of urban growth and climate change on the urban heat island and heat stress in Brisbane, Australia. We used CCAM, the conformal cubic atmospheric model developed by the CSIRO, to examine temperatures in Brisbane using scenarios of urban growth and climate change. We downscaled the urban climate using CCAM, based on bias corrected Sea Surface Temperatures from the ACCESS1.0 projection of future climate. We used Representative Concentration Pathway (RCP) 8.5 for the periods 1990 - 2000, 2049 - 2060 and 2089 - 2090 with current land use and an urban growth scenario. The present day climatology was verified using weather station data from the Australian Bureau of Meteorology. We compared the urban heat island of the present day with the urban heat island with climate change to determine if climate change altered the heat island. We also calculated heat stress using wet-bulb globe temperature and apparent temperature for the climate change and base case scenarios. We found the urban growth scenario increased present day temperatures by 0.5°C in the inner city and by 6°C during a period of hot days. The scenarios of future temperature are ongoing and will show how heat stress will change in Brisbane when both urban growth and climate change are considered.

  17. Comparing approaches for using climate projections in assessing water resources investments for systems with multiple stakeholder groups

    NASA Astrophysics Data System (ADS)

    Hurford, Anthony; Harou, Julien

    2015-04-01

    Climate change has challenged conventional methods of planning water resources infrastructure investment, relying on stationarity of time-series data. It is not clear how to best use projections of future climatic conditions. Many-objective simulation-optimisation and trade-off analysis using evolutionary algorithms has been proposed as an approach to addressing complex planning problems with multiple conflicting objectives. The search for promising assets and policies can be carried out across a range of climate projections, to identify the configurations of infrastructure investment shown by model simulation to be robust under diverse future conditions. Climate projections can be used in different ways within a simulation model to represent the range of possible future conditions and understand how optimal investments vary according to the different hydrological conditions. We compare two approaches, optimising over an ensemble of different 20-year flow and PET timeseries projections, and separately for individual future scenarios built synthetically from the original ensemble. Comparing trade-off curves and surfaces generated by the two approaches helps understand the limits and benefits of optimising under different sets of conditions. The comparison is made for the Tana Basin in Kenya, where climate change combined with multiple conflicting objectives of water management and infrastructure investment mean decision-making is particularly challenging.

  18. [Impact of changes in land use and climate on the runoff in Liuxihe Watershed based on SWAT model].

    PubMed

    Yuan, Yu-zhi; Zhang, Zheng-dong; Meng, Jin-hua

    2015-04-01

    SWAT model, an extensively used distributed hydrological model, was used to quantitatively analyze the influences of changes in land use and climate on the runoff at watershed scale. Liuxihe Watershed' s SWAT model was established and three scenarios were set. The calibration and validation at three hydrological stations of Wenquan, Taipingchang and Nangang showed that the three factors of Wenquan station just only reached the standard in validated period, and the other two stations had relative error (RE) < 15%, correlation coefficient (R2) > 0.8 and Nash-Sutcliffe efficiency valve (Ens) > 0.75, suggesting that SWAT model was appropriate for simulating runoff response to land use change and climate variability in Liuxihe watershed. According to the integrated scenario simulation, the annual runoff increased by 11.23 m3 x s(-1) from 2001 to 2010 compared with the baseline period from 1991 to 2000, among which, the land use change caused an annual runoff reduction of 0.62 m3 x s(-1), whereas climate variability caused an annual runoff increase of 11.85 m3 x s(-1). Apparently, the impact of climate variability was stronger than that of land use change. On the other hand, the scenario simulation of extreme land use showed that compared with the land use in 2000, the annual runoff of the farmland scenario and the grassland scenario increased by 2.7% and 0.5% respectively, while that of the forest land scenario were reduced by 0.7%, which suggested that forest land had an ability of diversion closure. Furthermore, the scenario simulation of climatic variability indicated that the change of river runoff correlated positively with precipitation change (increase of 11.6% in annual runoff with increase of 10% in annual precipitation) , but negatively with air temperature change (reduction of 0.8% in annual runoff with increase of 1 degrees C in annual mean air temperature), which showed that the impact of precipitation variability was stronger than that of air temperature change. Therefore, in face of climate variability, we need to pay attention to strong rainfall forecasts, optimization of land use structure and spatial distribution, which could reduce the negative hydrological effects (such as floods) induced by climate change.

  19. Sensitivity of the Tropical Atmospheric Energy Balance to ENSO-Related SST Changes: Comparison of Climate Model Simulations to Observed Responses

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Fitzjarrald, Dan; Marshall, Susan; Oglesby, Robert; Roads, John; Arnold, James E. (Technical Monitor)

    2001-01-01

    This paper focuses on how fresh water and radiative fluxes over the tropical oceans change during ENSO warm and cold events and how these changes affect the tropical energy balance. At present, ENSO remains the most prominent known mode of natural variability at interannual time scales. While this natural perturbation to climate is quite distinct from possible anthropogenic changes in climate, adjustments in the tropical water and energy budgets during ENSO may give insight into feedback processes involving water vapor and cloud feedbacks. Although great advances have been made in understanding this phenomenon and realizing prediction skill over the past decade, our ability to document the coupled water and energy changes observationally and to represent them in climate models seems far from settled (Soden, 2000 J Climate). In a companion paper we have presented observational analyses, based principally on space-based measurements which document systematic changes in rainfall, evaporation, and surface and top-of-atmosphere (TOA) radiative fluxes. Here we analyze several contemporary climate models run with observed SSTs over recent decades and compare SST-induced changes in radiation, precipitation, evaporation, and energy transport to observational results. Among these are the NASA / NCAR Finite Volume Model, the NCAR Community Climate Model, the NCEP Global Spectral Model, and the NASA NSIPP Model. Key disagreements between model and observational results noted in the recent literature are shown to be due predominantly to observational shortcomings. A reexamination of the Langley 8-Year Surface Radiation Budget data reveals errors in the SST surface longwave emission due to biased SSTs. Subsequent correction allows use of this data set along with ERBE TOA fluxes to infer net atmospheric radiative heating. Further analysis of recent rainfall algorithms provides new estimates for precipitation variability in line with interannual evaporation changes inferred from the da Silva, Young, Levitus COADS analysis. The overall results from our analysis suggest an increase (decrease) of the hydrologic cycle during ENSO warm (cold) events at the rate of about 5 W/sq m per K of SST change. Model results agree reasonably well with this estimate of sensitivity. This rate is slightly less than that which would be expected for constant relative humidity over the tropical oceans. There remain, however, significant quantitative uncertainties in cloud forcing changes in the models as compared to observations. These differences are examined in relationship to model convection and cloud parameterizations Analysis of the possible sampling and measurement errors compared to systematic model errors is also presented.

  20. Evidence for Pacific Climate Regime Shifts as Preserved in a Southeast Alaska Ice Core

    NASA Astrophysics Data System (ADS)

    Porter, S. E.; Mosley-Thompson, E. S.; Thompson, L. G.

    2012-12-01

    Climate modes emanating from the Pacific sector have far-reaching effects across the globe. The El Niño/Southern Oscillation (ENSO) reflects anomalies in the sea surface temperature and pressure fields over the tropical Pacific, but climate implications from these anomalies extend to monsoon regions of Asia to North America and even Europe. The Pacific Decadal Oscillation (PDO) explains sea surface temperature anomalies in the North Pacific sector and influences the long-term behavior of the ENSO cycle as well as the storm track over North America expressed as the Pacific/North American Pattern (PNA). The impacts of both climate change and drastically reduced Arctic sea ice cover on these teleconnection patterns are poorly understood, and with little knowledge about their past behavior, predicting the changes in these climate modes is extremely difficult. An ice core from the col between Mt. Bona and Mt. Churchill in southeast Alaska provides an opportunity to examine the PDO prior to both the start of instrumental records and the more recent effects of anthropogenic climate change. The Bona-Churchill records of isotopic, dust, and chemical composition are compared to nearby meteorological station and 20th century reanalysis data to evaluate their strength as climate recorders. Climate indices such as the PDO and PNA, along with indices created to describe the strength and position of the Aleutian Low and Siberian High, are incorporated into the analysis to determine if proxy relationships are altered under different climate regimes. Satellite records of sea ice extent within the Sea of Okhotsk and the Bering Sea, when compared to the Bona-Churchill data, show a distinct change in behavior in the mid-1990s possibly in response to the temporary negative shift in the PDO. This behavioral shift is explored and placed into a broader climate context to determine whether similar events have occurred in the past or if this shift is unique to a rapidly warming Arctic.

  1. On the Value of Climate Elasticity Indices to Assess the Impact of Climate Change on Streamflow Projection using an ensemble of bias corrected CMIP5 dataset

    NASA Astrophysics Data System (ADS)

    Demirel, Mehmet; Moradkhani, Hamid

    2015-04-01

    Changes in two climate elasticity indices, i.e. temperature and precipitation elasticity of streamflow, were investigated using an ensemble of bias corrected CMIP5 dataset as forcing to two hydrologic models. The Variable Infiltration Capacity (VIC) and the Sacramento Soil Moisture Accounting (SAC-SMA) hydrologic models, were calibrated at 1/16 degree resolution and the simulated streamflow was routed to the basin outlet of interest. We estimated precipitation and temperature elasticity of streamflow from: (1) observed streamflow; (2) simulated streamflow by VIC and SAC-SMA models using observed climate for the current climate (1963-2003); (3) simulated streamflow using simulated climate from 10 GCM - CMIP5 dataset for the future climate (2010-2099) including two concentration pathways (RCP4.5 and RCP8.5) and two downscaled climate products (BCSD and MACA). The streamflow sensitivity to long-term (e.g., 30-year) average annual changes in temperature and precipitation is estimated for three periods i.e. 2010-40, 2040-70 and 2070-99. We compared the results of the three cases to reflect on the value of precipitation and temperature indices to assess the climate change impacts on Columbia River streamflow. Moreover, these three cases for two models are used to assess the effects of different uncertainty sources (model forcing, model structure and different pathways) on the two climate elasticity indices.

  2. Collaborative Project: Development of an Isotope-Enabled CESM for Testing Abrupt Climate Changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhengyu

    One of the most important validations for a state-of-art Earth System Model (ESM) with respect to climate changes is the simulation of the climate evolution and abrupt climate change events in the Earth’s history of the last 21,000 years. However, one great challenge for model validation is that ESMs usually do not directly simulate geochemical variables that can be compared directly with past proxy records. In this proposal, we have met this challenge by developing the simulation capability of major isotopes in a state-of-art ESM, the Community Earth System Model (CESM), enabling us to make direct model-data comparison by comparingmore » the model directly against proxy climate records. Our isotope-enabled ESM incorporates the capability of simulating key isotopes and geotracers, notably δ 18O, δD, δ 14C, and δ 13C, Nd and Pa/Th. The isotope-enabled ESM have been used to perform some simulations for the last 21000 years. The direct comparison of these simulations with proxy records has shed light on the mechanisms of important climate change events.« less

  3. Climate change and maize yield in southern Africa: what can farm management do?

    PubMed

    Rurinda, Jairos; van Wijk, Mark T; Mapfumo, Paul; Descheemaeker, Katrien; Supit, Iwan; Giller, Ken E

    2015-12-01

    There is concern that food insecurity will increase in southern Africa due to climate change. We quantified the response of maize yield to projected climate change and to three key management options - planting date, fertilizer use and cultivar choice - using the crop simulation model, agricultural production systems simulator (APSIM), at two contrasting sites in Zimbabwe. Three climate periods up to 2100 were selected to cover both near- and long-term climates. Future climate data under two radiative forcing scenarios were generated from five global circulation models. The temperature is projected to increase significantly in Zimbabwe by 2100 with no significant change in mean annual total rainfall. When planting before mid-December with a high fertilizer rate, the simulated average grain yield for all three maize cultivars declined by 13% for the periods 2010-2039 and 2040-2069 and by 20% for 2070-2099 compared with the baseline climate, under low radiative forcing. Larger declines in yield of up to 32% were predicted for 2070-2099 with high radiative forcing. Despite differences in annual rainfall, similar trends in yield changes were observed for the two sites studied, Hwedza and Makoni. The yield response to delay in planting was nonlinear. Fertilizer increased yield significantly under both baseline and future climates. The response of maize to mineral nitrogen decreased with progressing climate change, implying a decrease in the optimal fertilizer rate in the future. Our results suggest that in the near future, improved crop and soil fertility management will remain important for enhanced maize yield. Towards the end of the 21st century, however, none of the farm management options tested in the study can avoid large yield losses in southern Africa due to climate change. There is a need to transform the current cropping systems of southern Africa to offset the negative impacts of climate change. © 2015 John Wiley & Sons Ltd.

  4. Tools for Teaching Climate Change Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maestas, A.M.; Jones, L.A.

    2005-03-18

    The Atmospheric Radiation Measurement Climate Research Facility (ACRF) develops public outreach materials and educational resources for schools. Studies prove that science education in rural and indigenous communities improves when educators integrate regional knowledge of climate and environmental issues into school curriculum and public outreach materials. In order to promote understanding of ACRF climate change studies, ACRF Education and Outreach has developed interactive kiosks about climate change for host communities close to the research sites. A kiosk for the North Slope of Alaska (NSA) community was installed at the Iupiat Heritage Center in 2003, and a kiosk for the Tropical Westernmore » Pacific locales will be installed in 2005. The kiosks feature interviews with local community elders, regional agency officials, and Atmospheric Radiation Measurement (ARM) Program scientists, which highlight both research and local observations of some aspects of environmental and climatic change in the Arctic and Pacific. The kiosks offer viewers a unique opportunity to learn about the environmental concerns and knowledge of respected community elders, and to also understand state-of-the-art climate research. An archive of interviews from the communities will also be distributed with supplemental lessons and activities to encourage teachers and students to compare and contrast climate change studies and oral history observations from two distinct locations. The U.S. Department of Energy's ACRF supports education and outreach efforts for communities and schools located near its sites. ACRF Education and Outreach has developed interactive kiosks at the request of the communities to provide an opportunity for the public to learn about climate change from both scientific and indigenous perspectives. Kiosks include interviews with ARM scientists and provide users with basic information about climate change studies as well as interviews with elders and community leaders discussing the impacts of climate change on land, sea, and other aspects of village life.« less

  5. Flow regime alterations under changing climate in two river basins: Implications for freshwater ecosystems

    USGS Publications Warehouse

    Gibson, C.A.; Meyer, J.L.; Poff, N.L.; Hay, L.E.; Georgakakos, A.

    2005-01-01

    We examined impacts of future climate scenarios on flow regimes and how predicted changes might affect river ecosystems. We examined two case studies: Cle Elum River, Washington, and Chattahoochee-Apalachicola River Basin, Georgia and Florida. These rivers had available downscaled global circulation model (GCM) data and allowed us to analyse the effects of future climate scenarios on rivers with (1) different hydrographs, (2) high future water demands, and (3) a river-floodplain system. We compared observed flow regimes to those predicted under future climate scenarios to describe the extent and type of changes predicted to occur. Daily stream flow under future climate scenarios was created by either statistically downscaling GCMs (Cle Elum) or creating a regression model between climatological parameters predicted from GCMs and stream flow (Chattahoochee-Apalachicola). Flow regimes were examined for changes from current conditions with respect to ecologically relevant features including the magnitude and timing of minimum and maximum flows. The Cle Elum's hydrograph under future climate scenarios showed a dramatic shift in the timing of peak flows and lower low flow of a longer duration. These changes could mean higher summer water temperatures, lower summer dissolved oxygen, and reduced survival of larval fishes. The Chattahoochee-Apalachicola basin is heavily impacted by dams and water withdrawals for human consumption; therefore, we made comparisons between pre-large dam conditions, current conditions, current conditions with future demand, and future climate scenarios with future demand to separate climate change effects and other anthropogenic impacts. Dam construction, future climate, and future demand decreased the flow variability of the river. In addition, minimum flows were lower under future climate scenarios. These changes could decrease the connectivity of the channel and the floodplain, decrease habitat availability, and potentially lower the ability of the river to assimilate wastewater treatment plant effluent. Our study illustrates the types of changes that river ecosystems might experience under future climates. Copyright ?? 2005 John Wiley & Sons, Ltd.

  6. Increasing Mississippi river discharge throughout the twenty-first century influenced by changes in climate, land use and atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Tao, B.; Tian, H.; Ren, W.; Yang, J.; Yang, Q.; He, R.; Cai, W. J.; Lohrenz, S. E.

    2014-12-01

    Previous studies have demonstrated that changes in temperature and precipitation (hereafter climate change) would influence river discharge, but the relative importance of climate change, land use, and elevated atmospheric CO2 have not yet been fully investigated. Here we examined how river discharge in the Mississippi River basin in the 21st century might be influenced by these factors using the Dynamic Land Ecosystem Model driven by atmospheric CO2, downscaled GCMs climate and land use scenarios. Our results suggest that river discharge would be substantially enhanced (10.7-59.8%) by the 2090s compared to the recent decade (2000s), though large discrepancies exist among different climate, atmospheric CO2, and land use change scenarios. Our factorial analyses further indicate that the combined effects of land use change and human-induced atmospheric CO2 elevation on river discharge would outweigh climate change effect under the high emission scenario (A2) of Intergovernmental Panel for Climate Change. Our study offers the first attempt to project potential changes in river discharge in response to multiple future environmental changes. It demonstrates the importance of land use change and atmospheric CO2 concentrations in projecting future changes in hydrologic processes. The projected increase river discharge implies that riverine fluxes of carbon, nutrients and pesticide from the MRB to the coastal regions would increase in the future, and thus may influence the states of ocean acidification and hypoxia and deteriorate ocean water quality. Further efforts will also be needed to account for additional environmental factors (such as nitrogen deposition, tropospheric ozone pollution, dam construction, etc.) in projecting changes in the hydrological cycle.

  7. Cumulative effects of climate and landscape change drive spatial distribution of Rocky Mountain wolverine (Gulo gulo L.).

    PubMed

    Heim, Nicole; Fisher, Jason T; Clevenger, Anthony; Paczkowski, John; Volpe, John

    2017-11-01

    Contemporary landscapes are subject to a multitude of human-derived stressors. Effects of such stressors are increasingly realized by population declines and large-scale extirpation of taxa worldwide. Most notably, cumulative effects of climate and landscape change can limit species' local adaptation and dispersal capabilities, thereby reducing realized niche space and range extent. Resolving the cumulative effects of multiple stressors on species persistence is a pressing challenge in ecology, especially for declining species. For example, wolverines ( Gulo gulo L.) persist on only 40% of their historic North American range. While climate change has been shown to be a mechanism of range retractions, anthropogenic landscape disturbance has been recently implicated. We hypothesized these two interact to effect declines. We surveyed wolverine occurrence using camera trapping and genetic tagging at 104 sites at the wolverine range edge, spanning a 15,000 km 2 gradient of climate, topographic, anthropogenic, and biotic variables. We used occupancy and generalized linear models to disentangle the factors explaining wolverine distribution. Persistent spring snow pack-expected to decrease with climate change-was a significant predictor, but so was anthropogenic landscape change. Canid mesocarnivores, which we hypothesize are competitors supported by anthropogenic landscape change, had comparatively weaker effect. Wolverine population declines and range shifts likely result from climate change and landscape change operating in tandem. We contend that similar results are likely for many species and that research that simultaneously examines climate change, landscape change, and the biotic landscape is warranted. Ecology research and species conservation plans that address these interactions are more likely to meet their objectives.

  8. Climate Change and Infectious Disease Risk in Western Europe: A Survey of Dutch Expert Opinion on Adaptation Responses and Actors

    PubMed Central

    Akin, Su-Mia; Martens, Pim; Huynen, Maud M.T.E.

    2015-01-01

    There is growing evidence of climate change affecting infectious disease risk in Western Europe. The call for effective adaptation to this challenge becomes increasingly stronger. This paper presents the results of a survey exploring Dutch expert perspectives on adaptation responses to climate change impacts on infectious disease risk in Western Europe. Additionally, the survey explores the expert sample’s prioritization of mitigation and adaptation, and expert views on the willingness and capacity of relevant actors to respond to climate change. An integrated view on the causation of infectious disease risk is employed, including multiple (climatic and non-climatic) factors. The results show that the experts consider some adaptation responses as relatively more cost-effective, like fostering interagency and community partnerships, or beneficial to health, such as outbreak investigation and response. Expert opinions converge and diverge for different adaptation responses. Regarding the prioritization of mitigation and adaptation responses expert perspectives converge towards a 50/50 budgetary allocation. The experts consider the national government/health authority as the most capable actor to respond to climate change-induced infectious disease risk. Divergence and consensus among expert opinions can influence adaptation policy processes. Further research is necessary to uncover prevailing expert perspectives and their roots, and compare these. PMID:26295247

  9. National climate policies across Europe and their impacts on cities strategies.

    PubMed

    Heidrich, O; Reckien, D; Olazabal, M; Foley, A; Salvia, M; de Gregorio Hurtado, S; Orru, H; Flacke, J; Geneletti, D; Pietrapertosa, F; Hamann, J J-P; Tiwary, A; Feliu, E; Dawson, R J

    2016-03-01

    Globally, efforts are underway to reduce anthropogenic greenhouse gas emissions and to adapt to climate change impacts at the local level. However, there is a poor understanding of the relationship between city strategies on climate change mitigation and adaptation and the relevant policies at national and European level. This paper describes a comparative study and evaluation of cross-national policy. It reports the findings of studying the climate change strategies or plans from 200 European cities from Austria, Belgium, Estonia, Finland, France, Germany, Ireland, Italy, Netherlands, Spain and the United Kingdom. The study highlights the shared responsibility of global, European, national, regional and city policies. An interpretation and illustration of the influences from international and national networks and policy makers in stimulating the development of local strategies and actions is proposed. It was found that there is no archetypical way of planning for climate change, and multiple interests and motivations are inevitable. Our research warrants the need for a multi-scale approach to climate policy in the future, mainly ensuring sufficient capacity and resource to enable local authorities to plan and respond to their specific climate change agenda for maximising the management potentials for translating environmental challenges into opportunities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Climate Change and Infectious Disease Risk in Western Europe: A Survey of Dutch Expert Opinion on Adaptation Responses and Actors.

    PubMed

    Akin, Su-Mia; Martens, Pim; Huynen, Maud M T E

    2015-08-18

    There is growing evidence of climate change affecting infectious disease risk in Western Europe. The call for effective adaptation to this challenge becomes increasingly stronger. This paper presents the results of a survey exploring Dutch expert perspectives on adaptation responses to climate change impacts on infectious disease risk in Western Europe. Additionally, the survey explores the expert sample's prioritization of mitigation and adaptation, and expert views on the willingness and capacity of relevant actors to respond to climate change. An integrated view on the causation of infectious disease risk is employed, including multiple (climatic and non-climatic) factors. The results show that the experts consider some adaptation responses as relatively more cost-effective, like fostering interagency and community partnerships, or beneficial to health, such as outbreak investigation and response. Expert opinions converge and diverge for different adaptation responses. Regarding the prioritization of mitigation and adaptation responses expert perspectives converge towards a 50/50 budgetary allocation. The experts consider the national government/health authority as the most capable actor to respond to climate change-induced infectious disease risk. Divergence and consensus among expert opinions can influence adaptation policy processes. Further research is necessary to uncover prevailing expert perspectives and their roots, and compare these.

  11. The Influence of Climate Change on Atmospheric Deposition of Mercury in the Arctic—A Model Sensitivity Study

    PubMed Central

    Hansen, Kaj M.; Christensen, Jesper H.; Brandt, Jørgen

    2015-01-01

    Mercury (Hg) is a global pollutant with adverse health effects on humans and wildlife. It is of special concern in the Arctic due to accumulation in the food web and exposure of the Arctic population through a rich marine diet. Climate change may alter the exposure of the Arctic population to Hg. We have investigated the effect of climate change on the atmospheric Hg transport to and deposition within the Arctic by making a sensitivity study of how the atmospheric chemistry-transport model Danish Eulerian Hemispheric Model (DEHM) reacts to climate change forcing. The total deposition of Hg to the Arctic is 18% lower in the 2090s compared to the 1990s under the applied Special Report on Emissions Scenarios (SRES-A1B) climate scenario. Asia is the major anthropogenic source area (25% of the deposition to the Arctic) followed by Europe (6%) and North America (5%), with the rest arising from the background concentration, and this is independent of the climate. DEHM predicts between a 6% increase (Status Quo scenario) and a 37% decrease (zero anthropogenic emissions scenario) in Hg deposition to the Arctic depending on the applied emission scenario, while the combined effect of future climate and emission changes results in up to 47% lower Hg deposition. PMID:26378551

  12. The Influence of Climate Change on Atmospheric Deposition of Mercury in the Arctic—A Model Sensitivity Study.

    PubMed

    Hansen, Kaj M; Christensen, Jesper H; Brandt, Jørgen

    2015-09-10

    Mercury (Hg) is a global pollutant with adverse health effects on humans and wildlife. It is of special concern in the Arctic due to accumulation in the food web and exposure of the Arctic population through a rich marine diet. Climate change may alter the exposure of the Arctic population to Hg. We have investigated the effect of climate change on the atmospheric Hg transport to and deposition within the Arctic by making a sensitivity study of how the atmospheric chemistry-transport model Danish Eulerian Hemispheric Model (DEHM) reacts to climate change forcing. The total deposition of Hg to the Arctic is 18% lower in the 2090s compared to the 1990s under the applied Special Report on Emissions Scenarios (SRES-A1B) climate scenario. Asia is the major anthropogenic source area (25% of the deposition to the Arctic) followed by Europe (6%) and North America (5%), with the rest arising from the background concentration, and this is independent of the climate. DEHM predicts between a 6% increase (Status Quo scenario) and a 37% decrease (zero anthropogenic emissions scenario) in Hg deposition to the Arctic depending on the applied emission scenario, while the combined effect of future climate and emission changes results in up to 47% lower Hg deposition.

  13. Multi-model assessment of water scarcity under climate change

    NASA Astrophysics Data System (ADS)

    Schewe, J.; Heinke, J.; Gerten, D.; Haddeland, I.; Arnell, N. W.; Clark, D. B.; Dankers, R.; Eisner, S.; Fekete, B. M.; Colon-Gonzalez, F. J.; Gosling, S. N.; KIM, H.; Liu, X.; Masaki, Y.; Portmann, F. T.; Satoh, Y.; Stacke, T.; Tang, Q.; Wada, Y.; Wisser, D.; albrecht, T.; Frieler, K.; Piontek, F.; Warszawski, L.; Kabat, P.

    2013-12-01

    Water scarcity severely impairs food security and economic prosperity in many countries today. Expected future population changes will, in many countries as well as globally, increase the pressure on available water resources. On the supply side, renewable water resources will be affected by projected changes in precipitation patterns, temperature, and other climate variables. In the framework of the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) we use a large ensemble of global hydrological models (GHMs) forced by five global climate models (GCMs) and the latest greenhouse--gas concentration scenarios (RCPs) to synthesize the current knowledge about climate change impacts on water resources. We show that climate change is likely to exacerbate regional and global water scarcity considerably. In particular, the ensemble average projects that up to a global warming of 2°C above present (approx. 2.7°C above pre--industrial), each additional degree of warming will confront an additional approx. 7% of the global population with a severe decrease in water resources; and that climate change will increase the number of people living under absolute water scarcity (<500m3/capita/year) by another 40% (according to some models, more than 100%) compared to the effect of population growth alone. For some indicators of moderate impacts, the steepest increase is seen between present--day and 2°C, while indicators of very severe impacts increase unabated beyond 2°C. At the same time, the study highlights large uncertainties associated with these estimates, with both GCMs and GHMs contributing to the spread. GHM uncertainty is particularly dominant in many regions affected by declining water resources, suggesting a high potential for improved water resource projections through hydrological model development. Relative change in annual discharge at 2°C compared to present-day, under RCP8.5, from an ensemble of 11 global hydrological models (GHMs) driven by five global climate models (GCMs). Color hues show the multi-model mean change, and saturation shows the agreement on the sign of change across all GHM-GCM combinations (percentage of model runs agreeing on the sign).

  14. Improving the representation of clouds, radiation, and precipitation using spectral nudging in the Weather Research and Forecasting model

    NASA Astrophysics Data System (ADS)

    Spero, Tanya L.; Otte, Martin J.; Bowden, Jared H.; Nolte, Christopher G.

    2014-10-01

    Spectral nudging—a scale-selective interior constraint technique—is commonly used in regional climate models to maintain consistency with large-scale forcing while permitting mesoscale features to develop in the downscaled simulations. Several studies have demonstrated that spectral nudging improves the representation of regional climate in reanalysis-forced simulations compared with not using nudging in the interior of the domain. However, in the Weather Research and Forecasting (WRF) model, spectral nudging tends to produce degraded precipitation simulations when compared to analysis nudging—an interior constraint technique that is scale indiscriminate but also operates on moisture fields which until now could not be altered directly by spectral nudging. Since analysis nudging is less desirable for regional climate modeling because it dampens fine-scale variability, changes are proposed to the spectral nudging methodology to capitalize on differences between the nudging techniques and aim to improve the representation of clouds, radiation, and precipitation without compromising other fields. These changes include adding spectral nudging toward moisture, limiting nudging to below the tropopause, and increasing the nudging time scale for potential temperature, all of which collectively improve the representation of mean and extreme precipitation, 2 m temperature, clouds, and radiation, as demonstrated using a model-simulated 20 year historical period. Such improvements to WRF may increase the fidelity of regional climate data used to assess the potential impacts of climate change on human health and the environment and aid in climate change mitigation and adaptation studies.

  15. Attributing impacts to emissions traced to major fossil energy and cement producers over specific historical time periods

    NASA Astrophysics Data System (ADS)

    Ekwurzel, B.; Frumhoff, P. C.; Allen, M. R.; Boneham, J.; Heede, R.; Dalton, M. W.; Licker, R.

    2017-12-01

    Given the progress in climate change attribution research over the last decade, attribution studies can inform policymakers guided by the UNFCCC principle of "common but differentiated responsibilities." Historically this has primarily focused on nations, yet requests for information on the relative role of the fossil energy sector are growing. We present an approach that relies on annual CH4 and CO2 emissions from production through to the sale of products from the largest industrial fossil fuel and cement production company records from the mid-nineteenth century to present (Heede 2014). Analysis of the global trends with all the natural and human drivers compared with a scenario without the emissions traced to major carbon producers over full historical versus select periods of recent history can be policy relevant. This approach can be applied with simple climate models and earth system models depending on the type of climate impacts being investigated. For example, results from a simple climate model, using best estimate parameters and emissions traced to 90 largest carbon producers, illustrate the relative difference in global mean surface temperature increase over 1880-2010 after removing these emissions from 1980-2010 (29-35%) compared with removing these emissions over 1880-2010 (42-50%). The changing relative contributions from the largest climate drivers can be important to help assess the changing risks for stakeholders adapting to and reducing exposure and vulnerability to regional climate change impacts.

  16. Adapting to Uncertainty: Comparing Methodological Approaches to Climate Adaptation and Mitigation Policy

    NASA Astrophysics Data System (ADS)

    Huda, J.; Kauneckis, D. L.

    2013-12-01

    Climate change adaptation represents a number of unique policy-making challenges. Foremost among these is dealing with the range of future climate impacts to a wide scope of inter-related natural systems, their interaction with social and economic systems, and uncertainty resulting from the variety of downscaled climate model scenarios and climate science projections. These cascades of uncertainty have led to a number of new approaches as well as a reexamination of traditional methods for evaluating risk and uncertainty in policy-making. Policy makers are required to make decisions and formulate policy irrespective of the level of uncertainty involved and while a debate continues regarding the level of scientific certainty required in order to make a decision, incremental change in the climate policy continues at multiple governance levels. This project conducts a comparative analysis of the range of methodological approaches that are evolving to address uncertainty in climate change policy. It defines 'methodologies' to include a variety of quantitative and qualitative approaches involving both top-down and bottom-up policy processes that attempt to enable policymakers to synthesize climate information into the policy process. The analysis examines methodological approaches to decision-making in climate policy based on criteria such as sources of policy choice information, sectors to which the methodology has been applied, sources from which climate projections were derived, quantitative and qualitative methods used to deal with uncertainty, and the benefits and limitations of each. A typology is developed to better categorize the variety of approaches and methods, examine the scope of policy activities they are best suited for, and highlight areas for future research and development.

  17. The public health impacts of climate change in the former Yugoslav Republic of Macedonia.

    PubMed

    Kendrovski, Vladimir; Spasenovska, Margarita; Menne, Bettina

    2014-06-05

    Projected climatic changes for the former Yugoslav Republic of Macedonia for the period 2025-2100 will be most intense in the warmest period of the year with more frequent and more intense heat-waves, droughts and flood events compared with the period 1961-1990. The country has examined their vulnerabilities to climate change and many public health impacts have been projected. A variety of qualitative and quantitative methodologies were used in the assessment: literature reviews, interviews, focus groups, time series and regression analysis, damage and adaptation cost estimation, and scenario-based assessment. Policies and interventions to minimize the risks and development of long-term adaptation strategies have been explored. The generation of a robust evidence base and the development of stakeholder engagement have been used to support the development of an adaptation strategy and to promote adaptive capacity by improving the resilience of public health systems to climate change. Climate change adaptation has been established as a priority within existing national policy instruments. The lessons learnt from the process are applicable to countries considering how best to improve adaptive capacity and resilience of health systems to climate variability and its associated impacts.

  18. Consistent role of Quaternary climate change in shaping current plant functional diversity patterns across European plant orders.

    PubMed

    Ordonez, Alejandro; Svenning, Jens-Christian

    2017-02-23

    Current and historical environmental conditions are known to determine jointly contemporary species distributions and richness patterns. However, whether historical dynamics in species distributions and richness translate to functional diversity patterns remains, for the most part, unknown. The geographic patterns of plant functional space size (richness) and packing (dispersion) for six widely distributed orders of European angiosperms were estimated using atlas distribution data and trait information. Then the relative importance of late-Quaternary glacial-interglacial climate change and contemporary environmental factors (climate, productivity, and topography) as determinants of functional diversity of evaluated orders was assesed. Functional diversity patterns of all evaluated orders exhibited prominent glacial-interglacial climate change imprints, complementing the influence of contemporary environmental conditions. The importance of Quaternary glacial-interglacial climate change factors was comparable to that of contemporary environmental factors across evaluated orders. Therefore, high long-term paleoclimate variability has imposed consistent supplementary constraints on functional diversity of multiple plant groups, a legacy that may permeate to ecosystem functioning and resilience. These findings suggest that strong near-future anthropogenic climate change may elicit long-term functional disequilibria in plant functional diversity.

  19. Accounting for adaptive capacity and uncertainty in assessments of species’ climate-change vulnerability

    USGS Publications Warehouse

    Wade, Alisa A.; Hand, Brian K.; Kovach, Ryan; Luikart, Gordon; Whited, Diane; Muhlfeld, Clint C.

    2016-01-01

    Climate change vulnerability assessments (CCVAs) are valuable tools for assessing species’ vulnerability to climatic changes, yet failure to include measures of adaptive capacity and to account for sources of uncertainty may limit their effectiveness. Here, we provide a more comprehensive CCVA approach that incorporates all three elements used for assessing species’ climate change vulnerability: exposure, sensitivity, and adaptive capacity. We illustrate our approach using case studies of two threatened salmonids with different life histories – anadromous steelhead trout (Oncorhynchus mykiss) and non-anadromous bull trout (Salvelinus confluentus) – within the Columbia River Basin, USA. We identified general patterns of high vulnerability in low-elevation and southernmost habitats for both species. However, vulnerability rankings varied widely depending on the factors (climate, habitat, demographic, and genetic) included in the CCVA and often differed for the two species at locations where they were sympatric. Our findings illustrate that CCVA results are highly sensitive to data inputs and that spatial differences can complicate multi-species conservation. Our results highlight how CCVAs should be considered within a broader conceptual and computational framework for refining hypotheses, guiding research, and comparing plausible scenarios of species’ vulnerability for ongoing and projected climate change.

  20. Gray Wave of the Great Transformation: A Satellite View of Urbanization, Climate Change, and Food Security

    NASA Technical Reports Server (NTRS)

    Imhoff, Marc Lee; Kamiell, Arnon Menahem

    2010-01-01

    Land cover change driven by human activity is profoundly affecting Earth's natural systems with impacts ranging from a loss of biological diversity to changes in regional and global climate. This change has been so pervasive and progressed so rapidly, compared to natural processes, scientists refer to it as "the great transformation". Urbanization or the 'gray wave' of land transformation is being increasingly recognized as an important process in global climate change. A hallmark of our success as a species, large urban conglomerates do in fact alter the land surface so profoundly that both local climate and the basic ecology of the landscape are affected in ways that have consequences to human health and economic well-being. Fortunately we have incredible new tools for planning and developing urban places that are both enjoyable and sustainable. A suite of Earth observing satellites is making it possible to study the interactions between urbanization, biological processes, and weather and climate. Using these Earth Observatories we are learning how urban heat islands form and potentially ameliorate them, how urbanization can affect rainfall, pollution, and surface water recharge at the local level and climate and food security globally.

  1. Modeled impact of anthropogenic land cover change on climate

    USGS Publications Warehouse

    Findell, K.L.; Shevliakova, E.; Milly, P.C.D.; Stouffer, R.J.

    2007-01-01

    Equilibrium experiments with the Geophysical Fluid Dynamics Laboratory's climate model are used to investigate the impact of anthropogenic land cover change on climate. Regions of altered land cover include large portions of Europe, India, eastern China, and the eastern United States. Smaller areas of change are present in various tropical regions. This study focuses on the impacts of biophysical changes associated with the land cover change (albedo, root and stomatal properties, roughness length), which is almost exclusively a conversion from forest to grassland in the model; the effects of irrigation or other water management practices and the effects of atmospheric carbon dioxide changes associated with land cover conversion are not included in these experiments. The model suggests that observed land cover changes have little or no impact on globally averaged climatic variables (e.g., 2-m air temperature is 0.008 K warmer in a simulation with 1990 land cover compared to a simulation with potential natural vegetation cover). Differences in the annual mean climatic fields analyzed did not exhibit global field significance. Within some of the regions of land cover change, however, there are relatively large changes of many surface climatic variables. These changes are highly significant locally in the annual mean and in most months of the year in eastern Europe and northern India. They can be explained mainly as direct and indirect consequences of model-prescribed increases in surface albedo, decreases in rooting depth, and changes of stomatal control that accompany deforestation. ?? 2007 American Meteorological Society.

  2. LPJ-GUESS Simulated Western North America Mid-latitude Vegetation Changes for 15-10 ka Using the CCSM3 TraCE Climate Simulation

    NASA Astrophysics Data System (ADS)

    Shafer, S. L.; Bartlein, P. J.

    2017-12-01

    The period from 15-10 ka was a time of rapid vegetation changes in North America. Continental ice sheets in northern North America were receding, exposing new habitat for vegetation, and regions distant from the ice sheets experienced equally large environmental changes. Northern hemisphere temperatures during this period were increasing, promoting transitions from cold-adapted to temperate plant taxa at mid-latitudes. Long, transient paleovegetation simulations can provide important information on vegetation responses to climate changes, including both the spatial dynamics and rates of species distribution changes over time. Paleovegetation simulations also can fill the spatial and temporal gaps in observed paleovegetation records (e.g., pollen data from lake sediments), allowing us to test hypotheses about past vegetation changes (e.g., the location of past refugia). We used the CCSM3 TraCE transient climate simulation as input for LPJ-GUESS, a general ecosystem model, to simulate vegetation changes from 15-10 ka for parts of western North America at mid-latitudes ( 35-55° N). For these simulations, LPJ-GUESS was parameterized to simulate key tree taxa for western North America (e.g., Pseudotsuga, Tsuga, Quercus, etc.). The CCSM3 TraCE transient climate simulation data were regridded onto a 10-minute grid of the study area. We analyzed the simulated spatial and temporal dynamics of these taxa and compared the simulated changes with observed paleovegetation changes recorded in pollen and plant macrofossil data (e.g., data from the Neotoma Paleoecology Database). In general, the LPJ-GUESS simulations reproduce the general patterns of paleovegetation responses to climate change, although the timing of some simulated vegetation changes do not match the observed paleovegetation record. We describe the areas and time periods with the greatest data-model agreement and disagreement, and discuss some of the strengths and weaknesses of the simulated climate and vegetation data. The magnitude and rate of the simulated past vegetation changes are compared with projected future vegetation changes for the region.

  3. The potential of exceptional climate change education on individual lifetime carbon emissions

    NASA Astrophysics Data System (ADS)

    Cordero, E.; Centeno, D.; Todd, A. M.

    2016-12-01

    Strategies to mitigate climate change often center on clean technologies such as electric vehicles and solar panels, while the mitigation potential of a quality educational experience is rarely discussed. We investigate the role of education on individual carbon emissions using case studies from an intensive one-year university general education course focused on climate science and solutions. Results from this analysis demonstrate that students who completed the university course had significantly lower carbon emissions compared to a control group. If such an educational experience could be expanded throughout the United States, we estimate that education could be as valuable a climate change mitigation method as improving the fuel efficiency of automobiles. Relatedly, we also report on a new approach to apply real-time cloud based data to track the environmental impact of students during their participation in educational climate change programs. Such a tool would help illustrate the potential of education as a viable carbon mitigation strategy.

  4. Quantifying impacts of historical climate change in American River basin

    NASA Astrophysics Data System (ADS)

    Sultana, R.

    2017-12-01

    There is a near consensus among scientists that climate has been changing for the last few decades in different parts of the world. Some regions are already experiencing the impacts of these changes. Warmer climate can alter the hydrology and water resources around the globe. Historical data shows the temperature has been rising in California and affecting California's water resource by reducing snowfall and snowmelt runoff during spring season. In this study, Soil and Water Assessment Tool (SWAT) model is used to simulate the historical climate in American River basin, a mountainous watershed in California. The results show that warmer climate in the recent decades (1995-2014) have already have affected streamflow characteristics of the watershed. Compared to the 1965-1974, the mean annual streamflow has decreased more than 6% and the peak streamflow has shifted from May to April. Understanding the changes will assist the water resource managers with valuable insight on the effectiveness of mitigation strategies considered as of now.

  5. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities.

    PubMed

    Barton, Andrew D; Irwin, Andrew J; Finkel, Zoe V; Stock, Charles A

    2016-03-15

    Anthropogenic climate change has shifted the biogeography and phenology of many terrestrial and marine species. Marine phytoplankton communities appear sensitive to climate change, yet understanding of how individual species may respond to anthropogenic climate change remains limited. Here, using historical environmental and phytoplankton observations, we characterize the realized ecological niches for 87 North Atlantic diatom and dinoflagellate taxa and project changes in species biogeography between mean historical (1951-2000) and future (2051-2100) ocean conditions. We find that the central positions of the core range of 74% of taxa shift poleward at a median rate of 12.9 km per decade (km⋅dec(-1)), and 90% of taxa shift eastward at a median rate of 42.7 km⋅dec(-1) The poleward shift is faster than previously reported for marine taxa, and the predominance of longitudinal shifts is driven by dynamic changes in multiple environmental drivers, rather than a strictly poleward, temperature-driven redistribution of ocean habitats. A century of climate change significantly shuffles community composition by a basin-wide median value of 16%, compared with seasonal variations of 46%. The North Atlantic phytoplankton community appears poised for marked shift and shuffle, which may have broad effects on food webs and biogeochemical cycles.

  6. Local farmers' perceptions of climate change and local adaptive strategies: a case study from the Middle Yarlung Zangbo River Valley, Tibet, China.

    PubMed

    Li, Chunyan; Tang, Ya; Luo, Han; Di, Baofeng; Zhang, Liyun

    2013-10-01

    Climate change affects the productivity of agricultural ecosystems. Farmers cope with climate change based on their perceptions of changing climate patterns. Using a case study from the Middle Yarlung Zangbo River Valley, we present a new research framework that uses questionnaire and interview methods to compare local farmers' perceptions of climate change with the adaptive farming strategies they adopt. Most farmers in the valley believed that temperatures had increased in the last 30 years but did not note any changes in precipitation. Most farmers also reported sowing and harvesting hulless barley 10-15 days earlier than they were 20 years ago. In addition, farmers observed that plants were flowering and river ice was melting earlier in the season, but they did not perceive changes in plant germination, herbaceous vegetation growth, or other spring seasonal events. Most farmers noticed an extended fall season signified by delays in the freezing of rivers and an extended growing season for grassland vegetation. The study results showed that agricultural practices in the study area are still traditional; that is, local farmers' perceptions of climate change and their strategies to mitigate its impacts were based on indigenous knowledge and their own experiences. Adaptive strategies included adjusting planting and harvesting dates, changing crop species, and improving irrigation infrastructure. However, the farmers' decisions could not be fully attributed to their concerns about climate change. Local farming systems exhibit high adaptability to climate variability. Additionally, off-farm income has reduced the dependence of the farmers on agriculture, and an agricultural subsidy from the Chinese Central Government has mitigated the farmers' vulnerability. Nevertheless, it remains necessary for local farmers to build a system of adaptive climate change strategies that combines traditional experience and indigenous knowledge with scientific research and government polices as key factors.

  7. Local Farmers' Perceptions of Climate Change and Local Adaptive Strategies: A Case Study from the Middle Yarlung Zangbo River Valley, Tibet, China

    NASA Astrophysics Data System (ADS)

    Li, Chunyan; Tang, Ya; Luo, Han; Di, Baofeng; Zhang, Liyun

    2013-10-01

    Climate change affects the productivity of agricultural ecosystems. Farmers cope with climate change based on their perceptions of changing climate patterns. Using a case study from the Middle Yarlung Zangbo River Valley, we present a new research framework that uses questionnaire and interview methods to compare local farmers' perceptions of climate change with the adaptive farming strategies they adopt. Most farmers in the valley believed that temperatures had increased in the last 30 years but did not note any changes in precipitation. Most farmers also reported sowing and harvesting hulless barley 10-15 days earlier than they were 20 years ago. In addition, farmers observed that plants were flowering and river ice was melting earlier in the season, but they did not perceive changes in plant germination, herbaceous vegetation growth, or other spring seasonal events. Most farmers noticed an extended fall season signified by delays in the freezing of rivers and an extended growing season for grassland vegetation. The study results showed that agricultural practices in the study area are still traditional; that is, local farmers' perceptions of climate change and their strategies to mitigate its impacts were based on indigenous knowledge and their own experiences. Adaptive strategies included adjusting planting and harvesting dates, changing crop species, and improving irrigation infrastructure. However, the farmers' decisions could not be fully attributed to their concerns about climate change. Local farming systems exhibit high adaptability to climate variability. Additionally, off-farm income has reduced the dependence of the farmers on agriculture, and an agricultural subsidy from the Chinese Central Government has mitigated the farmers' vulnerability. Nevertheless, it remains necessary for local farmers to build a system of adaptive climate change strategies that combines traditional experience and indigenous knowledge with scientific research and government polices as key factors.

  8. Climatic Change over the 'Third Pole' from Long Tree-Ring Records

    NASA Astrophysics Data System (ADS)

    Cook, E.

    2011-12-01

    Climatic change over the Greater Himalayas and Tibetan Plateau, the 'Third Pole' of the world, is of great concern now as the Earth continues to warm at an alarming rate. While future climatic change over this region and its resulting impacts on humanity and the environment are difficult to predict with much certainty, knowing how climate has varied in the past can provide both an improved understanding of the range of variability and change that could occur in the future and the necessary context for assessing recent observed climatic change there. For this purpose, one of the best natural archives of past climate information available for study of the Third Pole environment is the changing pattern of annual ring widths found in long tree-ring chronologies. The forests of the Third Pole support many long-lived tree species, with some having life spans in excess of 1,000 years. This natural resource is steadily dwindling now due to continuing deforestation caused by human activity, but there is still enough remaining forest cover to produce a detailed network of long tree-ring chronologies for study of climate variability and change covering the past several centuries. The tree-ring records provide a mix of climate information, including that related to both temperature and precipitation. Examples of long drought-sensitive tree-ring records from the more arid parts of the Karakoram and Tibetan Plateau will be presented, along with records that primarily reflect changing temperatures in moister environments such as in Bhutan. Together they provide a glimpse of how climate of the Third Pole has changed over the past several centuries, the range of natural variability that could occur in the future independent of changes caused by greenhouse warming, and how changes during the latter part of the 20th century period of rapid global warming compare to the past.

  9. Morphological variation in salamanders and their potential response to climate change.

    PubMed

    Ficetola, Gentile Francesco; Colleoni, Emiliano; Renaud, Julien; Scali, Stefano; Padoa-Schioppa, Emilio; Thuiller, Wilfried

    2016-06-01

    Despite the recognition that some species might quickly adapt to new conditions under climate change, demonstrating and predicting such a fundamental response is challenging. Morphological variations in response to climate may be caused by evolutionary changes or phenotypic plasticity, or both, but teasing apart these processes is difficult. Here, we built on the number of thoracic vertebrae (NTV) in ectothermic vertebrates, a known genetically based feature, to establish a link with body size and evaluate how climate change might affect the future morphological response of this group of species. First, we show that in old-world salamanders, NTV variation is strongly related to changes in body size. Secondly, using 22 salamander species as a case study, we found support for relationships between the spatial variation in selected bioclimatic variables and NTV for most of species. For 44% of species, precipitation and aridity were the predominant drivers of geographical variation of the NTV. Temperature features were dominant for 31% of species, while for 19% temperature and precipitation played a comparable role. This two-step analysis demonstrates that ectothermic vertebrates may evolve in response to climate change by modifying the number of thoracic vertebrae. These findings allow to develop scenarios for potential morphological evolution under future climate change and to identify areas and species in which the most marked evolutionary responses are expected. Resistance to climate change estimated from species distribution models was positively related to present-day species morphological response, suggesting that the ability of morphological evolution may play a role for species' persistence under climate change. The possibility that present-day capacity for local adaptation might help the resistance response to climate change can be integrated into analyses of the impact of global changes and should also be considered when planning management actions favouring species persistence. © 2016 John Wiley & Sons Ltd.

  10. Assessment of climate change impact on yield of major crops in the Banas River Basin, India.

    PubMed

    Dubey, Swatantra Kumar; Sharma, Devesh

    2018-09-01

    Crop growth models like AquaCrop are useful in understanding the impact of climate change on crop production considering the various projections from global circulation models and regional climate models. The present study aims to assess the climate change impact on yield of major crops in the Banas River Basin i.e., wheat, barley and maize. Banas basin is part of the semi-arid region of Rajasthan state in India. AquaCrop model is used to calculate the yield of all the three crops for a historical period of 30years (1981-2010) and then compared with observed yield data. Root Mean Square Error (RMSE) values are calculated to assess the model accuracy in prediction of yield. Further, the calibrated model is used to predict the possible impacts of climate change and CO 2 concentration on crop yield using CORDEX-SA climate projections of three driving climate models (CNRM-CM5, CCSM4 and MPI-ESM-LR) for two different scenarios (RCP4.5 and RCP8.5) for the future period 2021-2050. RMSE values of simulated yield with respect to observed yield of wheat, barley and maize are 11.99, 16.15 and 19.13, respectively. It is predicted that crop yield of all three crops will increase under the climate change conditions for future period (2021-2050). Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Comparing niche- and process-based models to reduce prediction uncertainty in species range shifts under climate change.

    PubMed

    Morin, Xavier; Thuiller, Wilfried

    2009-05-01

    Obtaining reliable predictions of species range shifts under climate change is a crucial challenge for ecologists and stakeholders. At the continental scale, niche-based models have been widely used in the last 10 years to predict the potential impacts of climate change on species distributions all over the world, although these models do not include any mechanistic relationships. In contrast, species-specific, process-based predictions remain scarce at the continental scale. This is regrettable because to secure relevant and accurate predictions it is always desirable to compare predictions derived from different kinds of models applied independently to the same set of species and using the same raw data. Here we compare predictions of range shifts under climate change scenarios for 2100 derived from niche-based models with those of a process-based model for 15 North American boreal and temperate tree species. A general pattern emerged from our comparisons: niche-based models tend to predict a stronger level of extinction and a greater proportion of colonization than the process-based model. This result likely arises because niche-based models do not take phenotypic plasticity and local adaptation into account. Nevertheless, as the two kinds of models rely on different assumptions, their complementarity is revealed by common findings. Both modeling approaches highlight a major potential limitation on species tracking their climatic niche because of migration constraints and identify similar zones where species extirpation is likely. Such convergent predictions from models built on very different principles provide a useful way to offset uncertainties at the continental scale. This study shows that the use in concert of both approaches with their own caveats and advantages is crucial to obtain more robust results and that comparisons among models are needed in the near future to gain accuracy regarding predictions of range shifts under climate change.

  12. Forecasting the combined effects of urbanization and climate change on stream ecosystems: from impacts to management options

    PubMed Central

    Nelson, Kären C; Palmer, Margaret A; Pizzuto, James E; Moglen, Glenn E; Angermeier, Paul L; Hilderbrand, Robert H; Dettinger, Michael; Hayhoe, Katharine

    2009-01-01

    Streams collect runoff, heat, and sediment from their watersheds, making them highly vulnerable to anthropogenic disturbances such as urbanization and climate change. Forecasting the effects of these disturbances using process-based models is critical to identifying the form and magnitude of likely impacts. Here, we integrate a new biotic model with four previously developed physical models (downscaled climate projections, stream hydrology, geomorphology, and water temperature) to predict how stream fish growth and reproduction will most probably respond to shifts in climate and urbanization over the next several decades. The biotic submodel couples dynamics in fish populations and habitat suitability to predict fish assemblage composition, based on readily available biotic information (preferences for habitat, temperature, and food, and characteristics of spawning) and day-to-day variability in stream conditions. We illustrate the model using Piedmont headwater streams in the Chesapeake Bay watershed of the USA, projecting ten scenarios: Baseline (low urbanization; no on-going construction; and present-day climate); one Urbanization scenario (higher impervious surface, lower forest cover, significant construction activity); four future climate change scenarios [Hadley CM3 and Parallel Climate Models under medium-high (A2) and medium-low (B2) emissions scenarios]; and the same four climate change scenarios plus Urbanization. Urbanization alone depressed growth or reproduction of 8 of 39 species, while climate change alone depressed 22 to 29 species. Almost every recreationally important species (i.e. trouts, basses, sunfishes) and six of the ten currently most common species were predicted to be significantly stressed. The combined effect of climate change and urbanization on adult growth was sometimes large compared to the effect of either stressor alone. Thus, the model predicts considerable change in fish assemblage composition, including loss of diversity. Synthesis and applications. The interaction of climate change and urban growth may entail significant reconfiguring of headwater streams, including a loss of ecosystem structure and services, which will be more costly than climate change alone. On local scales, stakeholders cannot control climate drivers but they can mitigate stream impacts via careful land use. Therefore, to conserve stream ecosystems, we recommend that proactive measures be taken to insure against species loss or severe population declines. Delays will inevitably exacerbate the impacts of both climate change and urbanization on headwater systems. PMID:19536343

  13. Effects of biotic feedback and harvest management on boreal forest fire activity under climate change.

    PubMed

    Krawchuk, Meg A; Cumming, Steve G

    2011-01-01

    Predictions of future fire activity over Canada's boreal forests have primarily been generated from climate data following assumptions that direct effects of weather will stand alone in contributing to changes in burning. However, this assumption needs explicit testing. First, areas recently burned can be less likely to burn again in the near term, and this endogenous regulation suggests the potential for self-limiting, negative biotic feedback to regional climate-driven increases in fire. Second, forest harvest is ongoing, and resulting changes in vegetation structure have been shown to affect fire activity. Consequently, we tested the assumption that fire activity will be driven by changes in fire weather without regulation by biotic feedback or regional harvest-driven changes in vegetation structure in the mixedwood boreal forest of Alberta, Canada, using a simulation experiment that includes the interaction of fire, stand dynamics, climate change, and clear cut harvest management. We found that climate change projected with fire weather indices calculated from the Canadian Regional Climate Model increased fire activity, as expected, and our simulations established evidence that the magnitude of regional increase in fire was sufficient to generate negative feedback to subsequent fire activity. We illustrate a 39% (1.39-fold) increase in fire initiation and 47% (1.47-fold) increase in area burned when climate and stand dynamics were included in simulations, yet 48% (1.48-fold) and 61% (1.61-fold) increases, respectively, when climate was considered alone. Thus, although biotic feedbacks reduced burned area estimates in important ways, they were secondary to the direct effect of climate on fire. We then show that ongoing harvest management in this region changed landscape composition in a way that led to reduced fire activity, even in the context of climate change. Although forest harvesting resulted in decreased regional fire activity when compared to unharvested conditions, forest composition and age structure was shifted substantially, illustrating a trade-off between management goals to minimize fire and conservation goals to emulate natural disturbance.

  14. Social and economic impacts of climate.

    PubMed

    Carleton, Tamma A; Hsiang, Solomon M

    2016-09-09

    For centuries, thinkers have considered whether and how climatic conditions-such as temperature, rainfall, and violent storms-influence the nature of societies and the performance of economies. A multidisciplinary renaissance of quantitative empirical research is illuminating important linkages in the coupled climate-human system. We highlight key methodological innovations and results describing effects of climate on health, economics, conflict, migration, and demographics. Because of persistent "adaptation gaps," current climate conditions continue to play a substantial role in shaping modern society, and future climate changes will likely have additional impact. For example, we compute that temperature depresses current U.S. maize yields by ~48%, warming since 1980 elevated conflict risk in Africa by ~11%, and future warming may slow global economic growth rates by ~0.28 percentage points per year. In general, we estimate that the economic and social burden of current climates tends to be comparable in magnitude to the additional projected impact caused by future anthropogenic climate changes. Overall, findings from this literature point to climate as an important influence on the historical evolution of the global economy, they should inform how we respond to modern climatic conditions, and they can guide how we predict the consequences of future climate changes. Copyright © 2016, American Association for the Advancement of Science.

  15. Assessment of a climate model to reproduce rainfall variability and extremes over Southern Africa

    NASA Astrophysics Data System (ADS)

    Williams, C. J. R.; Kniveton, D. R.; Layberry, R.

    2010-01-01

    It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The sub-continent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite-derived rainfall data from the Microwave Infrared Rainfall Algorithm (MIRA). This dataset covers the period from 1993 to 2002 and the whole of southern Africa at a spatial resolution of 0.1° longitude/latitude. This paper concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of present-day rainfall variability over southern Africa and is not intended to discuss possible future changes in climate as these have been documented elsewhere. Simulations of current climate from the UK Meteorological Office Hadley Centre's climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. Secondly, the ability of the model to reproduce daily rainfall extremes is assessed, again by a comparison with extremes from the MIRA dataset. The results suggest that the model reproduces the number and spatial distribution of rainfall extremes with some accuracy, but that mean rainfall and rainfall variability is under-estimated (over-estimated) over wet (dry) regions of southern Africa.

  16. Climate-suitable planting as a strategy for maintaining forest productivity and functional diversity.

    PubMed

    Duveneck, Matthew J; Scheller, Robert M

    2015-09-01

    Within the time frame of the longevity of tree species, climate change will change faster than the ability of natural tree migration. Migration lags may result in reduced productivity and reduced diversity in forests under current management and climate change. We evaluated the efficacy of planting climate-suitable tree species (CSP), those tree species with current or historic distributions immediately south of a focal landscape, to maintain or increase aboveground biomass productivity, and species and functional diversity. We modeled forest change with the LANDIS-II forest simulation model for 100 years (2000-2100) at a 2-ha cell resolution and five-year time steps within two landscapes in the Great Lakes region (northeastern Minnesota and northern lower Michigan, USA). We compared current climate to low- and high-emission futures. We simulated a low-emission climate future with the Intergovernmental Panel on Climate Change (IPCC) 2007 B1 emission scenario and the Parallel Climate Model Global Circulation Model (GCM). We simulated a high-emission climate future with the IPCC A1FI emission scenario and the Geophysical Fluid Dynamics Laboratory (GFDL) GCM. We compared current forest management practices (business-as-usual) to CSP management. In the CSP scenario, we simulated a target planting of 5.28% and 4.97% of forested area per five-year time step in the Minnesota and Michigan landscapes, respectively. We found that simulated CSP species successfully established in both landscapes under all climate scenarios. The presence of CSP species generally increased simulated aboveground biomass. Species diversity increased due to CSP; however, the effect on functional diversity was variable. Because the planted species were functionally similar to many native species, CSP did not result in a consistent increase nor decrease in functional diversity. These results provide an assessment of the potential efficacy and limitations of CSP management. These results have management implications for sites where diversity and productivity are expected to decline. Future efforts to restore a specific species or forest type may not be possible, but CSP may sustain a more general ecosystem service (e.g., aboveground biomass).

  17. Strategic decision making under climate change: a case study on Lake Maggiore water system

    NASA Astrophysics Data System (ADS)

    Micotti, M.; Soncini Sessa, R.; Weber, E.

    2014-09-01

    Water resources planning processes involve different kinds of decisions that are generally evaluated under a stationary climate scenario assumption. In general, the possible combinations of interventions are mutually compared as single alternatives. However, the ongoing climate change requires us to reconsider this approach. Indeed, what have to be compared are not individual alternatives, but families of alternatives, characterized by the same structural decisions, i.e. by actions that have long-term effects and entail irrevocable changes in the system. The rationale is that the structural actions, once they have been implemented, cannot be easily modified, while the management decisions can be adapted to the evolving conditions. This paper considers this methodological problem in a real case study, in which a strategic decision has to be taken: a new barrage was proposed to regulate Lake Maggiore outflow, but, alternatively, either the present barrage can be maintained with its present regulation norms or with a new one. The problem was dealt with by multi-criteria decision analysis involving many stakeholders and two decision-makers. An exhaustive set of indicators was defined in the participatory process, conducted under the integrated water resource management paradigm, and many efficient (in Pareto sense) regulation policies were identified. The paper explores different formulations of a global index to evaluate and compare the effectiveness of the classes of alternatives under both stationary and changing hydrological scenarios in order to assess their adaptability to the ongoing climate change.

  18. A Decade in Climate Changes and Marine Fisheries: Assessing the Catchment Volume in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Kamal, A. H. M.

    2016-12-01

    Global climate change variations over the past 30 years have produced numerous impacts in the abundance and production performance of marine fish and fisheries worldwide. The consequences in terms of flooding of low-lying estuarine habitats due to over rainfall, fluctuation of temperature, dilution of water parameters, devastation of feeding and breeding habitats, salinity fluctuations and acidification of waters, high siltation in coastal area, changes in the sea water table and breeding triggers have raised serious concerns for the well-being of marine fisheries and their production. This study shows that the overall total catchment of marine fisheries was decreased 38% in 2009 compared to 1998 while considers the fishing gears and vessels number used in Peninsular Malaysia. Registered vessels number was increased up to 92% in 2009 compared to 1998 which eventually increased the total catchment volume of marine fisheries. In 2009, the catching efforts and performance was far low as per vessels compared to 1998. Analysis of climate change variables shows that temperature was decreased as rainfall was increased within the year from 1998 to 2009. However, it is still early to conclude that whether climate change variables could have unpleasant impacts on fish production in the tropical seas like Malaysia. In spite of that it is predicted that the prolong exists of monsoon and increases of rainfall in this area resulting the stresses and sometimes interfering on the habitat, reproductive cycle and their related ecosystems in this coastal marine environment in tropics.

  19. Climate change and maize yield in Iowa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Hong; Twine, Tracy E.; Girvetz, Evan

    Climate is changing across the world, including the major maize-growing state of Iowa in the USA. To maintain crop yields, farmers will need a suite of adaptation strategies, and choice of strategy will depend on how the local to regional climate is expected to change. Here we predict how maize yield might change through the 21 st century as compared with late 20 th century yields across Iowa, USA, a region representing ideal climate and soils for maize production that contributes substantially to the global maize economy. To account for climate model uncertainty, we drive a dynamic ecosystem model withmore » output from six climate models and two future climate forcing scenarios. Despite a wide range in the predicted amount of warming and change to summer precipitation, all simulations predict a decrease in maize yields from late 20 th century to middle and late 21 st century ranging from 15% to 50%. Linear regression of all models predicts a 6% state-averaged yield decrease for every 1°C increase in warm season average air temperature. When the influence of moisture stress on crop growth is removed from the model, yield decreases either remain the same or are reduced, depending on predicted changes in warm season precipitation. Lastly, our results suggest that even if maize were to receive all the water it needed, under the strongest climate forcing scenario yields will decline by 10-20% by the end of the 21 st century.« less

  20. Climate change and maize yield in Iowa

    DOE PAGES

    Xu, Hong; Twine, Tracy E.; Girvetz, Evan

    2016-05-24

    Climate is changing across the world, including the major maize-growing state of Iowa in the USA. To maintain crop yields, farmers will need a suite of adaptation strategies, and choice of strategy will depend on how the local to regional climate is expected to change. Here we predict how maize yield might change through the 21 st century as compared with late 20 th century yields across Iowa, USA, a region representing ideal climate and soils for maize production that contributes substantially to the global maize economy. To account for climate model uncertainty, we drive a dynamic ecosystem model withmore » output from six climate models and two future climate forcing scenarios. Despite a wide range in the predicted amount of warming and change to summer precipitation, all simulations predict a decrease in maize yields from late 20 th century to middle and late 21 st century ranging from 15% to 50%. Linear regression of all models predicts a 6% state-averaged yield decrease for every 1°C increase in warm season average air temperature. When the influence of moisture stress on crop growth is removed from the model, yield decreases either remain the same or are reduced, depending on predicted changes in warm season precipitation. Lastly, our results suggest that even if maize were to receive all the water it needed, under the strongest climate forcing scenario yields will decline by 10-20% by the end of the 21 st century.« less

  1. Organismal responses to habitat change: herbivore performance, climate and leaf traits in regenerating tropical dry forests.

    PubMed

    Agosta, Salvatore J; Hulshof, Catherine M; Staats, Ethan G

    2017-05-01

    The ecological effects of large-scale climate change have received much attention, but the effects of the more acute form of climate change that results from local habitat alteration have been less explored. When forest is fragmented, cut, thinned, cleared or otherwise altered in structure, local climates and microclimates change. Such changes can affect herbivores both directly (e.g. through changes in body temperature) and indirectly (e.g. through changes in host plant traits). We advance an eco-physiological framework to understand the effects of changing forests on herbivorous insects. We hypothesize that if tropical forest caterpillars are climate and resource specialists, then they should have reduced performance outside of mature forest conditions. We tested this hypothesis with a field experiment contrasting the performance of Rothschildia lebeau (Saturniidae) caterpillars feeding on the host plant Casearia nitida (Salicaceae) in two different aged and structured tropical dry forests in Area de Conservación Guanacaste, Costa Rica. Compared to more mature closed-canopy forest, in younger secondary forest we found that: (1) ambient conditions were hotter, drier and more variable; (2) caterpillar growth and development were reduced; and (3) leaves were tougher, thicker and drier. Furthermore, caterpillar growth and survival were negatively correlated with these leaf traits, suggesting indirect host-mediated effects of climate on herbivores. Based on the available evidence, and relative to mature forest, we conclude that reduced herbivore performance in young secondary forest could have been driven by changes in climate, leaf traits (which were likely climate induced) or both. However, additional studies will be needed to provide more direct evidence of cause-and-effect and to disentangle the relative influence of these factors on herbivore performance in this system. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  2. Personal Epistemology across Cultures: Exploring Norwegian and Spanish University Students' Epistemic Beliefs about Climate Change

    ERIC Educational Resources Information Center

    Braten, Ivar; Gil, Laura; Stromso, Helge I.; Vidal-Abarca, Eduardo

    2009-01-01

    The primary aim was to explore and compare the dimensionality of personal epistemology with respect to climate change across the contexts of Norwegian and Spanish students. A second aim was to examine relationships between topic-specific epistemic beliefs and the variables of gender, topic knowledge, and topic interest in the two contexts.…

  3. Exploring the role of fire, succession, climate, and weather on landscape dynamics using comparative modeling

    Treesearch

    Robert E. Keane; Geoffrey J. Cary; Mike D. Flannigan; Russell A. Parsons; Ian D. Davies; Karen J. King; Chao Li; Ross A. Bradstock; Malcolm Gill

    2013-01-01

    An assessment of the relative importance of vegetation change and disturbance as agents of landscape change under current and future climates would (1) provide insight into the controls of landscape dynamics, (2) help inform the design and development of coarse scale spatially explicit ecosystem models such as Dynamic Global Vegetation Models (DGVMs), and (3) guide...

  4. China: The Impact of Climate Change to 2030. Geopolitical Implications

    DTIC Science & Technology

    2009-06-01

    China ranks lower in resilience to climate change than Brazil , Turkey, and Mexico, but higher than India. • China can adapt its administrative...Southeast Asia at risk . 1 The panel had expertise in political science, comparative world...address energy demand primarily through domestically produced coal and imported oil , leading to a severe rise in China’s contribution to global

  5. Spatial and temporal variation in size of polar bear (Ursus maritimus) sexual organs and its use in pollution and climate change studies.

    PubMed

    Sonne, Christian; Dietz, Rune; Born, Erik W; Riget, Frank F; Leifsson, Pall S; Bechshøft, Thea Ø; Kirkegaard, Maja

    2007-11-15

    Sexual organs and their development are susceptible to atmospheric transported environmental xenoendocrine pollutants and climate change (food availability). We therefore investigated sexual organs from 55 male and 44 female East Greenland polar bears (Ursus maritimus) to obtain information about growth/size and sexual maturity. Then, the genitalia size was compared with those previously reported from Canadian and Svalbard polar bears. Growth models showed that East Greenland male polar bears reached sexual maturity around 7 years of age and females around 4 years of age. When comparing East Greenland and Svalbard polar bears, the size of baculum and uterus were significantly lower in the East Greenland polar bears (ANOVA: all p < 0.05). Based on previously published baculum mean values from Canadian polar bears, a similar baculum pattern was found for East Greenland vs. Canadian polar bears. It is speculated whether this could be a result of the general high variation in polar bear body size, temporal distribution patterns of anthropogenic long-range transported persistent organic pollutants or climate change (decreasing food availability). The present investigation represents conservation and background data for future spatial and temporal assessments of hunting, pollution and climate change scenarios.

  6. Aquatic-macroinvertebrate communities of Prairie-Pothole wetlands and lakes under a changed climate

    USGS Publications Warehouse

    McLean, Kyle I.; Mushet, David M.; Renton, David A.; Stockwell, Craig A.

    2016-01-01

    Understanding how aquatic-macroinvertebrate communities respond to changes in climate is important for biodiversity conservation in the Prairie Pothole Region and other wetland-rich landscapes. We sampled macroinvertebrate communities of 162 wetlands and lakes previously sampled from 1966 to 1976, a much drier period compared to our 2012–2013 sampling timeframe. To identify possible influences of a changed climate and predation pressures on macroinvertebrates, we compared two predictors of aquatic-macroinvertebrate communities: ponded-water dissolved-ion concentration and vertebrate-predator presence/abundance. Further, we make inferences of how macroinvertebrate communities were structured during the drier period when the range of dissolved-ion concentrations was much greater and fish occurrence in aquatic habitats was rare. We found that aquatic-macroinvertebrate community structure was influenced by dissolved-ion concentrations through a complex combination of direct and indirect relationships. Ion concentrations also influenced predator occurrence and abundance, which indirectly affected macroinvertebrate communities. It is important to consider both abiotic and biotic gradients when predicting how invertebrate communities will respond to climate change. Generally, in the wetlands and lakes we studied, freshening of ponded water resulted in more homogenous communities than occurred during a much drier period when salinity range among sites was greater.

  7. Could urban greening mitigate suburban thermal inequity?: the role of residents’ dispositions and household practices

    NASA Astrophysics Data System (ADS)

    Byrne, Jason; Ambrey, Christopher; Portanger, Chloe; Lo, Alex; Matthews, Tony; Baker, Douglas; Davison, Aidan

    2016-09-01

    Over the past decade research on urban thermal inequity has grown, with a focus on denser built environments. In this letter we examine thermal inequity associated with climate change impacts and changes to urban form in a comparatively socio-economically disadvantaged Australian suburb. Local urban densification policies designed to counteract sprawl have reduced block sizes, increased height limits, and diminished urban tree canopy cover (UTC). Little attention has been given to the combined effects of lower UTC and increased heat on disadvantaged residents. Such impacts include rising energy expenditure to maintain thermal comfort (i.e. cooling dwellings). We used a survey of residents (n = 230) to determine their perceptions of climate change impacts; household energy costs; household thermal comfort practices; and dispositions towards using green infrastructure to combat heat. Results suggest that while comparatively disadvantaged residents spend more on energy as a proportion of their income, they appear to have reduced capacity to adapt to climate change at the household scale. We found most residents favoured more urban greening and supported tree planting in local parks and streets. Findings have implications for policy responses aimed at achieving urban climate justice.

  8. Assessment of CORDEX-South Asia experiments for monsoonal precipitation over Himalayan region for future climate

    NASA Astrophysics Data System (ADS)

    Choudhary, A.; Dimri, A. P.

    2018-04-01

    Precipitation is one of the important climatic indicators in the global climate system. Probable changes in monsoonal (June, July, August and September; hereafter JJAS) mean precipitation in the Himalayan region for three different greenhouse gas emission scenarios (i.e. representative concentration pathways or RCPs) and two future time slices (near and far) are estimated from a set of regional climate simulations performed under Coordinated Regional Climate Downscaling Experiment-South Asia (CORDEX-SA) project. For each of the CORDEX-SA simulations and their ensemble, projections of near future (2020-2049) and far future (2070-2099) precipitation climatology with respect to corresponding present climate (1970-2005) over Himalayan region are presented. The variability existing over each of the future time slices is compared with the present climate variability to determine the future changes in inter annual fluctuations of monsoonal mean precipitation. The long-term (1970-2099) trend (mm/day/year) of monsoonal mean precipitation spatially distributed as well as averaged over Himalayan region is analyzed to detect any change across twenty-first century as well as to assess model uncertainty in simulating the precipitation changes over this period. The altitudinal distribution of difference in trend of future precipitation from present climate existing over each of the time slices is also studied to understand any elevation dependency of change in precipitation pattern. Except for a part of the Hindu-Kush area in western Himalayan region which shows drier condition, the CORDEX-SA experiments project in general wetter/drier conditions in near future for western/eastern Himalayan region, a scenario which gets further intensified in far future. Although, a gradually increasing precipitation trend is seen throughout the twenty-first century in carbon intensive scenarios, the distribution of trend with elevation presents a very complex picture with lower elevations showing a greater trend in far-future under RCP8.5 when compared with higher elevations.

  9. Towards the new CH2018 climate scenarios for Switzerland

    NASA Astrophysics Data System (ADS)

    Fischer, Andreas; Schär, Christoph; Croci-Maspoli, Mischa; Knutti, Reto; Liniger, Mark; Strassmann, Kuno

    2017-04-01

    There is a growing demand for regional assessments of future climate change and its impacts on society and ecosystems to inform and facilitate appropriate adaptation strategies. The basis for such assessments are consistent and up-to-date climate change scenarios on the local to regional scale. In Switzerland, an important step has been accomplished by the release of the climate scenarios in 2011 ("CH2011"). Since then, new climate model simulations have become available and the scientific understanding has improved. It is hence desirable to update these national scenarios. The new CH2018 scenarios are developed in the framework of the recently founded National Center for Climate Services (NCCS), a network consisting of several federal offices and academic partners. The CH2018 scenarios will build primarily upon the latest Euro-CORDEX regional climate model simulations assuming different pathways of future greenhouse gas concentrations. Compared to CH2011, more emphasis will be put on changes in extremes and in putting the projected changes in the context of observed variability. Results of a recently conducted survey on end-user needs in Switzerland will guide the development process toward the CH2018 scenarios. It ensures that the scenarios are presented and communicated in a user-oriented format and find a wide applicability across different sectors in Switzerland. In the presentation we will show the full methodological setup to generate the CH2018 scenarios and how consistency across the methods and products is maximized. First results on mean changes and selected indices will be presented. In terms of dissemination, the results of the user survey show the necessity to address all different user types of climate scenarios, especially the non-experts. Compared to CH2011, this implies a stronger focus on consulting, condensing complex information and providing tutorials. In the presentation, we will outline our plans on dissemination in order to adequately address all relevant user groups of CH2018.

  10. Methodology to assess and map the potential development of forest ecosystems exposed to climate change and atmospheric nitrogen deposition: A pilot study in Germany.

    PubMed

    Schröder, Winfried; Nickel, Stefan; Jenssen, Martin; Riediger, Jan

    2015-07-15

    A methodology for mapping ecosystems and their potential development under climate change and atmospheric nitrogen deposition was developed using examples from Germany. The methodology integrated data on vegetation, soil, climate change and atmospheric nitrogen deposition. These data were used to classify ecosystem types regarding six ecological functions and interrelated structures. Respective data covering 1961-1990 were used for reference. The assessment of functional and structural integrity relies on comparing a current or future state with an ecosystem type-specific reference. While current functions and structures of ecosystems were quantified by measurements, potential future developments were projected by geochemical soil modelling and data from a regional climate change model. The ecosystem types referenced the potential natural vegetation and were mapped using data on current tree species coverage and land use. In this manner, current ecosystem types were derived, which were related to data on elevation, soil texture, and climate for the years 1961-1990. These relations were quantified by Classification and Regression Trees, which were used to map the spatial patterns of ecosystem type clusters for 1961-1990. The climate data for these years were subsequently replaced by the results of a regional climate model for 1991-2010, 2011-2040, and 2041-2070. For each of these periods, one map of ecosystem type clusters was produced and evaluated with regard to the development of areal coverage of ecosystem type clusters over time. This evaluation of the structural aspects of ecological integrity at the national level was added by projecting potential future values of indicators for ecological functions at the site level by using the Very Simple Dynamic soil modelling technique based on climate data and two scenarios of nitrogen deposition as input. The results were compared to the reference and enabled an evaluation of site-specific ecosystem changes over time which proved to be both, positive and negative. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Cost of preventing workplace heat-related illness through worker breaks and the benefit of climate-change mitigation

    NASA Astrophysics Data System (ADS)

    Takakura, Jun'ya; Fujimori, Shinichiro; Takahashi, Kiyoshi; Hijioka, Yasuaki; Hasegawa, Tomoko; Honda, Yasushi; Masui, Toshihiko

    2017-06-01

    The exposure of workers to hot environments is expected to increase as a result of climate change. In order to prevent heat-related illness, it is recommended that workers take breaks during working hours. However, this would lead to reductions in worktime and labor productivity. In this study, we estimate the economic cost of heat-related illness prevention through worker breaks associated with climate change under a wide range of climatic and socioeconomic conditions. We calculate the worktime reduction based on the recommendation of work/rest ratio and the estimated future wet bulb glove temperature, which is an index of heat stresses. Corresponding GDP losses (cost of heat-related illness prevention through worker breaks) are estimated using a computable general equilibrium model throughout this century. Under the highest emission scenario, GDP losses in 2100 will range from 2.6 to 4.0% compared to the current climate conditions. On the other hand, GDP losses will be less than 0.5% if the 2.0 °C goal is achieved. The benefit of climate-change mitigation for avoiding worktime loss is comparable to the cost of mitigation (cost of the greenhouse gas emission reduction) under the 2.0 °C goal. The relationship between the cost of heat-related illness prevention through worker breaks and global average temperature rise is approximately linear, and the difference in economic loss between the 1.5 °C goal and the 2.0 °C goal is expected to be approximately 0.3% of global GDP in 2100. Although climate mitigation and socioeconomic development can limit the vulnerable regions and sectors, particularly in developing countries, outdoor work is still expected to be affected. The effectiveness of some adaptation measures such as additional installation of air conditioning devices or shifting the time of day for working are also suggested. In order to reduce the economic impacts, adaptation measures should also be implemented as well as pursing ambitious climate change mitigation targets.

  12. High and Mid-Latitude Wetlands, Climate Change, and Carbon Storage

    NASA Technical Reports Server (NTRS)

    Peteet, Dorothy

    2000-01-01

    Pollen and macrofossil stratigraphy from wetlands associated with AMS chronology provides a vegetational and climatic history over thousands of years. From these records we establish a record of climate change which can be compared with independent records of carbon accumulation rates in these same wetlands. In this way, inferences can be made concerning carbon storage during different climatic regimes. One focus of our research has been high-latitude regions such as Alaskan and Siberian tundra, from which we have paleorecords which span the last 10,000 years. We will present records from the Malaspina Glacier region, Alaska and the Pur-Taz region of Western Siberia. A second focus of our research is in mid-latitude eastern North America. We will present paleorecords from wetlands in Vermont, New York, and Virginia showing the relationship between carbon accumulation rates and climatic changes since the late Pleistocene.

  13. Influence of local climate and climate change on aeroterrestrial phototrophic biofilms.

    PubMed

    Gladis-Schmacka, Franziska; Glatzel, Stephan; Karsten, Ulf; Böttcher, Heidrun; Schumann, Rhena

    2014-01-01

    Aeroterrestrial phototrophic biofilms colonize natural and man-made surfaces and may damage the material they settle on. The occurrence of biofilms varies between regions with different climatic conditions. The aim of this study was to evaluate the influence of meteorological factors on the growth of aeroterrestrial phototrophs. Phototrophic biomass was recorded on roof tiles at six sites within Germany five times over a period of five years and compared to climatic parameters from neighboring weather stations. All correlating meteorological factors influenced water availability on the surface of the roof tiles. The results indicate that the frequency of rainy days and not the mean precipitation per season is more important for biofilm proliferation. It is also inferred that the macroclimate is more important than the microclimate. In conclusion, changed (regional) climatic conditions may determine where in central Europe global change will promote or inhibit phototrophic growth in the future.

  14. Uncertainty quantification and validation of combined hydrological and macroeconomic analyses.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, Jacquelynne; Parks, Mancel Jordan; Jennings, Barbara Joan

    2010-09-01

    Changes in climate can lead to instabilities in physical and economic systems, particularly in regions with marginal resources. Global climate models indicate increasing global mean temperatures over the decades to come and uncertainty in the local to national impacts means perceived risks will drive planning decisions. Agent-based models provide one of the few ways to evaluate the potential changes in behavior in coupled social-physical systems and to quantify and compare risks. The current generation of climate impact analyses provides estimates of the economic cost of climate change for a limited set of climate scenarios that account for a small subsetmore » of the dynamics and uncertainties. To better understand the risk to national security, the next generation of risk assessment models must represent global stresses, population vulnerability to those stresses, and the uncertainty in population responses and outcomes that could have a significant impact on U.S. national security.« less

  15. Reconstructing Student Conceptions of Climate Change; An Inquiry Approach

    NASA Astrophysics Data System (ADS)

    McClelland, J. Collin

    No other environmental issue today has as much potential to alter life on Earth as does global climate change. Scientific evidence continues to grow; indicating that climate change is occurring now, and that change is a result of human activities (National Research Council [NRC], 2010). The need for climate literacy in society has become increasingly urgent. Unfortunately, understanding the concepts necessary for climate literacy remains a challenge for most individuals. A growing research base has identified a number of common misconceptions people have about climate literacy concepts (Leiserowitz, Smith, & Marlon 2011; Shepardson, Niyogi, Choi, & Charusombat, 2009). However, few have explored this understanding in high school students. This sequential mixed methods study explored the changing conceptions of global climate change in 90 sophomore biology students through the course of their participation in an eight-week inquiry-based global climate change unit. The study also explored changes in students' attitudes over the course of the study unit, contemplating possible relationships between students' conceptual understanding of and attitudes toward global climate change. Phase I of the mixed methods study included quantitative analysis of pre-post content knowledge and attitude assessment data. Content knowledge gains were statistically significant and over 25% of students in the study shifted from an expressed belief of denial or uncertainty about global warming to one of belief in it. Phase II used an inductive approach to explore student attitudes and conceptions. Conceptually, very few students grew to a scientifically accurate understanding of the greenhouse effect or the relationship between global warming and climate change. However, they generally made progress in their conceptual understanding by adding more specific detail to explain their understanding. Phase III employed a case study approach with eight purposefully selected student cases, identifying five common conceptual and five common attitudebased themes. Findings suggest similar misconceptions revealed in prior research also occurred in this study group. Some examples include; connecting global warming to the hole in the ozone layer, and falsely linking unrelated environmental issues like littering to climate change. Data about students' conceptual understanding of energy may also have implications for education research curriculum development. Similar to Driver & While no statistical relationship between students' attitudes about global climate change and overall conceptual understanding emerged, some data suggested that climate change skeptics may perceive the concept of evidence differently than non-skeptics. One-way ANOVA data comparing skeptics with other students on evidence-based assessment items was significant. This study offers insights to teachers of potential barriers students face when trying to conceptualize global climate change concepts. More importantly it reinforces the idea that students generally find value in learning about global climate change in the classroom.

  16. Paleoclimate of the Neoglacial and Roman Warm Period Reconstructed from Oxygen Isotope Ratios of Limpet Shells (Patella vulgata), Northwest Scotland

    NASA Astrophysics Data System (ADS)

    Wang, T.; Surge, D. M.; Mithen, S.

    2010-12-01

    Paleoclimate reconstructions from different regions have reported abrupt climate change around 2800-2700 cal yr B.P. The timing of this abrupt climate change is close to the boundary between the Neoglacial (3300-2500 cal yr B.P.) and Roman Warm Period (2500-1600 cal yr B.P.). However, temporal and spatial variability observed in this climate change event raises controversies about the forcing factors driving it and why it has regional variability. Scotland lies in the North Atlantic Ocean, which responds sensitively to climate change. Therefore, even in the case of subtle climate change, the climate variability of Scotland should be able to capture such change. In this study, we expect that paleoclimate reconstructions of the Neoglacial and Roman Warm Period in Scotland will help improve our knowledge of abrupt climate change at 2800-2700 cal yr B.P. Archaeological shell deposits provide a rich source of climate proxy data preserved as oxygen isotope ratios in shell carbonate. Croig Cave on the Isle of Mull, Scotland, contains a nearly continuous accumulation of shells ranging from 800 BC-500 AD and possibly older. This range represents a broad chronology of human use from the late Bronze to Iron Ages and spans the Neoglacial through Roman Warm Period climate episodes. Here, we present seasonal temperature variability of the two climate episodes based on oxygen isotope ratios of ten limpet shells (Patella vulgata) from Croig Cave. Based on AMS dating (2 sigma calibration), the oldest shell was from 3480-3330 cal yr B.P. and the youngest shell was from 2060-1870 cal yr B.P. Our results indicated that estimated temperatures from the Neoglacial limpets average 6.44±0.56°C for coldest winters and 15.06±0.67°C for warmest summers. For the Roman Warm Period limpets, the average is 5.68±0.36°C for coldest winters and 14.14±0.81°C for warmest summers. We compared our estimated temperatures to the present sea surface temperature (SST) from 1961 to 1990 near our study area, which averages 7.40±0.35°C for coldest month and 14.12±0.54°C for warmest month. Our reconstructed temperatures from the Neoglacial limpets showed slightly (0-1°C) colder winters, similar or warmer (1-1.8°C) summers compared to present SST record. One shell captured a year without a summer likely resulting from an eruption of the Katla volcanic system in Iceland. The reconstructed temperatures from the Roman Warm Period limpets showed colder winters (up to 2°C) and similar summers compared with present SST record. Our findings represent the first insights of SST variability at seasonal time scales for these two climate episodes in northwest Scotland.

  17. Quantitative Assessment of Antarctic Climate Variability and Change

    NASA Astrophysics Data System (ADS)

    Ordonez, A.; Schneider, D. P.

    2013-12-01

    The Antarctic climate is both extreme and highly variable, but there are indications it may be changing. As the climate in Antarctica can affect global sea level and ocean circulation, it is important to understand and monitor its behavior. Observational and model data have been used to study climate change in Antarctica and the Southern Ocean, though observational data is sparse and models have difficulty reproducing many observed climate features. For example, a leading hypothesis that ozone depletion has been responsible for sea ice trends is struggling with the inability of ozone-forced models to reproduce the observed sea ice increase. The extent to which this data-model disagreement represents inadequate observations versus model biases is unknown. This research assessed a variety of climate change indicators to present an overview of Antarctic climate that will allow scientists to easily access this data and compare indicators with other observational data and model output. Indicators were obtained from observational and reanalysis data for variables such as temperature, sea ice area, and zonal wind stress. Multiple datasets were used for key variables. Monthly and annual anomaly data from Antarctica and the Southern Ocean as well as tropical indices were plotted as time series on common axes for comparison. Trends and correlations were also computed. Zonal wind, surface temperature, and austral springtime sea ice had strong relationships and were further discussed in terms of how they may relate to climate variability and change in the Antarctic. This analysis will enable hypothesized mechanisms of Antarctic climate change to be critically evaluated.

  18. Northward shift of the agricultural climate zone under 21st-century global climate change.

    PubMed

    King, Myron; Altdorff, Daniel; Li, Pengfei; Galagedara, Lakshman; Holden, Joseph; Unc, Adrian

    2018-05-21

    As agricultural regions are threatened by climate change, warming of high latitude regions and increasing food demands may lead to northward expansion of global agriculture. While socio-economic demands and edaphic conditions may govern the expansion, climate is a key limiting factor. Extant literature on future crop projections considers established agricultural regions and is mainly temperature based. We employed growing degree days (GDD), as the physiological link between temperature and crop growth, to assess the global northward shift of agricultural climate zones under 21 st -century climate change. Using ClimGen scenarios for seven global climate models (GCMs), based on greenhouse gas (GHG) emissions and transient GHGs, we delineated the future extent of GDD areas, feasible for small cereals, and assessed the projected changes in rainfall and potential evapotranspiration. By 2099, roughly 76% (55% to 89%) of the boreal region might reach crop feasible GDD conditions, compared to the current 32%. The leading edge of the feasible GDD will shift northwards up to 1200 km by 2099 while the altitudinal shift remains marginal. However, most of the newly gained areas are associated with highly seasonal and monthly variations in climatic water balances, a critical component of any future land-use and management decisions.

  19. Exploring Science Teachers' Argumentation and Personal Epistemology About Global Climate Change

    NASA Astrophysics Data System (ADS)

    Liu, Shiyu; Roehrig, Gillian

    2017-06-01

    This case study investigated the nature of in-service science teachers' argumentation and personal epistemology about global climate change during a 3-year professional development program on climate change education. Qualitative analysis of data from interviews and written assessments revealed that while these teachers grounded their arguments on climate issues in evidence, the evidence was often insufficient to justify their causal claims. Compared with generating arguments for their own views, teachers had more difficulties in constructing evidence-based arguments for alternative perspectives. Moreover, while these teachers shared some similarities in their epistemology about climate science, they varied in their beliefs about specific aspects such as scientists' expertise and the credibility of scientific evidence. Such similarities and distinctions were shown to relate to how teachers used evidence to justify claims in their arguments. The findings also suggested a mismatch between teachers' personal epistemology about science in general and climate science, which was revealed through their argumentation. This work helps to further the ongoing discussions in environmental education about what knowledge and skills teachers need in order to teach climate issues and prepare students for future decision making. It constitutes first steps to facilitate reasoning and argumentation in climate change education and provides important implications for future design of professional development programs.

  20. Implications of Climate Mitigation for Future Agricultural Production

    NASA Technical Reports Server (NTRS)

    Mueller, Christoph; Elliott, Joshua; Chryssanthacopoulos, James; Deryng, Delphine; Folberth, Christian; Pugh, Thomas A. M.; Schmid, Erwin

    2015-01-01

    Climate change is projected to negatively impact biophysical agricultural productivity in much of the world. Actions taken to reduce greenhouse gas emissions and mitigate future climate changes, are thus of central importance for agricultural production. Climate impacts are, however, not unidirectional; some crops in some regions (primarily higher latitudes) are projected to benefit, particularly if increased atmospheric carbon dioxide is assumed to strongly increase crop productivity at large spatial and temporal scales. Climate mitigation measures that are implemented by reducing atmospheric carbon dioxide concentrations lead to reductions both in the strength of climate change and in the benefits of carbon dioxide fertilization. Consequently, analysis of the effects of climate mitigation on agricultural productivity must address not only regions for which mitigation is likely to reduce or even reverse climate damages. There are also regions that are likely to see increased crop yields due to climate change, which may lose these added potentials under mitigation action. Comparing data from the most comprehensive archive of crop yield projections publicly available, we find that climate mitigation leads to overall benefits from avoided damages at the global scale and especially in many regions that are already at risk of food insecurity today. Ignoring controversial carbon dioxide fertilization effects on crop productivity, we find that for the median projection aggressive mitigation could eliminate approximately 81% of the negative impacts of climate change on biophysical agricultural productivity globally by the end of the century. In this case, the benefits of mitigation typically extend well into temperate regions, but vary by crop and underlying climate model projections. Should large benefits to crop yields from carbon dioxide fertilization be realized, the effects of mitigation become much more mixed, though still positive globally and beneficial in many food insecure countries.

  1. Range and niche shifts in response to past climate change in the desert horned lizard (Phrynosoma platyrhinos)

    PubMed Central

    Jezkova, Tereza; Jaeger, Jef R.; Oláh-Hemmings, Viktória; Jones, K. Bruce; Lara-Resendiz, Rafael A.; Mulcahy, Daniel G.; Riddle, Brett R.

    2015-01-01

    During climate change, species are often assumed to shift their geographic distributions (geographic ranges) in order to track environmental conditions – niches – to which they are adapted. Recent work, however, suggests that the niches do not always remain conserved during climate change but shift instead, allowing populations to persist in place or expand into new areas. We assessed the extent of range and niche shifts in response to the warming climate after the Last Glacial Maximum (LGM) in the desert horned lizard (Phrynosoma platyrhinos), a species occupying the western deserts of North America. We used a phylogeographic approach with mitochondrial DNA sequences to approximate the species range during the LGM by identifying populations that exhibit a genetic signal of population stability versus those that exhibit a signal of a recent (likely post-LGM) geographic expansion. We then compared the climatic niche that the species occupies today with the niche it occupied during the LGM using two models of simulated LGM climate. The genetic analyses indicated that P. platyrhinos persisted within the southern Mojave and Sonoran deserts throughout the latest glacial period and expanded from these deserts northwards, into the western and eastern Great Basin, after the LGM. The climatic niche comparisons revealed that P. platyrhinos expanded its climatic niche after the LGM towards novel, warmer and drier climates that allowed it to persist within the southern deserts. Simultaneously, the species shifted its climatic niche towards greater temperature and precipitation fluctuations after the LGM. We concluded that climatic changes at the end of the LGM promoted both range and niche shifts in this lizard. The mechanism that allowed the species to shift its niche remains unknown, but phenotypic plasticity likely contributes to the species ability to adjust to climate change. PMID:27231410

  2. Range and niche shifts in response to past climate change in the desert horned lizard (Phrynosoma platyrhinos).

    PubMed

    Jezkova, Tereza; Jaeger, Jef R; Oláh-Hemmings, Viktória; Jones, K Bruce; Lara-Resendiz, Rafael A; Mulcahy, Daniel G; Riddle, Brett R

    2016-05-01

    During climate change, species are often assumed to shift their geographic distributions (geographic ranges) in order to track environmental conditions - niches - to which they are adapted. Recent work, however, suggests that the niches do not always remain conserved during climate change but shift instead, allowing populations to persist in place or expand into new areas. We assessed the extent of range and niche shifts in response to the warming climate after the Last Glacial Maximum (LGM) in the desert horned lizard ( Phrynosoma platyrhinos ), a species occupying the western deserts of North America. We used a phylogeographic approach with mitochondrial DNA sequences to approximate the species range during the LGM by identifying populations that exhibit a genetic signal of population stability versus those that exhibit a signal of a recent (likely post-LGM) geographic expansion. We then compared the climatic niche that the species occupies today with the niche it occupied during the LGM using two models of simulated LGM climate. The genetic analyses indicated that P. platyrhinos persisted within the southern Mojave and Sonoran deserts throughout the latest glacial period and expanded from these deserts northwards, into the western and eastern Great Basin, after the LGM. The climatic niche comparisons revealed that P. platyrhinos expanded its climatic niche after the LGM towards novel, warmer and drier climates that allowed it to persist within the southern deserts. Simultaneously, the species shifted its climatic niche towards greater temperature and precipitation fluctuations after the LGM. We concluded that climatic changes at the end of the LGM promoted both range and niche shifts in this lizard. The mechanism that allowed the species to shift its niche remains unknown, but phenotypic plasticity likely contributes to the species ability to adjust to climate change.

  3. An Assessment of IPCC 20th Century Climate Simulations Using the 15-year Sea Level Record from Altimetry

    NASA Astrophysics Data System (ADS)

    Leuliette, E.; Nerem, S.; Jakub, T.

    2006-07-01

    Recen tly, multiple ensemble climate simulations h ave been produced for th e forthco ming Fourth A ssessment Report of the Intergovernmental Panel on Climate Change (IPCC). N early two dozen coupled ocean- atmo sphere models have contr ibuted output for a variety of climate scen arios. One scenar io, the climate of the 20th century exper imen t (20C3 M), produces model output that can be comp ared to th e long record of sea level provided by altimetry . Generally , the output from the 20C3M runs is used to initialize simulations of future climate scenar ios. Hence, v alidation of the 20 C3 M experiment resu lts is crucial to the goals of th e IPCC. We present compar isons of global mean sea level (G MSL) , global mean steric sea level change, and regional patterns of sea lev el chang e from these models to r esults from altimetry, tide gauge measurements, and reconstructions.

  4. Precipitation Indices as a Tool for Climate-Resilient Development in the Peruvian Andes

    NASA Astrophysics Data System (ADS)

    Chisolm, R. E.; McKinney, D. C.

    2016-12-01

    The local people living in the mountains of the Ancash Department in Peru have noticed changes in their water supply as climate change has altered precipitation patterns. They are seeking adaptation solutions to help guarantee the reliability of their water supply, but there has been very little analysis of historical data to evaluate and justify these adaptation solutions. In addition, Peru's Ministry of Economy and Finance now requires that climate change be part of the vulnerability assessment for all public investment project proposals, but there are currently no tools or methods of data analysis for including climate change in vulnerability assessments. Compounding the difficulties of considering climate change in the sustainability of development projects is the scarcity of climate data in the region and the difficulty of accessing existing data. To counteract this problem, the Peruvian government recommends using local people's perceptions of change as a proxy for gauged climate data. This work focuses on precipitation data analysis in the mountains of Ancash, Peru. The objectives of this analysis were to determine the accuracy of the local population's perceptions of climate change and to investigate how changes in precipitation patterns might impact public investment projects. The precipitation data analysis was compared to a local study of perceptions of change to determine whether or not these perceptions might be used in lieu of gauged climate data. It appears that people's perceptions of precipitation trends do not accurately reflect the trends observed in the gauged data. The methods of analysis were designed so that the results may be useful for public investment projects with a particular emphasis on agricultural projects. The data were analyzed for trends, seasonal patterns and variability. Dry spells were examined, and the results indicate that droughts during the rainy season have become more frequent and of longer duration. This could have significant impact on agricultural projects. It is likely that the current practice of relying exclusively on wet season rainfall to meet crop water requirements may not be sustainable in the future. Further analysis of climate data is needed to generate a regional climatic characterization that can be used for climate-resilient development projects.

  5. Modeling and assessing international climate financing

    NASA Astrophysics Data System (ADS)

    Wu, Jing; Tang, Lichun; Mohamed, Rayman; Zhu, Qianting; Wang, Zheng

    2016-06-01

    Climate financing is a key issue in current negotiations on climate protection. This study establishes a climate financing model based on a mechanism in which donor countries set up funds for climate financing and recipient countries use the funds exclusively for carbon emission reduction. The burden-sharing principles are based on GDP, historical emissions, and consumptionbased emissions. Using this model, we develop and analyze a series of scenario simulations, including a financing program negotiated at the Cancun Climate Change Conference (2010) and several subsequent programs. Results show that sustained climate financing can help to combat global climate change. However, the Cancun Agreements are projected to result in a reduction of only 0.01°C in global warming by 2100 compared to the scenario without climate financing. Longer-term climate financing programs should be established to achieve more significant benefits. Our model and simulations also show that climate financing has economic benefits for developing countries. Developed countries will suffer a slight GDP loss in the early stages of climate financing, but the longterm economic growth and the eventual benefits of climate mitigation will compensate for this slight loss. Different burden-sharing principles have very similar effects on global temperature change and economic growth of recipient countries, but they do result in differences in GDP changes for Japan and the FSU. The GDP-based principle results in a larger share of financial burden for Japan, while the historical emissions-based principle results in a larger share of financial burden for the FSU. A larger burden share leads to a greater GDP loss.

  6. The PMIP4 contribution to CMIP6 - Part 2: Two interglacials, scientific objective and experimental design for Holocene and Last Interglacial simulations

    NASA Astrophysics Data System (ADS)

    Otto-Bliesner, Bette L.; Braconnot, Pascale; Harrison, Sandy P.; Lunt, Daniel J.; Abe-Ouchi, Ayako; Albani, Samuel; Bartlein, Patrick J.; Capron, Emilie; Carlson, Anders E.; Dutton, Andrea; Fischer, Hubertus; Goelzer, Heiko; Govin, Aline; Haywood, Alan; Joos, Fortunat; LeGrande, Allegra N.; Lipscomb, William H.; Lohmann, Gerrit; Mahowald, Natalie; Nehrbass-Ahles, Christoph; Pausata, Francesco S. R.; Peterschmitt, Jean-Yves; Phipps, Steven J.; Renssen, Hans; Zhang, Qiong

    2017-11-01

    Two interglacial epochs are included in the suite of Paleoclimate Modeling Intercomparison Project (PMIP4) simulations in the Coupled Model Intercomparison Project (CMIP6). The experimental protocols for simulations of the mid-Holocene (midHolocene, 6000 years before present) and the Last Interglacial (lig127k, 127 000 years before present) are described here. These equilibrium simulations are designed to examine the impact of changes in orbital forcing at times when atmospheric greenhouse gas levels were similar to those of the preindustrial period and the continental configurations were almost identical to modern ones. These simulations test our understanding of the interplay between radiative forcing and atmospheric circulation, and the connections among large-scale and regional climate changes giving rise to phenomena such as land-sea contrast and high-latitude amplification in temperature changes, and responses of the monsoons, as compared to today. They also provide an opportunity, through carefully designed additional sensitivity experiments, to quantify the strength of atmosphere, ocean, cryosphere, and land-surface feedbacks. Sensitivity experiments are proposed to investigate the role of freshwater forcing in triggering abrupt climate changes within interglacial epochs. These feedback experiments naturally lead to a focus on climate evolution during interglacial periods, which will be examined through transient experiments. Analyses of the sensitivity simulations will also focus on interactions between extratropical and tropical circulation, and the relationship between changes in mean climate state and climate variability on annual to multi-decadal timescales. The comparative abundance of paleoenvironmental data and of quantitative climate reconstructions for the Holocene and Last Interglacial make these two epochs ideal candidates for systematic evaluation of model performance, and such comparisons will shed new light on the importance of external feedbacks (e.g., vegetation, dust) and the ability of state-of-the-art models to simulate climate changes realistically.

  7. Water Vapor Winds and Their Application to Climate Change Studies

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Lerner, Jeffrey A.

    2000-01-01

    The retrieval of satellite-derived winds and moisture from geostationary water vapor imagery has matured to the point where it may be applied to better understanding longer term climate changes that were previously not possible using conventional measurements or model analysis in data-sparse regions. In this paper, upper-tropospheric circulation features and moisture transport covering ENSO periods are presented and discussed. Precursors and other detectable interannual climate change signals are analyzed and compared to model diagnosed features. Estimates of winds and humidity over data-rich regions are used to show the robustness of the data and its value over regions that have previously eluded measurement.

  8. Valuing Climate Change Impacts on Human Health: Empirical Evidence from the Literature

    PubMed Central

    Markandya, Anil; Chiabai, Aline

    2009-01-01

    There is a broad consensus that climate change will increase the costs arising from diseases such as malaria and diarrhea and, furthermore, that the largest increases will be in developing countries. One of the problems is the lack of studies measuring these costs systematically and in detail. This paper critically reviews a number of studies about the costs of planned adaptation in the health context, and compares current health expenditures with MDGs which are felt to be inadequate when considering climate change impacts. The analysis serves also as a critical investigation of the methodologies used and aims at identifying research weaknesses and gaps. PMID:19440414

  9. Assessing the Impact of Climate Change on Extreme Streamflow and Reservoir Operation for Nuuanu Watershed, Oahu, Hawaii

    NASA Astrophysics Data System (ADS)

    Leta, O. T.; El-Kadi, A. I.; Dulaiova, H.

    2016-12-01

    Extreme events, such as flooding and drought, are expected to occur at increased frequencies worldwide due to climate change influencing the water cycle. This is particularly critical for tropical islands where the local freshwater resources are very sensitive to climate. This study examined the impact of climate change on extreme streamflow, reservoir water volume and outflow for the Nuuanu watershed, using the Soil and Water Assessment Tool (SWAT) model. Based on the sensitive parameters screened by the Latin Hypercube-One-factor-At-a-Time (LH-OAT) method, SWAT was calibrated and validated to daily streamflow using the SWAT Calibration and Uncertainty Program (SWAT-CUP) at three streamflow gauging stations. Results showed that SWAT adequately reproduced the observed daily streamflow hydrographs at all stations. This was verified with Nash-Sutcliffe Efficiency that resulted in acceptable values of 0.58 to 0.88, whereby more than 90% of observations were bracketed within 95% model prediction uncertainty interval for both calibration and validation periods, signifying the potential applicability of SWAT for future prediction. The climate change impact on extreme flows, reservoir water volume and outflow was assessed under the Representative Concentration Pathways of 4.5 and 8.5 scenarios. We found wide changes in extreme peak and low flows ranging from -44% to 20% and -50% to -2%, respectively, compared to baseline. Consequently, the amount of water stored in Nuuanu reservoir will be decreased up to 27% while the corresponding outflow rates are expected to decrease up to 37% relative to the baseline. In addition, the stored water and extreme flows are highly sensitive to rainfall change when compared to temperature and solar radiation changes. It is concluded that the decrease in extreme low and peak flows can have serious consequences, such as flooding, drought, with detrimental effects on riparian ecological functioning. This study's results are expected to aid in reservoir operation as well as in identifying appropriate climate change adaptation strategies.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyle, G. Page; Mueller, C.; Calvin, Katherine V.

    This study assesses how climate impacts on agriculture may change the evolution of the agricultural and energy systems in meeting the end-of-century radiative forcing targets of the Representative Concentration Pathways (RCPs). We build on the recently completed ISI-MIP exercise that has produced global gridded estimates of future crop yields for major agricultural crops using climate model projections of the RCPs from the Coupled Model Intercomparison Project Phase 5 (CMIP5). For this study we use the bias-corrected outputs of the HadGEM2-ES climate model as inputs to the LPJmL crop growth model, and the outputs of LPJmL to modify inputs to themore » GCAM integrated assessment model. Our results indicate that agricultural climate impacts generally lead to an increase in global cropland, as compared with corresponding emissions scenarios that do not consider climate impacts on agricultural productivity. This is driven mostly by negative impacts on wheat, rice, other grains, and oil crops. Still, including agricultural climate impacts does not significantly increase the costs or change the technological strategies of global, whole-system emissions mitigation. In fact, to meet the most aggressive climate change mitigation target (2.6 W/m2 in 2100), the net mitigation costs are slightly lower when agricultural climate impacts are considered. Key contributing factors to these results are (a) low levels of climate change in the low-forcing scenarios, (b) adaptation to climate impacts, simulated in GCAM through inter-regional shifting in the production of agricultural goods, and (c) positive average climate impacts on bioenergy crop yields.« less

  11. Live Fast, Die Young: Experimental Evidence of Population Extinction Risk due to Climate Change.

    PubMed

    Bestion, Elvire; Teyssier, Aimeric; Richard, Murielle; Clobert, Jean; Cote, Julien

    2015-10-01

    Evidence has accumulated in recent decades on the drastic impact of climate change on biodiversity. Warming temperatures have induced changes in species physiology, phenology, and have decreased body size. Such modifications can impact population dynamics and could lead to changes in life cycle and demography. More specifically, conceptual frameworks predict that global warming will severely threaten tropical ectotherms while temperate ectotherms should resist or even benefit from higher temperatures. However, experimental studies measuring the impacts of future warming trends on temperate ectotherms' life cycle and population persistence are lacking. Here we investigate the impacts of future climates on a model vertebrate ectotherm species using a large-scale warming experiment. We manipulated climatic conditions in 18 seminatural populations over two years to obtain a present climate treatment and a warm climate treatment matching IPCC predictions for future climate. Warmer temperatures caused a faster body growth, an earlier reproductive onset, and an increased voltinism, leading to a highly accelerated life cycle but also to a decrease in adult survival. A matrix population model predicts that warm climate populations in our experiment should go extinct in around 20 y. Comparing our experimental climatic conditions to conditions encountered by populations across Europe, we suggest that warming climates should threaten a significant number of populations at the southern range of the distribution. Our findings stress the importance of experimental approaches on the entire life cycle to more accurately predict population and species persistence in future climates.

  12. Measuring resilience and assessing vulnerability of terrestrial ecosystems to climate change in South America

    PubMed Central

    2018-01-01

    Climate change has been identified as the primary threat to the integrity and functioning of ecosystems in this century, although there is still much uncertainty about its effects and the degree of vulnerability for different ecosystems to this threat. Here we propose a new methodological approach capable of measuring and mapping the resilience of terrestrial ecosystems at large scales based on their climatic niche. To do this, we used high spatial resolution remote sensing data and ecological niche modeling techniques to calculate and spatialize the resilience of three stable states of ecosystems in South America: forest, savanna, and grassland. Also, we evaluated the sensitivity of ecosystems to climate stress, the likelihood of exposure to non-analogous climatic conditions, and their respective adaptive capacities in the face of climate change. Our results indicate that forests, the most productive and biodiverse terrestrial ecosystems on the earth, are more vulnerable to climate change than savannas or grasslands. Forests showed less resistance to climate stress and a higher chance of exposure to non-analogous climatic conditions. If this scenario occurs, the forest ecosystems would have less chance of adaptation compared to savannas or grasslands because of their narrow climate niche. Therefore, we can conclude that a possible consolidation of non-analogous climatic conditions would lead to a loss of resilience in the forest ecosystem, significantly increasing the chance of a critical transition event to another stable state with a lower density of vegetation cover (e.g., savanna or grassland). PMID:29554132

  13. Live Fast, Die Young: Experimental Evidence of Population Extinction Risk due to Climate Change

    PubMed Central

    Bestion, Elvire; Teyssier, Aimeric; Richard, Murielle; Clobert, Jean; Cote, Julien

    2015-01-01

    Evidence has accumulated in recent decades on the drastic impact of climate change on biodiversity. Warming temperatures have induced changes in species physiology, phenology, and have decreased body size. Such modifications can impact population dynamics and could lead to changes in life cycle and demography. More specifically, conceptual frameworks predict that global warming will severely threaten tropical ectotherms while temperate ectotherms should resist or even benefit from higher temperatures. However, experimental studies measuring the impacts of future warming trends on temperate ectotherms' life cycle and population persistence are lacking. Here we investigate the impacts of future climates on a model vertebrate ectotherm species using a large-scale warming experiment. We manipulated climatic conditions in 18 seminatural populations over two years to obtain a present climate treatment and a warm climate treatment matching IPCC predictions for future climate. Warmer temperatures caused a faster body growth, an earlier reproductive onset, and an increased voltinism, leading to a highly accelerated life cycle but also to a decrease in adult survival. A matrix population model predicts that warm climate populations in our experiment should go extinct in around 20 y. Comparing our experimental climatic conditions to conditions encountered by populations across Europe, we suggest that warming climates should threaten a significant number of populations at the southern range of the distribution. Our findings stress the importance of experimental approaches on the entire life cycle to more accurately predict population and species persistence in future climates. PMID:26501958

  14. Future Heat Waves In Asia

    NASA Astrophysics Data System (ADS)

    Eltahir, E. A. B.

    2017-12-01

    I will review recent work from my group on the impact of climate change on the intensity and frequency of heat waves in Asia. Our studies covered Southwest Asia, South Asia, East China, and the Maritime continent. In any of these regions, the risk associated with climate change impact reflects intensity of natural hazard and level of human vulnerability. Previous work has shown that the wet-bulb temperature is a useful variable to consider in describing the natural hazard from heat waves since it can be easily compared to the natural threshold that defines the upper limit on human survivability. Based on an ensemble of high resolution climate change simulations, we project extremes of wet-bulb temperature conditions in each of these four regions of Asia. We consider the business-as-usual scenario of future greenhouse gas emissions, as well as a moderate mitigation scenario. The results from these regions will be compared and lessons learned summarized.

  15. Changes in Moisture Flux over the Tibetan Plateau during 1979-2011: Insights from a High Resolution Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Yanhong; Leung, Lai-Yung R.; Zhang, Yongxin

    2015-05-15

    Net precipitation (precipitation minus evapotranspiration, P-E) changes between 1979 and 2011 from a high resolution regional climate simulation and its reanalysis forcing are analyzed over the Tibet Plateau (TP) and compared to the global land data assimilation system (GLDAS) product. The high resolution simulation better resolves precipitation changes than its coarse resolution forcing, which contributes dominantly to the improved P-E change in the regional simulation compared to the global reanalysis. Hence, the former may provide better insights about the drivers of P-E changes. The mechanism behind the P-E changes is explored by decomposing the column integrated moisture flux convergence intomore » thermodynamic, dynamic, and transient eddy components. High-resolution climate simulation improves the spatial pattern of P-E changes over the best available global reanalysis. High-resolution climate simulation also facilitates new and substantial findings regarding the role of thermodynamics and transient eddies in P-E changes reflected in observed changes in major river basins fed by runoff from the TP. The analysis revealed the contrasting convergence/divergence changes between the northwestern and southeastern TP and feedback through latent heat release as an important mechanism leading to the mean P-E changes in the TP.« less

  16. Understanding the past to interpret the future: Comparison of simulated groundwater recharge in the upper Colorado River basin (USA) using observed and general-circulation-model historical climate data

    USGS Publications Warehouse

    Tillman, Fred D.; Gangopadhyay, Subhrendu; Pruitt, Tom

    2017-01-01

    In evaluating potential impacts of climate change on water resources, water managers seek to understand how future conditions may differ from the recent past. Studies of climate impacts on groundwater recharge often compare simulated recharge from future and historical time periods on an average monthly or overall average annual basis, or compare average recharge from future decades to that from a single recent decade. Baseline historical recharge estimates, which are compared with future conditions, are often from simulations using observed historical climate data. Comparison of average monthly results, average annual results, or even averaging over selected historical decades, may mask the true variability in historical results and lead to misinterpretation of future conditions. Comparison of future recharge results simulated using general circulation model (GCM) climate data to recharge results simulated using actual historical climate data may also result in an incomplete understanding of the likelihood of future changes. In this study, groundwater recharge is estimated in the upper Colorado River basin, USA, using a distributed-parameter soil-water balance groundwater recharge model for the period 1951–2010. Recharge simulations are performed using precipitation, maximum temperature, and minimum temperature data from observed climate data and from 97 CMIP5 (Coupled Model Intercomparison Project, phase 5) projections. Results indicate that average monthly and average annual simulated recharge are similar using observed and GCM climate data. However, 10-year moving-average recharge results show substantial differences between observed and simulated climate data, particularly during period 1970–2000, with much greater variability seen for results using observed climate data.

  17. Modeling of Regional Climate Change Effects on Ground-Level Ozone and Childhood Asthma

    PubMed Central

    Sheffield, Perry E.; Knowlton, Kim; Carr, Jessie L.; Kinney, Patrick L.

    2011-01-01

    Background The adverse respiratory effects of ground-level ozone are well-established. Ozone is the air pollutant most consistently projected to increase under future climate change. Purpose To project future pediatric asthma emergency department visits associated with ground-level ozone changes, comparing 1990s to 2020s. Methods This study assessed future numbers of asthma emergency department visits for children aged 0–17 years using (1) baseline New York City metropolitan area emergency department rates, (2) a dose–response relationship between ozone levels and pediatric asthma emergency department visits, and (3) projected daily 8-hour maximum ozone concentrations for the 2020s as simulated by a global-to-regional climate change and atmospheric chemistry model. Sensitivity analyses included population projections and ozone precursor changes. This analysis occurred in 2010. Results In this model, climate change could cause an increase in regional summer ozone-related asthma emergency department visits for children aged 0–17 years of 7.3% across the New York City metropolitan region by the 2020s. This effect diminished with inclusion of ozone precursor changes. When population growth is included, the projections of morbidity related to ozone are even larger. Conclusions The results of this analysis demonstrate that the use of regional climate and atmospheric chemistry models make possible the projection of local climate change health effects for specific age groups and specific disease outcomes – such as emergency department visits for asthma. Efforts should be made to improve on this type of modeling to inform local and wider-scale climate change mitigation and adaptation policy. PMID:21855738

  18. Revisiting historical climatic signals to better explore the future: prospects of water cycle changes in Central Sahel

    NASA Astrophysics Data System (ADS)

    Leauthaud, C.; Demarty, J.; Cappelaere, B.; Grippa, M.; Kergoat, L.; Velluet, C.; Guichard, F.; Mougin, E.; Chelbi, S.; Sultan, B.

    2015-06-01

    Rainfall and climatic conditions are the main drivers of natural and cultivated vegetation productivity in the semiarid region of Central Sahel. In a context of decreasing cultivable area per capita, understanding and predicting changes in the water cycle are crucial. Yet, it remains challenging to project future climatic conditions in West Africa since there is no consensus on the sign of future precipitation changes in simulations coming from climate models. The Sahel region has experienced severe climatic changes in the past 60 years that can provide a first basis to understand the response of the water cycle to non-stationary conditions in this part of the world. The objective of this study was to better understand the response of the water cycle to highly variable climatic regimes in Central Sahel using historical climate records and the coupling of a land surface energy and water model with a vegetation model that, when combined, simulated the Sahelian water, energy and vegetation cycles. To do so, we relied on a reconstructed long-term climate series in Niamey, Republic of Niger, in which three precipitation regimes can be distinguished with a relative deficit exceeding 25% for the driest period compared to the wettest period. Two temperature scenarios (+2 and +4 °C) consistent with future warming scenarios were superimposed to this climatic signal to generate six virtual future 20-year climate time series. Simulations by the two coupled models forced by these virtual scenarios showed a strong response of the water budget and its components to temperature and precipitation changes, including decreases in transpiration, runoff and drainage for all scenarios but those with highest precipitation. Such climatic changes also strongly impacted soil temperature and moisture. This study illustrates the potential of using the strong climatic variations recorded in the past decades to better understand potential future climate variations.

  19. Characterizing the Sensitivity of Groundwater Storage to Climate variation in the Indus Basin

    NASA Astrophysics Data System (ADS)

    Huang, L.; Sabo, J. L.

    2017-12-01

    Indus Basin represents an extensive groundwater aquifer facing the challenge of effective management of limited water resources. Groundwater storage is one of the most important variables of water balance, yet its sensitivity to climate change has rarely been explored. To better estimate present and future groundwater storage and its sensitivity to climate change in the Indus Basin, we analyzed groundwater recharge/discharge and their historical evolution in this basin. Several methods are applied to specify the aquifer system including: water level change and storativity estimates, gravity estimates (GRACE), flow model (MODFLOW), water budget analysis and extrapolation. In addition, all of the socioeconomic and engineering aspects are represented in the hydrological system through the change of temporal and spatial distributions of recharge and discharge (e.g., land use, crop structure, water allocation, etc.). Our results demonstrate that the direct impacts of climate change will result in unevenly distributed but increasing groundwater storage in the short term through groundwater recharge. In contrast, long term groundwater storage will decrease as a result of combined indirect and direct impacts of climate change (e.g. recharge/discharge and human activities). The sensitivity of groundwater storage to climate variation is characterized by topography, aquifer specifics and land use. Furthermore, by comparing possible outcomes of different human interventions scenarios, our study reveals human activities play an important role in affecting the sensitivity of groundwater storage to climate variation. Over all, this study presents the feasibility and value of using integrated hydrological methods to support sustainable water resource management under climate change.

  20. Sources and Impacts of Modeled and Observed Low-Frequency Climate Variability

    NASA Astrophysics Data System (ADS)

    Parsons, Luke Alexander

    Here we analyze climate variability using instrumental, paleoclimate (proxy), and the latest climate model data to understand more about the sources and impacts of low-frequency climate variability. Understanding the drivers of climate variability at interannual to century timescales is important for studies of climate change, including analyses of detection and attribution of climate change impacts. Additionally, correctly modeling the sources and impacts of variability is key to the simulation of abrupt change (Alley et al., 2003) and extended drought (Seager et al., 2005; Pelletier and Turcotte, 1997; Ault et al., 2014). In Appendix A, we employ an Earth system model (GFDL-ESM2M) simulation to study the impacts of a weakening of the Atlantic meridional overturning circulation (AMOC) on the climate of the American Tropics. The AMOC drives some degree of local and global internal low-frequency climate variability (Manabe and Stouffer, 1995; Thornalley et al., 2009) and helps control the position of the tropical rainfall belt (Zhang and Delworth, 2005). We find that a major weakening of the AMOC can cause large-scale temperature, precipitation, and carbon storage changes in Central and South America. Our results suggest that possible future changes in AMOC strength alone will not be sufficient to drive a large-scale dieback of the Amazonian forest, but this key natural ecosystem is sensitive to dry-season length and timing of rainfall (Parsons et al., 2014). In Appendix B, we compare a paleoclimate record of precipitation variability in the Peruvian Amazon to climate model precipitation variability. The paleoclimate (Lake Limon) record indicates that precipitation variability in western Amazonia is 'red' (i.e., increasing variability with timescale). By contrast, most state-of-the-art climate models indicate precipitation variability in this region is nearly 'white' (i.e., equally variability across timescales). This paleo-model disagreement in the overall structure of the variance spectrum has important consequences for the probability of multi-year drought. Our lake record suggests there is a significant background threat of multi-year, and even decade-length, drought in western Amazonia, whereas climate model simulations indicate most droughts likely last no longer than one to three years. These findings suggest climate models may underestimate the future risk of extended drought in this important region. In Appendix C, we expand our analysis of climate variability beyond South America. We use observations, well-constrained tropical paleoclimate, and Earth system model data to examine the overall shape of the climate spectrum across interannual to century frequencies. We find a general agreement among observations and models that temperature variability increases with timescale across most of the globe outside the tropics. However, as compared to paleoclimate records, climate models generate too little low-frequency variability in the tropics (e.g., Laepple and Huybers, 2014). When we compare the shape of the simulated climate spectrum to the spectrum of a simple autoregressive process, we find much of the modeled surface temperature variability in the tropics could be explained by ocean smoothing of weather noise. Importantly, modeled precipitation tends to be similar to white noise across much of the globe. By contrast, paleoclimate records of various types from around the globe indicate that both temperature and precipitation variability should experience much more low-frequency variability than a simple autoregressive or white-noise process. In summary, state-of-the-art climate models generate some degree of dynamically driven low-frequency climate variability, especially at high latitudes. However, the latest climate models, observations, and paleoclimate data provide us with drastically different pictures of the background climate system and its associated risks. This research has important consequences for improving how we simulate climate extremes as we enter a warmer (and often drier) world in the coming centuries; if climate models underestimate low-frequency variability, we will underestimate the risk of future abrupt change and extreme events, such as megadroughts.

  1. Distributional dynamics of a vulnerable species in response to past and future climate change: a window for conservation prospects

    PubMed Central

    Bai, Yunjun; Wei, Xueping

    2018-01-01

    Background The ongoing change in climate is predicted to exert unprecedented effects on Earth’s biodiversity at all levels of organization. Biological conservation is important to prevent biodiversity loss, especially for species facing a high risk of extinction. Understanding the past responses of species to climate change is helpful for revealing response mechanisms, which will contribute to the development of effective conservation strategies in the future. Methods In this study, we modelled the distributional dynamics of a ‘Vulnerable’ species, Pseudolarix amabilis, in response to late Quaternary glacial-interglacial cycles and future 2080 climate change using an ecological niche model (MaxEnt). We also performed migration vector analysis to reveal the potential migration of the population over time. Results Historical modelling indicates that the range dynamics of P. amabilis is highly sensitive to climate change and that its long-distance dispersal ability and potential for evolutionary adaption are limited. Compared to the current climatically suitable areas for this species, future modelling showed significant migration northward towards future potential climatically suitable areas. Discussion In combination with the predicted future distribution, the mechanism revealed by the historical response suggests that this species will not be able to fully occupy the future expanded areas of suitable climate or adapt to the unsuitable climate across the future contraction regions. As a result, we suggest assisted migration as an effective supplementary means of conserving this vulnerable species in the face of the unprecedentedly rapid climate change of the 21st century. As a study case, this work highlights the significance of introducing historical perspectives while researching species conservation, especially for currently vulnerable or endangered taxa that once had a wider distribution in geological time. PMID:29362700

  2. Downscaled climate projections for the Southeast United States: evaluation and use for ecological applications

    USGS Publications Warehouse

    Wootten, Adrienne; Smith, Kara; Boyles, Ryan; Terando, Adam; Stefanova, Lydia; Misra, Vasru; Smith, Tom; Blodgett, David L.; Semazzi, Fredrick

    2014-01-01

    Climate change is likely to have many effects on natural ecosystems in the Southeast U.S. The National Climate Assessment Southeast Technical Report (SETR) indicates that natural ecosystems in the Southeast are likely to be affected by warming temperatures, ocean acidification, sea-level rise, and changes in rainfall and evapotranspiration. To better assess these how climate changes could affect multiple sectors, including ecosystems, climatologists have created several downscaled climate projections (or downscaled datasets) that contain information from the global climate models (GCMs) translated to regional or local scales. The process of creating these downscaled datasets, known as downscaling, can be carried out using a broad range of statistical or numerical modeling techniques. The rapid proliferation of techniques that can be used for downscaling and the number of downscaled datasets produced in recent years present many challenges for scientists and decisionmakers in assessing the impact or vulnerability of a given species or ecosystem to climate change. Given the number of available downscaled datasets, how do these model outputs compare to each other? Which variables are available, and are certain downscaled datasets more appropriate for assessing vulnerability of a particular species? Given the desire to use these datasets for impact and vulnerability assessments and the lack of comparison between these datasets, the goal of this report is to synthesize the information available in these downscaled datasets and provide guidance to scientists and natural resource managers with specific interests in ecological modeling and conservation planning related to climate change in the Southeast U.S. This report enables the Southeast Climate Science Center (SECSC) to address an important strategic goal of providing scientific information and guidance that will enable resource managers and other participants in Landscape Conservation Cooperatives to make science-based climate change adaptation decisions.

  3. Is the future already here? The impact of climate change on the distribution of the eastern coral snake (Micrurus fulvius).

    PubMed

    Archis, Jennifer N; Akcali, Christopher; Stuart, Bryan L; Kikuchi, David; Chunco, Amanda J

    2018-01-01

    Anthropogenic climate change is a significant global driver of species distribution change. Although many species have undergone range expansion at their poleward limits, data on several taxonomic groups are still lacking. A common method for studying range shifts is using species distribution models to evaluate current, and predict future, distributions. Notably, many sources of 'current' climate data used in species distribution modeling use the years 1950-2000 to calculate climatic averages. However, this does not account for recent (post 2000) climate change. This study examines the influence of climate change on the eastern coral snake ( Micrurus fulvius ). Specifically, we: (1) identified the current range and suitable environment of M. fulvius in the Southeastern United States, (2) investigated the potential impacts of climate change on the distribution of M. fulvius , and (3) evaluated the utility of future models in predicting recent (2001-2015) records. We used the species distribution modeling program Maxent and compared both current (1950-2000) and future (2050) climate conditions. Future climate models showed a shift in the distribution of suitable habitat across a significant portion of the range; however, results also suggest that much of the Southeastern United States will be outside the range of current conditions, suggesting that there may be no-analog environments in the future. Most strikingly, future models were more effective than the current models at predicting recent records, suggesting that range shifts may already be occurring. These results have implications for both M. fulvius and its Batesian mimics. More broadly, we recommend future Maxent studies consider using future climate data along with current data to better estimate the current distribution.

  4. Distributional dynamics of a vulnerable species in response to past and future climate change: a window for conservation prospects.

    PubMed

    Bai, Yunjun; Wei, Xueping; Li, Xiaoqiang

    2018-01-01

    The ongoing change in climate is predicted to exert unprecedented effects on Earth's biodiversity at all levels of organization. Biological conservation is important to prevent biodiversity loss, especially for species facing a high risk of extinction. Understanding the past responses of species to climate change is helpful for revealing response mechanisms, which will contribute to the development of effective conservation strategies in the future. In this study, we modelled the distributional dynamics of a 'Vulnerable' species, Pseudolarix amabilis , in response to late Quaternary glacial-interglacial cycles and future 2080 climate change using an ecological niche model (MaxEnt). We also performed migration vector analysis to reveal the potential migration of the population over time. Historical modelling indicates that the range dynamics of P. amabilis is highly sensitive to climate change and that its long-distance dispersal ability and potential for evolutionary adaption are limited. Compared to the current climatically suitable areas for this species, future modelling showed significant migration northward towards future potential climatically suitable areas. In combination with the predicted future distribution, the mechanism revealed by the historical response suggests that this species will not be able to fully occupy the future expanded areas of suitable climate or adapt to the unsuitable climate across the future contraction regions. As a result, we suggest assisted migration as an effective supplementary means of conserving this vulnerable species in the face of the unprecedentedly rapid climate change of the 21st century. As a study case, this work highlights the significance of introducing historical perspectives while researching species conservation, especially for currently vulnerable or endangered taxa that once had a wider distribution in geological time.

  5. Enhancing the Extreme Climate Index (ECI) to monitor climate extremes for an index-based insurance scheme across Africa

    NASA Astrophysics Data System (ADS)

    Helmschrot, J.; Malherbe, J.; Chamunorwa, M.; Muthige, M.; Petitta, M.; Calmanti, S.; Cucchi, M.; Syroka, J.; Iyahen, E.; Engelbrecht, F.

    2017-12-01

    Climate services are a key component of National Adaptation Plan (NAP) processes, which require the analysis of current climate conditions, future climate change scenarios and the identification of adaptation strategies, including the capacity to finance and implement effective adaptation options. The Extreme Climate Facility (XCF) proposed by the African Risk Capacity (ARC) developed a climate index insurance scheme, which is based on the Extreme Climate Index (ECI): an objective, multi-hazard index capable of tracking changes in the frequency or magnitude of extreme weather events, thus indicating possible shifts to a new climate regime in various regions. The main hazards covered by ECI are extreme dry, wet and heat events, with the possibility of adding other region-specific risk events. The ECI is standardized across broad geographical regions, so that extreme events occurring under different climatic regimes in Africa can be compared. Initially developed by an Italian company specialized in Climate Services, research is now conducted at the CSIR and SASSCAL, to verify and further develop the ECI for application in southern African countries, through a project initiated by the World Food Programme (WFP) and ARC. The paper will present findings on the most appropriate definitions of extremely wet and dry conditions in Africa, in terms of their impact across a multitude of sub-regional climates of the African continent. Findings of a verification analysis of the ECI, as determined through vegetation monitoring data and the SASSCAL weather station network will be discussed. Changes in the ECI under climate change will subsequently be projected, using detailed regional projections generated by the CSIR and through the Coordinated Regional Downscaling Experiment (CORDEX). This work will be concluded by the development of a web-based climate service informing African Stakeholders on climate extremes.

  6. Insensitivity of evapotranspiration to seasonal rainfall distribution directs climate change impacts at water yield

    NASA Astrophysics Data System (ADS)

    Montaldo, N.; Oren, R.

    2017-12-01

    Over the past century, climate change is affecting precipitation regimes across the world. In the Mediterranean regions there is a persistent trend of precipitation and runoff decreases, generating a desertification process. Given the past winter precipitation shifts, the impacts on evapotranspiration (ET) need to be carefully evaluated, and the compelling question is what will be the impact of future climate change scenarios (predicting changes of precipitation and vapor pressure deficit, VPD) on evapotranspiration and water yield? Looking for the key elements of the climate change that are impacting annual ET, we investigate main climate conditions (e.g. precipitation and VPD) and basin physiographic properties contributing to annual ET. We propose a simplified model for annual ET predictions that accounts for the strong meteo seasonality typical of Mediterranean climates, using the steady state assumption of the basin water balance at mean annual scale. We investigate the Sardinia case study because the position of the island of Sardinia in the center of the western Mediterranean Sea basin and its low urbanization and human activity make Sardinia a perfect reference laboratory for Mediterranean hydrologic studies. Sardinian runoff decreased drastically over the 1975-2010 period, with mean yearly runoff reduced by more than 40% compared to the previous 1922-1974 period, and most yearly runoff in the Sardinian basins (70% on average) is produced by winter precipitation due to the seasonality typical of the Mediterranean climate regime. The use of our proposed model allows to predict future ET and water yield using future climate scenarios. We use the future climate scenarios predicted by Global climate models (GCM) in the Fifth Assessment report of the Intergovernmental Panel on Climate Change (IPCC), and we select most reliable models testing the past GCM predictions with historical data. Contrasting shifts of precipitation (both positive and negative) are predicted in the future scenarios by GCMs but these changes will produce significant changes (level of significance > 90%) only in runoff and not in ET. Surprisingly, we show that ET is insensitive to intra-annual rainfall distribution changes, and is insensitive to VPD scenario changes.

  7. Climate change and viticulture in Mediterranean climates: the complex response of socio-ecosystems. A comparative case study from France and Australia (1955-2040)

    NASA Astrophysics Data System (ADS)

    Lereboullet, A.-L.; Beltrando, G.; Bardsley, D. K.

    2012-04-01

    The wine industry is very sensitive to extreme weather events, especially to temperatures above 35°C and drought. In a context of global climate change, Mediterranean climate regions are predicted to experience higher variability in rainfall and temperatures and an increased occurrence of extreme weather events. Some viticultural systems could be particularly at risk in those regions, considering their marginal position in the growth climatic range of Vitis vinifera, the long commercial lifespan of a vineyard, the high added-value of wine and the volatile nature of global markets. The wine industry, like other agricultural systems, is inserted in complex networks of climatic and non-climatic (other physical, economical, social and legislative) components, with constant feedbacks. We use a socio-ecosystem approach to analyse the adaptation of two Mediterranean viticultural systems to recent and future increase of extreme weather events. The present analysis focuses on two wine regions with a hot-summer Mediterranean climate (CSb type in the Köppen classification): Côtes-du-Roussillon in southern France and McLaren Vale in southern Australia. Using climate data from two synoptic weather stations, Perpignan (France) and Adelaide (Australia), with time series running from 1955 to 2010, we highlight changes in rainfall patterns and an increase in the number of days with Tx >35°c since the last three decades in both regions. Climate models (DRIAS project data for France and CSIRO Mk3.5 for Australia) project similar trends in the future. To date, very few projects have focused on an international comparison of the adaptive capacity of viticultural systems to climate change with a holistic approach. Here, the analysis of climate data was complemented by twenty in-depth semi-structured interviews with key actors of the two regional wine industries, in order to analyse adaptation strategies put in place regarding recent climate evolution. This mixed-methods approach allows for a comprehensive assessment of adaptation capacity of the two viticultural systems to future climate change. The strategies of grape growers and wine producers focus on maintaining optimal yields and a constant wine style adapted to markets in a variable and uncertain climate. Their implementation and efficiency depend strongly on non-climatic factors. Thus, adaptation capacity to recent and future climate change depends strongly on adaptation to other non-climatic changes.

  8. Potential economic benefits of adapting agricultural production systems to future climate change

    USGS Publications Warehouse

    Fagre, Daniel B.; Pederson, Gregory; Bengtson, Lindsey E.; Prato, Tony; Qui, Zeyuan; Williams, Jimmie R.

    2010-01-01

    Potential economic impacts of future climate change on crop enterprise net returns and annual net farm income (NFI) are evaluated for small and large representative farms in Flathead Valley in Northwest Montana. Crop enterprise net returns and NFI in an historical climate period (1960–2005) and future climate period (2006–2050) are compared when agricultural production systems (APSs) are adapted to future climate change. Climate conditions in the future climate period are based on the A1B, B1, and A2 CO2 emission scenarios from the Intergovernmental Panel on Climate Change Fourth Assessment Report. Steps in the evaluation include: (1) specifying crop enterprises and APSs (i.e., combinations of crop enterprises) in consultation with locals producers; (2) simulating crop yields for two soils, crop prices, crop enterprises costs, and NFIs for APSs; (3) determining the dominant APS in the historical and future climate periods in terms of NFI; and (4) determining whether NFI for the dominant APS in the historical climate period is superior to NFI for the dominant APS in the future climate period. Crop yields are simulated using the Environmental/Policy Integrated Climate (EPIC) model and dominance comparisons for NFI are based on the stochastic efficiency with respect to a function (SERF) criterion. Probability distributions that best fit the EPIC-simulated crop yields are used to simulate 100 values for crop yields for the two soils in the historical and future climate periods. Best-fitting probability distributions for historical inflation-adjusted crop prices and specified triangular probability distributions for crop enterprise costs are used to simulate 100 values for crop prices and crop enterprise costs. Averaged over all crop enterprises, farm sizes, and soil types, simulated net return per ha averaged over all crop enterprises decreased 24% and simulated mean NFI for APSs decreased 57% between the historical and future climate periods. Although adapting APSs to future climate change is advantageous (i.e., NFI with adaptation is superior to NFI without adaptation based on SERF), in six of the nine cases in which adaptation is advantageous, NFI with adaptation in the future climate period is inferior to NFI in the historical climate period. Therefore, adaptation of APSs to future climate change in Flathead Valley is insufficient to offset the adverse impacts on NFI of such change.

  9. Potential economic benefits of adapting agricultural production systems to future climate change.

    PubMed

    Prato, Tony; Zeyuan, Qiu; Pederson, Gregory; Fagre, Dan; Bengtson, Lindsey E; Williams, Jimmy R

    2010-03-01

    Potential economic impacts of future climate change on crop enterprise net returns and annual net farm income (NFI) are evaluated for small and large representative farms in Flathead Valley in Northwest Montana. Crop enterprise net returns and NFI in an historical climate period (1960-2005) and future climate period (2006-2050) are compared when agricultural production systems (APSs) are adapted to future climate change. Climate conditions in the future climate period are based on the A1B, B1, and A2 CO(2) emission scenarios from the Intergovernmental Panel on Climate Change Fourth Assessment Report. Steps in the evaluation include: (1) specifying crop enterprises and APSs (i.e., combinations of crop enterprises) in consultation with locals producers; (2) simulating crop yields for two soils, crop prices, crop enterprises costs, and NFIs for APSs; (3) determining the dominant APS in the historical and future climate periods in terms of NFI; and (4) determining whether NFI for the dominant APS in the historical climate period is superior to NFI for the dominant APS in the future climate period. Crop yields are simulated using the Environmental/Policy Integrated Climate (EPIC) model and dominance comparisons for NFI are based on the stochastic efficiency with respect to a function (SERF) criterion. Probability distributions that best fit the EPIC-simulated crop yields are used to simulate 100 values for crop yields for the two soils in the historical and future climate periods. Best-fitting probability distributions for historical inflation-adjusted crop prices and specified triangular probability distributions for crop enterprise costs are used to simulate 100 values for crop prices and crop enterprise costs. Averaged over all crop enterprises, farm sizes, and soil types, simulated net return per ha averaged over all crop enterprises decreased 24% and simulated mean NFI for APSs decreased 57% between the historical and future climate periods. Although adapting APSs to future climate change is advantageous (i.e., NFI with adaptation is superior to NFI without adaptation based on SERF), in six of the nine cases in which adaptation is advantageous, NFI with adaptation in the future climate period is inferior to NFI in the historical climate period. Therefore, adaptation of APSs to future climate change in Flathead Valley is insufficient to offset the adverse impacts on NFI of such change.

  10. The Greenhouse Effect and Climate Feedbacks

    NASA Astrophysics Data System (ADS)

    Covey, C.; Haberle, R. M.; McKay, C. P.; Titov, D. V.

    This chapter reviews the theory of the greenhouse effect and climate feedback. It also compares the theory with observations, using examples taken from all four known terrestrial worlds with substantial atmospheres: Venus, Earth, Mars, and Titan. The greenhouse effect traps infrared radiation in the atmosphere, thereby increasing surface temperature. It is one of many factors that affect a world's climate. (Others include solar luminosity and the atmospheric scattering and absorption of solar radiation.) A change in these factors — defined as climate forcing — may change the climate in a way that brings other processes — defined as feedbacks — into play. For example, when Earth's atmospheric carbon dioxide increases, warming the surface, the water vapor content of the atmosphere increases. This is a positive feedback on global warming because water vapor is itself a potent greenhouse gas. Many positive and negative feedback processes are significant in determining Earth's climate, and probably the climates of our terrestrial neighbors.

  11. Directional Analysis of Sub-Antarctic Climate Change on South Georgia 1905-2009

    NASA Astrophysics Data System (ADS)

    Sakamoto Ferranti, Emma Jayne; Solera Garcia, Maria Angeles; Timmis, Roger James; Gerrard McKenna, Paul; Whyatt, James Duncan

    2010-05-01

    Directional analysis has been used to study changes in the sub-polar climate of the mountainous and glacierised sub-Antarctic island of South Georgia (54-55°S, 36-38°W). Significantly for climate change studies, South Georgia lies in the Scotia Sea between polar and temperate latitudes, and approximately 1000 km northeast and downwind of the Antarctic Peninsula - one of the fastest-warming regions on Earth (Vaughan et al., 2001). South Georgia was chosen for directional analysis because its climate is substantially advected by predominantly westerly circulations, and because it has a long (since 1905) meteorological record from King Edward Point (KEP) on its eastern side. Additional shorter records from Bird Island at the northwest tip of South Georgia allow comparison between windward (Bird Island) and leeward (KEP) climate regimes. The variation of mountain barrier heights with direction from KEP allows climate changes to be studied under different amounts of orographic influence (from ~700 m to ~2200 m). Records of glacier advance and retreat provide further independent evidence of climate change for comparison with the meteorological record. Directional climate analysis is based on a series of monthly-mean pressure fields defining the orientation and strength of synoptic-scale air-mass advection over the Scotia Sea. These fields are used to define directional climatologies for six 30° sectors with bearings from 150-180° to 300-330°; these sectors encompass 99% of recorded months since 1905. The climatologies summarise the frequencies of air masses from each sector, and the accompanying temperatures and precipitation. The 6 sectors can be broadly associated with 4 air-mass types and source regions: (i) sectors 150-210° advect cold polar maritime air that originated over the Antarctic continent before passing over the Weddell Sea, (ii) sectors 210-270° advect warmer, more stable polar maritime air from the Bellingshausen Sea/Antarctic Peninsula region, (iii) sector 270-300° has warmer, drier returning polar maritime circulated from the Bellingshausen Sea and across the Andes, and (iv) sector 300-330° has warm, humid tropical maritime air from the South Atlantic High. Detailed climatologies are compared for 4 distinct time periods covering: glacier advance (1920-1951), glacier retreat (1951-82), the latest decade (2000-2009), and a reference period (1905-1982). The comparisons show how climate changes between periods are composed of alterations in (i) air-mass frequency from different sectors, and (ii) temperature and precipitation within sectors. The ability of directional analysis to explain climate-change processes is confirmed by comparing directional results for the periods of glacier advance and glacier retreat. Specifically, during the ‘advance' period the air masses came 20% more frequently from the 4 colder, southerly sectors and correspondingly less frequently from the 2 warmer, northerly sectors. Moreover, the temperature of air coming from each sector was 0.1-0.8°C cooler than during the ‘retreat' period. Further directional analysis will compare records from the latest decade with previous periods to investigate recent sub-polar climate change, and particularly any advected warming from the Antarctic Peninsula. Directional analysis and advection climatologies can be used to test climate model performance and to examine atmospheric processes under changing climates. Previous directional analyses in an upland region of northwest England have detected changes in its mid-latitude temperate climate that were masked by directionally unsorted data (Malby et al., 2007, Ferranti et al., 2009); the South Georgia study now shows how similar methods can give insights into sub-polar climate change. FERRANTI, E. J. S., WHYATT, J. D. & TIMMIS, R. J. (2009) Development and application of topographic descriptors for conditional analysis of rainfall. Atmospheric Science Letters, 10, 177-184. MALBY, A. R., WHYATT, J. D., TIMMIS, R. J., WILBY, R. L. & ORR, H. G. (2007) Long-term variations in orographic rainfall: analysis and implications for upland catchments. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, 52, 276-291. VAUGHAN, D. G., MARSHALL, G. J., CONNOLLEY, W. M., KING, J. C. & MULVANEY, R. (2001) CLIMATE CHANGE: Devil in the Detail. Science, 293, 1777-1779.

  12. Quantifying the effects of climate and post-fire landscape change on hydrologic processes

    NASA Astrophysics Data System (ADS)

    Steimke, A.; Han, B.; Brandt, J.; Som Castellano, R.; Leonard, A.; Flores, A. N.

    2016-12-01

    Seasonally snow-dominated, forested mountain watersheds supply water to many human populations globally. However, the timing and magnitude of water delivery from these watersheds has already and will continue to change as the climate warms. Changes in vegetation also affect the runoff response of watersheds. The largest driver of vegetation change in many mountainous regions is wildfire, whose occurrence is affected by both climate and land management decisions. Here, we quantify how direct (i.e. changes in precipitation and temperature) and indirect (i.e. changing fire regimes) effects of climate change influence hydrologic parameters such as dates of peak streamflow, annual discharge, and snowpack levels. We used the Boise River Basin, ID as a model laboratory to calculate the relative magnitude of change stemming from direct and indirect effects of climate change. This basin is relevant to study as it is well-instrumented and major drainages have experienced burning at different spatial and temporal intervals, aiding in model calibration. We built a hydrology-based integrated model of the region using a multiagent simulation framework, Envision. We used a modified HBV (Hydrologiska Byråns Vattenbalansavdelning) rainfall-runoff model and calibrated it to historic streamflow and snowpack observations. We combined a diverse set of climate projections with wildfire scenarios (low vs. high) representing two distinct intervals in the regional historic fire record. In fire simulations, we altered land cover coefficients to reflect a burned state post-fire, which decreased overall evapotranspiration rates and increased water yields. However, direct climate effects had a larger signal on annual variations of hydrologic parameters. By comparing and analyzing scenario outputs, we identified links and sensitivities between land cover and regional hydrology in the context of a changing climate, with potential implications for local land and water managers. In future research, this framework will support investigations of climate-aware land management actions on basin hydrologic response.

  13. Climate change vulnerability of native and alien freshwater fishes of California: a systematic assessment approach.

    PubMed

    Moyle, Peter B; Kiernan, Joseph D; Crain, Patrick K; Quiñones, Rebecca M

    2013-01-01

    Freshwater fishes are highly vulnerable to human-caused climate change. Because quantitative data on status and trends are unavailable for most fish species, a systematic assessment approach that incorporates expert knowledge was developed to determine status and future vulnerability to climate change of freshwater fishes in California, USA. The method uses expert knowledge, supported by literature reviews of status and biology of the fishes, to score ten metrics for both (1) current status of each species (baseline vulnerability to extinction) and (2) likely future impacts of climate change (vulnerability to extinction). Baseline and climate change vulnerability scores were derived for 121 native and 43 alien fish species. The two scores were highly correlated and were concordant among different scorers. Native species had both greater baseline and greater climate change vulnerability than did alien species. Fifty percent of California's native fish fauna was assessed as having critical or high baseline vulnerability to extinction whereas all alien species were classified as being less or least vulnerable. For vulnerability to climate change, 82% of native species were classified as highly vulnerable, compared with only 19% for aliens. Predicted climate change effects on freshwater environments will dramatically change the fish fauna of California. Most native fishes will suffer population declines and become more restricted in their distributions; some will likely be driven to extinction. Fishes requiring cold water (<22°C) are particularly likely to go extinct. In contrast, most alien fishes will thrive, with some species increasing in abundance and range. However, a few alien species will likewise be negatively affected through loss of aquatic habitats during severe droughts and physiologically stressful conditions present in most waterways during summer. Our method has high utility for predicting vulnerability to climate change of diverse fish species. It should be useful for setting conservation priorities in many different regions.

  14. Climate Change Vulnerability of Native and Alien Freshwater Fishes of California: A Systematic Assessment Approach

    PubMed Central

    Moyle, Peter B.; Kiernan, Joseph D.; Crain, Patrick K.; Quiñones, Rebecca M.

    2013-01-01

    Freshwater fishes are highly vulnerable to human-caused climate change. Because quantitative data on status and trends are unavailable for most fish species, a systematic assessment approach that incorporates expert knowledge was developed to determine status and future vulnerability to climate change of freshwater fishes in California, USA. The method uses expert knowledge, supported by literature reviews of status and biology of the fishes, to score ten metrics for both (1) current status of each species (baseline vulnerability to extinction) and (2) likely future impacts of climate change (vulnerability to extinction). Baseline and climate change vulnerability scores were derived for 121 native and 43 alien fish species. The two scores were highly correlated and were concordant among different scorers. Native species had both greater baseline and greater climate change vulnerability than did alien species. Fifty percent of California’s native fish fauna was assessed as having critical or high baseline vulnerability to extinction whereas all alien species were classified as being less or least vulnerable. For vulnerability to climate change, 82% of native species were classified as highly vulnerable, compared with only 19% for aliens. Predicted climate change effects on freshwater environments will dramatically change the fish fauna of California. Most native fishes will suffer population declines and become more restricted in their distributions; some will likely be driven to extinction. Fishes requiring cold water (<22°C) are particularly likely to go extinct. In contrast, most alien fishes will thrive, with some species increasing in abundance and range. However, a few alien species will likewise be negatively affected through loss of aquatic habitats during severe droughts and physiologically stressful conditions present in most waterways during summer. Our method has high utility for predicting vulnerability to climate change of diverse fish species. It should be useful for setting conservation priorities in many different regions. PMID:23717503

  15. Ensembles-based predictions of climate change impacts on bioclimatic zones in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Jeon, S. W.; Lim, C. H.; Ryu, J.

    2017-12-01

    Biodiversity is rapidly declining globally and efforts are needed to mitigate this continually increasing loss of species. Clustering of areas with similar habitats can be used to prioritize protected areas and distribute resources for the conservation of species, selection of representative sample areas for research, and evaluation of impacts due to environmental changes. In this study, Northeast Asia (NEA) was classified into 14 bioclimatic zones using statistical techniques, which are correlation analysis and principal component analysis (PCA), and the iterative self-organizing data analysis technique algorithm (ISODATA). Based on these bioclimatic classification, we predicted shift of bioclimatic zones due to climate change. The input variables include the current climatic data (1960-1990) and the future climatic data of the HadGEM2-AO model (RCP 4.5(2050, 2070) and 8.5(2050, 2070)) provided by WorldClim. Using these data, multi-modeling methods including maximum likelihood classification, random forest, and species distribution modelling have been used to project the impact of climate change on the spatial distribution of bioclimatic zones within NEA. The results of various models were compared and analyzed by overlapping each result. As the result, significant changes in bioclimatic conditions can be expected throughout the NEA by 2050s and 2070s. The overall zones moved upward and some zones were predicted to disappear. This analysis provides the basis for understanding potential impacts of climate change on biodiversity and ecosystem. Also, this could be used more effectively to support decision making on climate change adaptation.

  16. Combining landscape variables and species traits can improve the utility of climate change vulnerability assessments

    USGS Publications Warehouse

    Nadeau, Christopher P.; Fuller, Angela K.

    2016-01-01

    Conservation organizations worldwide are investing in climate change vulnerability assessments. Most vulnerability assessment methods focus on either landscape features or species traits that can affect a species vulnerability to climate change. However, landscape features and species traits likely interact to affect vulnerability. We compare a landscape-based assessment, a trait-based assessment, and an assessment that combines landscape variables and species traits for 113 species of birds, herpetofauna, and mammals in the northeastern United States. Our aim is to better understand which species traits and landscape variables have the largest influence on assessment results and which types of vulnerability assessments are most useful for different objectives. Species traits were most important for determining which species will be most vulnerable to climate change. The sensitivity of species to dispersal barriers and the species average natal dispersal distance were the most important traits. Landscape features were most important for determining where species will be most vulnerable because species were most vulnerable in areas where multiple landscape features combined to increase vulnerability, regardless of species traits. The interaction between landscape variables and species traits was important when determining how to reduce climate change vulnerability. For example, an assessment that combines information on landscape connectivity, climate change velocity, and natal dispersal distance suggests that increasing landscape connectivity may not reduce the vulnerability of many species. Assessments that include landscape features and species traits will likely be most useful in guiding conservation under climate change.

  17. Water availability in +2°C and +4°C worlds.

    PubMed

    Fung, Fai; Lopez, Ana; New, Mark

    2011-01-13

    While the parties to the UNFCCC agreed in the December 2009 Copenhagen Accord that a 2°C global warming over pre-industrial levels should be avoided, current commitments on greenhouse gas emissions reductions from these same parties will lead to a 50 : 50 chance of warming greater than 3.5°C. Here, we evaluate the differences in impacts and adaptation issues for water resources in worlds corresponding to the policy objective (+2°C) and possible reality (+4°C). We simulate the differences in impacts on surface run-off and water resource availability using a global hydrological model driven by ensembles of climate models with global temperature increases of 2°C and 4°C. We combine these with UN-based population growth scenarios to explore the relative importance of population change and climate change for water availability. We find that the projected changes in global surface run-off from the ensemble show an increase in spatial coherence and magnitude for a +4°C world compared with a +2°C one. In a +2°C world, population growth in most large river basins tends to override climate change as a driver of water stress, while in a +4°C world, climate change becomes more dominant, even compensating for population effects where climate change increases run-off. However, in some basins where climate change has positive effects, the seasonality of surface run-off becomes increasingly amplified in a +4°C climate.

  18. Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years

    PubMed Central

    Joos, Fortunat; Spahni, Renato

    2008-01-01

    The rate of change of climate codetermines the global warming impacts on natural and socioeconomic systems and their capabilities to adapt. Establishing past rates of climate change from temperature proxy data remains difficult given their limited spatiotemporal resolution. In contrast, past greenhouse gas radiative forcing, causing climate to change, is well known from ice cores. We compare rates of change of anthropogenic forcing with rates of natural greenhouse gas forcing since the Last Glacial Maximum and of solar and volcanic forcing of the last millennium. The smoothing of atmospheric variations by the enclosure process of air into ice is computed with a firn diffusion and enclosure model. The 20th century increase in CO2 and its radiative forcing occurred more than an order of magnitude faster than any sustained change during the past 22,000 years. The average rate of increase in the radiative forcing not just from CO2 but from the combination of CO2, CH4, and N2O is larger during the Industrial Era than during any comparable period of at least the past 16,000 years. In addition, the decadal-to-century scale rate of change in anthropogenic forcing is unusually high in the context of the natural forcing variations (solar and volcanoes) of the past millennium. Our analysis implies that global climate change, which is anthropogenic in origin, is progressing at a speed that is unprecedented at least during the last 22,000 years. PMID:18252830

  19. Rapid response to climate change in a marginal sea.

    PubMed

    Schroeder, K; Chiggiato, J; Josey, S A; Borghini, M; Aracri, S; Sparnocchia, S

    2017-06-22

    The Mediterranean Sea is a mid-latitude marginal sea, particularly responsive to climate change as reported by recent studies. The Sicily Channel is a choke point separating the sea in two main basins, the Eastern Mediterranean Sea and the Western Mediterranean Sea. Here, we report and analyse a long-term record (1993-2016) of the thermohaline properties of the Intermediate Water that crosses the Sicily Channel, showing increasing temperature and salinity trends much stronger than those observed at intermediate depths in the global ocean. We investigate the causes of the observed trends and in particular determine the role of a changing climate over the Eastern Mediterranean, where the Intermediate Water is formed. The long-term Sicily record reveals how fast the response to climate change can be in a marginal sea like the Mediterranean Sea compared to the global ocean, and demonstrates the essential role of long time series in the ocean.

  20. Sustainability analysis of bioenergy based land use change under climate change and variability

    NASA Astrophysics Data System (ADS)

    Raj, C.; Chaubey, I.; Brouder, S. M.; Bowling, L. C.; Cherkauer, K. A.; Frankenberger, J.; Goforth, R. R.; Gramig, B. M.; Volenec, J. J.

    2014-12-01

    Sustainability analyses of futuristic plausible land use and climate change scenarios are critical in making watershed-scale decisions for simultaneous improvement of food, energy and water management. Bioenergy production targets for the US are anticipated to impact farming practices through the introduction of fast growing and high yielding perennial grasses/trees, and use of crop residues as bioenergy feedstocks. These land use/land management changes raise concern over potential environmental impacts of bioenergy crop production scenarios, both in terms of water availability and water quality; impacts that may be exacerbated by climate variability and change. The objective of the study was to assess environmental, economic and biodiversity sustainability of plausible bioenergy scenarios for two watersheds in Midwest US under changing climate scenarios. The study considers fourteen sustainability indicators under nine climate change scenarios from World Climate Research Programme's (WCRP's) Coupled Model Intercomparison Project phase 3 (CMIP3). The distributed hydrological model SWAT (Soil and Water Assessment Tool) was used to simulate perennial bioenergy crops such as Miscanthus and switchgrass, and corn stover removal at various removal rates and their impacts on hydrology and water quality. Species Distribution Models (SDMs) developed to evaluate stream fish response to hydrology and water quality changes associated with land use change were used to quantify biodiversity sustainability of various bioenergy scenarios. The watershed-scale sustainability analysis was done in the St. Joseph River watershed located in Indiana, Michigan, and Ohio; and the Wildcat Creek watershed, located in Indiana. The results indicate streamflow reduction at watershed outlet with increased evapotranspiration demands for high-yielding perennial grasses. Bioenergy crops in general improved in-stream water quality compared to conventional cropping systems (maize-soybean). Water quality benefits due to land use change were generally greater than the effects of climate change variability.

  1. A Statistical Modeling Framework for Projecting Future Ambient Ozone and its Health Impact due to Climate Change

    PubMed Central

    Chang, Howard H.; Hao, Hua; Sarnat, Stefanie Ebelt

    2014-01-01

    The adverse health effects of ambient ozone are well established. Given the high sensitivity of ambient ozone concentrations to meteorological conditions, the impacts of future climate change on ozone concentrations and its associated health effects are of concern. We describe a statistical modeling framework for projecting future ozone levels and its health impacts under a changing climate. This is motivated by the continual effort to evaluate projection uncertainties to inform public health risk assessment. The proposed approach was applied to the 20-county Atlanta metropolitan area using regional climate model (RCM) simulations from the North American Regional Climate Change Assessment Program. Future ozone levels and ozone-related excesses in asthma emergency department (ED) visits were examined for the period 2041–2070. The computationally efficient approach allowed us to consider 8 sets of climate model outputs based on different combinations of 4 RCMs and 4 general circulation models. Compared to the historical period of 1999–2004, we found consistent projections across climate models of an average 11.5% higher ozone levels (range: 4.8%, 16.2%), and an average 8.3% (range: −7% to 24%) higher number of ozone exceedance days. Assuming no change in the at-risk population, this corresponds to excess ozone-related ED visits ranging from 267 to 466 visits per year. Health impact projection uncertainty was driven predominantly by uncertainty in the health effect association and climate model variability. Calibrating climate simulations with historical observations reduced differences in projections across climate models. PMID:24764746

  2. Vulnerability of Forests in India: A National Scale Assessment.

    PubMed

    Sharma, Jagmohan; Upgupta, Sujata; Jayaraman, Mathangi; Chaturvedi, Rajiv Kumar; Bala, Govindswamy; Ravindranath, N H

    2017-09-01

    Forests are subjected to stress from climatic and non-climatic sources. In this study, we have reported the results of inherent, as well as climate change driven vulnerability assessments for Indian forests. To assess inherent vulnerability of forests under current climate, we have used four indicators, namely biological richness, disturbance index, canopy cover, and slope. The assessment is presented as spatial profile of inherent vulnerability in low, medium, high and very high vulnerability classes. Fourty percent forest grid points in India show high or very high inherent vulnerability. Plantation forests show higher inherent vulnerability than natural forests. We assess the climate change driven vulnerability by combining the results of inherent vulnerability assessment with the climate change impact projections simulated by the Integrated Biosphere Simulator dynamic global vegetation model. While 46% forest grid points show high, very high, or extremely high vulnerability under future climate in the short term (2030s) under both representative concentration pathways 4.5 and 8.5, such grid points are 49 and 54%, respectively, in the long term (2080s). Generally, forests in the higher rainfall zones show lower vulnerability as compared to drier forests under future climate. Minimizing anthropogenic disturbance and conserving biodiversity can potentially reduce forest vulnerability under climate change. For disturbed forests and plantations, adaptive management aimed at forest restoration is necessary to build long-term resilience.

  3. Vulnerability of Forests in India: A National Scale Assessment

    NASA Astrophysics Data System (ADS)

    Sharma, Jagmohan; Upgupta, Sujata; Jayaraman, Mathangi; Chaturvedi, Rajiv Kumar; Bala, Govindswamy; Ravindranath, N. H.

    2017-09-01

    Forests are subjected to stress from climatic and non-climatic sources. In this study, we have reported the results of inherent, as well as climate change driven vulnerability assessments for Indian forests. To assess inherent vulnerability of forests under current climate, we have used four indicators, namely biological richness, disturbance index, canopy cover, and slope. The assessment is presented as spatial profile of inherent vulnerability in low, medium, high and very high vulnerability classes. Fourty percent forest grid points in India show high or very high inherent vulnerability. Plantation forests show higher inherent vulnerability than natural forests. We assess the climate change driven vulnerability by combining the results of inherent vulnerability assessment with the climate change impact projections simulated by the Integrated Biosphere Simulator dynamic global vegetation model. While 46% forest grid points show high, very high, or extremely high vulnerability under future climate in the short term (2030s) under both representative concentration pathways 4.5 and 8.5, such grid points are 49 and 54%, respectively, in the long term (2080s). Generally, forests in the higher rainfall zones show lower vulnerability as compared to drier forests under future climate. Minimizing anthropogenic disturbance and conserving biodiversity can potentially reduce forest vulnerability under climate change. For disturbed forests and plantations, adaptive management aimed at forest restoration is necessary to build long-term resilience.

  4. The BGC Feedbacks Scientific Focus Area 2016 Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, Forrest M.; Riley, William J.; Randerson, James T.

    2016-06-01

    The BGC Feedbacks Project will identify and quantify the feedbacks between biogeochemical cycles and the climate system, and quantify and reduce the uncertainties in Earth System Models (ESMs) associated with those feedbacks. The BGC Feedbacks Project will contribute to the integration of the experimental and modeling science communities, providing researchers with new tools to compare measurements and models, thereby enabling DOE to contribute more effectively to future climate assessments by the U.S. Global Change Research Program (USGCRP) and the Intergovernmental Panel on Climate Change (IPCC).

  5. Impact of climate change on global malaria distribution.

    PubMed

    Caminade, Cyril; Kovats, Sari; Rocklov, Joacim; Tompkins, Adrian M; Morse, Andrew P; Colón-González, Felipe J; Stenlund, Hans; Martens, Pim; Lloyd, Simon J

    2014-03-04

    Malaria is an important disease that has a global distribution and significant health burden. The spatial limits of its distribution and seasonal activity are sensitive to climate factors, as well as the local capacity to control the disease. Malaria is also one of the few health outcomes that has been modeled by more than one research group and can therefore facilitate the first model intercomparison for health impacts under a future with climate change. We used bias-corrected temperature and rainfall simulations from the Coupled Model Intercomparison Project Phase 5 climate models to compare the metrics of five statistical and dynamical malaria impact models for three future time periods (2030s, 2050s, and 2080s). We evaluated three malaria outcome metrics at global and regional levels: climate suitability, additional population at risk and additional person-months at risk across the model outputs. The malaria projections were based on five different global climate models, each run under four emission scenarios (Representative Concentration Pathways, RCPs) and a single population projection. We also investigated the modeling uncertainty associated with future projections of populations at risk for malaria owing to climate change. Our findings show an overall global net increase in climate suitability and a net increase in the population at risk, but with large uncertainties. The model outputs indicate a net increase in the annual person-months at risk when comparing from RCP2.6 to RCP8.5 from the 2050s to the 2080s. The malaria outcome metrics were highly sensitive to the choice of malaria impact model, especially over the epidemic fringes of the malaria distribution.

  6. Impact of climate change on global malaria distribution

    PubMed Central

    Caminade, Cyril; Kovats, Sari; Rocklov, Joacim; Tompkins, Adrian M.; Morse, Andrew P.; Colón-González, Felipe J.; Stenlund, Hans; Martens, Pim; Lloyd, Simon J.

    2014-01-01

    Malaria is an important disease that has a global distribution and significant health burden. The spatial limits of its distribution and seasonal activity are sensitive to climate factors, as well as the local capacity to control the disease. Malaria is also one of the few health outcomes that has been modeled by more than one research group and can therefore facilitate the first model intercomparison for health impacts under a future with climate change. We used bias-corrected temperature and rainfall simulations from the Coupled Model Intercomparison Project Phase 5 climate models to compare the metrics of five statistical and dynamical malaria impact models for three future time periods (2030s, 2050s, and 2080s). We evaluated three malaria outcome metrics at global and regional levels: climate suitability, additional population at risk and additional person-months at risk across the model outputs. The malaria projections were based on five different global climate models, each run under four emission scenarios (Representative Concentration Pathways, RCPs) and a single population projection. We also investigated the modeling uncertainty associated with future projections of populations at risk for malaria owing to climate change. Our findings show an overall global net increase in climate suitability and a net increase in the population at risk, but with large uncertainties. The model outputs indicate a net increase in the annual person-months at risk when comparing from RCP2.6 to RCP8.5 from the 2050s to the 2080s. The malaria outcome metrics were highly sensitive to the choice of malaria impact model, especially over the epidemic fringes of the malaria distribution. PMID:24596427

  7. Cooler performance breadth in a viviparous skink relative to its oviparous congener.

    PubMed

    Landry Yuan, Félix; Pickett, Evan J; Bonebrake, Timothy C

    2016-10-01

    Susceptibility of species to climate change varies depending on many biological and environmental traits, such as reproductive mode and climatic exposure. For example, wider thermal tolerance breadths are associated with more climatically variable habitats and viviparity could be associated with greater vulnerability relative to oviparity. However, few examples exist detailing how such physiological and environmental traits together might shape species thermal performance. In this study we compared the thermal tolerance and performance of two sympatric skink congeners in Hong Kong that differ in habitat use and reproductive mode. The viviparous Sphenomorphus indicus lives on the forest floor while the oviparous Sphenomorphus incognitus occupies stream edges. We quantified the thermal environments in each of these habitats to compare climatic exposure and then calculated thermal safety margins, potential daily activity times within each species' thermal optimal range, and possible climate change vulnerability. Although we did not detect any differences in thermal tolerance range or thermal environments across habitats, we found cooler performance in S. indicus relative to S. incognitus. Moreover, while optimal activity time increases for both skinks under a warming scenario, we project that the thermal safety margin of S. indicus would narrow to nearly zero, thus losing its buffering capacity to potential extreme climate events in the future. This research is thus consistent with recent studies emphasizing the vulnerability of viviparous reptiles to a warming climate. The results together furthermore highlight the complexity in how environmental and physiological traits at multiple spatial scales structure climate change vulnerability of ectothermic species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Eucalypts face increasing climate stress

    PubMed Central

    Butt, Nathalie; Pollock, Laura J; McAlpine, Clive A

    2013-01-01

    Global climate change is already impacting species and ecosystems across the planet. Trees, although long-lived, are sensitive to changes in climate, including climate extremes. Shifts in tree species' distributions will influence biodiversity and ecosystem function at scales ranging from local to landscape; dry and hot regions will be especially vulnerable. The Australian continent has been especially susceptible to climate change with extreme heat waves, droughts, and flooding in recent years, and this climate trajectory is expected to continue. We sought to understand how climate change may impact Australian ecosystems by modeling distributional changes in eucalypt species, which dominate or codominate most forested ecosystems across Australia. We modeled a representative sample of Eucalyptus and Corymbia species (n = 108, or 14% of all species) using newly available Representative Concentration Pathway (RCP) scenarios developed for the 5th Assessment Report of the IPCC, and bioclimatic and substrate predictor variables. We compared current, 2025, 2055, and 2085 distributions. Overall, Eucalyptus and Corymbia species in the central desert and open woodland regions will be the most affected, losing 20% of their climate space under the mid-range climate scenario and twice that under the extreme scenario. The least affected species, in eastern Australia, are likely to lose 10% of their climate space under the mid-range climate scenario and twice that under the extreme scenario. Range shifts will be lateral as well as polewards, and these east–west transitions will be more significant, reflecting the strong influence of precipitation rather than temperature changes in subtropical and midlatitudes. These net losses, and the direction of shifts and contractions in range, suggest that many species in the eastern and southern seaboards will be pushed toward the continental limit and that large tracts of currently treed landscapes, especially in the continental interior, will change dramatically in terms of species composition and ecosystem structure. PMID:24455132

  9. America's Climate Choices: Adapting to the Impacts of Climate Change (Invited)

    NASA Astrophysics Data System (ADS)

    Wilbanks, T.; Yohe, G.; Mengelt, C.; Casola, J.

    2010-12-01

    At the request of Congress, the National Academy of Sciences convened a series of coordinated activities to provide advice on actions and strategies that the nation can take to respond to climate change. As part of this suite of activities, this study assessed, this study assessed how the nation can begin to adapt to the impacts of climate change. Much of the nation’s experience to date in managing and protecting its people, resources, and infrastructure is based on the historic record of climate variability during a period of relatively stable climate. Adaptation to climate change calls for a new paradigm - one that considers a range of possible future climate conditions and associated impacts. The Adapting to the Impacts of Climate Change report calls for action at all levels of government, NGOs, and the private sector to assess vulnerabilities to the impacts of climate change and identify options for adaptation. Current adaptation efforts are hampered by a lack of solid information about the benefits, costs, and effectiveness of various adaptation options, by uncertainty about future climate change impacts at a scale necessary for decision-making, and by a lack of coordination. The report outlines a risk management framework that can be applied to assess vulnerabilities, compare and evaluate potential adaptation options, recognizing that decision makers across the country are likely to pursue a diverse set of adaptation measures. A major research effort is needed to improve knowledge about current and future vulnerabilities, explore new adaptation options, and better inform adaptation decisions. Therefore, the report also emphasizes the need to continually re-assess adaptation decisions as the experience and knowledge regarding effective adaptation evolves. A national adaptation strategy is needed in which the federal government would support and enhance adaptation activities undertaken by state, local, tribal, and private entities; identify and modify policies that might provide incentives for maladaptive behavior; bolster scientific research regarding adaptation; and encourage adaptation on a global scale through national programs with international components.

  10. Incorporating climate science in applications of the US endangered species act for aquatic species.

    PubMed

    McClure, Michelle M; Alexander, Michael; Borggaard, Diane; Boughton, David; Crozier, Lisa; Griffis, Roger; Jorgensen, Jeffrey C; Lindley, Steven T; Nye, Janet; Rowland, Melanie J; Seney, Erin E; Snover, Amy; Toole, Christopher; VAN Houtan, Kyle

    2013-12-01

    Aquatic species are threatened by climate change but have received comparatively less attention than terrestrial species. We gleaned key strategies for scientists and managers seeking to address climate change in aquatic conservation planning from the literature and existing knowledge. We address 3 categories of conservation effort that rely on scientific analysis and have particular application under the U.S. Endangered Species Act (ESA): assessment of overall risk to a species; long-term recovery planning; and evaluation of effects of specific actions or perturbations. Fewer data are available for aquatic species to support these analyses, and climate effects on aquatic systems are poorly characterized. Thus, we recommend scientists conducting analyses supporting ESA decisions develop a conceptual model that links climate, habitat, ecosystem, and species response to changing conditions and use this model to organize analyses and future research. We recommend that current climate conditions are not appropriate for projections used in ESA analyses and that long-term projections of climate-change effects provide temporal context as a species-wide assessment provides spatial context. In these projections, climate change should not be discounted solely because the magnitude of projected change at a particular time is uncertain when directionality of climate change is clear. Identifying likely future habitat at the species scale will indicate key refuges and potential range shifts. However, the risks and benefits associated with errors in modeling future habitat are not equivalent. The ESA offers mechanisms for increasing the overall resilience and resistance of species to climate changes, including establishing recovery goals requiring increased genetic and phenotypic diversity, specifying critical habitat in areas not currently occupied but likely to become important, and using adaptive management. Incorporación de las Ciencias Climáticas en las Aplicaciones del Acta Estadunidense de Especies en Peligro para Especies Acuáticas. © 2013 Society for Conservation Biology No claim to original US government works.

  11. Exploring the Interactions between Land Use, Climate Change and Carbon Cycle using Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Ray, R. L.; Fares, A.; He, Y.; Awal, R.; Risch, E.

    2017-12-01

    Most climate change impacts are linked to terrestrial vegetation productivity, carbon stocks and land use change. Changes in land use and climate drive the dynamics of terrestrial carbon cycle. These carbon cycle dynamics operate at different spatial and temporal scales. Quantification of the spatial and temporal variability of carbon flux has been challenging because land-atmosphere-carbon exchange is influenced by many factors, including but not limited to, land use change and climate change and variability. The study of terrestrial carbon cycle, mainly gross primary product (GPP), net ecosystem exchange (NEE), soil organic carbon (SOC) and ecosystem respiration (Re) and their interactions with land use and climate change, are critical to understanding the terrestrial ecosystem. The main objective of this study was to examine the interactions among land use, climate change and terrestrial carbon cycling in the state of Texas using satellite measurements. We studied GPP, NEE, Re and SOC distributions for five selected major land covers and all ten climate zones in Texas using Soil Moisture Active Passive (SMAP) carbon products. SMAP Carbon products (Res=9 km) were compared with observed CO2 flux data measured at EC flux site on Prairie View A&M University Research Farm. Results showed the same land cover in different climate zones has significantly different carbon sequestration potentials. For example, cropland of the humid climate zone has higher (-228 g C/m2) carbon sequestration potentials than the semiarid climate zone (-36 g C/m2). Also, shrub land in the humid zone and in the semiarid zone showed high (-120 g C/m2) and low (-36 g C/m2) potentials of carbon sequestration, respectively, in the state. Overall, the analyses indicate CO2 storage and exchange respond differently to various land covers, and environments due to differences in water availability, root distribution and soil properties.

  12. Climatic extremes improve predictions of spatial patterns of tree species

    USGS Publications Warehouse

    Zimmermann, N.E.; Yoccoz, N.G.; Edwards, T.C.; Meier, E.S.; Thuiller, W.; Guisan, Antoine; Schmatz, D.R.; Pearman, P.B.

    2009-01-01

    Understanding niche evolution, dynamics, and the response of species to climate change requires knowledge of the determinants of the environmental niche and species range limits. Mean values of climatic variables are often used in such analyses. In contrast, the increasing frequency of climate extremes suggests the importance of understanding their additional influence on range limits. Here, we assess how measures representing climate extremes (i.e., interannual variability in climate parameters) explain and predict spatial patterns of 11 tree species in Switzerland. We find clear, although comparably small, improvement (+20% in adjusted D2, +8% and +3% in cross-validated True Skill Statistic and area under the receiver operating characteristics curve values) in models that use measures of extremes in addition to means. The primary effect of including information on climate extremes is a correction of local overprediction and underprediction. Our results demonstrate that measures of climate extremes are important for understanding the climatic limits of tree species and assessing species niche characteristics. The inclusion of climate variability likely will improve models of species range limits under future conditions, where changes in mean climate and increased variability are expected.

  13. US Drought-Heat Wave Relationships in Past Versus Current Climates

    NASA Astrophysics Data System (ADS)

    Cheng, L.; Hoerling, M. P.; Eischeid, J.; Liu, Z.

    2017-12-01

    This study explores the relationship between droughts and heat waves over various regions of the contiguous United States that are distinguished by so-called energy-limited versus water-limited climatologies. We first examine the regional sensitivity of heat waves to soil moisture variability under 19th century climate conditions, and then compare to sensitivities under current climate that has been subjected to human-induced change. Our approach involves application of the conditional statistical framework of vine copula. Vine copula is known for its flexibility in reproducing various dependence structures exhibited by climate variables. Here we highlight its feature for evaluating the importance of conditional relationships between variables and processes that capture underlying physical factors involved in their interdependence during drought/heat waves. Of particular interest is identifying changes in coupling strength between heat waves and land surface conditions that may yield more extreme events as a result of land surface feedbacks. We diagnose two equilibrium experiments a coupled climate model (CESM1), one subjected to Year-1850 external forcing and the other to Year-2000 radiative forcing. We calculate joint heat wave/drought relationships for each climate state, and also calculate their change as a result of external radiative forcing changes across this 150-yr period. Our results reveal no material change in the dependency between heat waves and droughts, aside from small increases in coupling strength over the Great Plains. Overall, hot U.S. summer droughts of 1850-vintage do not become hotter in the current climate -- aside from the warming contribution of long-term climate change, in CESM1. The detectability of changes in hotter droughts as a consequence of anthropogenic forced changes in this single effect, i.e. coupling strength between soil moisture and hot summer temperature, is judged to be low at this time.

  14. Fitness declines towards range limits and local adaptation to climate affect dispersal evolution during climate-induced range shifts.

    PubMed

    Hargreaves, A L; Bailey, S F; Laird, R A

    2015-08-01

    Dispersal ability will largely determine whether species track their climatic niches during climate change, a process especially important for populations at contracting (low-latitude/low-elevation) range limits that otherwise risk extinction. We investigate whether dispersal evolution at contracting range limits is facilitated by two processes that potentially enable edge populations to experience and adjust to the effects of climate deterioration before they cause extinction: (i) climate-induced fitness declines towards range limits and (ii) local adaptation to a shifting climate gradient. We simulate a species distributed continuously along a temperature gradient using a spatially explicit, individual-based model. We compare range-wide dispersal evolution during climate stability vs. directional climate change, with uniform fitness vs. fitness that declines towards range limits (RLs), and for a single climate genotype vs. multiple genotypes locally adapted to temperature. During climate stability, dispersal decreased towards RLs when fitness was uniform, but increased when fitness declined towards RLs, due to highly dispersive genotypes maintaining sink populations at RLs, increased kin selection in smaller populations, and an emergent fitness asymmetry that favoured dispersal in low-quality habitat. However, this initial dispersal advantage at low-fitness RLs did not facilitate climate tracking, as it was outweighed by an increased probability of extinction. Locally adapted genotypes benefited from staying close to their climate optima; this selected against dispersal under stable climates but for increased dispersal throughout shifting ranges, compared to cases without local adaptation. Dispersal increased at expanding RLs in most scenarios, but only increased at the range centre and contracting RLs given local adaptation to climate. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  15. Regional Glacier Sensitivity to Climate Change in the Monsoonal Himalaya: Implications for Water Resources

    NASA Astrophysics Data System (ADS)

    Rupper, S.; Maurer, J. M.; Schaefer, J. M.; Tsering, K.; Rinzin, T.; Dorji, C.; Johnson, E. S.; Cook, E. R.

    2014-12-01

    The rapid retreat of many glaciers in the monsoonal Himalaya is of potential societal concern. However, the retreat pattern in the region has been very heterogeneous, likely due in part to the inherent heterogeneity of climate and glaciers within the region. Assessing the impacts of glacier change on water resources, hydroelectric power, and hazard potential requires a detailed understanding of this potentially complex spatial pattern of glacier sensitivity to climate change. Here we quantify glacier surface-mass balance and meltwater flux across the entire glacierized region of the Bhutanese watershed using a full surface-energy and -mass balance model validated with field data. We then test the sensitivity of the glaciers to climatic change and compare the results to a thirty-year record of glacier volume changes. Bhutan is chosen because it (1) sits in the bulls-eye of the monsoon, (2) has >600 glaciers that exhibit the extreme glacier heterogeneity typical of the Himalayas, and (3) faces many of the economic and hazard challenges associated with glacier changes in the Himalaya. Therefore, the methods and results from this study should be broadly applicable to other regions of the monsoonal Himalaya. Our modeling results show a complex spatial pattern of glacier sensitivity to changes in climate across the Bhutanese Himalaya. However, our results also show that <15% of the glaciers in Bhutan account for >90% of the total meltwater flux, and that these glaciers are uniformly the glaciers most sensitive to changes in temperature (and less sensitive to other climate variables). We compare these results to a thirty-year record of glacier volume changes over the same region. In particular, we extract DEMs and orthorectified imagery from 1976 historical spy satellite images and 2006 ASTER images. DEM differencing shows that the glaciers that have changed most over the past thirty years also have the highest modeled temperature sensitivity. These results suggest that, despite the complex glacier heterogeneity in the region, the regional meltwater resources are controlled by a very small percentage of the glaciers, and that these glaciers are particularly vulnerable to changes in temperature.

  16. The influence of historical climate changes on Southern Ocean marine predator populations: a comparative analysis.

    PubMed

    Younger, Jane L; Emmerson, Louise M; Miller, Karen J

    2016-02-01

    The Southern Ocean ecosystem is undergoing rapid physical and biological changes that are likely to have profound implications for higher-order predators. Here, we compare the long-term, historical responses of Southern Ocean predators to climate change. We examine palaeoecological evidence for changes in the abundance and distribution of seabirds and marine mammals, and place these into context with palaeoclimate records in order to identify key environmental drivers associated with population changes. Our synthesis revealed two key factors underlying Southern Ocean predator population changes; (i) the availability of ice-free ground for breeding and (ii) access to productive foraging grounds. The processes of glaciation and sea ice fluctuation were key; the distributions and abundances of elephant seals, snow petrels, gentoo, chinstrap and Adélie penguins all responded strongly to the emergence of new breeding habitat coincident with deglaciation and reductions in sea ice. Access to productive foraging grounds was another limiting factor, with snow petrels, king and emperor penguins all affected by reduced prey availability in the past. Several species were isolated in glacial refugia and there is evidence that refuge populations were supported by polynyas. While the underlying drivers of population change were similar across most Southern Ocean predators, the individual responses of species to environmental change varied because of species specific factors such as dispersal ability and environmental sensitivity. Such interspecific differences are likely to affect the future climate change responses of Southern Ocean marine predators and should be considered in conservation plans. Comparative palaeoecological studies are a valuable source of long-term data on species' responses to environmental change that can provide important insights into future climate change responses. This synthesis highlights the importance of protecting productive foraging grounds proximate to breeding locations, as well as the potential role of polynyas as future Southern Ocean refugia. © 2015 John Wiley & Sons Ltd.

  17. Typhoon Changes in Northwestern Pacific Region and Its Relationship to Hydrologic Variability

    NASA Astrophysics Data System (ADS)

    Kim, J. S.; Lee, J. H.

    2017-12-01

    Changes in typhoon intensity are sensitively related to the thermodynamic responses of the atmosphere and ocean to warmer temperature and increased CO2 concentrations in a changing climate. Atmospheric conditions in warmer climates are likely to promote the strengthening of typhoon activity. The pattern of typhoons in the North Pacific is constantly changing due to rising sea level, the occurrence of El Niño and La Niña, and changes in weather and climate patterns due to global warming. In particular, as typhoon genesis positions are shifted to the north compared to past typhoon, the East Asia region is exposed to possible typhoon landings and potential damage. Efforts to integrate typhoon-related information into management and planning have focused on recovery in the wake of damaging events—a reactive, hazard perspective; however, there have been insufficient efforts towards regulation and water management and for multilateral assessments of environmental impacts. Therefore, climate change adaptation and countermeasures based on a variety of hydrological changes and a clear understanding of sea surface temperature changes are needed to analyze the changes in ecological systems under the influence of typhoons at the regional and local scale. In this study, we focus on typhoon - sensitive watersheds and quantify the effects of typhoons to analyze various hydrological changes due to typhoons. The results of this study provide useful information for adapting to climate change and preparing measures.

  18. Ecological mechanisms underpinning climate adaptation services.

    PubMed

    Lavorel, Sandra; Colloff, Matthew J; McIntyre, Sue; Doherty, Michael D; Murphy, Helen T; Metcalfe, Daniel J; Dunlop, Michael; Williams, Richard J; Wise, Russell M; Williams, Kristen J

    2015-01-01

    Ecosystem services are typically valued for their immediate material or cultural benefits to human wellbeing, supported by regulating and supporting services. Under climate change, with more frequent stresses and novel shocks, 'climate adaptation services', are defined as the benefits to people from increased social ability to respond to change, provided by the capability of ecosystems to moderate and adapt to climate change and variability. They broaden the ecosystem services framework to assist decision makers in planning for an uncertain future with new choices and options. We present a generic framework for operationalising the adaptation services concept. Four steps guide the identification of intrinsic ecological mechanisms that facilitate the maintenance and emergence of ecosystem services during periods of change, and so materialise as adaptation services. We applied this framework for four contrasted Australian ecosystems. Comparative analyses enabled by the operational framework suggest that adaptation services that emerge during trajectories of ecological change are supported by common mechanisms: vegetation structural diversity, the role of keystone species or functional groups, response diversity and landscape connectivity, which underpin the persistence of function and the reassembly of ecological communities under severe climate change and variability. Such understanding should guide ecosystem management towards adaptation planning. © 2014 John Wiley & Sons Ltd.

  19. Climate change, air pollution, and allergic respiratory diseases: an update.

    PubMed

    D'Amato, Gennaro; Vitale, Carolina; Lanza, Maurizia; Molino, Antonio; D'Amato, Maria

    2016-10-01

    The rising trend in prevalence of allergic respiratory disease and bronchial asthma, observed over the last decades, can be explained by changes occurring in the environment, with increasing presence of biologic, such as allergens, and chemical atmospheric trigger factors able to stimulate the sensitization and symptoms of these diseases. Many studies have shown changes in production, dispersion, and allergen content of pollen and spores because of climate change with an increasing effect of aeroallergens on allergic patients. Over the last 50 years, global earth's temperature has markedly risen likely because of growing emission of anthropogenic greenhouse gas concentrations. Major changes involving the atmosphere and the climate, including global warming induced by human activity, have a major impact on the biosphere and human environment.Urbanization and high levels of vehicle emissions are correlated to an increase in the frequency of pollen-induced respiratory allergy prevalent in people who live in urban areas compared with those who live in rural areas. Measures of mitigation need to be applied for reducing future impacts of climate change on our planet, but until global emissions continue to rise, adaptation to the impacts of future climate variability will also be required.

  20. Extensive wildfires, climate change, and an abrupt state change in subalpine ribbon forests, Colorado.

    PubMed

    Calder, W John; Shuman, Bryan

    2017-10-01

    Ecosystems may shift abruptly when the effects of climate change and disturbance interact, and landscapes with regularly patterned vegetation may be especially vulnerable to abrupt shifts. Here we use a fossil pollen record from a regularly patterned ribbon forest (alternating bands of forests and meadows) in Colorado to examine whether past changes in wildfire and climate produced abrupt vegetation shifts. Comparing the percentages of conifer pollen with sedimentary δ 18 O data (interpreted as an indicator of temperature or snow accumulation) indicates a first-order linear relationship between vegetation composition and climate change with no detectable lags over the past 2,500 yr (r = 0.55, P < 0.001). Additionally, however, we find that the vegetation changed abruptly within a century of extensive wildfires, which were recognized in a previous study to have burned approximately 80% of the surrounding 1,000 km 2 landscape 1,000 yr ago when temperatures rose ~0.5°C. The vegetation change was larger than expected from the effects of climate change alone. Pollen assemblages changed from a composition associated with closed subalpine forests to one similar to modern ribbon forests. Fossil pollen assemblages then remained like those from modern ribbon forests for the following ~1,000 yr, providing a clear example of how extensive disturbances can trigger persistent new vegetation states and alter how vegetation responds to climate. © 2017 by the Ecological Society of America.

Top