Sample records for climate change components

  1. GEOSS AIP-2 Climate Change and Biodiversity Use Scenarios: Interoperability Infrastructures (Invited)

    NASA Astrophysics Data System (ADS)

    Nativi, S.; Santoro, M.

    2009-12-01

    Currently, one of the major challenges for scientific community is the study of climate change effects on life on Earth. To achieve this, it is crucial to understand how climate change will impact on biodiversity and, in this context, several application scenarios require modeling the impact of climate change on distribution of individual species. In the context of GEOSS AIP-2 (Global Earth Observation System of Systems, Architecture Implementation Pilot- Phase 2), the Climate Change & Biodiversity thematic Working Group developed three significant user scenarios. A couple of them make use of a GEOSS-based framework to study the impact of climate change factors on regional species distribution. The presentation introduces and discusses this framework which provides an interoperability infrastructures to loosely couple standard services and components to discover and access climate and biodiversity data, and run forecast and processing models. The framework is comprised of the following main components and services: a)GEO Portal: through this component end user is able to search, find and access the needed services for the scenario execution; b)Graphical User Interface (GUI): this component provides user interaction functionalities. It controls the workflow manager to perform the required operations for the scenario implementation; c)Use Scenario controller: this component acts as a workflow controller implementing the scenario business process -i.e. a typical climate change & biodiversity projection scenario; d)Service Broker implementing Mediation Services: this component realizes a distributed catalogue which federates several discovery and access components (exposing them through a unique CSW standard interface). Federated components publish climate, environmental and biodiversity datasets; e)Ecological Niche Model Server: this component is able to run one or more Ecological Niche Models (ENM) on selected biodiversity and climate datasets; f)Data Access Transaction server: this component publishes the model outputs. The framework was successfully tested in two use scenarios of the GEOSS AIP-2 Climate Change and Biodiversity WG aiming to predict species distribution changes due to Climate Change factors, with the scientific patronage of the University of Colorado and the University of Alaska. The first scenario dealt with the Pikas specie regional distribution in the Great Basin area (North America). While, the second one concerned the modeling of the Arctic Food Chain species in the North Pole area -the relationships between different environmental parameters and Polar Bears distribution was analyzed. Results are published in the GEOSS AIP-2 web site: http://www.ogcnetwork.net/AIP2develop .

  2. Nevada Infrastructure for Climate Change Science, Education, and Outreach

    NASA Astrophysics Data System (ADS)

    Dana, G. L.; Lancaster, N.; Mensing, S. A.; Piechota, T.

    2008-12-01

    The Great Basin is characterized by complex basin and range topography, arid to semiarid climate, and a history of sensitivity to climate change. Mountain areas comprise about 10% of the landscape, yet are the areas of highest precipitation and generate 85% of groundwater recharge and most surface runoff. These characteristics provide an ideal natural laboratory to study the effects of climate change. The Nevada system of Higher Education, including the University of Nevada, Las Vegas, the University of Nevada, Reno, the Desert Research Institute, and Nevada State College have begun a five year research and infrastructure building program, funded by the National Science Foundation Experimental Program to Stimulate Competitive Research (NSF EPSCoR) with the vision "to create a statewide interdisciplinary program and virtual climate change center that will stimulate transformative research, education, and outreach on the effects of regional climate change on ecosystem resources (especially water) and support use of this knowledge by policy makers and stakeholders." Six major strategies are proposed to develop infrastructure needs and attain our vision: 1) Develop a capability to model climate change at a regional and sub-regional scale(Climate Modeling Component) 2) Analyze effects on ecosystems and disturbance regimes (Ecological Change Component) 3) Quantify and model changes in water balance and resources under climate change (Water Resources Component) 4) Assess effects on human systems and enhance policy making and outreach to communities and stakeholders (Policy, Decision-Making, and Outreach Component) 5) Develop a data portal and software to support interdisciplinary research via integration of data from observational networks and modeling (Cyberinfrastructure Component) and 6) Train teachers and students at all levels and provide public outreach in climate change issues (Education Component). Two new climate observational transects will be established across Great Basin Ranges, one anticipated on a mountain range in southern Nevada and the second to be located in north-central Nevada. Climatic, hydrologic and ecological data from these transects will be downloaded into high capacity data storage units and made available to researchers through creation of the Nevada climate change portal. Our research will aim to answer two interdisciplinary science questions key to understanding the effects of future climate change on Great Basin mountain ecosystems and the potential management strategies for responding to these changes: 1) How will climate change affect water resources and linked ecosystem resources and human systems? And 2) How will climate change affect disturbance regimes (e.g., wildland fires, invasive species, insect outbreaks, droughts) and linked systems? Infrastructure developed through this project will provide new interdisciplinary capability to detect, analyze, and model effects of regional climate change in mountainous regions of the west and provide a major contribution to existing climate change research and monitoring networks.

  3. Nevada Infrastructure for Climate Change Science, Education, and Outreach

    NASA Astrophysics Data System (ADS)

    Dana, G. L.; Piechota, T. C.; Lancaster, N.; Mensing, S. A.

    2009-12-01

    The Nevada system of Higher Education, including the University of Nevada, Las Vegas, the University of Nevada, Reno, the Desert Research Institute, and Nevada State College have begun a five year research and infrastructure building program, funded by the National Science Foundation Experimental Program to Stimulate Competitive Research (NSF EPSCoR) with the vision “to create a statewide interdisciplinary program and virtual climate change center that will stimulate transformative research, education, and outreach on the effects of regional climate change on ecosystem resources (especially water) and support use of this knowledge by policy makers and stakeholders.” Six major strategies are proposed: 1) Develop a capability to model climate change and its effects at a regional and sub-regional scales to evaluate different future scenarios and strategies (Climate Modeling Component) 2) Develop data collection, modeling, and visualization infrastructure to determine and analyze effects on ecosystems and disturbance regimes (Ecological Change Component) 3) Develop data collection, modeling, and visualization infrastructure to better quantify and model changes in water balance and resources under climate change (Water Resources Component) 4) Develop data collection and modeling infrastructure to assess effects on human systems, responses to institutional and societal aspects, and enhance policy making and outreach to communities and stakeholders (Policy, Decision-Making, and Outreach Component) 5) Develop a data portal and software to support interdisciplinary research via integration of data from observational networks and modeling (Cyberinfrastructure Component) and 6) Develop educational infrastructure to train students at all levels and provide public outreach in climate change issues (Education Component). As part of the new infrastructure, two observational transects will be established across Great Basin Ranges, one in southern Nevada in the Spring Mountains, and the second to be located in the Snake Range of eastern Nevada which will reach bristlecone pine stands. Climatic, hydrologic and ecological data from these transects will be downloaded into high capacity data storage units and made available to researchers through creation of the Nevada climate change portal. Our research will aim to answer two interdisciplinary science questions: 1) How will climate change affect water resources and linked ecosystem resources and human systems? And 2) How will climate change affect disturbance regimes (e.g., wildland fires, invasive species, insect outbreaks, droughts) and linked systems?

  4. Separating sensitivity from exposure in assessing extinction risk from climate change.

    PubMed

    Dickinson, Maria G; Orme, C David L; Suttle, K Blake; Mace, Georgina M

    2014-11-04

    Predictive frameworks of climate change extinction risk generally focus on the magnitude of climate change a species is expected to experience and the potential for that species to track suitable climate. A species' risk of extinction from climate change will depend, in part, on the magnitude of climate change the species experiences, its exposure. However, exposure is only one component of risk. A species' risk of extinction will also depend on its intrinsic ability to tolerate changing climate, its sensitivity. We examine exposure and sensitivity individually for two example taxa, terrestrial amphibians and mammals. We examine how these factors are related among species and across regions and how explicit consideration of each component of risk may affect predictions of climate change impacts. We find that species' sensitivities to climate change are not congruent with their exposures. Many highly sensitive species face low exposure to climate change and many highly exposed species are relatively insensitive. Separating sensitivity from exposure reveals patterns in the causes and drivers of species' extinction risk that may not be evident solely from predictions of climate change. Our findings emphasise the importance of explicitly including sensitivity and exposure to climate change in assessments of species' extinction risk.

  5. Separating sensitivity from exposure in assessing extinction risk from climate change

    PubMed Central

    Dickinson, Maria G.; Orme, C. David L.; Suttle, K. Blake; Mace, Georgina M.

    2014-01-01

    Predictive frameworks of climate change extinction risk generally focus on the magnitude of climate change a species is expected to experience and the potential for that species to track suitable climate. A species' risk of extinction from climate change will depend, in part, on the magnitude of climate change the species experiences, its exposure. However, exposure is only one component of risk. A species' risk of extinction will also depend on its intrinsic ability to tolerate changing climate, its sensitivity. We examine exposure and sensitivity individually for two example taxa, terrestrial amphibians and mammals. We examine how these factors are related among species and across regions and how explicit consideration of each component of risk may affect predictions of climate change impacts. We find that species' sensitivities to climate change are not congruent with their exposures. Many highly sensitive species face low exposure to climate change and many highly exposed species are relatively insensitive. Separating sensitivity from exposure reveals patterns in the causes and drivers of species' extinction risk that may not be evident solely from predictions of climate change. Our findings emphasise the importance of explicitly including sensitivity and exposure to climate change in assessments of species' extinction risk. PMID:25367429

  6. Accounting for multiple climate components when estimating climate change exposure and velocity

    USGS Publications Warehouse

    Nadeau, Christopher P.; Fuller, Angela K.

    2015-01-01

    The effect of anthropogenic climate change on organisms will likely be related to climate change exposure and velocity at local and regional scales. However, common methods to estimate climate change exposure and velocity ignore important components of climate that are known to affect the ecology and evolution of organisms.We develop a novel index of climate change (climate overlap) that simultaneously estimates changes in the means, variation and correlation between multiple weather variables. Specifically, we estimate the overlap between multivariate normal probability distributions representing historical and current or projected future climates. We provide methods for estimating the statistical significance of climate overlap values and methods to estimate velocity using climate overlap.We show that climates have changed significantly across 80% of the continental United States in the last 32 years and that much of this change is due to changes in the variation and correlation between weather variables (two statistics that are rarely incorporated into climate change studies). We also show that projected future temperatures are predicted to be locally novel (<1·5% overlap) across most of the global land surface and that exposure is likely to be highest in areas with low historical climate variation. Last, we show that accounting for changes in the variation and correlation between multiple weather variables can dramatically affect velocity estimates; mean velocity estimates in the continental United States were between 3·1 and 19·0 km yr−1when estimated using climate overlap compared to 1·4 km yr−1 when estimated using traditional methods.Our results suggest that accounting for changes in the means, variation and correlation between multiple weather variables can dramatically affect estimates of climate change exposure and velocity. These climate components are known to affect the ecology and evolution of organisms, but are ignored by most measures of climate change. We conclude with a set of future directions and recommend future work to determine which measures of climate change exposure and velocity are most related to biological responses to climate change.

  7. The Changing Climate.

    ERIC Educational Resources Information Center

    Schneider, Stephen H.

    1989-01-01

    Discusses the global change of climate. Presents the trend of climate change with graphs. Describes mathematical climate models including expressions for the interacting components of the ocean-atmosphere system and equations representing the basic physical laws governing their behavior. Provides three possible responses on the change. (YP)

  8. The Future is Now: Reducing Psychological Distance to Increase Public Engagement with Climate Change.

    PubMed

    Jones, Charlotte; Hine, Donald W; Marks, Anthony D G

    2017-02-01

    Many people perceive climate change as psychologically distant-a set of uncertain events that might occur far in the future, impacting distant places and affecting people dissimilar to themselves. In this study, we employed construal level theory to investigate whether a climate change communication intervention could increase public engagement by reducing the psychological distance of climate change. Australian residents (N = 333) were randomly assigned to one of two treatment conditions: one framed to increase psychological distance to climate change (distal frame), and the other framed to reduce psychological distance (proximal frame). Participants then completed measures of psychological distance of climate change impacts, climate change concern, and intentions to engage in mitigation behavior. Principal components analysis indicated that psychological distance to climate change was best conceptualized as a multidimensional construct consisting of four components: geographic, temporal, social, and uncertainty. Path analysis revealed the effect of the treatment frame on climate change concern and intentions was fully mediated by psychological distance dimensions related to uncertainty and social distance. Our results suggest that climate communications framed to reduce psychological distance represent a promising strategy for increasing public engagement with climate change. © 2016 Society for Risk Analysis.

  9. CLIMATE CHANGE IN THE UPPER GREAT LAKES REGION: A WORKSHOP REPORT

    EPA Science Inventory

    This paper, "Coping With Climate Change", argues that adaptation is an important strategy for protecting human health, ecosystems, and economic activity as the climate changes. Adaptation is an essential component of any portfolio of actions that comprise U.S. climate change poli...

  10. Significance of direct and indirect impacts of climate change on groundwater resources in the Olifants River basin: A review

    NASA Astrophysics Data System (ADS)

    Nkhonjera, German K.; Dinka, Megersa O.

    2017-11-01

    This paper considers the extent and usefulness of reviewing existing literature on the significance of direct and indirect impacts of climate change on groundwater resources with emphasis on examples from the Olifants River basin. Here, the existing literature were extensively reviewed, with discussions centred mainly on the impacts of climate change on groundwater resources and challenges in modelling climate change impacts on groundwater resources. Since in the hydrological cycle, the hydrological components such as evaporation, temperature, precipitation, and groundwater, are the major drivers of the present and future climate, a detailed discussion is done on the impact of climate change on these hydrological components to determine to what extent the hydrological cycle has already been affected as a result of climate change. The uncertainties, constraints and limitations in climate change research have also been reviewed. In addition to the research gaps discussed here, the emphasis on the need of extensive climate change research on the continent, especially as climate change impacts on groundwater, is discussed. Overall, the importance of conducting further research in climate change, understanding the significance of the impact of climate change on water resources such as groundwater, and taking actions to effectively meet the adaptation needs of the people, emerge as an important theme in this review.

  11. Framework for a U.S. Geological Survey Hydrologic Climate-Response Program in Maine

    USGS Publications Warehouse

    Hodgkins, Glenn A.; Lent, Robert M.; Dudley, Robert W.; Schalk, Charles W.

    2009-01-01

    This report presents a framework for a U.S. Geological Survey (USGS) hydrologic climate-response program designed to provide early warning of changes in the seasonal water cycle of Maine. Climate-related hydrologic changes on Maine's rivers and lakes in the winter and spring during the last century are well documented, and several river and lake variables have been shown to be sensitive to air-temperature changes. Monitoring of relevant hydrologic data would provide important baseline information against which future climate change can be measured. The framework of the hydrologic climate-response program presented here consists of four major parts: (1) identifying homogeneous climate-response regions; (2) identifying hydrologic components and key variables of those components that would be included in a hydrologic climate-response data network - as an example, streamflow has been identified as a primary component, with a key variable of streamflow being winter-spring streamflow timing; the data network would be created by maintaining existing USGS data-collection stations and establishing new ones to fill data gaps; (3) regularly updating historical trends of hydrologic data network variables; and (4) establishing basins for process-based studies. Components proposed for inclusion in the hydrologic climate-response data network have at least one key variable for which substantial historical data are available. The proposed components are streamflow, lake ice, river ice, snowpack, and groundwater. The proposed key variables of each component have extensive historical data at multiple sites and are expected to be responsive to climate change in the next few decades. These variables are also important for human water use and (or) ecosystem function. Maine would be divided into seven climate-response regions that follow major river-basin boundaries (basins subdivided to hydrologic units with 8-digit codes or larger) and have relatively homogeneous climates. Key hydrologic variables within each climate-response region would be analyzed regularly to maintain up-to-date analyses of year-to-year variability, decadal variability, and longer term trends. Finally, one basin in each climate-response region would be identified for process-based hydrologic and ecological studies.

  12. The Characteristics of Earth System Thinking of Science Gifted Students in relation to Climate Changes

    NASA Astrophysics Data System (ADS)

    Chung, Duk Ho; Cho, Kyu Seong; Hong, Deok Pyo; Park, Kyeong Jin

    2016-04-01

    This study aimed to investigate the perception of earth system thinking of science gifted students in future problem solving (FPS) in relation to climate changes. In order to this study, the research problem associated with climate changes was developed through a literature review. The thirty seven science gifted students participated in lessons. The ideas in problem solving process of science gifted students were analyzed using the semantic network analysis method. The results are as follows. In the problem solving processes, science gifted students are ''changes of the sunlight by water layer'', ''changes of the Earth''s temperature'', ''changes of the air pressure'', '' change of the wind and weather''were represented in order. On other hand, regard to earth system thinking for climate changes, while science gifted students were used sub components related to atmospheres frequently, they were used sub components related to biosphere, geosphere, and hydrosphere a little. But, the analytical results of the structural relationship between the sub components related to earth system, they were recognised that biosphere, geosphere, and hydrosphere used very important in network structures. In conclusion, science gifted students were understood well that components of the earth system are influencing each other. Keywords : Science gifted students, Future problem solving, Climate change, Earth system thinking

  13. Historical cover trends in a sagebrush steppe ecosystem from 1985 to 2013: Links with climate, disturbance, and management

    USGS Publications Warehouse

    Shi, Hua; Rigge, Matthew B.; Homer, Collin G.; Xian, George Z.; Meyer, Debbie; Bunde, Brett

    2017-01-01

    Understanding the causes and consequences of component change in sagebrush steppe is crucial for evaluating ecosystem sustainability. The sagebrush (Artemisia spp.) steppe ecosystem of the northwest USA has been impacted by the invasion of exotic grasses, increasing fire return intervals, changing land management practices, and fragmentation, often lowering the overall resilience to change. We utilized contemporary and historical Landsat imagery, field data, and regression tree models to produce fractional cover maps of rangeland components (shrub, sagebrush, herbaceous, bare ground, and litter) through the last 30 years. Our main goals were to (1) investigate rangeland component trends over 30 years, (2) evaluate the magnitude and direction of trends in components and climate drivers and their relationship, and (3) assess component trends influenced by climate. Results indicated that over the study period, shrub, sage, herbaceous, and litter cover decreased, while bare ground cover increased. Measured rates of change ranged from − 0.14% decade−1 for shrub cover to 0.05% decade−1 for bare ground, whereas herbaceous and litter cover trends were negligible. Net landscape cover changes were consistent with expectations of climate change and disturbance producing a loss of biotic cover, and converting a portion of shrub and sagebrush to herbaceous cover. Overall, fire and related successional recovery was the greatest change agent for all components in terms of area and cover change, while increasing minimum temperature, at a rate of 0.66°C decade−1, was found to be the most significant climate driver.

  14. Anticipated water quality changes in response to climate change and potential consequences for inland fishes

    USGS Publications Warehouse

    Chen, Yushun; Todd, Andrew S.; Murphy, Margaret H.; Lomnicky, Gregg

    2016-01-01

    Healthy freshwater ecosystems are a critical component of the world's economy, with a critical role in maintaining public health, inland biological diversity, and overall quality of life. Globally, our climate is changing, with air temperature and precipitation regimes deviating significantly from historical patterns. Healthy freshwater ecosystems are a critical component of the world's economy, with a critical role in maintaining public health, inland biological diversity, and overall quality of life. Globally, our climate is changing, with air temperature and precipitation regimes deviating significantly from historical patterns. Changes anticipated with climate change in the future are likely to have a profound effect on inland aquatic ecosystems through diverse pathways, including changes in water quality. In this brief article, we present an initial discussion of several of the water quality responses that can be anticipated to occur within inland water bodies with climate change and how those changes are likely to impact fishes.

  15. Building Quantitative Hydrologic Storylines from Process-based Models for Managing Water Resources in the U.S. Under Climate-changed Futures

    NASA Astrophysics Data System (ADS)

    Arnold, J.; Gutmann, E. D.; Clark, M. P.; Nijssen, B.; Vano, J. A.; Addor, N.; Wood, A.; Newman, A. J.; Mizukami, N.; Brekke, L. D.; Rasmussen, R.; Mendoza, P. A.

    2016-12-01

    Climate change narratives for water-resource applications must represent the change signals contextualized by hydroclimatic process variability and uncertainty at multiple scales. Building narratives of plausible change includes assessing uncertainties across GCM structure, internal climate variability, climate downscaling methods, and hydrologic models. Work with this linked modeling chain has dealt mostly with GCM sampling directed separately to either model fidelity (does the model correctly reproduce the physical processes in the world?) or sensitivity (of different model responses to CO2 forcings) or diversity (of model type, structure, and complexity). This leaves unaddressed any interactions among those measures and with other components in the modeling chain used to identify water-resource vulnerabilities to specific climate threats. However, time-sensitive, real-world vulnerability studies typically cannot accommodate a full uncertainty ensemble across the whole modeling chain, so a gap has opened between current scientific knowledge and most routine applications for climate-changed hydrology. To close that gap, the US Army Corps of Engineers, the Bureau of Reclamation, and the National Center for Atmospheric Research are working on techniques to subsample uncertainties objectively across modeling chain components and to integrate results into quantitative hydrologic storylines of climate-changed futures. Importantly, these quantitative storylines are not drawn from a small sample of models or components. Rather, they stem from the more comprehensive characterization of the full uncertainty space for each component. Equally important from the perspective of water-resource practitioners, these quantitative hydrologic storylines are anchored in actual design and operations decisions potentially affected by climate change. This talk will describe part of our work characterizing variability and uncertainty across modeling chain components and their interactions using newly developed observational data, models and model outputs, and post-processing tools for making the resulting quantitative storylines most useful in practical hydrology applications.

  16. Transient simulations of historical climate change including interactive carbon emissions from land-use change.

    NASA Astrophysics Data System (ADS)

    Matveev, A.; Matthews, H. D.

    2009-04-01

    Carbon fluxes from land conversion are among the most uncertain variables in our understanding of the contemporary carbon cycle, which limits our ability to estimate both the total human contribution to current climate forcing and the net effect of terrestrial biosphere changes on atmospheric CO2 increases. The current generation of coupled climate-carbon models have made significant progress in simulating the coupled climate and carbon cycle response to anthropogenic CO2 emissions, but do not typically include land-use change as a dynamic component of the simulation. In this work we have incorporated a book-keeping land-use carbon accounting model into the University of Victoria Earth System Climate Model (UVic ESCM), and intermediate-complexity coupled climate-carbon model. The terrestrial component of the UVic ESCM allows an aerial competition of five plant functional types (PFTs) in response to climatic conditions and area availability, and tracks the associated changes in affected carbon pools. In order to model CO2 emissions from land conversion in the terrestrial component of the model, we calculate the allocation of carbon to short and long-lived wood products following specified land-cover change, and use varying decay timescales to estimate CO2 emissions. We use recently available spatial datasets of both crop and pasture distributions to drive a series of transient simulations and estimate the net contribution of human land-use change to historical carbon emissions and climate change.

  17. Assessing state efforts to integrate transportation, land use and climate change.

    DOT National Transportation Integrated Search

    2016-12-01

    Climate change is increasingly recognized as a threat to life on earth. Continued emission of greenhouse gases will cause further : warming and long-lasting changes in all components of the climate system, increasing the likelihood of severe, perv...

  18. Changes in potential habitat of 147 North American breeding bird species in response to redistribution of trees and climate following predicted climate change

    Treesearch

    Stephen N. Matthews; Louis R. Iverson; Anantha M. Prasad; Matthew P. Peters

    2011-01-01

    Mounting evidence shows that organisms have already begun to respond to global climate change. Advances in our knowledge of how climate shapes species distributional patterns has helped us better understand the response of birds to climate change. However, the distribution of birds across the landscape is also driven by biotic and abiotic components, including habitat...

  19. Consequences of climate change for biogeochemical cycling in forests of northeastern North America

    Treesearch

    John L. Campbell; Lindsey E. Rustad; Elizabeth W. Boyer; Sheila F. Christopher; Charles T. Driscoll; Ivan .J. Fernandez; Peter M. Groffman; Daniel Houle; Jana Kiekbusch; Alison H. Magill; Myron J. Mitchell; Scott V. Ollinger

    2009-01-01

    A critical component of assessing the impacts of climate change on forest ecosystems involves understanding associated changes in biogeochemical cycling of elements. Evidence from research on northeastern North American forests shows that direct effects of climate change will evoke changes in biogeochemical cycling by altering plant physiology forest productivity, and...

  20. Why and How the Dairy Farmers of India are Vulnerable to the Impacts of Climate Variability and Change?

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, A.; Gupta, J.

    2017-12-01

    Climate change and variability has added many atrociousness to India's food security challenges and the relationship between the asset components of farmers and climate change is always complex. In India, dairy farming substantially contributes towards the food security and always plays a supportive role to agriculture from the adversities. This study provides an overview of the socio economic and livelihood vulnerability of small holder dairy farmers of India to climate change and variability in three dimensions — sensitivity, exposure and adaptive capacity by combining 70 indicators and 12 major components. The livelihood and socio economic vulnerability of dairy farmers to climate change and variability is assessed at taluka level in India through detailed house hold level data of livelihoods of Western Ghats region of India collected by several levels of survey and through Participatory Rural Appraisal (PRA) techniques from selected farmers complemented by thirty years of gridded weather data and other secondary data sources. The index score of dairy based livelihoods of Maharashtra was highly negative compared to other states with about 50 percent of farmers having high level of vulnerability with significant tradeoff between milk productivity and health, food, natural disasters-climate variability components. It finds that ensuring food security in the scenario of climate change will be a dreadful challenge and recommends identification of different potential options depending on local contexts at grass root level, the adoption of sustainable agricultural practices, focusing on improving the adaptive capacity component, provision of livelihood security, preparing the extensionists of Krishi Vigyan Kendras (KVKs)- universities to deal with the risks through extensive training programmes, long-term relief measures in the event of natural disasters, workshops on climate science and communication and promoting farmer centric extension system.

  1. Local climatic adaptation in a widespread microorganism.

    PubMed

    Leducq, Jean-Baptiste; Charron, Guillaume; Samani, Pedram; Dubé, Alexandre K; Sylvester, Kayla; James, Brielle; Almeida, Pedro; Sampaio, José Paulo; Hittinger, Chris Todd; Bell, Graham; Landry, Christian R

    2014-02-22

    Exploring the ability of organisms to locally adapt is critical for determining the outcome of rapid climate changes, yet few studies have addressed this question in microorganisms. We investigated the role of a heterogeneous climate on adaptation of North American populations of the wild yeast Saccharomyces paradoxus. We found abundant among-strain variation for fitness components across a range of temperatures, but this variation was only partially explained by climatic variation in the distribution area. Most of fitness variation was explained by the divergence of genetically distinct groups, distributed along a north-south cline, suggesting that these groups have adapted to distinct climatic conditions. Within-group fitness components were correlated with climatic conditions, illustrating that even ubiquitous microorganisms locally adapt and harbour standing genetic variation for climate-related traits. Our results suggest that global climatic changes could lead to adaptation to new conditions within groups, or changes in their geographical distributions.

  2. Climate change and North American rangelands: Assessment of mitigation and adaptation strategies

    Treesearch

    Linda A. Joyce; David D. Briske; Joel R. Brown; H. Wayne Polley; Bruce A. McCarl; Derek W. Bailey

    2013-01-01

    Recent climatic trends and climate model projections indicate that climate change will modify rangeland ecosystem functions and the services and livelihoods that they provision. Recent history has demonstrated that climatic variability has a strong influence on both ecological and social components of rangeland systems and that these systems possess substantial...

  3. GEOSS AIP-2 Climate Change and Biodiversity Use Scenarios: Interoperability Infrastructures

    NASA Astrophysics Data System (ADS)

    Nativi, Stefano; Santoro, Mattia

    2010-05-01

    In the last years, scientific community is producing great efforts in order to study the effects of climate change on life on Earth. In this general framework, a key role is played by the impact of climate change on biodiversity. To assess this, several use scenarios require the modeling of climatological change impact on the regional distribution of biodiversity species. Designing and developing interoperability infrastructures which enable scientists to search, discover, access and use multi-disciplinary resources (i.e. datasets, services, models, etc.) is currently one of the main research fields for the Earth and Space Science Informatics. This presentation introduces and discusses an interoperability infrastructure which implements the discovery, access, and chaining of loosely-coupled resources in the climatology and biodiversity domains. This allows to set up and run forecast and processing models. The presented framework was successfully developed and experimented in the context of GEOSS AIP-2 (Global Earth Observation System of Systems, Architecture Implementation Pilot- Phase 2) Climate Change & Biodiversity thematic Working Group. This interoperability infrastructure is comprised of the following main components and services: a)GEO Portal: through this component end user is able to search, find and access the needed services for the scenario execution; b)Graphical User Interface (GUI): this component provides user interaction functionalities. It controls the workflow manager to perform the required operations for the scenario implementation; c)Use Scenario controller: this component acts as a workflow controller implementing the scenario business process -i.e. a typical climate change & biodiversity projection scenario; d)Service Broker implementing Mediation Services: this component realizes a distributed catalogue which federates several discovery and access components (exposing them through a unique CSW standard interface). Federated components publish climate, environmental and biodiversity datasets; e)Ecological Niche Model Server: this component is able to run one or more Ecological Niche Models (ENM) on selected biodiversity and climate datasets; f)Data Access Transaction server: this component publishes the model outputs. This framework was assessed in two use scenarios of GEOSS AIP-2 Climate Change and Biodiversity WG. Both scenarios concern the prediction of species distributions driven by climatological change forecasts. The first scenario dealt with the Pikas specie regional distribution in the Great Basin area (North America). While, the second one concerned the modeling of the Arctic Food Chain species in the North Pole area -the relationships between different environmental parameters and Polar Bears distribution was analyzed. The scientific patronage was provided by the University of Colorado and the University of Alaska, respectively. Results are published in the GEOSS AIP-2 web site: http://www.ogcnetwork.net/AIP2develop.

  4. Climatic change and wildland recreation: Examining the changing patterns of wilderness recreation in response to the effects of global climate change and the El Nino phenomenon

    Treesearch

    Vinod Sasidharan

    2000-01-01

    Impacts of global climate change on the biophysical components of wilderness areas have the potential to alter their recreational utility of wilderness areas. Concomitantly, the frequency and patterns of both land-based and water-based wilderness recreation activities will be affected. Despite the difficulty of responding to the unclear dimensions of global climate...

  5. The climate space of fire regimes in north-western North America

    USGS Publications Warehouse

    Whitman, Ellen; Batllori, Enric; Parisien, Marc-André; Miller, Carol; Coop, Jonathan D.; Krawchuk, Meg A.; Chong, Geneva W.; Haire, Sandra L.

    2015-01-01

    Aim. Studies of fire activity along environmental gradients have been undertaken, but the results of such studies have yet to be integrated with fire-regime analysis. We characterize fire-regime components along climate gradients and a gradient of human influence. Location. We focus on a climatically diverse region of north-western North America extending from northern British Columbia, Canada, to northern Utah and Colorado, USA.Methods. We used a multivariate framework to collapse 12 climatic variables into two major climate gradients and binned them into 73 discrete climate domains. We examined variation in fire-regime components (frequency, size, severity, seasonality and cause) across climate domains. Fire-regime attributes were compiled from existing databases and Landsat imagery for 1897 large fires. Relationships among the fire-regime components, climate gradients and human influence were examined through bivariate regressions. The unique contribution of human influence was also assessed.Results. A primary climate gradient of temperature and summer precipitation and a secondary gradient of continentality and winter precipitation in the study area were identified. Fire occupied a distinct central region of such climate space, within which fire-regime components varied considerably. We identified significant interrelations between fire-regime components of fire size, frequency, burn severity and cause. The influence of humans was apparent in patterns of burn severity and ignition cause.Main conclusions. Wildfire activity is highest where thermal and moisture gradients converge to promote fuel production, flammability and ignitions. Having linked fire-regime components to large-scale climate gradients, we show that fire regimes – like the climate that controls them – are a part of a continuum, expanding on models of varying constraints on fire activity. The observed relationships between fire-regime components, together with the distinct role of climatic and human influences, generate variation in biotic communities. Thus, future changes to climate may lead to ecological changes through altered fire regimes.

  6. Design standards for U.S. transportation infrastructure : the implications of climate change

    DOT National Transportation Integrated Search

    2008-01-01

    This paper examines the changes to engineering design practice that might occur given : climate-induced changes in environmental factors. A project design is separated into the : individual components that might be affected by changing environmental ...

  7. Undergraduate Climate Education: Motivations, Strategies, Successes, and Support

    ERIC Educational Resources Information Center

    Kirk, Karin B.; Gold, Anne U.; Ledley, Tamara Shapiro; Sullivan, Susan Buhr; Manduca, Cathryn A.; Mogk, David W.; Wiese, Katryn

    2014-01-01

    Climate literacy is an essential component of a strategy to comprehend and confront the grand challenge of global climate change. However, scientific complexity, societal implications, and political associations make climate change a difficult but important topic to teach. In this paper we report on the results of a survey of undergraduate faculty…

  8. Four cultures: new synergies for engaging society on climate change

    Treesearch

    Matthew C. Nisbet; Mark A. Hixon; Kathleen Dean Moore; Michael Nelson

    2010-01-01

    The scientific community has largely reached consensus that climate change is real, is exacerbated by human activities, and is causing detectable shifts in both living and non-living components of the biosphere. Yet, documenting and predicting the ecological, economic, social, and cultural consequences of climate change have not yet stimulated an appropriately strong...

  9. Potential relocation of climatic environments suggests high rates of climate displacement within the North American protection network

    Treesearch

    Enric Batllori; Marc-Andre Parisien; Sean A. Parks; Max A. Moritz; Carol Miller

    2017-01-01

    Ongoing climate change may undermine the effectiveness of protected area networks in preserving the set of biotic components and ecological processes they harbor, thereby jeopardizing their conservation capacity into the future. Metrics of climate change, particularly rates and spatial patterns of climatic alteration, can help assess potential threats. Here, we perform...

  10. AgMIP Climate Data and Scenarios for Integrated Assessment. Chapter 3

    NASA Technical Reports Server (NTRS)

    Ruane, Alexander C.; Winter, Jonathan M.; McDermid, Sonali P.; Hudson, Nicholas I.

    2015-01-01

    Climate change presents a great challenge to the agricultural sector as changes in precipitation, temperature, humidity, and circulation patterns alter the climatic conditions upon which many agricultural systems rely. Projections of future climate conditions are inherently uncertain owing to a lack of clarity on how society will develop, policies that may be implemented to reduce greenhouse-gas (GHG) emissions, and complexities in modeling the atmosphere, ocean, land, cryosphere, and biosphere components of the climate system. Global climate models (GCMs) are based on well-established physics of each climate component that enable the models to project climate responses to changing GHG concentration scenarios (Stocker et al., 2013).The most recent iteration of the Coupled Model Intercomparison Project (CMIP5; Taylor et al., 2012) utilized representative concentration pathways (RCPs) to cover the range of plausible GHG concentrations out past the year 2100, with RCP8.5 representing an extreme scenario and RCP4.5 representing a lower concentrations scenario (Moss et al., 2010).

  11. Expansion Under Climate Change: The Genetic Consequences.

    PubMed

    Garnier, Jimmy; Lewis, Mark A

    2016-11-01

    Range expansion and range shifts are crucial population responses to climate change. Genetic consequences are not well understood but are clearly coupled to ecological dynamics that, in turn, are driven by shifting climate conditions. We model a population with a deterministic reaction-diffusion model coupled to a heterogeneous environment that develops in time due to climate change. We decompose the resulting travelling wave solution into neutral genetic components to analyse the spatio-temporal dynamics of its genetic structure. Our analysis shows that range expansions and range shifts under slow climate change preserve genetic diversity. This is because slow climate change creates range boundaries that promote spatial mixing of genetic components. Mathematically, the mixing leads to so-called pushed travelling wave solutions. This mixing phenomenon is not seen in spatially homogeneous environments, where range expansion reduces genetic diversity through gene surfing arising from pulled travelling wave solutions. However, the preservation of diversity is diminished when climate change occurs too quickly. Using diversity indices, we show that fast expansions and range shifts erode genetic diversity more than slow range expansions and range shifts. Our study provides analytical insight into the dynamics of travelling wave solutions in heterogeneous environments.

  12. The Nevada NSF EPSCoR infrastructure for climate change science, education, and outreach project: highlights and progress on investigations of ecological change and water resources along elevational gradients

    NASA Astrophysics Data System (ADS)

    Saito, L.; Biondi, F.; Fenstermaker, L. F.; Arnone, J.; Devitt, D.; Riddle, B.; Young, M.

    2010-12-01

    In 2008, the Nevada System of Higher Education received a 5-year, $15 million grant from the National Science Foundation’s (NSF) Experimental Program to Stimulate Competitive Research (EPSCoR). The mission of the project is to create a statewide interdisciplinary program to stimulate transformative research, education, and outreach about the effects of regional climate change on ecosystem services (especially water resources), and support use of this knowledge by policy makers and stakeholders. The overarching question that this effort will address is: how will climate change affect water resources, disturbance regimes and linked ecosystem and human services? While the overall project includes cyberinfrastructure, policy, education and climate modeling, this presentation will focus on the ecological change and water resources components. The goals of these two components are: 1) improving understanding of processes controlling local- and basin-wide impacts of climate on species dynamics, disturbance regimes, and water recharge rates; 2) evaluating interactions between landscape-level processes and biophysical indicators; 3) evaluating interactions between surface and groundwater systems; 4) predicting changes in wildfire regime, primary productivity, and biodiversity (including invasive species); and 5) assessing how interactions between water and ecology will differ under climate change and/or climate variability scenarios. To achieve these goals, the two components will quantify present-day climate variability at multiple temporal and spatial scales, including at multiple elevations within Nevada’s Basin and Range ecosystem continuum. This presentation will discuss key elements for achieving these goals, including the establishment of instrumented transects spanning a range of elevations and vegetation zones in eastern and southern Nevada.

  13. Modeling soil respiration and variations of source components using a multi-factor global climate change experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiongwen; Post, Wilfred M; Norby, Richard J

    2011-01-01

    Soil respiration is an important component of the global carbon cycle and is highly responsive to changes in soil temperature and moisture. Accurate prediction of soil respiration and its changes under future climatic conditions requires a clear understanding of the processes involved. In spite of this, most current empirical soil respiration models incorporate just few of the underlying mechanisms that may influence its response. In this study, a new partial process-based component model built on source components of soil respiration was tested using data collected from a multi-factor climate change experiment that manipulates CO2 concentrations, temperature and precipitation. These resultsmore » were then compared to results generated using several other established models. The component model we tested performed well across different treatments of global climate change. In contrast, some other models, which worked well predicting ambient environmental conditions, were unable to predict the changes under different climate change treatments. Based on the component model, the relative proportions of heterotrophic respiration (Rh) in the total soil respiration at different treatments varied from 0.33 to 0.85. There is a significant increase in the proportion of Rh under the elevated atmospheric CO2 concentration in comparison ambient conditions. The dry treatment resulted in higher proportion of Rh at elevated CO2 and ambient T than under elevated CO2 and elevated T. Also, the ratios between root growth and root maintenance respiration varied across different treatments. Neither increased temperature nor elevated atmospheric CO2 changed Q10 values significantly, while the average Q10 value at wet sites was significantly higher than it at dry sites. There was a higher possibility of increased soil respiration under drying relative to wetting conditions across all treatments based on monthly data, indicating that soil respiration may also be related to soil moisture at previous time periods. Our results reveal that the extent, time delay and contribution of different source components need to be included into mechanistic/processes-based soil respiration models at corresponding scale.« less

  14. Global change in forests: responses of species, communities, and biomes

    Treesearch

    Andrew J. Hansen; Ronald P. Neilson; Virginia H. Dale; Curtis H. Flather; Louis R. Iverson; David J. Currie; Sarah Shafer; Rosamonde Cook; Partick J. Bartlein

    2001-01-01

    This article serves as a primer on forest biodiversity as a key component of global change. We first synthesize current knowledge of interactions among climate, land use, and biodiversity. We then summarize the results of new analyses on the potential effects of human-induced climate change on forest biodiversity. Our models project how possible future climates may...

  15. The Moving Target of Climate Mitigation: Examples from the Energy Sector in California

    NASA Astrophysics Data System (ADS)

    Tarroja, B.; AghaKouchak, A.; Forrest, K.; Chiang, F.; Samuelsen, S.

    2016-12-01

    In response to the concerns of climate change-induced impacts on human health, environmental integrity, and the secure operation of resource supply infrastructures, strategies to reduce greenhouse gas (GHG) emissions of major societal sectors have been in development. In the energy sector, these strategies are based in low carbon primary energy deployment, increased energy efficiency, and implementing complementary technologies for operational resilience. While these strategies are aimed at climate mitigation, a degree of climate change-induced impacts will occur by the time of their deployment, and many of these impacts can compromise the effectiveness of these climate mitigation strategies. In order to develop climate mitigation strategies that will achieve their GHG reduction and other goals, the impact that climate change-induced conditions can have on different components of climate mitigation strategies must be understood. This presentation will highlight three examples of how climate change-induced conditions affect components of climate mitigation strategies in California: through impacts on 1) hydropower generation, 2) renewable potential for geothermal and solar thermal resources to form part of the renewable resource portfolio, and 3) the magnitudes and shapes of the electric load demand that must be met sustainably. These studies are part of a larger, overarching project to understand how climate change impacts the energy system and how to develop a sustainable energy infrastructure that is resilient against these impacts.

  16. Climate regulation services by urban lakes in Bucharest city

    NASA Astrophysics Data System (ADS)

    Ioja, Cristian; Cheval, Sorin; Vanau, Gabriel; Sandric, Ionut; Onose, Diana; Carstea, Elfrida

    2017-04-01

    Urban ecosystems services assessment is an important challenge for practitioners, due to the high complexity of relations between urban systems components, high vulnerability to climate change, and consequences in social-economical systems. Urban lakes represent a significant component in more European cities (average 5% of total surface). Adequate urban management supports diverse benefits of urban lakes: clean water availability, mediation of waste, toxics and other nuisance, air quality and climate regulation, support for physical, intelectual or spiritual interactions. Due to underestimation of climate change and misfit urban planning decision, these benefits may be lost or chaged into diservices. The aim of the paper is to assess the changes in terms of the urban lakes contribution role to regulate urban climate, using the Bucharest as case study. Using sensors and Modis, Sentinel and Landsat images, the paper experiments the evolution of climate regulation services of urban lakes under the pressure of urbanisation and climate change between 2008 and 2015. Urban lakes management has to include specific measures in order to help the cities to become more sustainable, resilient, liveable and healthly.

  17. Regional and global implications of land-use change and climate change

    NASA Astrophysics Data System (ADS)

    Stauffer, Heidi Lada

    This dissertation has two main components. The first is a longterm regional climate modeling study of the effects of different types of land use changes on Southeast Asian climate under present-day climate conditions and under future projected climate conditions at the end of the 21st Century. The focus of the second component is to estimate daily heat index for projected extreme temperatures at the end of the 21st Century and projecting the number of people affected by those heat conditions. The first component of this study uses a high-resolution regional climate model centered on the Southeast Asian region to compare two land use change scenarios under modern climate and future projected climate conditions. Results from experiments under modern climate conditions indicate that changes in regional climate including widespread surface cooling, increased precipitation, and increased latent heat flux are primarily due to deforestation. As expected from other studies, future climate projections indicate increasing surface temperature and total precipitation. However, the combination of increasing global temperatures and irrigation appears to increase latent heat flux and evapotranspiration, leading to decrease in the surface temperature nearly the same magnitude, increasing both specific humidity and relative humidity. The increasing relative humidity causes low clouds to form, and the net surface solar absorbed flux decreases in response, which further cools the surface. These results imply that deforestation and irrigation have differing complex regional climate responses and the presence of irrigation could mask future surface temperature increases, at least in the short term and reinforce the importance of incorporating land use changes, particularly irrigation, into any studies of future regional climate. The second component of this study uses global daily maximum heat indices derived from future climate future climate simulations for 2098 and projected population density to estimate how many people will be affected by rising temperatures. Our results show that over 4 billion people annually will experience prolonged periods of Danger heat index conditions, under which heat exhaustion and heat stroke are likely. In addition, a majority of people subjected to prolonged high heat stress conditions are located in tropical developing nations, such as those in south and Southeast Asia, where population density is high and large numbers of people work outdoors. Many countries in these regions lack the resources to mitigate the impact of heat stress on the large numbers of people likely to experience heat-related illness and death.

  18. Climate change risk analysis framework (CCRAF) a probabilistic tool for analyzing climate change uncertainties

    NASA Astrophysics Data System (ADS)

    Legget, J.; Pepper, W.; Sankovski, A.; Smith, J.; Tol, R.; Wigley, T.

    2003-04-01

    Potential risks of human-induced climate change are subject to a three-fold uncertainty associated with: the extent of future anthropogenic and natural GHG emissions; global and regional climatic responses to emissions; and impacts of climatic changes on economies and the biosphere. Long-term analyses are also subject to uncertainty regarding how humans will respond to actual or perceived changes, through adaptation or mitigation efforts. Explicitly addressing these uncertainties is a high priority in the scientific and policy communities Probabilistic modeling is gaining momentum as a technique to quantify uncertainties explicitly and use decision analysis techniques that take advantage of improved risk information. The Climate Change Risk Assessment Framework (CCRAF) presented here a new integrative tool that combines the probabilistic approaches developed in population, energy and economic sciences with empirical data and probabilistic results of climate and impact models. The main CCRAF objective is to assess global climate change as a risk management challenge and to provide insights regarding robust policies that address the risks, by mitigating greenhouse gas emissions and by adapting to climate change consequences. The CCRAF endogenously simulates to 2100 or beyond annual region-specific changes in population; GDP; primary (by fuel) and final energy (by type) use; a wide set of associated GHG emissions; GHG concentrations; global temperature change and sea level rise; economic, health, and biospheric impacts; costs of mitigation and adaptation measures and residual costs or benefits of climate change. Atmospheric and climate components of CCRAF are formulated based on the latest version of Wigley's and Raper's MAGICC model and impacts are simulated based on a modified version of Tol's FUND model. The CCRAF is based on series of log-linear equations with deterministic and random components and is implemented using a Monte-Carlo method with up to 5000 variants per set of fixed input parameters. The shape and coefficients of CCRAF equations are derived from regression analyses of historic data and expert assessments. There are two types of random components in CCRAF - one reflects a year-to-year fluctuations around the expected value of a given variable (e.g., standard error of the annual GDP growth) and another is fixed within each CCRAF variant and represents some essential constants within a "world" represented by that variant (e.g., the value of climate sensitivity). Both types of random components are drawn from pre-defined probability distributions functions developed based on historic data or expert assessments. Preliminary CCRAF results emphasize the relative importance of uncertainties associated with the conversion of GHG and particulate emissions into radiative forcing and quantifying climate change effects at the regional level. A separates analysis involves an "adaptive decision-making", which optimizes the expected future policy effects given the estimated probabilistic uncertainties. As uncertainty for some variables evolve over the time steps, the decisions also adapt. This modeling approach is feasible only with explicit modeling of uncertainties.

  19. Adaptation of Land-Use Demands to the Impact of Climate Change on the Hydrological Processes of an Urbanized Watershed

    PubMed Central

    Lin, Yu-Pin; Hong, Nien-Ming; Chiang, Li-Chi; Liu, Yen-Lan; Chu, Hone-Jay

    2012-01-01

    The adaptation of land-use patterns is an essential aspect of minimizing the inevitable impact of climate change at regional and local scales; for example, adapting watershed land-use patterns to mitigate the impact of climate change on a region’s hydrology. The objective of this study is to simulate and assess a region’s ability to adapt to hydrological changes by modifying land-use patterns in the Wu-Du watershed in northern Taiwan. A hydrological GWLF (Generalized Watershed Loading Functions) model is used to simulate three hydrological components, namely, runoff, groundwater and streamflow, based on various land-use scenarios under six global climate models. The land-use allocations are simulated by the CLUE-s model for the various development scenarios. The simulation results show that runoff and streamflow are strongly related to the precipitation levels predicted by different global climate models for the wet and dry seasons, but groundwater cycles are more related to land-use. The effects of climate change on groundwater and runoff can be mitigated by modifying current land-use patterns; and slowing the rate of urbanization would also reduce the impact of climate change on hydrological components. Thus, land-use adaptation on a local/regional scale provides an alternative way to reduce the impacts of global climate change on local hydrology. PMID:23202833

  20. The Global Climate Dashboard: a Software Interface to Stream Comprehensive Climate Data

    NASA Astrophysics Data System (ADS)

    Gardiner, N.; Phillips, M.; NOAA Climate Portal Dashboard

    2011-12-01

    The Global Climate Dashboard is an integral component of NOAA's web portal to climate data, services, and value-added content for decision-makers, teachers, and the science-attentive public (www.clmate.gov). The dashboard provides a rapid view of observational data that demonstrate climate change and variability, as well as outputs from the Climate Model Intercomparison Project version 3, which was built to support the Intergovernmental Panel on Climate Change fourth assessment. The data shown in the dashboard therefore span a range of climate science disciplines with applications that serve audiences with diverse needs. The dashboard is designed with reusable software components that allow it to be implemented incrementally on a wide range of platforms including desktops, tablet devices, and mobile phones. The underlying software components support live streaming of data and provide a way of encapsulating graph sytles and other presentation details into a device-independent standard format that results in a common visual look and feel across all platforms. Here we describe the pedagogical objectives, technical implementation, and the deployment of the dashboard through climate.gov and partner web sites and describe plans to develop a mobile application using the same framework.

  1. The role of local sea surface temperature pattern changes in shaping climate change in the North Atlantic sector

    NASA Astrophysics Data System (ADS)

    Hand, Ralf; Keenlyside, Noel S.; Omrani, Nour-Eddine; Bader, Jürgen; Greatbatch, Richard J.

    2018-03-01

    Beside its global effects, climate change is manifested in many regionally pronounced features mainly resulting from changes in the oceanic and atmospheric circulation. Here we investigate the influence of the North Atlantic SST on shaping the winter-time response to global warming. Our results are based on a long-term climate projection with the Max Planck Institute Earth System Model (MPI-ESM) to investigate the influence of North Atlantic sea surface temperature pattern changes on shaping the atmospheric climate change signal. In sensitivity experiments with the model's atmospheric component we decompose the response into components controlled by the local SST structure and components controlled by global/remote changes. MPI-ESM simulates a global warming response in SST similar to other climate models: there is a warming minimum—or "warming hole"—in the subpolar North Atlantic, and the sharp SST gradients associated with the Gulf Stream and the North Atlantic Current shift northward by a few a degrees. Over the warming hole, global warming causes a relatively weak increase in rainfall. Beyond this, our experiments show more localized effects, likely resulting from future SST gradient changes in the North Atlantic. This includes a significant precipitation decrease to the south of the Gulf Stream despite increased underlying SSTs. Since this region is characterised by a strong band of precipitation in the current climate, this is contrary to the usual case that wet regions become wetter and dry regions become drier in a warmer climate. A moisture budget analysis identifies a complex interplay of various processes in the region of modified SST gradients: reduced surface winds cause a decrease in evaporation; and thermodynamic, modified atmospheric eddy transports, and coastal processes cause a change in the moisture convergence. The changes in the the North Atlantic storm track are mainly controlled by the non-regional changes in the forcing. The impact of the local SST pattern changes on regions outside the North Atlantic is small in our setup.

  2. Climate and Management Controls on Forest Growth and Forest Carbon Balance in the Western United States

    NASA Astrophysics Data System (ADS)

    Kelsey, Katharine Cashman

    Climate change is resulting in a number of rapid changes in forests worldwide. Forests comprise a critical component of the global carbon cycle, and therefore climate-induced changes in forest carbon balance have the potential to create a feedback within the global carbon cycle and affect future trajectories of climate change. In order to further understanding of climate-driven changes in forest carbon balance, I (1) develop a method to improve spatial estimates forest carbon stocks, (2) investigate the effect of climate change and forest management actions on forest recovery and carbon balance following disturbance, and (3) explore the relationship between climate and forest growth, and identify climate-driven trends in forest growth through time, within San Juan National Forest in southwest Colorado, USA. I find that forest carbon estimates based on texture analysis from LandsatTM imagery improve regional forest carbon maps, and this method is particularly useful for estimating carbon stocks in forested regions affected by disturbance. Forest recovery from disturbance is also a critical component of future forest carbon stocks, and my results indicate that both climate and forest management actions have important implications for forest recovery and carbon dynamics following disturbance. Specifically, forest treatments that use woody biomass removed from the forest for electricity production can reduce carbon emissions to the atmosphere, but climate driven changes in fire severity and forest recovery can have the opposite effect on forest carbon stocks. In addition to the effects of disturbance and recovery on forest condition, I also find that climate change is decreasing rates of forest growth in some species, likely in response to warming summer temperatures. These growth declines could result in changes of vegetation composition, or in extreme cases, a shift in vegetation type that would alter forest carbon storage. This work provides insight into both current and future changes in forest carbon balance as a consequence of climate change and forest management in the western US.

  3. Command Climate: The Rise and the Decline of a Military Concept

    DTIC Science & Technology

    1988-04-29

    understands the component parts and nuances of command climaate can change the tone of the climate through guidance and direction. Clearly, of the three...values, restore the vagueness of the Constitution, change leadership, and decide what to do with a military concept called command climate. The first...climate concept. Three were related to publications and the last was the change in leadership of the Army as GEN Carl E. Vuono became the new Chief of

  4. Beyond the single species climate envelope: A multifaceted approach to mapping climate change vulnerability

    Treesearch

    Christopher S. Balzotti; Stanley G. Kitchen; Clinton McCarthy

    2016-01-01

    Federal land management agencies and conservation organizations have begun incorporating climate change vulnerability assessments (CCVAs) as an important component in the management and conservation of landscapes. It is often a challenge to translate that knowledge into management plans and actions, even when research infers species risk. Predictive maps can...

  5. The U.S. Geological Survey Monthly Water Balance Model Futures Portal

    USGS Publications Warehouse

    Bock, Andy

    2017-03-16

    Simulations of future climate suggest profiles of temperature and precipitation may differ significantly from those in the past. These changes in climate will likely lead to changes in the hydrologic cycle. As such, natural resource managers are in need of tools that can provide estimates of key components of the hydrologic cycle, uncertainty associated with the estimates, and limitations associated with the climate forcing data used to estimate these components. To help address this need, the U.S. Geological Survey Monthly Water Balance Model Futures Portal (https://my.usgs.gov/mows/) provides a user friendly interface to deliver hydrologic and meteorological variables for monthly historic and potential future climatic conditions across the continental United States.

  6. Collaborative Research: Improving Decadal Prediction of Arctic Climate Variability and Change Using a Regional Arctic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutowski, William J.

    This project developed and applied a regional Arctic System model for enhanced decadal predictions. It built on successful research by four of the current PIs with support from the DOE Climate Change Prediction Program, which has resulted in the development of a fully coupled Regional Arctic Climate Model (RACM) consisting of atmosphere, land-hydrology, ocean and sea ice components. An expanded RACM, a Regional Arctic System Model (RASM), has been set up to include ice sheets, ice caps, mountain glaciers, and dynamic vegetation to allow investigation of coupled physical processes responsible for decadal-scale climate change and variability in the Arctic. RASMmore » can have high spatial resolution (~4-20 times higher than currently practical in global models) to advance modeling of critical processes and determine the need for their explicit representation in Global Earth System Models (GESMs). The pan-Arctic region is a key indicator of the state of global climate through polar amplification. However, a system-level understanding of critical arctic processes and feedbacks needs further development. Rapid climate change has occurred in a number of Arctic System components during the past few decades, including retreat of the perennial sea ice cover, increased surface melting of the Greenland ice sheet, acceleration and thinning of outlet glaciers, reduced snow cover, thawing permafrost, and shifts in vegetation. Such changes could have significant ramifications for global sea level, the ocean thermohaline circulation and heat budget, ecosystems, native communities, natural resource exploration, and commercial transportation. The overarching goal of the RASM project has been to advance understanding of past and present states of arctic climate and to improve seasonal to decadal predictions. To do this the project has focused on variability and long-term change of energy and freshwater flows through the arctic climate system. The three foci of this research are: - Changes in the freshwater flux between arctic climate system components resulting from decadal changes in land and sea ice, seasonal snow, vegetation, and ocean circulation. - Changing energetics due to decadal changes in ice mass, vegetation, and air-sea interactions. - The role of small-scale atmospheric and oceanic processes that influence decadal variability. This research has been addressing modes of natural climate variability as well as extreme and rapid climate change. RASM can facilitate studies of climate impacts (e.g., droughts and fires) and of ecosystem adaptations to these impacts.« less

  7. The Climate Science Special Report: Arctic Changes and their Effect on Alaska and the Rest of the United States

    NASA Astrophysics Data System (ADS)

    Taylor, P. C.

    2017-12-01

    Rapid and visible climate change is happening across the Arctic, outpacing global change. Annual average near-surface air temperatures across the Arctic are increasing at more than twice the rate of global average surface temperature. In addition to surface temperature, all components of the Arctic climate system are responding in kind, including sea ice, mountain glaciers and the Greenland Ice sheet, snow cover, and permafrost. Many of these changes with a discernable anthropogenic imprint. While Arctic climate change may seem physically remote to those living in other regions of the planet, Arctic climate change can affect the global climate influencing sea level, the carbon cycle, and potentially atmospheric and oceanic circulation patterns. As an Arctic nation, United States' adaptation, mitigation, and policy decisions depend on projections of future Alaskan and Arctic climate. This chapter of the Climate Science Special Report documents significant scientific progress and knowledge about how the Alaskan and Arctic climate has changed and will continue to change.

  8. Exploring the Climate Change, Migration and Conflict Nexus.

    PubMed

    Burrows, Kate; Kinney, Patrick L

    2016-04-22

    The potential link between climate change, migration, and conflict has been widely discussed and is increasingly viewed by policy makers as a security issue. However, considerable uncertainty remains regarding the role that climate variability and change play among the many drivers of migration and conflict. The overall objective of this paper is to explore the potential pathways linking climate change, migration and increased risk of conflict. We review the existing literature surrounding this issue and break the problem into two components: the links between climate change and migration, and those between migration and conflict. We found a large range of views regarding the importance of climate change as a driver for increasing rates of migration and subsequently of conflict. We argue that future research should focus not only on the climate-migration-conflict pathway but also work to understand the other pathways by which climate variability and change might exacerbate conflict. We conclude by proposing five questions to help guide future research on the link between climate change, migration, and conflict.

  9. Exploring the Climate Change, Migration and Conflict Nexus

    PubMed Central

    Burrows, Kate; Kinney, Patrick L.

    2016-01-01

    The potential link between climate change, migration, and conflict has been widely discussed and is increasingly viewed by policy makers as a security issue. However, considerable uncertainty remains regarding the role that climate variability and change play among the many drivers of migration and conflict. The overall objective of this paper is to explore the potential pathways linking climate change, migration and increased risk of conflict. We review the existing literature surrounding this issue and break the problem into two components: the links between climate change and migration, and those between migration and conflict. We found a large range of views regarding the importance of climate change as a driver for increasing rates of migration and subsequently of conflict. We argue that future research should focus not only on the climate-migration-conflict pathway but also work to understand the other pathways by which climate variability and change might exacerbate conflict. We conclude by proposing five questions to help guide future research on the link between climate change, migration, and conflict. PMID:27110806

  10. Climatic and Landscape Influences on Fire Regimes from 1984 to 2010 in the Western United States

    PubMed Central

    Liu, Zhihua; Wimberly, Michael C.

    2015-01-01

    An improved understanding of the relative influences of climatic and landscape controls on multiple fire regime components is needed to enhance our understanding of modern fire regimes and how they will respond to future environmental change. To address this need, we analyzed the spatio-temporal patterns of fire occurrence, size, and severity of large fires (> 405 ha) in the western United States from 1984–2010. We assessed the associations of these fire regime components with environmental variables, including short-term climate anomalies, vegetation type, topography, and human influences, using boosted regression tree analysis. Results showed that large fire occurrence, size, and severity each exhibited distinctive spatial and spatio-temporal patterns, which were controlled by different sets of climate and landscape factors. Antecedent climate anomalies had the strongest influences on fire occurrence, resulting in the highest spatial synchrony. In contrast, climatic variability had weaker influences on fire size and severity and vegetation types were the most important environmental determinants of these fire regime components. Topography had moderately strong effects on both fire occurrence and severity, and human influence variables were most strongly associated with fire size. These results suggest a potential for the emergence of novel fire regimes due to the responses of fire regime components to multiple drivers at different spatial and temporal scales. Next-generation approaches for projecting future fire regimes should incorporate indirect climate effects on vegetation type changes as well as other landscape effects on multiple components of fire regimes. PMID:26465959

  11. Hydrological resiliency in the Western Boreal Plains: classification of hydrological responses using wavelet analysis to assess landscape resilience

    NASA Astrophysics Data System (ADS)

    Probert, Samantha; Kettridge, Nicholas; Devito, Kevin; Hannah, David; Parkin, Geoff

    2017-04-01

    The Boreal represents a system of substantial resilience to climate change, with minimal ecological change over the past 6000 years. However, unprecedented climatic warming, coupled with catchment disturbances could exceed thresholds of hydrological function in the Western Boreal Plains. Knowledge of ecohydrological and climatic feedbacks that shape the resilience of boreal forests has advanced significantly in recent years, but this knowledge is yet to be applied and understood at landscape scales. Hydrological modelling at the landscape scale is challenging in the WBP due to diverse, non-topographically driven hydrology across the mosaic of terrestrial and aquatic ecosystems. This study functionally divides the geologic and ecological components of the landscape into Hydrologic Response Areas (HRAs) and wetland, forestland, interface and pond Hydrologic Units (HUs) to accurately characterise water storage and infer transmission at multiple spatial and temporal scales. Wavelet analysis is applied to pond and groundwater levels to describe the patterns of water storage in response to climate signals; to isolate dominant controls on hydrological responses and to assess the relative importance of physical controls between wet and dry climates. This identifies which components of the landscape exhibit greater magnitude and frequency of variability to wetting and drying trends, further to testing the hierarchical framework for hydrological storage controls of: climate, bedrock geology, surficial geology, soil, vegetation, and topography. Classifying HRA and HU hydrological function is essential to understand and predict water storage and redistribution through drought cycles and wet periods. This work recognises which landscape components are most sensitive under climate change and disturbance and also creates scope for hydrological resiliency research in Boreal systems by recognising critical landscape components and their role in landscape collapse or catastrophic shift in ecosystem function under future climatic scenarios.

  12. Assessing long-term hydrologic impact of climate change using ensemble approach and comparison with Global Gridded Model-A case study on Goodwater Creek Experimental Watershed

    USDA-ARS?s Scientific Manuscript database

    Potential impacts of climate change on hydrologic components of Goodwater Creek Experimental Watershed were assessed using climate datasets from the Coupled Model Intercomparison Project Phase 5 and Soil and Water Assessment Tool (SWAT). Historical and future ensembles of downscaled precipitation an...

  13. Contrasting impacts of climate and competition on large sugar pine growth and defense in a fire-excluded forest of the Central Sierra Nevada

    Treesearch

    Andrew Slack; Jeffrey Kane; Eric Knapp; Rosemary Sherriff

    2017-01-01

    Many forest ecosystems with a large pine component in the western United States have experienced environmental stress associated with climate change and increased competition with forest densification in the absence of fire. Information on how changes in climate and competition affect carbon allocation to tree growth and defense is needed to anticipate changes to tree...

  14. Linking models of human behaviour and climate alters projected climate change

    DOE PAGES

    Beckage, Brian; Gross, Louis J.; Lacasse, Katherine; ...

    2018-01-01

    Although not considered in climate models, perceived risk stemming from extreme climate events may induce behavioural changes that alter greenhouse gas emissions. Here, we link the C-ROADS climate model to a social model of behavioural change to examine how interactions between perceived risk and emissions behaviour influence projected climate change. Our coupled climate and social model resulted in a global temperature change ranging from 3.4–6.2 °C by 2100 compared with 4.9 °C for the C-ROADS model alone, and led to behavioural uncertainty that was of a similar magnitude to physical uncertainty (2.8 °C versus 3.5 °C). Model components with themore » largest influence on temperature were the functional form of response to extreme events, interaction of perceived behavioural control with perceived social norms, and behaviours leading to sustained emissions reductions. Lastly, our results suggest that policies emphasizing the appropriate attribution of extreme events to climate change and infrastructural mitigation may reduce climate change the most.« less

  15. Linking models of human behaviour and climate alters projected climate change

    NASA Astrophysics Data System (ADS)

    Beckage, Brian; Gross, Louis J.; Lacasse, Katherine; Carr, Eric; Metcalf, Sara S.; Winter, Jonathan M.; Howe, Peter D.; Fefferman, Nina; Franck, Travis; Zia, Asim; Kinzig, Ann; Hoffman, Forrest M.

    2018-01-01

    Although not considered in climate models, perceived risk stemming from extreme climate events may induce behavioural changes that alter greenhouse gas emissions. Here, we link the C-ROADS climate model to a social model of behavioural change to examine how interactions between perceived risk and emissions behaviour influence projected climate change. Our coupled climate and social model resulted in a global temperature change ranging from 3.4-6.2 °C by 2100 compared with 4.9 °C for the C-ROADS model alone, and led to behavioural uncertainty that was of a similar magnitude to physical uncertainty (2.8 °C versus 3.5 °C). Model components with the largest influence on temperature were the functional form of response to extreme events, interaction of perceived behavioural control with perceived social norms, and behaviours leading to sustained emissions reductions. Our results suggest that policies emphasizing the appropriate attribution of extreme events to climate change and infrastructural mitigation may reduce climate change the most.

  16. Linking models of human behaviour and climate alters projected climate change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckage, Brian; Gross, Louis J.; Lacasse, Katherine

    Although not considered in climate models, perceived risk stemming from extreme climate events may induce behavioural changes that alter greenhouse gas emissions. Here, we link the C-ROADS climate model to a social model of behavioural change to examine how interactions between perceived risk and emissions behaviour influence projected climate change. Our coupled climate and social model resulted in a global temperature change ranging from 3.4–6.2 °C by 2100 compared with 4.9 °C for the C-ROADS model alone, and led to behavioural uncertainty that was of a similar magnitude to physical uncertainty (2.8 °C versus 3.5 °C). Model components with themore » largest influence on temperature were the functional form of response to extreme events, interaction of perceived behavioural control with perceived social norms, and behaviours leading to sustained emissions reductions. Lastly, our results suggest that policies emphasizing the appropriate attribution of extreme events to climate change and infrastructural mitigation may reduce climate change the most.« less

  17. School Climate Research

    ERIC Educational Resources Information Center

    Thapa, Amrit

    2013-01-01

    School climate research is clearly evolving. The field demands rigorous and empirically sound research that focuses on relating specific aspects and activities of interventions to changes in specific components of school climate. We also need empirical evidence based on sound research techniques on how both interventions and climate affect…

  18. Summarizing components of U.S. Department of the Interior vulnerability assessments to focus climate adaptation planning

    USGS Publications Warehouse

    Thompson, Laura M.; Staudinger, Michelle D.; Carter, Shawn L.

    2015-09-29

    A secretarial order identified climate adaptation as a critical performance objective for future management of U.S. Department of the Interior (DOI) lands and resources in response to global change. Vulnerability assessments can inform climate adaptation planning by providing insight into what natural resources are most at risk and why. Three components of vulnerability—exposure, sensitivity, and adaptive capacity—were defined by the Intergovernmental Panel on Climate Change (IPCC) as necessary for identifying climate adaptation strategies and actions. In 2011, the DOI requested all internal bureaus report ongoing or completed vulnerability assessments about a defined range of assessment targets or climate-related threats. Assessment targets were defined as freshwater resources, landscapes and wildlife habitat, native and cultural resources, and ocean health. Climate-related threats were defined as invasive species, wildfire risk, sea-level rise, and melting ice and permafrost. Four hundred and three projects were reported, but the original DOI survey did not specify that information be provided on exposure, sensitivity, and adaptive capacity collectively as part of the request, and it was unclear which projects adhered to the framework recommended by the IPCC. Therefore, the U.S. Geological Survey National Climate Change and Wildlife Science Center conducted a supplemental survey to determine how frequently each of the three vulnerability components was assessed. Information was categorized for 124 of the 403 reported projects (30.8 percent) based on the three vulnerability components, and it was discovered that exposure was the most common component assessed (87.9 percent), followed by sensitivity (68.5 percent) and adaptive capacity (33.1 percent). The majority of projects did not fully assess vulnerability; projects focused on landscapes/wildlife habitats and sea-level rise were among the minority that simultaneously addressed all three vulnerability components. To maintain consistency with the IPCC definition of vulnerability, DOI may want to focus initial climate adaptation planning only on the outcomes of studies that comprehensively address vulnerability as inclusive of exposure, sensitivity, and adaptive capacity. Although the present study results are preliminary and used an unstructured survey design, they illustrate the importance of a comprehensive and consistent vulnerability definition and of using information on vulnerability components in DOI surveys to ensure relevant data are used to identify adaptation options.

  19. How Do Marine Pelagic Species Respond to Climate Change? Theories and Observations

    NASA Astrophysics Data System (ADS)

    Beaugrand, Grégory; Kirby, Richard R.

    2018-01-01

    In this review, we show how climate affects species, communities, and ecosystems, and why many responses from the species to the biome level originate from the interaction between the species’ ecological niche and changes in the environmental regime in both space and time. We describe a theory that allows us to understand and predict how marine species react to climate-induced changes in ecological conditions, how communities form and are reconfigured, and so how biodiversity is arranged and may respond to climate change. Our study shows that the responses of species to climate change are therefore intelligible—that is, they have a strong deterministic component and can be predicted.

  20. Multidirectional abundance shifts among North American birds and the relative influence of multifaceted climate factors.

    PubMed

    Huang, Qiongyu; Sauer, John R; Dubayah, Ralph O

    2017-09-01

    Shifts in species distributions are major fingerprint of climate change. Examining changes in species abundance structures at a continental scale enables robust evaluation of climate change influences, but few studies have conducted these evaluations due to limited data and methodological constraints. In this study, we estimate temporal changes in abundance from North American Breeding Bird Survey data at the scale of physiographic strata to examine the relative influence of different components of climatic factors and evaluate the hypothesis that shifting species distributions are multidirectional in resident bird species in North America. We quantify the direction and velocity of the abundance shifts of 57 permanent resident birds over 44 years using a centroid analysis. For species with significant abundance shifts in the centroid analysis, we conduct a more intensive correlative analysis to identify climate components most strongly associated with composite change of abundance within strata. Our analysis focus on two contrasts: the relative importance of climate extremes vs. averages, and of temperature vs. precipitation in strength of association with abundance change. Our study shows that 36 species had significant abundance shifts over the study period. The average velocity of the centroid is 5.89 km·yr -1 . The shifted distance on average covers 259 km, 9% of range extent. Our results strongly suggest that the climate change fingerprint in studied avian distributions is multidirectional. Among 6 directions with significant abundance shifts, the northwestward shift was observed in the largest number of species (n = 13). The temperature/average climate model consistently has greater predictive ability than the precipitation/extreme climate model in explaining strata-level abundance change. Our study shows heterogeneous avian responses to recent environmental changes. It highlights needs for more species-specific approaches to examine contributing factors to recent distributional changes and for comprehensive conservation planning for climate change adaptation. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  1. Interdependency in Multimodel Climate Projections: Component Replication and Result Similarity

    NASA Astrophysics Data System (ADS)

    Boé, Julien

    2018-03-01

    Multimodel ensembles are the main way to deal with model uncertainties in climate projections. However, the interdependencies between models that often share entire components make it difficult to combine their results in a satisfactory way. In this study, how the replication of components (atmosphere, ocean, land, and sea ice) between climate models impacts the proximity of their results is quantified precisely, in terms of climatological means and future changes. A clear relationship exists between the number of components shared by climate models and the proximity of their results. Even the impact of a single shared component is generally visible. These conclusions are true at both the global and regional scales. Given available data, it cannot be robustly concluded that some components are more important than others. Those results provide ways to estimate model interdependencies a priori rather than a posteriori based on their results, in order to define independence weights.

  2. Engaging Key Stakeholders in Climate Change: A Community-Based Project for Youth-Led Participatory Climate Action

    NASA Astrophysics Data System (ADS)

    Trott, Carlie D.

    Few studies have examined how youth think about, and take action on climate change and far fewer have sought to facilitate their engagement using participatory methods. This dissertation evaluated the impacts of Science, Camera, Action! (SCA), a novel after-school program that combined climate change education with participatory action through photovoice. The specific aims of this study were to: (1) Evaluate the impacts of SCA on youth participants' climate change knowledge, attitudes, and behaviors; (2) Examine how SCA participation served to empower youth agency; and (3) Explore SCA's influence on youths' science engagement. Participants were 55 youths (ages 10 to 12) across three Boys and Girls Club sites in Northern Colorado. SCA's Science component used interactive activities to demonstrate the interrelationships between Earth's changing climate, ecosystems, and sustainable actions within communities. Photovoice, SCA's Camera component, was used to explore youths' climate change perspectives and to identify opportunities for their active engagement. Finally, SCA's Action component aimed to cultivate youth potential as agents of change in their families and communities through the development and implementation of youth-led action projects. Action projects included local policy advocacy, a tree-planting campaign, a photo gallery opening, development of a website, and the establishment of a Boys and Girls Club community garden. To evaluate SCA impacts, a combination of survey and focus group methods were used. Following the program, youth demonstrated increased knowledge of the scientific and social dimensions of the causes and consequences of climate change, as well as its solutions through human action. Though participants expressed a mix of positive (e.g., hope) and negative (e.g., sadness) emotions about climate change, they left the program with an increased sense of respect for nature, an enhanced sense of environmental responsibility, and a greater sense of urgency towards the need for climate change action. Further, participants reported increased engagement in personal pro-environmental behaviors, an enhanced sense of agency in the context of climate change, and provided strong evidence of their role as agents of change in family and community contexts. Through SCA, participants gained a deeper appreciation for science (e.g., in school, careers, and society) and reported increased interest, participation, confidence, and performance in school science. Findings contribute to the vast and growing psychology literature on climate change perceptions and action, and from the understudied perspective of youth. Through a combination of innovative methods and interactive projects, the youth in this study gained a number of psychosocial and educational benefits, while tangibly contributing to the sustainable transformation of their families and communities. Findings of this dissertation have implications for educational programs, youth organizing, and interventions aimed to strengthen youths' active engagement with critical social and scientific issues that impact their lives.

  3. Energy and Climate Change Report Provides Options for the White House

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-03-01

    A newly approved energy and climate change report prepared by the President's Council of Advisors on Science and Technology (PCAST) provides a menu of options for President Barack Obama to consider in dealing with climate change and includes components for a national climate preparedness strategy. The report was approved at a 15 March PCAST meeting in Washington, D. C., and is subject to final edits. It is the first report by the advisory council that focuses exclusively on climate, according to PCAST member Daniel Schrag, who provided a presentation about the document at the meeting.

  4. Climate change and fire danger rating in the Northern Rockies

    Treesearch

    Faith Ann Heinsch; Charles W. McHugh

    2010-01-01

    Studies have indicated that changes in wildland fire activity are, at least in part, a product of climate change. Fire danger indices, driven by climatology, should reflect these changes. Energy Release Component (ERC) is considered to be an effective indicator of drought conditions and seasonal drying of forest fuels and is often used in fire management planning....

  5. Climatically induced interannual variability in aboveground production in forest-tundra and northern taiga of central Siberia.

    PubMed

    Knorre, Anastasia A; Kirdyanov, Alexander V; Vaganov, Eugene A

    2006-02-01

    To investigate the variability of primary production of boreal forest ecosystems under the current climatic changes, we compared the dynamics of annual increments and productivity of the main components of plant community (trees, shrubs, mosses) at three sites in the north of Siberia (Russia). Annual radial growth of trees and shrubs was mostly defined by summer temperature regime (positive correlation), but climatic response of woody plants was species specific and depends on local conditions. Dynamics of annual increments of mosses were opposite to tree growth. The difference in climatic response of the different vegetation components of the forest ecosystems indicates that these components seem to be adapted to use climatic conditions during the short and severe northern summer, and decreasing in annual production of one component is usually combined with the increase of other component productivity. Average productivity in the northern forest ecosystems varies from 0.05 to 0.14 t ha(-1) year(-1) for trees, from 0.05 to 0.18 t ha(-1) year(-1) for shrubs and from 0.54 to 0.66 t ha(-1) year(-1) for mosses. Higher values of tree productivity combined with lower annual moss productivity were found in sites in northern taiga in comparison with forest-tundra. Different tendencies in the productivity of the dominant species from each vegetation level (trees, shrubs, mosses) were indicated for the last 10 years studied (1990-1999): while productivity of mosses is increasing, productivity of trees is decreasing, but there is no obvious trend in the productivity of shrubs. Our results show that in the long term, the main contribution to changes in annual biomass productivity in forest-tundra and northern taiga ecosystems under the predicted climatic changes will be determined by living ground cover.

  6. Enhancing climate literacy through the use of an interdisciplinary global change framework and conceptual models

    NASA Astrophysics Data System (ADS)

    Bean, J. R.; Zoehfeld, K.; Mitchell, K.; Levine, J.; White, L. D.

    2016-12-01

    Understanding climate change and how to mitigate the causes and consequences of anthropogenic activities are essential components of the Next Generations Science Standards. To comprehend climate change today and why current rates and magnitudes of change are of concern, students must understand the various factors that drive Earth system processes and also how they interrelate. The Understanding Global Change web resource in development from the UC Museum of Paleontology will provide science educators with a conceptual framework, graphical models, lessons, and assessment templates for teaching NGSS aligned, interdisciplinary, climate change curricula. To facilitate students learning about the Earth as a dynamic, interacting system of ongoing processes, the Understanding Global Change site will provide explicit conceptual links for the causes of climate change (e.g., burning of fossil fuels, deforestation), Earth system processes (e.g., Earth's energy budget, water cycle), and the changes scientists measure in the Earth system (e.g., temperature, precipitation). The conceptual links among topics will be presented in a series of storyboards that visually represent relationships and feedbacks among components of the Earth system and will provide teachers with guides for implementing NGSS-aligned climate change instruction that addresses physical science, life sciences, Earth and space science, and engineering performance expectations. These visualization and instructional methods are used by teachers during professional development programs at UC Berkeley and the Smithsonian National Museum of Natural History and are being tested in San Francisco Bay Area classrooms.

  7. Satellite lidar and radar: Key components of the future climate observing system

    NASA Astrophysics Data System (ADS)

    Winker, D. M.

    2017-12-01

    Cloud feedbacks represent the dominant source of uncertainties in estimates of climate sensitivity and aerosols represent the largest source of uncertainty in climate forcing. Both observation of long-term changes and observational constraints on the processes responsible for those changes are necessary. The existing 30-year record of passive satellite observations has not yet provided constraints to significantly reduce these uncertainties, though. We now have more than a decade of experience with active sensors flying in the A-Train. These new observations have demonstrated the strengths of active sensors and the benefits of continued and more advanced active sensors. This talk will discuss the multiple roles for active sensors as an essential component of a global climate observing system.

  8. Forecasting sagebrush ecosystem components and greater sage-grouse habitat for 2050: learning from past climate patterns and Landsat imagery to predict the future

    USGS Publications Warehouse

    Homer, Collin G.; Xian, George Z.; Aldridge, Cameron L.; Meyer, Debra K.; Loveland, Thomas R.; O'Donnell, Michael S.

    2015-01-01

    Sagebrush (Artemisia spp.) ecosystems constitute the largest single North American shrub ecosystem and provide vital ecological, hydrological, biological, agricultural, and recreational ecosystem services. Disturbances have altered and reduced this ecosystem historically, but climate change may ultimately represent the greatest future risk. Improved ways to quantify, monitor, and predict climate-driven gradual change in this ecosystem is vital to its future management. We examined the annual change of Daymet precipitation (daily gridded climate data) and five remote sensing ecosystem sagebrush vegetation and soil components (bare ground, herbaceous, litter, sagebrush, and shrub) from 1984 to 2011 in southwestern Wyoming. Bare ground displayed an increasing trend in abundance over time, and herbaceous, litter, shrub, and sagebrush showed a decreasing trend. Total precipitation amounts show a downward trend during the same period. We established statistically significant correlations between each sagebrush component and historical precipitation records using a simple least squares linear regression. Using the historical relationship between sagebrush component abundance and precipitation in a linear model, we forecasted the abundance of the sagebrush components in 2050 using Intergovernmental Panel on Climate Change (IPCC) precipitation scenarios A1B and A2. Bare ground was the only component that increased under both future scenarios, with a net increase of 48.98 km2 (1.1%) across the study area under the A1B scenario and 41.15 km2 (0.9%) under the A2 scenario. The remaining components decreased under both future scenarios: litter had the highest net reductions with 49.82 km2 (4.1%) under A1B and 50.8 km2 (4.2%) under A2, and herbaceous had the smallest net reductions with 39.95 km2 (3.8%) under A1B and 40.59 km2 (3.3%) under A2. We applied the 2050 forecast sagebrush component values to contemporary (circa 2006) greater sage-grouse (Centrocercus urophasianus) habitat models to evaluate the effects of potential climate-induced habitat change. Under the 2050 IPCC A1B scenario, 11.6% of currently identified nesting habitat was lost, and 0.002% of new potential habitat was gained, with 4% of summer habitat lost and 0.039% gained. Our results demonstrate the successful ability of remote sensing based sagebrush components, when coupled with precipitation, to forecast future component response using IPCC precipitation scenarios. Our approach also enables future quantification of greater sage-grouse habitat under different precipitation scenarios, and provides additional capability to identify regional precipitation influence on sagebrush component response.

  9. Public Perception of Uncertainties Within Climate Change Science.

    PubMed

    Visschers, Vivianne H M

    2018-01-01

    Climate change is a complex, multifaceted problem involving various interacting systems and actors. Therefore, the intensities, locations, and timeframes of the consequences of climate change are hard to predict and cause uncertainties. Relatively little is known about how the public perceives this scientific uncertainty and how this relates to their concern about climate change. In this article, an online survey among 306 Swiss people is reported that investigated whether people differentiate between different types of uncertainty in climate change research. Also examined was the way in which the perception of uncertainty is related to people's concern about climate change, their trust in science, their knowledge about climate change, and their political attitude. The results of a principal component analysis showed that respondents differentiated between perceived ambiguity in climate research, measurement uncertainty, and uncertainty about the future impact of climate change. Using structural equation modeling, it was found that only perceived ambiguity was directly related to concern about climate change, whereas measurement uncertainty and future uncertainty were not. Trust in climate science was strongly associated with each type of uncertainty perception and was indirectly associated with concern about climate change. Also, more knowledge about climate change was related to less strong perceptions of each type of climate science uncertainty. Hence, it is suggested that to increase public concern about climate change, it may be especially important to consider the perceived ambiguity about climate research. Efforts that foster trust in climate science also appear highly worthwhile. © 2017 Society for Risk Analysis.

  10. Quantifying the impacts of climatic trend and fluctuation on crop yields in northern China.

    PubMed

    Qiao, Jianmin; Yu, Deyong; Liu, Yupeng

    2017-10-01

    Climate change plays a critical role in crop yield variations, which has attracted a great deal of concern worldwide. However, the mechanisms of how climatic trend and fluctuations affect crop yields are not well understood and need to be further investigated. Thus, using the GIS-based Environmental Policy Integrated Climate (EPIC) model, we simulated the yields of major crops (i.e., wheat, maize, and rice) and evaluated the impacts of climatic factors on crop yields in the Agro-Pastoral Transitional Zone (APTZ) of northern China between 1980 and 2010. The partial least squares regression model was used to assess the contribution rates of climatic factors (i.e., precipitation, photosynthetically active radiation (PAR), minimum temperature (T min ), maximum temperature (T max )) to the variation of crop yields. The Breaks for Additive Season and Trend (BFAST) model was adopted to decompose the climate factors into trend and fluctuation components, and the relative contributions of climate trend and fluctuation were then evaluated. The results indicated that the contributions of climatic factors to yield variations of wheat, maize, and rice were 31.7, 37.7, and 23.1%, respectively. That is, climate change had larger impacts on maize than wheat and rice. More cultivated areas were significantly and positively correlated with precipitation than with other climatic factors due to the limited precipitation in the APTZ. Also, climatic trend component had positive impacts on crop yields in the whole region, whereas the climate fluctuation was associated mainly with the areas where the crop yields decreased. This study helps improve our understanding of the mechanisms of climate change impacts on crop yields, and provides useful scientific information for designing regional-scale strategies of adaptation to climate change.

  11. Integrated numerical modeling of a landslide early warning system in a context of adaptation to future climatic pressures

    NASA Astrophysics Data System (ADS)

    Khabarov, Nikolay; Huggel, Christian; Obersteiner, Michael; Ramírez, Juan Manuel

    2010-05-01

    Mountain regions are typically characterized by rugged terrain which is susceptible to different types of landslides during high-intensity precipitation. Landslides account for billions of dollars of damage and many casualties, and are expected to increase in frequency in the future due to a projected increase of precipitation intensity. Early warning systems (EWS) are thought to be a primary tool for related disaster risk reduction and climate change adaptation to extreme climatic events and hydro-meteorological hazards, including landslides. An EWS for hazards such as landslides consist of different components, including environmental monitoring instruments (e.g. rainfall or flow sensors), physical or empirical process models to support decision-making (warnings, evacuation), data and voice communication, organization and logistics-related procedures, and population response. Considering this broad range, EWS are highly complex systems, and it is therefore difficult to understand the effect of the different components and changing conditions on the overall performance, ultimately being expressed as human lives saved or structural damage reduced. In this contribution we present a further development of our approach to assess a landslide EWS in an integral way, both at the system and component level. We utilize a numerical model using 6 hour rainfall data as basic input. A threshold function based on a rainfall-intensity/duration relation was applied as a decision criterion for evacuation. Damage to infrastructure and human lives was defined as a linear function of landslide magnitude, with the magnitude modelled using a power function of landslide frequency. Correct evacuation was assessed with a ‘true' reference rainfall dataset versus a dataset of artificially reduced quality imitating the observation system component. Performance of the EWS using these rainfall datasets was expressed in monetary terms (i.e. damage related to false and correct evacuation). We applied this model to a landslide EWS in Colombia that is currently being implemented within a disaster prevention project. We evaluated the EWS against rainfall data with artificially introduced error and computed with multiple model runs the probabilistic damage functions depending on rainfall error. Then we modified the original precipitation pattern to reflect possible climatic changes e.g. change in annual precipitation as well as change in precipitation intensity with annual values remaining constant. We let the EWS model adapt for changed conditions to function optimally. Our results show that for the same errors in rainfall measurements the system's performance degrades with expected changing climatic conditions. The obtained results suggest that EWS cannot internally adapt to climate change and require exogenous adaptive measures to avoid increase in overall damage. The model represents a first attempt to integrally simulate and evaluate EWS under future possible climatic pressures. Future work will concentrate on refining model components and spatially explicit climate scenarios.

  12. Reassessing emotion in climate change communication

    NASA Astrophysics Data System (ADS)

    Chapman, Daniel A.; Lickel, Brian; Markowitz, Ezra M.

    2017-12-01

    Debate over effective climate change communication must be grounded in rigorous affective science. Rather than treating emotions as simple levers to be pulled to promote desired outcomes, emotions should be viewed as one integral component of a cognitive feedback system guiding responses to challenging decision-making problems.

  13. Managing Climate Change Refugia for Climate Adaptation ...

    EPA Pesticide Factsheets

    The concept of refugia has long been studied from theoretical and paleontological perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, locations that may be unusually buffered from climate change effects so as to increase persistence of valued resources. Here we distinguish between paleoecological and contemporary viewpoints, characterize physical and ecological processes that create and maintain climate change refugia, summarize the process of identifying and mapping them, and delineate how refugia can fit into the existing framework of natural resource management. We also suggest three primary courses of action at these sites: prioritization, protection, and propagation. Although not a panacea, managing climate change refugia can be an important adaptation option for conserving valuable resources in the face of ongoing and future climate change. “In a nutshell” (100 words) • Climate change refugia are defined as areas relatively buffered from contemporary climate change, enabling persistence of valued physical, ecological, and cultural resources. • Refugia can be incorporated as key components of a climate adaptation strategy because their prioritization by management may enable their associated resources to persist locally and eventually spread to future suitable habitat. • Steps for

  14. Analyses of historical and projected climates to support climate adaptation in the northern Rocky Mountains: Chapter 4

    USGS Publications Warehouse

    Gross, John E.; Tercek, Michael; Guay, Kevin; Chang, Tony; Talbert, Marian; Rodman, Ann; Thoma, David; Jantz, Patrick; Morisette, Jeffrey T.

    2016-01-01

    Most of the western United States is experiencing the effects of rapid and directional climate change (Garfin et al. 2013). These effects, along with forecasts of profound changes in the future, provide strong motivation for resource managers to learn about and prepare for future changes. Climate adaptation plans are based on an understanding of historic climate variation and their effects on ecosystems and on forecasts of future climate trends. Frameworks for climate adaptation thus universally identify the importance of a summary of historical, current, and projected climates (Glick, Stein, and Edelson 2011; Cross et al. 2013; Stein et al. 2014). Trends in physical climate variables are usually the basis for evaluating the exposure component in vulnerability assessments. Thus, this chapter focuses on step 2 of the Climate-Smart Conservation framework (chap. 2): vulnerability assessment. We present analyses of historical and current observations of temperature, precipitation, and other key climate measurements to provide context and a baseline for interpreting the ecological impacts of projected climate changes.

  15. Climate and Cryosphere (CliC) Project and its Interest in Arctic Hydrology Research

    NASA Astrophysics Data System (ADS)

    Yang, D.; Prowse, T. D.; Steffen, K.; Ryabinin, V.

    2009-12-01

    The cryosphere is an important and dynamic component of the global climate system. The global cryosphere is changing rapidly, with changes in the Polar Regions receiving particular attention during the International Polar Year 2007-2008. The Climate and Cryosphere (CliC) Project is a core project of the World Climate Research Programme (WCRP) and is co-sponsored by WCRP, SCAR (Scientific Committee for Antarctic Research) and IASC (International Committee for Antarctic Research). The principal goal of CliC is to assess and quantify the impacts that climatic variability and change have on components of the cryosphere and the consequences of these impacts for the climate system. To achieve its objectives, CliC coordinates international and regional projects, partners with other organizations in joint initiatives, and organizes panels and working groups to lead and coordinate advanced research aimed at closing identified gaps in scientific knowledge about climate and cryosphere. The terrestrial cryosphere includes land areas where snow cover, lake- and river-ice, glaciers and ice caps, permafrost and seasonally frozen ground and solid precipitation occur. The main task of this theme is to improve estimates and quantify the uncertainty of water balance and related energy flux components in cold climate regions. This includes precipitation (both solid and liquid) distribution, properties of snow, snow melt, evapotranspiration, sublimation, water movement through frozen and unfrozen ground, water storage in watersheds, river- and lake-ice properties and processes, and river runoff. The focus of this theme includes two specific issues: the role of permafrost and frozen ground in the carbon balance, and precipitation in cold climates. Hydrological studies of cold regions will provide a key contribution to the new theme crosscut, which focuses on the cryospheric input to the freshwater balance of the Arctic. This presentation will provide an overview and update of recent developments of cold region hydrometeorology research activities and future challenges in arctic hydrology and climate change investigations.

  16. Exploring the Multifaceted Topic of Climate Change in Our Changing Climate and Living With Our Changing Climate

    NASA Astrophysics Data System (ADS)

    Brey, J. A.; Kauffman, C.; Geer, I. W.; Mills, E. W.; Nugnes, K. A.; Stimach, A. E.

    2015-12-01

    As the effects of climate change become more profound, climate literacy becomes increasingly important. The American Meteorological Society (AMS) responds to this need through the publication of Our Changing Climate and Living With Our Changing Climate. Both publications incorporate the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the USGCRP's Third National Climate Assessment. Topic In Depth sections appear throughout each chapter and lead to more extensive, multidisciplinary information related to various topics. Additionally, each chapter closes with a For Further Exploration essay, which addresses specific topics that complement a chapter concept. Web Resources, which encourage additional exploration of chapter content, and Scientific Literature, from which chapter content was derived can also be found at the conclusion of each chapter. Our Changing Climate covers a breadth of topics, including the scientific principles that govern Earth's climate system and basic statistics and geospatial tools used to investigate the system. Released in fall 2015, Living With Our Changing Climate takes a more narrow approach and investigates human and ecosystem vulnerabilities to climate change, the role of energy choices in affecting climate, actions humans can take through adaption, mitigation, and policy to lessen vulnerabilities, and psychological and financial reasons behind climate change denial. While Living With Our Changing Climate is intended for programs looking to add a climate element into their curriculum, Our Changing Climate is part of the AMS Climate Studies course. In a 2015 survey of California University of Pennsylvania undergraduate students using Our Changing Climate, 82% found it comfortable to read and utilized its interactive components and resources. Both ebooks illuminate the multidisciplinary aspect of climate change, providing the opportunity for a more sustainable future.

  17. Incorporating Student Activities into Climate Change Education

    NASA Astrophysics Data System (ADS)

    Steele, H.; Kelly, K.; Klein, D.; Cadavid, A. C.

    2013-12-01

    Under a NASA grant, Mathematical and Geospatial Pathways to Climate Change Education, students at California State University, Northridge integrated Geographic Information Systems (GIS), remote sensing, satellite data technologies, and climate modelling into the study of global climate change under a Pathway for studying the Mathematics of Climate Change (PMCC). The PMCC, which is an interdisciplinary option within the BS in Applied Mathematical Sciences, consists of courses offered by the departments of Mathematics, Physics, and Geography and is designed to prepare students for careers and Ph.D. programs in technical fields relevant to global climate change. Under this option students are exposed to the science, mathematics, and applications of climate change science through a variety of methods including hands-on experience with computer modeling and image processing software. In the Geography component of the program, ESRI's ArcGIS and ERDAS Imagine mapping, spatial analysis and image processing software were used to explore NASA satellite data to examine the earth's atmosphere, hydrosphere and biosphere in areas that are affected by climate change or affect climate. These technology tools were incorporated into climate change and remote sensing courses to enhance students' knowledge and understanding of climate change through hands-on application of image processing techniques to NASA data. Several sets of exercises were developed with specific learning objectives in mind. These were (1) to increase student understanding of climate change and climate change processes; (2) to develop student skills in understanding, downloading and processing satellite data; (3) to teach remote sensing technology and GIS through applications to climate change; (4) to expose students to climate data and methods they can apply to solve real world problems and incorporate in future research projects. In the Math and Physics components of the course, students learned about atmospheric circulation with applications of the Lorenz model, explored the land-sea breeze problem with the Dynamics and Thermodynamics Circulation Model (DTDM), and developed simple radiative transfer models. Class projects explored the effects of varying the content of CO2 and CH4 in the atmosphere, as well as the properties of paleoclimates in atmospheric simulations using EdGCM. Initial assessment of student knowledge, attitudes, and behaviors associated with these activities, particularly about climate change, was measured. Pre- and post-course surveys provided student perspectives about the courses and their learning about remote sensing and climate change concepts. Student performance on the tutorials and course projects evaluated students' ability to learn and apply their knowledge about climate change and skills with remote sensing to assigned problems or proposed projects of their choice. Survey and performance data illustrated that the exercises were successful in meeting their intended learning objectives as well as opportunities for further refinement and expansion.

  18. The effects of climate change associated abiotic stresses on maize phytochemical defenses

    USDA-ARS?s Scientific Manuscript database

    Reliable large-scale maize production is an essential component of global food security; however, sustained efforts are needed to ensure optimized resilience under diverse crop stress conditions. Climate changes are expected to increase the frequency and intensity of both abiotic and biotic stress. ...

  19. Land Use, climate change and BIOdiversity in cultural landscapes (LUBIO): Assessing feedbacks and promoting land-use strategies towards a viable future

    NASA Astrophysics Data System (ADS)

    Dullinger, Iwona; Bohner, Andreas; Dullinger, Stefan; Essl, Franz; Gaube, Veronika; Haberl, Helmut; Mayer, Andreas; Plutzar, Christoph; Remesch, Alexander

    2016-04-01

    Land-use and climate change are important, pervasive drivers of global environmental change and pose major threats to global biodiversity. Research to date has mostly focused either on land-use change or on climate change, but rarely on the interactions between both drivers, even though it is expected that systemic feedbacks between changes in climate and land use will have important effects on biodiversity. In particular, climate change will not only alter the pool of plant and animal species capable of thriving in a specific area, it will also force land owners to reconsider their land use decisions. Such changes in land-use practices may have major additional effects on local and regional species composition and abundance. In LUBIO, we will explore the anticipated systemic feedbacks between (1) climate change, (2) land owner's decisions on land use, (3) land-use change, and (4) changes in biodiversity patterns during the coming decades in a regional context which integrates a broad range of land use practices and intensity gradients. To achieve this goal, an integrated socioecological model will be designed and implemented, consisting of three principal components: (1) an agent based model (ABM) that simulates decisions of important actors, (2) a spatially explicit GIS model that translates these decisions into changes in land cover and land use patterns, and (3) a species distribution model (SDM) that calculates changes in biodiversity patterns following from both changes in climate and the land use decisions as simulated in the ABM. Upon integration of these three components, the coupled socioecological model will be used to generate scenarios of future land-use decisions of landowners under climate change and, eventually, the combined effects of climate and land use changes on biodiversity. Model development of the ABM will be supported by a participatory process intended to collect regional and expert knowledge through a series of expert interviews, a series of transdisciplinary participatory modelling workshops, and a questionnaire-based survey targeted at regional farmers. Beside the integrated socioecological model a catalogue of recommended actions will be developed in order to distribute the insights of the research to the most relevant regional stakeholder groups.

  20. Simulating streamflow in ungauged basins under a changing climate: The importance of landscape characteristics

    NASA Astrophysics Data System (ADS)

    Teutschbein, Claudia; Grabs, Thomas; Laudon, Hjalmar; Karlsen, Reinert H.; Bishop, Kevin

    2018-06-01

    In this paper we explored how landscape characteristics such as topography, geology, soils and land cover influence the way catchments respond to changing climate conditions. Based on an ensemble of 15 regional climate models bias-corrected with a distribution-mapping approach, present and future streamflow in 14 neighboring and rather similar catchments in Northern Sweden was simulated with the HBV model. We established functional relationships between a range of landscape characteristics and projected changes in streamflow signatures. These were then used to analyze hydrological consequences of physical perturbations in a hypothetically ungauged basin in a climate change context. Our analysis showed a strong connection between the forest cover extent and the sensitivity of different components of a catchment's hydrological regime to changing climate conditions. This emphasizes the need to redefine forestry goals and practices in advance of climate change-related risks and uncertainties.

  1. The cumulative effects of forest disturbance and climate variability on streamflow components in a large forest-dominated watershed

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Wei, Xiaohua; Zhang, Mingfang; Liu, Wenfei; Giles-Hansen, Krysta; Wang, Yi

    2018-02-01

    Assessing how forest disturbance and climate variability affect streamflow components is critical for watershed management, ecosystem protection, and engineering design. Previous studies have mainly evaluated the effects of forest disturbance on total streamflow, rarely with attention given to its components (e.g., base flow and surface runoff), particularly in large watersheds (>1000 km2). In this study, the Upper Similkameen River watershed (1810 km2), an international watershed situated between Canada and the USA, was selected to examine how forest disturbance and climate variability interactively affect total streamflow, baseflow, and surface runoff. Baseflow was separated using a combination of the recursive digital filter method and conductivity mass balance method. Time series analysis and modified double mass curves were then employed to quantitatively separate the relative contributions of forest disturbance and climate variability to each streamflow component. Our results showed that average annual baseflow and baseflow index (baseflow/streamflow) were 113.3 ± 35.6 mm year-1 and 0.27 for 1954-2013, respectively. Forest disturbance increased annual streamflow, baseflow, and surface runoff of 27.7 ± 13.7 mm, 7.4 ± 3.6 mm, and 18.4 ± 12.9 mm, respectively, with its relative contributions to the changes in respective streamflow components being 27.0 ± 23.0%, 29.2 ± 23.1%, and 25.7 ± 23.4%, respectively. In contrast, climate variability decreased them by 74.9 ± 13.7 mm, 17.9 ± 3.6 mm, and 53.3 ± 12.9 mm, respectively, with its relative contributions to the changes in respective streamflow components being 73.0 ± 23.0%, 70.8 ± 23.1% and 73.1 ± 23.4%, respectively. Despite working in opposite ways, the impacts of climate variability on annual streamflow, baseflow, and surface runoff were of a much greater magnitude than forest disturbance impacts. This study has important implications for the protection of aquatic habitat, engineering design, and watershed planning in the context of future forest disturbance and climate change.

  2. Health and Climate Impacts of Rural Residential Energy Transition in China

    NASA Astrophysics Data System (ADS)

    Tao, Shu; Ru, Muye; Du, Wei; Zhu, Xi; Zhong, Qirui

    2017-04-01

    Over the last two to three decades, energy mix in rural China transit dramatically owing to rapid socioeconomic development. It is expected that such transition can result in changes in emissions of climate forcing components and air pollutants, consequently environmental and climate impacts. Such impacts were quantified by a nationwide survey on rural residential energy consumption, compilation of a series of emission inventories, modeling of atmospheric transport of pollutants, assessment on health risk induced by exposure to ambient air pollutants, and evaluation on rural residential emission originated climate forcing components. Co-benefit of the transition on both health and climate is demonstrated.

  3. Implications of Climate Change for State Bioassessment Programs and Approaches to Account for Effects (Final Report)

    EPA Science Inventory

    EPA announced the availability of the final report, Implications of Climate Change for State Bioassessment Programs and Approaches to Account for Effects. This report uses biological data collected by four states in wadeable rivers and streams to examine the components ...

  4. Implications of Climate Change for State Bioassessment Programs and Approaches to Account for Effects (External Review Draft)

    EPA Science Inventory

    This draft report uses biological data collected by four states in wadeable rivers and streams to examine the components of state and tribal bioassessment and biomonitoring programs that may be vulnerable to climate change. The study investigates the potential to identify biologi...

  5. Drought and leaf herbivory influence floral volatiles and pollinator attraction

    Treesearch

    Laura A. Burkle; Justin B. Runyon

    2016-01-01

    The effects of climate change on species interactions are poorly understood. Investigating the mechanisms by which species interactions may shift under altered environmental conditions will help form a more predictive understanding of such shifts. In particular, components of climate change have the potential to strongly influence floral volatile organic...

  6. ARS NP212 Climate change, soils and emissions program update

    USDA-ARS?s Scientific Manuscript database

    The Agricultural Research Service National Program 212 (Climate Change, Soils, and Emissions) has a significant component focused on air quality studies. Presented here for the Agricultural Air Quality Task Force is an update on the status of ARS programs with focus on air quality. National Program ...

  7. Regional climate change predictions from the Goddard Institute for Space Studies high resolution GCM

    NASA Technical Reports Server (NTRS)

    Crane, Robert G.; Hewitson, Bruce

    1990-01-01

    Model simulations of global climate change are seen as an essential component of any program aimed at understanding human impact on the global environment. A major weakness of current general circulation models (GCMs), however, is their inability to predict reliably the regional consequences of a global scale change, and it is these regional scale predictions that are necessary for studies of human/environmental response. This research is directed toward the development of a methodology for the validation of the synoptic scale climatology of GCMs. This is developed with regard to the Goddard Institute for Space Studies (GISS) GCM Model 2, with the specific objective of using the synoptic circulation form a doubles CO2 simulation to estimate regional climate change over North America, south of Hudson Bay. This progress report is specifically concerned with validating the synoptic climatology of the GISS GCM, and developing the transfer function to derive grid-point temperatures from the synoptic circulation. Principal Components Analysis is used to characterize the primary modes of the spatial and temporal variability in the observed and simulated climate, and the model validation is based on correlations between component loadings, and power spectral analysis of the component scores. The results show that the high resolution GISS model does an excellent job of simulating the synoptic circulation over the U.S., and that grid-point temperatures can be predicted with reasonable accuracy from the circulation patterns.

  8. The potential impacts of climate change and variability on forests and forestry in the Mid-Atlantic Region

    Treesearch

    Mary McKenney-Easterling; David R. DeWalle; Louis R. Iverson; Anantha M. Prasad; Anthony R. Buda; Anthony R. Buda

    2000-01-01

    As part of the Mid-Atlantic Regional Assessment, an evaluation is being made of the impacts of climate variability and potential future climate change on forests and forestry in the Mid-Atlantic Region. This paper provides a brief overview of the current status of forests in the region, and then focuses on 2 components of this evaluation: (1) modeling of the potential...

  9. Implications of Climate Change for State Bioassessment ...

    EPA Pesticide Factsheets

    This draft report uses biological data collected by four states in wadeable rivers and streams to examine the components of state and tribal bioassessment and biomonitoring programs that may be vulnerable to climate change. The study investigates the potential to identify biological response signals to climate change within existing bioassessment data sets; analyzes how biological responses can be categorized and interpreted; and assesses how they may influence decision-making processes. The analyses suggest that several biological indicators may be used to detect climate change effects and such indicators can be used by state bioassessment programs to document changes at high-quality reference sites. The study investigates the potential to identify biological response signals to climate change within existing bioassessment data sets; analyzes how biological responses can be categorized and interpreted; and assesses how they may influence decision-making processes.

  10. ICLUS v1.3 Population Projections

    EPA Pesticide Factsheets

    Climate and land-use change are major components of global environmental change with feedbacks between these components. The consequences of these interactions show that land use may exacerbate or alleviate climate change effects. Based on these findings it is important to use land-use scenarios that are consistent with the specific assumptions underlying climate-change scenarios. The Integrated Climate and Land-Use Scenarios (ICLUS) project developed land-use outputs that are based on a downscaled version of the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) social, economic, and demographic storylines. ICLUS outputs are derived from a pair of models. A demographic model generates county-level population estimates that are distributed by a spatial allocation model (SERGoM v3) as housing density across the landscape. Land-use outputs were developed for the four main SRES storylines and a baseline (base case). The model is run for the conterminous USA and output is available for each scenario by decade to 2100. In addition to housing density at a 1 hectare spatial resolution, this project also generated estimates of impervious surface at a resolution of 1 square kilometer. This shapefile holds population data for all counties of the conterminous USA for all decades (2010-2100) and SRES population growth scenarios (A1, A2, B1, B2), as well as a 'base case' (BC) scenario, for use in the Integrated Climate and Land Use

  11. Advancing Climate Change and Impacts Science Through Climate Informatics

    NASA Astrophysics Data System (ADS)

    Lenhardt, W.; Pouchard, L. C.; King, A. W.; Branstetter, M. L.; Kao, S.; Wang, D.

    2010-12-01

    This poster will outline the work to date on developing a climate informatics capability at Oak Ridge National Laboratory (ORNL). The central proposition of this effort is that the application of informatics and information science to the domain of climate change science is an essential means to bridge the realm of high performance computing (HPC) and domain science. The goal is to facilitate knowledge capture and the creation of new scientific insights. For example, a climate informatics capability will help with the understanding and use of model results in domain sciences that were not originally in the scope. From there, HPC can also benefit from feedback as the new approaches may lead to better parameterization in the models. In this poster we will summarize the challenges associated with climate change science that can benefit from the systematic application of informatics and we will highlight our work to date in creating the climate informatics capability to address these types of challenges. We have identified three areas that are particularly challenging in the context of climate change science: 1) integrating model and observational data across different spatial and temporal scales, 2) model linkages, i.e. climate models linked to other models such as hydrologic models, and 3) model diagnostics. Each of these has a methodological component and an informatics component. Our project under way at ORNL seeks to develop new approaches and tools in the context of linking climate change and water issues. We are basing our work on the following four use cases: 1) Evaluation/test of CCSM4 biases in hydrology (precipitation, soil water, runoff, river discharge) over the Rio Grande Basin. User: climate modeler. 2) Investigation of projected changes in hydrology of Rio Grande Basin using the VIC (Variable Infiltration Capacity Macroscale) Hydrologic Model. User: watershed hydrologist/modeler. 3) Impact of climate change on agricultural productivity of the Rio Grande Basin. User: climate impact scientist, agricultural economist. 4) Renegotiation of the 1944 “Treaty for the Utilization of Waters of the Colorado and Tijuana Rivers and of the Rio Grande”. User: A US State Department analyst or their counterpart in Mexico.

  12. A method for screening climate change-sensitive infectious diseases.

    PubMed

    Wang, Yunjing; Rao, Yuhan; Wu, Xiaoxu; Zhao, Hainan; Chen, Jin

    2015-01-14

    Climate change is a significant and emerging threat to human health, especially where infectious diseases are involved. Because of the complex interactions between climate variables and infectious disease components (i.e., pathogen, host and transmission environment), systematically and quantitatively screening for infectious diseases that are sensitive to climate change is still a challenge. To address this challenge, we propose a new statistical indicator, Relative Sensitivity, to identify the difference between the sensitivity of the infectious disease to climate variables for two different climate statuses (i.e., historical climate and present climate) in non-exposure and exposure groups. The case study in Anhui Province, China has demonstrated the effectiveness of this Relative Sensitivity indicator. The application results indicate significant sensitivity of many epidemic infectious diseases to climate change in the form of changing climatic variables, such as temperature, precipitation and absolute humidity. As novel evidence, this research shows that absolute humidity has a critical influence on many observed infectious diseases in Anhui Province, including dysentery, hand, foot and mouth disease, hepatitis A, hemorrhagic fever, typhoid fever, malaria, meningitis, influenza and schistosomiasis. Moreover, some infectious diseases are more sensitive to climate change in rural areas than in urban areas. This insight provides guidance for future health inputs that consider spatial variability in response to climate change.

  13. A Method for Screening Climate Change-Sensitive Infectious Diseases

    PubMed Central

    Wang, Yunjing; Rao, Yuhan; Wu, Xiaoxu; Zhao, Hainan; Chen, Jin

    2015-01-01

    Climate change is a significant and emerging threat to human health, especially where infectious diseases are involved. Because of the complex interactions between climate variables and infectious disease components (i.e., pathogen, host and transmission environment), systematically and quantitatively screening for infectious diseases that are sensitive to climate change is still a challenge. To address this challenge, we propose a new statistical indicator, Relative Sensitivity, to identify the difference between the sensitivity of the infectious disease to climate variables for two different climate statuses (i.e., historical climate and present climate) in non-exposure and exposure groups. The case study in Anhui Province, China has demonstrated the effectiveness of this Relative Sensitivity indicator. The application results indicate significant sensitivity of many epidemic infectious diseases to climate change in the form of changing climatic variables, such as temperature, precipitation and absolute humidity. As novel evidence, this research shows that absolute humidity has a critical influence on many observed infectious diseases in Anhui Province, including dysentery, hand, foot and mouth disease, hepatitis A, hemorrhagic fever, typhoid fever, malaria, meningitis, influenza and schistosomiasis. Moreover, some infectious diseases are more sensitive to climate change in rural areas than in urban areas. This insight provides guidance for future health inputs that consider spatial variability in response to climate change. PMID:25594780

  14. Recent climatic, cryospheric, and hydrological changes over the interior of western Canada: a synthesis and review

    NASA Astrophysics Data System (ADS)

    DeBeer, C. M.; Wheater, H. S.; Carey, S. K.; Chun, K. P.

    2015-08-01

    It is well-established that the Earth's climate system has warmed significantly over the past several decades, and in association there have been widespread changes in various other Earth system components. This has been especially prevalent in the cold regions of the northern mid to high-latitudes. Examples of these changes can be found within the western and northern interior of Canada, a region that exemplifies the scientific and societal issues faced in many other similar parts of the world, and where impacts have global-scale consequences. This region has been the geographic focus of a large amount of previous research on changing climatic, cryospheric, and hydrological Earth system components in recent decades, while current initiatives such as the Changing Cold Regions Network (CCRN) seek to further develop the understanding and diagnosis of this change and hence improve predictive capacity. This paper provides an integrated review of the observed changes in these Earth system components and a concise and up-to-date regional picture of some of the temporal trends over the interior of western Canada since the mid or late-20th century. The focus is on air temperature, precipitation, seasonal snow cover, mountain glaciers, permafrost, freshwater ice cover, and river discharge. Important long-term observational networks and datasets are described, and qualitative linkages among the changing components are highlighted. Systematic warming and significant changes to precipitation, snow and ice regimes are unambiguous. However, integrated effects on streamflow are complex. It is argued that further diagnosis is required before predictions of future change can be made with confidence.

  15. Thermal components of American pika habitat—How does a small lagomorph encounter climate?

    Treesearch

    Connie Millar; Bob Westfall; Diane L. Delany

    2016-01-01

    Anticipating the response of small mammals to climate change requires knowledge of thermal conditions of their habitat during times of the day and year when individuals use them. We measured diurnal and seasonal temperatures of free air and of six habitat components for American pikas (Ochotona princeps) over five years at 37 sites in seven...

  16. Climate change impact assessment on hydrology of a small watershed using semi-distributed model

    NASA Astrophysics Data System (ADS)

    Pandey, Brij Kishor; Gosain, A. K.; Paul, George; Khare, Deepak

    2017-07-01

    This study is an attempt to quantify the impact of climate change on the hydrology of Armur watershed in Godavari river basin, India. A GIS-based semi-distributed hydrological model, soil and water assessment tool (SWAT) has been employed to estimate the water balance components on the basis of unique combinations of slope, soil and land cover classes for the base line (1961-1990) and future climate scenarios (2071-2100). Sensitivity analysis of the model has been performed to identify the most critical parameters of the watershed. Average monthly calibration (1987-1994) and validation (1995-2000) have been performed using the observed discharge data. Coefficient of determination (R2), Nash-Sutcliffe efficiency (ENS) and root mean square error (RMSE) were used to evaluate the model performance. Calibrated SWAT setup has been used to evaluate the changes in water balance components of future projection over the study area. HadRM3, a regional climatic data, have been used as input of the hydrological model for climate change impact studies. In results, it was found that changes in average annual temperature (+3.25 °C), average annual rainfall (+28 %), evapotranspiration (28 %) and water yield (49 %) increased for GHG scenarios with respect to the base line scenario.

  17. Development of a biosphere hydrological model considering vegetation dynamics and its evaluation at basin scale under climate change

    NASA Astrophysics Data System (ADS)

    Li, Qiaoling; Ishidaira, Hiroshi

    2012-01-01

    SummaryThe biosphere and hydrosphere are intrinsically coupled. The scientific question is if there is a substantial change in one component such as vegetation cover, how will the other components such as transpiration and runoff generation respond, especially under climate change conditions? Stand-alone hydrological models have a detailed description of hydrological processes but do not sufficiently parameterize vegetation as a dynamic component. Dynamic global vegetation models (DGVMs) are able to simulate transient structural changes in major vegetation types but do not simulate runoff generation reliably. Therefore, both hydrological models and DGVMs have their limitations as well as advantages for addressing this question. In this study a biosphere hydrological model (LPJH) is developed by coupling a prominent DGVM (Lund-Postdam-Jena model referred to as LPJ) with a stand-alone hydrological model (HYMOD), with the objective of analyzing the role of vegetation in the hydrological processes at basin scale and evaluating the impact of vegetation change on the hydrological processes under climate change. The application and validation of the LPJH model to four basins representing a variety of climate and vegetation conditions shows that the performance of LPJH is much better than that of the original LPJ and is similar to that of stand-alone hydrological models for monthly and daily runoff simulation at the basin scale. It is argued that the LPJH model gives more reasonable hydrological simulation since it considers both the spatial variability of soil moisture and vegetation dynamics, which make the runoff generation mechanism more reliable. As an example, it is shown that changing atmospheric CO 2 content alone would result in runoff increases in humid basins and decreases in arid basins. Theses changes are mainly attributable to changes in transpiration driven by vegetation dynamics, which are not simulated in stand-alone hydrological models. Therefore LPJH potentially provides a powerful tool for simulating vegetation response to climate changes in the biosphere hydrological cycle.

  18. Climate Risk Management and Decision Support Tools for the Agriculture Sector in Lao PDR, Bangladesh, and Indonesia

    NASA Astrophysics Data System (ADS)

    Allis, E. C.; Greene, A. M.; Cousin, R.

    2014-12-01

    We describe a comprehensive project for developing climate information and decision support / climate risk management tools in Lao PDR, Bangladesh and Indonesia. Mechanisms are developed for bringing the benefits of these tools to both policy makers and poor rural farmers, with the goal of enabling better management, at the farm level, of the risks associated with climate variability and change. The project comprises several interwoven threads, differentially applied in the different study regions. These include data management and quality control, development of seasonal forecast capabilities, use of dynamic cropping calendars and climate advisories, the development of longer-term climate information for both past and future and a weather index insurance component. Stakeholder engagement and capacity building served as reinforcing and complementary elements to all components. In this talk we will provide a project overview, show how the various components fit together and describe some lessons learned in this attempt to promote the uptake of actionable climate information from farmer to policy level. The applied research project was led by the International Research Institute for Climate and Society (IRI) at Columbia University with funding from the International Fund for Agriculture Development (IFAD) and in close collaboration with our regional partners at the Centre for Climate Risk and Opportunity Management in Southeast Asia Pacific (at Bogor Agricultural University in Indonesia), Indonesia's National Agency for Meteorology, Climatology and Geophysics (BMKG), Lao PDR's National Agriculture and Forestry Research Institute (NAFRI), Laotian Department of Meteorology and Hydrology (DMH), WorldFish Center, Bangladesh Meteorology Department (BMD), and CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).

  19. Climatic niche evolution in New World monkeys (Platyrrhini).

    PubMed

    Duran, Andressa; Meyer, Andreas L S; Pie, Marcio R

    2013-01-01

    Despite considerable interest in recent years on species distribution modeling and phylogenetic niche conservatism, little is known about the way in which climatic niches change over evolutionary time. This knowledge is of major importance to understand the mechanisms underlying limits of species distributions, as well as to infer how different lineages might be affected by anthropogenic climate change. In this study we investigate the tempo and mode climatic niche evolution in New World monkeys (Platyrrhini). Climatic conditions found throughout the distribution of 140 primate species were investigated using a principal component analysis, which indicated that mean temperature (particularly during the winter) is the most important climatic correlate of platyrrhine geographical distributions, accounting for nearly half of the interspecific variation in climatic niches. The effects of precipitation were associated with the second principal component, particularly with respect to the dry season. When models of trait evolution were fit to scores on each of the principal component axes, significant phylogenetic signal was detected for PC1 scores, but not for PC2 scores. Interestingly, although all platyrrhine families occupied comparable regions of climatic space, some aotid species such as Aotus lemurinus, A. jorgehernandezi, and A. miconax show highly distinctive climatic niches associated with drier conditions (high PC2 scores). This shift might have been made possible by their nocturnal habits, which could serve as an exaptation that allow them to be less constrained by humidity during the night. These results underscore the usefulness of investigating explicitly the tempo and mode of climatic niche evolution and its role in determining species distributions.

  20. Chapter 15: Potential Surprises: Compound Extremes and Tipping Elements

    NASA Technical Reports Server (NTRS)

    Kopp, R. E.; Hayhoe, K.; Easterling, D. R.; Hall, T.; Horton, R.; Kunkel, K. E.; LeGrande, A. N.

    2017-01-01

    The Earth system is made up of many components that interact in complex ways across a broad range of temporal and spatial scales. As a result of these interactions the behavior of the system cannot be predicted by looking at individual components in isolation. Negative feedbacks, or self-stabilizing cycles, within and between components of the Earth system can dampen changes (Ch. 2: Physical Drivers of Climate Change). However, their stabilizing effects render such feedbacks of less concern from a risk perspective than positive feedbacks, or self-reinforcing cycles. Positive feedbacks magnify both natural and anthropogenic changes. Some Earth system components, such as arctic sea ice and the polar ice sheets, may exhibit thresholds beyond which these self-reinforcing cycles can drive the component, or the entire system, into a radically different state. Although the probabilities of these state shifts may be difficult to assess, their consequences could be high, potentially exceeding anything anticipated by climate model projections for the coming century.

  1. The Impacts and Economic Costs of Climate Change in Agriculture and the Costs and Benefits of Adaptation

    NASA Astrophysics Data System (ADS)

    Iglesias, A.; Quiroga, S.; Garrote, L.; Cunningham, R.

    2012-04-01

    This paper provides monetary estimates of the effects of agricultural adaptation to climate change in Europe. The model computes spatial crop productivity changes as a response to climate change linking biophysical and socioeconomic components. It combines available data sets of crop productivity changes under climate change (Iglesias et al 2011, Ciscar et al 2011), statistical functions of productivity response to water and nitrogen inputs, catchment level water availability, and environmental policy scenarios. Future global change scenarios are derived from several socio-economic futures of representative concentration pathways and regional climate models. The economic valuation is conducted by using GTAP general equilibrium model. The marginal productivity changes has been used as an input for the economic general equilibrium model in order to analyse the economic impact of the agricultural changes induced by climate change in the world. The study also includes the analysis of an adaptive capacity index computed by using the socio-economic results of GTAP. The results are combined to prioritize agricultural adaptation policy needs in Europe.

  2. Techniques for integrating the animations, multimedia, and interactive features of NASA’s climate change website, Climate Change: NASA’s Eyes on the Earth, into the classroom to advance climate literacy and encourage interest in STEM disciplines

    NASA Astrophysics Data System (ADS)

    Tenenbaum, L. F.; Jackson, R.; Greene, M.

    2009-12-01

    I developed a variety of educational content for the "Climate Change: NASA’s Eyes on the Earth" website, notably an interactive feature for the "Key Indicators: Ice Mass Loss" link that includes photo pair images of glaciers around the world, changes in Arctic sea ice extent videos, Greenland glacial calving time lapse videos, and Antarctic ice shelf break up animations, plus news pieces and a Sea Level Quiz. I integrated these resources and other recent NASA and JPL climate and oceanography data and information into climate change components of Oceanography Lab exercises, Oceanography lectures and Introduction to Environmental Technology courses. I observed that using these Internet interactive features in the classroom greatly improved student participation, topic comprehension, scientific curiosity and interest in Earth and climate science across diverse student populations. Arctic Sea Ice Extent Summer 2007 Credit: NASA

  3. A blueprint for using climate change predictions in an eco-hydrological study

    NASA Astrophysics Data System (ADS)

    Caporali, E.; Fatichi, S.; Ivanov, V. Y.

    2009-12-01

    There is a growing interest to extend climate change predictions to smaller, catchment-size scales and identify their implications on hydrological and ecological processes. Small scale processes are, in fact, expected to mediate climate changes, producing local effects and feedbacks that can interact with the principal consequences of the change. This is particularly applicable, when a complex interaction, such as the inter-relationship between the hydrological cycle and vegetation dynamics, is considered. This study presents a blueprint methodology for studying climate change impacts, as inferred from climate models, on eco-hydrological dynamics at the catchment scale. Climate conditions, present or future, are imposed through input hydrometeorological variables for hydrological and eco-hydrological models. These variables are simulated with an hourly weather generator as an outcome of a stochastic downscaling technique. The generator is parameterized to reproduce the climate of southwestern Arizona for present (1961-2000) and future (2081-2100) conditions. The methodology provides the capability to generate ensemble realizations for the future that take into account the heterogeneous nature of climate predictions from different models. The generated time series of meteorological variables for the two scenarios corresponding to the current and mean expected future serve as input to a coupled hydrological and vegetation dynamics model, “Tethys-Chloris”. The hydrological model reproduces essential components of the land-surface hydrological cycle, solving the mass and energy budget equations. The vegetation model parsimoniously parameterizes essential plant life-cycle processes, including photosynthesis, phenology, carbon allocation, and tissue turnover. The results for the two mean scenarios are compared and discussed in terms of changes in the hydrological balance components, energy fluxes, and indices of vegetation productivity The need to account for uncertainties in projections of future climate is discussed and a methodology for propagating these uncertainties into the probability density functions of changes in eco-hydrological variables is presented.

  4. Individualistic sensitivities and exposure to climate change explain variation in species’ distribution and abundance changes

    PubMed Central

    Palmer, Georgina; Hill, Jane K.; Brereton, Tom M.; Brooks, David R.; Chapman, Jason W.; Fox, Richard; Oliver, Tom H.; Thomas, Chris D.

    2015-01-01

    The responses of animals and plants to recent climate change vary greatly from species to species, but attempts to understand this variation have met with limited success. This has led to concerns that predictions of responses are inherently uncertain because of the complexity of interacting drivers and biotic interactions. However, we show for an exemplar group of 155 Lepidoptera species that about 60% of the variation among species in their abundance trends over the past four decades can be explained by species-specific exposure and sensitivity to climate change. Distribution changes were less well predicted, but nonetheless, up to 53% of the variation was explained. We found that species vary in their overall sensitivity to climate and respond to different components of the climate despite ostensibly experiencing the same climate changes. Hence, species have undergone different levels of population “forcing” (exposure), driving variation among species in their national-scale abundance and distribution trends. We conclude that variation in species’ responses to recent climate change may be more predictable than previously recognized. PMID:26601276

  5. Tropical Atlantic climate response to different freshwater input in high latitudes with an ocean-only general circulation model

    NASA Astrophysics Data System (ADS)

    Men, Guang; Wan, Xiuquan; Liu, Zedong

    2016-10-01

    Tropical Atlantic climate change is relevant to the variation of Atlantic meridional overturning circulation (AMOC) through different physical processes. Previous coupled climate model simulation suggested a dipole-like SST structure cooling over the North Atlantic and warming over the South Tropical Atlantic in response to the slowdown of the AMOC. Using an ocean-only global ocean model here, an attempt was made to separate the total influence of various AMOC change scenarios into an oceanic-induced component and an atmospheric-induced component. In contrast with previous freshwater-hosing experiments with coupled climate models, the ocean-only modeling presented here shows a surface warming in the whole tropical Atlantic region and the oceanic-induced processes may play an important role in the SST change in the equatorial south Atlantic. Our result shows that the warming is partly governed by oceanic process through the mechanism of oceanic gateway change, which operates in the regime where freshwater forcing is strong, exceeding 0.3 Sv. Strong AMOC change is required for the gateway mechanism to work in our model because only when the AMOC is sufficiently weak, the North Brazil Undercurrent can flow equatorward, carrying warm and salty north Atlantic subtropical gyre water into the equatorial zone. This threshold is likely to be model-dependent. An improved understanding of these issues may have help with abrupt climate change prediction later.

  6. [Effects of climate change on forest soil organic carbon storage: a review].

    PubMed

    Zhou, Xiao-yu; Zhang, Cheng-yi; Guo, Guang-fen

    2010-07-01

    Forest soil organic carbon is an important component of global carbon cycle, and the changes of its accumulation and decomposition directly affect terrestrial ecosystem carbon storage and global carbon balance. Climate change would affect the photosynthesis of forest vegetation and the decomposition and transformation of forest soil organic carbon, and further, affect the storage and dynamics of organic carbon in forest soils. Temperature, precipitation, atmospheric CO2 concentration, and other climatic factors all have important influences on the forest soil organic carbon storage. Understanding the effects of climate change on this storage is helpful to the scientific management of forest carbon sink, and to the feasible options for climate change mitigation. This paper summarized the research progress about the distribution of organic carbon storage in forest soils, and the effects of elevated temperature, precipitation change, and elevated atmospheric CO2 concentration on this storage, with the further research subjects discussed.

  7. Impacts of historical climate and land cover changes on fine particulate matter (PM2.5) air quality in East Asia between 1980 and 2010

    NASA Astrophysics Data System (ADS)

    Fu, Yu; Tai, Amos P. K.; Liao, Hong

    2016-08-01

    To examine the effects of changes in climate, land cover and land use (LCLU), and anthropogenic emissions on fine particulate matter (PM2.5) between the 5-year periods 1981-1985 and 2007-2011 in East Asia, we perform a series of simulations using a global chemical transport model (GEOS-Chem) driven by assimilated meteorological data and a suite of land cover and land use data. Our results indicate that climate change alone could lead to a decrease in wintertime PM2.5 concentration by 4.0-12.0 µg m-3 in northern China, but to an increase in summertime PM2.5 by 6.0-8.0 µg m-3 in those regions. These changes are attributable to the changing chemistry and transport of all PM2.5 components driven by long-term trends in temperature, wind speed and mixing depth. The concentration of secondary organic aerosol (SOA) is simulated to increase by 0.2-0.8 µg m-3 in both summer and winter in most regions of East Asia due to climate change alone, mostly reflecting higher biogenic volatile organic compound (VOC) emissions under warming. The impacts of LCLU change alone on PM2.5 (-2.1 to +1.3 µg m-3) are smaller than that of climate change, but among the various components the sensitivity of SOA and thus organic carbon to LCLU change (-0.4 to +1.2 µg m-3) is quite significant especially in summer, which is driven mostly by changes in biogenic VOC emissions following cropland expansion and changing vegetation density. The combined impacts show that while the effect of climate change on PM2.5 air quality is more pronounced, LCLU change could offset part of the climate effect in some regions but exacerbate it in others. As a result of both climate and LCLU changes combined, PM2.5 levels are estimated to change by -12.0 to +12.0 µg m-3 across East Asia between the two periods. Changes in anthropogenic emissions remain the largest contributor to deteriorating PM2.5 air quality in East Asia during the study period, but climate and LCLU changes could lead to a substantial modification of PM2.5 levels.

  8. Modeling human-climate interaction

    NASA Astrophysics Data System (ADS)

    Jacoby, Henry D.

    If policymakers and the public are to be adequately informed about the climate change threat, climate modeling needs to include components far outside its conventional boundaries. An integration of climate chemistry and meteorology, oceanography, and terrestrial biology has been achieved over the past few decades. More recently the scope of these studies has been expanded to include the human systems that influence the planet, the social and ecological consequences of potential change, and the political processes that lead to attempts at mitigation and adaptation. For example, key issues—like the relative seriousness of climate change risk, the choice of long-term goals for policy, and the analysis of today's decisions when uncertainty may be reduced tomorrow—cannot be correctly understood without joint application of the natural science of the climate system and social and behavioral science aspects of human response. Though integration efforts have made significant contributions to understanding of the climate issue, daunting intellectual and institutional barriers stand in the way of needed progress. Deciding appropriate policies will be a continuing task over the long term, however, so efforts to extend the boundaries of climate modeling and assessment merit long-term attention as well. Components of the effort include development of a variety of approaches to analysis, the maintenance of a clear a division between close-in decision support and science/policy research, and the development of funding institutions that can sustain integrated research over the long haul.

  9. Impact of Climate Change and Human Intervention on River Flow Regimes

    NASA Astrophysics Data System (ADS)

    Singh, Rajendra; Mittal, Neha; Mishra, Ashok

    2017-04-01

    Climate change and human interventions like dam construction bring freshwater ecosystem under stress by changing flow regime. It is important to analyse their impact at a regional scale along with changes in the extremes of temperature and precipitation which further modify the flow regime components such as magnitude, timing, frequency, duration, and rate of change of flow. In this study, the Kangsabati river is chosen to analyse the hydrological alterations in its flow regime caused by dam, climate change and their combined impact using Soil and Water Assessment Tool (SWAT) and the Indicators of Hydrologic Alteration (IHA) program based on the Range of Variability Approach (RVA). Results show that flow variability is significantly reduced due to dam construction with high flows getting absorbed and pre-monsoon low flows being augmented by the reservoir. Climate change alone reduces the high peaks whereas a combination of dam and climate change significantly reduces variability by affecting both high and low flows, thereby further disrupting the functioning of riverine ecosystems. Analysis shows that in the Kangsabati basin, influence of dam is greater than that of the climate change, thereby emphasising the significance of direct human intervention. Keywords: Climate change, human impact, flow regime, Kangsabati river, SWAT, IHA, RVA.

  10. Creating the Climate for Humanistic Change in the Elementary School with Principal as Change Agent

    ERIC Educational Resources Information Center

    Heichberger, Robert L.

    1975-01-01

    It is suggested that three necessary components prerequisite to educational change are: dynamic leadership, a philosophical base, and a positive environment. The purpose of this paper is to discuss these components and indicate why and how they can be made available in a given elementary school situation. (Editor/RK)

  11. Hydrological effects of cropland and climatic changes in arid and semi-arid river basins: A case study from the Yellow River basin, China

    NASA Astrophysics Data System (ADS)

    Li, Huazhen; Zhang, Qiang; Singh, Vijay P.; Shi, Peijun; Sun, Peng

    2017-06-01

    The Yellow River basin is a typical semi-arid river basin in northern China. Serious water shortages have negative impacts on regional socioeconomic development. Recent years have witnessed changes in streamflow processes due to increasing human activities, such as agricultural activities and construction of dams and water reservoirs, and climatic changes, e.g. precipitation and temperature. This study attempts to investigate factors potentially driving changes in different streamflow components defined by different quantiles. The data used were daily streamflow data for the 1959-2005 period from 5 hydrological stations, daily precipitation and temperature data from 77 meteorological stations and data pertaining to cropland and large reservoirs. Results indicate a general decrease in streamflow across the Yellow River basin. Moreover significant decreasing streamflow has been observed in the middle and lower Yellow River basin with change points during the mid-1980s till the mid-1990s. The changes of cropland affect the streamflow components and also the cumulative effects on streamflow variations. Recent years have witnessed moderate cropland variations which result in moderate streamflow changes. Further, precipitation also plays a critical role in changes of streamflow components and human activities, i.e. cropland changes, temperature changes and building of water reservoirs, tend to have increasing impacts on hydrological processes across the Yellow River basin. This study provides a theoretical framework for the study of the hydrological effects of human activities and climatic changes on basins over the globe.

  12. Quantifying the effect of trend, fluctuation, and extreme event of climate change on ecosystem productivity.

    PubMed

    Liu, Yupeng; Yu, Deyong; Su, Yun; Hao, Ruifang

    2014-12-01

    Climate change comprises three fractions of trend, fluctuation, and extreme event. Assessing the effect of climate change on terrestrial ecosystem requires an understanding of the action mechanism of these fractions, respectively. This study examined 11 years of remotely sensed-derived net primary productivity (NPP) to identify the impacts of the trend and fluctuation of climate change as well as extremely low temperatures caused by a freezing disaster on ecosystem productivity in Hunan province, China. The partial least squares regression model was used to evaluate the contributions of temperature, precipitation, and photosynthetically active radiation (PAR) to NPP variation. A climatic signal decomposition and contribution assessment model was proposed to decompose climate factors into trend and fluctuation components. Then, we quantitatively evaluated the contributions of each component of climatic factors to NPP variation. The results indicated that the total contribution of the temperature, precipitation, and PAR to NPP variation from 2001 to 2011 in Hunan province is 85 %, and individual contributions of the temperature, precipitation, and PAR to NPP variation are 44 % (including 34 % trend contribution and 10 % fluctuation contribution), 5 % (including 4 % trend contribution and 1 % fluctuation contribution), and 36 % (including 30 % trend contribution and 6 % fluctuation contribution), respectively. The contributions of temperature fluctuation-driven NPP were higher in the north and lower in the south, and the contributions of precipitation trend-driven NPP and PAR fluctuation-driven NPP are higher in the west and lower in the east. As an instance of occasionally triggered disturbance in 2008, extremely low temperatures and a freezing disaster produced an abrupt decrease of NPP in forest and grass ecosystems. These results prove that the climatic trend change brought about great impacts on ecosystem productivity and that climatic fluctuations and extreme events can also alter the ecosystem succession process, even resulting in an alternative trajectory. All of these findings could improve our understanding of the impacts of climate change on the provision of ecosystem functions and services and can also provide a basis for policy makers to apply adaptive measures to overcome the unfavorable influence of climate change.

  13. Advancing coupled human-earth system models: The integrated Earth System Model Project

    NASA Astrophysics Data System (ADS)

    Thomson, A. M.; Edmonds, J. A.; Collins, W.; Thornton, P. E.; Hurtt, G. C.; Janetos, A. C.; Jones, A.; Mao, J.; Chini, L. P.; Calvin, K. V.; Bond-Lamberty, B. P.; Shi, X.

    2012-12-01

    As human and biogeophysical models develop, opportunities for connections between them evolve and can be used to advance our understanding of human-earth systems interaction in the context of a changing climate. One such integration is taking place with the Community Earth System Model (CESM) and the Global Change Assessment Model (GCAM). A multi-disciplinary, multi-institution team has succeeded in integrating the GCAM integrated assessment model of human activity into CESM to dynamically represent the feedbacks between changing climate and human decision making, in the context of greenhouse gas mitigation policies. The first applications of this capability have focused on the feedbacks between climate change impacts on terrestrial ecosystem productivity and human decisions affecting future land use change, which are in turn connected to human decisions about energy systems and bioenergy production. These experiments have been conducted in the context of the RCP4.5 scenario, one of four pathways of future radiative forcing being used in CMIP5, which constrains future human-induced greenhouse gas emissions from energy and land activities to stabilize radiative forcing at 4.5 W/m2 (~650 ppm CO2 -eq) by 2100. When this pathway is run in GCAM with the climate feedback on terrestrial productivity from CESM, there are implications for both the land use and energy system changes required for stabilization. Early findings indicate that traditional definitions of radiative forcing used in scenario development are missing a critical component of the biogeophysical consequences of land use change and their contribution to effective radiative forcing. Initial full coupling of the two global models has important implications for how climate impacts on terrestrial ecosystems changes the dynamics of future land use change for agriculture and forestry, particularly in the context of a climate mitigation policy designed to reduce emissions from land use as well as energy systems. While these initial experiments have relied on offline coupling methodologies, current and future experiments are utilizing a single model code developed to integrate GCAM into CESM as a component of the land model. This unique capability facilitates many new applications to scientific questions arising from human and biogeophysical systems interaction. Future developments will further integrate the energy system decisions and greenhouse gas emissions as simulated in GCAM with the appropriate climate and land system components of CESM.

  14. Climate change amplifies the interactions between wind and bark beetle disturbances in forest landscapes.

    PubMed

    Seidl, Rupert; Rammer, Werner

    2017-07-01

    Growing evidence suggests that climate change could substantially alter forest disturbances. Interactions between individual disturbance agents are a major component of disturbance regimes, yet how interactions contribute to their climate sensitivity remains largely unknown. Here, our aim was to assess the climate sensitivity of disturbance interactions, focusing on wind and bark beetle disturbances. We developed a process-based model of bark beetle disturbance, integrated into the dynamic forest landscape model iLand (already including a detailed model of wind disturbance). We evaluated the integrated model against observations from three wind events and a subsequent bark beetle outbreak, affecting 530.2 ha (3.8 %) of a mountain forest landscape in Austria between 2007 and 2014. Subsequently, we conducted a factorial experiment determining the effect of changes in climate variables on the area disturbed by wind and bark beetles separately and in combination. iLand was well able to reproduce observations with regard to area, temporal sequence, and spatial pattern of disturbance. The observed disturbance dynamics was strongly driven by interactions, with 64.3 % of the area disturbed attributed to interaction effects. A +4 °C warming increased the disturbed area by +264.7 % and the area-weighted mean patch size by +1794.3 %. Interactions were found to have a ten times higher sensitivity to temperature changes than main effects, considerably amplifying the climate sensitivity of the disturbance regime. Disturbance interactions are a key component of the forest disturbance regime. Neglecting interaction effects can lead to a substantial underestimation of the climate change sensitivity of disturbance regimes.

  15. A framework for the identification of hotspots of climate change risk for mammals.

    PubMed

    Pacifici, Michela; Visconti, Piero; Rondinini, Carlo

    2018-04-01

    As rates of global warming increase rapidly, identifying species at risk of decline due to climate impacts and the factors affecting this risk have become key challenges in ecology and conservation biology. Here, we present a framework for assessing three components of climate-related risk for species: vulnerability, exposure and hazard. We used the relationship between the observed response of species to climate change and a set of intrinsic traits (e.g. weaning age) and extrinsic factors (e.g. precipitation seasonality within a species geographic range) to predict, respectively, the vulnerability and exposure of all data-sufficient terrestrial non-volant mammals (3,953 species). Combining this information with hazard (the magnitude of projected climate change within a species geographic range), we identified global hotspots of species at risk from climate change that includes the western Amazon basin, south-western Kenya, north-eastern Tanzania, north-eastern South Africa, Yunnan province in China, and mountain chains in Papua-New Guinea. Our framework identifies priority areas for monitoring climate change effects on species and directing climate mitigation actions for biodiversity. © 2017 John Wiley & Sons Ltd.

  16. Net primary productivity of subalpine meadows in Yosemite National Park in relation to climate variability

    Treesearch

    Peggy E. Moore; Jan W. van Wagtendonk; Julie L. Yee; Mitchel P. McClaran; David N. Cole; Neil K. McDougald; Matthew L. Brooks

    2013-01-01

    Subalpine meadows are some of the most ecologically important components of mountain landscapes, and primary productivity is important to the maintenance of meadow functions. Understanding how changes in primary productivity are associated with variability in moisture and temperature will become increasingly important with current and anticipated changes in climate....

  17. Modeling responses of large-river fish populations to global climate change through downscaling and incorporation of predictive uncertainty

    USGS Publications Warehouse

    Wildhaber, Mark L.; Wikle, Christopher K.; Anderson, Christopher J.; Franz, Kristie J.; Moran, Edward H.; Dey, Rima; Mader, Helmut; Kraml, Julia

    2012-01-01

    Climate change operates over a broad range of spatial and temporal scales. Understanding its effects on ecosystems requires multi-scale models. For understanding effects on fish populations of riverine ecosystems, climate predicted by coarse-resolution Global Climate Models must be downscaled to Regional Climate Models to watersheds to river hydrology to population response. An additional challenge is quantifying sources of uncertainty given the highly nonlinear nature of interactions between climate variables and community level processes. We present a modeling approach for understanding and accomodating uncertainty by applying multi-scale climate models and a hierarchical Bayesian modeling framework to Midwest fish population dynamics and by linking models for system components together by formal rules of probability. The proposed hierarchical modeling approach will account for sources of uncertainty in forecasts of community or population response. The goal is to evaluate the potential distributional changes in an ecological system, given distributional changes implied by a series of linked climate and system models under various emissions/use scenarios. This understanding will aid evaluation of management options for coping with global climate change. In our initial analyses, we found that predicted pallid sturgeon population responses were dependent on the climate scenario considered.

  18. Evaluating social and ecological vulnerability of coral reef fisheries to climate change.

    PubMed

    Cinner, Joshua E; Huchery, Cindy; Darling, Emily S; Humphries, Austin T; Graham, Nicholas A J; Hicks, Christina C; Marshall, Nadine; McClanahan, Tim R

    2013-01-01

    There is an increasing need to evaluate the links between the social and ecological dimensions of human vulnerability to climate change. We use an empirical case study of 12 coastal communities and associated coral reefs in Kenya to assess and compare five key ecological and social components of the vulnerability of coastal social-ecological systems to temperature induced coral mortality [specifically: 1) environmental exposure; 2) ecological sensitivity; 3) ecological recovery potential; 4) social sensitivity; and 5) social adaptive capacity]. We examined whether ecological components of vulnerability varied between government operated no-take marine reserves, community-based reserves, and openly fished areas. Overall, fished sites were marginally more vulnerable than community-based and government marine reserves. Social sensitivity was indicated by the occupational composition of each community, including the importance of fishing relative to other occupations, as well as the susceptibility of different fishing gears to the effects of coral bleaching on target fish species. Key components of social adaptive capacity varied considerably between the communities. Together, these results show that different communities have relative strengths and weaknesses in terms of social-ecological vulnerability to climate change.

  19. Planning for climate change: the need for mechanistic systems-based approaches to study climate change impacts on diarrheal diseases

    PubMed Central

    Levy, Karen; Zimmerman, Julie; Elliott, Mark; Bartram, Jamie; Carlton, Elizabeth; Clasen, Thomas; Dillingham, Rebecca; Eisenberg, Joseph; Guerrant, Richard; Lantagne, Daniele; Mihelcic, James; Nelson, Kara

    2016-01-01

    Increased precipitation and temperature variability as well as extreme events related to climate change are predicted to affect the availability and quality of water globally. Already heavily burdened with diarrheal diseases due to poor access to water, sanitation and hygiene facilities, communities throughout the developing world lack the adaptive capacity to sufficiently respond to the additional adversity caused by climate change. Studies suggest that diarrhea rates are positively correlated with increased temperature, and show a complex relationship with precipitation. Although climate change will likely increase rates of diarrheal diseases on average, there is a poor mechanistic understanding of the underlying disease transmission processes and substantial uncertainty surrounding current estimates. This makes it difficult to recommend appropriate adaptation strategies. We review the relevant climate-related mechanisms behind transmission of diarrheal disease pathogens and argue that systems-based mechanistic approaches incorporating human, engineered and environmental components are urgently needed. We then review successful systems-based approaches used in other environmental health fields and detail one modeling framework to predict climate change impacts on diarrheal diseases and design adaptation strategies. PMID:26799810

  20. Climate Change Vulnerability Assessment for Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher P. Ischay; Ernest L. Fossum; Polly C. Buotte

    2014-10-01

    The University of Idaho (UI) was asked to participate in the development of a climate change vulnerability assessment for Idaho National Laboratory (INL). This report describes the outcome of that assessment. The climate change happening now, due in large part to human activities, is expected to continue in the future. UI and INL used a common framework for assessing vulnerability that considers exposure (future climate change), sensitivity (system or component responses to climate), impact (exposure combined with sensitivity), and adaptive capacity (capability of INL to modify operations to minimize climate change impacts) to assess vulnerability. Analyses of climate change (exposure)more » revealed that warming that is ongoing at INL will continue in the coming decades, with increased warming in later decades and under scenarios of greater greenhouse gas emissions. Projections of precipitation are more uncertain, with multi model means exhibiting somewhat wetter conditions and more wet days per year. Additional impacts relevant to INL include estimates of more burned area and increased evaporation and transpiration, leading to reduced soil moisture and plant growth.« less

  1. Sensible heat has significantly affected the global hydrological cycle over the historical period.

    PubMed

    Myhre, G; Samset, B H; Hodnebrog, Ø; Andrews, T; Boucher, O; Faluvegi, G; Fläschner, D; Forster, P M; Kasoar, M; Kharin, V; Kirkevåg, A; Lamarque, J-F; Olivié, D; Richardson, T B; Shawki, D; Shindell, D; Shine, K P; Stjern, C W; Takemura, T; Voulgarakis, A

    2018-05-15

    Globally, latent heating associated with a change in precipitation is balanced by changes to atmospheric radiative cooling and sensible heat fluxes. Both components can be altered by climate forcing mechanisms and through climate feedbacks, but the impacts of climate forcing and feedbacks on sensible heat fluxes have received much less attention. Here we show, using a range of climate modelling results, that changes in sensible heat are the dominant contributor to the present global-mean precipitation change since preindustrial time, because the radiative impact of forcings and feedbacks approximately compensate. The model results show a dissimilar influence on sensible heat and precipitation from various drivers of climate change. Due to its strong atmospheric absorption, black carbon is found to influence the sensible heat very differently compared to other aerosols and greenhouse gases. Our results indicate that this is likely caused by differences in the impact on the lower tropospheric stability.

  2. Behavioral flexibility as a mechanism for coping with climate change

    USGS Publications Warehouse

    Beever, Erik; Hall, L. Embere; Varner, Johanna; Loosen, Anne E.; Dunham, Jason B.; Gahl, Megan K.; Smith, Felisa A.; Lawler, Joshua J.

    2017-01-01

    Of the primary responses to contemporary climate change – “move, adapt, acclimate, or die” – that are available to organisms, “acclimate” may be effectively achieved through behavioral modification. Behavioral flexibility allows animals to rapidly cope with changing environmental conditions, and behavior represents an important component of a species’ adaptive capacity in the face of climate change. However, there is currently a lack of knowledge about the limits or constraints on behavioral responses to changing conditions. Here, we characterize the contexts in which organisms respond to climate variability through behavior. First, we quantify patterns in behavioral responses across taxa with respect to timescales, climatic stimuli, life-history traits, and ecology. Next, we identify existing knowledge gaps, research biases, and other challenges. Finally, we discuss how conservation practitioners and resource managers can incorporate an improved understanding of behavioral flexibility into natural resource management and policy decisions.

  3. Canadian Federal Support for Climate Change and Health Research Compared With the Risks Posed

    PubMed Central

    Smith, Tanya R.; Berrang-Ford, Lea

    2011-01-01

    For emerging public health risks such as climate change, the Canadian federal government has a mandate to provide information and resources to protect citizens' health. Research is a key component of this mandate and is essential if Canada is to moderate the health effects of a changing climate. We assessed whether federal support for climate change and health research is consistent with the risks posed. We audited projects receiving federal support between 1999 and 2009, representing an investment of Can$16 million in 105 projects. Although funding has increased in recent years, it remains inadequate, with negligible focus on vulnerable populations, limited research on adaptation, and volatility in funding allocations. A federal strategy to guide research support is overdue. PMID:21490335

  4. Observational Constraints on Cloud Feedbacks: The Role of Active Satellite Sensors

    NASA Astrophysics Data System (ADS)

    Winker, David; Chepfer, Helene; Noel, Vincent; Cai, Xia

    2017-11-01

    Cloud profiling from active lidar and radar in the A-train satellite constellation has significantly advanced our understanding of clouds and their role in the climate system. Nevertheless, the response of clouds to a warming climate remains one of the largest uncertainties in predicting climate change and for the development of adaptions to change. Both observation of long-term changes and observational constraints on the processes responsible for those changes are necessary. We review recent progress in our understanding of the cloud feedback problem. Capabilities and advantages of active sensors for observing clouds are discussed, along with the importance of active sensors for deriving constraints on cloud feedbacks as an essential component of a global climate observing system.

  5. Land Cover Land Use Change and Soil Organic Carbon under Climate Variability in the Semi-Arid West African Sahel (1960-2050)

    ERIC Educational Resources Information Center

    Dieye, Amadou M.

    2016-01-01

    Land Cover Land Use (LCLU) change affects land surface processes recognized to influence climate change at local, national and global levels. Soil organic carbon is a key component for the functioning of agro-ecosystems and has a direct effect on the physical, chemical and biological characteristics of the soil. The capacity to model and project…

  6. C-LAMP Subproject Description:Climate Forcing by the Terrestrial Biosphere During the Second Half of the 20th Century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Covey, Curt; Hoffman, Forrest

    2008-10-02

    This project will quantify selected components of climate forcing due to changes in the terrestrial biosphere over the period 1948-2004, as simulated by the climate / carboncycle models participating in C-LAMP (the Carbon-Land Model Intercomparison Project; see http://www.climatemodeling.org/c-lamp). Unlike other C-LAMP projects that attempt to close the carbon budget, this project will focus on the contributions of individual biomes in terms of the resulting climate forcing. Bala et al. (2007) used a similar (though more comprehensive) model-based technique to assess and compare different components of biospheric climate forcing, but their focus was on potential future deforestation rather than the historicalmore » period.« less

  7. Changes in crop yields and their variability at different levels of global warming

    NASA Astrophysics Data System (ADS)

    Ostberg, Sebastian; Schewe, Jacob; Childers, Katelin; Frieler, Katja

    2018-05-01

    An assessment of climate change impacts at different levels of global warming is crucial to inform the policy discussion about mitigation targets, as well as for the economic evaluation of climate change impacts. Integrated assessment models often use global mean temperature change (ΔGMT) as a sole measure of climate change and, therefore, need to describe impacts as a function of ΔGMT. There is already a well-established framework for the scalability of regional temperature and precipitation changes with ΔGMT. It is less clear to what extent more complex biological or physiological impacts such as crop yield changes can also be described in terms of ΔGMT, even though such impacts may often be more directly relevant for human livelihoods than changes in the physical climate. Here we show that crop yield projections can indeed be described in terms of ΔGMT to a large extent, allowing for a fast estimation of crop yield changes for emissions scenarios not originally covered by climate and crop model projections. We use an ensemble of global gridded crop model simulations for the four major staple crops to show that the scenario dependence is a minor component of the overall variance of projected yield changes at different levels of ΔGMT. In contrast, the variance is dominated by the spread across crop models. Varying CO2 concentrations are shown to explain only a minor component of crop yield variability at different levels of global warming. In addition, we find that the variability in crop yields is expected to increase with increasing warming in many world regions. We provide, for each crop model, geographical patterns of mean yield changes that allow for a simplified description of yield changes under arbitrary pathways of global mean temperature and CO2 changes, without the need for additional climate and crop model simulations.

  8. Evaluating models of climate and forest vegetation

    NASA Technical Reports Server (NTRS)

    Clark, James S.

    1992-01-01

    Understanding how the biosphere may respond to increasing trace gas concentrations in the atmosphere requires models that contain vegetation responses to regional climate. Most of the processes ecologists study in forests, including trophic interactions, nutrient cycling, and disturbance regimes, and vital components of the world economy, such as forest products and agriculture, will be influenced in potentially unexpected ways by changing climate. These vegetation changes affect climate in the following ways: changing C, N, and S pools; trace gases; albedo; and water balance. The complexity of the indirect interactions among variables that depend on climate, together with the range of different space/time scales that best describe these processes, make the problems of modeling and prediction enormously difficult. These problems of predicting vegetation response to climate warming and potential ways of testing model predictions are the subjects of this chapter.

  9. Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5

    NASA Astrophysics Data System (ADS)

    Dufresne, J.-L.; Foujols, M.-A.; Denvil, S.; Caubel, A.; Marti, O.; Aumont, O.; Balkanski, Y.; Bekki, S.; Bellenger, H.; Benshila, R.; Bony, S.; Bopp, L.; Braconnot, P.; Brockmann, P.; Cadule, P.; Cheruy, F.; Codron, F.; Cozic, A.; Cugnet, D.; de Noblet, N.; Duvel, J.-P.; Ethé, C.; Fairhead, L.; Fichefet, T.; Flavoni, S.; Friedlingstein, P.; Grandpeix, J.-Y.; Guez, L.; Guilyardi, E.; Hauglustaine, D.; Hourdin, F.; Idelkadi, A.; Ghattas, J.; Joussaume, S.; Kageyama, M.; Krinner, G.; Labetoulle, S.; Lahellec, A.; Lefebvre, M.-P.; Lefevre, F.; Levy, C.; Li, Z. X.; Lloyd, J.; Lott, F.; Madec, G.; Mancip, M.; Marchand, M.; Masson, S.; Meurdesoif, Y.; Mignot, J.; Musat, I.; Parouty, S.; Polcher, J.; Rio, C.; Schulz, M.; Swingedouw, D.; Szopa, S.; Talandier, C.; Terray, P.; Viovy, N.; Vuichard, N.

    2013-05-01

    We present the global general circulation model IPSL-CM5 developed to study the long-term response of the climate system to natural and anthropogenic forcings as part of the 5th Phase of the Coupled Model Intercomparison Project (CMIP5). This model includes an interactive carbon cycle, a representation of tropospheric and stratospheric chemistry, and a comprehensive representation of aerosols. As it represents the principal dynamical, physical, and bio-geochemical processes relevant to the climate system, it may be referred to as an Earth System Model. However, the IPSL-CM5 model may be used in a multitude of configurations associated with different boundary conditions and with a range of complexities in terms of processes and interactions. This paper presents an overview of the different model components and explains how they were coupled and used to simulate historical climate changes over the past 150 years and different scenarios of future climate change. A single version of the IPSL-CM5 model (IPSL-CM5A-LR) was used to provide climate projections associated with different socio-economic scenarios, including the different Representative Concentration Pathways considered by CMIP5 and several scenarios from the Special Report on Emission Scenarios considered by CMIP3. Results suggest that the magnitude of global warming projections primarily depends on the socio-economic scenario considered, that there is potential for an aggressive mitigation policy to limit global warming to about two degrees, and that the behavior of some components of the climate system such as the Arctic sea ice and the Atlantic Meridional Overturning Circulation may change drastically by the end of the twenty-first century in the case of a no climate policy scenario. Although the magnitude of regional temperature and precipitation changes depends fairly linearly on the magnitude of the projected global warming (and thus on the scenario considered), the geographical pattern of these changes is strikingly similar for the different scenarios. The representation of atmospheric physical processes in the model is shown to strongly influence the simulated climate variability and both the magnitude and pattern of the projected climate changes.

  10. Public Health Nurses’ Knowledge and Attitudes Regarding Climate Change

    PubMed Central

    Chaudry, Rosemary V.; Mac Crawford, John

    2011-01-01

    Background: Climate change affects human health, and health departments are urged to act to reduce the severity of these impacts. Yet little is known about the perspective of public health nurses—the largest component of the public health workforce—regarding their roles in addressing health impacts of climate change. Objectives: We determined the knowledge and attitudes of public health nurses concerning climate change and the role of public health nursing in divisions of health departments in addressing health-related impacts of climate change. Differences by demographic subgroups were explored. Methods: An online survey was distributed to nursing directors of U.S. health departments (n = 786) with Internet staff directories. Results: Respondents (n = 176) were primarily female, white public health nursing administrators with ≥ 5 years of experience. Approximately equal percentages of respondents self-identified as having moderate, conservative, and liberal political views. Most agreed that the earth has experienced climate change and that climate change is somewhat controllable. Respondents identified an average of 5 of the 12 listed health-related impacts of climate change, but the modal response was zero impact. Public health nursing was perceived as having responsibility to address health-related impacts of climate change but lacking the ability to address these impacts. Conclusions: Public health nurses view the environment as under threat and see a role for nursing divisions in addressing health effects of climate change. However, they recognize the limited resources and personnel available to devote to this endeavor. PMID:22128069

  11. Redesigning healthcare systems to meet the health challenges associated with climate change in the twenty-first century.

    PubMed

    Phua, Kai-Lit

    2015-01-01

    In the twenty-first century, climate change is emerging as a significant threat to the health and well-being of the public through links to the following: extreme weather events, sea level rise, temperature-related illnesses, air pollution patterns, water security, food security, vector-borne infectious diseases, and mental health effects (as a result of extreme weather events and climate change-induced population displacement). This article discusses how national healthcare systems can be redesigned through changes in its components such as human resources, facilities and technology, health information system, and health policy to meet these challenges.

  12. Predicting the Impacts of Climate Change on Central American Agriculture

    NASA Astrophysics Data System (ADS)

    Winter, J. M.; Ruane, A. C.; Rosenzweig, C.

    2011-12-01

    Agriculture is a vital component of Central America's economy. Poor crop yields and harvest reliability can produce food insecurity, malnutrition, and conflict. Regional climate models (RCMs) and agricultural models have the potential to greatly enhance the efficiency of Central American agriculture and water resources management under both current and future climates. A series of numerical experiments was conducted using Regional Climate Model Version 3 (RegCM3) and the Weather Research and Forecasting Model (WRF) to evaluate the ability of RCMs to reproduce the current climate of Central America and assess changes in temperature and precipitation under multiple future climate scenarios. Control simulations were thoroughly compared to a variety of observational datasets, including local weather station data, gridded meteorological data, and high-resolution satellite-based precipitation products. Future climate simulations were analyzed for both mean shifts in climate and changes in climate variability, including extreme events (droughts, heat waves, floods). To explore the impacts of changing climate on maize, bean, and rice yields in Central America, RCM output was used to force the Decision Support System for Agrotechnology Transfer Model (DSSAT). These results were synthesized to create climate change impacts predictions for Central American agriculture that explicitly account for evolving distributions of precipitation and temperature extremes.

  13. Conserving the zoological resources of Bangladesh under a changing climate.

    PubMed

    DAS, Bidhan C

    2009-06-01

    It is now well recognized that Bangladesh is one of the world's most vulnerable countries to climate change and sea level rise. Low levels of natural resources and a high occurrence of natural disasters further add to the challenges faced by the country. The impacts of climate change are anticipated to exacerbate these existing stresses and constitute a serious impediment to poverty reduction and economic development. Ecosystems and biodiversity are important key sectors of the economy and natural resources of the country are selected as the most vulnerable to climate change. It is for these reasons that Bangladesh should prepare to conserve its natural resources under changed climatic conditions. Unfortunately, the development of specific strategies and policies to address the effects of climate change on the ecosystem and on biodiversity has not commenced in Bangladesh. Here, I present a detailed review of animal resources of Bangladesh, an outline of the major areas in zoological research to be integrated to adapt to climate change, and identified few components for each of the aforesaid areas in relation to the natural resource conservation and management in the country. © 2009 ISZS, Blackwell Publishing and IOZ/CAS.

  14. How well are the climate indices related to the GRACE-observed total water storage changes in China?

    NASA Astrophysics Data System (ADS)

    Devaraju, B.; Vishwakarma, B.; Sneeuw, N. J.

    2017-12-01

    The fresh water availability over land masses is changing rapidly under the influence of climate change and human intervention. In order to manage our water resources and plan for a better future, we need to demarcate the role of climate change. The total water storage change in a region can be obtained from the GRACE satellite mission. On the other hand, many climate change indicators, for example ENSO, are derived from sea surface temperature. In this contribution we investigate the relationship between the total water storage change over China with the climate indices using statistical time-series decomposition techniques, such as Seasonal and Trend decomposition using Loess (STL), Principal Component Analysis (PCA) and Canonical Correlation Analysis (CCA). The anomalies in climate variables, such as sea surface temperature, are responsible for anomalous precipitation and thus an anomalous total water storage change over land. Therefore, it is imperative that we use a GRACE product that can capture anomalous water storage changes with unprecedented accuracy. Since filtering decreases the sensitivity of GRACE products substantially, we use the data-driven method of deviation for recovering the signal lost due to filtering. To this end, we are able to obtain the spatial fingerprint of individual climate index on total water storage change observed over China.

  15. From transient to steady-state response of ecosystems to atmospheric CO2-enrichment and global climate change: conceptual challenges and need for an integrated approach

    Treesearch

    Lindsey E. Rustad

    2006-01-01

    Evidence continues to accumulate that humans are significantly increasing atmospheric CO2 concentrations, resulting in unprecedented changes in the global climate system. Experimental manipulations of terrestrial ecosystems and their components have greatly increased our understanding of short-term responses to these global perturbations and have...

  16. Monitoring network confirms land use change is a substantial component of the forest carbon sink in the eastern United States

    Treesearch

    Christopher W. Woodall; Brian F. Walters; John Coulston; A.W. D’Amato; Grant M. Domke; M.B. Russell; Paul Sowers

    2015-01-01

    Quantifying forest carbon (C) stocks and stock change within a matrix of land use (LU) and LU change is a central component of large-scale forest C monitoring and reporting practices prescribed by the Intergovernmental Panel on Climate Change (IPCC). Using a region–wide, repeated forest inventory, forest C stocks and stock change by pool were examined by LU categories...

  17. Groundwater and Terrestrial Water Storage

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.

    2012-01-01

    Groundwater is a vital resource and also a dynamic component of the water cycle. Unconfined aquifer storage is less responsive to short term weather conditions than the near surface terrestrial water storage (TWS) components (soil moisture, surface water, and snow). However, save for the permanently frozen regions, it typically exhibits a larger range of variability over multi-annual periods than the other components. Groundwater is poorly monitored at the global scale, but terrestrial water storage (TWS) change data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission are a reasonable proxy for unconfined groundwater at climatic scales.

  18. United States news media and climate change in the era of US President Trump.

    PubMed

    Park, David J

    2018-03-01

    The Donald J Trump administration's strategy to disengage and downplay the Paris Climate Agreement will likely result in a slight decrease in the already low levels of US news media global warming coverage. This is because significant limitations with the news media's ability to adequately cover climate change predated the administration. First, studies indicate that advertising interests and editors have always challenged journalists' abilities to adequately report on climate change issues. Instead of climate change stories, editors often prefer more sensational topics that garner higher ratings and approval with advertisers. Second, the journalistic norm of balance and the role of sourcing give climate skeptics exceptional media exposure, which creates a "false balance" or equivalency between skeptics and scientists. Third, the massive power and influence of the fossil fuel industry's public relations arm has also had a tremendous impact on public (mis)understanding of climate change. Fourth, a trend toward declining climate change coverage and "climate silence" in US media is developing. Media corporations have substantially eliminated the number of environmental journalists that cover climate change. The overall effect of these limitations distorts public understanding of climate change and delays potential government action. Moving away from a predominantly commercial media system to one with a substantial noncommercial component can improve US journalism, whereas using advertising to increase rates for environmentally unsound products and services may also help mitigate global warming. Integr Environ Assess Manag 2018;14:202-204. © 2018 SETAC. © 2018 SETAC.

  19. Separating the impacts of climate change and human activities on streamflow: A review of methodologies and critical assumptions

    NASA Astrophysics Data System (ADS)

    Dey, Pankaj; Mishra, Ashok

    2017-05-01

    Climate change and human activity are two major drivers that alter hydrological cycle processes and cause change in spatio-temporal distribution of water availability. Streamflow, the most important component of hydrological cycle undergoes variation which is expected to be influenced by climate change as well as human activities. Since these two affecting conditions are time dependent, having unequal influence, identification of the change point in natural flow regime is of utmost important to separate the individual impact of climate change and human activities on streamflow variability. Subsequently, it is important as well for framing adaptation strategies and policies for regional water resources planning and management. In this paper, a comprehensive review of different approaches used by research community to isolate the impacts of climate change and human activities on streamflow are presented. The important issues pertaining to different approaches, to make rational use of methodology, are discussed so that researcher and policymaker can understand the importance of individual methodology and its use in water resources management. A new approach has also been suggested to select a representative change point under different scenarios of human activities with incorporation of climate variability/change.

  20. GFDL's CM2 global coupled climate models. Part I: Formulation and simulation characteristics

    USGS Publications Warehouse

    Delworth, T.L.; Broccoli, A.J.; Rosati, A.; Stouffer, R.J.; Balaji, V.; Beesley, J.A.; Cooke, W.F.; Dixon, K.W.; Dunne, J.; Dunne, K.A.; Durachta, J.W.; Findell, K.L.; Ginoux, P.; Gnanadesikan, A.; Gordon, C.T.; Griffies, S.M.; Gudgel, R.; Harrison, M.J.; Held, I.M.; Hemler, R.S.; Horowitz, L.W.; Klein, S.A.; Knutson, T.R.; Kushner, P.J.; Langenhorst, A.R.; Lee, H.-C.; Lin, S.-J.; Lu, J.; Malyshev, S.L.; Milly, P.C.D.; Ramaswamy, V.; Russell, J.; Schwarzkopf, M.D.; Shevliakova, E.; Sirutis, J.J.; Spelman, M.J.; Stern, W.F.; Winton, M.; Wittenberg, A.T.; Wyman, B.; Zeng, F.; Zhang, R.

    2006-01-01

    The formulation and simulation characteristics of two new global coupled climate models developed at NOAA's Geophysical Fluid Dynamics Laboratory (GFDL) are described. The models were designed to simulate atmospheric and oceanic climate and variability from the diurnal time scale through multicentury climate change, given our computational constraints. In particular, an important goal was to use the same model for both experimental seasonal to interannual forecasting and the study of multicentury global climate change, and this goal has been achieved. Tw o versions of the coupled model are described, called CM2.0 and CM2.1. The versions differ primarily in the dynamical core used in the atmospheric component, along with the cloud tuning and some details of the land and ocean components. For both coupled models, the resolution of the land and atmospheric components is 2?? latitude ?? 2.5?? longitude; the atmospheric model has 24 vertical levels. The ocean resolution is 1?? in latitude and longitude, with meridional resolution equatorward of 30?? becoming progressively finer, such that the meridional resolution is 1/3?? at the equator. There are 50 vertical levels in the ocean, with 22 evenly spaced levels within the top 220 m. The ocean component has poles over North America and Eurasia to avoid polar filtering. Neither coupled model employs flux adjustments. The co ntrol simulations have stable, realistic climates when integrated over multiple centuries. Both models have simulations of ENSO that are substantially improved relative to previous GFDL coupled models. The CM2.0 model has been further evaluated as an ENSO forecast model and has good skill (CM2.1 has not been evaluated as an ENSO forecast model). Generally reduced temperature and salinity biases exist in CM2.1 relative to CM2.0. These reductions are associated with 1) improved simulations of surface wind stress in CM2.1 and associated changes in oceanic gyre circulations; 2) changes in cloud tuning and the land model, both of which act to increase the net surface shortwave radiation in CM2.1, thereby reducing an overall cold bias present in CM2.0; and 3) a reduction of ocean lateral viscosity in the extratropics in CM2.1, which reduces sea ice biases in the North Atlantic. Both models have be en used to conduct a suite of climate change simulations for the 2007 Intergovernmental Panel on Climate Change (IPCC) assessment report and are able to simulate the main features of the observed warming of the twentieth century. The climate sensitivities of the CM2.0 and CM2.1 models are 2.9 and 3.4 K, respectively. These sensitivities are defined by coupling the atmospheric components of CM2.0 and CM2.1 to a slab ocean model and allowing the model to come into equilibrium with a doubling of atmospheric CO2. The output from a suite of integrations conducted with these models is freely available online (see http://nomads.gfdl.noaa.gov/). ?? 2006 American Meteorological Society.

  1. Direct and indirect effects of climate change on projected future fire regimes in the western United States.

    PubMed

    Liu, Zhihua; Wimberly, Michael C

    2016-01-15

    We asked two research questions: (1) What are the relative effects of climate change and climate-driven vegetation shifts on different components of future fire regimes? (2) How does incorporating climate-driven vegetation change into future fire regime projections alter the results compared to projections based only on direct climate effects? We used the western United States (US) as study area to answer these questions. Future (2071-2100) fire regimes were projected using statistical models to predict spatial patterns of occurrence, size and spread for large fires (>400 ha) and a simulation experiment was conducted to compare the direct climatic effects and the indirect effects of climate-driven vegetation change on fire regimes. Results showed that vegetation change amplified climate-driven increases in fire frequency and size and had a larger overall effect on future total burned area in the western US than direct climate effects. Vegetation shifts, which were highly sensitive to precipitation pattern changes, were also a strong determinant of the future spatial pattern of burn rates and had different effects on fire in currently forested and grass/shrub areas. Our results showed that climate-driven vegetation change can exert strong localized effects on fire occurrence and size, which in turn drive regional changes in fire regimes. The effects of vegetation change for projections of the geographic patterns of future fire regimes may be at least as important as the direct effects of climate change, emphasizing that accounting for changing vegetation patterns in models of future climate-fire relationships is necessary to provide accurate projections at continental to global scales. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Biologically Based Methods for Pest Management in Agriculture under Changing Climates: Challenges and Future Directions.

    PubMed

    Chidawanyika, Frank; Mudavanhu, Pride; Nyamukondiwa, Casper

    2012-11-09

    The current changes in global climatic regimes present a significant societal challenge, affecting in all likelihood insect physiology, biochemistry, biogeography and population dynamics. With the increasing resistance of many insect pest species to chemical insecticides and an increasing organic food market, pest control strategies are slowly shifting towards more sustainable, ecologically sound and economically viable options. Biologically based pest management strategies present such opportunities through predation or parasitism of pests and plant direct or indirect defense mechanisms that can all be important components of sustainable integrated pest management programs. Inevitably, the efficacy of biological control systems is highly dependent on natural enemy-prey interactions, which will likely be modified by changing climates. Therefore, knowledge of how insect pests and their natural enemies respond to climate variation is of fundamental importance in understanding biological insect pest management under global climate change. Here, we discuss biological control, its challenges under climate change scenarios and how increased global temperatures will require adaptive management strategies to cope with changing status of insects and their natural enemies.

  3. Investigating the variation of terrestrial water storage under changing climate and land cover

    NASA Astrophysics Data System (ADS)

    Fang, Y.; Niu, G. Y.; Zhang, X.; Troch, P. A. A.

    2015-12-01

    Terrestrial water storage (TWS) consists of groundwater, soil moisture, snow and ice, lakes and rivers and water contained in biomass. The water storage, especially the subsurface storage, is an essential property of the catchment, which controls climate, hydrological and biogeochemical processes at different scales. During the past decades, climate and land cover change has been proved to exert significant influences on hydrological processes which in turn alters the TWS variation. In order to better understand the interaction and feedback mechanism between TWS and earth system, it is necessary to quantify the effects of climate and land cover change on TWS variation. Direct estimation of total TWS has been made possible by the Gravity Recovery And Climate Experiment (GRACE) satellites that measures the earth gravity field. At present, few efforts were made to explicitly investigate the TWS variation under changing climate and land cover. GRACE data has its own limitations. One is its temporal coverage is short, it's only available since 2002, which is not sufficient to reflect the trend due to climate and land cover change. The other reason is that it cannot distinguish different components contributing to TWS. The limitation of TWS observation data can be overcame by numerical models developed to reproduce or to predict different earth system processes. After calibration and validation, with limited observations, these models can be trusted to extend our knowledge to where observations are not available both in time and space. In this study, based on Noah-MP LSM and satellite and ground data, we aim to: (1) Investigate the variation of total TWS as well as its components over Upper Colorado River Basin from 1990 to 2014. (2) Identify the major factors that control the TWS variation. (3) Quantify how the changing climate and land cover affect TWS variation in the same period.

  4. To what extent can global warming events influence scaling properties of climatic fluctuations in glacial periods?

    NASA Astrophysics Data System (ADS)

    Alberti, Tommaso; Lepreti, Fabio; Vecchio, Antonio; Carbone, Vincenzo

    2017-04-01

    The Earth's climate is an extremely unstable complex system consisting of nonlinear and still rather unknown interactions among atmosphere, land surface, ice and oceans. The system is mainly driven by solar irradiance, even if internal components as volcanic eruptions and human activities affect the atmospheric composition thus acting as a driver for climate changes. Since the extreme climate variability is the result of a set of phenomena operating from daily to multi-millennial timescales, with different correlation times, a study of the scaling properties of the system can evidence non-trivial persistent structures, internal or external physical processes. Recently, the scaling properties of the paleoclimate changes have been analyzed by distinguish between interglacial and glacial climates [Shao and Ditlevsen, 2016]. The results show that the last glacial record (20-120 kyr BP) presents some elements of multifractality, while the last interglacial period (0-10 kyr BP), say the Holocene period, seems to be characterized by a mono-fractal structure. This is associated to the absence of Dansgaard-Oeschger (DO) events in the interglacial climate that could be the cause for the absence of multifractality. This hypothesis is supported by the analysis of the period between 18 and 27 kyr BP, i.e. during the Last Glacial Period, in which a single DO event have been registred. Through the Empirical Mode Decomposition (EMD) we were able to detect a timescale separation within the Last Glacial Period (20-120 kyr BP) in two main components: a high-frequency component, related to the occurrence of DO events, and a low-frequency one, associated to the cooling/warming phase switch [Alberti et al., 2014]. Here, we investigate the scaling properties of the climate fluctuations within the Last Glacial Period, where abrupt climate changes, characterized by fast increase of temperature usually called Dansgaard-Oeschger (DO) events, have been particularly pronounced. By using the MultiFractal Detrended Fluctuation Analysis (MF-DFA), we show that a multifractal structure exists for both high- and low-frequency fluctuations in Northern and Southern hemispheres, with different scaling exponents, thus indicating a long-range persistence of the climatic variability within the whole Last Glacial Period. Our results evidence that both DO events and cooling/warming cycles must be considered as processes of the internal component of the Earth's climate, rather than processes related to external forcings. This study should be helpful for investigation of the internal origin of climate changes. References Shao, Z.G. and Ditlevsen, P.D., Nature Commun., 7, 10951, (2016). Alberti, T., Lepreti, F., Vecchio, A., Bevacqua, E., Capparelli, V. and Carbone, V., Clim. Past, 10, 1751 (2014).

  5. Simulation of growth of Adirondack conifers in relation to global climate change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Y.; Raynal, D.J.

    1993-06-01

    Several conifer species grown in plantations in the southeastern Adirondack mountains of New York were chosen to model tree growth. In the models, annual xylem growth was decomposed into several components that reflect various intrinsic or extrinsic factors. Growth signals indicative of climatic effects were used to construct response functions using both multivariate analysis and Kalman filter methods. Two models were used to simulate tree growth response to future CO[sub 2]-induced climate change projected by GCMs. The comparable results of both models indicate that different conifer species have individualistic growth responses to future climatic change. The response behaviors of treesmore » are affected greatly by local stand conditions. The results suggest possible changes in future growth and distributions of naturally occurring conifers in this region.« less

  6. Climate Change Impacts on Waterborne Diseases: Moving Toward Designing Interventions.

    PubMed

    Levy, Karen; Smith, Shanon M; Carlton, Elizabeth J

    2018-06-01

    Climate change threatens progress achieved in global reductions of infectious disease rates over recent decades. This review summarizes literature on potential impacts of climate change on waterborne diseases, organized around a framework of questions that can be addressed depending on available data. A growing body of evidence suggests that climate change may alter the incidence of waterborne diseases, and diarrheal diseases in particular. Much of the existing work examines historical relationships between weather and diarrhea incidence, with a limited number of studies projecting future disease rates. Some studies take social and ecological factors into account in considerations of historical relationships, but few have done so in projecting future conditions. The field is at a point of transition, toward incorporating social and ecological factors into understanding the relationships between climatic factors and diarrheal diseases and using this information for future projections. The integration of these components helps identify vulnerable populations and prioritize adaptation strategies.

  7. A commentary on the Atlantic meridional overturning circulation stability in climate models

    NASA Astrophysics Data System (ADS)

    Gent, Peter R.

    2018-02-01

    The stability of the Atlantic meridional overturning circulation (AMOC) in ocean models depends quite strongly on the model formulation, especially the vertical mixing, and whether it is coupled to an atmosphere model. A hysteresis loop in AMOC strength with respect to freshwater forcing has been found in several intermediate complexity climate models and in one fully coupled climate model that has very coarse resolution. Over 40% of modern climate models are in a bistable AMOC state according to the very frequently used simple stability criterion which is based solely on the sign of the AMOC freshwater transport across 33° S. In a recent freshwater hosing experiment in a climate model with an eddy-permitting ocean component, the change in the gyre freshwater transport across 33° S is larger than the AMOC freshwater transport change. This casts very strong doubt on the usefulness of this simple AMOC stability criterion. If a climate model uses large surface flux adjustments, then these adjustments can interfere with the atmosphere-ocean feedbacks, and strongly change the AMOC stability properties. AMOC can be shut off for many hundreds of years in modern fully coupled climate models if the hosing or carbon dioxide forcing is strong enough. However, in one climate model the AMOC recovers after between 1000 and 1400 years. Recent 1% increasing carbon dioxide runs and RCP8.5 future scenario runs have shown that the AMOC reduction is smaller using an eddy-resolving ocean component than in the comparable standard 1° ocean climate models.

  8. Impact of climate change on human infectious diseases: Empirical evidence and human adaptation.

    PubMed

    Wu, Xiaoxu; Lu, Yongmei; Zhou, Sen; Chen, Lifan; Xu, Bing

    2016-01-01

    Climate change refers to long-term shifts in weather conditions and patterns of extreme weather events. It may lead to changes in health threat to human beings, multiplying existing health problems. This review examines the scientific evidences on the impact of climate change on human infectious diseases. It identifies research progress and gaps on how human society may respond to, adapt to, and prepare for the related changes. Based on a survey of related publications between 1990 and 2015, the terms used for literature selection reflect three aspects--the components of infectious diseases, climate variables, and selected infectious diseases. Humans' vulnerability to the potential health impacts by climate change is evident in literature. As an active agent, human beings may control the related health effects that may be effectively controlled through adopting proactive measures, including better understanding of the climate change patterns and of the compound disease-specific health effects, and effective allocation of technologies and resources to promote healthy lifestyles and public awareness. The following adaptation measures are recommended: 1) to go beyond empirical observations of the association between climate change and infectious diseases and develop more scientific explanations, 2) to improve the prediction of spatial-temporal process of climate change and the associated shifts in infectious diseases at various spatial and temporal scales, and 3) to establish locally effective early warning systems for the health effects of predicated climate change. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Assessing the impacts of climate and land use and land cover change on the freshwater availability in the Brahmaputra River basin

    USGS Publications Warehouse

    Pervez, Md Shahriar; Henebry, Geoffrey M.

    2015-01-01

    New hydrological insights for the region: Basin average annual ET was found to be sensitive to changes in CO2 concentration and temperature, while total water yield, streamflow, and groundwater recharge were sensitive to changes in precipitation. The basin hydrological components were predicted to increase with seasonal variability in response to climate and land use change scenarios. Strong increasing trends were predicted for total water yield, streamflow, and groundwater recharge, indicating exacerbation of flooding potential during August–October, but strong decreasing trends were predicted, indicating exacerbation of drought potential during May–July of the 21st century. The model has potential to facilitate strategic decision making through scenario generation integrating climate change adaptation and hazard mitigation policies to ensure optimized allocation of water resources under a variable and changing climate.

  10. Hydrological Impacts of Land Use Change and Climate Variability in the Headwater Region of the Heihe River Basin, Northwest China

    PubMed Central

    Zhang, Ling; Nan, Zhuotong; Xu, Yi; Li, Shuo

    2016-01-01

    Land use change and climate variability are two key factors impacting watershed hydrology, which is strongly related to the availability of water resources and the sustainability of local ecosystems. This study assessed separate and combined hydrological impacts of land use change and climate variability in the headwater region of a typical arid inland river basin, known as the Heihe River Basin, northwest China, in the recent past (1995–2014) and near future (2015–2024), by combining two land use models (i.e., Markov chain model and Dyna-CLUE) with a hydrological model (i.e., SWAT). The potential impacts in the near future were explored using projected land use patterns and hypothetical climate scenarios established on the basis of analyzing long-term climatic observations. Land use changes in the recent past are dominated by the expansion of grassland and a decrease in farmland; meanwhile the climate develops with a wetting and warming trend. Land use changes in this period induce slight reductions in surface runoff, groundwater discharge and streamflow whereas climate changes produce pronounced increases in them. The joint hydrological impacts are similar to those solely induced by climate changes. Spatially, both the effects of land use change and climate variability vary with the sub-basin. The influences of land use changes are more identifiable in some sub-basins, compared with the basin-wide impacts. In the near future, climate changes tend to affect the hydrological regimes much more prominently than land use changes, leading to significant increases in all hydrological components. Nevertheless, the role of land use change should not be overlooked, especially if the climate becomes drier in the future, as in this case it may magnify the hydrological responses. PMID:27348224

  11. Hydrological Impacts of Land Use Change and Climate Variability in the Headwater Region of the Heihe River Basin, Northwest China.

    PubMed

    Zhang, Ling; Nan, Zhuotong; Xu, Yi; Li, Shuo

    2016-01-01

    Land use change and climate variability are two key factors impacting watershed hydrology, which is strongly related to the availability of water resources and the sustainability of local ecosystems. This study assessed separate and combined hydrological impacts of land use change and climate variability in the headwater region of a typical arid inland river basin, known as the Heihe River Basin, northwest China, in the recent past (1995-2014) and near future (2015-2024), by combining two land use models (i.e., Markov chain model and Dyna-CLUE) with a hydrological model (i.e., SWAT). The potential impacts in the near future were explored using projected land use patterns and hypothetical climate scenarios established on the basis of analyzing long-term climatic observations. Land use changes in the recent past are dominated by the expansion of grassland and a decrease in farmland; meanwhile the climate develops with a wetting and warming trend. Land use changes in this period induce slight reductions in surface runoff, groundwater discharge and streamflow whereas climate changes produce pronounced increases in them. The joint hydrological impacts are similar to those solely induced by climate changes. Spatially, both the effects of land use change and climate variability vary with the sub-basin. The influences of land use changes are more identifiable in some sub-basins, compared with the basin-wide impacts. In the near future, climate changes tend to affect the hydrological regimes much more prominently than land use changes, leading to significant increases in all hydrological components. Nevertheless, the role of land use change should not be overlooked, especially if the climate becomes drier in the future, as in this case it may magnify the hydrological responses.

  12. 26 CFR 1.23-6 - Procedure and criteria for additions to the approved list of energy-conserving components or...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY INCOME TAX INCOME TAXES Changes in Rates... provided with respect to each climate zone. The applicant may use the Department of Energy's climatic zones...

  13. 26 CFR 1.23-6 - Procedure and criteria for additions to the approved list of energy-conserving components or...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY INCOME TAX INCOME TAXES Changes in Rates... provided with respect to each climate zone. The applicant may use the Department of Energy's climatic zones...

  14. Adapting agriculture to climate change.

    PubMed

    Howden, S Mark; Soussana, Jean-François; Tubiello, Francesco N; Chhetri, Netra; Dunlop, Michael; Meinke, Holger

    2007-12-11

    The strong trends in climate change already evident, the likelihood of further changes occurring, and the increasing scale of potential climate impacts give urgency to addressing agricultural adaptation more coherently. There are many potential adaptation options available for marginal change of existing agricultural systems, often variations of existing climate risk management. We show that implementation of these options is likely to have substantial benefits under moderate climate change for some cropping systems. However, there are limits to their effectiveness under more severe climate changes. Hence, more systemic changes in resource allocation need to be considered, such as targeted diversification of production systems and livelihoods. We argue that achieving increased adaptation action will necessitate integration of climate change-related issues with other risk factors, such as climate variability and market risk, and with other policy domains, such as sustainable development. Dealing with the many barriers to effective adaptation will require a comprehensive and dynamic policy approach covering a range of scales and issues, for example, from the understanding by farmers of change in risk profiles to the establishment of efficient markets that facilitate response strategies. Science, too, has to adapt. Multidisciplinary problems require multidisciplinary solutions, i.e., a focus on integrated rather than disciplinary science and a strengthening of the interface with decision makers. A crucial component of this approach is the implementation of adaptation assessment frameworks that are relevant, robust, and easily operated by all stakeholders, practitioners, policymakers, and scientists.

  15. Planning for climate change: The need for mechanistic systems-based approaches to study climate change impacts on diarrheal diseases.

    PubMed

    Mellor, Jonathan E; Levy, Karen; Zimmerman, Julie; Elliott, Mark; Bartram, Jamie; Carlton, Elizabeth; Clasen, Thomas; Dillingham, Rebecca; Eisenberg, Joseph; Guerrant, Richard; Lantagne, Daniele; Mihelcic, James; Nelson, Kara

    2016-04-01

    Increased precipitation and temperature variability as well as extreme events related to climate change are predicted to affect the availability and quality of water globally. Already heavily burdened with diarrheal diseases due to poor access to water, sanitation and hygiene facilities, communities throughout the developing world lack the adaptive capacity to sufficiently respond to the additional adversity caused by climate change. Studies suggest that diarrhea rates are positively correlated with increased temperature, and show a complex relationship with precipitation. Although climate change will likely increase rates of diarrheal diseases on average, there is a poor mechanistic understanding of the underlying disease transmission processes and substantial uncertainty surrounding current estimates. This makes it difficult to recommend appropriate adaptation strategies. We review the relevant climate-related mechanisms behind transmission of diarrheal disease pathogens and argue that systems-based mechanistic approaches incorporating human, engineered and environmental components are urgently needed. We then review successful systems-based approaches used in other environmental health fields and detail one modeling framework to predict climate change impacts on diarrheal diseases and design adaptation strategies. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Climate Change Contribution to the Emergence or Re-Emergence of Parasitic Diseases

    PubMed Central

    Short, Erica E; Caminade, Cyril; Thomas, Bolaji N

    2017-01-01

    The connection between our environment and parasitic diseases may not always be straightforward, but it exists nonetheless. This article highlights how climate as a component of our environment, or more specifically climate change, has the capability to drive parasitic disease incidence and prevalence worldwide. There are both direct and indirect implications of climate change on the scope and distribution of parasitic organisms and their associated vectors and host species. We aim to encompass a large body of literature to demonstrate how a changing climate will perpetuate, or perhaps exacerbate, public health issues and economic stagnation due to parasitic diseases. The diseases examined include those caused by ingested protozoa and soil helminths, malaria, lymphatic filariasis, Chagas disease, human African trypanosomiasis, leishmaniasis, babesiosis, schistosomiasis, and echinococcus, as well as parasites affecting livestock. It is our goal to impress on the scientific community the magnitude a changing climate can have on public health in relation to parasitic disease burden. Once impending climate changes are now upon us, and as we see these events unfold, it is critical to create management plans that will protect the health and quality of life of the people living in the communities that will be significantly affected. PMID:29317829

  17. Climate Change Contribution to the Emergence or Re-Emergence of Parasitic Diseases.

    PubMed

    Short, Erica E; Caminade, Cyril; Thomas, Bolaji N

    2017-01-01

    The connection between our environment and parasitic diseases may not always be straightforward, but it exists nonetheless. This article highlights how climate as a component of our environment, or more specifically climate change, has the capability to drive parasitic disease incidence and prevalence worldwide. There are both direct and indirect implications of climate change on the scope and distribution of parasitic organisms and their associated vectors and host species. We aim to encompass a large body of literature to demonstrate how a changing climate will perpetuate, or perhaps exacerbate, public health issues and economic stagnation due to parasitic diseases. The diseases examined include those caused by ingested protozoa and soil helminths, malaria, lymphatic filariasis, Chagas disease, human African trypanosomiasis, leishmaniasis, babesiosis, schistosomiasis, and echinococcus, as well as parasites affecting livestock. It is our goal to impress on the scientific community the magnitude a changing climate can have on public health in relation to parasitic disease burden. Once impending climate changes are now upon us, and as we see these events unfold, it is critical to create management plans that will protect the health and quality of life of the people living in the communities that will be significantly affected.

  18. Climate Change Effects on Agriculture: Economic Responses to Biophysical Shocks

    NASA Technical Reports Server (NTRS)

    Nelson, Gerald C.; Valin, Hugo; Sands, Ronald D.; Havlik, Petr; Ahammad, Helal; Deryng, Delphine; Elliott, Joshua; Fujimori, Shinichiro; Hasegawa, Tomoko; Heyhoe, Edwina

    2014-01-01

    Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change's representative concentration pathway with end-of-century radiative forcing of 8.5 W/m(sup 2). The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.

  19. Climate change effects on agriculture: economic responses to biophysical shocks.

    PubMed

    Nelson, Gerald C; Valin, Hugo; Sands, Ronald D; Havlík, Petr; Ahammad, Helal; Deryng, Delphine; Elliott, Joshua; Fujimori, Shinichiro; Hasegawa, Tomoko; Heyhoe, Edwina; Kyle, Page; Von Lampe, Martin; Lotze-Campen, Hermann; Mason d'Croz, Daniel; van Meijl, Hans; van der Mensbrugghe, Dominique; Müller, Christoph; Popp, Alexander; Robertson, Richard; Robinson, Sherman; Schmid, Erwin; Schmitz, Christoph; Tabeau, Andrzej; Willenbockel, Dirk

    2014-03-04

    Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change's representative concentration pathway with end-of-century radiative forcing of 8.5 W/m(2). The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.

  20. Population exposure to heat-related extremes: Demographic change vs climate change

    NASA Astrophysics Data System (ADS)

    Jones, B.; O'Neill, B. C.; Tebaldi, C.; Oleson, K. W.

    2014-12-01

    Extreme heat events are projected to increase in frequency and intensity in the coming decades [1]. The physical effects of extreme heat on human populations are well-documented, and anticipating changes in future exposure to extreme heat is a key component of adequate planning/mitigation [2, 3]. Exposure to extreme heat depends not only on changing climate, but also on changes in the size and spatial distribution of the human population. Here we focus on systematically quantifying exposure to extreme heat as a function of both climate and population change. We compare exposure outcomes across multiple global climate and spatial population scenarios, and characterize the relative contributions of each to population exposure to extreme heat. We consider a 2 x 2 matrix of climate and population output, using projections of heat extremes corresponding to RCP 4.5 and RCP 8.5 from the NCAR community land model, and spatial population projections for SSP 3 and SSP 5 from the NCAR spatial population downscaling model. Our primary comparison is across RCPs - exposure outcomes from RCP 4.5 versus RCP 8.5 - paying particular attention to how variation depends on the choice of SSP in terms of aggregate global and regional exposure, as well as the spatial distribution of exposure. We assess how aggregate exposure changes based on the choice of SSP, and which driver is more important, population or climate change (i.e. does that outcome vary more as a result of RCP or SSP). We further decompose the population component to analyze the contributions of total population change, migration, and changes in local spatial structure. Preliminary results from a similar study of the US suggests a four-to-six fold increase in total exposure by the latter half of the 21st century. Changes in population are as important as changes in climate in driving this outcome, and there is regional variation in the relative importance of each. Aggregate population growth, as well as redistribution of the population across larger US regions, strongly affects outcomes while smaller-scale spatial patterns of population change have smaller effects. [1] Collins, M. et al. (2013) Contribution of WG I to the 5th AR of the IPCC[2] Romero-Lankao, P. et al (2014) Contribution of WG II to the 5th AR of the IPCC[3] Walsh, J. et al. (2014) The 3rd National Climate Assessment

  1. Climate Change and Public Health Surveillance: Toward a Comprehensive Strategy.

    PubMed

    Moulton, Anthony Drummond; Schramm, Paul John

    Climate change poses a host of serious threats to human health that robust public health surveillance systems can help address. It is unknown, however, whether existing surveillance systems in the United States have adequate capacity to serve that role, nor what actions may be needed to develop adequate capacity. Our goals were to review efforts to assess and strengthen the capacity of public health surveillance systems to support health-related adaptation to climate change in the United States and to determine whether additional efforts are warranted. Building on frameworks issued by the Intergovernmental Panel on Climate Change and the Centers for Disease Control and Prevention, we specified 4 core components of public health surveillance capacity relevant to climate change health threats. Using standard methods, we next identified and analyzed multiple assessments of the existing, relevant capacity of public health surveillance systems as well as attempts to improve that capacity. We also received information from selected national public health associations. Multiple federal, state, and local public health agencies, professional associations, and researchers have made valuable, initial efforts to assess and strengthen surveillance capacity. These efforts, however, have been made by entities working independently and without the benefit of a shared conceptual framework or strategy. Their principal focus has been on identifying suitable indicators and data sources largely to the exclusion of other core components of surveillance capacity. A more comprehensive and strategic approach is needed to build the public health surveillance capacity required to protect the health of Americans in a world of rapidly evolving climate change. Public health practitioners and policy makers at all levels can use the findings and issues reviewed in this article as they lead design and execution of a coordinated, multisector strategic plan to create and sustain that capacity.

  2. Climate Change and Public Health Surveillance: Toward a Comprehensive Strategy

    PubMed Central

    Moulton, Anthony Drummond; Schramm, Paul John

    2017-01-01

    Context Climate change poses a host of serious threats to human health that robust public health surveillance systems can help address. It is unknown, however, whether existing surveillance systems in the United States have adequate capacity to serve that role, nor what actions may be needed to develop adequate capacity. Objective Our goals were to review efforts to assess and strengthen the capacity of public health surveillance systems to support health-related adaptation to climate change in the United States and to determine whether additional efforts are warranted. Methods Building on frameworks issued by the Intergovernmental Panel on Climate Change and the Centers for Disease Control and Prevention, we specified 4 core components of public health surveillance capacity relevant to climate change health threats. Using standard methods, we next identified and analyzed multiple assessments of the existing, relevant capacity of public health surveillance systems as well as attempts to improve that capacity. We also received information from selected national public health associations. Findings Multiple federal, state, and local public health agencies, professional associations, and researchers have made valuable, initial efforts to assess and strengthen surveillance capacity. These efforts, however, have been made by entities working independently and without the benefit of a shared conceptual framework or strategy. Their principal focus has been on identifying suitable indicators and data sources largely to the exclusion of other core components of surveillance capacity. Conclusions A more comprehensive and strategic approach is needed to build the public health surveillance capacity required to protect the health of Americans in a world of rapidly evolving climate change. Public health practitioners and policy makers at all levels can use the findings and issues reviewed in this article as they lead design and execution of a coordinated, multisector strategic plan to create and sustain that capacity. PMID:28169865

  3. CMIP5-downscaled projections for the NW European Shelf Seas: initial results and insights into uncertainties

    NASA Astrophysics Data System (ADS)

    Tinker, Jonathan; Palmer, Matthew; Lowe, Jason; Howard, Tom

    2017-04-01

    The North Sea, and wider Northwest European Shelf seas (NWS) are economically, environmentally, and culturally important for a number of European countries. They are protected by European legislation, often with specific reference to the potential impacts of climate change. Coastal climate change projections are an important source of information for effective management of European Shelf Seas. For example, potential changes in the marine environment are a key component of the climate change risk assessments (CCRAs) carried out under the UK Climate Change Act We use the NEMO shelf seas model combined with CMIP5 climate model and EURO-CORDEX regional atmospheric model data to generate new simulations of the NWS. Building on previous work using a climate model perturbed physics ensemble and the POLCOMS, this new model setup is used to provide first indication of the uncertainties associated with: (i) the driving climate model; (ii) the atmospheric downscaling model (iii) the shelf seas downscaling model; (iv) the choice of climate change scenario. Our analysis considers a range of physical marine impacts and the drivers of coastal variability and change, including sea level and the propagation of open ocean signals onto the shelf. The simulations are being carried out as part of the UK Climate Projections 2018 (UKCP18) and will feed into the following UK CCRA.

  4. Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity

    Treesearch

    Mercedes M. C. Bustamante; Iris Roitman; T. Mitchell Aide; Ane Alencar; Liana O. Anderson; Luiz Aragao; Gregory P. Asner; Jos Barlow; Erika Berenguer; Jeffrey Chambers; Marcos H. Costa; Thierry Fanin; Laerte G. Ferreira; Joice Ferreira; Michael Keller; William E. Magnusson; Lucia Morales-Barquero; Douglas Morton; Jean P. H. B. Ometto; Michael Palace; Carlos A. Peres; Divino Silverio; Susan Trumbore; Ima C. G. Vieira

    2015-01-01

    Tropical forests harbor a significant portion of global biodiversity and are a critical component of the climate system. Reducing deforestation and forest degradation contributes to global climate-change mitigation efforts, yet emissions and removals from forest dynamics are still poorly quantified. We reviewed the main challenges to estimate changes in carbon stocks...

  5. Characterizing the "Time of Emergence" of Air Quality Climate Penalties

    NASA Astrophysics Data System (ADS)

    Rothenberg, D. A.; Garcia-Menendez, F.; Monier, E.; Solomon, S.; Selin, N. E.

    2017-12-01

    By driving not only local changes in temperature, but also precipitation and regional-scale changes in seasonal circulation patterns, climate change can directly and indirectly influence changes in air quality and its extremes. These changes - often referred to as "climate penalties" - can have important implications for human health, which is often targeted when assessing the potential co-benefits of climate policy. But because climate penalties are driven by slow, spatially-varying, temporal changes in the climate system, their emergence in the real world should also have a spatio-temporal component following regional variability in background air quality. In this work, we attempt to estimate the spatially-varying "time of emergence" of climate penalty signals by using an ensemble modeling framework based on the MIT Integrated Global System Model (MIT IGSM). With this framework we assess three climate policy scenarios assuming three different underlying climate sensitivities, and conduct a 5-member ensemble for each case to capture internal variability within the model. These simulations are used to drive offline chemical transport modeling (using CAM-Chem and GEOS-Chem). In these simulations, we find that the air quality response to climate change can vary dramatically across different regions of the globe. To analyze these regionally-varying climate signals, we employ a hierarchical clustering technique to identify regions with similar seasonal patterns of air quality change. Our simulations suggest that the earliest emergence of ozone climate penalties would occur in Southern Europe (by 2035), should the world neglect climate change and rely on a "business-as-usual" emissions policy. However, even modest climate policy dramatically pushes back the time of emergence of these penalties - to beyond 2100 - across most of the globe. The emergence of climate-forced changes in PM2.5 are much more difficult to detect, partially owing to the large role that changes in the frequency and spatial distribution of precipitation play in limiting the accumulation and duration of particulate pollution episodes.

  6. An innovative approach to undergraduate climate change education: Sustainability in the workplace

    NASA Astrophysics Data System (ADS)

    Robinson, Z. P.

    2009-04-01

    Climate change and climate science are a core component of environment-related degree programmes, but there are many programmes, for example business studies, that have clear linkages to climate change and sustainability issues which often have no or limited coverage of the subject. Although an in-depth coverage of climate science is not directly applicable to all programmes of study, the subject of climate change is of great relevance to all of society. Graduates from the higher education system are often viewed as society's ‘future leaders', hence it can be argued that it is important that all graduates are conversant in the issues of climate change and strategies for moving towards a sustainable future. Rather than an in depth understanding of climate science it may be more important that a wider range of students are educated in strategies for positive action. One aspect of climate change education that may be missing, including in programmes where climate change is a core topic, is practical strategies, skills and knowledge for reducing our impact on the climate system. This presentation outlines an innovative approach to undergraduate climate change education which focuses on the strategies for moving towards sustainability, but which is supported by climate science understanding taught within this context. Students gain knowledge and understanding of the motivations and strategies for businesses to improve their environmental performance, and develop skills in identifying areas of environmental improvement and recommending actions for change. These skills will allow students to drive positive change in their future careers. Such courses are relevant to students of all disciplines and can give the opportunity to students for whom climate change education is not a core part of their programme, to gain greater understanding of the issues and an awareness of practical changes that can be made at all levels to move towards a more sustainable society.

  7. Is enough attention given to climate change in health service planning? An Australian perspective.

    PubMed

    Burton, Anthony J; Bambrick, Hilary J; Friel, Sharon

    2014-01-01

    Within an Australian context, the medium to long-term health impacts of climate change are likely to be wide, varied and amplify many existing disorders and health inequities. How the health system responds to these challenges will be best considered in the context of existing health facilities and services. This paper provides a snapshot of the understanding that Australian health planners have of the potential health impacts of climate change. The first author interviewed (n=16) health service planners from five Australian states and territories using an interpretivist paradigm. All interviews were digitally recorded, key components transcribed and thematically analysed. Results indicate that the majority of participants were aware of climate change but not of its potential health impacts. Despite this, most planners were of the opinion that they would need to plan for the health impacts of climate change on the community. With the best available evidence pointing towards there being significant health impacts as a result of climate change, now is the time to undertake proactive service planning that address market failures within the health system. If considered planning is not undertaken then Australian health system can only deal with climate change in an expensive ad hoc, crisis management manner. Without meeting the challenges of climate change to the health system head on, Australia will remain unprepared for the health impacts of climate change with negative consequences for the health of the Australian population.

  8. Rural Nevada and climate change: vulnerability, beliefs, and risk perception.

    PubMed

    Safi, Ahmad Saleh; Smith, William James; Liu, Zhnongwei

    2012-06-01

    In this article, we present the results of a study investigating the influence of vulnerability to climate change as a function of physical vulnerability, sensitivity, and adaptive capacity on climate change risk perception. In 2008/2009, we surveyed Nevada ranchers and farmers to assess their climate change-related beliefs, and risk perceptions, political orientations, and socioeconomic characteristics. Ranchers' and farmers' sensitivity to climate change was measured through estimating the proportion of their household income originating from highly scarce water-dependent agriculture to the total income. Adaptive capacity was measured as a combination of the Social Status Index and the Poverty Index. Utilizing water availability and use, and population distribution GIS databases; we assessed water resource vulnerability in Nevada by zip code as an indicator of physical vulnerability to climate change. We performed correlation tests and multiple regression analyses to examine the impact of vulnerability and its three distinct components on risk perception. We find that vulnerability is not a significant determinant of risk perception. Physical vulnerability alone also does not impact risk perception. Both sensitivity and adaptive capacity increase risk perception. While age is not a significant determinant of it, gender plays an important role in shaping risk perception. Yet, general beliefs such as political orientations and climate change-specific beliefs such as believing in the anthropogenic causes of climate change and connecting the locally observed impacts (in this case drought) to climate change are the most prominent determinants of risk perception. © 2012 Society for Risk Analysis.

  9. Incorporating climate into belowground carbon estimates in the national greenhouse gas inventory

    Treesearch

    Matthew B. Russell; Grant M. Domke; Christopher W. Woodall; Anthony W. D’Amato

    2015-01-01

    Refined estimation of carbon (C) stocks within forest ecosystems is a critical component of efforts to reduce greenhouse gas emissions and mitigate the effects of projected climate change through forest C management. Recent evidence has pointed to the importance of climate as a driver of belowground C stocks. This study describes an approach for adjusting allometric...

  10. Climate Change Concepts and POGIL: Using climate change to teach general chemistry

    NASA Astrophysics Data System (ADS)

    King, D. B.; Lewis, J. E.; Anderson, K.; Latch, D.; Sutheimer, S.; Webster, G.; Middlecamp, C.; Moog, R.

    2013-12-01

    Climate change is a topic that can be used to engage students in a variety of courses and disciplines. Through an NSF-funded project, we have written a set of in-class POGIL (Process Oriented Guided Inquiry Learning) activities that use climate change topics to teach general chemistry concepts. POGIL is a pedagogical approach that uses group activities to teach content and process skills. In these group activities an initial model and a series of critical thinking questions are used to guide students through the introduction to or application of course content. Students complete the activities on their own, with the faculty member as a facilitator of learning, rather than a provider of information. Through assigned group roles and intentionally designed activity structure, process skills, such as teamwork, communication, and information processing, are developed during completion of the activity. While POGIL activities were initially developed for chemistry courses, this approach has now been used to create materials for use in other fields, such as biology, math, engineering and computer science. An additional component of this project is the incorporation of questions that relate to socio-scientific issues, e.g., the economic and social effects of climate change policies. The goal is for students to use evidence-based arguments in situations where opinion-based arguments are common. Key components (i.e., models and the corresponding critical thinking questions) of one activity will be presented. We will also report preliminary feedback based on initial classroom testing of several of the activities.

  11. Quantitative assessment of Vulnerability of Forest ecosystem to Climate Change in Korea

    NASA Astrophysics Data System (ADS)

    Byun, J.; Lee, W.; Choi, S.; Oh, S.; Climate Change Model Team

    2011-12-01

    The purpose of this study was to assess the vulnerability of forest ecosystem to climate change in Korea using outputs of vegetation models(HyTAG and MC1) and socio-ecological indicators. Also it suggested adaptation strategies in forest management through analysis of three vulnerability components: exposure, sensitivity and adaptive capacity. For the model simulation of past years(1971-2000), the climatic data was prepared by the Korea Meteorological Administration(KMA). In addition, for the future simulation, the Fifth-Generation NCAR/Penn State Mesoscale Model(MM5) coupling with atmosphere-ocean circulation model(ECHO-G) provide the future climatic data under the A1B scenarios. HyTAG (Hydrological and Thermal Analogy Groups), korean model of forest distribution on a regional-scale, could show extent of sensitivity and adaptive capacity in connection with changing frequency and changing direction of vegetation. MC1 model could provide variation and direction of NPP(Net Primary Production) and SCS(Soil Carbon Storage). In addition, the sensitivity and adaptation capacity were evaluated for each. Besides indicators from models, many other indicators such as financial affairs and number of officers were included in the vulnerability components. As a result of the vulnerability assessment, south western part and Je-ju island of Korea had relatively high vulnerability. This finding is considered to come from a distinctively adaptative capacity. Using these results, we could propose actions against climate change and develop decision making systems on forest management.

  12. Vulnerabilities of national parks in the American Midwest to climate and land use changes

    USGS Publications Warehouse

    Stroh, Esther D.; Struckhoff, Matthew A.; Shaver, David; Karstensen, Krista A.

    2016-06-08

    Many national parks in the American Midwest are surrounded by agricultural or urban areas or are in highly fragmented or rapidly changing landscapes. An environmental stressor is a physical, chemical, or biological condition that affects the functioning or productivity of species or ecosystems. Climate change is just one of many stressors on park natural resources; others include urbanization, land use change, air and water pollution, and so on. Understanding and comparing the relative vulnerability of a suite of parks to projected climate and land use changes is important for region-wide planning. A vulnerability assessment of 60 units in the 13-state U.S. National Park Service Midwestern administrative region to climate and land use change used existing data from multiple sources. Assessment included three components: individual park exposure (5 metrics), sensitivity (5 metrics), and constraints to adaptive capacity (8 metrics) under 2 future climate scenarios. The three components were combined into an overall vulnerability score. Metrics were measures of existing or projected conditions within park boundaries, within 10-kilometer buffers surrounding parks, and within ecoregions that contain or intersect them. Data were normalized within the range of values for all assessed parks, resulting in high, medium, and low relative rankings for exposure, sensitivity, constraints to adaptive capacity, and overall vulnerability. Results are consistent with assessments regarding patterns and rates of climate change nationwide but provide greater detail and relative risk for Midwestern parks. Park overall relative vulnerability did not differ between climate scenarios. Rankings for exposure, sensitivity, and constraints to adaptive capacity varied geographically and indicate regional conservation planning opportunities. The most important stressors for the most vulnerable Midwestern parks are those related to sensitivity (intrinsic characteristics of the park) and constraints on adaptive capacity (characteristics of the surrounding landscape) rather than exposure to external forces, including climate change. Output will allow individual park managers to understand which metrics weigh most heavily in the overall vulnerability of their park and can be used for region-wide responses and resource allocation for adaptation efforts.

  13. Evaluating Social and Ecological Vulnerability of Coral Reef Fisheries to Climate Change

    PubMed Central

    Cinner, Joshua E.; Huchery, Cindy; Darling, Emily S.; Humphries, Austin T.; Graham, Nicholas A. J.; Hicks, Christina C.; Marshall, Nadine; McClanahan, Tim R.

    2013-01-01

    There is an increasing need to evaluate the links between the social and ecological dimensions of human vulnerability to climate change. We use an empirical case study of 12 coastal communities and associated coral reefs in Kenya to assess and compare five key ecological and social components of the vulnerability of coastal social-ecological systems to temperature induced coral mortality [specifically: 1) environmental exposure; 2) ecological sensitivity; 3) ecological recovery potential; 4) social sensitivity; and 5) social adaptive capacity]. We examined whether ecological components of vulnerability varied between government operated no-take marine reserves, community-based reserves, and openly fished areas. Overall, fished sites were marginally more vulnerable than community-based and government marine reserves. Social sensitivity was indicated by the occupational composition of each community, including the importance of fishing relative to other occupations, as well as the susceptibility of different fishing gears to the effects of coral bleaching on target fish species. Key components of social adaptive capacity varied considerably between the communities. Together, these results show that different communities have relative strengths and weaknesses in terms of social-ecological vulnerability to climate change. PMID:24040228

  14. Quantifying the role of climate variability on extreme total water level impacts: An application of a full simulation model to Ocean Beach, California

    NASA Astrophysics Data System (ADS)

    Serafin, K.; Ruggiero, P.; Stockdon, H. F.; Barnard, P.; Long, J.

    2014-12-01

    Many coastal communities worldwide are vulnerable to flooding and erosion driven by extreme total water levels (TWL), potentially dangerous events produced by the combination of large waves, high tides, and high non-tidal residuals. The West coast of the United States provides an especially challenging environment to model these processes due to its complex geological setting combined with uncertain forecasts for sea level rise (SLR), changes in storminess, and possible changes in the frequency of major El Niños. Our research therefore aims to develop an appropriate methodology to assess present-day and future storm-induced coastal hazards along the entire U.S. West coast, filling this information gap. We present the application of this framework in a pilot study at Ocean Beach, California, a National Park site within the Golden Gate National Recreation Area where existing event-scale coastal change data can be used for model calibration and verification. We use a probabilistic, full simulation TWL model (TWL-FSM; Serafin and Ruggiero, in press) that captures the seasonal and interannual climatic variability in extremes using functions of regional climate indices, such as the Multivariate ENSO index (MEI), to represent atmospheric patterns related to the El Niño-Southern Oscillation (ENSO). In order to characterize the effect of climate variability on TWL components, we refine the TWL-FSM by splitting non-tidal residuals into low (monthly mean sea level anomalies) and high frequency (storm surge) components. We also develop synthetic climate indices using Markov sequences to reproduce the autocorrelated nature of ENSO behavior. With the refined TWL-FSM, we simulate each TWL component, resulting in synthetic TWL records providing robust estimates of extreme return level events (e.g., the 100-yr event) and the ability to examine the relative contribution of each TWL component to these extreme events. Extreme return levels are then used to drive storm impact models to examine the probability of coastal change (Stockdon et al., 2013) and thus, the vulnerability to storm-induced coastal hazards that Ocean Beach faces. Future climate variability is easily incorporated into this framework, allowing us to quantify how an evolving climate will alter future extreme TWLs and their related coastal impacts.

  15. 36 CFR 219.12 - Monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Measurable changes on the plan area related to climate change and other stressors that may be affecting the.... Monitoring information should enable the responsible official to determine if a change in plan components or... relevant assumptions, tracking relevant changes, and measuring management effectiveness and progress toward...

  16. 36 CFR 219.12 - Monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Measurable changes on the plan area related to climate change and other stressors that may be affecting the.... Monitoring information should enable the responsible official to determine if a change in plan components or... relevant assumptions, tracking relevant changes, and measuring management effectiveness and progress toward...

  17. 36 CFR 219.12 - Monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Measurable changes on the plan area related to climate change and other stressors that may be affecting the.... Monitoring information should enable the responsible official to determine if a change in plan components or... relevant assumptions, tracking relevant changes, and measuring management effectiveness and progress toward...

  18. Responses of the Tropical Atmospheric Circulation to Climate Change and Connection to the Hydrological Cycle

    NASA Astrophysics Data System (ADS)

    Ma, Jian; Chadwick, Robin; Seo, Kyong-Hwan; Dong, Changming; Huang, Gang; Foltz, Gregory R.; Jiang, Jonathan H.

    2018-05-01

    This review describes the climate change–induced responses of the tropical atmospheric circulation and their impacts on the hydrological cycle. We depict the theoretically predicted changes and diagnose physical mechanisms for observational and model-projected trends in large-scale and regional climate. The tropical circulation slows down with moisture and stratification changes, connecting to a poleward expansion of the Hadley cells and a shift of the intertropical convergence zone. Redistributions of regional precipitation consist of thermodynamic and dynamical components, including a strong offset between moisture increase and circulation weakening throughout the tropics. This allows other dynamical processes to dominate local circulation changes, such as a surface warming pattern effect over oceans and multiple mechanisms over land. To improve reliability in climate projections, more fundamental understandings of pattern formation, circulation change, and the balance of various processes redistributing land rainfall are suggested to be important.

  19. Fast and Slow Precipitation Responses to Individual Climate Forcers: A PDRMIP Multimodel Study

    NASA Technical Reports Server (NTRS)

    Samset, B. H.; Myhre, G.; Forster, P.M.; Hodnebrog, O.; Andrews, T.; Faluvegi, G.; Flaschner, D.; Kasoar, M.; Kharin, V.; Kirkevag, A.; hide

    2016-01-01

    Precipitation is expected to respond differently to various drivers of anthropogenic climate change. We present the first results from the Precipitation Driver and Response Model Intercomparison Project (PDRMIP), where nine global climate models have perturbed CO2, CH4, black carbon, sulfate, and solar insolation. We divide the resulting changes to global mean and regional precipitation into fast responses that scale with changes in atmospheric absorption and slow responses scaling with surface temperature change. While the overall features are broadly similar between models, we find significant regional intermodel variability, especially over land. Black carbon stands out as a component that may cause significant model diversity in predicted precipitation change. Processes linked to atmospheric absorption are less consistently modeled than those linked to top-of-atmosphere radiative forcing. We identify a number of land regions where the model ensemble consistently predicts that fast precipitation responses to climate perturbations dominate over the slow, temperature-driven responses.

  20. Future climate data from RCP 4.5 and occurrence of malaria in Korea.

    PubMed

    Kwak, Jaewon; Noh, Huiseong; Kim, Soojun; Singh, Vijay P; Hong, Seung Jin; Kim, Duckgil; Lee, Keonhaeng; Kang, Narae; Kim, Hung Soo

    2014-10-15

    Since its reappearance at the Military Demarcation Line in 1993, malaria has been occurring annually in Korea. Malaria is regarded as a third grade nationally notifiable disease susceptible to climate change. The objective of this study is to quantify the effect of climatic factors on the occurrence of malaria in Korea and construct a malaria occurrence model for predicting the future trend of malaria under the influence of climate change. Using data from 2001-2011, the effect of time lag between malaria occurrence and mean temperature, relative humidity and total precipitation was investigated using spectral analysis. Also, a principal component regression model was constructed, considering multicollinearity. Future climate data, generated from RCP 4.5 climate change scenario and CNCM3 climate model, was applied to the constructed regression model to simulate future malaria occurrence and analyze the trend of occurrence. Results show an increase in the occurrence of malaria and the shortening of annual time of occurrence in the future.

  1. Future Climate Data from RCP 4.5 and Occurrence of Malaria in Korea

    PubMed Central

    Kwak, Jaewon; Noh, Huiseong; Kim, Soojun; Singh, Vijay P.; Hong, Seung Jin; Kim, Duckgil; Lee, Keonhaeng; Kang, Narae; Kim, Hung Soo

    2014-01-01

    Since its reappearance at the Military Demarcation Line in 1993, malaria has been occurring annually in Korea. Malaria is regarded as a third grade nationally notifiable disease susceptible to climate change. The objective of this study is to quantify the effect of climatic factors on the occurrence of malaria in Korea and construct a malaria occurrence model for predicting the future trend of malaria under the influence of climate change. Using data from 2001–2011, the effect of time lag between malaria occurrence and mean temperature, relative humidity and total precipitation was investigated using spectral analysis. Also, a principal component regression model was constructed, considering multicollinearity. Future climate data, generated from RCP 4.5 climate change scenario and CNCM3 climate model, was applied to the constructed regression model to simulate future malaria occurrence and analyze the trend of occurrence. Results show an increase in the occurrence of malaria and the shortening of annual time of occurrence in the future. PMID:25321875

  2. Water resources in the twenty-first century; a study of the implications of climate uncertainty

    USGS Publications Warehouse

    Moss, Marshall E.; Lins, Harry F.

    1989-01-01

    The interactions of the water resources on and within the surface of the Earth with the atmosphere that surrounds it are exceedingly complex. Increased uncertainty can be attached to the availability of water of usable quality in the 21st century, therefore, because of potential anthropogenic changes in the global climate system. For the U.S. Geological Survey to continue to fulfill its mission with respect to assessing the Nation's water resources, an expanded program to study the hydrologic implications of climate uncertainty will be required. The goal for this program is to develop knowledge and information concerning the potential water-resources implications for the United States of uncertainties in climate that may result from both anthropogenic and natural changes of the Earth's atmosphere. Like most past and current water-resources programs of the Geological Survey, the climate-uncertainty program should be composed of three elements: (1) research, (2) data collection, and (3) interpretive studies. However, unlike most other programs, the climate-uncertainty program necessarily will be dominated by its research component during its early years. Critical new concerns to be addressed by the research component are (1) areal estimates of evapotranspiration, (2) hydrologic resolution within atmospheric (climatic) models at the global scale and at mesoscales, (3) linkages between hydrology and climatology, and (4) methodology for the design of data networks that will help to track the impacts of climate change on water resources. Other ongoing activities in U.S. Geological Survey research programs will be enhanced to make them more compatible with climate-uncertainty research needs. The existing hydrologic data base of the Geological Survey serves as a key element in assessing hydrologic and climatologic change. However, this data base has evolved in response to other needs for hydrologic information and probably is not as sensitive to climate change as is desirable. Therefore, as measurement and network-design methodologies are improved to account for climate-change potential, new data-collection activities will be added to the existing programs. One particular area of data-collection concern pertains to the phenomenon of evapotranspiration. Interpretive studies of the hydrologic implications of climate uncertainty will be initiated by establishing several studies at the river-basin scale in diverse hydroclimatic and demographic settings. These studies will serve as tests of the existing methodologies for studying the impacts of climate change and also will help to define subsequent research priorities. A prototype for these studies was initiated in early 1988 in the Delaware River basin.

  3. Framework for Probabilistic Projections of Energy-Relevant Streamflow Indicators under Climate Change Scenarios for the U.S.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagener, Thorsten; Mann, Michael; Crane, Robert

    2014-04-29

    This project focuses on uncertainty in streamflow forecasting under climate change conditions. The objective is to develop easy to use methodologies that can be applied across a range of river basins to estimate changes in water availability for realistic projections of climate change. There are three major components to the project: Empirical downscaling of regional climate change projections from a range of Global Climate Models; Developing a methodology to use present day information on the climate controls on the parameterizations in streamflow models to adjust the parameterizations under future climate conditions (a trading-space-for-time approach); and Demonstrating a bottom-up approach tomore » establishing streamflow vulnerabilities to climate change. The results reinforce the need for downscaling of climate data for regional applications, and further demonstrates the challenges of using raw GCM data to make local projections. In addition, it reinforces the need to make projections across a range of global climate models. The project demonstrates the potential for improving streamflow forecasts by using model parameters that are adjusted for future climate conditions, but suggests that even with improved streamflow models and reduced climate uncertainty through the use of downscaled data, there is still large uncertainty is the streamflow projections. The most useful output from the project is the bottom-up vulnerability driven approach to examining possible climate and land use change impacts on streamflow. Here, we demonstrate an inexpensive and easy to apply methodology that uses Classification and Regression Trees (CART) to define the climate and environmental parameters space that can produce vulnerabilities in the system, and then feeds in the downscaled projections to determine the probability top transitioning to a vulnerable sate. Vulnerabilities, in this case, are defined by the end user.« less

  4. Climate change and evolution: disentangling environmental and genetic responses.

    PubMed

    Gienapp, P; Teplitsky, C; Alho, J S; Mills, J A; Merilä, J

    2008-01-01

    Rapid climate change is likely to impose strong selection pressures on traits important for fitness, and therefore, microevolution in response to climate-mediated selection is potentially an important mechanism mitigating negative consequences of climate change. We reviewed the empirical evidence for recent microevolutionary responses to climate change in longitudinal studies emphasizing the following three perspectives emerging from the published data. First, although signatures of climate change are clearly visible in many ecological processes, similar examples of microevolutionary responses in literature are in fact very rare. Second, the quality of evidence for microevolutionary responses to climate change is far from satisfactory as the documented responses are often - if not typically - based on nongenetic data. We reinforce the view that it is as important to make the distinction between genetic (evolutionary) and phenotypic (includes a nongenetic, plastic component) responses clear, as it is to understand the relative roles of plasticity and genetics in adaptation to climate change. Third, in order to illustrate the difficulties and their potential ubiquity in detection of microevolution in response to natural selection, we reviewed the quantitative genetic studies on microevolutionary responses to natural selection in the context of long-term studies of vertebrates. The available evidence points to the overall conclusion that many responses perceived as adaptations to changing environmental conditions could be environmentally induced plastic responses rather than microevolutionary adaptations. Hence, clear-cut evidence indicating a significant role for evolutionary adaptation to ongoing climate warming is conspicuously scarce.

  5. Climate change effects on agriculture: Economic responses to biophysical shocks

    PubMed Central

    Nelson, Gerald C.; Valin, Hugo; Sands, Ronald D.; Havlík, Petr; Ahammad, Helal; Deryng, Delphine; Elliott, Joshua; Fujimori, Shinichiro; Hasegawa, Tomoko; Heyhoe, Edwina; Kyle, Page; Von Lampe, Martin; Lotze-Campen, Hermann; Mason d’Croz, Daniel; van Meijl, Hans; van der Mensbrugghe, Dominique; Müller, Christoph; Popp, Alexander; Robertson, Richard; Robinson, Sherman; Schmid, Erwin; Schmitz, Christoph; Tabeau, Andrzej; Willenbockel, Dirk

    2014-01-01

    Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change’s representative concentration pathway with end-of-century radiative forcing of 8.5 W/m2. The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change. PMID:24344285

  6. Application of the high resolution regional climate change modelling for local impact study upon the hydrological regime in the Buzau and Ialomita river basins

    NASA Astrophysics Data System (ADS)

    Mic, R.; Corbus, C.; Caian, M.; Neculau, G.

    2009-09-01

    This paper is a subject of a stage within the scope of European Project 037005 STREP FP6 - CECILIA ("The assessment of impact and vulnerability of climate changes in the Centre and Eastern Europe"). The aim of this project is to assess the impact of climate changes from the regional scale to local scale of Centre and Eastern Europe area, pointing up very high climate resolution usefulness for catching the effects due to the field complexity of study area. The analysed Buzau and Ialomita river basins from Romania covering an area of 14392 km² are situated outside the Curvature Carpathian Mountains, into a zone where the altitude varies from 2500 m to 50 m. In conformity of altitude, the annual precipitation varied from 1400 mm/year, in the mountainous area to 400 mm/year in the plane area and the evapotranspiration between 500 mm/year in the high area to 850 mm/year in the plane area. However, due to a very high variability of weather conditions, droughts as well as excessive humidity periods occur in the course of a year. For the impact study of the possibly climate changes on the runoff in the Buzau and Ialomita river basins, the WatBal model was used, which have been calibrated through the runoff simulation in 17 cross-sections for the reference period 1971 - 2000. WatBal model has two main components. The first is the water balance component that uses continuous functions to describe water movement into a conceptualised basin and the second is the component that allows the calculation of potential evapotranspiration using the Priestly-Taylor equation. For the calculation of changes in the main climatic parameters (atmospheric precipitation, air temperature, relative humidity, solar radiation and wind speed), used in the analysis of the climate change impact on the hydrological regime, there were used the simulations accomplished with a regional climatic model (regCM3), elaborated by ICTP (Trieste), implemented in Romania and used for monthly, seasonal and climate scenarios numerical simulations, at a high spatial resolution of 10 km. Determination of the grid network nodes of the regional climate model regCM3 related to sub-basins from the Buzau and Ialomita river basins was accomplished with a methodology based on obtaining a digital map of river basins, together with related sub-basins. Overlapping this digital map over the network nodes of the grid was made by georeferencing. The changes were calculated for the periods 2021-2050 and 2071-2100 towards the reference period, for each month, like the differences between the values of the climatic parameters corresponding to the two periods. The monthly mean discharges at 4 gauging stations from the Buzau river basin and 13 gauging stations from Ialomita river basin, in the above mentioned hypotheses, are estimated. Study revealed the following changes in the components of the hydrological cycle due to the climate change: - The increase of the evapotranspiration, especially in the summer months, due to the increase of the air temperature. - The reduction of the depth and duration of snow cover due to the increase of the air temperature during winter time. - The variation of the annual mean runoff recorded an increase from the plain to the mountains, standing out a tendency of smoothing during the year in parallel with a global decrease of these. - The early occurrence of the floods and the reduction of the mixed spring floods (snow and rain) by the desynchronisation of the snow melting with the rainfall occurrence. - The reduction of the annual mean runoff on rivers due especially to the increase of the evapotranstpiration.

  7. Modeling Earth's Climate

    ERIC Educational Resources Information Center

    Pallant, Amy; Lee, Hee-Sun; Pryputniewicz, Sara

    2012-01-01

    Systems thinking suggests that one can best understand a complex system by studying the interrelationships of its component parts rather than looking at the individual parts in isolation. With ongoing concern about the effects of climate change, using innovative materials to help students understand how Earth's systems connect with each other is…

  8. WRF Test on IBM BG/L:Toward High Performance Application to Regional Climate Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, H S

    The effects of climate change will mostly be felt on local to regional scales (Solomon et al., 2007). To develop better forecast skill in regional climate change, an integrated multi-scale modeling capability (i.e., a pair of global and regional climate models) becomes crucially important in understanding and preparing for the impacts of climate change on the temporal and spatial scales that are critical to California's and nation's future environmental quality and economical prosperity. Accurate knowledge of detailed local impact on the water management system from climate change requires a resolution of 1km or so. To this end, a high performancemore » computing platform at the petascale appears to be an essential tool in providing such local scale information to formulate high quality adaptation strategies for local and regional climate change. As a key component of this modeling system at LLNL, the Weather Research and Forecast (WRF) model is implemented and tested on the IBM BG/L machine. The objective of this study is to examine the scaling feature of WRF on BG/L for the optimal performance, and to assess the numerical accuracy of WRF solution on BG/L.« less

  9. Undergraduate Research Experience in Ocean/Marine Science (URE-OMS) with African Student Component

    DTIC Science & Technology

    2008-01-01

    Intergovernmental Panel on Climate Change (IPCC). RESULTS Temporal and Spatial Variations of Sea Surface Temperature and Chlorophyll a in Coastal Waters of...Duck, North Carolina [4] Climate change has affected the North Carolina coastal environments and coastal hazards have already taken place in the area...from geological materials (sands, dead and/or bleached corals ...etc) shifted by waves, tides, and currents moving sediments and eroding shorelines

  10. Modelling the influence of land-use changes on biophysical and biochemical interactions at regional and global scales.

    PubMed

    Devaraju, N; Bala, G; Nemani, R

    2015-09-01

    Land-use changes since the start of the industrial era account for nearly one-third of the cumulative anthropogenic CO2 emissions. In addition to the greenhouse effect of CO2 emissions, changes in land use also affect climate via changes in surface physical properties such as albedo, evapotranspiration and roughness length. Recent modelling studies suggest that these biophysical components may be comparable with biochemical effects. In regard to climate change, the effects of these two distinct processes may counterbalance one another both regionally and, possibly, globally. In this article, through hypothetical large-scale deforestation simulations using a global climate model, we contrast the implications of afforestation on ameliorating or enhancing anthropogenic contributions from previously converted (agricultural) land surfaces. Based on our review of past studies on this subject, we conclude that the sum of both biophysical and biochemical effects should be assessed when large-scale afforestation is used for countering global warming, and the net effect on global mean temperature change depends on the location of deforestation/afforestation. Further, although biochemical effects trigger global climate change, biophysical effects often cause strong local and regional climate change. The implication of the biophysical effects for adaptation and mitigation of climate change in agriculture and agroforestry sectors is discussed. © 2014 John Wiley & Sons Ltd.

  11. Bioclimatic Classification of Northeast Asia for climate change response

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Jeon, S. W.; Lim, C. H.

    2016-12-01

    As climate change has been getting worse, we should monitor the change of biodiversity, and distribution of species to handle the crisis and take advantage of climate change. The development of bioclimatic map which classifies land into homogenous zones by similar environment properties is the first step to establish a strategy. Statistically derived classifications of land provide useful spatial frameworks to support ecosystem research, monitoring and policy decisions. Many countries are trying to make this kind of map and actively utilize it to ecosystem conservation and management. However, the Northeast Asia including North Korea doesn't have detailed environmental information, and has not built environmental classification map. Therefore, this study presents a bioclimatic map of Northeast Asia based on statistical clustering of bioclimate data. Bioclim data ver1.4 which provided by WorldClim were considered for inclusion in a model. Eight of the most relevant climate variables were selected by correlation analysis, based on previous studies. Principal Components Analysis (PCA) was used to explain 86% of the variation into three independent dimensions, which were subsequently clustered using an ISODATA clustering. The bioclimatic zone of Northeast Asia could consist of 29, 35, and 50 zones. This bioclimatic map has a 30' resolution. To assess the accuracy, the correlation coefficient was calculated between the first principal component values of the classification variables and the vegetation index, Gross Primary Production (GPP). It shows about 0.5 Pearson correlation coefficient. This study constructed Northeast Asia bioclimatic map by statistical method with high resolution, but in order to better reflect the realities, the variety of climate variables should be considered. Also, further studies should do more quantitative and qualitative validation in various ways. Then, this could be used more effectively to support decision making on climate change adaptation.

  12. Climate change and the green energy paradox: the consequences for twaite shad Alosa fallax from the River Severn, U.K.

    PubMed

    Aprahamian, M W; Aprahamian, C D; Knights, A M

    2010-11-01

    A stock-recruitment model with a temperature component was used to estimate the effect of an increase in temperature predicted by climate change projections on population persistence and distribution of twaite shad Alosa fallax. An increase of 1 and 2° C above the current mean summer (June to August) water temperature of 17·8° C was estimated to result in a three and six-fold increase in the population, respectively. Climate change is also predicted to result in an earlier commencement to their spawning migration into fresh water. The model was expanded to investigate the effect of any additional mortality that might arise from a tidal power barrage across the Severn Estuary. Turbine mortality was separated into two components: (1) juvenile (pre-maturation) on their out migration during their first year and on their first return to the river to spawn and (2) post-maturation mortality on adults on the repeat spawning component of the population. Under current conditions, decreasing pre-maturation and post-maturation survival by 8% is estimated to result in the stock becoming extinct. It is estimated that an increase in mean summer water temperature of 1° C would mean that survival pre and post-maturation would need to be reduced by c. 10% before the stock becomes extinct. Therefore, climate change is likely to be beneficial to populations of A. fallax within U.K. rivers, increasing survival and thus, population persistence. © 2010 The Authors. Journal of Fish Biology © 2010 The Fisheries Society of the British Isles.

  13. Integrated modeling of land-use change: the role of coupling, interactions and feedbacks between the human and Earth systems

    NASA Astrophysics Data System (ADS)

    Monier, E.; Kicklighter, D. W.; Ejaz, Q.; Winchester, N.; Paltsev, S.; Reilly, J. M.

    2016-12-01

    Land-use change integrates a large number of components of the human and Earth systems, including climate, energy, water, and land. These complex coupling elements, interactions and feedbacks take place on a variety of space and time scales, thus increasing the complexity of land-use change modeling frameworks. In this study, we aim to identify which coupling elements, interactions and feedbacks are important for modeling land-use change, both at the global and regional level. First, we review the existing land-use change modeling framework used to develop land-use change projections for the Representative Concentration Pathways (RCP) scenarios. In such framework, land-use change is simulated by Integrated Assessment Models (IAMs) and mainly influenced by economic, energy, demographic and policy drivers. IAMs focus on representing the demand for agriculture and forestry goods (crops for food and bioenergy, forest products for construction and bioenergy), the interactions with other sectors of the economy and trade between various regions of the world. Then, we investigate how important various coupling elements and feedbacks with the Earth system are for projections of land-use change at the global and regional level. We focus on the following: i) the climate impacts on land productivity and greenhouse gas emissions, which requires climate change information and coupling to a terrestrial ecosystem model/crop model; ii) the climate and economic impacts on irrigation availability, which requires coupling the LUC modeling framework to a water resources management model and disaggregating rainfed and irrigated croplands; iii) the feedback of land-use change on the global and regional climate system through land-use change emissions and changes in the surface albedo and hydrology, which requires coupling to an Earth system model. Finally, we conclude our study by highlighting the current lack of clarity in how various components of the human and Earth systems are coupled in IAMs , and the need for a lexicon that is agreed upon by the IAM community.

  14. Climate change, tourism and historical grazing influence the distribution of Carex lachenalii Schkuhr - A rare arctic-alpine species in the Tatra Mts.

    PubMed

    Czortek, Patryk; Delimat, Anna; Dyderski, Marcin K; Zięba, Antoni; Jagodziński, Andrzej M; Jaroszewicz, Bogdan

    2018-03-15

    Mountain vegetation is highly specialized to harsh climatic conditions and therefore is sensitive to any change in environment. The rarest and most vulnerable plants occurring in alpine regions are expected to respond rapidly to environmental changes. An example of such a species is Carex lachenalii subsp. lachenalii Schkuhr, which occurs in Poland on only a few isolated sites in the Tatra Mts. The aim of this study was to assess changes in distribution of C. lachenalii in the Tatra Mts over the past 50-150years and the effects of climate change, tourism and historical grazing on the ecological niche of C. lachenalii. We focused on changes in the importance of functional diversity components in shaping plant species composition. Over the past 50-150years, the elevation of the average distribution of C. lachenalii shifted about 178m upward alongside a significant prolongation of the vegetative season by approximately 20days in the last 50-60years. Species composition of plots without C. lachenalii was characterized by competition between plants, whereas on plots with C. lachenalii habitat filtering was the most important component. Our results suggest that climate change was the main factor driving upward shift of C. lachenalii. Moderate trampling enhanced horizontal spread of this plant, whereas cessation of grazing grazing caused decline of C. lachenalii. The three environmental factors studied that determined shifts in distribution of C. lachenalii may also contribute to changes in distribution of other rare mountain plant species causing changes in ecosystem functioning. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Conceptualising the interactive effects of climate change and biological invasions on subarctic freshwater fish.

    PubMed

    Rolls, Robert J; Hayden, Brian; Kahilainen, Kimmo K

    2017-06-01

    Climate change and species invasions represent key threats to global biodiversity. Subarctic freshwaters are sentinels for understanding both stressors because the effects of climate change are disproportionately strong at high latitudes and invasion of temperate species is prevalent. Here, we summarize the environmental effects of climate change and illustrate the ecological responses of freshwater fishes to these effects, spanning individual, population, community and ecosystem levels. Climate change is modifying hydrological cycles across atmospheric, terrestrial and aquatic components of subarctic ecosystems, causing increases in ambient water temperature and nutrient availability. These changes affect the individual behavior, habitat use, growth and metabolism, alter population spawning and recruitment dynamics, leading to changes in species abundance and distribution, modify food web structure, trophic interactions and energy flow within communities and change the sources, quantity and quality of energy and nutrients in ecosystems. Increases in temperature and its variability in aquatic environments underpin many ecological responses; however, altered hydrological regimes, increasing nutrient inputs and shortened ice cover are also important drivers of climate change effects and likely contribute to context-dependent responses. Species invasions are a complex aspect of the ecology of climate change because the phenomena of invasion are both an effect and a driver of the ecological consequences of climate change. Using subarctic freshwaters as an example, we illustrate how climate change can alter three distinct aspects of species invasions: (1) the vulnerability of ecosystems to be invaded, (2) the potential for species to spread and invade new habitats, and (3) the subsequent ecological effects of invaders. We identify three fundamental knowledge gaps focused on the need to determine (1) how environmental and landscape characteristics influence the ecological impact of climate change, (2) the separate and combined effects of climate and non-native invading species and (3) the underlying ecological processes or mechanisms responsible for changes in patterns of biodiversity.

  16. Combined effects of climate, restoration measures and slope position in change in soil chemical properties and nutrient loss across lands affected by the Wenchuan Earthquake in China.

    PubMed

    Lin, Yongming; Deng, Haojun; Du, Kun; Rafay, Loretta; Zhang, Guang-Shuai; Li, Jian; Chen, Can; Wu, Chengzhen; Lin, Han; Yu, Wei; Fan, Hailan; Ge, Yonggang

    2017-10-15

    The MS 8.0Wenchuan Earthquake in 2008 caused huge damage to land cover in the northwest of China's Sichuan province. In order to determine the nutrient loss and short term characteristics of change in soil chemical properties, we established an experiment with three treatments ('undestroyed', 'destroyed and treated', and 'destroyed and untreated'), two climate types (semi-arid hot climate and subtropical monsoon climate), and three slope positions (upslope, mid-slope, and bottom-slope) in 2011. Ten soil properties-including pH, organic carbon, total nitrogen, total phosphorus, total potassium, Ca 2+ , Mg 2+ , alkaline hydrolysable nitrogen, available phosphorus, and available potassium-were measured in surface soil samples in December 2014. Analyses were performed to compare the characteristics of 3-year change in soil chemical properties in two climate zones. This study revealed that soil organic carbon, total nitrogen, Ca 2+ content, alkaline hydrolysable nitrogen, available phosphorus, and available potassium were significantly higher in subtropical monsoon climate zones than in semi-arid hot climate zones. However, subtropical monsoon climate zones had a higher decrease in soil organic carbon, total nitrogen, total phosphorus, total potassium, and alkaline hydrolysable nitrogen in 'destroyed and untreated' sites than in semi-arid hot climate zones. Most soil chemical properties exhibited significant interactions, indicating that they may degrade or develop concomitantly. 'Destroyed and treated' sites in both climate types had lower C:P and N:P ratios than 'destroyed and untreated' sites. Principal component analysis (PCA) showed that the first, second, and third principal components explained 76.53% of the variation and might be interpreted as structural integrity, nutrient supply availability, and efficiency of soil; the difference of soil parent material; as well as weathering and leaching effects. Our study indicated that the characteristics of short term change in soil properties were affected by climate types and treatments, but not slope positions. Our results provide useful information for the selection of restoration countermeasures in different climate types to facilitate ecological restoration and reconstruction strategies in earthquake-affected areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Coastline degradation as an indicator of global change

    USGS Publications Warehouse

    Nicholls, Robert J.; Woodroffe, Colin D.; Burkett, Virginia; Letcher, Trevor M.

    2009-01-01

    Finding a climate change signal on coasts is more problematic than often assumed. Coasts undergo natural dynamics at many scales, with erosion and recovery in response to climate variability such as El Niño, or extreme events such as storms and infrequent tsunamis. Additionally, humans have had enormous impacts on most coasts, overshadowing most changes that one can presently attribute directly to climate change. Each area of coast is experiencing its own pattern of relative sea-level change and climate change, making discrimination of the component of degradation that results from climate change problems. The best examples of a climate influence are related to temperature rise at low and high latitudes, as seen by the impacts on coral reefs and polar coasts, respectively. Observations through the twentieth century demonstrate the importance of understanding the impacts of sea-level rise and climate change in the context of multiple drivers of change; this will remain a challenge under a more rapidly changing climate. Nevertheless, there are emerging signs that climate change provides a global threat—sea ice is retreating, permafrost in coastal areas is widely melting. Reefs are bleaching more often, and the sea is rising—amplifying widespread trends of subsidence and threatening low-lying areas. To enhance the sustainability of coastal systems, management strategies will also need to address this challenge, focusing on the drivers that are dominant at each section of coast. Global warming through the twentieth century has caused a series of changes with important implications for coastal areas. These include rising temperatures, rising sea level, increasing CO2 concentrations with an associated reduction in seawater pH, and more intense precipitation on average.

  18. Media Articles Describing Advances in Scientific Research as a Vehicle for Student Engagement Fostering Climate Literacy

    NASA Astrophysics Data System (ADS)

    Brassell, S. C.

    2014-12-01

    "Records of Global Climate Change" enables students to fulfill the science component of an undergraduate distribution requirement in "Critical Approaches" at IU Bloomington. The course draws students from all disciplines with varying levels of understanding of scientific approaches and often limited familiarity with climate issues. Its discussion sessions seek to foster scientific literacy via an alternating series of assignments focused on a combination of exercises that involve either examination and interpretation of on-line climate data or consideration and assessment of the scientific basis of new discoveries about climate change contained in recently published media articles. The final assignment linked to the discussion sessions requires students to review and summarize the topics discussed during the semester. Their answers provide direct evidence of newly acquired abilities to assimilate and evaluate scientific information on a range of topics related to climate change. In addition, student responses to an end-of-semester survey confirm that the vast majority considers that their knowledge and understanding of climate change was enhanced, and unsolicited comments note that the discussion sessions contributed greatly to this advancement. Many students remarked that the course's emphasis on examination of paleoclimate records helped their comprehension of the unprecedented nature of present-day climate trends. Others reported that their views on the significance of climate change had been transformed, and some commented that they now felt well equipped to engage in discussions about climate change because they were better informed about its scientific basis and facts.

  19. Impact of climate change on water balance components in Mediterranean rainfed olive orchards under tillage or cover crop soil management

    NASA Astrophysics Data System (ADS)

    Rodríguez-Carretero, María Teresa; Lorite, Ignacio J.; Ruiz-Ramos, Margarita; Dosio, Alessandro; Gómez, José A.

    2013-04-01

    The rainfed olive orchards in Southern Spain constitute the main socioeconomic system of the Mediterranean Spanish agriculture. These systems have an elevated level of complexity and require the accurate characterization of crop, climate and soil components for a correct management. It is common the inclusion of cover crops (usually winter cereals or natural cover) intercalated between the olive rows in order to reduce water erosion. Saving limited available water requires specific management, mowing or killing these cover crops in early spring. Thus, under the semi-arid conditions in Southern Spain the management of the cover crops in rainfed olive orchards is essential to avoid a severe impact to the olive orchards yield through depletion of soil water. In order to characterize this agricultural system, a complete water balance model has been developed, calibrated and validated for the semi-arid conditions of Southern Spain, called WABOL (Abazi et al., 2013). In this complex and fragile system, the climate change constitutes a huge threat for its sustainability, currently limited by the availability of water resources, and its forecasted reduction for Mediterranean environments in Southern Spain. The objective of this study was to simulate the impact of climate change on the different components of the water balance in these representative double cropping systems: transpiration of the olive orchard and cover crop, runoff, deep percolation and soil water content. Four climatic scenarios from the FP6 European Project ENSEMBLES were first bias corrected for temperatures and precipitation (Dosio and Paruolo, 2011; Dosio et al., 2012) and, subsequently, used as inputs for the WABOL model for five olive orchard fields located in Southern Spain under different conditions of crop, climate, soils and management, in order to consider as much as possible of the variability detected in the Spanish olive orchards. The first results indicate the significant effect of the cover crop on the transpiration of the olive orchard, indicating that a correct water and soil management is crucial for these systems especially under climate change conditions. Thus, a significant reduction of transpiration was detected when the cover crops were implanted. When the climatic conditions were more limited (reductions of around 21% for the annual precipitation and increases around 13% for reference evapotranspiration), the impact on olive orchards were critical, affecting seriously the profitability of the olive orchards. In this context, cover crops can be considered as part of adaptation strategies. Further studies will be required for the determination of optimal species and varieties to be used as cover crops to reduce the impact of climate change on olive orchards under semi-arid conditions. References Abazi U, Lorite IJ, Cárceles B, Martínez-Raya A, Durán VH, Francia JR, Gómez JA (2013) WABOL: A conceptual water balance model for analyzing rainfall water use in olive orchards under different soil and cover crop Management strategies. Computers and Electronics in Agriculture 91:35-48 Dosio A, Paruolo P (2011) Bias correction of the ENSEMBLES high-resolution climate change projections for use by impact models: Evaluation on the present climate. Journal of Geophysical Research, V 116, D16106, doi:10.1029/2011JD015934 Dosio A, Paruolo P, Rojas R (2012) Bias correction of the ENSEMBLES high resolution climate change projections for use by impact models: Analysis of the climate change signal. Journal of Geophysical Research, V 117, D17, doi: 10.1029/2012JD017968

  20. Countering Climate Confusion in the Classroom: New Methods and Initiatives

    NASA Astrophysics Data System (ADS)

    McCaffrey, M.; Berbeco, M.; Reid, A. H.

    2014-12-01

    Politicians and ideologues blocking climate education through legislative manipulation. Free marketeers promoting the teaching of doubt and controversy to head off regulation. Education standards and curricula that skim over, omit, or misrepresent the causes, effects, risks and possible responses to climate change. Teachers who unknowingly foster confusion by presenting "both sides" of a phony scientific controversy. All of these contribute to dramatic differences in the quality and quantity of climate education received by U.S. students. Most U.S. adults and teens fail basic quizzes on energy and climate basics, in large part, because climate science has never been fully accepted as a vital component of a 21st-century science education. Often skipped or skimmed over, human contributions to climate change are sometimes taught as controversy or through debate, perpetuating a climate of confusion in many classrooms. This paper will review recent history of opposition to climate science education, and explore initial findings from a new survey of science teachers on whether, where and how climate change is being taught. It will highlight emerging effective pedagogical practices identified in McCaffrey's Climate Smart & Energy Wise, including the role of new initiatives such as the Next Generation Science Standards and Green Schools, and detail efforts of the Science League of America in countering denial and doubt so that educators can teach consistently and confidently about climate change.

  1. The Fourth National Climate Assessment: Progress and Next Steps

    NASA Astrophysics Data System (ADS)

    Reidmiller, D.; Lewis, K.; Reeves, K.

    2017-12-01

    The Global Change Research Act of 1990 mandates the production of a quadrennial National Climate Assessment (NCA) that integrates, evaluates, and interprets global change science. The NCA analyzes observed and projected trends in global change and evaluates related impacts across a range of sectors and regions in the United States. The fourth assessment, NCA4, is currently under development by nearly 300 Federal and non-Federal experts and is expected to be available for public comment in Fall 2017 and released in late 2018. NCA4 is a key component of the US Global Change Research Program's Sustained Assessment process, which aims to advance the science of global change and provide authoritative, relevant information for decision makers. This talk will highlight the progress of NCA4, including an overview of the current draft of the assessment and advances since the third NCA, released in 2014. It will highlight the Climate Science Special Report, an essential component of NCA4, as well as provide insight into the public engagement process-including opportunities to participate-and identify scientific inputs and tools critical to its development, such as the 2nd State of the Carbon Cycle Report and USGCRP's new scenario products website.

  2. Temperature variability is a key component in accurately forecasting the effects of climate change on pest phenology.

    PubMed

    Merrill, Scott C; Peairs, Frank B

    2017-02-01

    Models describing the effects of climate change on arthropod pest ecology are needed to help mitigate and adapt to forthcoming changes. Challenges arise because climate data are at resolutions that do not readily synchronize with arthropod biology. Here we explain how multiple sources of climate and weather data can be synthesized to quantify the effects of climate change on pest phenology. Predictions of phenological events differ substantially between models that incorporate scale-appropriate temperature variability and models that do not. As an illustrative example, we predicted adult emergence of a pest of sunflower, the sunflower stem weevil Cylindrocopturus adspersus (LeConte). Predictions of the timing of phenological events differed by an average of 11 days between models with different temperature variability inputs. Moreover, as temperature variability increases, developmental rates accelerate. Our work details a phenological modeling approach intended to help develop tools to plan for and mitigate the effects of climate change. Results show that selection of scale-appropriate temperature data is of more importance than selecting a climate change emission scenario. Predictions derived without appropriate temperature variability inputs will likely result in substantial phenological event miscalculations. Additionally, results suggest that increased temperature instability will lead to accelerated pest development. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  3. Climate change, biotic interactions and ecosystem services

    PubMed Central

    Montoya, José M.; Raffaelli, Dave

    2010-01-01

    Climate change is real. The wrangling debates are over, and we now need to move onto a predictive ecology that will allow managers of landscapes and policy makers to adapt to the likely changes in biodiversity over the coming decades. There is ample evidence that ecological responses are already occurring at the individual species (population) level. The challenge is how to synthesize the growing list of such observations with a coherent body of theory that will enable us to predict where and when changes will occur, what the consequences might be for the conservation and sustainable use of biodiversity and what we might do practically in order to maintain those systems in as good condition as possible. It is thus necessary to investigate the effects of climate change at the ecosystem level and to consider novel emergent ecosystems composed of new species assemblages arising from differential rates of range shifts of species. Here, we present current knowledge on the effects of climate change on biotic interactions and ecosystem services supply, and summarize the papers included in this volume. We discuss how resilient ecosystems are in the face of the multiple components that characterize climate change, and suggest which current ecological theories may be used as a starting point to predict ecosystem-level effects of climate change. PMID:20513709

  4. Developments in Climate and Soil Water Storage in the Locality of Poiplie

    NASA Astrophysics Data System (ADS)

    Pásztorová, Mária

    2013-03-01

    Climate change is one of the largest threats to the modern world. It is primarily experienced via changes and extreme weather events, including air temperature changes, the uneven distribution of precipitation and an increase in the alteration of torrential short-term precipitation and longer non-precipitation periods. However climate change is not only a change in the weather; it also has a much larger impact on an ecosystem. As a result of expected climate change, a lack of either surface water or groundwater could occur within wetlands; thus, the existence of wetlands and their flora and fauna could be threatened. This submitted work analyses the impact of climate change on the wetland ecosystems of Poiplie, which is situated in the south of Slovakia in the Ipeľ river basin. The area is an important wetland biotope with rare plant and animal species, which mainly live in open water areas, marshes, wet meadows and alluvial forests. To evaluate any climate change, the CGCM 3.1 model, two emission scenarios, the A2 emission scenario (pessimistic) and the B1 emission scenario (optimistic), were used within the regionalization. For simulating the soil water storage, which is one of the components of a soil water regime, the GLOBAL mathematical model was used.

  5. Integrated climate and land change research to improve decision-making and resource management in Southern Africa: The SASSCAL approach

    NASA Astrophysics Data System (ADS)

    Helmschrot, J.; Olwoch, J. M.

    2017-12-01

    The ability of countries in southern Africa to jointly respond to climate challenges with scientifically informed and evidence-based actions and policy decisions remains low due to limited scientific research capacity and infrastructure. The Southern African Science Service Centre for Climate Change and Adaptive Land Management (SASSCAL; www.sasscal.org) addresses this gap by implementing a high-level framework to guide research and innovation investments in climate change and adaptive land management interventions in Southern Africa. With a strong climate service component as cross-cutting topic, SASSCAL's focus is to improve the understanding of climate and land management change impacts on the natural and socio-economic environment in Southern Africa. The paper presents a variety of SASSCAL driven activities which contribute to better understand climate and long-term environmental change dynamics at various temporal and spatial scales in Southern Afrika and how these activities are linked to support research and decision-making to optimize agricultural practices as well as sustainable environmental and water resources management. To provide consistent and reliable climate information for Southern Africa, SASSCAL offers various climate services ranging from real-time climate observation across the region utilizing the SASSCAL WeatherNet to regional climate change analysis and modelling efforts at seasonal-to-decadal timescales using climate data from various sources. SASSCAL also offers the current state of the environment in terms of recent data on changes in the environment that are necessary for setting appropriate adaptation strategies . The paper will further demonstrate how these services are utilized for interdisciplinary research on the impact of climate change on natural resources and socio-economic development in the SASSCAL countries and how this knowledge can be effectively used to mitigate and adapt to climate change by informed decision-making from farm to regional level.

  6. Accelerating climate change impacts on alpine glacier forefield ecosystems in the European Alps.

    PubMed

    Cannone, Nicoletta; Diolaiuti, Guglielmina; Guglielmin, Mauro; Smiraglia, Claudio

    2008-04-01

    In the European Alps the increase in air temperature was more than twice the increase in global mean temperature over the last 50 years. The abiotic (glacial) and the biotic components (plants and vegetation) of the mountain environment are showing ample evidence of climate change impacts. In the Alps most small glaciers (80% of total glacial coverage and an important contribution to water resources) could disappear in the next decades. Recently climate change was demonstrated to affect higher levels of ecological systems, with vegetation exhibiting surface area changes, indicating that alpine and nival vegetation may be able to respond in a fast and flexible way in response to 1-2 degrees C warming. We analyzed the glacier evolution (terminus fluctuations, mass balances, surface area variations), local climate, and vegetation succession on the forefield of Sforzellina Glacier (Upper Valtellina, central Italian Alps) over the past three decades. We aimed to quantify the impacts of climate change on coupled biotic and abiotic components of high alpine ecosystems, to verify if an acceleration was occurring on them during the last decade (i.e., 1996-2006) and to assess whether new specific strategies were adopted for plant colonization and development. All the glaciological data indicate that a glacial retreat and shrinkage occurred and was much stronger after 2002 than during the last 35 years. Vegetation started to colonize surfaces deglaciated for only one year, with a rate at least four times greater than that reported in the literature for the establishment of scattered individuals and about two times greater for the well-established discontinuous early-successional community. The colonization strategy changed: the first colonizers are early-successional, scree slopes, and perennial clonal species with high phenotypic plasticity rather than pioneer and snowbed species. This impressive acceleration coincided with only slight local summer warming (approximately -0.5 degree C) and a poorly documented local decrease in the snow cover depth and duration. Are we facing accelerated ecological responses to climatic changes and/or did we go beyond a threshold over which major ecosystem changes may occur in response to even minor climatic variations?

  7. Global Carbon Project: the Global Carbon Budget 2015 (V.1.0., issued Nov. 2015 and V.1.1, issued Dec. 2015)

    DOE Data Explorer

    Le Quere, C. [University of East Anglia, Norwich UK; Moriarty, R. [University of East Anglia, Norwich UK; Andrew, R. M. [Univ. of Oslo (Norway); Canadell, J. G. [Commonwealth Scientific and Industrial Research Organization (CSIRO) Oceans and Atmosphere, Canberra ACT (Australia); Sitch, S. [University of Exeter, Exter UK; Boden, T. A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) Carbon Dioxide Information Analysis Center (CDIAC); al., et

    2015-01-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates as well as consistency within and among components, alongside methodology and data limitations.

  8. Carbon sequestration in managed temperate coniferous forests under climate change

    NASA Astrophysics Data System (ADS)

    Dymond, Caren C.; Beukema, Sarah; Nitschke, Craig R.; Coates, K. David; Scheller, Robert M.

    2016-03-01

    Management of temperate forests has the potential to increase carbon sinks and mitigate climate change. However, those opportunities may be confounded by negative climate change impacts. We therefore need a better understanding of climate change alterations to temperate forest carbon dynamics before developing mitigation strategies. The purpose of this project was to investigate the interactions of species composition, fire, management, and climate change in the Copper-Pine Creek valley, a temperate coniferous forest with a wide range of growing conditions. To do so, we used the LANDIS-II modelling framework including the new Forest Carbon Succession extension to simulate forest ecosystems under four different productivity scenarios, with and without climate change effects, until 2050. Significantly, the new extension allowed us to calculate the net sector productivity, a carbon accounting metric that integrates aboveground and belowground carbon dynamics, disturbances, and the eventual fate of forest products. The model output was validated against literature values. The results implied that the species optimum growing conditions relative to current and future conditions strongly influenced future carbon dynamics. Warmer growing conditions led to increased carbon sinks and storage in the colder and wetter ecoregions but not necessarily in the others. Climate change impacts varied among species and site conditions, and this indicates that both of these components need to be taken into account when considering climate change mitigation activities and adaptive management. The introduction of a new carbon indicator, net sector productivity, promises to be useful in assessing management effectiveness and mitigation activities.

  9. Land Cover Land Use change and soil organic carbon under climate variability in the semi-arid West African Sahel (1960-2050)

    NASA Astrophysics Data System (ADS)

    Dieye, Amadou M.

    Land Cover Land Use (LCLU) change affects land surface processes recognized to influence climate change at local, national and global levels. Soil organic carbon is a key component for the functioning of agro-ecosystems and has a direct effect on the physical, chemical and biological characteristics of the soil. The capacity to model and project LCLU change is of considerable interest for mitigation and adaptation measures in response to climate change. A combination of remote sensing analyses, qualitative social survey techniques, and biogeochemical modeling was used to study the relationships between climate change, LCLU change and soil organic carbon in the semi-arid rural zone of Senegal between 1960 and 2050. For this purpose, four research hypotheses were addressed. This research aims to contribute to an understanding of future land cover land use change in the semi-arid West African Sahel with respect to climate variability and human activities. Its findings may provide insights to enable policy makers at local to national levels to formulate environmentally and economically adapted policy decisions. This dissertation research has to date resulted in two published and one submitted paper.

  10. A coupled human-natural systems analysis of irrigated agriculture under changing climate

    NASA Astrophysics Data System (ADS)

    Giuliani, M.; Li, Y.; Castelletti, A.; Gandolfi, C.

    2016-09-01

    Exponentially growing water demands and increasingly uncertain hydrologic regimes due to changes in climate and land use are challenging the sustainability of agricultural water systems. Farmers must adapt their management strategies in order to secure food production and avoid crop failures. Investigating the potential for adaptation policies in agricultural systems requires accounting for their natural and human components, along with their reciprocal interactions. Yet this feedback is generally overlooked in the water resources systems literature. In this work, we contribute a novel modeling approach to study the coevolution of irrigated agriculture under changing climate, advancing the representation of the human component within agricultural systems by using normative meta-models to describe the behaviors of groups of farmers or institutional decisions. These behavioral models, validated against observational data, are then integrated into a coupled human-natural system simulation model to better represent both systems and their coevolution under future changing climate conditions, assuming the adoption of different policy adaptation options, such as cultivating less water demanding crops. The application to the pilot study of the Adda River basin in northern Italy shows that the dynamic coadaptation of water supply and demand allows farmers to avoid estimated potential losses of more than 10 M€/yr under projected climate changes, while unilateral adaptation of either the water supply or the demand are both demonstrated to be less effective. Results also show that the impact of the different policy options varies as function of drought intensity, with water demand adaptation outperforming water supply adaptation when drought conditions become more severe.

  11. How Does The Climate Change?

    NASA Astrophysics Data System (ADS)

    Jones, R. N.

    2011-12-01

    In 1997, maximum temperature in SE Australia shifted up by 0.8°C at pH0<0.01. Rainfall decreased by 13% in 1997-2010 compared to 1900-1996. Statistically significant shifts also occur in impact indicators: baumé levels in winegrapes shift >21 days earlier from 1998, streamflow records decrease by 30-70% from 1997 and annual mean forest fire danger index increased by 38% from 1997. Despite catastrophic fires killing 178 people in early 2009, the public remains unaware of this large change in their exposure. When regional temperature was separated into internally and externally forced components, the latter component was found to warm in two steps, in 1968-73 and 1997. These dates coincide with shifts in zonal mean temperature (24-44S; Figure 1). Climate model output shows similar step and trend behavior. Tests run on zonal, hemispheric and global mean temperature observations found shifts in all regions. 1997 marks a shift in global temperature of 0.3°C at pH0<0.01. Similar shifts occur in long-term tide gauge records around the globe (e.g., Figure 2) and in ocean heat content. The prevailing paradigm for how climate variables change is signal-noise construct combining a smooth signal with variations caused by internal climate variability. There seems to be no sound theoretical basis for this assumption. On the contrary, complex system behavior would suggest non-linear responses to externally forced change, especially at the regional scale. Some of our most basic assumptions about how climate changes may need to be re-examined.

  12. Assessing Potential Future Carbon Dynamics with Climate Change and Fire Management in a Mountainous Landscape on the Olympic Peninsula, Washington, USA

    NASA Astrophysics Data System (ADS)

    Kennedy, R. S.

    2010-12-01

    Forests of the mountainous landscapes of the maritime Pacific Northwestern USA may have high carbon sequestration potential via their high productivity and moderate to infrequent fire regimes. With climate change, there may be shifts in incidence and severity of fire, especially in the drier areas of the region, via changes to forest productivity and hydrology, and consequent effects to C sequestration and forest structure. To explore this issue, I assessed potential effects of fire management (little fire suppression/wildland fire management/highly effective fire suppression) under two climate change scenarios on future C sequestration dynamics (amounts and spatial pattern) in Olympic National Park, WA, over a 500-year simulation period. I used the simulation platform FireBGCv2, which contains a mechanistic, individual tree succession model, a spatially explicit climate-based biophysical model that uses daily weather data, and a spatially explicit fire model incorporating ignition, spread, and effects on ecosystem components. C sequestration patterns varied over time and spatial and temporal patterns differed somewhat depending on the climate change scenario applied and the fire management methods employed. Under the more extreme climate change scenario with little fire suppression, fires were most frequent and severe and C sequestration decreased. General trends were similar under the more moderate climate change scenario, as compared to current climate, but spatial patterns differed. Both climate change scenarios under highly effective fire suppression showed about 50% of starting total C after the initial transition phase, whereas with 10% fire suppression both scenarios exhibited about 10% of starting amounts. Areas of the landscape that served as refugia for older forest under increasing frequency of high severity fire were also hotspots for C sequestration in a landscape experiencing increasing frequency of disturbance with climate change.

  13. Recent climatic, cryospheric, and hydrological changes over the interior of western Canada: a review and synthesis

    NASA Astrophysics Data System (ADS)

    DeBeer, Chris M.; Wheater, Howard S.; Carey, Sean K.; Chun, Kwok P.

    2016-04-01

    It is well established that the Earth's climate system has warmed significantly over the past several decades, and in association there have been widespread changes in various other Earth system components. This has been especially prevalent in the cold regions of the northern mid- to high latitudes. Examples of these changes can be found within the western and northern interior of Canada, a region that exemplifies the scientific and societal issues faced in many other similar parts of the world, and where impacts have global-scale consequences. This region has been the geographic focus of a large amount of previous research on changing climatic, cryospheric, and hydrological regimes in recent decades, while current initiatives such as the Changing Cold Regions Network (CCRN) introduced in this review seek to further develop the understanding and diagnosis of this change and hence improve the capacity to predict future change. This paper provides a comprehensive review of the observed changes in various Earth system components and a concise and up-to-date regional picture of some of the temporal trends over the interior of western Canada since the mid- or late 20th century. The focus is on air temperature, precipitation, seasonal snow cover, mountain glaciers, permafrost, freshwater ice cover, and river discharge. Important long-term observational networks and data sets are described, and qualitative linkages among the changing components are highlighted. Increases in air temperature are the most notable changes within the domain, rising on average 2 °C throughout the western interior since 1950. This increase in air temperature is associated with hydrologically important changes to precipitation regimes and unambiguous declines in snow cover depth, persistence, and spatial extent. Consequences of warming air temperatures have caused mountain glaciers to recede at all latitudes, permafrost to thaw at its southern limit, and active layers over permafrost to thicken. Despite these changes, integrated effects on stream flow are complex and often offsetting. Following a review of the current literature, we provide insight from a network of northern research catchments and other sites detailing how climate change confounds hydrological responses at smaller scales, and we recommend several priority research areas that will be a focus of continued work in CCRN. Given the complex interactions and process responses to climate change, it is argued that further conceptual understanding and quantitative diagnosis of the mechanisms of change over a range of scales is required before projections of future change can be made with confidence.

  14. Predicting ecosystem shifts requires new approaches that integrate the effects of climate change across entire systems

    PubMed Central

    Russell, Bayden D.; Harley, Christopher D. G.; Wernberg, Thomas; Mieszkowska, Nova; Widdicombe, Stephen; Hall-Spencer, Jason M.; Connell, Sean D.

    2012-01-01

    Most studies that forecast the ecological consequences of climate change target a single species and a single life stage. Depending on climatic impacts on other life stages and on interacting species, however, the results from simple experiments may not translate into accurate predictions of future ecological change. Research needs to move beyond simple experimental studies and environmental envelope projections for single species towards identifying where ecosystem change is likely to occur and the drivers for this change. For this to happen, we advocate research directions that (i) identify the critical species within the target ecosystem, and the life stage(s) most susceptible to changing conditions and (ii) the key interactions between these species and components of their broader ecosystem. A combined approach using macroecology, experimentally derived data and modelling that incorporates energy budgets in life cycle models may identify critical abiotic conditions that disproportionately alter important ecological processes under forecasted climates. PMID:21900317

  15. Regional Climate Models as a Tool for Assessing Changes in the Laurentian Great Lakes Net Basin Supply

    NASA Astrophysics Data System (ADS)

    Music, B.; Mailhot, E.; Nadeau, D.; Irambona, C.; Frigon, A.

    2017-12-01

    Over the last decades, there has been growing concern about the effects of climate change on the Great Lakes water supply. Most of the modelling studies focusing on the Laurentian Great Lakes do not allow two-way exchanges of water and energy between the atmosphere and the underlying surface, and therefore do not account for important feedback mechanisms. Moreover, energy budget constraint at the land surface is not usually taken into account. To address this issue, several recent climate change studies used high resolution Regional Climate Models (RCMs) for evaluating changes in the hydrological regime of the Great Lakes. As RCMs operate on the concept of water and energy conservation, an internal consistency of the simulated energy and water budget components is assured. In this study we explore several recently generated Regional Climate Model (RCM) simulations to investigate the Great Lakes' Net Basin Supply (NBS) in a changing climate. These include simulations of the Canadian Regional Climate Model (CRCM5) supplemented by simulations from several others RCMs participating to the North American CORDEX project (CORDEX-NA). The analysis focuses on the NBS extreme values under nonstationary conditions. The results are expected to provide useful information to the industries in the Great Lakes that all need to include accurate climate change information in their long-term strategy plans to better anticipate impacts of low and/or high water levels.

  16. A spatial analysis of population dynamics and climate change in Africa: potential vulnerability hot spots emerge where precipitation declines and demographic pressures coincide

    USGS Publications Warehouse

    López-Carr, David; Pricope, Narcisa G.; Aukema, Juliann E.; Jankowska, Marta M.; Funk, Christopher C.; Husak, Gregory J.; Michaelsen, Joel C.

    2014-01-01

    We present an integrative measure of exposure and sensitivity components of vulnerability to climatic and demographic change for the African continent in order to identify “hot spots” of high potential population vulnerability. Getis-Ord Gi* spatial clustering analyses reveal statistically significant locations of spatio-temporal precipitation decline coinciding with high population density and increase. Statistically significant areas are evident, particularly across central, southern, and eastern Africa. The highly populated Lake Victoria basin emerges as a particularly salient hot spot. People located in the regions highlighted in this analysis suffer exceptionally high exposure to negative climate change impacts (as populations increase on lands with decreasing rainfall). Results may help inform further hot spot mapping and related research on demographic vulnerabilities to climate change. Results may also inform more suitable geographical targeting of policy interventions across the continent.

  17. Assessment of vulnerability of forest ecosystems to climate change and adaptation planning in Nepal

    NASA Astrophysics Data System (ADS)

    Matin, M. A.; Chitale, V. S.

    2016-12-01

    Understanding ecosystem level vulnerability of forests and dependence of local communities on these ecosystems is a first step towards developing effective adaptation strategies. As forests are important components of livelihoods system for a large percentage of the population in the Himalayan region, they offer an important basis for creating and safeguarding more climate-resilient communities. Increased frequency, duration, and/or severity of drought and heat stress, changes in winter ecology, and pest and fire outbreaksunder climate change scenarios could fundamentally alter the composition, productivity and biogeography of forests affecting the potential ecosystem services offered and forest-based livelihoods. Hence, forest ecosystem vulnerability assessment to climate change and the development of a knowledgebase to identify and support relevant adaptation strategies is identified as an urgent need. Climate change vulnerability is measured as a function of exposure, sensitivity and the adaptive capacity of the system towards climate variability and extreme events. Effective adaptation to climate change depends on the availability of two important prerequisites: a) information on what, where, and how to adapt, and b) availability of resources to implement the adaptation measures. In the present study, we introduce the concept of two way multitier approach, which can support effective identification and implementation of adaptation measures in Nepal and the framework can be replicated in other countries in the HKH region. The assessment of overall vulnerability of forests comprises of two components: 1) understanding the relationship between exposure and sensitivity and positive feedback from adaptive capacity of forests; 2) quantifying the dependence of local communities on these ecosystems. We use climate datasets from Bioclim and biophysical products from MODIS, alongwith field datasets. We report that most of the forests along the high altitude areas and few patches in midhills and terai (plains) in Central Nepal depict moderate to high vulnerability of forests, while the forests from most of the other areas experience low vulnerability. Based on the matrix of vulnerability and dependence we suggest adaptation footprints for prioritization of adaptation measures on the ground.

  18. The variability of runoff and soil erosion in the Brazilian Cerrado biome due to the potential land use and climate changes

    NASA Astrophysics Data System (ADS)

    Alexandre Ayach Anache, Jamil; Wendland, Edson; Malacarne Pinheiro Rosalem, Lívia; Srivastava, Anurag; Flanagan, Dennis

    2017-04-01

    Changes in land use and climate can influence runoff and soil loss, threatening soil and water conservation in the Cerrado biome in Brazil. Due to the lack of long term observed data for runoff and soil erosion in Brazil, the adoption of a process-based model was necessary, representing the variability of both variables in a continuous simulation approach. Thus, we aimed to calibrate WEPP (Water Erosion Prediction Project) model for different land uses (undisturbed Cerrado, fallow, pasture, and sugarcane) under subtropical conditions inside the Cerrado biome; predict runoff and soil erosion for these different land uses; and simulate runoff and soil erosion considering climate change scenarios. We performed the model calibration using a 4-year dataset of observed runoff and soil loss in four different land uses (undisturbed Cerrado, fallow, pasture, and sugarcane). The WEPP model components (climate, topography, soil, and management) were calibrated according to field data. However, soil and management were optimized according to each land use using a parameter estimation tool. The observations were conducted between 2012 and 2015 in experimental plots (5 m width, 20 m length, 9% slope gradient, 3 replicates per treatment). The simulations were done using the calibrated WEPP model components, but changing the 4-year observed climate file by a 100-year dataset created with CLIGEN (weather generator) based on regional climate statistics. Afterwards, using MarkSim DSSAT Weather File Generator, runoff and soil loss were simulated using future climate scenarios for 2030, 2060, and 2090. To analyze the data, we used non-parametric statistics as data do not follow normal distribution. The results show that WEPP model had an acceptable performance for the considered conditions. In addition, both land use and climate can influence on runoff and soil loss rates. Potential climate changes which consider the increase of rainfall intensities and depths in the studied region may increase the variability and rates for runoff and soil erosion. However, the climate did not change the differences and similarities between the rates of the four analyzed land uses. The runoff behavior is distinct for all land uses, but for soil loss we found similarities between pasture and undisturbed Cerrado, suggesting that soil sustainability could be reached when the management follows conservation principles.

  19. Communicating for Climate Change Adaptation: Lessons from a Case Study with Nature-Based Tour Operators

    NASA Astrophysics Data System (ADS)

    Timm, K.; Sparrow, E. B.; Pettit, E. C.; Trainor, S. F.; Taylor, K.

    2014-12-01

    Increasing temperatures are projected to have a positive effect on the length of Alaska's tourism season, but the natural attractions that tourism relies on, such as glaciers, wildlife, fish, or other natural resources, may change. In order to continue to derive benefits from these resources, nature-based tour operators may have to adapt to these changes, and communication is an essential, but poorly understood, component of the climate change adaptation process. The goal of this study was to determine how to provide useful climate change information to nature-based tour operators by answering the following questions: 1. What environmental changes do nature-based tour operators perceive? 2. How are nature-based tour operators responding to climate and environmental change? 3. What climate change information do nature-based tour operators need? To answer these questions, twenty-four nature-based tour operators representing 20 different small and medium sized businesses in Juneau, Alaska were interviewed. The results show that many of Juneau's nature-based tour operators are observing, responding to, and in some cases, actively planning for further changes in the environment. The types of responses tended to vary depending on the participants' certainty in climate change and the perceived risks to their organization. Using these two factors, this study proposes a framework to classify climate change responses for the purpose of generating meaningful information and communication processes that promote adaptation and build adaptive capacity. During the course of the study, several other valuable lessons were learned about communicating about adaptation. The results of this study demonstrate that science communication research has an important place in the practice of promoting and fostering climate change adaptation. While the focus of this study was tour operators, the lessons learned may be valuable to other organizations striving to engage unique groups in climate change adaptation planning efforts and to social scientists trying to understanding of the role of communication in climate change adaptation.

  20. DESERTIFICATION IN THE MEDITERRANEAN REGION. A SECURITY ISSUE

    EPA Science Inventory

    Desertification (representing soil degradation) is one of the three nature-induced (climate change, hydrological cycle) and of three primarily human-induced challenges (population growth, urbanisation and food) of global environmental change. These six components closely interact...

  1. Moving from awareness to action: Advancing climate change vulnerability assessments and adaptation planning for Idaho and Montana National Forests

    USGS Publications Warehouse

    Kershner, Jessi; Woodward, Andrea; Torregrosa, Alicia

    2016-01-01

    The rugged landscapes of northern Idaho and western Montana support biodiverse ecosystems, and provide a variety of natural resources and services for human communities. However, the benefits provided by these ecosystems may be at risk as changing climate magnifies existing stressors and allows new stressors to emerge. Preparation for and response to these potential changes can be most effectively addressed through multi-stakeholder partnerships, evaluating vulnerability of important resources to climate change, and developing response and preparation strategies for managing key natural resources in a changing world. This project will support climate-smart conservation and management across forests of northern Idaho and western Montana through three main components: (1) fostering partnerships among scientists, land managers, regional landowners, conservation practitioners, and the public; (2) assessing the vulnerability of a suite of regionally important resources to climate change and other stressors; and (3) creating a portfolio of adaptation strategies and actions to help resource managers prepare for and respond to the likely impacts of climate change. The results of this project will be used to inform the upcoming land management plan revisions for national forests, helping ensure that the most effective and robust conservation and management strategies are implemented to preserve our natural resources.

  2. Detrending phenological time series improves climate-phenology analyses and reveals evidence of plasticity.

    PubMed

    Iler, Amy M; Inouye, David W; Schmidt, Niels M; Høye, Toke T

    2017-03-01

    Time series have played a critical role in documenting how phenology responds to climate change. However, regressing phenological responses against climatic predictors involves the risk of finding potentially spurious climate-phenology relationships simply because both variables also change across years. Detrending by year is a way to address this issue. Additionally, detrending isolates interannual variation in phenology and climate, so that detrended climate-phenology relationships can represent statistical evidence of phenotypic plasticity. Using two flowering phenology time series from Colorado, USA and Greenland, we detrend flowering date and two climate predictors known to be important in these ecosystems: temperature and snowmelt date. In Colorado, all climate-phenology relationships persist after detrending. In Greenland, 75% of the temperature-phenology relationships disappear after detrending (three of four species). At both sites, the relationships that persist after detrending suggest that plasticity is a major component of sensitivity of flowering phenology to climate. Finally, simulations that created different strengths of correlations among year, climate, and phenology provide broader support for our two empirical case studies. This study highlights the utility of detrending to determine whether phenology is related to a climate variable in observational data sets. Applying this as a best practice will increase our understanding of phenological responses to climatic variation and change. © 2016 by the Ecological Society of America.

  3. Assessing the effects of climate change on aquatic invasive species.

    PubMed

    Rahel, Frank J; Olden, Julian D

    2008-06-01

    Different components of global environmental change are typically studied and managed independently, although there is a growing recognition that multiple drivers often interact in complex and nonadditive ways. We present a conceptual framework and empirical review of the interactive effects of climate change and invasive species in freshwater ecosystems. Climate change is expected to result in warmer water temperatures, shorter duration of ice cover, altered streamflow patterns, increased salinization, and increased demand for water storage and conveyance structures. These changes will alter the pathways by which non-native species enter aquatic systems by expanding fish-culture facilities and water gardens to new areas and by facilitating the spread of species during floods. Climate change will influence the likelihood of new species becoming established by eliminating cold temperatures or winter hypoxia that currently prevent survival and by increasing the construction of reservoirs that serve as hotspots for invasive species. Climate change will modify the ecological impacts of invasive species by enhancing their competitive and predatory effects on native species and by increasing the virulence of some diseases. As a result of climate change, new prevention and control strategies such as barrier construction or removal efforts may be needed to control invasive species that currently have only moderate effects or that are limited by seasonally unfavorable conditions. Although most researchers focus on how climate change will increase the number and severity of invasions, some invasive coldwater species may be unable to persist under the new climate conditions. Our findings highlight the complex interactions between climate change and invasive species that will influence how aquatic ecosystems and their biota will respond to novel environmental conditions.

  4. Impacts of climate change under CMIP5 RCP scenarios on the streamflow in the Dinder River and ecosystem habitats in Dinder National Park, Sudan

    NASA Astrophysics Data System (ADS)

    Basheer, A. K.; Lu, H.; Omer, A.; Ali, A. B.; Abdelgader, A. M. S.

    2015-10-01

    The fate of seasonal rivers ecosystem habitats under climate change essentially depends on the changes in annual recharge, which related to alterations in precipitation and evaporation over the river basin. Therefore the change in climate conditions is expected to significantly affect hydrological and ecological components, particularly in fragmented ecosystems. This study aims to assess the impacts of climate change on the streamflow in Dinder River Basin (DRB), and infer its relative possible effects on the Dinder National Park (DNP) ecosystem habitats in the Sudan. Two global circulation models (GCMs) from Coupled Model Intercomparison Project Phase 5 and two statistical downscaling approaches combined with hydrological model (SWAT) were used to project the climate change conditions over the study periods 2020s, 2050s and 2080s. The results indicated that the climate over the DRB will become warmer and wetter under the most scenarios. The projected precipitation variability mainly depends on the selected GCM and downscaling approach. Moreover, the projected streamflow was more sensitive to rainfall and temperature variation, and will likely increase in this century. In contrast to drought periods during (1960s, 1970s and 1980s), the predicted climate change is likely to affect ecosystems in DNP positively and promote the ecological restoration of the flora and fauna habitats'.

  5. Framing Climate Change to Account for Values

    NASA Astrophysics Data System (ADS)

    Hassol, S. J.

    2011-12-01

    Belief, trust and values are important but generally overlooked in efforts to communicate climate change. Because climate change has often been framed too narrowly as an environmental issue, it has failed to engage segments of the public for whom environmentalism is not an important value. Worse, for some of these people, environmentalism and the policies that accompany it may be seen as a threat to their core values, such as the importance of personal freedoms and the free market. Climate science educators can improve this situation by more appropriately framing climate change as an issue affecting the economy and our most basic human needs: food, water, shelter, security, health, jobs, and the safety of our families. Further, because people trust and listen to those with whom they share cultural values, climate change educators can stress the kinds of values their audiences share. They can also enlist the support of opinion leaders known for holding these values. In addition, incorporating messages about solutions to climate change and their many benefits to economic prosperity, human health, and other values is an important component of meeting this challenge. We must also recognize that local impacts are of greater concern to most people than changes that feel distant in place and time. Different audiences have different concerns, and effective educators will learn what their audiences care about and tailor their messages accordingly.

  6. Climate Change Education in Earth System Science

    NASA Astrophysics Data System (ADS)

    Hänsel, Stephanie; Matschullat, Jörg

    2013-04-01

    The course "Atmospheric Research - Climate Change" is offered to master Earth System Science students within the specialisation "Climate and Environment" at the Technical University Bergakademie Freiberg. This module takes a comprehensive approach to climate sciences, reaching from the natural sciences background of climate change via the social components of the issue to the statistical analysis of changes in climate parameters. The course aims at qualifying the students to structure the physical and chemical basics of the climate system including relevant feedbacks. The students can evaluate relevant drivers of climate variability and change on various temporal and spatial scales and can transform knowledge from climate history to the present and the future. Special focus is given to the assessment of uncertainties related to climate observations and projections as well as the specific challenges of extreme weather and climate events. At the end of the course the students are able to critically reflect and evaluate climate change related results of scientific studies and related issues in media. The course is divided into two parts - "Climate Change" and "Climate Data Analysis" and encompasses two lectures, one seminar and one exercise. The weekly "Climate change" lecture transmits the physical and chemical background for climate variation and change. (Pre)historical, observed and projected climate changes and their effects on various sectors are being introduced and discussed regarding their implications for society, economics, ecology and politics. The related seminar presents and discusses the multiple reasons for controversy in climate change issues, based on various texts. Students train the presentation of scientific content and the discussion of climate change aspects. The biweekly lecture on "Climate data analysis" introduces the most relevant statistical tools and methods in climate science. Starting with checking data quality via tools of exploratory data analysis the approaches on climate time series, trend analysis and extreme events analysis are explained. Tools to describe relations within the data sets and significance tests further corroborate this. Within the weekly exercises that have to be prepared at home, the students work with self-selected climate data sets and apply the learned methods. The presentation and discussion of intermediate results by the students is as much part of the exercises as the illustration of possible methodological procedures by the teacher using exemplary data sets. The total time expenditure of the course is 270 hours with 90 attendance hours. The remainder consists of individual studies, e.g., preparation of discussions and presentations, statistical data analysis, and scientific writing. Different forms of examination are applied including written or oral examination, scientific report, presentation and portfolio work.

  7. Past climates primary productivity changes in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Le Mézo, P. K.; Kageyama, M.; Bopp, L.; Beaufort, L.; Braconnot, P.; Bassinot, F. C.

    2016-02-01

    Organic climate recorders, e.g., coccolithophorids and foraminifera, are widely used to reconstruct past climate conditions, such as the Indian monsoon intensity and variability, since they are sensitive to climate-induced fluctuations of their environment. In the Indian Ocean, it is commonly accepted that a stronger summer monsoon will enhance productivity in the Arabian Sea and therefore the amount of organisms in a sediment core should reflect monsoon intensity. In this study, we use the coupled Earth System Model IPSLCM5A, which has a biogeochemical component PISCES that simulates primary production. We use 8 climate simulations of the IPSL-CM5A model, from -72kyr BP climate conditions to a preindustrial state. Our simulations have different orbital forcing (precession, obliquity and eccentricity), greenhouse gas concentrations as well as different ice sheet covers. The objective of this work is to characterize the mechanisms behind the changes in primary productivity between the different time periods. Our model shows that in climates where monsoon is enhanced (due to changes in precession) we do not necessarily see an increase in summer productivity in the Arabian Sea, and inversely. It seems that the glacial-interglacial state of the simulation is important in driving productivity changes in this region of the world. We try to explain the changes in productivity in the Arabian Sea with the local climate and then to link the changes in local climate to large scale atmospheric forcing and commonly used Indian monsoon definitions.

  8. Predicting shifting sustainability trade-offs in marine finfish aquaculture under climate change.

    PubMed

    Sarà, Gianluca; Gouhier, Tarik C; Brigolin, Daniele; Porporato, Erika M D; Mangano, Maria Cristina; Mirto, Simone; Mazzola, Antonio; Pastres, Roberto

    2018-05-03

    Defining sustainability goals is a crucial but difficult task because it often involves the quantification of multiple interrelated and sometimes conflicting components. This complexity may be exacerbated by climate change, which will increase environmental vulnerability in aquaculture and potentially compromise the ability to meet the needs of a growing human population. Here, we developed an approach to inform sustainable aquaculture by quantifying spatio-temporal shifts in critical trade-offs between environmental costs and benefits using the time to reach the commercial size as a possible proxy of economic implications of aquaculture under climate change. Our results indicate that optimizing aquaculture practices by minimizing impact (this study considers as impact a benthic carbon deposition ≥ 1 g C m -2  day -1 ) will become increasingly difficult under climate change. Moreover, an increasing temperature will produce a poleward shift in sustainability trade-offs. These findings suggest that future sustainable management strategies and plans will need to account for the effects of climate change across scales. Overall, our results highlight the importance of integrating environmental factors in order to sustainably manage critical natural resources under shifting climatic conditions. © 2018 John Wiley & Sons Ltd.

  9. Valuing Groundwater Resources in Arid Watersheds under Climate Change: A Framework and Estimates for the Upper Rio Grande

    NASA Astrophysics Data System (ADS)

    Hurd, B. H.; Coonrod, J.

    2008-12-01

    Climate change is expected to alter surface hydrology throughout the arid Western United States, in most cases compressing the period of peak snowmelt and runoff, and in some cases, for example, the Rio Grande, limiting total runoff. As such, climate change is widely expected to further stress arid watersheds, particularly in regions where trends in population growth, economic development and environmental regulation are current challenges. Strategies to adapt to such changes are evolving at various institutional levels including conjunctive management of surface and ground waters. Groundwater resources remain one of the key components of water management strategies aimed at accommodating continued population growth and mitigating the potential for water supply disruptions under climate change. By developing a framework for valuing these resources and for value improvements in the information pertaining to their characteristics, this research can assist in prioritizing infrastructure and investment to change and enhance water resource management. The key objective of this paper is to 1) develop a framework for estimating the value of groundwater resources and improved information, and 2) provide some preliminary estimates of this value and how it responds to plausible scenarios of climate change.

  10. Vulnerability and adaptation to climate-related fire impacts in rural and urban interior Alaska

    USGS Publications Warehouse

    Trainor, Sarah F.; Calef, Monika; Natcher, David; Chapin, F. Stuart; McGuire, A. David; Huntington, Orville; Duffy, Paul A.; Rupp, T. Scott; DeWilde, La'Ona; Kwart, Mary; Fresco, Nancy; Lovecraft, Amy Lauren

    2009-01-01

    This paper explores whether fundamental differences exist between urban and rural vulnerability to climate-induced changes in the fire regime of interior Alaska. We further examine how communities and fire managers have responded to these changes and what additional adaptations could be put in place. We engage a variety of social science methods, including demographic analysis, semi-structured interviews, surveys, workshops and observations of public meetings. This work is part of an interdisciplinary study of feedback and interactions between climate, vegetation, fire and human components of the Boreal forest social–ecological system of interior Alaska. We have learned that although urban and rural communities in interior Alaska face similar increased exposure to wildfire as a result of climate change, important differences exist in their sensitivity to these biophysical, climate-induced changes. In particular, reliance on wild foods, delayed suppression response, financial resources and institutional connections vary between urban and rural communities. These differences depend largely on social, economic and institutional factors, and are not necessarily related to biophysical climate impacts per se. Fire management and suppression action motivated by political, economic or other pressures can serve as unintentional or indirect adaptation to climate change. However, this indirect response alone may not sufficiently reduce vulnerability to a changing fire regime. More deliberate and strategic responses may be required, given the magnitude of the expected climate change and the likelihood of an intensification of the fire regime in interior Alaska.

  11. Multi-disciplinary assessments of climate change impacts on agriculture to support adaptation decision making in developing countries

    NASA Astrophysics Data System (ADS)

    Fujisawa, Mariko; Kanamaru, Hideki

    2016-04-01

    Many existing climate change impact studies, carried out by academic researchers, are disconnected from decision making processes of stakeholders. On the other hand many climate change adaptation projects in developing countries lack a solid evidence base of current and future climate impacts as well as vulnerabilities assessment at different scales. In order to fill this information gap, FAO has developed and implemented a tool "MOSAICC (Modelling System for Agricultural Impacts of Climate Change)" in several developing countries such as Morocco, the Philippines and Peru, and recently in Malawi and Zambia. MOSAICC employs a multi-disciplinary assessment approach to addressing climate change impacts and adaptation planning in the agriculture and food security sectors, and integrates five components from different academic disciplines: 1. Statistical downscaling of climate change projections, 2. Yield simulation of major crops at regional scale under climate change, 3. Surface hydrology simulation model, 4. Macroeconomic model, and 5. Forestry model. Furthermore MOSAICC has been developed as a capacity development tool for the national scientists so that they can conduct the country assessment themselves, using their own data, and reflect the outcome into the national adaptation policies. The outputs are nation-wide coverage, disaggregated at sub-national level to support strategic planning, investments and decisions by national policy makers. MOSAICC is designed in such a way to promote stakeholders' participation and strengthen technical capacities in developing countries. The paper presents MOSAICC and projects that used MOSAICC as a tool with case studies from countries.

  12. Rivers and Floodplains as Key Components of Global Terrestrial Water Storage Variability

    NASA Astrophysics Data System (ADS)

    Getirana, Augusto; Kumar, Sujay; Girotto, Manuela; Rodell, Matthew

    2017-10-01

    This study quantifies the contribution of rivers and floodplains to terrestrial water storage (TWS) variability. We use state-of-the-art models to simulate land surface processes and river dynamics and to separate TWS into its main components. Based on a proposed impact index, we show that surface water storage (SWS) contributes 8% of TWS variability globally, but that contribution differs widely among climate zones. Changes in SWS are a principal component of TWS variability in the tropics, where major rivers flow over arid regions and at high latitudes. SWS accounts for 22-27% of TWS variability in both the Amazon and Nile Basins. Changes in SWS are negligible in the Western U.S., Northern Africa, Middle East, and central Asia. Based on comparisons with Gravity Recovery and Climate Experiment-based TWS, we conclude that accounting for SWS improves simulated TWS in most of South America, Africa, and Southern Asia, confirming that SWS is a key component of TWS variability.

  13. Beyond a warming fingerprint: individualistic biogeographic responses to heterogeneous climate change in California.

    PubMed

    Rapacciuolo, Giovanni; Maher, Sean P; Schneider, Adam C; Hammond, Talisin T; Jabis, Meredith D; Walsh, Rachel E; Iknayan, Kelly J; Walden, Genevieve K; Oldfather, Meagan F; Ackerly, David D; Beissinger, Steven R

    2014-09-01

    Understanding recent biogeographic responses to climate change is fundamental for improving our predictions of likely future responses and guiding conservation planning at both local and global scales. Studies of observed biogeographic responses to 20th century climate change have principally examined effects related to ubiquitous increases in temperature - collectively termed a warming fingerprint. Although the importance of changes in other aspects of climate - particularly precipitation and water availability - is widely acknowledged from a theoretical standpoint and supported by paleontological evidence, we lack a practical understanding of how these changes interact with temperature to drive biogeographic responses. Further complicating matters, differences in life history and ecological attributes may lead species to respond differently to the same changes in climate. Here, we examine whether recent biogeographic patterns across California are consistent with a warming fingerprint. We describe how various components of climate have changed regionally in California during the 20th century and review empirical evidence of biogeographic responses to these changes, particularly elevational range shifts. Many responses to climate change do not appear to be consistent with a warming fingerprint, with downslope shifts in elevation being as common as upslope shifts across a number of taxa and many demographic and community responses being inconsistent with upslope shifts. We identify a number of potential direct and indirect mechanisms for these responses, including the influence of aspects of climate change other than temperature (e.g., the shifting seasonal balance of energy and water availability), differences in each taxon's sensitivity to climate change, trophic interactions, and land-use change. Finally, we highlight the need to move beyond a warming fingerprint in studies of biogeographic responses by considering a more multifaceted view of climate, emphasizing local-scale effects, and including a priori knowledge of relevant natural history for the taxa and regions under study. © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  14. NASA Contributions to the Development and Testing of Climate Indicators

    NASA Astrophysics Data System (ADS)

    Houser, P. R.; Leidner, A. K.; Tsaoussi, L.; Kaye, J. A.

    2014-12-01

    NASA is a major contributor the U.S. National Climate Assessment (NCA), a central component of the 2012-2022 U.S. Global Change Research Program's Strategic Plan. NASA supports a range of global climate and related environmental assessment activities through its data records, models, and model-produced data sets, as well as through involvement of agency personnel. These assessments provide important information on climate change and are used by policymakers, especially with the recent increased interest in climate vulnerability, impacts, and adaptation. Climate indicators provide a clear and concise way of communicating to the NCA audiences about not only status and trends of physical drivers of the climate system, but also the ecological and socioeconomic impacts, vulnerabilities, and responses to those drivers. NASA is enhancing its participation in future NCAs by encouraging the developing and testing of potential indicators that best address the needs expressed in the NCA indicator vision and that leverage NASA's capabilities. This presentation will highlight a suite of new climate indicators that draws significantly from NASA -produced data and/or modeling products, to support decisions related to impacts, adaptation, vulnerability, and mitigation associated with climate and global change.

  15. Assessing climate-sensitive ecosystems in the southeastern United States

    USGS Publications Warehouse

    Costanza, Jennifer; Beck, Scott; Pyne, Milo; Terando, Adam; Rubino, Matthew J.; White, Rickie; Collazo, Jaime

    2016-08-11

    Climate change impacts ecosystems in many ways, from effects on species to phenology to wildfire dynamics. Assessing the potential vulnerability of ecosystems to future changes in climate is an important first step in prioritizing and planning for conservation. Although assessments of climate change vulnerability commonly are done for species, fewer have been done for ecosystems. To aid regional conservation planning efforts, we assessed climate change vulnerability for ecosystems in the Southeastern United States and Caribbean.First, we solicited input from experts to create a list of candidate ecosystems for assessment. From that list, 12 ecosystems were selected for a vulnerability assessment that was based on a synthesis of available geographic information system (GIS) data and literature related to 3 components of vulnerability—sensitivity, exposure, and adaptive capacity. This literature and data synthesis comprised “Phase I” of the assessment. Sensitivity is the degree to which the species or processes in the ecosystem are affected by climate. Exposure is the likely future change in important climate and sea level variables. Adaptive capacity is the degree to which ecosystems can adjust to changing conditions. Where available, GIS data relevant to each of these components were used. For example, we summarized observed and projected climate, protected areas existing in 2011, projected sea-level rise, and projected urbanization across each ecosystem’s distribution. These summaries were supplemented with information in the literature, and a short narrative assessment was compiled for each ecosystem. We also summarized all information into a qualitative vulnerability rating for each ecosystem.Next, for 2 of the 12 ecosystems (East Gulf Coastal Plain Near-Coast Pine Flatwoods and Nashville Basin Limestone Glade and Woodland), the NatureServe Habitat Climate Change Vulnerability Index (HCCVI) framework was used as an alternative approach for assessing vulnerability. Use of the HCCVI approach comprised “Phase II” of the assessment. This approach uses summaries of GIS data and models to develop a series of numeric indices for components of vulnerability. We incorporated many of the data sources used in Phase I, but added the results of several other data sources, including climate envelope modeling and vegetation dynamics modeling. The results of Phase II were high and low numeric vulnerability ratings for mid-century and the end of century for each ecosystem. The high and low ratings represented the potential range of vulnerability scores owing to uncertainties in future climate conditions and ecosystem effects.Of the 12 ecosystems assessed in the first approach, five were rated as having high vulnerability (Caribbean Coastal Mangrove, Caribbean Montane Wet Elfin Forest, East Gulf Coastal Plain Southern Loess Bluff Forest, Edwards Plateau Limestone Shrubland, and Nashville Basin Limestone Glade and Woodland). Six ecosystems had medium vulnerability, and one ecosystem had low vulnerability. For the two ecosystems assessed with both approaches, vulnerability ratings generally agreed. The assessment concluded by comparing the two approaches, identifying critical research needs, and making suggestions for future ecosystem vulnerability assessments in the Southeast and beyond. Research needs include reducing uncertainty in the degree of climate exposure likely in the future, as well as acquiring more information on how climate might affect biotic interactions and hydrologic processes. Ideally, a comprehensive vulnerability assessment would include both the narrative summaries that resulted from the synthesis in Phase I, as well as a numeric index that incorporates uncertainty as in Phase II.

  16. Climate, Water and Renewable Energy in the Nordic Countries

    NASA Astrophysics Data System (ADS)

    Snorrason, A.; Jonsdottir, J. F.

    2004-05-01

    Climate and Energy (CE) is a new Nordic research project with funding from Nordic Energy Research (NEFP) and the Nordic energy sector. The project has the objective of a comprehensive assessment of the impact of climate variability and change on Nordic renewable energy resources including hydropower, wind power, bio-fuels and solar energy. This will include assessment of the power production of the hydropower dominated Nordic energy system and its sensitivity and vulnerability to climate change on both temporal and spatial scales; assessment of the impacts of extremes including floods, droughts, storms, seasonal patterns and variability. Within the CE project several thematic groups work on specific issues of climatic change and their impacts on renewable energy. A primary aim of the CE climate group is to supply a standard set of common scenarios of climate change in northern Europe and Greenland, based on recent global and regional climate change experiments. The snow and ice group has chosen glaciers from Greenland, Iceland, Norway and Sweden for an analysis of the response of glaciers to climate changes. Mass balance and dynamical changes, corresponding to the common scenario for climate changes, will be modelled and effects on glacier hydrology will be estimated. Preliminary work with dynamic modelling and climate scenarios shows a dramatic response of glacial runoff to increased temperature and precipitation. The statistical analysis group has reported on the status of time series analysis in the Nordic countries. The group has selected and quality controlled time series of stream flow to be included in the Nordic component of the database FRIEND. Also the group will collect information on time series for other variables and these series will be systematically analysed with respect to trend and other long-term changes. Preliminary work using multivariate analysis on stream flow and climate variables shows strong linkages with the long term atmospheric circulation in the North Atlantic. The hydrological modelling group has already reported on "Climate change impacts on water resources in the Nordic countries - State of the art and discussion of principles". The group will compare different approaches of transferring the climate change signal into hydrological models and discuss uncertainties in models and climate scenarios. Furthermore, comprehensive assessment and mapping of impact of climate change will be produced for the whole Nordic region based on the scenarios from the CE-climate group.

  17. Using Satellite Observations of Cloud Vertical Distribution to Improve Global Model Estimates of Cloud Radiative Effect on Key Tropospheric Oxidants

    NASA Technical Reports Server (NTRS)

    Liu, Hongyu; Crawford, James; Ham, Seung-Hee; Zhang, Bo; Kato, Seiji; Voulgarakis, Apostolos; Chen, Gao; Fairlie, Duncan; Duncan, Bryan; Yantosca, Robert

    2017-01-01

    Clouds directly affect tropospheric photochemistry through modification of solar radiation that determines photolysis frequencies. This effect is an important component of global tropospheric chemistry-climate interaction, and its understanding is thus essential for predicting the feedback of climate change on tropospheric chemistry.

  18. Controls on winter ecosystem respiration in temperate and boreal ecosystems

    Treesearch

    T. Wang; P. Ciais; S.L. Piao; C. Ottle; P. Brender; F. Maignan; A. Arain; A. Cescatti; D. Gianelle; C. Gough; L Gu; P. Lafleur; T. Laurila; B. Marcolla; H. Margolis; L. Montagnani; E. Moors; N. Saigusa; T. Vesala; G. Wohlfahrt; C. Koven; A. Black; E. Dellwik; A. Don; D. Hollinger; A. Knohl; R. Monson; J. Munger; A. Suyker; A. Varlagin; S. Verma

    2011-01-01

    Winter CO2 fluxes represent an important component of the annual carbon budget in northern ecosystems. Understanding winter respiration processes and their responses to climate change is also central to our ability to assess terrestrial carbon cycle and climate feedbacks in the future. However, the factors influencing the spatial and temporal...

  19. The economic impact of climate change on Kenyan crop agriculture: A Ricardian approach

    NASA Astrophysics Data System (ADS)

    Kabubo-Mariara, Jane; Karanja, Fredrick K.

    2007-06-01

    This paper measures the economic impact of climate on crops in Kenya. We use cross-sectional data on climate, hydrological, soil and household level data for a sample of 816 households. We estimate a seasonal Ricardian model to assess the impact of climate on net crop revenue per acre. The results show that climate affects crop productivity. There is a non-linear relationship between temperature and revenue on one hand and between precipitation and revenue on the other. Estimated marginal impacts suggest that global warming is harmful for crop productivity. Predictions from global circulation models confirm that global warming will have a substantial impact on net crop revenue in Kenya. The results also show that the temperature component of global warming is much more important than precipitation. Findings call for monitoring of climate change and dissemination of information to farmers to encourage adaptations to climate change. Improved management and conservation of available water resources, water harvesting and recycling of wastewater could generate water for irrigation purposes especially in the arid and semi-arid areas.

  20. Mapping vulnerability to climate change and its repercussions on human health in Pakistan.

    PubMed

    Malik, Sadia Mariam; Awan, Haroon; Khan, Niazullah

    2012-09-03

    Pakistan is highly vulnerable to climate change due to its geographic location, high dependence on agriculture and water resources, low adaptive capacity of its people, and weak system of emergency preparedness. This paper is the first ever attempt to rank the agro-ecological zones in Pakistan according to their vulnerability to climate change and to identify the potential health repercussions of each manifestation of climate change in the context of Pakistan. A climate change vulnerability index is constructed as an un-weighted average of three sub-indices measuring (a) the ecological exposure of each region to climate change, (b) sensitivity of the population to climate change and (c) the adaptive capacity of the population inhabiting a particular region. The regions are ranked according to the value of this index and its components. Since health is one of the most important dimensions of human wellbeing, this paper also identifies the potential health repercussions of each manifestations of climate change and links it with the key manifestations of climate change in the context of Pakistan. The results indicate that Balochistan is the most vulnerable region with high sensitivity and low adaptive capacity followed by low-intensity Punjab (mostly consisting of South Punjab) and Cotton/Wheat Sindh. The health risks that each of these regions face depend upon the type of threat that they face from climate change. Greater incidence of flooding, which may occur due to climate variability, poses the risk of diarrhoea and gastroenteritis; skin and eye Infections; acute respiratory infections; and malaria. Exposure to drought poses the potential health risks in the form of food insecurity and malnutrition; anaemia; night blindness; and scurvy. Increases in temperature pose health risks of heat stroke; malaria; dengue; respiratory diseases; and cardiovascular diseases. The study concludes that geographical zones that are more exposed to climate change in ecological and geographic terms- such as Balochistan, Low-Intensity Punjab, and Cotton-Wheat Sindh -also happen to be the most deprived regions in Pakistan in terms of socio-economic indicators, suggesting that the government needs to direct its efforts to the socio-economic uplift of these lagging regions to reduce their vulnerability to the adverse effects of climate change.

  1. [Serapeo Temple in Pozzuoli, Italy--the unique gauge for the sea (world ocean) level and the Earth surface temperature for over 2100 years].

    PubMed

    Karnaukhov, V N; Karnaukhov, A V

    2010-01-01

    The changes in the sea level relative to the position of the Serapeo Temple in Pozzuoly (Italia) over a period of 2100 years are discussed in the context of the well known periods of climate cooling off (Neoglacial, Little Ace Period) and climate warming (Middle Ages Optimum, Modern climate warming). It is noted that the rate of sea level lifting relative to the position of the Serapeo Temple in the modern phase of climate warming, which began the end of the 18th Century is approximately two times higher than in the previous phase of climate warming in the period from the fifth to the mid-tenth century A.D. This indicates that not only the natural cyclic component contributes to the mechanisms of Modern Climate warming but also the anthropogenic component of approximately equivalent power, which results from the waste of CO2 caused by the burning of fossilized fuels.

  2. A New High Resolution Climate Dataset for Climate Change Impacts Assessments in New England

    NASA Astrophysics Data System (ADS)

    Komurcu, M.; Huber, M.

    2016-12-01

    Assessing regional impacts of climate change (such as changes in extreme events, land surface hydrology, water resources, energy, ecosystems and economy) requires much higher resolution climate variables than those available from global model projections. While it is possible to run global models in higher resolution, the high computational cost associated with these simulations prevent their use in such manner. To alleviate this problem, dynamical downscaling offers a method to deliver higher resolution climate variables. As part of an NSF EPSCoR funded interdisciplinary effort to assess climate change impacts on New Hampshire ecosystems, hydrology and economy (the New Hampshire Ecosystems and Society project), we create a unique high-resolution climate dataset for New England. We dynamically downscale global model projections under a high impact emissions scenario using the Weather Research and Forecasting model (WRF) with three nested grids of 27, 9 and 3 km horizontal resolution with the highest resolution innermost grid focusing over New England. We prefer dynamical downscaling over other methods such as statistical downscaling because it employs physical equations to progressively simulate climate variables as atmospheric processes interact with surface processes, emissions, radiation, clouds, precipitation and other model components, hence eliminates fix relationships between variables. In addition to simulating mean changes in regional climate, dynamical downscaling also allows for the simulation of climate extremes that significantly alter climate change impacts. We simulate three time slices: 2006-2015, 2040-2060 and 2080-2100. This new high-resolution climate dataset (with more than 200 variables saved in hourly (six hourly) intervals for the highest resolution domain (outer two domains)) along with model input and restart files used in our WRF simulations will be publicly available for use to the broader scientific community to support in-depth climate change impacts assessments for New England. We present results focusing on future changes in New England extreme events.

  3. Effects of climate change on environmental factors in respiratory allergic diseases.

    PubMed

    D'Amato, G; Cecchi, L

    2008-08-01

    A body of evidence suggests that major changes involving the atmosphere and the climate, including global warming induced by human activity, have an impact on the biosphere and the human environment. Studies on the effects of climate change on respiratory allergy are still lacking and current knowledge is provided by epidemiological and experimental studies on the relationship between asthma and environmental factors, such as meteorological variables, airborne allergens and air pollution. However, there is also considerable evidence that subjects affected by asthma are at an increased risk of developing obstructive airway exacerbations with exposure to gaseous and particulate components of air pollution. It is not easy to evaluate the impact of climate change and air pollution on the prevalence of asthma in general and on the timing of asthma exacerbations. However, the global rise in asthma prevalence and severity suggests that air pollution and climate changes could be contributing. Pollen allergy is frequently used to study the interrelationship between air pollution, rhinitis and bronchial asthma. Epidemiological studies have demonstrated that urbanization, high levels of vehicle emissions and westernized lifestyle are correlated to an increase in the frequency of pollen-induced respiratory allergy, prevalent in people who live in urban areas compared with those who live in rural areas. Meteorological factors (temperature, wind speed, humidity, etc.) along with their climatological regimes (warm or cold anomalies and dry or wet periods, etc.), can affect both biological and chemical components of this interaction. In addition, by inducing airway inflammation, air pollution overcomes the mucosal barrier priming allergen-induced responses. In conclusion, climate change might induce negative effects on respiratory allergic diseases. In particular, the increased length and severity of the pollen season, the higher occurrence of heavy precipitation events and the increasing frequency of urban air pollution episodes suggest that environmental risk factors will have a stronger effect in the following decades.

  4. Beyond a warming fingerprint: individualistic biogeographic responses to heterogeneous climate change in California

    PubMed Central

    Rapacciuolo, Giovanni; Maher, Sean P; Schneider, Adam C; Hammond, Talisin T; Jabis, Meredith D; Walsh, Rachel E; Iknayan, Kelly J; Walden, Genevieve K; Oldfather, Meagan F; Ackerly, David D; Beissinger, Steven R

    2014-01-01

    Understanding recent biogeographic responses to climate change is fundamental for improving our predictions of likely future responses and guiding conservation planning at both local and global scales. Studies of observed biogeographic responses to 20th century climate change have principally examined effects related to ubiquitous increases in temperature – collectively termed a warming fingerprint. Although the importance of changes in other aspects of climate – particularly precipitation and water availability – is widely acknowledged from a theoretical standpoint and supported by paleontological evidence, we lack a practical understanding of how these changes interact with temperature to drive biogeographic responses. Further complicating matters, differences in life history and ecological attributes may lead species to respond differently to the same changes in climate. Here, we examine whether recent biogeographic patterns across California are consistent with a warming fingerprint. We describe how various components of climate have changed regionally in California during the 20th century and review empirical evidence of biogeographic responses to these changes, particularly elevational range shifts. Many responses to climate change do not appear to be consistent with a warming fingerprint, with downslope shifts in elevation being as common as upslope shifts across a number of taxa and many demographic and community responses being inconsistent with upslope shifts. We identify a number of potential direct and indirect mechanisms for these responses, including the influence of aspects of climate change other than temperature (e.g., the shifting seasonal balance of energy and water availability), differences in each taxon's sensitivity to climate change, trophic interactions, and land-use change. Finally, we highlight the need to move beyond a warming fingerprint in studies of biogeographic responses by considering a more multifaceted view of climate, emphasizing local-scale effects, and including a priori knowledge of relevant natural history for the taxa and regions under study. PMID:24934878

  5. Climate change effects on agriculture: Economic responses to biophysical shocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Gerald; Valin, Hugo; Sands, Ronald

    Agricultural production is sensitive to weather and will thus be directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments inmore » yields, area, consumption, and international trade. We apply biophysical shocks derived from the IPCC’s Representative Concentration Pathway that result in end-of-century radiative forcing of 8.5 watts per square meter. The mean biophysical impact on crop yield with no incremental CO2 fertilization is a 17 percent reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11 percent, increase area of major crops by 12 percent, and reduce consumption by 2 percent. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences includes model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.« less

  6. Toward a phenology network in Turkey

    NASA Astrophysics Data System (ADS)

    Dalfes, H. N.; Ülgen, H.; Zeydanli, U.; Durak, A. T.

    2012-04-01

    All climate projections indicate that drastic changes are to occur in the Mediterranean Basin and Southwestern Asia. Detailed studies also foresee strong patterns of change in seasonality for most climate fields all across the country, threatening Turkey's rich biodiversity and diverse ecosystems already in trouble due to massive land use changes and careless resource extraction projects. It is therefore obvious that climate impact studies can benefit from detailed and continuous monitoring of relationships between climate and natural systems. Recently started efforts to build a phenology network for Turkey will hopefully constitute a component of a more comprehensive ecological observation infrastructure. The Phenology Network of Turkey Project saw its debut as a joint initiative of an academic institution (Istanbul Technical University) and a research NGO (Nature Conservation Center). It has been decided from the very beginning to rely a much as possible on Internet technologies (provided by the National High Performance Computing Center of Turkey). The effort is also inspired by and collaborates with already established networks in general and USA National Phenology Network in particular. Many protocols, instructional materials and Nature's Notebook application has been barrowed from the USA NPN. The project has been designed from the start as a two-faceted effort: an infrastructure to accumulate/provide useful data to climate/ecosystem research communities and a 'citizen science' project to raise nature and climate change awareness among all components of the society in Turkey in general and secondary education teachers and students in particular. It has been opted to start by gathering plant phenological data. A set with 20 plant species has been designed to serve as a countrywide 'calibration set'. It is also anticipated to salvage and extend as much of possible historical animal (especially bird and butterfly) observations.

  7. Climate Change and Civil Violence

    NASA Astrophysics Data System (ADS)

    van der Vink, G.; Plancherel, Y.; Hennet, C.; Jones, K. D.; Abdullah, A.; Bradshaw, J.; Dee, S.; Deprez, A.; Pasenello, M.; Plaza-Jennings, E.; Roseman, D.; Sopher, P.; Sung, E.

    2009-05-01

    The manifestations of climate change can result in humanitarian impacts that reverse progress in poverty- reduction, create shortages of food and resources, lead to migration, and ultimately result in civil violence and conflict. Within the continent of Africa, we have found that environmentally-related variables are either the cause or the confounding factor for over 80% of the civil violence events during the last 10 years. Using predictive climate models and land-use data, we are able to identify populations in Africa that are likely to experience the most severe climate-related shocks. Through geospatial analysis, we are able to overlay these areas of high risk with assessments of both the local population's resiliency and the region's capacity to respond to climate shocks should they occur. The net result of the analysis is the identification of locations that are becoming particularly vulnerable to future civil violence events (vulnerability hotspots) as a result of the manifestations of climate change. For each population group, over 600 social, economic, political, and environmental indicators are integrated statistically to measures the vulnerability of African populations to environmental change. The indicator time-series are filtered for data availability and redundancy, broadly ordered into four categories (social, political, economic and environmental), standardized and normalized. Within each category, the dominant modes of variability are isolated by principal component analysis and the loadings of each component for each variable are used to devise composite index scores. Comparisons of past vulnerability with known environmentally-related conflicts demonstrates the role that such vulnerability hotspot maps can play in evaluating both the potential for, and the significance of, environmentally-related civil violence events. Furthermore, the analysis reveals the major variables that are responsible for the population's vulnerability and therefore provides an opportunity for targeted proactive measures to mitigate certain classes of future civil violence events.

  8. Australian Medical Students' Association Global Health Essay Competition - Global climate change, geo-engineering and human health.

    PubMed

    Boyages, Costa S

    2013-10-07

    Rio+20's proposed Sustainable Development Goals have the potential to redefine the course of international action on climate change. They recognise that environmental health is inextricably linked with human health, and that environmental sustainability is of paramount importance in safeguarding global health. Competition entrants were asked to discuss ways of making global health a central component of international sustainable development initiatives and environmental policy, using one or two concrete examples

  9. Predicting ecological responses in a changing ocean: the effects of future climate uncertainty.

    PubMed

    Freer, Jennifer J; Partridge, Julian C; Tarling, Geraint A; Collins, Martin A; Genner, Martin J

    2018-01-01

    Predicting how species will respond to climate change is a growing field in marine ecology, yet knowledge of how to incorporate the uncertainty from future climate data into these predictions remains a significant challenge. To help overcome it, this review separates climate uncertainty into its three components (scenario uncertainty, model uncertainty, and internal model variability) and identifies four criteria that constitute a thorough interpretation of an ecological response to climate change in relation to these parts (awareness, access, incorporation, communication). Through a literature review, the extent to which the marine ecology community has addressed these criteria in their predictions was assessed. Despite a high awareness of climate uncertainty, articles favoured the most severe emission scenario, and only a subset of climate models were used as input into ecological analyses. In the case of sea surface temperature, these models can have projections unrepresentative against a larger ensemble mean. Moreover, 91% of studies failed to incorporate the internal variability of a climate model into results. We explored the influence that the choice of emission scenario, climate model, and model realisation can have when predicting the future distribution of the pelagic fish, Electrona antarctica . Future distributions were highly influenced by the choice of climate model, and in some cases, internal variability was important in determining the direction and severity of the distribution change. Increased clarity and availability of processed climate data would facilitate more comprehensive explorations of climate uncertainty, and increase in the quality and standard of marine prediction studies.

  10. The Decadal Climate Prediction Project (DCPP) contribution to CMIP6

    DOE PAGES

    Boer, George J.; Smith, Douglas M.; Cassou, Christophe; ...

    2016-01-01

    The Decadal Climate Prediction Project (DCPP) is a coordinated multi-model investigation into decadal climate prediction, predictability, and variability. The DCPP makes use of past experience in simulating and predicting decadal variability and forced climate change gained from the fifth Coupled Model Intercomparison Project (CMIP5) and elsewhere. It builds on recent improvements in models, in the reanalysis of climate data, in methods of initialization and ensemble generation, and in data treatment and analysis to propose an extended comprehensive decadal prediction investigation as a contribution to CMIP6 (Eyring et al., 2016) and to the WCRP Grand Challenge on Near Term Climate Predictionmore » (Kushnir et al., 2016). The DCPP consists of three components. Component A comprises the production and analysis of an extensive archive of retrospective forecasts to be used to assess and understand historical decadal prediction skill, as a basis for improvements in all aspects of end-to-end decadal prediction, and as a basis for forecasting on annual to decadal timescales. Component B undertakes ongoing production, analysis and dissemination of experimental quasi-real-time multi-model forecasts as a basis for potential operational forecast production. Component C involves the organization and coordination of case studies of particular climate shifts and variations, both natural and naturally forced (e.g. the “hiatus”, volcanoes), including the study of the mechanisms that determine these behaviours. Furthermore, groups are invited to participate in as many or as few of the components of the DCPP, each of which are separately prioritized, as are of interest to them.The Decadal Climate Prediction Project addresses a range of scientific issues involving the ability of the climate system to be predicted on annual to decadal timescales, the skill that is currently and potentially available, the mechanisms involved in long timescale variability, and the production of forecasts of benefit to both science and society.« less

  11. Adaptive governance and institutional strategies for climate-induced community relocations in Alaska.

    PubMed

    Bronen, Robin; Chapin, F Stuart

    2013-06-04

    This article presents governance and institutional strategies for climate-induced community relocations. In Alaska, repeated extreme weather events coupled with climate change-induced coastal erosion impact the habitability of entire communities. Community residents and government agencies concur that relocation is the only adaptation strategy that can protect lives and infrastructure. Community relocation stretches the financial and institutional capacity of existing governance institutions. Based on a comparative analysis of three Alaskan communities, Kivalina, Newtok, and Shishmaref, which have chosen to relocate, we examine the institutional constraints to relocation in the United States. We identify policy changes and components of a toolkit that can facilitate community-based adaptation when environmental events threaten people's lives and protection in place is not possible. Policy changes include amendment of the Stafford Act to include gradual geophysical processes, such as erosion, in the statutory definition of disaster and the creation of an adaptive governance framework to allow communities a continuum of responses from protection in place to community relocation. Key components of the toolkit are local leadership and integration of social and ecological well-being into adaptation planning.

  12. Acid rain, air pollution, and tree growth in southeastern New York

    USGS Publications Warehouse

    Puckett, L.J.

    1982-01-01

    Whether dendroecological analyses could be used to detect changes in the relationship of tree growth to climate that might have resulted from chronic exposure to components of the acid rain-air pollution complex was determined. Tree-ring indices of white pine (Pinus strobus L.), eastern hemlock (Tsuga canadensis (L.) Cart.), pitch pine (Pinus rigida Mill.), and chestnut oak (Quercus prinus L.) were regressed against orthogonally transformed values of temperature and precipitation in order to derive a response-function relationship. Results of the regression analyses for three time periods, 1901–1920, 1926–1945, and 1954–1973 suggest that the relationship of tree growth to climate has been altered. Statistical tests of the temperature and precipitation data suggest that this change was nonclimatic. Temporally, the shift in growth response appears to correspond with the suspected increase in acid rain and air pollution in the Shawangunk Mountain area of southeastern New York in the early 1950's. This change could be the result of physiological stress induced by components of the acid rain-air pollution complex, causing climatic conditions to be more limiting to tree growth.

  13. Northward shift of the agricultural climate zone under 21st-century global climate change.

    PubMed

    King, Myron; Altdorff, Daniel; Li, Pengfei; Galagedara, Lakshman; Holden, Joseph; Unc, Adrian

    2018-05-21

    As agricultural regions are threatened by climate change, warming of high latitude regions and increasing food demands may lead to northward expansion of global agriculture. While socio-economic demands and edaphic conditions may govern the expansion, climate is a key limiting factor. Extant literature on future crop projections considers established agricultural regions and is mainly temperature based. We employed growing degree days (GDD), as the physiological link between temperature and crop growth, to assess the global northward shift of agricultural climate zones under 21 st -century climate change. Using ClimGen scenarios for seven global climate models (GCMs), based on greenhouse gas (GHG) emissions and transient GHGs, we delineated the future extent of GDD areas, feasible for small cereals, and assessed the projected changes in rainfall and potential evapotranspiration. By 2099, roughly 76% (55% to 89%) of the boreal region might reach crop feasible GDD conditions, compared to the current 32%. The leading edge of the feasible GDD will shift northwards up to 1200 km by 2099 while the altitudinal shift remains marginal. However, most of the newly gained areas are associated with highly seasonal and monthly variations in climatic water balances, a critical component of any future land-use and management decisions.

  14. The contribution of human agricultural activities to increasing evapotranspiration is significantly greater than climate change effect over Heihe agricultural region.

    PubMed

    Zou, Minzhong; Niu, Jun; Kang, Shaozhong; Li, Xiaolin; Lu, Hongna

    2017-08-18

    Evapotranspiration (ET) is a major component linking the water, energy, and carbon cycles. Understanding changes in ET and the relative contribution rates of human activity and of climate change at the basin scale is important for sound water resources management. In this study, changes in ET in the Heihe agricultural region in northwest China during 1984-2014 were examined using remotely-sensed ET data with the Soil and Water Assessment Tool (SWAT). Correlation analysis identified the dominant factors that influence change in ET per unit area and those that influence change in total ET. Factor analysis identified the relative contribution rates of the dominant factors in each case. The results show that human activity, which includes factors for agronomy and irrigation, and climate change, including factors for precipitation and relative humidity, both contribute to increases in ET per unit area at rates of 60.93% and 28.01%, respectively. Human activity, including the same factors, and climate change, including factors for relative humidity and wind speed, contribute to increases in total ET at rates of 53.86% and 35.68%, respectively. Overall, in the Heihe agricultural region, the contribution of human agricultural activities to increased ET was significantly greater than that of climate change.

  15. An Overview of the Future Development of Climate and Earth System Models for Scientific and Policy Use (Invited)

    NASA Astrophysics Data System (ADS)

    Washington, W. M.

    2010-12-01

    The development of climate and earth system models has been regarded primarily as the making of scientific tools to study the complex nature of the Earth’s climate. These models have a long history starting with very simple physical models based on fundamental physics in the 1960s and over time they have become much more complex with atmospheric, ocean, sea ice, land/vegetation, biogeochemical, glacial and ecological components. The policy use aspects of these models did not start in the 1960s and 1970s as decision making tools but were used to answer fundamental scientific questions such as what happens when the atmospheric carbon dioxide concentration increases or is doubled. They gave insights into the various interactions and were extensively compared with observations. It was realized that models of the earlier time periods could only give first order answers to many of the fundamental policy questions. As societal concerns about climate change rose, the policy questions of anthropogenic climate change became better defined; they were mostly concerned with the climate impacts of increasing greenhouse gases, aerosols, and land cover change. In the late 1980s, the United Nations set up the Intergovernmental Panel on Climate Change to perform assessments of the published literature. Thus, the development of climate and Earth system models became intimately linked to the need to not only improve our scientific understanding but also answering fundamental policy questions. In order to meet this challenge, the models became more complex and realistic so that they could address these policy oriented science questions such as rising sea level. The presentation will discuss the past and future development of global climate and earth system models for science and policy purposes. Also to be discussed is their interactions with economic integrated assessment models, regional and specialized models such as river transport or ecological components. As an example of one development pathway, the NSF/Department of Energy supported Community Climate System and Earth System Models will be featured in the presentation. Computational challenges will also part of the discussion.

  16. Projected climate and vegetation changes and potential biotic effects for Fort Benning, Georgia; Fort Hood, Texas; and Fort Irwin, California

    USGS Publications Warehouse

    Shafer, S.L.; Atkins, J.; Bancroft, B.A.; Bartlein, P.J.; Lawler, J.J.; Smith, B.; Wilsey, C.B.

    2012-01-01

    The responses of species and ecosystems to future climate changes will present challenges for conservation and natural resource managers attempting to maintain both species populations and essential habitat. This report describes projected future changes in climate and vegetation for three study areas surrounding the military installations of Fort Benning, Georgia, Fort Hood, Texas, and Fort Irwin, California. Projected climate changes are described for the time period 2070–2099 (30-year mean) as compared to 1961–1990 (30-year mean) for each study area using data simulated by the coupled atmosphere-ocean general circulation models CCSM3, CGCM3.1(T47), and UKMO-HadCM3, run under the B1, A1B, and A2 future greenhouse gas emissions scenarios. These climate data are used to simulate potential changes in important components of the vegetation for each study area using LPJ, a dynamic global vegetation model, and LPJ-GUESS, a dynamic vegetation model optimized for regional studies. The simulated vegetation results are compared with observed vegetation data for the study areas. Potential effects of the simulated future climate and vegetation changes for species and habitats of management concern are discussed in each study area, with a particular focus on federally listed threatened and endangered species.

  17. Idealized climate change simulations with a high-resolution physical model: HadGEM3-GC2

    NASA Astrophysics Data System (ADS)

    Senior, Catherine A.; Andrews, Timothy; Burton, Chantelle; Chadwick, Robin; Copsey, Dan; Graham, Tim; Hyder, Pat; Jackson, Laura; McDonald, Ruth; Ridley, Jeff; Ringer, Mark; Tsushima, Yoko

    2016-06-01

    Idealized climate change simulations with a new physical climate model, HadGEM3-GC2 from The Met Office Hadley Centre are presented and contrasted with the earlier MOHC model, HadGEM2-ES. The role of atmospheric resolution is also investigated. The Transient Climate Response (TCR) is 1.9 K/2.1 K at N216/N96 and Effective Climate Sensitivity (ECS) is 3.1 K/3.2 K at N216/N96. These are substantially lower than HadGEM2-ES (TCR: 2.5 K; ECS: 4.6 K) arising from a combination of changes in the size of climate feedbacks. While the change in the net cloud feedback between HadGEM3 and HadGEM2 is relatively small, there is a change in sign of its longwave and a strengthening of its shortwave components. At a global scale, there is little impact of the increase in atmospheric resolution on the future climate change signal and even at a broad regional scale, many features are robust including tropical rainfall changes, however, there are some significant exceptions. For the North Atlantic and western Europe, the tripolar pattern of winter storm changes found in most CMIP5 models is little impacted by resolution but for the most intense storms, there is a larger percentage increase in number at higher resolution than at lower resolution. Arctic sea-ice sensitivity shows a larger dependence on resolution than on atmospheric physics.

  18. 76 FR 4697 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-26

    ... engagement and on the current organizational culture and climate surrounding patient and family engagement... change in staff behavior before and after implementation of the Guide including organizational culture... organizational structure and vision. Policies and procedures related to Component 1 and Component 2 strategies of...

  19. Coarse climate change projections for species living in a fine-scaled world.

    PubMed

    Nadeau, Christopher P; Urban, Mark C; Bridle, Jon R

    2017-01-01

    Accurately predicting biological impacts of climate change is necessary to guide policy. However, the resolution of climate data could be affecting the accuracy of climate change impact assessments. Here, we review the spatial and temporal resolution of climate data used in impact assessments and demonstrate that these resolutions are often too coarse relative to biologically relevant scales. We then develop a framework that partitions climate into three important components: trend, variance, and autocorrelation. We apply this framework to map different global climate regimes and identify where coarse climate data is most and least likely to reduce the accuracy of impact assessments. We show that impact assessments for many large mammals and birds use climate data with a spatial resolution similar to the biologically relevant area encompassing population dynamics. Conversely, impact assessments for many small mammals, herpetofauna, and plants use climate data with a spatial resolution that is orders of magnitude larger than the area encompassing population dynamics. Most impact assessments also use climate data with a coarse temporal resolution. We suggest that climate data with a coarse spatial resolution is likely to reduce the accuracy of impact assessments the most in climates with high spatial trend and variance (e.g., much of western North and South America) and the least in climates with low spatial trend and variance (e.g., the Great Plains of the USA). Climate data with a coarse temporal resolution is likely to reduce the accuracy of impact assessments the most in the northern half of the northern hemisphere where temporal climatic variance is high. Our framework provides one way to identify where improving the resolution of climate data will have the largest impact on the accuracy of biological predictions under climate change. © 2016 John Wiley & Sons Ltd.

  20. Climate extremes and the carbon cycle.

    PubMed

    Reichstein, Markus; Bahn, Michael; Ciais, Philippe; Frank, Dorothea; Mahecha, Miguel D; Seneviratne, Sonia I; Zscheischler, Jakob; Beer, Christian; Buchmann, Nina; Frank, David C; Papale, Dario; Rammig, Anja; Smith, Pete; Thonicke, Kirsten; van der Velde, Marijn; Vicca, Sara; Walz, Ariane; Wattenbach, Martin

    2013-08-15

    The terrestrial biosphere is a key component of the global carbon cycle and its carbon balance is strongly influenced by climate. Continuing environmental changes are thought to increase global terrestrial carbon uptake. But evidence is mounting that climate extremes such as droughts or storms can lead to a decrease in regional ecosystem carbon stocks and therefore have the potential to negate an expected increase in terrestrial carbon uptake. Here we explore the mechanisms and impacts of climate extremes on the terrestrial carbon cycle, and propose a pathway to improve our understanding of present and future impacts of climate extremes on the terrestrial carbon budget.

  1. Vulnerability of Thai rice production to simultaneous climate and socioeconomic changes: a double exposure analysis

    NASA Astrophysics Data System (ADS)

    Sangpenchan, R.

    2011-12-01

    This research explores the vulnerability of Thai rice production to simultaneous exposure by climate and socioeconomic change -- so-called "double exposure." Both processes influence Thailand's rice production system, but the vulnerabilities associated with their interactions are unknown. To understand this double exposure, I adopts a mixed-method, qualitative-quantitative analytical approach consisting of three phases of analysis involving a Vulnerability Scoping Diagram, a Principal Component Analysis, and the EPIC crop model using proxy datasets collected from secondary data sources at provincial scales.The first and second phases identify key variables representing each of the three dimensions of vulnerability -- exposure, sensitivity, and adaptive capacity indicating that the greatest vulnerability in the rice production system occurs in households and areas with high exposure to climate change, high sensitivity to climate and socioeconomic stress, and low adaptive capacity. In the third phase, the EPIC crop model simulates rice yields associated with future climate change projected by CSIRO and MIROC climate models. Climate change-only scenarios project the decrease in yields by 10% from the current productivity during 2016-2025 and 30% during 2045-2054. Scenarios applying both climate change and improved technology and management practices show that a 50% increase in rice production is possible, but requires strong collaboration between sectors to advance agricultural research and technology and requires strong adaptive capacity in the rice production system characterized by well-developed social capital, social networks, financial capacity, and infrastructure and household mobility at the local scale. The vulnerability assessment and climate and crop adaptation simulations used here provide useful information to decision makers developing vulnerability reduction plans in the face of concurrent climate and socioeconomic change.

  2. Community shifts under climate change: mechanisms at multiple scales.

    PubMed

    Gornish, Elise S; Tylianakis, Jason M

    2013-07-01

    Processes that drive ecological dynamics differ across spatial scales. Therefore, the pathways through which plant communities and plant-insect relationships respond to changing environmental conditions are also expected to be scale-dependent. Furthermore, the processes that affect individual species or interactions at single sites may differ from those affecting communities across multiple sites. We reviewed and synthesized peer-reviewed literature to identify patterns in biotic or abiotic pathways underpinning changes in the composition and diversity of plant communities under three components of climate change (increasing temperature, CO2, and changes in precipitation) and how these differ across spatial scales. We also explored how these changes to plants affect plant-insect interactions. The relative frequency of biotic vs. abiotic pathways of climate effects at larger spatial scales often differ from those at smaller scales. Local-scale studies show variable responses to climate drivers, often driven by biotic factors. However, larger scale studies identify changes to species composition and/or reduced diversity as a result of abiotic factors. Differing pathways of climate effects can result from different responses of multiple species, habitat effects, and differing effects of invasions at local vs. regional to global scales. Plant community changes can affect higher trophic levels as a result of spatial or phenological mismatch, foliar quality changes, and plant abundance changes, though studies on plant-insect interactions at larger scales are rare. Climate-induced changes to plant communities will have considerable effects on community-scale trophic exchanges, which may differ from the responses of individual species or pairwise interactions.

  3. Estimating live fuel status by drought indices: an approach for assessing local impact of climate change on fire danger

    NASA Astrophysics Data System (ADS)

    Pellizzaro, Grazia; Dubrovsky, Martin; Bortolu, Sara; Ventura, Andrea; Arca, Bachisio; Masia, Pierpaolo; Duce, Pierpaolo

    2014-05-01

    Mediterranean shrubs are an important component of both Mediterranean vegetation communities and understorey vegetation. They also constitute the surface fuels primarily responsible for the ignition and the spread of wildland fires in Mediterranean forests. Although fire spread and behaviour are dependent on several factors, the water content of live fuel plays an important role in determining fire occurrence and spread, especially in the Mediterranean shrubland, where live fuel is often the main component of the available fuel which catches fire. According to projections on future climate, an increase in risk of summer droughts is likely to take place in Southern Europe. More prolonged drought seasons induced by climatic changes are likely to influence general flammability characteristics of fuel, affecting load distribution in vegetation strata, floristic composition, and live and dead fuel ratio. In addition, variations in precipitation and mean temperature could directly affect fuel water status, and consequently flammability, and length of critical periods of high ignition danger for Mediterranean ecosystems. The main aim of this work was to propose a methodology for evaluating possible impacts of future climate change on moisture dynamic and length of fire danger period at local scale. Specific objectives were: i) evaluating performances of meteorological drought indices in describing seasonal pattern of live fuel moisture content (LFMC), and ii) simulating the potential impacts of future climate changes on the duration of fire danger period. Measurements of LFMC seasonal pattern of three Mediterranean shrub species were performed in North Western Sardinia (Italy) for 8 years. Seasonal patterns of LFMC were compared with the Drought Code of the Canadian Forest Fire Weather Index and the Keetch-Byram Drought Index. Analysis of frequency distribution and cumulative distribution curves were carried out in order to evaluate performance of codes and to identify threshold values of indices useful to determine the end of the potential fire season due to fuel status. A weather generator linked to climate change scenarios derived from 17 available General Circulation Models (GCMs) was used to produce synthetic weather series, representing present and future climates, for four selected sites located in North Sardinia, Italy. Finally, impacts of future climate change on fire season length at local scale were simulated. Results confirmed that the projected climate scenarios over the Mediterranean area will determine an overall increase of the fire season length.

  4. Socioeconomic Drought in a Changing Climate: Modeling and Management

    NASA Astrophysics Data System (ADS)

    AghaKouchak, Amir; Mehran, Ali; Mazdiyasni, Omid

    2016-04-01

    Drought is typically defined based on meteorological, hydrological and land surface conditions. However, in many parts of the world, anthropogenic changes and water management practices have significantly altered local water availability. Socioeconomic drought refers to conditions whereby the available water supply cannot satisfy the human and environmental water needs. Surface water reservoirs provide resilience against local climate variability (e.g., droughts), and play a major role in regional water management. This presentation focuses on a framework for describing socioeconomic drought based on both water supply and demand information. We present a multivariate approach as a measure of socioeconomic drought, termed Multivariate Standardized Reliability and Resilience Index (MSRRI; Mehran et al., 2015). This model links the information on inflow and surface reservoir storage to water demand. MSRRI integrates a "top-down" and a "bottom-up" approach for describing socioeconomic drought. The "top-down" component describes processes that cannot be simply controlled or altered by local decision-makers and managers (e.g., precipitation, climate variability, climate change), whereas the "bottom-up" component focuses on the local resilience, and societal capacity to respond to droughts. The two components (termed, Inflow-Demand Reliability (IDR) indicator and Water Storage Resilience (WSR) indicator) are integrated using a nonparametric multivariate approach. We use this framework to assess the socioeconomic drought during the Australian Millennium Drought (1998-2010) and the 2011-2014 California Droughts. MSRRI provides additional information on socioeconomic drought onset, development and termination based on local resilience and human demand that cannot be obtained from the commonly used drought indicators. We show that MSRRI can be used for water management scenario analysis (e.g., local water availability based on different human water demands scenarios). Finally, we provide examples of using the proposed modeling framework for analyzing water availability in a changing climate considering local conditions. Reference: Mehran A., Mazdiyasni O., AghaKouchak A., 2015, A Hybrid Framework for Assessing Socioeconomic Drought: Linking Climate Variability, Local Resilience, and Demand, Journal of Geophysical Research, 120 (15), 7520-7533, doi: 10.1002/2015JD023147

  5. Climate variability and marine ecosystem impacts: a North Atlantic perspective

    NASA Astrophysics Data System (ADS)

    Parsons, L. S.; Lear, W. H.

    In recent decades it has been recognized that in the North Atlantic climatic variability has been largely driven by atmospheric forcing related to the North Atlantic Oscillation (NAO). The NAO index began a pronounced decline around 1950 to a low in the 1960s. From 1970 onward the NAO index increased to its most extreme and persistent positive phase during the late 1980s and early 1990s. Changes in the pattern of the NAO have differential impacts on the opposite sides of the North Atlantic and differential impacts in the north and south. The changes in climate resulting from changes in the NAO appear to have had substantial impacts on marine ecosystems, in particular, on fish productivity, with the effects varying from region to region. An examination of several species and stocks, e.g. gadoids, herring and plankton in the Northeast Atlantic and cod and shellfish in the Northwest Atlantic, indicates that there is a link between long-term trends in the NAO and the productivity of various components of the marine ecosystem. While broad trends are evident, the mechanisms are poorly understood. Further research is needed to improve our understanding of how this climate variability affects the productivity of various components of the North Atlantic marine ecosystem.

  6. The Community Climate System Model.

    NASA Astrophysics Data System (ADS)

    Blackmon, Maurice; Boville, Byron; Bryan, Frank; Dickinson, Robert; Gent, Peter; Kiehl, Jeffrey; Moritz, Richard; Randall, David; Shukla, Jagadish; Solomon, Susan; Bonan, Gordon; Doney, Scott; Fung, Inez; Hack, James; Hunke, Elizabeth; Hurrell, James; Kutzbach, John; Meehl, Jerry; Otto-Bliesner, Bette; Saravanan, R.; Schneider, Edwin K.; Sloan, Lisa; Spall, Michael; Taylor, Karl; Tribbia, Joseph; Washington, Warren

    2001-11-01

    The Community Climate System Model (CCSM) has been created to represent the principal components of the climate system and their interactions. Development and applications of the model are carried out by the U.S. climate research community, thus taking advantage of both wide intellectual participation and computing capabilities beyond those available to most individual U.S. institutions. This article outlines the history of the CCSM, its current capabilities, and plans for its future development and applications, with the goal of providing a summary useful to present and future users. The initial version of the CCSM included atmosphere and ocean general circulation models, a land surface model that was grafted onto the atmosphere model, a sea-ice model, and a flux coupler that facilitates information exchanges among the component models with their differing grids. This version of the model produced a successful 300-yr simulation of the current climate without artificial flux adjustments. The model was then used to perform a coupled simulation in which the atmospheric CO2 concentration increased by 1% per year. In this version of the coupled model, the ocean salinity and deep-ocean temperature slowly drifted away from observed values. A subsequent correction to the roughness length used for sea ice significantly reduced these errors. An updated version of the CCSM was used to perform three simulations of the twentieth century's climate, and several pro-jections of the climate of the twenty-first century. The CCSM's simulation of the tropical ocean circulation has been significantly improved by reducing the background vertical diffusivity and incorporating an anisotropic horizontal viscosity tensor. The meridional resolution of the ocean model was also refined near the equator. These changes have resulted in a greatly improved simulation of both the Pacific equatorial undercurrent and the surface countercurrents. The interannual variability of the sea surface temperature in the central and eastern tropical Pacific is also more realistic in simulations with the updated model. Scientific challenges to be addressed with future versions of the CCSM include realistic simulation of the whole atmosphere, including the middle and upper atmosphere, as well as the troposphere; simulation of changes in the chemical composition of the atmosphere through the incorporation of an integrated chemistry model; inclusion of global, prognostic biogeochemical components for land, ocean, and atmosphere; simulations of past climates, including times of extensive continental glaciation as well as times with little or no ice; studies of natural climate variability on seasonal-to-centennial timescales; and investigations of anthropogenic climate change. In order to make such studies possible, work is under way to improve all components of the model. Plans call for a new version of the CCSM to be released in 2002. Planned studies with the CCSM will require much more computer power than is currently available.

  7. Climate change and northern prairie wetlands: Simulations of long-term dynamics

    USGS Publications Warehouse

    Poiani, Karen A.; Johnson, W. Carter; Swanson, George A.; Winter, Thomas C.

    1996-01-01

    A mathematical model (WETSIM 2.0) was used to simulate wetland hydrology and vegetation dynamics over a 32-yr period (1961–1992) in a North Dakota prairie wetland. A hydrology component of the model calculated changes in water storage based on precipitation, evapotranspiration, snowpack, surface runoff, and subsurface inflow. A spatially explicit vegetation component in the model calculated changes in distribution of vegetative cover and open water, depending on water depth, seasonality, and existing type of vegetation.The model reproduced four known dry periods and one extremely wet period during the three decades. One simulated dry period in the early 1980s did not actually occur. Simulated water levels compared favorably with continuous observed water levels outside the calibration period (1990–1992). Changes in vegetative cover were realistic except for years when simulated water levels were significantly different than actual levels. These generally positive results support the use of the model for exploring the effects of possible climate changes on wetland resources.

  8. A Vulnerability Assessment of Fish and Invertebrates to Climate Change on the Northeast U.S. Continental Shelf.

    PubMed

    Hare, Jonathan A; Morrison, Wendy E; Nelson, Mark W; Stachura, Megan M; Teeters, Eric J; Griffis, Roger B; Alexander, Michael A; Scott, James D; Alade, Larry; Bell, Richard J; Chute, Antonie S; Curti, Kiersten L; Curtis, Tobey H; Kircheis, Daniel; Kocik, John F; Lucey, Sean M; McCandless, Camilla T; Milke, Lisa M; Richardson, David E; Robillard, Eric; Walsh, Harvey J; McManus, M Conor; Marancik, Katrin E; Griswold, Carolyn A

    2016-01-01

    Climate change and decadal variability are impacting marine fish and invertebrate species worldwide and these impacts will continue for the foreseeable future. Quantitative approaches have been developed to examine climate impacts on productivity, abundance, and distribution of various marine fish and invertebrate species. However, it is difficult to apply these approaches to large numbers of species owing to the lack of mechanistic understanding sufficient for quantitative analyses, as well as the lack of scientific infrastructure to support these more detailed studies. Vulnerability assessments provide a framework for evaluating climate impacts over a broad range of species with existing information. These methods combine the exposure of a species to a stressor (climate change and decadal variability) and the sensitivity of species to the stressor. These two components are then combined to estimate an overall vulnerability. Quantitative data are used when available, but qualitative information and expert opinion are used when quantitative data is lacking. Here we conduct a climate vulnerability assessment on 82 fish and invertebrate species in the Northeast U.S. Shelf including exploited, forage, and protected species. We define climate vulnerability as the extent to which abundance or productivity of a species in the region could be impacted by climate change and decadal variability. We find that the overall climate vulnerability is high to very high for approximately half the species assessed; diadromous and benthic invertebrate species exhibit the greatest vulnerability. In addition, the majority of species included in the assessment have a high potential for a change in distribution in response to projected changes in climate. Negative effects of climate change are expected for approximately half of the species assessed, but some species are expected to be positively affected (e.g., increase in productivity or move into the region). These results will inform research and management activities related to understanding and adapting marine fisheries management and conservation to climate change and decadal variability.

  9. A Vulnerability Assessment of Fish and Invertebrates to Climate Change on the Northeast U.S. Continental Shelf

    PubMed Central

    Hare, Jonathan A.; Morrison, Wendy E.; Nelson, Mark W.; Stachura, Megan M.; Teeters, Eric J.; Griffis, Roger B.; Alexander, Michael A.; Scott, James D.; Alade, Larry; Bell, Richard J.; Chute, Antonie S.; Curti, Kiersten L.; Curtis, Tobey H.; Kircheis, Daniel; Kocik, John F.; Lucey, Sean M.; McCandless, Camilla T.; Milke, Lisa M.; Richardson, David E.; Robillard, Eric; Walsh, Harvey J.; McManus, M. Conor; Marancik, Katrin E.; Griswold, Carolyn A.

    2016-01-01

    Climate change and decadal variability are impacting marine fish and invertebrate species worldwide and these impacts will continue for the foreseeable future. Quantitative approaches have been developed to examine climate impacts on productivity, abundance, and distribution of various marine fish and invertebrate species. However, it is difficult to apply these approaches to large numbers of species owing to the lack of mechanistic understanding sufficient for quantitative analyses, as well as the lack of scientific infrastructure to support these more detailed studies. Vulnerability assessments provide a framework for evaluating climate impacts over a broad range of species with existing information. These methods combine the exposure of a species to a stressor (climate change and decadal variability) and the sensitivity of species to the stressor. These two components are then combined to estimate an overall vulnerability. Quantitative data are used when available, but qualitative information and expert opinion are used when quantitative data is lacking. Here we conduct a climate vulnerability assessment on 82 fish and invertebrate species in the Northeast U.S. Shelf including exploited, forage, and protected species. We define climate vulnerability as the extent to which abundance or productivity of a species in the region could be impacted by climate change and decadal variability. We find that the overall climate vulnerability is high to very high for approximately half the species assessed; diadromous and benthic invertebrate species exhibit the greatest vulnerability. In addition, the majority of species included in the assessment have a high potential for a change in distribution in response to projected changes in climate. Negative effects of climate change are expected for approximately half of the species assessed, but some species are expected to be positively affected (e.g., increase in productivity or move into the region). These results will inform research and management activities related to understanding and adapting marine fisheries management and conservation to climate change and decadal variability. PMID:26839967

  10. Impact of land cover changes and climate on the main airborne pollen types in Southern Spain.

    PubMed

    García-Mozo, Herminia; Oteros, Jose Antonio; Galán, Carmen

    2016-04-01

    Airborne pollen concentrations strongly correlate with flowering intensity of wind-pollinated species growing at and around monitoring sites. The pollen spectrum, and the variations in its composition and concentrations, is influenced by climatic features and by available nutritional resources but it is also determined by land use and its changes. The first factor influence is well known on aerobiological researches but the impact of land cover changes has been scarcely studied until now. This paper reports on a study carried out in Southern Spain (Córdoba city) examining airborne pollen trends over a 15-year period and it explores the possible links both to changes in land use and to climate variations. The Seasonal-Trend Decomposition procedure based on Loess (STL) which decomposes long-term data series into smaller seasonal component patterns was applied. Trends were compared with recorded changes in land use at varying distances from the city in order to determine their possible influence on pollen-count variations. The influence of climate-related factors was determined by means of non-parametric correlation analysis. The STL method proved highly effective for extracting trend components from pollen time series, because their features vary widely and can change quickly in a short term. Results revealed mixed trends depending on the taxa and reflecting fluctuations in land cover and/or climate. A significant rising trend in Olea pollen counts was observed, attributable both to the increasing olive-growing area but also to changes in temperature and rainfall. Poaceae pollen concentrations also increased, due largely to an expansion of heterogeneous agricultural areas and to an increase in pollen season length positively influenced by rainfall and temperature. By contrast, the significant declining trend observed for pollen from ruderal taxa, such as Amaranthaceae, Rumex, Plantago and Urticaceae, may be linked to changes in urban planning strategies with a higher building pressure. Copyright © 2016. Published by Elsevier B.V.

  11. The Transformation of Climate Models to Earth System Models and their Role in Policy Development and Decision Support

    NASA Astrophysics Data System (ADS)

    Washington, W. M.

    2012-12-01

    We have seen over the last few decades continued improvement in climate models such that they are becoming Earth system models (ESMs). Usually climate models use specified concentrations of greenhouse gases whereas ESMs allow carbon, water, biochemical and other cycles to be fully interactive between various model components. Typically ESMs have atmospheric, ocean, land/vegetation, sea ice, urbanization components and some are starting to include glacier change which can directly affect sea level change. Steve Schneider, for whom this lecture is named after, strongly encouraged the development of such models and he went further to strongly suggest that these tools be developed beyond just the climate science questions. The modeling community needs to be interacting with the social, behavioral, and economic science communities. This would allow for realistic humankind interactions with the Earth system. In 2012, the federal government with advice from the National Academies developed a new strategic plan for the U. S. Global Change Research Program entitled The National Global Change Research Plan 2012-2021. This new plan has added the social, behavioral, and economic sciences to the mix of research expertise. It should be pointed out that the Global Change Research Act of 1990 passed by Congress specified strategic goals: advance science, inform decisions, conduct assessments, and communicate and educate. In order to carry out these goals an implementation plan is being put together by the 13 federal agencies and departments. Throughout Steve's professional life, he knew that to make global change understood required this broad community of sciences to work together to answer the questions that the public and policymakers had about environmental change. This talk will not only be about the historical developments in the field but also about the future research challenges. As part of the talk I will show several unpublished video segments of Steve explaining what mankind should do about climate and global change.

  12. Fostering Climate Change Literacy Through Rural-Urban Collaborations and GIS

    NASA Astrophysics Data System (ADS)

    Boger, R. A.; Low, R.; Gorokhovich, Y.; Mandryk, C.

    2012-12-01

    Three universities, University of Nebraska-Lincoln (UNL), Brooklyn College, and Lehman College, shared expertise and resources to expand the spectrum of climate change topics offered at these institutions. Through this collaboration, four independent but linked modules that incorporate geographic information systems (GIS) and remote sensing desktop and web-based tools and resources (e.g., NASA, NOAA, USGS, and a variety of universities and organizations) have been developed for use by instructors in all three institutions. Module 1 theme is an introduction to sustainability, climate, with an introduction to remote sensing and online GIS tools. The theme for Module 2 is water resources while Module 3 explores local meteorological data and global climate change models. The last module focuses on food production and independent research building on the urban farm movement in New York City and the agricultural stronghold of Nebraska. The hybrid online and face-face course, Global Climate Change, Food Security, and Local Sustainability, was piloted Fall 2012 in a jointly-taught course offered through UNL and Brooklyn College. The online portion was offered through the CAMEL Climate Change website to foster interactions between the rural Nebraska and urban New York City students. A major objective of the course materials is to foster rural-urban student exchanges while motivating students to make connections between climate change and the potential impacts on health, food, and water in their local communities, the nation and around the world. The research component of the project focuses on understanding the importance of spatial literacy in climate change understanding, and is supported by assessment instruments designed specifically for this course. In addition, the formal evaluation will determine whether our rural-urban, local-global approach will empower students to better understand the causes and impacts of climate change.

  13. Climate change impacts on food system

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Cai, X.; Zhu, T.

    2014-12-01

    Food system includes biophysical factors (climate, land and water), human environments (production technologies and food consumption, distribution and marketing), as well as the dynamic interactions within them. Climate change affects agriculture and food systems in various ways. Agricultural production can be influenced directly by climatic factors such as mean temperature rising, change in rainfall patterns, and more frequent extreme events. Eventually, climate change could cause shift of arable land, alteration of water availability, abnormal fluctuation of food prices, and increase of people at risk of malnutrition. This work aims to evaluate how climate change would affect agricultural production biophysically and how these effects would propagate to social factors at the global level. In order to model the complex interactions between the natural and social components, a Global Optimization model of Agricultural Land and Water resources (GOALW) is applied to the analysis. GOALW includes various demands of human society (food, feed, other), explicit production module, and irrigation water availability constraint. The objective of GOALW is to maximize global social welfare (consumers' surplus and producers' surplus).Crop-wise irrigation water use in different regions around the world are determined by the model; marginal value of water (MVW) can be obtained from the model, which implies how much additional welfare benefit could be gained with one unit increase in local water availability. Using GOALW, we will analyze two questions in this presentation: 1) how climate change will alter irrigation requirements and how the social system would buffer that by price/demand adjustment; 2) how will the MVW be affected by climate change and what are the controlling factors. These results facilitate meaningful insights for investment and adaptation strategies in sustaining world's food security under climate change.

  14. Climate Change and Human Health Impacts in the United States: An Update on the Results of the U.S. National Assessment

    PubMed Central

    Ebi, Kristie L.; Mills, David M.; Smith, Joel B.; Grambsch, Anne

    2006-01-01

    The health sector component of the first U.S. National Assessment, published in 2000, synthesized the anticipated health impacts of climate variability and change for five categories of health outcomes: impacts attributable to temperature, extreme weather events (e.g., storms and floods), air pollution, water- and food-borne diseases, and vector- and rodent-borne diseases. The Health Sector Assessment (HSA) concluded that climate variability and change are likely to increase morbidity and mortality risks for several climate-sensitive health outcomes, with the net impact uncertain. The objective of this study was to update the first HSA based on recent publications that address the potential impacts of climate variability and change in the United States for the five health outcome categories. The literature published since the first HSA supports the initial conclusions, with new data refining quantitative exposure–response relationships for several health end points, particularly for extreme heat events and air pollution. The United States continues to have a very high capacity to plan for and respond to climate change, although relatively little progress has been noted in the literature on implementing adaptive strategies and measures. Large knowledge gaps remain, resulting in a substantial need for additional research to improve our understanding of how weather and climate, both directly and indirectly, can influence human health. Filling these knowledge gaps will help better define the potential health impacts of climate change and identify specific public health adaptations to increase resilience. PMID:16966082

  15. Observing Human-induced Linkages between Urbanization and Earth's Climate System

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Jin, Menglin

    2004-01-01

    Urbanization is one of the extreme cases of land use change. Most of world s population has moved to urban areas. Although currently only 1.2% of the land is considered urban, the spatial coverage and density of cities are expected to rapidly increase in the near future. It is estimated that by the year 2025, 60% of the world s population will live in cities. Human activity in urban environments also alters atmospheric composition; impacts components of the water cycle; and modifies the carbon cycle and ecosystems. However, our understanding of urbanization on the total Earth-climate system is incomplete. Better understanding of how the Earth s atmosphere-ocean-land-biosphere components interact as a coupled system and the influence of the urban environment on this climate system is critical. The goal of the 2003 AGU Union session Human-induced climate variations on urban areas: From observations to modeling was to bring together scientists from interdisciplinary backgrounds to discuss the data, scientific approaches and recent results on observing and modeling components of the urban environment with the intent of sampling our current stand and discussing future direction on this topic. Herein, a summary and discussion of the observations component of the session are presented.

  16. [Meteoadaptogenic properties of peptide drugs in healthy volunteers].

    PubMed

    Shabanov, P D; Ganapol'skiĭ, V P; Aleksandrov, P V

    2007-01-01

    The meteoadaptogenic properties of a series of drugs with peptide (cortexin, noopept, dilept) and nonpeptide (vinpotropil) structure were investigated in a climate thermobarocomplex (Tabay, Japan) on a group of healthy volunteers aged 20-24. All the studied drugs produced a meteoadaptogenic action, the extent of which depended on the environmental test conditions (overcooling, overheating, hypobaric hypoxia). Vinpotropil, optimizing a physiological component of the functional state, can be recommended as a meteoadaptogen for both cold and hot climate as well as for hypobaric hypoxia, where it improved the psychological component of the functional state. Cortexin is qualified as an adaptogen and actoprotector only for hypobaric hypoxia conditions (uplands). Noopept, affecting positively a psychological component of the functional state, can be used for rapid adaptation to both cold and hot climate. In the hot climate, noopept also enhanced the physical work capacity. Dilept mostly elevated the psychological component of the functional state and can be considered as a psychomotor enhancer and adaptogen. Therefore, all the drugs studied (vinpotropil, cortexin, noopept and dilept) can be recommended as the agents producing activation, support and recovery of the physical and psychological efficiency under rapidly changing environment conditions.

  17. Spatial and Climate Literacy: Connecting Urban and Rural Students

    NASA Astrophysics Data System (ADS)

    Boger, R. A.; Low, R.; Mandryk, C.; Gorokhovich, Y.

    2013-12-01

    Through a collaboration between the University of Nebraska-Lincoln (UNL), Brooklyn College, and Lehman College, four independent but linked modules were developed and piloted in courses offered at Brooklyn College and UNL simultaneously. Module content includes climate change science and literacy principles, using geospatial technologies (GIS, GPS and remote sensing) as a vehicle to explore issues associated with global, regional, and local climate change in a concrete, quantitative and visual way using Internet resources available through NASA, NOAA, USGS, and a variety of universities and organizations. The materials take an Earth system approach and incorporate sustainability, resilience, water and watersheds, weather and climate, and food security topics throughout the semester. The research component of the project focuses on understanding the role of spatial literacy and authentic inquiry based experiences in climate change understanding and improving confidence in teaching science. In particular, engaging learners in both climate change science and GIS simultaneously provides opportunities to examine questions about the role that data manipulation, mental representation, and spatial literacy plays in students' abilities to understand the consequences and impacts of climate change. Pre and post surveys were designed to discern relationships between spatial cognitive processes and effective acquisition of climate change science concepts in virtual learning environments as well as alignment of teacher's mental models of nature of science and climate system dynamics to scientific models. The courses will again be offered simultaneously in Spring 2014 at Brooklyn College and UNL. Evaluation research will continue to examine the connections between spatial and climate literacy and teacher's mental models (via qualitative textual analysis using MAXQDA text analysis, and UCINET social network analysis programs) as well as how urban-rural learning interactions may influence climate literacy.

  18. Interactive Nature of Climate Change and Aerosol Forcing

    NASA Technical Reports Server (NTRS)

    Nazarenko, L.; Rind, D.; Tsigaridis, K.; Del Genio, A. D.; Kelley, M.; Tausnev, N.

    2017-01-01

    The effect of changing cloud cover on climate, based on cloud-aerosol interactions, is one of the major unknowns for climate forcing and climate sensitivity. It has two components: (1) the impact of aerosols on clouds and climate due to in-situ interactions (i.e., rapid response); and (2) the effect of aerosols on the cloud feedback that arises as climate changes - climate feedback response. We examine both effects utilizing the NASA GISS ModelE2 to assess the indirect effect, with both mass-based and microphysical aerosol schemes, in transient twentieth-century simulations. We separate the rapid response and climate feedback effects by making simulations with a coupled version of the model as well as one with no sea surface temperature or sea ice response (atmosphere-only simulations). We show that the indirect effect of aerosols on temperature is altered by the climate feedbacks following the ocean response, and this change differs depending upon which aerosol model is employed. Overall the effective radiative forcing (ERF) for the direct effect of aerosol-radiation interaction (ERFari) ranges between -0.2 and -0.6 W/sq m for atmosphere-only experiments while the total effective radiative forcing, including the indirect effect (ERFari+aci) varies between about -0.4 and -1.1 W/sq m for atmosphere-only simulations; both ranges are in agreement with those given in IPCC (2013). Including the full feedback of the climate system lowers these ranges to -0.2 to -0.5 W/sq m for ERFari, and -0.3 to -0.74 W/sq m for ERFari+aci. With both aerosol schemes, the climate change feedbacks have reduced the global average indirect radiative effect of atmospheric aerosols relative to what the emission changes would have produced, at least partially due to its effect on tropical upper tropospheric clouds.

  19. Exploring objective climate classification for the Himalayan arc and adjacent regions using gridded data sources

    NASA Astrophysics Data System (ADS)

    Forsythe, N.; Blenkinsop, S.; Fowler, H. J.

    2015-05-01

    A three-step climate classification was applied to a spatial domain covering the Himalayan arc and adjacent plains regions using input data from four global meteorological reanalyses. Input variables were selected based on an understanding of the climatic drivers of regional water resource variability and crop yields. Principal component analysis (PCA) of those variables and k-means clustering on the PCA outputs revealed a reanalysis ensemble consensus for eight macro-climate zones. Spatial statistics of input variables for each zone revealed consistent, distinct climatologies. This climate classification approach has potential for enhancing assessment of climatic influences on water resources and food security as well as for characterising the skill and bias of gridded data sets, both meteorological reanalyses and climate models, for reproducing subregional climatologies. Through their spatial descriptors (area, geographic centroid, elevation mean range), climate classifications also provide metrics, beyond simple changes in individual variables, with which to assess the magnitude of projected climate change. Such sophisticated metrics are of particular interest for regions, including mountainous areas, where natural and anthropogenic systems are expected to be sensitive to incremental climate shifts.

  20. Collaborative Proposal: Improving Decadal Prediction of Arctic Climate Variability and Change Using a Regional Arctic System Model (RASM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maslowski, Wieslaw

    This project aims to develop, apply and evaluate a regional Arctic System model (RASM) for enhanced decadal predictions. Its overarching goal is to advance understanding of the past and present states of arctic climate and to facilitate improvements in seasonal to decadal predictions. In particular, it will focus on variability and long-term change of energy and freshwater flows through the arctic climate system. The project will also address modes of natural climate variability as well as extreme and rapid climate change in a region of the Earth that is: (i) a key indicator of the state of global climate throughmore » polar amplification and (ii) which is undergoing environmental transitions not seen in instrumental records. RASM will readily allow the addition of other earth system components, such as ecosystem or biochemistry models, thus allowing it to facilitate studies of climate impacts (e.g., droughts and fires) and of ecosystem adaptations to these impacts. As such, RASM is expected to become a foundation for more complete Arctic System models and part of a model hierarchy important for improving climate modeling and predictions.« less

  1. Combined influence of multiple climatic factors on the incidence of bacterial foodborne diseases.

    PubMed

    Park, Myoung Su; Park, Ki Hwan; Bahk, Gyung Jin

    2018-01-01

    Information regarding the relationship between the incidence of foodborne diseases (FBD) and climatic factors is useful in designing preventive strategies for FBD based on anticipated future climate change. To better predict the effect of climate change on foodborne pathogens, the present study investigated the combined influence of multiple climatic factors on bacterial FBD incidence in South Korea. During 2011-2015, the relationships between 8 climatic factors and the incidences of 13 bacterial FBD, were determined based on inpatient stays, on a monthly basis using the Pearson correlation analyses, multicollinearity tests, principal component analysis (PCA), and the seasonal autoregressive integrated moving average (SARIMA) modeling. Of the 8 climatic variables, the combination of temperature, relative humidity, precipitation, insolation, and cloudiness was significantly associated with salmonellosis (P<0.01), vibriosis (P<0.05), and enterohemorrhagic Escherichia coli O157:H7 infection (P<0.01). The combined effects of snowfall, wind speed, duration of sunshine, and cloudiness were not significant for these 3 FBD. Other FBD, including campylobacteriosis, were not significantly associated with any combination of climatic factors. These findings indicate that the relationships between multiple climatic factors and bacterial FBD incidence can be valuable for the development of prediction models for future patterns of diseases in response to changes in climate. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Atmospheric Composition Change: Climate-Chemistry Interactions

    NASA Technical Reports Server (NTRS)

    Isaksen, I.S.A.; Granier, C.; Myhre, G.; Bernsten, T. K.; Dalsoren, S. B.; Gauss, S.; Klimont, Z.; Benestad, R.; Bousquet, P.; Collins, W.; hide

    2011-01-01

    Chemically active climate compounds are either primary compounds such as methane (CH4), removed by oxidation in the atmosphere, or secondary compounds such as ozone (O3), sulfate and organic aerosols, formed and removed in the atmosphere. Man-induced climate-chemistry interaction is a two-way process: Emissions of pollutants change the atmospheric composition contributing to climate change through the aforementioned climate components, and climate change, through changes in temperature, dynamics, the hydrological cycle, atmospheric stability, and biosphere-atmosphere interactions, affects the atmospheric composition and oxidation processes in the troposphere. Here we present progress in our understanding of processes of importance for climate-chemistry interactions, and their contributions to changes in atmospheric composition and climate forcing. A key factor is the oxidation potential involving compounds such as O3 and the hydroxyl radical (OH). Reported studies represent both current and future changes. Reported results include new estimates of radiative forcing based on extensive model studies of chemically active climate compounds such as O3, and of particles inducing both direct and indirect effects. Through EU projects such as ACCENT, QUANTIFY, and the AEROCOM project, extensive studies on regional and sector-wise differences in the impact on atmospheric distribution are performed. Studies have shown that land-based emissions have a different effect on climate than ship and aircraft emissions, and different measures are needed to reduce the climate impact. Several areas where climate change can affect the tropospheric oxidation process and the chemical composition are identified. This can take place through enhanced stratospheric-tropospheric exchange of ozone, more frequent periods with stable conditions favouring pollution build up over industrial areas, enhanced temperature-induced biogenic emissions, methane releases from permafrost thawing, and enhanced concentration through reduced biospheric uptake. During the last 510 years, new observational data have been made available and used for model validation and the study of atmospheric processes. Although there are significant uncertainties in the modelling of composition changes, access to new observational data has improved modelling capability. Emission scenarios for the coming decades have a large uncertainty range, in particular with respect to regional trends, leading to a significant uncertainty range in estimated regional composition changes and climate impact.

  3. Northeast and Midwest regional species and habitats at greatest risk and most vulnerable to climate impacts

    USGS Publications Warehouse

    Staudinger, Michelle D.; Hilberg, Laura; Janowiak, Maria; Swanton, C.O.

    2016-01-01

    The objectives of this Chapter are to describe climate change vulnerability, it’s components, the range of assessment methods being implemented regionally, and examples of training resources and tools. Climate Change Vulnerability Assessments (CCVAs) have already been conducted for numerous Regional Species of Greatest Conservation Need and their dependent 5 habitats across the Northeast and Midwest. This chapter provides a synthesis of different assessment frameworks, information on the locations (e.g., States) where vulnerability assessments were conducted, lists of individual species and habitats with their respective vulnerability rankings, and a comparison of how vulnerability rankings were determined among studies.

  4. Response of evapotranspiration to changes in land use and land cover and climate in China during 2001-2013.

    PubMed

    Li, Gen; Zhang, Fangmin; Jing, Yuanshu; Liu, Yibo; Sun, Ge

    2017-10-15

    Land surface evapotranspiration (ET) is a central component of the Earth's global energy balance and water cycle. Understanding ET is important in quantifying the impacts of human influences on the hydrological cycle and thus helps improving water use efficiency and strengthening water use planning and watershed management. China has experienced tremendous land use and land cover changes (LUCC) as a result of urbanization and ecological restoration under a broad background of climate change. This study used MODIS data products to analyze how LUCC and climate change affected ET in China in the period 2001-2013. We examined the separate contribution to the estimated ET changes by combining LUCC and climate data. Results showed that the average annual ET in China decreased at a rate of -0.6mm/yr from 2001 to 2013. Areas in which ET decreased significantly were mainly distributed in the northwest China, the central of southwest China, and most regions of south central and east China. The trends of four climatic factors including air temperature, wind speed, sunshine duration, and relative humidity were determined, while the contributions of these four factors to ET were quantified by combining the ET and climate datasets. Among the four climatic factors, sunshine duration and wind speed had the greatest influence on ET. LUCC data from 2001 to 2013 showed that forests, grasslands and croplands in China mutually replaced each other. The reduction of forests had much greater effects on ET than change by other land cover types. Finally, through quantitative separation of the distinct effects of climate change and LUCC on ET, we conclude that climate change was the more significant than LULC change in influencing ET in China during the period 2001-2013. Effective water resource management and vegetation-based ecological restoration efforts in China must consider the effects of climate change on ET and water availability. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Story telling and social action: engaging young people to act on climate change

    NASA Astrophysics Data System (ADS)

    Cordero, E.

    2014-12-01

    The realization that well designed graphs and clearly worded summaries were not enough to spur the public and policy makers towards an appropriate understanding of our planet encouraged me to search for other ways to share climate stories with the general public. After co-authoring a popular book on food and climate change and giving many talks to the general public, it struck me that young people were largely missing from the dialogue, and little meaningful progress was being made to design effective solutions. I then started working with faculty and students from the Film and Animation Departments at San Jose State University to develop stories about climate change that would be engaging to younger audiences. The result was the Green Ninja Project, based around the Green Ninja, a superhero who focuses on solutions to climate change using humor and silliness to soften what can be a somewhat challenging topic. The Project includes a) The Green Ninja Show - a series of YouTube videos (over 1,000,000 views) highlighting actions young people can take to reduce climate change, b) The Green Ninja Film Festival where students tell their own climate solutions stories, and c) a collection of educational resources that help teachers bring climate science topics into their classroom using hands-on activities. A key component to this work is promoting social action experiences, so that young people can understand how their actions can make a difference. Based on these experiences, I will provide my own reflections on the challenges and opportunities of communicating climate change with young people.

  6. Ensembles-based predictions of climate change impacts on bioclimatic zones in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Jeon, S. W.; Lim, C. H.; Ryu, J.

    2017-12-01

    Biodiversity is rapidly declining globally and efforts are needed to mitigate this continually increasing loss of species. Clustering of areas with similar habitats can be used to prioritize protected areas and distribute resources for the conservation of species, selection of representative sample areas for research, and evaluation of impacts due to environmental changes. In this study, Northeast Asia (NEA) was classified into 14 bioclimatic zones using statistical techniques, which are correlation analysis and principal component analysis (PCA), and the iterative self-organizing data analysis technique algorithm (ISODATA). Based on these bioclimatic classification, we predicted shift of bioclimatic zones due to climate change. The input variables include the current climatic data (1960-1990) and the future climatic data of the HadGEM2-AO model (RCP 4.5(2050, 2070) and 8.5(2050, 2070)) provided by WorldClim. Using these data, multi-modeling methods including maximum likelihood classification, random forest, and species distribution modelling have been used to project the impact of climate change on the spatial distribution of bioclimatic zones within NEA. The results of various models were compared and analyzed by overlapping each result. As the result, significant changes in bioclimatic conditions can be expected throughout the NEA by 2050s and 2070s. The overall zones moved upward and some zones were predicted to disappear. This analysis provides the basis for understanding potential impacts of climate change on biodiversity and ecosystem. Also, this could be used more effectively to support decision making on climate change adaptation.

  7. Impacts of climate change under CMIP5 RCP scenarios on the streamflow in the Dinder River and ecosystem habitats in Dinder National Park, Sudan

    NASA Astrophysics Data System (ADS)

    Basheer, Amir K.; Lu, Haishen; Omer, Abubaker; Ali, Abubaker B.; Abdelgader, Abdeldime M. S.

    2016-04-01

    The fate of seasonal river ecosystem habitats under climate change essentially depends on the changes in annual recharge of the river, which are related to alterations in precipitation and evaporation over the river basin. Therefore, the change in climate conditions is expected to significantly affect hydrological and ecological components, particularly in fragmented ecosystems. This study aims to assess the impacts of climate change on the streamflow in the Dinder River basin (DRB) and to infer its relative possible effects on the Dinder National Park (DNP) ecosystem habitats in Sudan. Four global circulation models (GCMs) from Coupled Model Intercomparison Project Phase 5 and two statistical downscaling approaches combined with a hydrological model (SWAT - the Soil and Water Assessment Tool) were used to project the climate change conditions over the study periods 2020s, 2050s, and 2080s. The results indicated that the climate over the DRB will become warmer and wetter under most scenarios. The projected precipitation variability mainly depends on the selected GCM and downscaling approach. Moreover, the projected streamflow is quite sensitive to rainfall and temperature variation, and will likely increase in this century. In contrast to drought periods during the 1960s, 1970s, and 1980s, the predicted climate change is likely to affect ecosystems in DNP positively and promote the ecological restoration for the habitats of flora and fauna.

  8. Effects of climate change on soil moisture over China from 1960-2006

    USGS Publications Warehouse

    Zhu, Q.; Jiang, H.; Liu, J.

    2009-01-01

    Soil moisture is an important variable in the climate system and it has sensitive impact on the global climate. Obviously it is one of essential components in the climate change study. The Integrated Biosphere Simulator (IBIS) is used to evaluate the spatial and temporal patterns of soil moisture across China under the climate change conditions for the period 1960-2006. Results show that the model performed better in warm season than in cold season. Mean errors (ME) are within 10% for all the months and root mean squared errors (RMSE) are within 10% except winter season. The model captured the spatial variability higher than 50% in warm seasons. Trend analysis based on the Mann-Kendall method indicated that soil moisture in most area of China is decreased especially in the northern China. The areas with significant increasing trends in soil moisture mainly locate at northwestern China and small areas in southeastern China and eastern Tibet plateau. ?? 2009 IEEE.

  9. ENSO-related Interannual Variability of Southern Hemisphere Atmospheric Circulation: Assessment and Projected Changes in CMIP5 Models

    NASA Astrophysics Data System (ADS)

    Frederiksen, Carsten; Grainger, Simon; Zheng, Xiaogu; Sisson, Janice

    2013-04-01

    ENSO variability is an important driver of the Southern Hemisphere (SH) atmospheric circulation. Understanding the observed and projected changes in ENSO variability is therefore important to understanding changes in Australian surface climate. Using a recently developed methodology (Zheng et al., 2009), the coherent patterns, or modes, of ENSO-related variability in the SH atmospheric circulation can be separated from modes that are related to intraseasonal variability or to changes in radiative forcings. Under this methodology, the seasonal mean SH 500 hPa geopotential height is considered to consist of three components. These are: (1) an intraseasonal component related to internal dynamics on intraseasonal time scales; (2) a slow-internal component related to internal dynamics on slowly varying (interannual or longer) time scales, including ENSO; and (3) a slow-external component related to external (i.e. radiative) forcings. Empirical Orthogonal Functions (EOFs) are used to represent the modes of variability of the interannual covariance of the three components. An assessment is first made of the modes in models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) dataset for the SH summer and winter seasons in the 20th century. In reanalysis data, two EOFs of the slow component (which includes the slow-internal and slow-external components) have been found to be related to ENSO variability (Frederiksen and Zheng, 2007). In SH summer, the CMIP5 models reproduce the leading ENSO mode very well when the structures of the EOF and the associated SST, and associated variance are considered. There is substantial improvement in this mode when compared with the CMIP3 models shown in Grainger et al. (2012). However, the second ENSO mode in SH summer has a poorly reproduced EOF structure in the CMIP5 models, and the associated variance is generally underestimated. In SH winter, the performance of the CMIP5 models in reproducing the structure and variance is similar for both ENSO modes, with the associated variance being generally underestimated. Projected changes in the modes in the 21st century are then investigated using ensembles of CMIP5 models that reproduce well the 20th century slow modes. The slow-internal and slow-external components are examined separately, allowing the projected changes in the response to ENSO variability to be separated from the response to changes in greenhouse gas concentrations. By using several ensembles, the model-dependency of the projected changes in the ENSO-related slow-internal modes is examined. Frederiksen, C. S., and X. Zheng, 2007: Variability of seasonal-mean fields arising from intraseasonal variability. Part 3: Application to SH winter and summer circulations. Climate Dyn., 28, 849-866. Grainger, S., C. S. Frederiksen, and X. Zheng, 2012: Modes of interannual variability of Southern Hemisphere atmospheric circulation in CMIP3 models: Assessment and Projections. Climate Dyn., in press. Zheng, X., D. M. Straus, C. S. Frederiksen, and S. Grainger, 2009: Potentially predictable patterns of extratropical tropospheric circulation in an ensemble of climate simulations with the COLA AGCM. Quart. J. Roy. Meteor. Soc., 135, 1816-1829.

  10. Temporal, spatial and ecological dynamics of speciation among amphi-Beringian small mammals

    USGS Publications Warehouse

    Hope, Andrew G.; Takebayashi, Naoki; Galbreath, Kurt E.; Talbot, Sandra L.; Cook, Joseph A.

    2013-01-01

    Quaternary climate cycles played an important role in promoting diversification across the Northern Hemisphere, although details of the mechanisms driving evolutionary change are still poorly resolved. In a comparative phylogeographical framework, we investigate temporal, spatial and ecological components of evolution within a suite of Holarctic small mammals. We test a hypothesis of simultaneous divergence among multiple taxon pairs, investigating time to coalescence and demographic change for each taxon in response to a combination of climate and geography.

  11. Climate change, deforestation, and the fate of the Amazon.

    PubMed

    Malhi, Yadvinder; Roberts, J Timmons; Betts, Richard A; Killeen, Timothy J; Li, Wenhong; Nobre, Carlos A

    2008-01-11

    The forest biome of Amazonia is one of Earth's greatest biological treasures and a major component of the Earth system. This century, it faces the dual threats of deforestation and stress from climate change. Here, we summarize some of the latest findings and thinking on these threats, explore the consequences for the forest ecosystem and its human residents, and outline options for the future of Amazonia. We also discuss the implications of new proposals to finance preservation of Amazonian forests.

  12. Effects of climate change on the wash-off of volatile organic compounds from urban roads.

    PubMed

    Mahbub, Parvez; Goonetilleke, Ashantha; Ayoko, Godwin A; Egodawatta, Prasanna

    2011-09-01

    The predicted changes in rainfall characteristics due to climate change could adversely affect stormwater quality in highly urbanised coastal areas throughout the world. This in turn will exert a significant influence on the discharge of pollutants to estuarine and marine waters. Hence, an in-depth analysis of the effects of such changes on the wash-off of volatile organic compounds (VOCs) from urban roads in the Gold Coast region in Australia was undertaken. The rainfall characteristics were simulated using a rainfall simulator. Principal Component Analysis (PCA) and Multicriteria Decision tools such as PROMETHEE and GAIA were employed to understand the VOC wash-off under climate change. It was found that low, low to moderate and high rain events due to climate change will affect the wash-off of toluene, ethylbenzene, meta-xylene, para-xylene and ortho-xylene from urban roads in Gold Coast. Total organic carbon (TOC) was identified as predominant carrier of toluene, meta-xylene and para-xylene in <1 μm to 150 μm fractions and for ethylbenzene in 150 μm to >300 μm fractions under such dominant rain events due to climate change. However, ortho-xylene did not show such affinity towards either TOC or TSS (total suspended solids) under the simulated climatic conditions. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Dynamic integration of land use changes in a hydrologic assessment of a rapidly developing Indian catchment.

    PubMed

    Wagner, Paul D; Bhallamudi, S Murty; Narasimhan, Balaji; Kantakumar, Lakshmi N; Sudheer, K P; Kumar, Shamita; Schneider, Karl; Fiener, Peter

    2016-01-01

    Rapid land use and land-cover changes strongly affect water resources. Particularly in regions that experience seasonal water scarcity, land use scenario assessments provide a valuable basis for the evaluation of possible future water shortages. The objective of this study is to dynamically integrate land use model projections with a hydrologic model to analyze potential future impacts of land use change on the water resources of a rapidly developing catchment upstream of Pune, India. For the first time projections from the urban growth and land use change model SLEUTH are employed as a dynamic input to the hydrologic model SWAT. By this means, impacts of land use changes on the water balance components are assessed for the near future (2009-2028) employing four different climate conditions (baseline, IPCC A1B, dry, wet). The land use change modeling results in an increase of urban area by +23.1% at the fringes of Pune and by +12.2% in the upper catchment, whereas agricultural land (-14.0% and -0.3%, respectively) and semi-natural area (-9.1% and -11.9%, respectively) decrease between 2009 and 2028. Under baseline climate conditions, these land use changes induce seasonal changes in the water balance components. Water yield particularly increases at the onset of monsoon (up to +11.0mm per month) due to increased impervious area, whereas evapotranspiration decreases in the dry season (up to -15.1mm per month) as a result of the loss of irrigated agricultural area. As the projections are made for the near future (2009-2028) land use change impacts are similar under IPCC A1B climate conditions. Only if more extreme dry years occur, an exacerbation of the land use change impacts can be expected. Particularly in rapidly changing environments an implementation of both dynamic land use change and climate change seems favorable to assess seasonal and gradual changes in the water balance. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Decadal-timescale changes of the Atlantic overturning circulation and climate in a coupled climate model with a hybrid-coordinate ocean component

    NASA Astrophysics Data System (ADS)

    Persechino, A.; Marsh, R.; Sinha, B.; Megann, A. P.; Blaker, A. T.; New, A. L.

    2012-08-01

    A wide range of statistical tools is used to investigate the decadal variability of the Atlantic Meridional Overturning Circulation (AMOC) and associated key variables in a climate model (CHIME, Coupled Hadley-Isopycnic Model Experiment), which features a novel ocean component. CHIME is as similar as possible to the 3rd Hadley Centre Coupled Model (HadCM3) with the important exception that its ocean component is based on a hybrid vertical coordinate. Power spectral analysis reveals enhanced AMOC variability for periods in the range 15-30 years. Strong AMOC conditions are associated with: (1) a Sea Surface Temperature (SST) anomaly pattern reminiscent of the Atlantic Multi-decadal Oscillation (AMO) response, but associated with variations in a northern tropical-subtropical gradient; (2) a Surface Air Temperature anomaly pattern closely linked to SST; (3) a positive North Atlantic Oscillation (NAO)-like pattern; (4) a northward shift of the Intertropical Convergence Zone. The primary mode of AMOC variability is associated with decadal changes in the Labrador Sea and the Greenland Iceland Norwegian (GIN) Seas, in both cases linked to the tropical activity about 15 years earlier. These decadal changes are controlled by the low-frequency NAO that may be associated with a rapid atmospheric teleconnection from the tropics to the extratropics. Poleward advection of salinity anomalies in the mixed layer also leads to AMOC changes that are linked to processes in the Labrador Sea. A secondary mode of AMOC variability is associated with interannual changes in the Labrador and GIN Seas, through the impact of the NAO on local surface density.

  15. Climate Change Potential Impacts on the Built Environment and Possible Adaptation Strategies

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.

    2014-01-01

    The built environment consists of components that exist at a range of scales from small (e.g., houses, shopping malls) to large (e.g., transportation networks) to highly modified landscapes such as cities. Thus, the impacts of climate change on the built environment may have a multitude of effects on humans and the land. The impact of climate change may be exacerbated by the interaction of different events that singly may be minor, but together may have a synergistic set of impacts that are significant. Also, mechanisms may exist wherein the built environment, particularly in the form of cities, may affect weather and the climate on local and regional scales. Hence, a city may be able to cope with prolonged heat waves, but if this is combined with severe drought, the overall result could be significant or even catastrophic, as accelerating demand for energy to cooling taxes water supplies needed both for energy supply and municipal water needs. This presentation surveys potential climate change impacts on the built environment from the perspective of the National Climate Assessment, and explores adaptation measures that can be employed to mitigate these impacts.

  16. Sediment color and reflectance record from Ocean Drilling Program Hole 625B, Gulf of Mexico (marine isotope stage 5 interval)

    USGS Publications Warehouse

    Dowsett, Harry J.

    1999-01-01

    Analysis of climate indicators from the North Atlantic, California Margin, and ice cores from Greenland suggest millennial scale climate variability is a component of earth's climate system during the last interglacial period (marine oxygen isotope stage 5). The USGS is involved in a survey of high resolution marine records covering the last interglacial period (MIS 5) to further document the variability of climate and assess the rate at which climate can change during warm intervals. The Gulf of Mexico (GOM) is an attractive area for analysis of climate variability and rapid change. Changes in the Mississippi River Basin presumably are translated to the GOM via the river and its effect on sediment distribution and type. Likewise, the summer monsoon in the southwestern US is driven by strong southerly winds. These winds may produce upwelling in the GOM which will be recorded in the sedimentary record. Several areas of high accumulation rate have been identified in the GOM. Ocean Drilling Program (ODP) Site 625 appears to meet the criteria of having a well preserved carbonate record and accumulation rate capable of discerning millennial scale changes.

  17. Improved attribution of climate forcing to emissions by pollutant and sector

    NASA Astrophysics Data System (ADS)

    Shindell, D. T.

    2009-12-01

    Evaluating multi-component climate change mitigation strategies requires knowledge of the diverse direct and indirect effects of emissions. Methane, ozone and aerosols are linked through atmospheric chemistry so that emissions of a single pollutant can affect several species. I will show new calculations of atmospheric composition changes, radiative forcing, and the global warming potential (GWP) for increased emissions of tropospheric ozone and aerosol precursors in a coupled composition-climate model. The results demonstrate that gas-aerosol interactions substantially alter the relative importance of the various emissions, suggesting revisions to the GWPs used in international carbon trading. Additionally, I will present results showing how the net climate impact of particular activities depends strongly upon non-CO2 forcing agents for some sectors. These results will be highlighted by discussing the interplay between air quality emissions controls and climate for the case of emissions from coal-fired power plants. The changing balance between CO2 and air quality pollutants from coal plants may have contributed to the 20th century spatial and temporal patterns of climate change, and is likely to continue to do so as more and more plants are constructed in Asia.

  18. Climate change impacts on ecosystems and ecosystem services in the United States: Process and prospects for sustained assessment

    USGS Publications Warehouse

    Grimm, Nancy B.; Groffman, Peter M; Staudinger, Michelle D.; Tallis, Heather

    2016-01-01

    The third United States National Climate Assessment emphasized an evaluation of not just the impacts of climate change on species and ecosystems, but also the impacts of climate change on the benefits that people derive from nature, known as ecosystem services. The ecosystems, biodiversity, and ecosystem services component of the assessment largely drew upon the findings of a transdisciplinary workshop aimed at developing technical input for the assessment, involving participants from diverse sectors. A small author team distilled and synthesized this and hundreds of other technical input to develop the key findings of the assessment. The process of developing and ranking key findings hinged on identifying impacts that had particular, demonstrable effects on the U.S. public via changes in national ecosystem services. Findings showed that ecosystem services are threatened by the impacts of climate change on water supplies, species distributions and phenology, as well as multiple assaults on ecosystem integrity that, when compounded by climate change, reduce the capacity of ecosystems to buffer against extreme events. As ecosystems change, such benefits as water sustainability and protection from storms that are afforded by intact ecosystems are projected to decline across the continent due to climate change. An ongoing, sustained assessment that focuses on the co-production of actionable climate science will allow scientists from a range of disciplines to ascertain the capability of their forecasting models to project environmental and ecological change and link it to ecosystem services; additionally, an iterative process of evaluation, development of management strategies, monitoring, and reevaluation will increase the applicability and usability of the science by the U.S. public.

  19. Argumentation Key to Communicating Climate Change to the Public

    NASA Astrophysics Data System (ADS)

    Bleicher, R. E.; Lambert, J. L.

    2012-12-01

    Argumentation plays an important role in how we communicate climate change science to the public and is a key component integrated throughout the Next Generation Science Standards. A scientific argument can be described as a disagreement between explanations with data being used to justify each position. Argumentation is social process where two or more individuals construct and critique arguments (Kuhn & Udell, 2003; Nussbaum, 1997). Sampson, Grooms, and Walker's (2011) developed a framework for understanding the components of a scientific argument. The three components start with a claim (a conjecture, conclusion, explanation, or an answer to a research question). This claim must fit the evidence (observations that show trends over time, relationships between variables or difference between groups). The evidence must be justified with reasoning (explains how the evidence supports the explanation and whey it should count as support). In a scientific argument, or debate, the controversy focuses on how data were collected, what data can or should be included, and what inferences can be made based on a set of evidence. Toulmin's model (1969) also includes rebutting or presenting an alternative explanation supported by counter evidence and reasoning of why the alternative is not the appropriate explanation for the question of the problem. The process of scientific argumentation should involve the construction and critique of scientific arguments, one that involves the consideration of alternative hypotheses (Lawson, 2003). Scientific literacy depends as much on the ability to refute and recognize poor scientific arguments as much as it does on the ability to present an effective argument based on good scientific data (Osborne, 2010). Argument is, therefore, a core feature of science. When students learn to construct a sound scientific argument, they demonstrate critical thinking and a mastery of the science being taught. To present a convincing argument in support of climate change, students must have a sound foundation in the science underlying it. One place to lay this foundation is in the high school science classroom. For students to gain a good conceptual understanding of climate change science, teachers need a sound understanding of climate change and effective resources to teach it to students. Teacher professional development opportunities are required to provide this background as well as establish collaborative curriculum planning opportunities on the school site (Shulman, 2007). Various strategies for and challenges of implementing argumentation with preservice and practicing teachers will be discussed in this session, as well as ways that argumentation skills can help the broader public evaluate claims of climate skeptics. In the field of argumentation theory, Goodwin (2010) has designed a strategy for developing the ability to make effective scientific arguments. The goal is to establish trust even when there is strong disagreement. At the core, a student fully acknowledges the uncertainty involved in the complex science underlying climate change. This has the effect of establishing some degree of trust. In other words, teachers or students trying to explain climate change to others might be perceived as more trustworthy if they openly declare that there are degrees of uncertainty in different aspects of climate change science (American Meteorological Society, 2011).

  20. Modeling glacial climates

    NASA Technical Reports Server (NTRS)

    North, G. R.; Crowley, T. J.

    1984-01-01

    Mathematical climate modelling has matured as a discipline to the point that it is useful in paleoclimatology. As an example a new two dimensional energy balance model is described and applied to several problems of current interest. The model includes the seasonal cycle and the detailed land-sea geographical distribution. By examining the changes in the seasonal cycle when external perturbations are forced upon the climate system it is possible to construct hypotheses about the origin of midlatitude ice sheets and polar ice caps. In particular the model predicts a rather sudden potential for glaciation over large areas when the Earth's orbital elements are only slightly altered. Similarly, the drift of continents or the change of atmospheric carbon dioxide over geological time induces radical changes in continental ice cover. With the advance of computer technology and improved understanding of the individual components of the climate system, these ideas will be tested in far more realistic models in the near future.

  1. Water use efficiency and crop water balance of rainfed wheat in a semi-arid environment: sensitivity of future changes to projected climate changes and soil type

    NASA Astrophysics Data System (ADS)

    Yang, Yanmin; Liu, De Li; Anwar, Muhuddin Rajin; O'Leary, Garry; Macadam, Ian; Yang, Yonghui

    2016-02-01

    Wheat production is expected to be affected by climate change through changing components of the crop water balance such as rainfall, evapotranspiration (ET), runoff and drainage. We used the Agricultural Production Systems Simulator (APSIM)-wheat model to simulate the potential impact of climate change on field water balance, ET and water use efficiency (WUE) under the SRES A2 emissions scenario. We ran APSIM with daily climate data statistically downscaled from 18 Global Circulation Models (GCMs). Twelve soil types of varying plant available water holding capacity (PAWC) at six sites across semi-arid southeastern Australia were considered. Biases in the GCM-simulated climate data were bias-corrected against observations for the 1961-1999 baseline period. However, biases in the APSIM output data relative to APSIM simulations forced with climate observations remained. A secondary bias correction was therefore performed on the APSIM outputs. Bias-corrected APSIM outputs for a future period (2021-2040) were compared with APSIM outputs generated using observations for the baseline period to obtain future changes. The results show that effective rainfall was decreased over all sites due to decreased growing season rainfall. ET was decreased through reduced soil evaporation and crop transpiration. There were no significant changes in runoff at any site. The variation in deep drainage between sites was much greater than for runoff, ranging from less than a few millimetres at the drier sites to over 100 mm at the wetter. However, in general, the averaged drainage over different soil types were not significantly different between the baseline (1961-1999) and future period of 2021-2040 ( P > 0.05). For the wetter sites, the variations in the future changes in drainage and runoff between the 18 GCMs were larger than those of the drier sites. At the dry sites, the variation in drainage decreased as PAWC increased. Overall, water use efficiency based on transpiration (WUE_T) and ET (WUE_ET) increased by 1.1 to 1.6 and 0.7 to 1.3 kg ha-1 mm-1, respectively, over the baseline historical climate. Significant relationships between changes in wheat yield and PAWC were only seen at three sites. At the dry sites, the impact of a future climate under a soil of high PAWC was less than that under one of low PAWC. Conversely, the opposite response was seen at two wetter sites, highlighting the importance of PAWC and rainfall in determining the interactive response of crops to primary components of the water balance.

  2. Artificial neural networks and multiple linear regression model using principal components to estimate rainfall over South America

    NASA Astrophysics Data System (ADS)

    Soares dos Santos, T.; Mendes, D.; Rodrigues Torres, R.

    2016-01-01

    Several studies have been devoted to dynamic and statistical downscaling for analysis of both climate variability and climate change. This paper introduces an application of artificial neural networks (ANNs) and multiple linear regression (MLR) by principal components to estimate rainfall in South America. This method is proposed for downscaling monthly precipitation time series over South America for three regions: the Amazon; northeastern Brazil; and the La Plata Basin, which is one of the regions of the planet that will be most affected by the climate change projected for the end of the 21st century. The downscaling models were developed and validated using CMIP5 model output and observed monthly precipitation. We used general circulation model (GCM) experiments for the 20th century (RCP historical; 1970-1999) and two scenarios (RCP 2.6 and 8.5; 2070-2100). The model test results indicate that the ANNs significantly outperform the MLR downscaling of monthly precipitation variability.

  3. Artificial neural networks and multiple linear regression model using principal components to estimate rainfall over South America

    NASA Astrophysics Data System (ADS)

    dos Santos, T. S.; Mendes, D.; Torres, R. R.

    2015-08-01

    Several studies have been devoted to dynamic and statistical downscaling for analysis of both climate variability and climate change. This paper introduces an application of artificial neural networks (ANN) and multiple linear regression (MLR) by principal components to estimate rainfall in South America. This method is proposed for downscaling monthly precipitation time series over South America for three regions: the Amazon, Northeastern Brazil and the La Plata Basin, which is one of the regions of the planet that will be most affected by the climate change projected for the end of the 21st century. The downscaling models were developed and validated using CMIP5 model out- put and observed monthly precipitation. We used GCMs experiments for the 20th century (RCP Historical; 1970-1999) and two scenarios (RCP 2.6 and 8.5; 2070-2100). The model test results indicate that the ANN significantly outperforms the MLR downscaling of monthly precipitation variability.

  4. [Research, impact and adaptation in public health for the new climate of Quebec].

    PubMed

    Gosselin, Pierre; Bélanger, Diane

    2010-01-01

    After its modest beginnings focusing on arctic Quebec in 1999, the Quebec research programme on health and climate change became interested in the remainder of the province around 2002. The European heat wave in 2003 accelerated the pace of this programme and prompted the Quebec health sector's participation in the Ouranos Research Consortium. The research findings from the 2003-2006 period have directly fed into the health component of the Quebec government's climate change action plan (2006-2012), financed through the first carbon tax in the Americas. This component is planning for a series of adaptations to the health network and to some other public networks, which will apply to construction, the built environment and outdoor developments, clinical management methods and practices, public health surveillance as well as emergency preparedness. In this article, the authors describe how research is supporting action and implementation, while also preparing for the future, and how this interaction has progressively established itself over the last 10 years.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallis, Geoffrey K.

    The project had two main components. The first concerns estimating the climate sensitivity in the presence of forcing uncertainty and natural variability. Climate sensitivity is the increase in the average surface temperature for a given increase in greenhouse gases, for example a doubling of carbon dioxide. We have provided new, probabilistic estimates of climate sensitivity using a simple climate model an the observed warming in the 20th century, in conjunction with ideas in data assimilation and parameter estimation developed in the engineering community. The estimates combine the uncertainty in the anthropogenic aerosols with the uncertainty arising because of natural variability.more » The second component concerns how the atmospheric circulation itself might change with anthropogenic global warming. We have shown that GCMs robustly predict an increase in the length scale of eddies, and we have also explored the dynamical mechanisms whereby there might be a shift in the latitude of the jet stream associated with anthropogenic warming. Such shifts in the jet might cause large changes in regional climate, potentially larger than the globally-averaged signal itself. We have also shown that the tropopause robustly increases in height with global warming, and that the Hadley Cell expands, and that the expansion of the Hadley Cell is correlated with the polewards movement of the mid-latitude jet.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boer, George J.; Smith, Douglas M.; Cassou, Christophe

    The Decadal Climate Prediction Project (DCPP) is a coordinated multi-model investigation into decadal climate prediction, predictability, and variability. The DCPP makes use of past experience in simulating and predicting decadal variability and forced climate change gained from the fifth Coupled Model Intercomparison Project (CMIP5) and elsewhere. It builds on recent improvements in models, in the reanalysis of climate data, in methods of initialization and ensemble generation, and in data treatment and analysis to propose an extended comprehensive decadal prediction investigation as a contribution to CMIP6 (Eyring et al., 2016) and to the WCRP Grand Challenge on Near Term Climate Predictionmore » (Kushnir et al., 2016). The DCPP consists of three components. Component A comprises the production and analysis of an extensive archive of retrospective forecasts to be used to assess and understand historical decadal prediction skill, as a basis for improvements in all aspects of end-to-end decadal prediction, and as a basis for forecasting on annual to decadal timescales. Component B undertakes ongoing production, analysis and dissemination of experimental quasi-real-time multi-model forecasts as a basis for potential operational forecast production. Component C involves the organization and coordination of case studies of particular climate shifts and variations, both natural and naturally forced (e.g. the “hiatus”, volcanoes), including the study of the mechanisms that determine these behaviours. Furthermore, groups are invited to participate in as many or as few of the components of the DCPP, each of which are separately prioritized, as are of interest to them.The Decadal Climate Prediction Project addresses a range of scientific issues involving the ability of the climate system to be predicted on annual to decadal timescales, the skill that is currently and potentially available, the mechanisms involved in long timescale variability, and the production of forecasts of benefit to both science and society.« less

  7. Potential changes in forest composition could reduce impacts of climate change on boreal wildfires.

    PubMed

    Terrier, Aurélie; Girardin, Martin P; Périé, Catherine; Legendre, Pierre; Bergeron, Yves

    2013-01-01

    There is general consensus that wildfires in boreal forests will increase throughout this century in response to more severe and frequent drought conditions induced by climate change. However, prediction models generally assume that the vegetation component will remain static over the next few decades. As deciduous species are less flammable than conifer species, it is reasonable to believe that a potential expansion of deciduous species in boreal forests, either occurring naturally or through landscape management, could offset some of the impacts of climate change on the occurrence of boreal wildfires. The objective of this study was to determine the potential of this offsetting effect through a simulation experiment conducted in eastern boreal North America. Predictions of future fire activity were made using multivariate adaptive regression splines (MARS) with fire behavior indices and ecological niche models as predictor variables so as to take into account the effects of changing climate and tree distribution on fire activity. A regional climate model (RCM) was used for predictions of future fire risk conditions. The experiment was conducted under two tree dispersal scenarios: the status quo scenario, in which the distribution of forest types does not differ from the present one, and the unlimited dispersal scenario, which allows forest types to expand their range to fully occupy their climatic niche. Our results show that future warming will create climate conditions that are more prone to fire occurrence. However, unlimited dispersal of southern restricted deciduous species could reduce the impact of climate change on future fire occurrence. Hence, the use of deciduous species could be a good option for an efficient strategic fire mitigation strategy aimed at reducing fire Propagation in coniferous landscapes and increasing public safety in remote populated areas of eastern boreal Canada under climate change.

  8. Enhancing the Extreme Climate Index (ECI) to monitor climate extremes for an index-based insurance scheme across Africa

    NASA Astrophysics Data System (ADS)

    Helmschrot, J.; Malherbe, J.; Chamunorwa, M.; Muthige, M.; Petitta, M.; Calmanti, S.; Cucchi, M.; Syroka, J.; Iyahen, E.; Engelbrecht, F.

    2017-12-01

    Climate services are a key component of National Adaptation Plan (NAP) processes, which require the analysis of current climate conditions, future climate change scenarios and the identification of adaptation strategies, including the capacity to finance and implement effective adaptation options. The Extreme Climate Facility (XCF) proposed by the African Risk Capacity (ARC) developed a climate index insurance scheme, which is based on the Extreme Climate Index (ECI): an objective, multi-hazard index capable of tracking changes in the frequency or magnitude of extreme weather events, thus indicating possible shifts to a new climate regime in various regions. The main hazards covered by ECI are extreme dry, wet and heat events, with the possibility of adding other region-specific risk events. The ECI is standardized across broad geographical regions, so that extreme events occurring under different climatic regimes in Africa can be compared. Initially developed by an Italian company specialized in Climate Services, research is now conducted at the CSIR and SASSCAL, to verify and further develop the ECI for application in southern African countries, through a project initiated by the World Food Programme (WFP) and ARC. The paper will present findings on the most appropriate definitions of extremely wet and dry conditions in Africa, in terms of their impact across a multitude of sub-regional climates of the African continent. Findings of a verification analysis of the ECI, as determined through vegetation monitoring data and the SASSCAL weather station network will be discussed. Changes in the ECI under climate change will subsequently be projected, using detailed regional projections generated by the CSIR and through the Coordinated Regional Downscaling Experiment (CORDEX). This work will be concluded by the development of a web-based climate service informing African Stakeholders on climate extremes.

  9. Moving beyond a knowledge deficit perspective to understand climate action by youth

    NASA Astrophysics Data System (ADS)

    Busch, K. C.

    2016-12-01

    This presentation reports on an experiment testing two framings of uncertainty on students' intent to take action to mitigate climate change. Additionally, to explore possible mechanisms involved in the choice of taking mitigating action, several factors highlighted within behavior theory literature were measured to create a theoretical model for youth's choice to take mitigating action. The factors explored were: knowledge, certainty, affect, efficacy, and social norms. The experiment was conducted with 453 middle and high school students within the Bay Area. Findings indicated that these students did hold a basic understanding of the causes and effects of climate change. They were worried and felt negatively about the topic. They felt somewhat efficacious about their personal ability to mitigate climate change. The students reported that they associated with people who were more likely to think climate change was real and caused by humans. Students also reported that they often take part in private pro-environmental behaviors such as using less electricity. When asked to respond freely to a question about what think about climate change, participants described the negative effects of human-caused climate change on Earth systems at the global scale and as a current phenomenon. The results of the experiment showed that while the text portraying climate change with high uncertainty did affect student's own certainty and their perception of scientists' certainty, it did not affect behavioral intention. This result can be explained through regression analysis. It was found that efficacy and social norms were direct determinants of pro-environmental behaviors. The cognitive variables - knowledge and certainty - and the psychological variable - affect - were not significant predictors of pro-environmental behavior. The implications for this study are that while students hold basic understanding of the causes and effects of climate change, this understanding lacks personal relevance. Another implication of this study is that if we wish to have action-taking as an outcome of climate change education efforts, then the learning activities should include components to address efficacy and social norms.

  10. News on Climate Change, Air Pollution, and Allergic Triggers of Asthma.

    PubMed

    D Amato, M; Cecchi, L; Annesi-Maesano, I; D Amato, G

    2018-01-01

    The rising frequency of obstructive respiratory diseases during recent years, in particular allergic asthma, can be partially explained by changes in the environment, with the increasing presence in the atmosphere of chemical triggers (particulate matter and gaseous components such as nitrogen dioxide and ozone) and biologic triggers (aeroallergens). In allergic individuals, aeroallergens stimulate airway sensitization and thus induce symptoms of bronchial asthma. Over the last 50 years, the earth's temperature has risen markedly, likely because of growing concentrations of anthropogenic greenhouse gas. Major atmospheric and climatic changes, including global warming induced by human activity, have a considerable impact on the biosphere and on the human environment. Urbanization and high levels of vehicle emissions induce symptoms of bronchial obstruction (in particular bronchial asthma), more so in people living in urban areas compared than in those who live in rural areas. Measures need to be taken to mitigate the future impact of climate change and global warming. However, while global emissions continue to rise, we must learn to adapt to climate variability.

  11. Climate-driven regime shifts in Arctic marine benthos

    PubMed Central

    Kortsch, Susanne; Primicerio, Raul; Beuchel, Frank; Renaud, Paul E.; Rodrigues, João; Lønne, Ole Jørgen; Gulliksen, Bjørn

    2012-01-01

    Climate warming can trigger abrupt ecosystem changes in the Arctic. Despite the considerable interest in characterizing and understanding the ecological impact of rapid climate warming in the Arctic, few long time series exist that allow addressing these research goals. During a 30-y period (1980–2010) of gradually increasing seawater temperature and decreasing sea ice cover in Svalbard, we document rapid and extensive structural changes in the rocky-bottom communities of two Arctic fjords. The most striking component of the benthic reorganization was an abrupt fivefold increase in macroalgal cover in 1995 in Kongsfjord and an eightfold increase in 2000 in Smeerenburgfjord. Simultaneous changes in the abundance of benthic invertebrates suggest that the macroalgae played a key structuring role in these communities. The abrupt, substantial, and persistent nature of the changes observed is indicative of a climate-driven ecological regime shift. The ecological processes thought to drive the observed regime shifts are likely to promote the borealization of these Arctic marine communities in the coming years. PMID:22891319

  12. SPARC's Stratospheric Sulfur and its Role in Climate Activity (SSiRC)

    NASA Technical Reports Server (NTRS)

    Thomason, Larry

    2015-01-01

    The stratospheric aerosol layer is a key component in the climate system. It affects the radiative balance of the atmosphere directly through interactions with solar and terrestrial radiation, and indirectly through its effect on stratospheric ozone. Because the stratospheric aerosol layer is prescribed in many climate models and Chemistry-Climate Models (CCMs), model simulations of future atmospheric conditions and climate generally do not account for the interaction between the aerosol-sulfur cycle and changes in the climate system. The present understanding of how the stratospheric aerosol layer may be affected by future climate change and how the stratospheric aerosol layer may drive climate change is, therefore, very limited. The purposes of SSiRC (Stratospheric Sulfur and its Role in Climate) include: (i) providing a coordinating structure for the various individual activities already underway in different research centers; (ii) encouraging and supporting new instrumentation and measurements of sulfur containing compounds, such as COS, DMS, and non-volcanic SO2 in the UT/LS globally; and (iii) initiating new model/data inter-comparisons. SSiRC is developing collaborations with a number of other SPARC activities including CCMI and ACAM. This presentation will highlight the scientific goals of this project and on-going activities and propose potential interactions between SSiRC and ACAM.

  13. Carbon-climate-human interactions in an integrated human-Earth system model

    NASA Astrophysics Data System (ADS)

    Calvin, K. V.; Bond-Lamberty, B. P.; Jones, A. D.; Shi, X.

    2016-12-01

    The C4MIP and CMIP5 results highlighted large uncertainties in climate projections, driven to a large extent by limited understanding of the interactions between terrestrial carbon-cycle and climate feedbacks, and their associated uncertainties. These feedbacks are dominated by uncertainties in soil processes, disturbance dynamics, ecosystem response to climate change, and agricultural productivity, and land-use change. This research addresses three questions: (1) how do terrestrial feedbacks vary across different levels of climate change, (2) what is the relative contribution of CO2 fertilization and climate change, and (3) how robust are the results across different models and methods? We used a coupled modeling framework that integrates an Integrated Assessment Model (modeling economic and energy activity) with an Earth System Model (modeling the natural earth system) to examine how business-as-usual (RCP 8.5) climate change will affect ecosystem productivity, cropland extent, and other aspects of the human-Earth system. We find that higher levels of radiative forcing result in higher productivity growth, that increases in CO2 concentrations are the dominant contributors to that growth, and that our productivity increases fall in the middle of the range when compared to other CMIP5 models and the AgMIP models. These results emphasize the importance of examining both the anthropogenic and natural components of the earth system, and their long-term interactive feedbacks.

  14. The Copernicus programme and its Climate Change Service (C3S): a European answer to Climate Change

    NASA Astrophysics Data System (ADS)

    Pinty, Bernard; Thepaut, Jean-Noel; Dee, Dick

    2016-07-01

    In November 2014, The European Centre for Medium-range Weather Forecasts (ECMWF) signed an agreement with the European Commission to deliver two of the Copernicus Earth Observation Programme Services on the Commission's behalf. The ECMWF delivered services - the Copernicus Climate Change Service (C3S) and Atmosphere Monitoring Service (CAMS) - will bring a consistent standard to how we measure and predict atmospheric conditions and climate change. They will maximise the potential of past, current and future earth observations - ground, ocean, airborne, satellite - and analyse these to monitor and predict atmospheric conditions and in the future, climate change. With the wealth of free and open data that the services provide, they will help business users to assess the impact of their business decisions and make informed choices, delivering a more energy efficient and climate aware economy. These sound investment decisions now will not only stimulate growth in the short term, but reduce the impact of climate change on the economy and society in the future. C3S is in its proof of concept phase and through its climate data store will provide global and regional climate data reanalyses; multi-model seasonal forecasts; customisable visual data to enable examination of wide range of scenarios and model the impact of changes; access to all the underlying data, including climate data records from various satellite and in-situ observations. In addition, C3S will provide key indicators on climate change drivers (such as carbon dioxide) and impacts (such as reducing glaciers). The aim of these indicators will be to support European adaptation and mitigation policies in a number of economic sectors. The presentation will provide an overview of this newly created Service, its various components and activities, and a roadmap towards achieving a fully operational European Climate Service at the horizon 2019-2020. It will focus on the requirements for quality-assured Observation Gridded Products to establish an operational delivery of a series of gridded long-term Climate Data Records (CDRs) of Essential Climate Variables (ECVs), along with associated input data and uncertainty estimation.

  15. Fisheries regulatory regimes and resilience to climate change.

    PubMed

    Ojea, Elena; Pearlman, Isaac; Gaines, Steven D; Lester, Sarah E

    2017-05-01

    Climate change is already producing ecological, social, and economic impacts on fisheries, and these effects are expected to increase in frequency and magnitude in the future. Fisheries governance and regulations can alter socio-ecological resilience to climate change impacts via harvest control rules and incentives driving fisher behavior, yet there are no syntheses or conceptual frameworks for examining how institutions and their regulatory approaches can alter fisheries resilience to climate change. We identify nine key climate resilience criteria for fisheries socio-ecological systems (SES), defining resilience as the ability of the coupled system of interacting social and ecological components (i.e., the SES) to absorb change while avoiding transformation into a different undesirable state. We then evaluate the capacity of four fisheries regulatory systems that vary in their degree of property rights, including open access, limited entry, and two types of rights-based management, to increase or inhibit resilience. Our exploratory assessment of evidence in the literature suggests that these regulatory regimes vary widely in their ability to promote resilient fisheries, with rights-based approaches appearing to offer more resilience benefits in many cases, but detailed characteristics of the regulatory instruments are fundamental.

  16. Biospheric feedback effects in a synchronously coupled model of human and Earth systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton, Peter E.; Calvin, Katherine; Jones, Andrew D.

    Fossil fuel combustion and land-use change are the first and second largest contributors to industrial-era increases in atmospheric carbon dioxide concentration, which is itself the largest driver of present-day climate change1. Projections of fossil fuel consumption and land-use change are thus fundamental inputs for coupled Earth system models (ESM) used to estimate the physical and biological consequences of future climate system forcing2,3. While empirical datasets are available to inform historical analyses4,5, assessments of future climate change have relied on projections of energy and land use based on energy economic models, constrained using historical and present-day data and forced with assumptionsmore » about future policy, land-use patterns, and socio-economic development trajectories6. Here we show that the influence of biospheric change – the integrated effect of climatic, ecological, and geochemical processes – on land ecosystems has a significant impact on energy, agriculture, and land-use projections for the 21st century. Such feedbacks have been ignored in previous ESM studies of future climate. We find that synchronous exposure of land ecosystem productivity in the economic system to biospheric change as it develops in an ESM results in a 10% reduction of land area used for crop cultivation; increased managed forest area and land carbon; a 15-20% decrease in global crop price; and a 17% reduction in fossil fuel emissions for a low-mid range forcing scenario7. These simulation results demonstrate that biospheric change can significantly alter primary human system forcings to the climate system. This synchronous two-way coupling approach removes inconsistencies in description of climate change between human and biosphere components of the coupled model, mitigating a major source of uncertainty identified in assessments of future climate projections8-10.« less

  17. The Citizen Science Program "H2O SOS: Help Heal the Ocean—Student Operated Solutions: Operation Climate Change" teaches middle and high school students about ocean threats related to climate change through hands-on activities and learning experiences in the field. This is a continuation of the Program presented last year at the Poster Session.

    NASA Astrophysics Data System (ADS)

    Weiss, N. K.; Wood, J. H.

    2017-12-01

    TThe Citizen Science Program H2O SOS: Help Heal the Ocean—Student Operated Solutions: Operation Climate Change, teaches middle and high school students about ocean threats related to climate change through hands-on activities and learning experiences in the field. During each session (in-class or after-school as a club), students build an understanding about how climate change impacts our oceans using resources provided by ExplorOcean (hands-on activities, presentations, multi-media). Through a student leadership model, students present lessons to each other, interweaving a deep learning of science, 21st century technology, communication skills, and leadership. After participating in learning experiences and activities related to 6 key climate change concepts: 1) Introduction to climate change, 2) Increased sea temperatures, 3) Ocean acidification, 4) Sea level rise, 5) Feedback mechanisms, and 6) Innovative solutions. H2O SOS- Operation Climate change participants select one focus issue and use it to design a multi-pronged campaign to increase awareness about this issue in their local community. The campaign includes social media, an interactive activity, and a visual component. All participating clubs that meet participation and action goals earn a field trip to Ocean Quest where they dive deeper into their selected issue through hands-on activities, real-world investigations, and interviews or presentations with experts. In addition to self-selected opportunities to showcase their focus issue, teams will participate in one of several key events identified by Ocean Quest.

  18. Climate Change and Arctic Issues in the Marine and Environmental Science Curriculum at the U.S. Coast Guard Academy

    NASA Astrophysics Data System (ADS)

    Vlietstra, L.; McConnell, M. C.; Bergondo, D. L.; Mrakovcich, K. L.; Futch, V.; Stutzman, B. S.; Fleischmann, C. M.

    2016-02-01

    As global climate change becomes more evident, demand will likely increase for experts with a detailed understanding of the scientific basis of climate change, the ocean's role in the earth-atmosphere system, and forecasted impacts, especially in Arctic regions where effects may be most pronounced. As a result, programs in marine and environmental sciences are uniquely poised to prepare graduates for the formidable challenges posed by changing climates. Here we present research evaluating the prevalence and themes of courses focusing on anthropogenic climate change in 125 Marine Science and Environmental Science undergraduate programs at 86 institutions in the United States. These results, in addition to the increasing role of the Coast Guard in the Arctic, led to the development of two new courses in the curriculum. Climate Change Science, a one-credit seminar, includes several student-centered activities supporting key learning objectives. Polar Oceanography, a three-credit course, incorporates a major outreach component to Coast Guard units and members of the scientific community. Given the importance of climate change in Arctic regions in particular, we also propose six essential "Arctic Literacy Principles" around which courses or individual lesson plans may be organized. We show how these principles are incorporated into an additional new three-credit course, Model Arctic Council, which prepares students to participate in a week-long simulation exercise of Arctic Council meetings, held in Fairbanks, Alaska. Students examine the history and mission of the Arctic Council and explore some of the issues on which the council has deliberated. Special attention is paid to priorities of the current U.S. chairmanship of the Arctic Council which include climate change impacts on, and stewardship of, the Arctic Ocean.

  19. Interactive effects of global change factors on soil respiration and its components: a meta-analysis.

    PubMed

    Zhou, Lingyan; Zhou, Xuhui; Shao, Junjiong; Nie, Yuanyuan; He, Yanghui; Jiang, Liling; Wu, Zhuoting; Hosseini Bai, Shahla

    2016-09-01

    As the second largest carbon (C) flux between the atmosphere and terrestrial ecosystems, soil respiration (Rs) plays vital roles in regulating atmospheric CO2 concentration ([CO2 ]) and climatic dynamics in the earth system. Although numerous manipulative studies and a few meta-analyses have been conducted to determine the responses of Rs and its two components [i.e., autotrophic (Ra) and heterotrophic (Rh) respiration] to single global change factors, the interactive effects of the multiple factors are still unclear. In this study, we performed a meta-analysis of 150 multiple-factor (≥2) studies to examine the main and interactive effects of global change factors on Rs and its two components. Our results showed that elevated [CO2 ] (E), nitrogen addition (N), irrigation (I), and warming (W) induced significant increases in Rs by 28.6%, 8.8%, 9.7%, and 7.1%, respectively. The combined effects of the multiple factors, EN, EW, DE, IE, IN, IW, IEW, and DEW, were also significantly positive on Rs to a greater extent than those of the single-factor ones. For all the individual studies, the additive interactions were predominant on Rs (90.6%) and its components (≈70.0%) relative to synergistic and antagonistic ones. However, the different combinations of global change factors (e.g., EN, NW, EW, IW) indicated that the three types of interactions were all important, with two combinations for synergistic effects, two for antagonistic, and five for additive when at least eight independent experiments were considered. In addition, the interactions of elevated [CO2 ] and warming had opposite effects on Ra and Rh, suggesting that different processes may influence their responses to the multifactor interactions. Our study highlights the crucial importance of the interactive effects among the multiple factors on Rs and its components, which could inform regional and global models to assess the climate-biosphere feedbacks and improve predictions of the future states of the ecological and climate systems. © 2016 John Wiley & Sons Ltd.

  20. Revisiting historical climatic signals to better explore the future: prospects of water cycle changes in Central Sahel

    NASA Astrophysics Data System (ADS)

    Leauthaud, C.; Demarty, J.; Cappelaere, B.; Grippa, M.; Kergoat, L.; Velluet, C.; Guichard, F.; Mougin, E.; Chelbi, S.; Sultan, B.

    2015-06-01

    Rainfall and climatic conditions are the main drivers of natural and cultivated vegetation productivity in the semiarid region of Central Sahel. In a context of decreasing cultivable area per capita, understanding and predicting changes in the water cycle are crucial. Yet, it remains challenging to project future climatic conditions in West Africa since there is no consensus on the sign of future precipitation changes in simulations coming from climate models. The Sahel region has experienced severe climatic changes in the past 60 years that can provide a first basis to understand the response of the water cycle to non-stationary conditions in this part of the world. The objective of this study was to better understand the response of the water cycle to highly variable climatic regimes in Central Sahel using historical climate records and the coupling of a land surface energy and water model with a vegetation model that, when combined, simulated the Sahelian water, energy and vegetation cycles. To do so, we relied on a reconstructed long-term climate series in Niamey, Republic of Niger, in which three precipitation regimes can be distinguished with a relative deficit exceeding 25% for the driest period compared to the wettest period. Two temperature scenarios (+2 and +4 °C) consistent with future warming scenarios were superimposed to this climatic signal to generate six virtual future 20-year climate time series. Simulations by the two coupled models forced by these virtual scenarios showed a strong response of the water budget and its components to temperature and precipitation changes, including decreases in transpiration, runoff and drainage for all scenarios but those with highest precipitation. Such climatic changes also strongly impacted soil temperature and moisture. This study illustrates the potential of using the strong climatic variations recorded in the past decades to better understand potential future climate variations.

  1. Changes in climate variability with reference to land quality and agriculture in Scotland.

    PubMed

    Brown, Iain; Castellazzi, Marie

    2015-06-01

    Classification and mapping of land capability represents an established format for summarising spatial information on land quality and land-use potential. By convention, this information incorporates bioclimatic constraints through the use of a long-term average. However, climate change means that land capability classification should also have a dynamic temporal component. Using an analysis based upon Land Capability for Agriculture in Scotland, it is shown that this dynamism not only involves the long-term average but also shorter term spatiotemporal patterns, particularly through changes in interannual variability. Interannual and interdecadal variations occur both in the likelihood of land being in prime condition (top three capability class divisions) and in class volatility from year to year. These changing patterns are most apparent in relation to the west-east climatic gradient which is mainly a function of precipitation regime and soil moisture. Analysis is also extended into the future using climate results for the 2050s from a weather generator which show a complex interaction between climate interannual variability and different soil types for land quality. In some locations, variability of land capability is more likely to decrease because the variable climatic constraints are relaxed and the dominant constraint becomes intrinsic soil properties. Elsewhere, climatic constraints will continue to be influential. Changing climate variability has important implications for land-use planning and agricultural management because it modifies local risk profiles in combination with the current trend towards agricultural intensification and specialisation.

  2. Climate Odyssey: Communicating Coastal Change through Art, Science, and Sail

    NASA Astrophysics Data System (ADS)

    Klos, P. Z.; Holtsnider, L.

    2016-12-01

    Climate Odyssey (climateodyssey.org) is a year-long sailing expedition and continuing collaboration aimed at using overlaps in science and visual art to communicate coastal climate change impacts and solutions. We, visual artist Lucy Holtsnider and climate scientist Zion Klos, are using our complimentary skills in art, science and communication to engage audiences both affectively and cognitively regarding the urgency of climate change through story and visualization. In July of 2015, we embarked on the sailing portion of Climate Odyssey, beginning in Lake Michigan, continuing along the Eastern Seaboard, and concluding in May 2016 in the tropics. Along the way we photographed climate change impacts and adaptation strategies, interviewed stakeholders, scientists, and artists. We are now sharing our photographs and documented encounters through a tangible artist's book, interactive digital map, and blog. Each of our images added to the artist's book and digital map are linked to relevant blog entries and other external scientific resources, making the map both an aesthetic piece of art and an engaging tool for sharing the science of climate change impacts and solutions. After completing the sailing component of the project, we are now working to finalize our media and share our pieces with the public via libraries, galleries, and classrooms in coastal communities. At AGU, we will share with our peers the completed version of the artist's book, digital map, and online blog so we can both discuss public engagement strategies and showcase this example of art-science outreach with the broader science communication community.

  3. Climate Change in Colorado: Findings and Scientific Challenges

    NASA Astrophysics Data System (ADS)

    Barsugli, J.; Ray, A.; Averyt, K.; Wolter, K.; Hoerling, M. P.

    2008-12-01

    In response to the risks associated with anthropogenic climate change, Governor Ritter issued the Colorado Climate Action Plan (CCAP) in 2007. In support of the adaptation component of the CCAP, the Colorado Water Conservation Board commissioned the Western Water Assessment at the University of Colorado to prepare the report "Climate Change in Colorado: A Synthesis to Support Water Resources Management and Adaptation." The objective of "Climate Change in Colorado" is to communicate the state of the science regarding the physical aspects of climate change that are important for evaluating impacts on Colorado's water resources. Accordingly, the document focuses on observed trends, modeling, attribution, and projections of hydroclimatic variables that are important for Colorado's water supply. Although many published datasets include information about Colorado, there are few climate studies that focus on the state. Consequently, many important analyses for Colorado are lacking. The report summarizes Colorado-specific findings from peer-reviewed regional studies, and presents new analyses derived from existing datasets. Here we will summarize the findings of the report, discuss the extent to which conclusions from West-wide studies hold in Colorado, and highlight the many scientific challenges that were faced in the preparation of the report. These challenges include interpreting observed and projected precipitation and temperature variability and trends, dealing with attribution and uncertainty at the state level, and justifying the relevance of climate model projections in a topographically complex state. A second presentation (Ray et al.) discusses the process of developing the report.

  4. Global-change vulnerability of a key plant resource, the African palms.

    PubMed

    Blach-Overgaard, Anne; Balslev, Henrik; Dransfield, John; Normand, Signe; Svenning, Jens-Christian

    2015-07-27

    Palms are keystone species in tropical ecosystems and provide essential ecosystem services to rural people worldwide. However, many palm species are threatened by habitat loss and over-exploitation. Furthermore, palms are sensitive to climate and thus vulnerable to future climate changes. Here, we provide a first quantitative assessment of the future risks to the African palm flora, finding that African palm species on average may experience a decline in climatic suitability in >70% of their current ranges by 2080. This suitability loss may, however, be almost halved if migration to nearby climatically suitable sites succeeds. Worryingly, 42% of the areas with 80-100% of species losing climate suitability are also characterized by high human population density (HPD). By 2080, >90% of all African palm species' ranges will likely occur at HPDs leading to increased risks of habitat loss and overexploitation. Additionally, up to 87% of all species are predicted to lose climatic suitability within current protected areas (PAs) by 2080. In summary, a major plant component of tropical ecosystems and provider of ecosystem services to rural populations will face strongly increased pressures from climate change and human populations in the near future.

  5. Mapping vulnerability to climate change and its repercussions on human health in Pakistan

    PubMed Central

    2012-01-01

    Background Pakistan is highly vulnerable to climate change due to its geographic location, high dependence on agriculture and water resources, low adaptive capacity of its people, and weak system of emergency preparedness. This paper is the first ever attempt to rank the agro-ecological zones in Pakistan according to their vulnerability to climate change and to identify the potential health repercussions of each manifestation of climate change in the context of Pakistan. Methods A climate change vulnerability index is constructed as an un-weighted average of three sub-indices measuring (a) the ecological exposure of each region to climate change, (b) sensitivity of the population to climate change and (c) the adaptive capacity of the population inhabiting a particular region. The regions are ranked according to the value of this index and its components. Since health is one of the most important dimensions of human wellbeing, this paper also identifies the potential health repercussions of each manifestations of climate change and links it with the key manifestations of climate change in the context of Pakistan. Results The results indicate that Balochistan is the most vulnerable region with high sensitivity and low adaptive capacity followed by low-intensity Punjab (mostly consisting of South Punjab) and Cotton/Wheat Sindh. The health risks that each of these regions face depend upon the type of threat that they face from climate change. Greater incidence of flooding, which may occur due to climate variability, poses the risk of diarrhoea and gastroenteritis; skin and eye Infections; acute respiratory infections; and malaria. Exposure to drought poses the potential health risks in the form of food insecurity and malnutrition; anaemia; night blindness; and scurvy. Increases in temperature pose health risks of heat stroke; malaria; dengue; respiratory diseases; and cardiovascular diseases. Conclusion The study concludes that geographical zones that are more exposed to climate change in ecological and geographic terms- such as Balochistan, Low-Intensity Punjab, and Cotton-Wheat Sindh -also happen to be the most deprived regions in Pakistan in terms of socio-economic indicators, suggesting that the government needs to direct its efforts to the socio-economic uplift of these lagging regions to reduce their vulnerability to the adverse effects of climate change. PMID:22938568

  6. Ecosystem oceanography for global change in fisheries.

    PubMed

    Cury, Philippe Maurice; Shin, Yunne-Jai; Planque, Benjamin; Durant, Joël Marcel; Fromentin, Jean-Marc; Kramer-Schadt, Stephanie; Stenseth, Nils Christian; Travers, Morgane; Grimm, Volker

    2008-06-01

    Overexploitation and climate change are increasingly causing unanticipated changes in marine ecosystems, such as higher variability in fish recruitment and shifts in species dominance. An ecosystem-based approach to fisheries attempts to address these effects by integrating populations, food webs and fish habitats at different scales. Ecosystem models represent indispensable tools to achieve this objective. However, a balanced research strategy is needed to avoid overly complex models. Ecosystem oceanography represents such a balanced strategy that relates ecosystem components and their interactions to climate change and exploitation. It aims at developing realistic and robust models at different levels of organisation and addressing specific questions in a global change context while systematically exploring the ever-increasing amount of biological and environmental data.

  7. Assessment of spatiotemporal variations in the fluvial wash-load component in the 21st century with regard to GCM climate change scenarios.

    PubMed

    Mouri, Goro

    2015-11-15

    For stream water, in which a relationship exists between wash-load concentration and discharge, an estimate of fine-sediment delivery may be obtained from a traditional fluvial wash-load rating curve. Here, we demonstrate that the remaining wash-load material load can be estimated from a traditional empirical principle on a nationwide scale. The traditional technique was applied to stream water for the whole of Japan. Four typical GCMs were selected from the Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble to provide the driving fields for the following regional climate models to assess the wash-load component based on rating curves: the Model for Interdisciplinary Research on Climate (MIROC), the Meteorological Research Institute Atmospheric General Circulation Model (MRI-GCM), the Hadley Centre Global Environment Model (HadGEM) and the Geophysical Fluid Dynamics Laboratory (GFDL) climate model. The simulations consisted of an ensemble, including multiple physics configurations and different Representative Concentration Pathways (RCP2.6, RCP4.5 and RCP8.5), which was used to produce monthly datasets for the whole country of Japan. The impacts of future climate changes on fluvial wash load in Japanese stream water were based on the balance of changes in hydrological factors. The annual and seasonal variations of the fluvial wash load were assessed from the result of the ensemble analysis in consideration of the Greenhouse Gas (GHG) emission scenarios. The determined results for the amount of wash load increase range from approximately 20 to 110% in the 2040s, especially along part of the Pacific Ocean and the Sea of Japan regions. In the 2090s, the amount of wash load is projected to increase by more than 50% over the whole of Japan. The assessment indicates that seasonal variation is particularly important because the rainy and typhoon seasons, which include extreme events, are the dominant seasons. Because fluvial wash-load-component turbidity appears to vary exponentially, this phenomenon has an impact on the management of social capital, such as drinking water services. Prediction of the impacts of future climate change on fluvial wash-load sediment is crucial for effective environmental planning and the management of social capital to adapt to the next century. We demonstrate that simulations comprise an ensemble of factors, including multiple physical configurations, associated with the wash-load component for the whole of Japan. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Effects of climate and land cover on hydrology in the southeastern U.S.: Potential impacts on watershed planning

    USGS Publications Warehouse

    LaFontaine, Jacob H.; Hay, Lauren E.; Viger, Roland; Regan, R. Steve; Markstrom, Steven

    2015-01-01

    The hydrologic response to statistically downscaled general circulation model simulations of daily surface climate and land cover through 2099 was assessed for the Apalachicola-Chattahoochee-Flint River Basin located in the southeastern United States. Projections of climate, urbanization, vegetation, and surface-depression storage capacity were used as inputs to the Precipitation-Runoff Modeling System to simulate projected impacts on hydrologic response. Surface runoff substantially increased when land cover change was applied. However, once the surface depression storage was added to mitigate the land cover change and increases of surface runoff (due to urbanization), the groundwater flow component then increased. For hydrologic studies that include projections of land cover change (urbanization in particular), any analysis of runoff beyond the change in total runoff should include effects of stormwater management practices as these features affect flow timing and magnitude and may be useful in mitigating land cover change impacts on streamflow. Potential changes in water availability and how biota may respond to changes in flow regime in response to climate and land cover change may prove challenging for managers attempting to balance the needs of future development and the environment. However, these models are still useful for assessing the relative impacts of climate and land cover change and for evaluating tradeoffs when managing to mitigate different stressors.

  9. Producing More Actionable Science Isn't the Problem; It's Providing Decision-Makers with Access to Right Actionable Knowledge

    NASA Astrophysics Data System (ADS)

    Trexler, M.

    2017-12-01

    Policy-makers today have almost infinite climate-relevant scientific and other information available to them. The problem for climate change decision-making isn't missing science or inadequate knowledge of climate risks; the problem is that the "right" climate change actionable knowledge isn't getting to the right decision-maker, or is getting there too early or too late to effectively influence her decision-making. Actionable knowledge is not one-size-fit-all, and for a given decision-maker might involve scientific, economic, or risk-based information. Simply producing more and more information as we are today is not the solution, and actually makes it harder for individual decision-makers to access "their" actionable knowledge. The Climatographers began building the Climate Web five years ago to test the hypothesis that a knowledge management system could help navigate the gap between infinite information and individual actionable knowledge. Today the Climate Web's more than 1,500 index terms allow instant access to almost any climate change topic. It is a curated public-access knowledgebase of more than 1,000 books, 2,000 videos, 15,000 reports and articles, 25,000 news stories, and 3,000 websites. But it is also much more, linking together tens of thousands of individually extracted ideas and graphics, and providing Deep Dives into more than 100 key topics from changing probability distributions of extreme events to climate communications best practices to cognitive dissonance in climate change decision-making. The public-access Climate Web is uniquely able to support cross-silo learning, collaboration, and actionable knowledge dissemination. The presentation will use the Climate Web to demonstrate why knowledge management should be seen as a critical component of science and policy-making collaborations.

  10. The Detection and Attribution Model Intercomparison Project (DAMIP v1.0)contribution to CMIP6

    DOE PAGES

    Gillett, Nathan P.; Shiogama, Hideo; Funke, Bernd; ...

    2016-10-18

    Detection and attribution (D&A) simulations were important components of CMIP5 and underpinned the climate change detection and attribution assessments of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. The primary goals of the Detection and Attribution Model Intercomparison Project (DAMIP) are to facilitate improved estimation of the contributions of anthropogenic and natural forcing changes to observed global warming as well as to observed global and regional changes in other climate variables; to contribute to the estimation of how historical emissions have altered and are altering contemporary climate risk; and to facilitate improved observationally constrained projections of futuremore » climate change. D&A studies typically require unforced control simulations and historical simulations including all major anthropogenic and natural forcings. Such simulations will be carried out as part of the DECK and the CMIP6 historical simulation. In addition D&A studies require simulations covering the historical period driven by individual forcings or subsets of forcings only: such simulations are proposed here. Key novel features of the experimental design presented here include firstly new historical simulations with aerosols-only, stratospheric-ozone-only, CO2-only, solar-only, and volcanic-only forcing, facilitating an improved estimation of the climate response to individual forcing, secondly future single forcing experiments, allowing observationally constrained projections of future climate change, and thirdly an experimental design which allows models with and without coupled atmospheric chemistry to be compared on an equal footing.« less

  11. The Detection and Attribution Model Intercomparison Project (DAMIP v1.0) contribution to CMIP6

    NASA Astrophysics Data System (ADS)

    Gillett, Nathan P.; Shiogama, Hideo; Funke, Bernd; Hegerl, Gabriele; Knutti, Reto; Matthes, Katja; Santer, Benjamin D.; Stone, Daithi; Tebaldi, Claudia

    2016-10-01

    Detection and attribution (D&A) simulations were important components of CMIP5 and underpinned the climate change detection and attribution assessments of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. The primary goals of the Detection and Attribution Model Intercomparison Project (DAMIP) are to facilitate improved estimation of the contributions of anthropogenic and natural forcing changes to observed global warming as well as to observed global and regional changes in other climate variables; to contribute to the estimation of how historical emissions have altered and are altering contemporary climate risk; and to facilitate improved observationally constrained projections of future climate change. D&A studies typically require unforced control simulations and historical simulations including all major anthropogenic and natural forcings. Such simulations will be carried out as part of the DECK and the CMIP6 historical simulation. In addition D&A studies require simulations covering the historical period driven by individual forcings or subsets of forcings only: such simulations are proposed here. Key novel features of the experimental design presented here include firstly new historical simulations with aerosols-only, stratospheric-ozone-only, CO2-only, solar-only, and volcanic-only forcing, facilitating an improved estimation of the climate response to individual forcing, secondly future single forcing experiments, allowing observationally constrained projections of future climate change, and thirdly an experimental design which allows models with and without coupled atmospheric chemistry to be compared on an equal footing.

  12. Climate change vulnerability to agrarian ecosystem of small Island: evidence from Sagar Island, India

    NASA Astrophysics Data System (ADS)

    Mandal, S.; Satpati, L. N.; Choudhury, B. U.; Sadhu, S.

    2018-04-01

    The present study assessed climate change vulnerability in agricultural sector of low-lying Sagar Island of Bay of Bengal. Vulnerability indices were estimated using spatially aggregated biophysical and socio-economic parameters by applying principal component analysis and equal weight method. The similarities and differences of outputs of these two methods were analysed across the island. From the integration of outputs and based on the severity of vulnerability, explicit vulnerable zones were demarcated spatially. Results revealed that life subsistence agriculture in 11.8% geographical area (2829 ha) of the island along the western coast falls under very high vulnerable zone (VHVZ VI of 84-99%) to climate change. Comparatively higher values of exposure (0.53 ± 0.26) and sensitivity (0.78 ± 0.14) subindices affirmed that the VHV zone is highly exposed to climate stressor with very low adaptive capacity (ADI= 0.24 ± 0.16) to combat vulnerability to climate change. Hence, food security for a population of >22 thousands comprising >3.7 thousand agrarian households are highly exposed to climate change. Another 17% area comprising 17.5% population covering 20% villages in north-western and eastern parts of the island also falls under high vulnerable (VI= 61%-77%) zone. Findings revealed large spatial heterogeneity in the degree of vulnerability across the island and thus, demands devising area specific planning (adaptation and mitigation strategies) to address the climate change impact implications both at macro and micro levels.

  13. Uncertainties in Climate Change, Following the Causal Chain from Human Activities

    NASA Astrophysics Data System (ADS)

    Prather, M. J.; Match Group,.

    2009-12-01

    As part of a UNFCCC initiative to attribute climate change to individual countries, a research group (MATCH) examined the quantifiable link between emissions and climate change. A constrained propagation of errors was developed that tracks uncertainties from reporting human activities to greenhouse gas emissions, to increasing abundances of greenhouse gases, to radiative forcing of climate, and finally to climate change. As a case study, we consider the causal chain for greenhouse gases emitted by developed nations since national reporting began in 1990. We combine uncertainties in the forward modeling at each step with top-down constraints on the observed changes in greenhouse gases and temperatures, although the propagation of uncertainties remains problematical. In this study, we find that global surface temperature increased by +0.11 C in 2003 due to the developed nations’ emissions of Kyoto greenhouse gases from 1990 to 2002 with a 68%-confidence uncertainty range of +0.08 C to +0.14 C. Uncertainties in climate response dominate this overall range, but uncertainties in emissions, particularly for land-use change and forestry and the non-CO2 greenhouse gases, are responsible for almost half. Bar chart of RF components & 68%-confidence intervals averaged over first and last half of 20th century, showing importance of volcanoes. Reduction in atmospheric CO2 (ppm) relative to observed increase as calculated without Annex-I(reporting) emissions, showing the 16%-to-84%-confidence range.

  14. Climate change and freshwater ecosystems: impacts across multiple levels of organization

    PubMed Central

    Woodward, Guy; Perkins, Daniel M.; Brown, Lee E.

    2010-01-01

    Fresh waters are particularly vulnerable to climate change because (i) many species within these fragmented habitats have limited abilities to disperse as the environment changes; (ii) water temperature and availability are climate-dependent; and (iii) many systems are already exposed to numerous anthropogenic stressors. Most climate change studies to date have focused on individuals or species populations, rather than the higher levels of organization (i.e. communities, food webs, ecosystems). We propose that an understanding of the connections between these different levels, which are all ultimately based on individuals, can help to develop a more coherent theoretical framework based on metabolic scaling, foraging theory and ecological stoichiometry, to predict the ecological consequences of climate change. For instance, individual basal metabolic rate scales with body size (which also constrains food web structure and dynamics) and temperature (which determines many ecosystem processes and key aspects of foraging behaviour). In addition, increasing atmospheric CO2 is predicted to alter molar CNP ratios of detrital inputs, which could lead to profound shifts in the stoichiometry of elemental fluxes between consumers and resources at the base of the food web. The different components of climate change (e.g. temperature, hydrology and atmospheric composition) not only affect multiple levels of biological organization, but they may also interact with the many other stressors to which fresh waters are exposed, and future research needs to address these potentially important synergies. PMID:20513717

  15. Interactive effects of climate and wildland fires on forests and other ecosystems—section III synthesis

    Treesearch

    Nancy E. Grulke

    2009-01-01

    The chapters in Section III of this book provide an overview of how components of climate change, including air pollution, are likely to interact with fire in modifying key ecosystem processes, whether those processes were demographic, successional, or elemental cycling. These chapters primarily  discuss increased temperature, reduced available soil moisture, and...

  16. Comparisons of allometric and climate-derived estimates of tree coarse root carbon stocks in forests of the United States

    Treesearch

    Matthew B. Russell; Grant M. Domke; Christopher W. Woodall; Anthony W. D' Amato

    2015-01-01

    Background: Refined estimation of carbon (C) stocks within forest ecosystems is a critical component of efforts to reduce greenhouse gas emissions and mitigate the effects of projected climate change through forest C management. Specifically, belowground C stocks are currently estimated in the United States' national greenhouse gas inventory (US NGHGI) using...

  17. Land-use change may exacerbate climate change impacts on water resources in the Ganges basin

    NASA Astrophysics Data System (ADS)

    Tsarouchi, Gina; Buytaert, Wouter

    2018-02-01

    Quantifying how land-use change and climate change affect water resources is a challenge in hydrological science. This work aims to quantify how future projections of land-use and climate change might affect the hydrological response of the Upper Ganges river basin in northern India, which experiences monsoon flooding almost every year. Three different sets of modelling experiments were run using the Joint UK Land Environment Simulator (JULES) land surface model (LSM) and covering the period 2000-2035: in the first set, only climate change is taken into account, and JULES was driven by the CMIP5 (Coupled Model Intercomparison Project Phase 5) outputs of 21 models, under two representative concentration pathways (RCP4.5 and RCP8.5), whilst land use was held fixed at the year 2010. In the second set, only land-use change is taken into account, and JULES was driven by a time series of 15 future land-use pathways, based on Landsat satellite imagery and the Markov chain simulation, whilst the meteorological boundary conditions were held fixed at years 2000-2005. In the third set, both climate change and land-use change were taken into consideration, as the CMIP5 model outputs were used in conjunction with the 15 future land-use pathways to force JULES. Variations in hydrological variables (stream flow, evapotranspiration and soil moisture) are calculated during the simulation period. Significant changes in the near-future (years 2030-2035) hydrologic fluxes arise under future land-cover and climate change scenarios pointing towards a severe increase in high extremes of flow: the multi-model mean of the 95th percentile of streamflow (Q5) is projected to increase by 63 % under the combined land-use and climate change high emissions scenario (RCP8.5). The changes in all examined hydrological components are greater in the combined land-use and climate change experiment. Results are further presented in a water resources context, aiming to address potential implications of climate change and land-use change from a water demand perspective. We conclude that future water demands in the Upper Ganges region for winter months may not be met.

  18. Projecting Future Water Levels of the Laurentian Great Lakes

    NASA Astrophysics Data System (ADS)

    Bennington, V.; Notaro, M.; Holman, K.

    2013-12-01

    The Laurentian Great Lakes are the largest freshwater system on Earth, containing 84% of North America's freshwater. The lakes are a valuable economic and recreational resource, valued at over 62 billion in annual wages and supporting a 7 billion fishery. Shipping, recreation, and coastal property values are significantly impacted by water level variability, with large economic consequences. Great Lakes water levels fluctuate both seasonally and long-term, responding to natural and anthropogenic climate changes. Due to the integrated nature of water levels, a prolonged small change in any one of the net basin supply components: over-lake precipitation, watershed runoff, or evaporation from the lake surface, may result in important trends in water levels. We utilize the Abdus Salam International Centre for Theoretical Physics's Regional Climate Model Version 4.5.6 to dynamically downscale three global global climate models that represent a spread of potential future climate change for the region to determine whether the climate models suggest a robust response of the Laurentian Great Lakes to anthropogenic climate change. The Model for Interdisciplinary Research on Climate Version 5 (MIROC5), the National Centre for Meteorological Research Earth system model (CNRM-CM5), and the Community Climate System Model Version 4 (CCSM4) project different regional temperature increases and precipitation change over the next century and are used as lateral boundary conditions. We simulate the historical (1980-2000) and late-century periods (2080-2100). Upon model evaluation we will present dynamically downscaled projections of net basin supply changes for each of the Laurentian Great Lakes.

  19. Engaging Undergraduates in Methods of Communicating Global Climate Change

    NASA Astrophysics Data System (ADS)

    Hall, C.; Colgan, M. W.; Humphreys, R. R.

    2010-12-01

    Global Climate Change has become a politically contentious issue in large part because of the failure of scientists to effectively communicate this complex subject to the general public. In a Global Change class, offered within a science department and therefore focused primarily on the underlying science, we have incorporated a citizen science module into the course to raise awareness among future scientists to the importance of communicating information to a broad and diverse audience. The citizen science component of this course focuses on how the predicted climate changes will alter the ecologic and economic landscape of the southeastern region. Helping potential scientists to learn to effectively communicate with the general public is particularly poignant for this predominate southern student body. A Pew Research Center for the People and the Press study found that less than 50% of Southerners surveyed felt that global warming is a very serious problem and over 30% of Southerners did not believe that there was any credible evidence that the Earth is warming. This interdisciplinary and topical nature of the course attracts student from a variety of disciplines, which provides the class with a cross section of students not typically found in most geology classes. This mixture provides a diversity of skills and interest that leads to success of the Citizen Science component. This learning approach was adapted from an education module developed through the Earth System Science Education Alliance and a newly developed component to that program on citizen science. Student teams developed several citizen science-related public service announcements concerning projected global change effects on Charleston and the South Carolina area. The scenario concerned the development of an information campaign for the City of Charleston, culminating with the student presentations on their findings to City officials. Through this real-life process, the students developed new strategies that inform their own means of communicating science, whether to the general public, to peers, or to other scientists. This course with the citizen science component serves as a model for other programs. Incorporating a communication aspect into science courses that revolve around complex but socially important topics, such as global climate change, is necessary in building the confidence in our science students to communicate effectively, imaginatively, and memorably. In addition, the students gain a deeper understanding and appreciation of the necessity to communicate to public audiences and the value of outreach to the community.

  20. Severity of climate change dictates the direction of biophysical feedbacks of vegetation change to Arctic climate

    NASA Astrophysics Data System (ADS)

    Zhang, Wenxin; Jansson, Christer; Miller, Paul; Smith, Ben; Samuelsson, Patrick

    2014-05-01

    Vegetation-climate feedbacks induced by vegetation dynamics under climate change alter biophysical properties of the land surface that regulate energy and water exchange with the atmosphere. Simulations with Earth System Models applied at global scale suggest that the current warming in the Arctic has been amplified, with large contributions from positive feedbacks, dominated by the effect of reduced surface albedo as an increased distribution, cover and taller stature of trees and shrubs mask underlying snow, darkening the surface. However, these models generally employ simplified representation of vegetation dynamics and structure and a coarse grid resolution, overlooking local or regional scale details determined by diverse vegetation composition and landscape heterogeneity. In this study, we perform simulations using an advanced regional coupled vegetation-climate model (RCA-GUESS) applied at high resolution (0.44×0.44° ) over the Arctic Coordinated Regional Climate Downscaling Experiment (CORDEX-Arctic) domain. The climate component (RCA4) is forced with lateral boundary conditions from EC-EARTH CMIP5 simulations for three representative concentration pathways (RCP 2.6, 4.5, 8.5). Vegetation-climate response is simulated by the individual-based dynamic vegetation model (LPJ-GUESS), accounting for phenology, physiology, demography and resource competition of individual-based vegetation, and feeding variations of leaf area index and vegetative cover fraction back to the climate component, thereby adjusting surface properties and surface energy fluxes. The simulated 2m air temperature, precipitation, vegetation distribution and carbon budget for the present period has been evaluated in another paper. The purpose of this study is to elucidate the spatial and temporal characteristics of the biophysical feedbacks arising from vegetation shifts in response to different CO2 concentration pathways and their associated climate change. Our results indicate that the albedo feedback dominates simulated warming in spring in all three scenarios, while in summer, evapotranspiration feedback, governing the partitioning of the return energy flux from the surface to the atmosphere into latent and sensible heat, exerts evaporative cooling effects, the magnitude of which depends on the severity of climate change, in turn driven by the underlying GHG emissions pathway, resulting in shift in the sign of net biophysical at higher levels of warming. Spatially, western Siberia is identified as the most susceptible location, experiencing the potential to reverse biophysical feedbacks in all seasons. We further analyze how the pattern of vegetation shifts triggers different signs of net effects of biophysical feedbacks.

  1. America's Climate Choices: Adapting to the Impacts of Climate Change (Invited)

    NASA Astrophysics Data System (ADS)

    Wilbanks, T.; Yohe, G.; Mengelt, C.; Casola, J.

    2010-12-01

    At the request of Congress, the National Academy of Sciences convened a series of coordinated activities to provide advice on actions and strategies that the nation can take to respond to climate change. As part of this suite of activities, this study assessed, this study assessed how the nation can begin to adapt to the impacts of climate change. Much of the nation’s experience to date in managing and protecting its people, resources, and infrastructure is based on the historic record of climate variability during a period of relatively stable climate. Adaptation to climate change calls for a new paradigm - one that considers a range of possible future climate conditions and associated impacts. The Adapting to the Impacts of Climate Change report calls for action at all levels of government, NGOs, and the private sector to assess vulnerabilities to the impacts of climate change and identify options for adaptation. Current adaptation efforts are hampered by a lack of solid information about the benefits, costs, and effectiveness of various adaptation options, by uncertainty about future climate change impacts at a scale necessary for decision-making, and by a lack of coordination. The report outlines a risk management framework that can be applied to assess vulnerabilities, compare and evaluate potential adaptation options, recognizing that decision makers across the country are likely to pursue a diverse set of adaptation measures. A major research effort is needed to improve knowledge about current and future vulnerabilities, explore new adaptation options, and better inform adaptation decisions. Therefore, the report also emphasizes the need to continually re-assess adaptation decisions as the experience and knowledge regarding effective adaptation evolves. A national adaptation strategy is needed in which the federal government would support and enhance adaptation activities undertaken by state, local, tribal, and private entities; identify and modify policies that might provide incentives for maladaptive behavior; bolster scientific research regarding adaptation; and encourage adaptation on a global scale through national programs with international components.

  2. Assessment of the impact of climate shifts on malaria transmission in the Sahel.

    PubMed

    Bomblies, Arne; Eltahir, Elfatih A B

    2009-09-01

    Climate affects malaria transmission through a complex network of causative pathways. We seek to evaluate the impact of hypothetical climate change scenarios on malaria transmission in the Sahel by using a novel mechanistic, high spatial- and temporal-resolution coupled hydrology and agent-based entomology model. The hydrology model component resolves individual precipitation events and individual breeding pools. The impact of future potential climate shifts on the representative Sahel village of Banizoumbou, Niger, is estimated by forcing the model of Banizoumbou environment with meteorological data from two locations along the north-south climatological gradient observed in the Sahel--both for warmer, drier scenarios from the north and cooler, wetter scenarios from the south. These shifts in climate represent hypothetical but historically realistic climate change scenarios. For Banizoumbou climatic conditions (latitude 13.54 N), a shift toward cooler, wetter conditions may dramatically increase mosquito abundance; however, our modeling results indicate that the increased malaria transmissibility is not simply proportional to the precipitation increase. The cooler, wetter conditions increase the length of the sporogonic cycle, dampening a large vectorial capacity increase otherwise brought about by increased mosquito survival and greater overall abundance. Furthermore, simulations varying rainfall event frequency demonstrate the importance of precipitation patterns, rather than simply average or time-integrated precipitation, as a controlling factor of these dynamics. Modeling results suggest that in addition to changes in temperature and total precipitation, changes in rainfall patterns are very important to predict changes in disease susceptibility resulting from climate shifts. The combined effect of these climate-shift-induced perturbations can be represented with the aid of a detailed mechanistic model.

  3. Vulnerability of eco-environmental health to climate change: the views of government stakeholders and other specialists in Queensland, Australia.

    PubMed

    Strand, Linn B; Tong, Shilu; Aird, Rosemary; McRae, David

    2010-07-28

    There is overwhelming scientific evidence that human activities have changed and will continue to change the climate of the Earth. Eco-environmental health, which refers to the interdependencies between ecological systems and population health and well-being, is likely to be significantly influenced by climate change. The aim of this study was to examine perceptions from government stakeholders and other relevant specialists about the threat of climate change, their capacity to deal with it, and how to develop and implement a framework for assessing vulnerability of eco-environmental health to climate change. Two focus groups were conducted in Brisbane, Australia with representatives from relevant government agencies, non-governmental organisations, and the industry sector (n = 15) involved in the discussions. The participants were specialists on climate change and public health from governmental agencies, industry, and non-governmental organisations in South-East Queensland. The specialists perceived climate change to be a threat to eco-environmental health and had substantial knowledge about possible implications and impacts. A range of different methods for assessing vulnerability were suggested by the participants and the complexity of assessment when dealing with multiple hazards was acknowledged. Identified factors influencing vulnerability were perceived to be of a social, physical and/or economic nature. They included population growth, the ageing population with associated declines in general health and changes in the vulnerability of particular geographical areas due to for example, increased coastal development, and financial stress. Education, inter-sectoral collaboration, emergency management (e.g. development of early warning systems), and social networks were all emphasised as a basis for adapting to climate change. To develop a framework, different approaches were discussed for assessing eco-environmental health vulnerability, including literature reviews to examine the components of vulnerability such as natural hazard risk and exposure and to investigate already existing frameworks for assessing vulnerability. The study has addressed some important questions in regard to government stakeholders and other specialists' views on the threat of climate change and its potential impacts on eco-environmental health. These findings may have implications in climate change and public health decision-making.

  4. Vulnerability of eco-environmental health to climate change: the views of government stakeholders and other specialists in Queensland, Australia

    PubMed Central

    2010-01-01

    Background There is overwhelming scientific evidence that human activities have changed and will continue to change the climate of the Earth. Eco-environmental health, which refers to the interdependencies between ecological systems and population health and well-being, is likely to be significantly influenced by climate change. The aim of this study was to examine perceptions from government stakeholders and other relevant specialists about the threat of climate change, their capacity to deal with it, and how to develop and implement a framework for assessing vulnerability of eco-environmental health to climate change. Methods Two focus groups were conducted in Brisbane, Australia with representatives from relevant government agencies, non-governmental organisations, and the industry sector (n = 15) involved in the discussions. The participants were specialists on climate change and public health from governmental agencies, industry, and non-governmental organisations in South-East Queensland. Results The specialists perceived climate change to be a threat to eco-environmental health and had substantial knowledge about possible implications and impacts. A range of different methods for assessing vulnerability were suggested by the participants and the complexity of assessment when dealing with multiple hazards was acknowledged. Identified factors influencing vulnerability were perceived to be of a social, physical and/or economic nature. They included population growth, the ageing population with associated declines in general health and changes in the vulnerability of particular geographical areas due to for example, increased coastal development, and financial stress. Education, inter-sectoral collaboration, emergency management (e.g. development of early warning systems), and social networks were all emphasised as a basis for adapting to climate change. To develop a framework, different approaches were discussed for assessing eco-environmental health vulnerability, including literature reviews to examine the components of vulnerability such as natural hazard risk and exposure and to investigate already existing frameworks for assessing vulnerability. Conclusion The study has addressed some important questions in regard to government stakeholders and other specialists' views on the threat of climate change and its potential impacts on eco-environmental health. These findings may have implications in climate change and public health decision-making. PMID:20663227

  5. Significance of hydrological model choice and land use changes when doing climate change impact assessment

    NASA Astrophysics Data System (ADS)

    Bjørnholt Karlsson, Ida; Obel Sonnenborg, Torben; Refsgaard, Jens Christian; Høgh Jensen, Karsten

    2014-05-01

    Uncertainty in impact studies arises both from Global Climate Models (GCM), emission projections, statistical downscaling, Regional Climate Models (RCM), hydrological models and calibration techniques (Refsgaard et al. 2013). Some of these uncertainties have been evaluated several times in the literature; however few studies have investigated the effect of hydrological model choice on the assessment results (Boorman & Sefton 1997; Jiang et al. 2007; Bastola et al. 2011). These studies have found that model choice results in large differences, up to 70%, in the predicted discharge changes depending on the climate input. The objective of the study is to investigate the impact of climate change on hydrology of the Odense catchment, Denmark both in response to (a) different climate projections (GCM-RCM combinations); (b) different hydrological models and (c) different land use scenarios. This includes: 1. Separation of the climate model signal; the hydrological model signal and the land use signal 2. How do the different hydrological components react under different climate and land use conditions for the different models 3. What land use scenario seems to provide the best adaptation for the challenges of the different future climate change scenarios from a hydrological perspective? Four climate models from the ENSEMBLES project (Hewitt & Griggs 2004): ECHAM5 - HIRHAM5, ECHAM5 - RCA3, ARPEGE - RM5.1 and HadCM3 - HadRM3 are used, assessing the climate change impact in three periods: 1991-2010 (present), 2041-2060 (near future) and 2081-2100 (far future). The four climate models are used in combination with three hydrological models with different conceptual layout: NAM, SWAT and MIKE SHE. Bastola, S., C. Murphy and J. Sweeney (2011). "The role of hydrological modelling uncertainties in climate change impact assessments of Irish river catchments." Advances in Water Resources 34: 562-576. Boorman, D. B. and C. E. M. Sefton (1997). "Recognising the uncertainty in the quantification of the effects of climate change on hydrological response." Climate Change 35: 415-434. Hewitt, C. D. and D. J. Griggs (2004). "Ensembles-based predictions of climate changes and their impacts." Eos, Transactions American Geophysical Union 85: 1-566. Jiang, T., Y. D. Chen, C. Xu, X. Chen, X. Chen and V. P. Singh (2007). "Comparison of hydrological impacts of climate change simulated by six hydrological models in the Dongjiang Basin, South China." Journal of hydrology 336: 316-333. Refsgaard, J. C., K. Arnbjerg-Nielsen, M. Drews, K. Halsnæs, E. Jeppesen, H. Madsen, A. Markandya, J. E. Olesen, J. R. Porter and J. H. Christensen (2013). "The role of uncertainty in climate change adaptation strategies - A Danish water management example." Mitigation and Adaptation Strategies for Global Change 18: 337-359.

  6. Changes in tree functional composition amplify the response of forest biomass to climate variability

    NASA Astrophysics Data System (ADS)

    Lichstein, Jeremy; Zhang, Tao; Niinemets, Ulo; Sheffield, Justin

    2017-04-01

    The response of forest carbon storage to climate change is highly uncertain, contributing substantially to the divergence among global climate model projections. Numerous studies have documented responses of forest ecosystems to climate change and variability, including drought-induced increases in tree mortality rates. However, the sensitivity of forests to climate variability - in terms of both biomass carbon storage and functional components of tree species composition - has yet to be quantified across a large region using systematically sampled data. Here, we combine systematic forest inventories across the eastern USA with a species-level drought-tolerance index, derived from a meta-analysis of published literature, to quantify changes in forest biomass and community-mean-drought-tolerance in one-degree grid cells from the 1980s to 2000s. We show that forest biomass responds to decadal-scale changes in water deficit and that this biomass response is amplified by concurrent changes in community-mean-drought-tolerance. The amplification of the direct effects of water stress on biomass occurs because water stress tends to induce a shift in tree species composition towards more drought-tolerant but lower-biomass species. Multiple plant functional traits are correlated with the above species-level drought-tolerance index, and likely contribute to the decrease in biomass with increasing drought-tolerance. These traits include wood density and P50 (the xylem water potential at which a plant loses 50% of its hydraulic conductivity). Simulations with a trait- and competition-based dynamic global vegetation model suggest that species differences in plant carbon allocation to wood, leaves, and fine roots also likely contribute to the observed decrease in biomass with increasing drought-tolerance, because competition drives plants to over-invest in fine roots when water is limiting. Thus, the most competitive species under dry conditions have greater root allocation but lower total biomass than productivity-maximizing plants. Amplification of the biomass-climate response due to shifts in species functional composition (temporal beta diversity) contrasts with evidence that local (alpha) diversity increases ecosystem stability, including increased resistance to climate extremes. These contrasting effects of alpha and beta diversity highlight the need to better understand how different components of biodiversity, including changes in the functional traits of the dominant plant species, affect ecosystem functioning.

  7. Applying Corporate Climate Principles to Dental School Operations.

    PubMed

    Robinson, Michelle A; Reddy, Michael S

    2016-12-01

    Decades of research have shown that organizational climate has the potential to form the basis of workplace operations and impact an organization's performance. Culture is related to climate but is not the same. "Culture" is the broader term, defining how things are done in an organization, while "climate" is a component of culture that describes how people perceive their environment. Climate can be changed but requires substantial effort over time by management and the workforce. Interest has recently grown in culture and climate in dental education due to the humanistic culture accreditation standard. The aim of this study was to use corporate climate principles to examine how organizational culture and, subsequently, workplace operations can be improved through specific strategic efforts in a U.S. dental school. The school's parent institution initiated a climate survey that the dental school used with qualitative culture data to drive strategic planning and change in the school. Administration of the same survey to faculty and staff members three times over a six-year period showed significant changes to the school's climate occurred as a new strategic plan was implemented that focused on reforming areas of weakness. Concentrated efforts in key areas in the strategic plan resulted in measurable improvements in climate perception. The study discovered that culture was an area previously overlooked but explicitly linked to the success of the organization.

  8. Comparison of the timings between abrupt climate changes in Greenland, Antarctica, China and Japan based on robust correlation using Lake Suigetsu as a template.

    NASA Astrophysics Data System (ADS)

    Nakagawa, T.

    2014-12-01

    High-resolution pollen-derived climate records from Lake Suigetsu varved sediment core were compared with climate archives from other regions and revealed a particular spatio-temporal structure of the monsoon climate change during so-called D-O events. Leads and lags of the climate change between different regions hold the key to understand the climate system. However, robust assessment of the relative timing of the climate change is often very challenging because correlation of the climatic archives from different regions often has inevitable uncertainties. Greenland and Cariaco basin, for example, provide two of the most frequently sited palaeoclimatic proxy data representative of the high- and low-latitudinal Atlantic regions. However, robust correlation of the records from those regions is difficult because of the uncertainties in layer countings, lack of the radiocarbon age control from ice cores, marine reservoir age of the Cariaco sediments, and the absence of the tephra layers shared by both cites. Similarly, Speleothem and ice core records are not robustly correlated to each other, either for the dead carbon fraction in the speleothems and lack of reliable correlation markers. The generally accepted hypothesis of synchronous climate change between China and the Greenland is, therefore, essentially hypothetical. Lake Suigetsu provides solution to this problem. The lake Suigetsu chronology is supposed to be coherent to the speleothems' U-Th age scale. Suigetsu's semi-continuous radiocarbon dataset, which constitutes major component of the IntCal13 radiocarbon calibration model, also provides opportunity to correlate lake Suigetsu and the Greenland and Antarctic ice cores using cosmogenic isotopes as the correlation key. Results of the correlation and timing comparison, which cast new lights to the mechanism of the monsoon change, will be presented.

  9. Great Basin paleoenvironmental studies project; Third quarterly technical progress report, December 1993--February 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-04-01

    Examination of the paleolithic and geomorphic records to determine the local and regional impact of past climates will advance assessment of Yucca Mountain`s suitability as a high-level nuclear waste repository. The project includes the integration of botanical, faunal, and geomorphic components to accomplish this goal. Paleobotanical studies will reconstruct the response of vegetation to climate change at the community and the organismal levels by integrating data obtained from nearly continuous sediment records of pollen, plant macrofossils, and stable isotopes from fossil woodrat middens. The goal of the paleofaunas study is to construct a history of Great Basin vertebrates, particularly mammals,more » that will provide empirical evidence of past environmental and climatic conditions within the Great Basin as it is recorded by the animals. Taxonomic composition of archaeological and paleontological faunas from various areas within the Great Basin and morphological change within individual mammalian taxa at specific localities are being investigated to monitor faunal response to changing environmental conditions. The objective of the geomorphology component of the paleoenvironmental program is to document the responses of surficial processes and landforms to the climatic changes documented by studies of packrat middens, pollen, and faunal distributions. The project will focus on: (1) stratigraphic relationships between lake deposits and aeolian or fluvial sediments and landforms; (2) cut and fill sequences in floodplain and river-channel deposits; (3) identification of periods of dune mobility and stability; (4) documentation of episodes of alluvial fan and terrace development and erosion; and (5) correlation of (3) and (4) to climatically driven lake-level fluctuation as revealed by shoreline features such as strandlines and beach ridges. Accomplishments for this period are presented for these studies.« less

  10. Potential relocation of climatic environments suggests high rates of climate displacement within the North American protection network.

    PubMed

    Batllori, Enric; Parisien, Marc-André; Parks, Sean A; Moritz, Max A; Miller, Carol

    2017-08-01

    Ongoing climate change may undermine the effectiveness of protected area networks in preserving the set of biotic components and ecological processes they harbor, thereby jeopardizing their conservation capacity into the future. Metrics of climate change, particularly rates and spatial patterns of climatic alteration, can help assess potential threats. Here, we perform a continent-wide climate change vulnerability assessment whereby we compare the baseline climate of the protected area network in North America (Canada, United States, México-NAM) to the projected end-of-century climate (2071-2100). We estimated the projected pace at which climatic conditions may redistribute across NAM (i.e., climate velocity), and identified future nearest climate analogs to quantify patterns of climate relocation within, among, and outside protected areas. Also, we interpret climatic relocation patterns in terms of associated land-cover types. Our analysis suggests that the conservation capacity of the NAM protection network is likely to be severely compromised by a changing climate. The majority of protected areas (~80%) might be exposed to high rates of climate displacement that could promote important shifts in species abundance or distribution. A small fraction of protected areas (<10%) could be critical for future conservation plans, as they will host climates that represent analogs of conditions currently characterizing almost a fifth of the protected areas across NAM. However, the majority of nearest climatic analogs for protected areas are in nonprotected locations. Therefore, unprotected landscapes could pose additional threats, beyond climate forcing itself, as sensitive biota may have to migrate farther than what is prescribed by the climate velocity to reach a protected area destination. To mitigate future threats to the conservation capacity of the NAM protected area network, conservation plans will need to capitalize on opportunities provided by the existing availability of natural land-cover types outside the current network of NAM protected areas. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  11. Earth radiation balance as observed and represented in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Wild, Martin; Folini, Doris; Schär, Christoph; Loeb, Norman; König-Langlo, Gert

    2014-05-01

    The genesis and evolution of Earth's climate is largely regulated by the Earth radiation balance. Despite of its key role in the context of climate change, substantial uncertainties still exist in the quantification of the magnitudes of its different components, and its representation in climate models. While the net radiative energy flows in and out of the climate system at the top of atmosphere are now known with considerable accuracy from new satellite programs such as CERES and SORCE, the energy distribution within the climate system and at the Earth's surface is less well determined. Accordingly, the magnitudes of the components of the surface energy balance have recently been controversially disputed, and potential inconsistencies between the estimated magnitudes of the global energy and water cycle have been emphasized. Here we summarize this discussion as presented in Chapter 2.3 of the 5th IPCC assessment report (AR5). In this context we made an attempt to better constrain the magnitudes of the surface radiative components with largest uncertainties. In addition to satellite observations, we thereby made extensive use of the growing number of surface observations to constrain the radiation balance not only from space, but also from the surface. We combined these observations with the latest modeling efforts performed for AR5 (CMIP5) to infer best estimates for the global mean surface radiative components. Our analyses favor global mean values of downward surface solar and thermal radiation near 185 and 342 Wm-2, respectively, which are most compatible with surface observations (Wild et al. 2013). These estimates are on the order of 10 Wm-2 lower and higher, respectively, than in some of the previous global energy balance assessments, including those presented in previous IPCC reports. It is encouraging that these estimates, which make full use of the information contained in the surface networks, coincide within 2 Wm-2 with the latest satellite-derived estimates (Kato et al. 2013), which are completely independently determined. This enhances confidence in these recent surface flux estimates. IPCC AR5 further presents increasing evidence from direct observations that the surface radiative fluxes undergo significant changes on decadal timescales, not only in their thermal components as expected from the increasing greenhouse effect, but also in the amount of solar radiation that reaches the Earth surface. In the thermal range, surface observations suggest an overall increase of downward thermal radiation in line with latest projections from the CMIP5 models and expectations from an increasing greenhouse effect. On the other hand the strong decadal changes in surface solar radiation seen in the observations ("dimming/brightening") are not fully captured by current climate models. These decadal changes in surface solar radiation may largely affect various aspects of climate change. Selected related references: Hartmann, D.L., A.M.G. Klein Tank, M. Rusticucci, L. Alexander, S. Brönnimann, Y. Charabi, F. Dentener, E. Dlugokencky, D. Easterling, A. Kaplan, B. Soden, P. Thorne, M. Wild and P.M. Zhai, 2013: Observations: Atmosphere and Surface. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Kato, S., Loeb, N.G., Rose, F.G., Doelling, D.R., Rutan, D.A., Caldwell, T.E., Yu, L.S, and Weller, R.A., 2013: Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and longwave irradiances. Journal of Climate 26 (9):2719-2740. doi:Doi 10.1175/Jcli-D-12-00436.1 Wild, M., 2012: New Directions: A facelift for the picture of the global energy balance. Atmospheric Environment, 55, 366-367. Wild, M. 2012: Enlightening Global Dimming and Brightening. Bull. Amer. Meteor. Soc., 93, 27-37, doi:10.1175/BAMS-D-11-00074.1 Wild, M., Folini, D., Schär, C., Loeb, N., Dutton, E.G., and König-Langlo, G., 2013: The global energy balance from a surface perspective, Clim. Dyn., 40, 3107-3134, Doi:10.1007/s00382-012-1569-8.

  12. ExplorOcean H2O SOS: Help Heal the Ocean-Student Operated Solutions: Operation Climate Change

    NASA Astrophysics Data System (ADS)

    Weiss, N.; Wood, J. H.

    2016-12-01

    The ExplorOcean H2O SOS: Help Heal the Ocean—Student Operated Solutions: Operation Climate Change, teaches middle and high school students about ocean threats related to climate change through hands-on activities and learning experiences in the field. During each session (in-class or after-school as a club), students build an understanding about how climate change impacts our oceans using resources provided by ExplorOcean (hands-on activities, presentations, multi-media). Through a student leadership model, students present lessons to each other, interweaving a deep learning of science, 21st century technology, communication skills, and leadership. After participating in learning experiences and activities related to 6 key climate change concepts: 1) Introduction to climate change, 2) Increased sea temperatures, 3) Ocean acidification, 4) Sea level rise, 5) Feedback mechanisms, and 6) Innovative solutions. H2O SOS- Operation Climate change participants select one focus issue and use it to design a multi-pronged campaign to increase awareness about this issue in their local community. The campaign includes social media, an interactive activity, and a visual component. All participating clubs that meet participation and action goals earn a field trip to ExplorOcean where they dive deeper into their selected issue through hands-on activities, real-world investigations, and interviews or presentations with experts. In addition to self-selected opportunities to showcase their focus issue, teams will participate in one of several key events identified by ExplorOcean, including ExplorOcean's annual World Oceans Day Expo.

  13. Apoplast Proteome Reveals that Extracellular Matrix Contributes to Multistress Response in Poplar

    USDA-ARS?s Scientific Manuscript database

    Riverine ecosystems that are highly sensitive to climate change and human activities are characterized by rapid environmental change to fluctuating water levels and siltation, causing stress on their biological components. We have little understanding of mechanisms by which riverine plant species ha...

  14. Diversity, Adaptability and Ecosystem Resilience

    NASA Astrophysics Data System (ADS)

    Keribin, Rozenn; Friend, Andrew

    2013-04-01

    Our ability to predict climate change and anticipate its impacts depends on Earth System Models (ESMs) and their ability to account for the high number of interacting components of the Earth System and to gauge both their influence on the climate and the feedbacks they induce. The land carbon cycle is a component of ESMs that is still poorly constrained. Since the 1990s dynamic global vegetation models (DGVMs) have become the main tool through which we understand the interactions between plant ecosystems and the climate. While DGVMs have made it clear the impacts of climate change on vegetation could be dramatic, predicting the dieback of rainforests and massive carbon losses from various ecosystems, they are highly variable both in their composition and their predictions. Their treatment of plant diversity and competition in particular vary widely and are based on highly-simplified relationships that do not account for the multiple levels of diversity and adaptability found in real plant ecosystems. The aim of this GREENCYCLES II project is to extend an individual-based DGVM to treat the diversity of physiologies found in plant communities and evaluate their effect if any on the ecosystem's transient dynamics and resilience. In the context of the InterSectoral Impacts Model Intercomparison Project (ISI-MIP), an initiative coordinated by a team at the Potsdam Institute for Climate Impact Research (PIK) that aims to provide fast-track global impact assessments for the IPCC's Fifth Assessment Report, we compare 6 vegetation models including 4 DGVMs under different climate change scenarios and analyse how the very different treatments of plant diversity and interactions from one model to the next affect the models' results. We then investigate a new, more mechanistic method of incorporating plant diversity into the DGVM "Hybrid" based on ecological tradeoffs mediated by plant traits and individual-based competition for light.

  15. Understanding linkages between global climate indices and terrestrial water storage changes over Africa using GRACE products.

    PubMed

    Anyah, R O; Forootan, E; Awange, J L; Khaki, M

    2018-09-01

    Africa, a continent endowed with huge water resources that sustain its agricultural activities is increasingly coming under threat from impacts of climate extremes (droughts and floods), which puts the very precious water resource into jeopardy. Understanding the relationship between climate variability and water storage over the continent, therefore, is paramount in order to inform future water management strategies. This study employs Gravity Recovery And Climate Experiment (GRACE) satellite data and the higher order (fourth order cumulant) statistical independent component analysis (ICA) method to study the relationship between terrestrial water storage (TWS) changes and five global climate-teleconnection indices; El Niño-Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Madden-Julian Oscillation (MJO), Quasi-Biennial Oscillation (QBO) and the Indian Ocean Dipole (IOD) over Africa for the period 2003-2014. Pearson correlation analysis is applied to extract the connections between these climate indices (CIs) and TWS, from which some known strong CI-rainfall relationships (e.g., over equatorial eastern Africa) are found. Results indicate unique linear-relationships and regions that exhibit strong linkages between CIs and TWS. Moreover, unique regions having strong CI-TWS connections that are completely different from the typical ENSO-rainfall connections over eastern and southern Africa are also identified. Furthermore, the results indicate that the first dominant independent components (IC) of the CIs are linked to NAO, and are characterized by significant reductions of TWS over southern Africa. The second dominant ICs are associated with IOD and are characterized by significant increases in TWS over equatorial eastern Africa, while the combined ENSO and MJO are apparently linked to the third ICs, which are also associated with significant increase in TWS changes over both southern Africa, as well as equatorial eastern Africa. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Spring-fen habitat islands in a warming climate: Partitioning the effects of mesoclimate air and water temperature on aquatic and terrestrial biota.

    PubMed

    Horsák, Michal; Polášková, Vendula; Zhai, Marie; Bojková, Jindřiška; Syrovátka, Vít; Šorfová, Vanda; Schenková, Jana; Polášek, Marek; Peterka, Tomáš; Hájek, Michal

    2018-09-01

    Climate warming and associated environmental changes lead to compositional shifts and local extinctions in various ecosystems. Species closely associated with rare island-like habitats such as groundwater-dependent spring fens can be severely threatened by these changes due to a limited possibility to disperse. It is, however, largely unknown to what extent mesoclimate affects species composition in spring fens, where microclimate is buffered by groundwater supply. We assembled an original landscape-scale dataset on species composition of the most waterlogged parts of isolated temperate spring fens in the Western Carpathian Mountains along with continuously measured water temperature and hydrological, hydrochemical, and climatic conditions. We explored a set of hypotheses about the effects of mesoclimate air and local spring-water temperature on compositional variation of aquatic (macroinvertebrates), semi-terrestrial (plants) and terrestrial (land snails) components of spring-fen biota, categorized as habitat specialists and other species (i.e. matrix-derived). Water temperature did not show a high level of correlation with mesoclimate. For all components, fractions of compositional variation constrained to temperature were statistically significant and higher for habitat specialists than for other species. The importance of air temperature at the expense of water temperature and its fluctuation clearly increased with terrestriality, i.e. from aquatic macroinvertebrates via vegetation (bryophytes and vascular plants) to land snails, with January air temperature being the most important factor for land snails and plant specialists. Some calcareous-fen specialists with a clear distribution centre in temperate Europe showed a strong affinity to climatically cold sites in our study area and may hence be considered as threatened by climate warming. We conclude that prediction models solely based on air temperature may provide biased estimates of future changes in spring fen communities, because their aquatic and semiterrestrial components are largely affected by water temperature that is modified by local hydrological and landscape settings. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Climate change and viticulture in Mediterranean climates: the complex response of socio-ecosystems. A comparative case study from France and Australia (1955-2040)

    NASA Astrophysics Data System (ADS)

    Lereboullet, A.-L.; Beltrando, G.; Bardsley, D. K.

    2012-04-01

    The wine industry is very sensitive to extreme weather events, especially to temperatures above 35°C and drought. In a context of global climate change, Mediterranean climate regions are predicted to experience higher variability in rainfall and temperatures and an increased occurrence of extreme weather events. Some viticultural systems could be particularly at risk in those regions, considering their marginal position in the growth climatic range of Vitis vinifera, the long commercial lifespan of a vineyard, the high added-value of wine and the volatile nature of global markets. The wine industry, like other agricultural systems, is inserted in complex networks of climatic and non-climatic (other physical, economical, social and legislative) components, with constant feedbacks. We use a socio-ecosystem approach to analyse the adaptation of two Mediterranean viticultural systems to recent and future increase of extreme weather events. The present analysis focuses on two wine regions with a hot-summer Mediterranean climate (CSb type in the Köppen classification): Côtes-du-Roussillon in southern France and McLaren Vale in southern Australia. Using climate data from two synoptic weather stations, Perpignan (France) and Adelaide (Australia), with time series running from 1955 to 2010, we highlight changes in rainfall patterns and an increase in the number of days with Tx >35°c since the last three decades in both regions. Climate models (DRIAS project data for France and CSIRO Mk3.5 for Australia) project similar trends in the future. To date, very few projects have focused on an international comparison of the adaptive capacity of viticultural systems to climate change with a holistic approach. Here, the analysis of climate data was complemented by twenty in-depth semi-structured interviews with key actors of the two regional wine industries, in order to analyse adaptation strategies put in place regarding recent climate evolution. This mixed-methods approach allows for a comprehensive assessment of adaptation capacity of the two viticultural systems to future climate change. The strategies of grape growers and wine producers focus on maintaining optimal yields and a constant wine style adapted to markets in a variable and uncertain climate. Their implementation and efficiency depend strongly on non-climatic factors. Thus, adaptation capacity to recent and future climate change depends strongly on adaptation to other non-climatic changes.

  18. Environmental forcing and Southern Ocean marine predator populations: effects of climate change and variability.

    PubMed

    Trathan, P N; Forcada, J; Murphy, E J

    2007-12-29

    The Southern Ocean is a major component within the global ocean and climate system and potentially the location where the most rapid climate change is most likely to happen, particularly in the high-latitude polar regions. In these regions, even small temperature changes can potentially lead to major environmental perturbations. Climate change is likely to be regional and may be expressed in various ways, including alterations to climate and weather patterns across a variety of time-scales that include changes to the long interdecadal background signals such as the development of the El Niño-Southern Oscillation (ENSO). Oscillating climate signals such as ENSO potentially provide a unique opportunity to explore how biological communities respond to change. This approach is based on the premise that biological responses to shorter-term sub-decadal climate variability signals are potentially the best predictor of biological responses over longer time-scales. Around the Southern Ocean, marine predator populations show periodicity in breeding performance and productivity, with relationships with the environment driven by physical forcing from the ENSO region in the Pacific. Wherever examined, these relationships are congruent with mid-trophic-level processes that are also correlated with environmental variability. The short-term changes to ecosystem structure and function observed during ENSO events herald potential long-term changes that may ensue following regional climate change. For example, in the South Atlantic, failure of Antarctic krill recruitment will inevitably foreshadow recruitment failures in a range of higher trophic-level marine predators. Where predator species are not able to accommodate by switching to other prey species, population-level changes will follow. The Southern Ocean, though oceanographically interconnected, is not a single ecosystem and different areas are dominated by different food webs. Where species occupy different positions in different regional food webs, there is the potential to make predictions about future change scenarios.

  19. Quantifying Florida Bay habitat suitability for fishes and invertebrates under climate change scenarios.

    PubMed

    Kearney, Kelly A; Butler, Mark; Glazer, Robert; Kelble, Christopher R; Serafy, Joseph E; Stabenau, Erik

    2015-04-01

    The Florida Bay ecosystem supports a number of economically important ecosystem services, including several recreational fisheries, which may be affected by changing salinity and temperature due to climate change. In this paper, we use a combination of physical models and habitat suitability index models to quantify the effects of potential climate change scenarios on a variety of juvenile fish and lobster species in Florida Bay. The climate scenarios include alterations in sea level, evaporation and precipitation rates, coastal runoff, and water temperature. We find that the changes in habitat suitability vary in both magnitude and direction across the scenarios and species, but are on average small. Only one of the seven species we investigate (Lagodon rhomboides, i.e., pinfish) sees a sizable decrease in optimal habitat under any of the scenarios. This suggests that the estuarine fauna of Florida Bay may not be as vulnerable to climate change as other components of the ecosystem, such as those in the marine/terrestrial ecotone. However, these models are relatively simplistic, looking only at single species effects of physical drivers without considering the many interspecific interactions that may play a key role in the adjustment of the ecosystem as a whole. More complex models that capture the mechanistic links between physics and biology, as well as the complex dynamics of the estuarine food web, may be necessary to further understand the potential effects of climate change on the Florida Bay ecosystem.

  20. Quantifying Florida Bay Habitat Suitability for Fishes and Invertebrates Under Climate Change Scenarios

    NASA Astrophysics Data System (ADS)

    Kearney, Kelly A.; Butler, Mark; Glazer, Robert; Kelble, Christopher R.; Serafy, Joseph E.; Stabenau, Erik

    2015-04-01

    The Florida Bay ecosystem supports a number of economically important ecosystem services, including several recreational fisheries, which may be affected by changing salinity and temperature due to climate change. In this paper, we use a combination of physical models and habitat suitability index models to quantify the effects of potential climate change scenarios on a variety of juvenile fish and lobster species in Florida Bay. The climate scenarios include alterations in sea level, evaporation and precipitation rates, coastal runoff, and water temperature. We find that the changes in habitat suitability vary in both magnitude and direction across the scenarios and species, but are on average small. Only one of the seven species we investigate ( Lagodon rhomboides, i.e., pinfish) sees a sizable decrease in optimal habitat under any of the scenarios. This suggests that the estuarine fauna of Florida Bay may not be as vulnerable to climate change as other components of the ecosystem, such as those in the marine/terrestrial ecotone. However, these models are relatively simplistic, looking only at single species effects of physical drivers without considering the many interspecific interactions that may play a key role in the adjustment of the ecosystem as a whole. More complex models that capture the mechanistic links between physics and biology, as well as the complex dynamics of the estuarine food web, may be necessary to further understand the potential effects of climate change on the Florida Bay ecosystem.

  1. Developing a National Climate Indicators System to Track Climate Changes, Impacts, Vulnerabilities, and Preparedness

    NASA Astrophysics Data System (ADS)

    Kenney, M. A.; Janetos, A. C.; Arndt, D.; Chen, R. S.; Pouyat, R.; Anderson, S. M.

    2013-12-01

    The National Climate Assessment (NCA) is being conducted under the auspices of the U.S. Global Change Research Program (USGCRP), pursuant to the Global Change Research Act of 1990, Section 106, which requires a report to Congress every 4 years. Part of the vision, which is now under development, for the sustained National Climate Assessment (NCA) process is a system of physical, ecological, and societal indicators that communicate key aspects of the physical climate, climate impacts, vulnerabilities, and preparedness for the purpose of informing both decision makers and the public with scientifically valid information that is useful to inform decision-making processes such as the development and implementation of climate adaptation strategies in a particular sector or region. These indicators will be tracked as a part of ongoing assessment activities, with adjustments as necessary to adapt to changing conditions and understanding. The indicators will be reviewed and updated so that the system adapts to new information. The NCA indicator system is not intended to serve as a vehicle for documenting rigorous cause and effect relationships. It is reasonable, however, for it to serve as a guide to those factors that affect the evolution of variability and change in the climate system, the resources and sectors of concern that are affected by it, and how society chooses to respond. Different components of the end-to-end climate issue serve as categories within which to organize an end-to-end system of indicators: Greenhouse Gas Emissions and Sinks, Atmospheric Composition, Physical Climate Variability and Change, Sectors and Resources of Concern, and Adaptation and Mitigation Responses. This framing has several advantages. It can be used to identify the different components of the end-to-end climate issue that both decision-makers and researchers are interested in. It is independent of scale, and therefore allows the indicators themselves to be described at spatial scales that are the most relevant for their intended use. National decision-makers may find indicators of national greenhouse gas emissions to be informative; however, state or local decision-makers have the freedom in this framework to define indicators of state, regional, or local greenhouse emissions that are more relevant to their concerns. The framework is also independent of time scale and topics within the broad categories. It therefore allows indicators of different sectors to be developed, and allows the consideration of both indicators of current state, past trends, and leading indicators. In this talk we will discuss the general conceptual model for the system, the sector specific conceptual models, and indicators that will be included in the prototype end-to-end indicator system.

  2. Developing a System of National Climate Assessment Indicators to Track Climate Change Impacts, Vulnerabilities, and Preparedness

    NASA Astrophysics Data System (ADS)

    Janetos, A. C.; Kenney, M. A.; Chen, R. S.; Arndt, D.

    2012-12-01

    The National Climate Assessment (NCA) is being conducted under the auspices of the U.S. Global Change Research Program (USGCRP), pursuant to the Global Change Research Act of 1990, Section 106, which requires a report to Congress every 4 years (http://globalchange.gov/what-we-do/assessment/). Part of the vision for the sustained National Climate Assessment (NCA) process is a system of physical, ecological, and societal indicators that communicate key aspects of the physical climate, climate impacts, vulnerabilities, and preparedness for the purpose of informing both decision makers and the public with scientifically valid information that is useful to inform decision-making processes such as the development and implementation of climate adaptation strategies in a particular sector or region. These indicators will be tracked as a part of ongoing assessment activities, with adjustments as necessary to adapt to changing conditions and understanding. The indicators will be reviewed and updated so that the system adapts to new information. The NCA indicator system is not intended to serve as a vehicle for documenting rigorous cause and effect relationships. It is reasonable, however, for it to serve as a guide to those factors that affect the evolution of variability and change in the climate system, the resources and sectors of concern that are affected by it, and how society chooses to respond. Different components of the end-to-end climate issue serve as categories within which to organize an end-to-end system of indicators: Greenhouse Gas Emissions and Sinks Atmospheric Composition Physical Climate Variability and Change Sectors and Resources of Concern Adaptation and Mitigation Responses This framing has several advantages. It can be used to identify the different components of the end-to-end climate issue that both decision-makers and researchers are interested in. It is independent of scale, and therefore allows the indicators themselves to be described at spatial scales that are the most relevant for their intended use. National decision-makers may find indicators of national greenhouse gas emissions to be informative; however, state or local decision-makers have the freedom in this framework to define indicators of state, regional, or local greenhouse emissions that are more relevant to their concerns. The framework is also independent of time scale and topics within the broad categories. It therefore allows indicators of different sectors to be developed, and allows the consideration of both indicators of current state, past trends, and leading indicators. In this talk we will discuss a number of existing candidate indicators that could be included in this framework as well as the research needed to fully develop an end-to-end indicator system.

  3. Changes in Moisture Flux Over the Tibetan Plateau During 1979-2011: Insights from a High Resolution Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Yanhong; Leung, Lai-Yung R.; Zhang, Yongxin

    2015-05-01

    Net precipitation (precipitation minus evapotranspiration, P-E) changes from a high resolution regional climate simulation and its reanalysis forcing are analyzed over the Tibet Plateau (TP) and compared to the global land data assimilation system (GLDAS) product. The mechanism behind the P-E changes is explored by decomposing the column integrated moisture flux convergence into thermodynamic, dynamic, and transient eddy components. High-resolution climate simulation improves the spatial pattern of P-E changes over the best available global reanalysis. Improvement in simulating precipitation changes at high elevations contributes dominantly to the improved P-E changes. High-resolution climate simulation also facilitates new and substantial findings regardingmore » the role of thermodynamics and transient eddies in P-E changes reflected in observed changes in major river basins fed by runoff from the TP. The analysis revealed the contrasting convergence/divergence changes between the northwestern and southeastern TP and feedback through latent heat release as an important mechanism leading to the mean P-E changes in the TP.« less

  4. Plasticity of preferred body temperatures as means of coping with climate change?

    PubMed Central

    Gvoždík, Lumír

    2012-01-01

    Thermoregulatory behaviour represents an important component of ectotherm non-genetic adaptive capacity that mitigates the impact of ongoing climate change. The buffering role of behavioural thermoregulation has been attributed solely to the ability to maintain near optimal body temperature for sufficiently extended periods under altered thermal conditions. The widespread occurrence of plastic modification of target temperatures that an ectotherm aims to achieve (preferred body temperatures) has been largely overlooked. I argue that plasticity of target temperatures may significantly contribute to an ectotherm's adaptive capacity. Its contribution to population persistence depends on both the effectiveness of acute thermoregulatory adjustments (reactivity) in buffering selection pressures in a changing thermal environment, and the total costs of thermoregulation (i.e. reactivity and plasticity) in a given environment. The direction and magnitude of plastic shifts in preferred body temperatures can be incorporated into mechanistic models, to improve predictions of the impact of global climate change on ectotherm populations. PMID:22072284

  5. Plasticity of preferred body temperatures as means of coping with climate change?

    PubMed

    Gvozdík, Lumír

    2012-04-23

    Thermoregulatory behaviour represents an important component of ectotherm non-genetic adaptive capacity that mitigates the impact of ongoing climate change. The buffering role of behavioural thermoregulation has been attributed solely to the ability to maintain near optimal body temperature for sufficiently extended periods under altered thermal conditions. The widespread occurrence of plastic modification of target temperatures that an ectotherm aims to achieve (preferred body temperatures) has been largely overlooked. I argue that plasticity of target temperatures may significantly contribute to an ectotherm's adaptive capacity. Its contribution to population persistence depends on both the effectiveness of acute thermoregulatory adjustments (reactivity) in buffering selection pressures in a changing thermal environment, and the total costs of thermoregulation (i.e. reactivity and plasticity) in a given environment. The direction and magnitude of plastic shifts in preferred body temperatures can be incorporated into mechanistic models, to improve predictions of the impact of global climate change on ectotherm populations.

  6. Understanding the Impacts of Climate Change and Land Use Dynamics Using a Fully Coupled Hydrologic Feedback Model between Surface and Subsurface Systems

    NASA Astrophysics Data System (ADS)

    Park, C.; Lee, J.; Koo, M.

    2011-12-01

    Climate is the most critical driving force of the hydrologic system of the Earth. Since the industrial revolution, the impacts of anthropogenic activities to the Earth environment have been expanded and accelerated. Especially, the global emission of carbon dioxide into the atmosphere is known to have significantly increased temperature and affected the hydrologic system. Many hydrologists have contributed to the studies regarding the climate change on the hydrologic system since the Intergovernmental Panel on Climate Change (IPCC) was created in 1988. Among many components in the hydrologic system groundwater and its response to the climate change and anthropogenic activities are not fully understood due to the complexity of subsurface conditions between the surface and the groundwater table. A new spatio-temporal hydrologic model has been developed to estimate the impacts of climate change and land use dynamics on the groundwater. The model consists of two sub-models: a surface model and a subsurface model. The surface model involves three surface processes: interception, runoff, and evapotranspiration, and the subsurface model does also three subsurface processes: soil moisture balance, recharge, and groundwater flow. The surface model requires various input data including land use, soil types, vegetation types, topographical elevations, and meteorological data. The surface model simulates daily hydrological processes for rainfall interception, surface runoff varied by land use change and crop growth, and evapotranspiration controlled by soil moisture balance. The daily soil moisture balance is a key element to link two sub-models as it calculates infiltration and groundwater recharge by considering a time delay routing through a vadose zone down to the groundwater table. MODFLOW is adopted to simulate groundwater flow and interaction with surface water components as well. The model is technically flexible to add new model or modify existing model as it is developed with an object-oriented language - Python. The model also can easily be localized by simple modification of soil and crop properties. The actual application of the model after calibration was successful and results showed reliable water balance and interaction between the surface and subsurface hydrologic systems.

  7. Energy Balance, Evapo-transpiration and Dew deposition in the Dead Sea Valley

    NASA Astrophysics Data System (ADS)

    Metzger, Jutta; Corsmeier, Ulrich

    2016-04-01

    The Dead Sea is a unique place on earth. It is a terminal hypersaline lake, located at the lowest point on earth with a lake level of currently -429 m above mean sea level (amsl). It is located in a transition zone of semiarid to arid climate conditions, which makes it highly sensible to climate change (Alpert1997, Smiatek2011). The Virtual Institute DEad SEa Research Venue (DESERVE) is an international project funded by the German Helmholtz Association and was established to study coupled atmospheric hydrological, and lithospheric processes in the changing environment of the Dead Sea. At the moment the most prominent environmental change is the lake level decline of approximately 1 m / year due to anthropogenic interferences (Gertman, 2002). This leads to noticeable changes in the fractions of the existing terrestrial surfaces - water, bare soil and vegetated areas - in the valley. Thus, the partitioning of the net radiation in the valley changes as well. To thoroughly study the atmospheric and hydrological processes in the Dead Sea valley, which are driven by the energy balance components, sound data of the energy fluxes of the different surfaces are necessary. Before DESERVE no long-term monitoring network simultaneously measuring the energy balance components of the different surfaces in the Dead Sea valley was available. Therefore, three energy balance stations were installed at three characteristic sites at the coast-line, over bare soil, and within vegetation, measuring all energy balance components by using the eddy covariance method. The results show, that the partitioning of the energy into sensible and latent heat flux on a diurnal scale is totally different at the three sites. This results in gradients between the sites, which are e.g. responsible for the typical diurnal wind systems at the Dead Sea. Furthermore, driving forces of evapo-transpiration at the sites were identified and a detailed analysis of the daily evaporation and dew deposition rates for a whole annual cycle will be presented. Alpert, P., Shafir, H., & Issahary, D. (1997). Recent changes in the climate at the Dead Sea-a preliminary study. Climatic Change, 37(3), 513-537. Gertman, I., & Hecht, A. (2002). The Dead Sea hydrography from 1992 to 2000. Journal of marine systems, 35(3), 169-181. Smiatek, G., Kunstmann, H., & Heckl, A. (2011). High-resolution climate change simulations for the Jordan River area. Journal of Geophysical Research: Atmospheres (1984-2012), 116(D16).

  8. Building Systems from Scratch: an Exploratory Study of Students Learning About Climate Change

    NASA Astrophysics Data System (ADS)

    Puttick, Gillian; Tucker-Raymond, Eli

    2018-01-01

    Science and computational practices such as modeling and abstraction are critical to understanding the complex systems that are integral to climate science. Given the demonstrated affordances of game design in supporting such practices, we implemented a free 4-day intensive workshop for middle school girls that focused on using the visual programming environment, Scratch, to design games to teach others about climate change. The experience was carefully constructed so that girls of widely differing levels of experience were able to engage in a cycle of game design. This qualitative study aimed to explore the representational choices the girls made as they took up aspects of climate change systems and modeled them in their games. Evidence points to the ways in which designing games about climate science fostered emergent systems thinking and engagement in modeling practices as learners chose what to represent in their games, grappled with the realism of their respective representations, and modeled interactions among systems components. Given the girls' levels of programming skill, parts of systems were more tractable to create than others. The educational purpose of the games was important to the girls' overall design experience, since it influenced their choice of topic, and challenged their emergent understanding of climate change as a systems problem.

  9. FVS and global Warming: A prospectus for future development

    Treesearch

    Nicholas L. Crookston; Gerald E. Rehfeldt; Dennis E. Ferguson; Marcus Warwell

    2008-01-01

    Climate change-global warming and changes in precipitation-will cause changes in tree growth rates, mortality rates, the distribution of tree species, competition, and species interactions. An implicit assumption in FVS is that site quality will remain the same as it was during the time period observations used to calibrate the component models were made and that the...

  10. Unexpected redwood mortality from synergies between wildfire and an emerging infectious disease

    Treesearch

    Margaret R. Metz; J. Morgan Varner; Kerri M. Frangioso; Ross K. Meentemeyer; David M. Rizzo

    2014-01-01

    An under-examined component of global change is the alteration of disturbance regimes due to warming climates, continued species invasions, and accelerated land-use change. These drivers of global change are themselves novel ecosystem disturbances that may interact with historically occurring disturbances in complex ways. Here we use the natural experiment presented by...

  11. Inspiring Inquiry: Scientists, science teachers, and GK-12 students learning climate science together

    NASA Astrophysics Data System (ADS)

    Stwertka, C.; Blonquist, J.; Feener, D.

    2010-12-01

    A major communication gap exists between climate scientists, educators, and society. As a result, findings from climate research, potential implications of climate change, and possible mitigation strategies are not fully understood and accepted outside of the climate science community. A good way to begin bridging the gap is to teach climate science to students in public schools. TGLL (Think Globally, Learn Locally) is an NSF GK-12 program based at the University of Utah, which partners graduate students in the biological, geological and atmospheric sciences with middle and high school teachers in the Salt Lake City School District to improve the communication skills of Fellows and enhance inquiry-based science teaching and learning in the classroom. Each TGLL Fellow works in the same classroom(s) throughout the year, developing his or her scientific communication skills while providing teachers with content knowledge, resources, classroom support, and enhancing the experience of students such that science becomes an interesting and accessible tool for acquiring knowledge. The TGLL Fellows work closely as a group to develop inquiry-based teaching modules (a series of lessons) and a field trip that involve students in doing authentic science. Lessons are designed to apply national and Utah core curriculum concepts to broader scientific issues such as habitat alteration, pollution and disturbance, invasive species, and infectious disease, with the focus of the 2010-2011 school year being climate change. The TGLL Global Climate Change module contains lesson plans on climate temporal and spatial scales, temperature variation, energy balance, the carbon cycle, the greenhouse effect, climate feedback loops, anthropogenic climate change indicators, climate change consequences and impacts, and actions students can take to reduce greenhouse gas emissions. The capstone experience for the module is a “Backyard Climate Change” field trip to a local pristine canyon. Students will map and measure the carbon dioxide flux of various ecosystem components, measure the albedo of various surfaces, learn about micro-scale climates and atmospheric pollen transport, measure water and air quality, and observe habitat alteration. Through the module and fieldtrip, TGLL Fellows aim to build student and teacher knowledge about climate change and create lasting projects that are adapted into the core science curriculum.

  12. Warming climate may negatively affect native forest understory plant richness and composition by increasing invasions of non-native plants

    NASA Astrophysics Data System (ADS)

    Dovciak, M.; Wason, J. W., III; Frair, J.; Lesser, M.; Hurst, J.

    2016-12-01

    Warming climate is often expected to cause poleward and upslope migrations of native plant species and facilitate the spread of non-native plants, and thus affect the composition and diversity of forest understory plant communities. However, changing climate can often interact with other components of global environmental change, and especially so with land use, which often varies along extant climatic gradients making it more difficult to predict species and biodiversity responses to changing climate. We used large national databases (USDA FIA, NLCD, and PRISM) within GLM and NMDS analytical frameworks to study the effects of climate (temperature and precipitation), and land management (type, fragmentation, time since disturbance) on the diversity and composition of native and non-native plant species in forest understories across large geographical (environmental) gradients of the northeastern United States. We tested how non-native and native species diversity and composition responded to existing climate gradients and land-use drivers, and we approximated how changing climate may affect both native and non-native species composition and richness under different climate change scenarios (+1.5, 2, and 4.8 degrees C). Many understory forest plant communities already contain large proportions of non-native plants, particularly so in relatively warmer and drier areas, at lower elevations, and in areas with more substantial land-use histories. On the other hand, cooler and moister areas, higher elevations, and areas used predominantly for forestry or nature conservation (i.e., large contiguous forest cover) were characterized by a low proportion of non-native plant species in terms of both species cover and richness. In contrast to native plants, non-native plant richness was related positively to mean annual temperature and negatively to precipitation. Mountain areas appeared to serve as refugia for native forest understory species under the current climate, but considering various climate change scenarios (including IPCC) suggested that many of these climate refugia may considerably decline even under more moderate climate change scenarios as they may become increasingly invaded by non-native plant species.

  13. Variance decomposition shows the importance of human-climate feedbacks in the Earth system

    NASA Astrophysics Data System (ADS)

    Calvin, K. V.; Bond-Lamberty, B. P.; Jones, A. D.; Shi, X.; Di Vittorio, A. V.; Thornton, P. E.

    2017-12-01

    The human and Earth systems are intricately linked: climate influences agricultural production, renewable energy potential, and water availability, for example, while anthropogenic emissions from industry and land use change alter temperature and precipitation. Such feedbacks have the potential to significantly alter future climate change. Current climate change projections contain significant uncertainties, however, and because Earth System Models do not generally include dynamic human (demography, economy, energy, water, land use) components, little is known about how climate feedbacks contribute to that uncertainty. Here we use variance decomposition of a novel coupled human-earth system model to show that the influence of human-climate feedbacks can be as large as 17% of the total variance in the near term for global mean temperature rise, and 11% in the long term for cropland area. The near-term contribution of energy and land use feedbacks to the climate on global mean temperature rise is as large as that from model internal variability, a factor typically considered in modeling studies. Conversely, the contribution of climate feedbacks to cropland extent, while non-negligible, is less than that from socioeconomics, policy, or model. Previous assessments have largely excluded these feedbacks, with the climate community focusing on uncertainty due to internal variability, scenario, and model and the integrated assessment community focusing on uncertainty due to socioeconomics, technology, policy, and model. Our results set the stage for a new generation of models and hypothesis testing to determine when and how bidirectional feedbacks between human and Earth systems should be considered in future assessments of climate change.

  14. Impact of climate change on waterborne diseases.

    PubMed

    Funari, Enzo; Manganelli, Maura; Sinisi, Luciana

    2012-01-01

    Change in climate and water cycle will challenge water availability but it will also increase the exposure to unsafe water. Floods, droughts, heavy storms, changes in rain pattern, increase of temperature and sea level, they all show an increasing trend worldwide and will affect biological, physical and chemical components of water through different paths thus enhancing the risk of waterborne diseases. This paper is intended, through reviewing the available literature, to highlight environmental changes and critical situations caused by floods, drought and warmer temperature that will lead to an increase of exposure to water related pathogens, chemical hazards and cyanotoxins. The final aim is provide knowledge-based elements for more focused adaptation measures.

  15. Understanding the varied response of the extratropical storm tracks to climate change

    PubMed Central

    O’Gorman, Paul A.

    2010-01-01

    Transient eddies in the extratropical storm tracks are a primary mechanism for the transport of momentum, energy, and water in the atmosphere, and as such are a major component of the climate system. Changes in the extratropical storm tracks under global warming would impact these transports, the ocean circulation and carbon cycle, and society through changing weather patterns. I show that the southern storm track intensifies in the multimodel mean of simulations of 21st century climate change, and that the seasonal cycle of storm-track intensity increases in amplitude in both hemispheres. I use observations of the present-day seasonal cycle to confirm the relationship between storm-track intensity and the mean available potential energy of the atmosphere, and show how this quantitative relationship can be used to account for much of the varied response in storm-track intensity to global warming, including substantially different responses in simulations with different climate models. The results suggest that storm-track intensity is not related in a simple way to global-mean surface temperature, so that, for example, a stronger southern storm track in response to present-day global warming does not imply it was also stronger in hothouse climates of the past. PMID:20974916

  16. Understanding the varied response of the extratropical storm tracks to climate change.

    PubMed

    O'Gorman, Paul A

    2010-11-09

    Transient eddies in the extratropical storm tracks are a primary mechanism for the transport of momentum, energy, and water in the atmosphere, and as such are a major component of the climate system. Changes in the extratropical storm tracks under global warming would impact these transports, the ocean circulation and carbon cycle, and society through changing weather patterns. I show that the southern storm track intensifies in the multimodel mean of simulations of 21st century climate change, and that the seasonal cycle of storm-track intensity increases in amplitude in both hemispheres. I use observations of the present-day seasonal cycle to confirm the relationship between storm-track intensity and the mean available potential energy of the atmosphere, and show how this quantitative relationship can be used to account for much of the varied response in storm-track intensity to global warming, including substantially different responses in simulations with different climate models. The results suggest that storm-track intensity is not related in a simple way to global-mean surface temperature, so that, for example, a stronger southern storm track in response to present-day global warming does not imply it was also stronger in hothouse climates of the past.

  17. Snowfall less sensitive to warming in Karakoram than in Himalayas due to a unique seasonal cycle

    USGS Publications Warehouse

    Kapnick, Sarah B.; Delworth, Thomas L.; Ashfaq, Moetasim; Malyshev, Sergey; Milly, Paul C.D.

    2014-01-01

    The high mountains of Asia, including the Karakoram, Himalayas and Tibetan Plateau, combine to form a region of perplexing hydroclimate changes. Glaciers have exhibited mass stability or even expansion in the Karakoram region1, 2, 3, contrasting with glacial mass loss across the nearby Himalayas and Tibetan Plateau1, 4, a pattern that has been termed the Karakoram anomaly. However, the remote location, complex terrain and multi-country fabric of high-mountain Asia have made it difficult to maintain longer-term monitoring systems of the meteorological components that may have influenced glacial change. Here we compare a set of high-resolution climate model simulations from 1861 to 2100 with the latest available observations to focus on the distinct seasonal cycles and resulting climate change signatures of Asia’s high-mountain ranges. We find that the Karakoram seasonal cycle is dominated by non-monsoonal winter precipitation, which uniquely protects it from reductions in annual snowfall under climate warming over the twenty-first century. The simulations show that climate change signals are detectable only with long and continuous records, and at specific elevations. Our findings suggest a meteorological mechanism for regional differences in the glacier response to climate warming.

  18. Can current moisture responses predict soil CO2 efflux under altered precipitation regimes? A synthesis of manipulation experiments

    Treesearch

    S. Vicca; M. Bahn; M. Estiarte; E. E. van Loon; R. Vargas; G. Alberti; P. Ambus; M. A. Arain; C. Beier; L. P. Bentley; W. Borken; N. Buchmann; S. L. Collins; G. de Dato; J. S. Dukes; C. Escolar; P. Fay; G. Guidolotti; P. J. Hanson; A. Kahmen; G. Kröel-Dulay; T. Ladreiter-Knauss; K. S. Larsen; E. Lellei-Kovacs; E. Lebrija-Trejos; F. T. Maestre; S. Marhan; M. Marshall; P. Meir; Y. Miao; J. Muhr; P. A. Niklaus; R. Ogaya; J. Peñuelas; C. Poll; L. E. Rustad; K. Savage; A. Schindlbacher; I. K. Schmidt; A. R. Smith; E. D. Sotta; V. Suseela; A. Tietema; N. van Gestel; O. van Straaten; S. Wan; U. Weber; I. A. Janssens

    2014-01-01

    As a key component of the carbon cycle, soil CO2 efflux (SCE) is being increasingly studied to improve our mechanistic understanding of this important carbon flux. Predicting ecosystem responses to climate change often depends an extrapolation of current relationships between ecosystem processes and their climatic drivers to conditions not yet experienced by the...

  19. Toward a theory of persuasive hope: effects of cognitive appraisals, hope appeals, and hope in the context of climate change.

    PubMed

    Chadwick, Amy E

    2015-01-01

    Hope has the potential to be a powerful motivator for influencing behavior. However, hope and messages that evoke hope (hope appeals) have rarely been the focus of theoretical development or empirical research. As a step toward the effective development and use of hope appeals in persuasive communication, this study conceptualized and operationalized hope appeals in the context of climate change prevention. Then, the study manipulated components of the hope evocation part of a hope appeal. Specifically, the components were designed to address appraisals of the importance, goal congruence, future expectation, and possibility of climate protection, resulting in a 2 (strong/weak importance) × 2 (strong/weak goal congruence) × 2 (strong/weak future expectation) × 2 (strong/weak possibility) between-subjects pretest-posttest factorial design. Two hundred forty-five undergraduate students were randomly assigned to one of the 16 message conditions and completed the study online. The study tested whether the four appraisals predict feelings of hope. It determined whether message components that address importance, goal congruence, future expectation, and possibility affect appraisals, feelings of hope, and persuasion outcomes. Finally, this study tested the effects of feelings of hope on persuasion outcomes. This study takes an important step toward enabling the effective use of hope appeals in persuasive communication.

  20. Interannual Variations in Earth's Low-Degree Gravity Field and the Connections With Geophysical/Climatic Changes

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.; Cox, Christopher M.

    2004-01-01

    Long-wavelength time-variable gravity recently derived from satellite laser ranging (SLR) analysis have focused to a large extent on the effects of the recent (since 1998) large anomalous change in J2, or the Earth's oblateness, and the potential causes. However, it is relatively more difficult to determine whether there are corresponding signals in the shorter wavelength zonal harmonics from the existing SLR-derived time variable gravity results, although it appears that geophysical fluid mass transport is being observed. For example, the recovered J3 time series shows remarkable agreement with NCEP-derived estimates of atmospheric gravity variations. Likewise, some of the non-zonal spherical harmonic components have significant interannual signal that appears to be related to mass transport. The non-zonal degree-2 components show reasonable temporal correlation with atmospheric signals, as well as climatic effects such as El Nino Southern Oscillation. We will present recent updates on the J2 evolution, as well as a look at other low-degree components of the interannual variations of gravity, complete through degree 4. We will examine the possible geophysical and climatic causes of these low-degree time-variable gravity related to oceanic and hydrological mass transports, for example some anomalous but prominent signals found in the extratropic Pacific ocean related to the Pacific Decadal Oscillation.

  1. In Brief: Climate Adaptation Summit report released

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-10-01

    “We understand from the science that we have no choice between mitigation and adaptation. We have to do both,” John Holdren, President Barack Obama's science and technology advisor, said at a 29 September meeting where he was presented with a new report about national and regional preparations for adapting to changing climate. The report is based on the National Climate Adaptation Summit, which was convened by the University Corporation for Atmospheric Research in May 2010. Stating that the United States must adapt to a changing climate now and prepare for increasing impacts on urban infrastructure, food, water, human health, and ecosystems in the coming decades, the report identifies a set of priorities for near-term action. Among the priorities are developing an overarching national strategy, with research, planning, and management components to guide federal climate change adaptation programs. Other priorities include improving coordination of federal plans and programs and creating a federal climate information portal and a clearinghouse of best practices and tool kits for adaptation. The report also identifies other priorities, including the need for support for assessments in the U.S. Global Change Research Program agency budgets, for increasing funding for research on vulnerability and impacts, and for initiating a regional series of ongoing climate adaptation forums. For more information, see http://www.joss.ucar.edu/events/2010/ncas/index.html.

  2. Selecting climate simulations for impact studies based on multivariate patterns of climate change.

    PubMed

    Mendlik, Thomas; Gobiet, Andreas

    In climate change impact research it is crucial to carefully select the meteorological input for impact models. We present a method for model selection that enables the user to shrink the ensemble to a few representative members, conserving the model spread and accounting for model similarity. This is done in three steps: First, using principal component analysis for a multitude of meteorological parameters, to find common patterns of climate change within the multi-model ensemble. Second, detecting model similarities with regard to these multivariate patterns using cluster analysis. And third, sampling models from each cluster, to generate a subset of representative simulations. We present an application based on the ENSEMBLES regional multi-model ensemble with the aim to provide input for a variety of climate impact studies. We find that the two most dominant patterns of climate change relate to temperature and humidity patterns. The ensemble can be reduced from 25 to 5 simulations while still maintaining its essential characteristics. Having such a representative subset of simulations reduces computational costs for climate impact modeling and enhances the quality of the ensemble at the same time, as it prevents double-counting of dependent simulations that would lead to biased statistics. The online version of this article (doi:10.1007/s10584-015-1582-0) contains supplementary material, which is available to authorized users.

  3. Reconstructing Climate Change: The Model-Data Ping-Pong

    NASA Astrophysics Data System (ADS)

    Stocker, T. F.

    2017-12-01

    When Cesare Emiliani, the father of paleoceanography, made the first attempts at a quantitative reconstruction of Pleistocene climate change in the early 1950s, climate models were not yet conceived. The understanding of paleoceanographic records was therefore limited, and scientists had to resort to plausibility arguments to interpret their data. With the advent of coupled climate models in the early 1970s, for the first time hypotheses about climate processes and climate change could be tested in a dynamically consistent framework. However, only a model hierarchy can cope with the long time scales and the multi-component physical-biogeochemical Earth System. There are many examples how climate models have inspired the interpretation of paleoclimate data on the one hand, and conversely, how data have questioned long-held concepts and models. In this lecture I critically revisit a few examples of this model-data ping-pong, such as the bipolar seesaw, the mid-Holocene greenhouse gas increase, millennial and rapid CO2 changes reconstructed from polar ice cores, and the interpretation of novel paleoceanographic tracers. These examples also highlight many of the still unsolved questions and provide guidance for future research. The combination of high-resolution paleoceanographic data and modeling has never been more relevant than today. It will be the key for an appropriate risk assessment of impacts on the Earth System that are already underway in the Anthropocene.

  4. Demonstrating the Error Budget for the Climate Absolute Radiance and Refractivity Observatory Through Solar Irradiance Measurements

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; McCorkel, Joel; McAndrew, Brendan

    2016-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission addresses the need to observe highaccuracy, long-term climate change trends and to use decadal change observations as a method to determine the accuracy of climate change. A CLARREO objective is to improve the accuracy of SI-traceable, absolute calibration at infrared and reflected solar wavelengths to reach on-orbit accuracies required to allow climate change observations to survive data gaps and observe climate change at the limit of natural variability. Such an effort will also demonstrate National Institute of Standards and Technology (NIST) approaches for use in future spaceborne instruments. The current work describes the results of laboratory and field measurements with the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. SOLARIS allows testing and evaluation of calibration approaches, alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. Results of laboratory calibration measurements are provided to demonstrate key assumptions about instrument behavior that are needed to achieve CLARREO's climate measurement requirements. Absolute radiometric response is determined using laser-based calibration sources and applied to direct solar views for comparison with accepted solar irradiance models to demonstrate accuracy values giving confidence in the error budget for the CLARREO reflectance retrieval.

  5. Incorporating geodiversity into conservation decisions.

    PubMed

    Comer, Patrick J; Pressey, Robert L; Hunter, Malcolm L; Schloss, Carrie A; Buttrick, Steven C; Heller, Nicole E; Tirpak, John M; Faith, Daniel P; Cross, Molly S; Shaffer, Mark L

    2015-06-01

    In a rapidly changing climate, conservation practitioners could better use geodiversity in a broad range of conservation decisions. We explored selected avenues through which this integration might improve decision making and organized them within the adaptive management cycle of assessment, planning, implementation, and monitoring. Geodiversity is seldom referenced in predominant environmental law and policy. With most natural resource agencies mandated to conserve certain categories of species, agency personnel are challenged to find ways to practically implement new directives aimed at coping with climate change while retaining their species-centered mandate. Ecoregions and ecological classifications provide clear mechanisms to consider geodiversity in plans or decisions, the inclusion of which will help foster the resilience of conservation to climate change. Methods for biodiversity assessment, such as gap analysis, climate change vulnerability analysis, and ecological process modeling, can readily accommodate inclusion of a geophysical component. We adapted others' approaches for characterizing landscapes along a continuum of climate change vulnerability for the biota they support from resistant, to resilient, to susceptible, and to sensitive and then summarized options for integrating geodiversity into planning in each landscape type. In landscapes that are relatively resistant to climate change, options exist to fully represent geodiversity while ensuring that dynamic ecological processes can change over time. In more susceptible landscapes, strategies aiming to maintain or restore ecosystem resilience and connectivity are paramount. Implementing actions on the ground requires understanding of geophysical constraints on species and an increasingly nimble approach to establishing management and restoration goals. Because decisions that are implemented today will be revisited and amended into the future, increasingly sophisticated forms of monitoring and adaptation will be required to ensure that conservation efforts fully consider the value of geodiversity for supporting biodiversity in the face of a changing climate. © 2015 Society for Conservation Biology.

  6. Climate and the Carbon Cycle

    NASA Astrophysics Data System (ADS)

    Manley, Jim

    2017-04-01

    Climate and the Carbon Cycle EOS3a Science in tomorrow's classroom Students, like too much of the American public, are largely unaware or apathetic to the changes in world climate and the impact that these changes have for life on Earth. A study conducted by Michigan State University and published in 2011 by Science Daily titled 'What carbon cycle? College students lack scientific literacy, study finds'. This study relates how 'most college students in the United States do not grasp the scientific basis of the carbon cycle - an essential skill in understanding the causes and consequences of climate change.' The study authors call for a new approach to teaching about climate. What if teachers better understood vital components of Earth's climate system and were able to impart his understanding to their students? What if students based their responses to the information taught not on emotion, but on a deeper understanding of the forces driving climate change, their analysis of the scientific evidence and in the context of earth system science? As a Middle School science teacher, I have been given the opportunity to use a new curriculum within TERC's EarthLabs collection, Climate and the Carbon Cycle, to awaken those brains and assist my students in making personal lifestyle choices based on what they had learned. In addition, with support from TERC and The University of Texas Institute for Geophysics I joined others to begin training other teachers on how to implement this curriculum in their classrooms to expose their students to our changing climate. Through my poster, I will give you (1) a glimpse into the challenges faced by today's science teachers in communicating the complicated, but ever-deepening understanding of the linkages between natural and human-driven factors on climate; (2) introduce you to a new module in the EarthLabs curriculum designed to expose teachers and students to global scientific climate data and instrumentation; and (3) illustrate how student worldviews are changed though exposure to the latest in scientific discovery and understanding.

  7. Statistical analysis and ANN modeling for predicting hydrological extremes under climate change scenarios: the example of a small Mediterranean agro-watershed.

    PubMed

    Kourgialas, Nektarios N; Dokou, Zoi; Karatzas, George P

    2015-05-01

    The purpose of this study was to create a modeling management tool for the simulation of extreme flow events under current and future climatic conditions. This tool is a combination of different components and can be applied in complex hydrogeological river basins, where frequent flood and drought phenomena occur. The first component is the statistical analysis of the available hydro-meteorological data. Specifically, principal components analysis was performed in order to quantify the importance of the hydro-meteorological parameters that affect the generation of extreme events. The second component is a prediction-forecasting artificial neural network (ANN) model that simulates, accurately and efficiently, river flow on an hourly basis. This model is based on a methodology that attempts to resolve a very difficult problem related to the accurate estimation of extreme flows. For this purpose, the available measurements (5 years of hourly data) were divided in two subsets: one for the dry and one for the wet periods of the hydrological year. This way, two ANNs were created, trained, tested and validated for a complex Mediterranean river basin in Crete, Greece. As part of the second management component a statistical downscaling tool was used for the creation of meteorological data according to the higher and lower emission climate change scenarios A2 and B1. These data are used as input in the ANN for the forecasting of river flow for the next two decades. The final component is the application of a meteorological index on the measured and forecasted precipitation and flow data, in order to assess the severity and duration of extreme events. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. A review of the challenges and opportunities in estimating above ground forest biomass using tree-level models

    Treesearch

    Hailemariam Temesgen; David Affleck; Krishna Poudel; Andrew Gray; John Sessions

    2015-01-01

    Accurate biomass measurements and analyses are critical components in quantifying carbon stocks and sequestration rates, assessing potential impacts due to climate change, locating bio-energy processing plants, and mapping and planning fuel treatments. To this end, biomass equations will remain a key component of future carbon measurements and estimation. As...

  9. Detecting and Quantifying Paleoseasonality in Stalagmites using Geochemical and Modelling Approaches

    NASA Astrophysics Data System (ADS)

    Baldini, J. U. L.

    2017-12-01

    Stalagmites are now well established sources of terrestrial paleoclimate information, providing insights into climate change on a variety of timescales. One of the most exciting aspects of stalagmites as climate archives is their ability to provide information regarding seasonality, a notoriously difficult component of climate change to characterise. However, stalagmite geochemistry may reflect not only the most apparent seasonal signal in external climate parameters, but also cave-specific signals such as seasonal changes in cave air carbon dioxide concentrations, sudden shifts in ventilation, and stochastic hydrological processes. Additionally, analytical bias may dampen or completely obfuscate any paleoseasonality, highlighting the need for appropriate quantification of this issue using simple models. Evidence from stalagmites now suggests that a seasonal signal is extractable from many samples, and that this signal can provide an important extra dimension to paleoclimate interpretations. Additionally, lower resolution annual- to decadal-scale isotope ratio records may also reflect shifts in seasonality, but identifying these is often challenging. Integrating geochemical datasets with models and cave monitoring data can greatly increase the accuracy of climate reconstructions, and yield the most robust records.

  10. An Assessment of Vulnerability and Trade-offs of Dairy Farmers of India to Climate Variability and Change

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Aparna; Gupta, Jancy; Ravindran, Dileepkumar

    2017-04-01

    The study aims at assessing the vulnerability and tradeoffs of dairy based livelihoods to Climate Variability and Change (CVC) in the Western Ghats ecosystem, India. For this purpose; data were aggregated to an overall Livelihood Vulnerability Index (LVI) to CVC underlying the principles of IPCC, using 40 indicators under 7 LVI components. Fussel framework was used for the nomenclature of vulnerable situation and trade-off between vulnerability components and milk production was calculated. Data were collected through participatory rural appraisal and personal interviews from 360 randomly selected dairy farmers of nine blocks from three states of Western Ghat region, complemented by thirty years of gridded weather data and livestock data. The LVI score of dairy based livelihoods of six taluks were negative. The data were normalized and then combined into three indices of sensitivity, exposure and adaptive capacity, which were then averaged with weights given using principal component analysis, to obtain the overall vulnerability index. Mann Whitney U test was used to find the significant difference between the taluks in terms of LVI and cumulative square root frequency method was used to categorise the farmers. Even though the taluks are geographically closer, there is significant difference in the LVI values of the regions. Results indicated that the Lanja taluks of Maharashtra is the most vulnerable having an overall LVI value -4.17 with 48% farmers falling in highly vulnerable category. Panel regression analysis reveals that there is significant synergy between average milk production and livestock, social network component and trade-off between natural disasters climate variability component of LVI. Policies for incentivizing the 'climate risk adaptation' costs for small and marginal farmers and livelihood infrastructure for mitigating risks and promoting grass root level innovations are necessary to sustain dairy farming of the region. Thus the research will provide an important basis for policy makers to develop appropriate adaptation strategies for alarming situation and decision making for farmers to minimize the risk of dairy sector to climate variability.

  11. Climate Leadership Literacy as a Component of Climate Literacy

    NASA Astrophysics Data System (ADS)

    Kothavala, D. L.

    2014-12-01

    How can the 3rd National Climate Assessment be used to go beyond climate change literacy, to include literacy in climate leadership and its improvement? The National Climate Assessment refers to "no-regrets" strategies (i.e., beneficial despite uncertainty), such as, e.g., energy efficiency, cultivating networks, and growing our adaptive capacity. As we cultivate our capacity as a species to pivot, climate leadership performance and its improvement become legitimate - and essential - realms of research, planning, and practice. However, climate leadership across sectors is not yet well-articulated; and operationalizing literacy expressed as 'what to do' may be viewed as overtly prescriptive by scientists. This talk examines approaches and illustrative examples provided in the Climate Assessment at the scale of cities, states, and firms; along with key findings from the National Academies on communicating science to decision makers; in identifying factors to enhance literacy in climate leadership and performance.

  12. Strengthening education in human values - The Link between Recycling and Climate Change

    NASA Astrophysics Data System (ADS)

    Kastanidou, Sofia

    2014-05-01

    This work is an environmental education program of 50 hours- off curriculum, currently run by High school of Nikaia - Larissas. I as coordinator teacher, another two teachers and 24 students participate in this program. Intended learning outcomes: students will be able to define the importance of climate change, to evaluate the effect of human activities on climate, and to recognize the role of recycling in preventing global climate change. It is an environmental program with social goals. That means students have to understand the link between human and environment and learn how to combine environmental protection with human help. As a consequence collaboration has already begun between High school of Nikaia and the Paraplegic & Physically Disabled Association of Pella-Greece. This is a nonprofit association that collects plastic caps; with the contribution of a recycling company the Paraplegic Association converts plastic caps in wheelchairs and gives them to needy families. So, recycling caps becomes a meaningful form of environmental and social activism. Students are educated about the meaning of recycling and encouraged to collect all types of plastic caps; they are also educated in the meaning of helping people. Further, this environmental education program consists of two parts, a theoretical and a practical one: a) Theoretical part: education is an essential element of the global response to climate change, so students have to research on climate change; they visit the Center for Environmental Education in Florina and experience the aquatic ecosystem of Prespa lakes; specialists of the Centre inform students about the effects of climate change on wetlands; students have further to research how recycling can help fight global climate change as well as examine how recycling a key component of modern waste reduction is, as the third component of the "Reduce, Reuse, Recycle" waste hierarchy; they discover the interdependence of society, economy and the natural environment; they visit the City Cleaning-Recycling Services; scientists visit our school and engage students in the climate change issue; students are educated in developing ecological consciousness paths to a sustainable future. b) Practical part: students use recycled materials to build containers where everyone can put the plastic caps; they decorate containers with other recyclable materials such as magazine clippings, ribbons etc.; students are encouraged to contact local organizations (municipality, post office, and banks), sports clubs and shops, to inform people about their action and to put the containers for plastic caps in the place they work or in their houses; they collect plastic caps frequently at school; at the end of the environmental education program all the students visit Paraplegic & Physically Disabled Association in Pella-Yannitsa and deliver the collected caps. We hope that students will leave the program with new skills, experiences and knowledge that can be used to help themselves, their communities, their environment and future generations. "Our changing planet - our changing society for a better future".

  13. Historical climate controls soil respiration responses to current soil moisture.

    PubMed

    Hawkes, Christine V; Waring, Bonnie G; Rocca, Jennifer D; Kivlin, Stephanie N

    2017-06-13

    Ecosystem carbon losses from soil microbial respiration are a key component of global carbon cycling, resulting in the transfer of 40-70 Pg carbon from soil to the atmosphere each year. Because these microbial processes can feed back to climate change, understanding respiration responses to environmental factors is necessary for improved projections. We focus on respiration responses to soil moisture, which remain unresolved in ecosystem models. A common assumption of large-scale models is that soil microorganisms respond to moisture in the same way, regardless of location or climate. Here, we show that soil respiration is constrained by historical climate. We find that historical rainfall controls both the moisture dependence and sensitivity of respiration. Moisture sensitivity, defined as the slope of respiration vs. moisture, increased fourfold across a 480-mm rainfall gradient, resulting in twofold greater carbon loss on average in historically wetter soils compared with historically drier soils. The respiration-moisture relationship was resistant to environmental change in field common gardens and field rainfall manipulations, supporting a persistent effect of historical climate on microbial respiration. Based on these results, predicting future carbon cycling with climate change will require an understanding of the spatial variation and temporal lags in microbial responses created by historical rainfall.

  14. Modeling high resolution space-time variations in energy demand/CO2 emissions of human inhabited landscapes in the United States under a changing climate

    NASA Astrophysics Data System (ADS)

    Godbole, A. V.; Gurney, K. R.

    2010-12-01

    With urban and exurban areas now accounting for more than 50% of the world's population, projected to increase 20% by 2050 (UN World Urbanization Prospects, 2009), urban-climate interactions are of renewed interest to the climate change scientific community (Karl et. al, 1988; Kalnay and Cai, 2003; Seto and Shepherd, 2009). Until recently, climate modeling efforts treated urban-human systems as independent of the earth system. With studies pointing to the disproportionately large influence of urban areas on their surrounding environment (Small et. al, 2010), modeling efforts have begun to explicitly account for urban processes in land models, like the CLM 4.0 urban layer, for example (Oleson.et. al, 2008, 2010). A significant portion of the urban energy demand comes from the space heating and cooling requirement of the residential and commercial sectors - as much as 51% (DOE, RECS 2005) and 11% (Belzer, D. 2006) respectively, in the United States. Thus, these sectors are both responsible for a significant fraction of fossil fuel CO2 emissions and will be influenced by a changing climate through changes in energy use and energy supply planning. This points to the possibility of interactive processes and feedbacks with the climate system. Space conditioning energy demand is strongly driven by external air temperature (Ruth, M. et.al, 2006) in addition to other socio-economic variables such as building characteristics (age of structure, activity cycle, weekend/weekday usage profile), occupant characteristics (age of householder, household income) and energy prices (Huang, 2006; Santin et. al, 2009; Isaac and van Vuuren, 2009). All of these variables vary both in space and time. Projections of climate change have begun to simulate changes in temperature at much higher resolution than in the past (Diffenbaugh et. al, 2005). Hence, in order to understand how climate change and variability will potentially impact energy use/emissions and energy planning, these two components of the human-climate system must be coupled in climate modeling efforts to better understand the impacts and feedbacks. To implement modeling strategies for coupling the human and climate systems, their interactions must first be examined in greater detail at high spatial and temporal resolutions. This work attempts to quantify the impact of high resolution variations in projected climate change on energy use/emissions in the United States. We develop a predictive model for the space heating component of residential and commercial energy demand by leveraging results from the high resolution fossil fuel CO2 inventory of the Vulcan Project (Gurney et al., 2009). This predictive model is driven by high resolution temperature data from the RegCM3 model obtained by implementing a downscaling algorithm (Chow and Levermore, 2007). We will present the energy use/emissions in both the space and time domain from two different predictive models highlighting strengths and weaknesses in both. Furthermore, we will explore high frequency variations in the projected temperature field and how these might place potentially large burdens on energy supply and delivery.

  15. Welcome to NASA's Earth Science Enterprise. Version 3

    NASA Technical Reports Server (NTRS)

    2001-01-01

    There are strong scientific indications that natural change in the Earth system is being accelerated by human intervention. As a result, planet Earth faces the possibility of rapid environmental changes that would have a profound impact on all nations. However, we do not fully understand either the short-term effects of our activities, or their long-term implications - many important scientific questions remain unanswered. The National Aeronautics and Space Administration (NASA) is working with the national and international scientific communities to establish a sound scientific basis for addressing these critical issues through research efforts coordinated under the U.S. Global Change Research Program, the International Geosphere-Biosphere Program, and the World Climate Research Program. The Earth Science Enterprise is NASA's contribution to the U.S. Global Change Research Program. NASA's Earth Science Enterprise will use space- and surface-based measurement systems to provide the scientific basis for understanding global change. The space-based components will provide a constellation of satellites to monitor the Earth from space. A major component of the Earth Science Enterprise is the Earth Observing System (EOS). The overall objective of the EOS Program is to determine the extent, causes, and regional consequences of global climate change. EOS will provide sustained space-based observations that will allow researchers to monitor climate variables over time to determine trends. A constellation of EOS satellites will acquire global data, beginning in 1998 and extending well into the 21st century.

  16. Exploring the implication of climate process uncertainties within the Earth System Framework

    NASA Astrophysics Data System (ADS)

    Booth, B.; Lambert, F. H.; McNeal, D.; Harris, G.; Sexton, D.; Boulton, C.; Murphy, J.

    2011-12-01

    Uncertainties in the magnitude of future climate change have been a focus of a great deal of research. Much of the work with General Circulation Models has focused on the atmospheric response to changes in atmospheric composition, while other processes remain outside these frameworks. Here we introduce an ensemble of new simulations, based on an Earth System configuration of HadCM3C, designed to explored uncertainties in both physical (atmospheric, oceanic and aerosol physics) and carbon cycle processes, using perturbed parameter approaches previously used to explore atmospheric uncertainty. Framed in the context of the climate response to future changes in emissions, the resultant future projections represent significantly broader uncertainty than existing concentration driven GCM assessments. The systematic nature of the ensemble design enables interactions between components to be explored. For example, we show how metrics of physical processes (such as climate sensitivity) are also influenced carbon cycle parameters. The suggestion from this work is that carbon cycle processes represent a comparable contribution to uncertainty in future climate projections as contributions from atmospheric feedbacks more conventionally explored. The broad range of climate responses explored within these ensembles, rather than representing a reason for inaction, provide information on lower likelihood but high impact changes. For example while the majority of these simulations suggest that future Amazon forest extent is resilient to the projected climate changes, a small number simulate dramatic forest dieback. This ensemble represents a framework to examine these risks, breaking them down into physical processes (such as ocean temperature drivers of rainfall change) and vegetation processes (where uncertainties point towards requirements for new observational constraints).

  17. Climate change reduces water availability for agriculture by decreasing non-evaporative irrigation losses

    NASA Astrophysics Data System (ADS)

    Malek, Keyvan; Adam, Jennifer C.; Stöckle, Claudio O.; Peters, R. Troy

    2018-06-01

    Irrigation efficiency plays an important role in agricultural productivity; it affects farm-scale water demand, and the partitioning of irrigation losses into evaporative and non-evaporative components. This partitioning determines return flow generation and thus affects water availability. Over the last two decades, hydrologic and agricultural research communities have significantly improved our understanding of the impacts of climate change on water availability and food productivity. However, the impacts of climate change on the efficiency of irrigation systems, particularly on the partitioning between evaporative and non-evaporative losses, have received little attention. In this study, we incorporated a process-based irrigation module into a coupled hydrologic/agricultural modeling framework (VIC-CropSyst). To understand how climate change may impact irrigation losses, we applied VIC-CropSyst over the Yakima River basin, an important agricultural region in Washington State, U.S. We compared the historical period of 1980-2010 to an ensemble of ten projections of climate for two future periods: 2030-2060 and 2060-2090. Results averaged over the watershed showed that a 9% increase in evaporative losses will be compensated by a reduction of non-evaporative losses. Therefore, overall changes in future efficiency are negligible (-0.4%) while the Evaporative Loss Ratio (ELR) (defined as the ratio of evaporative to non-evaporative irrigation losses) is enhanced by 10%. This higher ELR is associated with a reduction in return flows, thus negatively impacting downstream water availability. Results also indicate that the impact of climate change on irrigation losses depend on irrigation type and climate scenarios.

  18. Robustness of plant-insect herbivore interaction networks to climate change in a fragmented temperate forest landscape.

    PubMed

    Bähner, K W; Zweig, K A; Leal, I R; Wirth, R

    2017-10-01

    Forest fragmentation and climate change are among the most severe and pervasive forms of human impact. Yet, their combined effects on plant-insect herbivore interaction networks, essential components of forest ecosystems with respect to biodiversity and functioning, are still poorly investigated, particularly in temperate forests. We addressed this issue by analysing plant-insect herbivore networks (PIHNs) from understories of three managed beech forest habitats: small forest fragments (2.2-145 ha), forest edges and forest interior areas within three continuous control forests (1050-5600 ha) in an old hyper-fragmented forest landscape in SW Germany. We assessed the impact of forest fragmentation, particularly edge effects, on PIHNs and the resulting differences in robustness against climate change by habitat-wise comparison of network topology and biologically realistic extinction cascades of networks following scores of vulnerability to climate change for the food plant species involved. Both the topological network metrics (complexity, nestedness, trophic niche redundancy) and robustness to climate change strongly increased in forest edges and fragments as opposed to the managed forest interior. The nature of the changes indicates that human impacts modify network structure mainly via host plant availability to insect herbivores. Improved robustness of PIHNs in forest edges/small fragments to climate-driven extinction cascades was attributable to an overall higher thermotolerance across plant communities, along with positive effects of network structure. The impoverishment of PIHNs in managed forest interiors and the suggested loss of insect diversity from climate-induced co-extinction highlight the need for further research efforts focusing on adequate silvicultural and conservation approaches.

  19. Environmental water demand assessment under climate change conditions.

    PubMed

    Sarzaeim, Parisa; Bozorg-Haddad, Omid; Fallah-Mehdipour, Elahe; Loáiciga, Hugo A

    2017-07-01

    Measures taken to cope with the possible effects of climate change on water resources management are key for the successful adaptation to such change. This work assesses the environmental water demand of the Karkheh river in the reach comprising Karkheh dam to the Hoor-al-Azim wetland, Iran, under climate change during the period 2010-2059. The assessment of the environmental demand applies (1) representative concentration pathways (RCPs) and (2) downscaling methods. The first phase of this work projects temperature and rainfall in the period 2010-2059 under three RCPs and with two downscaling methods. Thus, six climatic scenarios are generated. The results showed that temperature and rainfall average would increase in the range of 1.7-5.2 and 1.9-9.2%, respectively. Subsequently, flows corresponding to the six different climatic scenarios are simulated with the unit hydrographs and component flows from rainfall, evaporation, and stream flow data (IHACRES) rainfall-runoff model and are input to the Karkheh reservoir. The simulation results indicated increases of 0.9-7.7% in the average flow under the six simulation scenarios during the period of analysis. The second phase of this paper's methodology determines the monthly minimum environmental water demands of the Karkheh river associated with the six simulation scenarios using a hydrological method. The determined environmental demands are compared with historical ones. The results show that the temporal variation of monthly environmental demand would change under climate change conditions. Furthermore, some climatic scenarios project environmental water demand larger than and some of them project less than the baseline one.

  20. Bridging the gap between climate change and maritime security: Towards a comprehensive framework for planning.

    PubMed

    Mazaris, Antonios D; Germond, Basil

    2018-09-01

    For the past two decades, the need to shield strategic maritime interests, to tackle criminality and terrorism at or from the sea and to conserve valuable marine resources has been recognized at the highest political level. Acknowledging and accounting for the interplay between climate change, the vulnerability of coastal populations and the occurrence of maritime criminality should be part of any ocean governance process. Still, given the complex interactions between climate change and socio-economic components of the marine realm, it has become urgent to establish a solid methodological framework, which could lead to sound and effective decisions. We propose that any such framework should not be built from scratch. The adaptation of well tested, existing uncertainty-management tools, such as Cumulative Effect Assessments, could serve as a solid basis to account for the magnitude and directionality of the dependencies between the impacts of climate change and the occurrence of maritime criminality, offering spatial explicit risk evaluations. Multi-Criteria Decision Making could then be employed to better and faster inform decision-makers. These mechanisms could provide a framework for comparison of alternative mitigation and adaptation actions and are essential in assessing responses to tackle maritime crime in the context of climate change. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. The Future of Climate Change Education and Communication: Preparing Our Posterity for Risks and Opportunity? (Invited)

    NASA Astrophysics Data System (ADS)

    Ledley, T. S.; Niepold, F.

    2013-12-01

    Climate change will have impacts on all aspects of life. As such it is a topic that is interdisciplinary and transdisciplinary and thus requires input from a professionally diverse group of experts to be addressed effectively. This represents the next step in an evolution of how geoscientists see their work and their responsibility communicate and collaborate with other professionals to enable their findings and understanding of the Earth system to benefit society. In the late 1970's geoscience research extended beyond the traditional disciplinary perspectives to investigate the interactions of the components of the Earth system and the impacts of those interactions. Geoscience research became interdisciplinary. In the last 10 years as the reality of climate change has become more apparent,it is clear that the conversation needs to extend well beyond the geosciences to include for example agriculture, economics, psychology, architecture, urban planning, engineering and the social sciences. Climate change education and communication needs to become both interdisciplinary and transdisciplinary. This presentation will discuss the obstacles that need to be overcome to achieve interdisciplinary and transdiciplinary ways of addressing the problems and opportunities resulting from climate change, the efforts that are underway to help develop a common language and shared understanding to enable transdisciplinary solutions to societal issues in the future.

  2. Climate change and the ash dieback crisis

    PubMed Central

    Goberville, Eric; Hautekèete, Nina-Coralie; Kirby, Richard R.; Piquot, Yves; Luczak, Christophe; Beaugrand, Grégory

    2016-01-01

    Beyond the direct influence of climate change on species distribution and phenology, indirect effects may also arise from perturbations in species interactions. Infectious diseases are strong biotic forces that can precipitate population declines and lead to biodiversity loss. It has been shown in forest ecosystems worldwide that at least 10% of trees are vulnerable to extinction and pathogens are increasingly implicated. In Europe, the emerging ash dieback disease caused by the fungus Hymenoscyphus fraxineus, commonly called Chalara fraxinea, is causing a severe mortality of common ash trees (Fraxinus excelsior); this is raising concerns for the persistence of this widespread tree, which is both a key component of forest ecosystems and economically important for timber production. Here, we show how the pathogen and climate change may interact to affect the future spatial distribution of the common ash. Using two presence-only models, seven General Circulation Models and four emission scenarios, we show that climate change, by affecting the host and the pathogen separately, may uncouple their spatial distribution to create a mismatch in species interaction and so a lowering of disease transmission. Consequently, as climate change expands the ranges of both species polewards it may alleviate the ash dieback crisis in southern and occidental regions at the same time. PMID:27739483

  3. O the Interpretation of Climatic Change from the Fossil Record: Climatic Change in Central and Eastern United States for the Past 2000 Years Estimated from Pollen Data.

    NASA Astrophysics Data System (ADS)

    Gajewski, Konrad J.

    Pollen records from varved-lake sediments at seven locations in the northeastern United States record late Holocene climate changes over the past 1000-2000 years. Simplification of pollen diagrams by principal component analysis documents that climate changes affect vegetation at all sites, and not just at "sensitive" sites or ecotones. All seven pollen records show a long-term trend, medium frequency oscillations and higher frequency fluctuations. The between-site similarity of the trend and the coherency of the medium frequency oscillations demonstrates the importance of climate forcing to vegetation change at these scales. Response of vegetation to a climatic change is quite rapid, and depends not only on the nature of the climate fluctuation, but also on the pre-existing state of the vegetation. Multiple regression and canonical correlation techniques were used to calculate calibration functions from a spatial network of modern pollen and climate data. When analyzed at comparable scales, the spatial distribution of pollen assemblages in northeastern United States are related both to summer temperature and annual precipitation. Although summer temperature and annual precipitation are coupled, this coupling is not so strong as to negate the use of univariate calibration models. Over the 2000-year period of time, a gradual summer cooling of about 1.0(DEGREES)C/1000 years has occurred. Superimposed on the long-term trend are medium frequency temperature fluctuations of amplitude about 0.5(DEGREES)C that persist for several centuries. Annual precipitation is relatively constant, except for a period of increased rainfall from 600 years ago to the present in southern Maine.

  4. Building Training Curricula for Accelerating the Use of NOAA Climate Products and Tools

    NASA Astrophysics Data System (ADS)

    Timofeyeva-Livezey, M. M.; Meyers, J. C.; Stevermer, A.; Abshire, W. E.; Beller-Simms, N.; Herring, D.

    2016-12-01

    The National Oceanic and Atmospheric Administration (NOAA) plays a leading role in U.S. intergovernmental efforts on the Climate Data Initiative and the Climate Resilience Toolkit (CRT). CRT (http://toolkit.climate.gov/) is a valuable resource that provides tools, information, and subject matter expertise to decision makers in various sectors, such as agriculture, water resources and transportation, to help them build resilience to our changing climate. In order to make best use of the toolkit and all the resources within it, a training component is critical. The training section helps building users' understanding of the data, science, and impacts of climate variability and change. CRT identifies five steps in building resilience that includes use of appropriate tools to support decision makers depending on their needs. One tool that can be potentially integrated into CRT is NOAA's Local Climate Analysis Tool (LCAT), which provides access to trusted NOAA data and scientifically-sound analysis techniques for doing regional and local climate studies on climate variability and climate change. However, in order for LCAT to be used effectively, we have found an iterative learning approach using specific examples to train users. For example, for LCAT application in analysis of water resources, we use existing CRT case studies for Arizona and Florida water supply users. The Florida example demonstrates primary sensitivity to climate variability impacts, whereas the Arizona example takes into account longer- term climate change. The types of analyses included in LCAT are time series analysis of local climate and the estimated rate of change in the local climate. It also provides a composite analysis to evaluate the relationship between local climate and climate variability events such as El Niño Southern Oscillation, the Pacific North American Index, and other modes of climate variability. This paper will describe the development of a training module for use of LCAT and its integration into CRT. An iterative approach was used that incorporates specific examples of decision making while working with subject matter experts within the water supply community. The recommended strategy is to use a "stepping stone" learning structure to build users knowledge of best practices for use of LCAT.

  5. Coupling records of fluvial activity from the last interglacial-glacial cycle with climate forcing using both geochronology and numerical modelling

    NASA Astrophysics Data System (ADS)

    Briant, Rebecca; Mottram, Gareth; Wainwright, John

    2010-05-01

    River systems are a critical component of the landscape. An understanding of their response to variations in the Earth's climate is vital in light of the expected changes in global climate (e.g. 1.8 to 4.8°C temperature rise) that are forecast to occur over the next c. 100 years. Over the longer term, it becomes increasingly likely that the changes we will see may even be of a magnitude for which the most appropriate analogue we have is the glacial-interglacial scale (c. 10°C temperature change) and other climate changes typical of the Quaternary period (last 2 million years). Therefore it is crucial to apply our understanding of climate-driven changes during the Quaternary to future projections of both climate and landscape change, especially since landscape instability is a key characteristic of the Quaternary. Linking river activity to climate requires both the recognition of potentially climate-driven changes within the fluvial sedimentary record and the linkage of these to external climate records using various geochronological techniques. To this end, this paper firstly presents results from the Welland catchment, Fenland Basin where climatically-driven phases of river activity have been identified using detailed sedimentological analysis and palaeontological environmental reconstruction. Dating of these using radiocarbon and optically-stimulated luminescence dating has shown broad correspondence to external climate fluctuations at a marine isotope substage scale over the last interglacial-glacial cycle (MIS 5d onwards). The precision and accuracy of the two different age techniques varies in different parts of this time period and this will be discussed. Limitations in the precision of these geochronological techniques have prompted the use of a further, complementary to improve understanding of these sequences, i.e. ensemble numerical modeling. The rationale behind this approach is that river response to climate can be traced within the model and validated against the known geological record. If the known geological record can be replicated, then the detailed linkages between climate and river activity shown in the model can be used understand to the relationships between climate change and river activity more clearly. This paper will present the results of three-dimensional cellular automata modeling of the Welland catchment, compare them to the geological record, and draw out what this means for our understanding of earth surface processes.

  6. Hourly test reference weather data in the changing climate of Finland for building energy simulations.

    PubMed

    Jylhä, Kirsti; Ruosteenoja, Kimmo; Jokisalo, Juha; Pilli-Sihvola, Karoliina; Kalamees, Targo; Mäkelä, Hanna; Hyvönen, Reijo; Drebs, Achim

    2015-09-01

    Dynamic building energy simulations need hourly weather data as input. The same high temporal resolution is required for assessments of future heating and cooling energy demand. The data presented in this article concern current typical values and estimated future changes in outdoor air temperature, wind speed, relative humidity and global, diffuse and normal solar radiation components. Simulated annual and seasonal delivered energy consumptions for heating of spaces, heating of ventilation supply air and cooling of spaces in the current and future climatic conditions are also presented for an example house, with district heating and a mechanical space cooling system. We provide details on how the synthetic future weather files were created and utilised as input data for dynamic building energy simulations by the IDA Indoor Climate and Energy program and also for calculations of heating and cooling degree-day sums. The information supplied here is related to the research article titled "Energy demand for the heating and cooling of residential houses in Finland in a changing climate" [1].

  7. Youth Climate Summits: Empowering & Engaging Youth to Lead on Climate Change

    NASA Astrophysics Data System (ADS)

    Kretser, J.

    2017-12-01

    The Wild Center's Youth Climate Summits is a program that engages youth in climate literacy from knowledge and understanding to developing action in their schools and communities. Each Youth Climate Summit is a one to three day event that brings students and teachers together to learn about climate change science, impacts and solutions at a global and local level. Through speakers, workshops and activities, the Summit culminates in a student-driven Climate Action Plan that can be brought back to schools and communities. The summits have been found to be powerful vehicles for inspiration, learning, community engagement and youth leadership development. Climate literacy with a focus on local climate impacts and solutions is a key component of the Youth Climate Summit. The project-based learning surrounding the creation of a unique, student driven, sustainability and Climate Action Plan promotes leadership skills applicable and the tools necessary for a 21st Century workforce. Student driven projects range from school gardens and school energy audits to working with NYS officials to commit to going 100% renewable electricty at the three state-owned downhill ski facilities. The summit model has been scaled and replicated in other communities in New York State, Vermont, Ohio, Michigan and Washington states as well as internationally in Finland, Germany and Sri Lanka.

  8. The Girls on Ice program: Improving perceptions of climate change and environmental stewardship by exploring a glacier landscape

    NASA Astrophysics Data System (ADS)

    Young, J. C.; Conner, L.; Pettit, E. C.

    2017-12-01

    Girls on Ice is a unique, free, science and mountaineering experience for underserved girls aged 16 to 18. Each year, two teams of nine girls spend eight days on a remote Alaska or Washington glacier to learn about glaciology, climate change, and alpine ecology (as well as mountaineering, art and leadership). During the program, the girls live on, explore and study a glacier and the visibly climate change-altered landscape that surrounds it, through both instructor-led modules and scientific field studies the girls design themselves. Time spent on the glacier means witnessing rivers of meltwater running off the surface, climbing 300 m uphill to where the glacier last sat 150 years ago, and learning how scientists monitor the glacier's retreat. Previous studies have shown that pro-environmental behavior in youth is strongly influenced by having significant life experiences outdoors, and that engagement of citizens in a climate change-impacted landscape is emerging as a powerful way to connect people to environment and to motivate environmental action. Given the significant life experience provided by our unique wilderness format, and the interactions with a rapidly changing glacier landscape, this study examines how participation in Girls on Ice impacts the 16 to 18 year-old participants' perceptions of climate change, as well as their sense of environmental identity. We use mixed qualitative and quantitative methods, including pre- and post-program questionnaires, an in-program focus group discussion, end-of-program interviews, and early and late in-program concept (node-link) mapping exercises. Preliminary results from qualitative data show a shift in many girls' perceptions of climate change towards being motivated to act to combat it, with particular reference to glaciers as a key component prompting that shift. Ultimately, this study aims to demonstrate the value of tenets of environmental and outdoor education theory, namely significant life experiences and interactions with climate change-impacted landscapes, for motivating greater climate change awareness and mitigation behavior in youth.

  9. Eco-hydrological Modeling in the Framework of Climate Change

    NASA Astrophysics Data System (ADS)

    Fatichi, Simone; Ivanov, Valeriy Y.; Caporali, Enrica

    2010-05-01

    A blueprint methodology for studying climate change impacts, as inferred from climate models, on eco-hydrological dynamics at the plot and small catchment scale is presented. Input hydro-meteorological variables for hydrological and eco-hydrological models for present and future climates are reproduced using a stochastic downscaling technique and a weather generator, "AWE-GEN". The generated time series of meteorological variables for the present climate and an ensemble of possible future climates serve as input to a newly developed physically-based eco-hydrological model "Tethys-Chloris". An application of the proposed methodology is realized reproducing the current (1961-2000) and multiple future (2081-2100) climates for the location of Tucson (Arizona). A general reduction of precipitation and a significant increase of air temperature are inferred. The eco-hydrological model is successively applied to detect changes in water recharge and vegetation dynamics for a desert shrub ecosystem, typical of the semi-arid climate of south Arizona. Results for the future climate account for uncertainties in the downscaling and are produced in terms of probability density functions. A comparison of control and future scenarios is discussed in terms of changes in the hydrological balance components, energy fluxes, and indices of vegetation productivity. An appreciable effect of climate change can be observed in metrics of vegetation performance. The negative impact on vegetation due to amplification of water stress in a warmer and dryer climate is offset by a positive effect of carbon dioxide augment. This implies a positive shift in plant capabilities to exploit water. Consequently, the plant water use efficiency and rain use efficiency are expected to increase. Interesting differences in the long-term vegetation productivity are also observed for the ensemble of future climates. The reduction of precipitation and the substantial maintenance of vegetation cover ultimately leads to the depletion of soil moisture and recharge to deeper layers. Such an outcome can affect the long-tem water availability in semi-arid systems and expose plants to more severe and frequent periods of stress.

  10. Completed Experiments in Human Adaptation: Roles for Social Science in Arctic Policy Development

    NASA Astrophysics Data System (ADS)

    Jensen, A. M.

    2015-12-01

    The Arctic contains many sites with exquisite organic preservation, which can be used to inform policy decisions in two very different ways. Archaeological sites can be considered at the result of completed experiments in human adaptation. With proper analysis of the multiple types of data they contain, one can see how climate change affected arctic ecosystems (including the human components) and how successful human responses were. Secondly, archaeological finds can provide vivid illustrations of the effects of climate change effects and extreme climatic events at a particular place. These illustrations appear to be far easier for members of the public to relate to than other means of transmitting scientific information, and can be good means of motivating people to be proactive.

  11. Changes in groundwater recharge under projected climate in the upper Colorado River basin

    USGS Publications Warehouse

    Tillman, Fred; Gangopadhyay, Subhrendu; Pruitt, Tom

    2016-01-01

    Understanding groundwater-budget components, particularly groundwater recharge, is important to sustainably manage both groundwater and surface water supplies in the Colorado River basin now and in the future. This study quantifies projected changes in upper Colorado River basin (UCRB) groundwater recharge from recent historical (1950–2015) through future (2016–2099) time periods, using a distributed-parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 climate projections. Simulated future groundwater recharge in the UCRB is generally expected to be greater than the historical average in most decades. Increases in groundwater recharge in the UCRB are a consequence of projected increases in precipitation, offsetting reductions in recharge that would result from projected increased temperatures.

  12. The structure of parasite communities in fish hosts: ecology meets geography and climate.

    PubMed

    Poulin, R

    2007-09-01

    Parasite communities in fish hosts are not uniform in space: their diversity, composition and abundance vary across the geographical range of a host species. Increasingly urgently, we need to understand the geographic component of parasite communities to better predict how they will respond to global climate change. Patterns of geographical variation in the abundance of parasite populations, and in the diversity and composition of parasite communities, are explored here, and the ways in which they may be affected by climate change are discussed. The time has come to transform fish parasite ecology from a mostly descriptive discipline into a predictive science, capable of integrating complex ecological data to generate forecasts about the future state of host-parasite systems.

  13. Impact of climate change on hydrological conditions in a tropical West African catchment using an ensemble of climate simulations

    NASA Astrophysics Data System (ADS)

    Yira, Yacouba; Diekkrüger, Bernd; Steup, Gero; Yaovi Bossa, Aymar

    2017-04-01

    This study evaluates climate change impacts on water resources using an ensemble of six regional climate models (RCMs)-global climate models (GCMs) in the Dano catchment (Burkina Faso). The applied climate datasets were performed in the framework of the COordinated Regional climate Downscaling Experiment (CORDEX-Africa) project.

    After evaluation of the historical runs of the climate models' ensemble, a statistical bias correction (empirical quantile mapping) was applied to daily precipitation. Temperature and bias corrected precipitation data from the ensemble of RCMs-GCMs was then used as input for the Water flow and balance Simulation Model (WaSiM) to simulate water balance components.

    The mean hydrological and climate variables for two periods (1971-2000 and 2021-2050) were compared to assess the potential impact of climate change on water resources up to the middle of the 21st century under two greenhouse gas concentration scenarios, the Representative Concentration Pathways (RCPs) 4.5 and 8.5. The results indicate (i) a clear signal of temperature increase of about 0.1 to 2.6 °C for all members of the RCM-GCM ensemble; (ii) high uncertainty about how the catchment precipitation will evolve over the period 2021-2050; (iii) the applied bias correction method only affected the magnitude of the climate change signal; (iv) individual climate models results lead to opposite discharge change signals; and (v) the results for the RCM-GCM ensemble are too uncertain to give any clear direction for future hydrological development. Therefore, potential increase and decrease in future discharge have to be considered in climate change adaptation strategies in the catchment. The results further underline on the one hand the need for a larger ensemble of projections to properly estimate the impacts of climate change on water resources in the catchment and on the other hand the high uncertainty associated with climate projections for the West African region. A water-energy budget analysis provides further insight into the behavior of the catchment.

  14. Potential climate effect of mineral aerosols over West Africa: Part II—contribution of dust and land cover to future climate change

    NASA Astrophysics Data System (ADS)

    Ji, Zhenming; Wang, Guiling; Yu, Miao; Pal, Jeremy S.

    2018-04-01

    Mineral dust aerosols are an essential component of climate over West Africa, however, little work has been performed to investigate their contributions to potential climate change. A set of regional climate model experiments with and without mineral dust processes and land cover changes is performed to evaluate their climatic effects under the Representative Concentration Pathway 8.5 for two global climate models. Results suggest surface warming to be in the range of 4-8 °C by the end of the century (2081-2100) over West Africa with respect to the present day (1981-2000). The presence of mineral dusts dampens the warming by 0.1-1 °C in all seasons. Accounting for changes in land cover enhances the warming over the north of Sahel and dampens it to the south in spring and summer; however, the magnitudes are smaller than those resulting from dusts. Overall dust loadings are projected to increase, with the greatest increase occurring over the Sahara and Sahel in summer. Accounting for land cover changes tends to reduce dust loadings over the southern Sahel. Future precipitation is projected to decrease by 5-40 % in the western Sahara and Sahel and increase by 10-150 % over the eastern Sahel and Guinea Coast in JJA. A dipole pattern of future precipitation changes is attributed to dust effects, with decrease in the north by 5-20 % and increase by 5-20 % in the south. Future changes in land cover result in a noisy non-significant response with a tendency for slight wetting in MAM, JJA, and SON and drying in DJF.

  15. IPCC Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation

    NASA Astrophysics Data System (ADS)

    Field, C. B.; Stocker, T. F.; Barros, V. R.; Qin, D.; Ebi, K. L.; Midgley, P. M.

    2011-12-01

    The Summary for Policy Makers of the IPCC Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation will be approved by the world governments in November 2011. The focus of the Special Report is on climate change and its role in altering the frequency, severity, and impact of extreme events or disasters, and on the costs of both impacts and the actions taken to prepare for, respond to, and recover from extreme events and disasters. The emphasis is on understanding the factors that make people and infrastructure vulnerable to extreme events, on recent and future changes in the relationship between climate change and extremes, and on managing the risks of disasters over a wide range of spatial and temporal scales. The assessment considers a broad suite of adaptations and explores the limits to adaptation. The assessment was designed to build durable links and foundations for partnerships between the stakeholder communities focused on climate change and those focused on disaster risk reduction. The Special Report begins with material that frames the issues, followed by an assessment of the reasons that communities are vulnerable. Two chapters assess the role of past and future climate change in altering extremes and the impact of these on the physical environment and human systems. Three chapters assess available knowledge on impacts and adaptation, with separate chapters considering the literature, stakeholder relationships, and potential policy tools relevant to the local, national, and international scales. Longer-term components of adaptation to weather and climate extremes and disasters are assessed in the context of moving toward sustainability. The final chapter provides case studies that integrate themes across several chapters or are so unique that they need to be considered separately.

  16. CTFS/ForestGEO: A global network to monitor forest interactions with a changing climate

    NASA Astrophysics Data System (ADS)

    Anderson-Teixeira, K. J.; Muller-Landau, H.; McMahon, S.; Davies, S. J.

    2013-12-01

    Forests are an influential component of the global carbon cycle and strongly influence Earth's climate. Climate change is altering the dynamics of forests globally, which may result in significant climate feedbacks. Forest responses to climate change entail both short-term ecophysiological responses and longer-term directional shifts in community composition. These short- and long-term responses of forest communities to climate change may be better understood through long-term monitoring of large forest plots globally using standardized methodology. Here, we describe a global network of forest research plots (CTFS/ForestGEO) of utility for understanding forest responses to climate change and consequent feedbacks to the climate system. CTFS/ForestGEO is an international network consisting of 51 sites ranging in size from 2-150 ha (median size: 25 ha) and spanning from 25°S to 52°N latitude. At each site, every individual > 1cm DBH is mapped and identified, and recruitment, growth, and mortality are monitored every 5 years. Additional measurements include aboveground productivity, carbon stocks, soil nutrients, plant functional traits, arthropod and vertebrates monitoring, DNA barcoding, airborne and ground-based LiDAR, micrometeorology, and weather monitoring. Data from this network are useful for understanding how forest ecosystem structure and function respond to spatial and temporal variation in abiotic drivers, parameterizing and evaluating ecosystem and earth system models, aligning airborne and ground-based measurements, and identifying directional changes in forest productivity and composition. For instance, CTFS/ForestGEO data have revealed that solar radiation and night-time temperature are important drivers of aboveground productivity in moist tropical forests; that tropical forests are mixed in terms of productivity and biomass trends over the past couple decades; and that the composition of Panamanian forests has shifted towards more drought-tolerant species. Ongoing monitoring will be vital to understanding global forest dynamics in an era of climate change.

  17. USGS global change science strategy: A framework for understanding and responding to climate and land-use change

    USGS Publications Warehouse

    Burkett, Virginia R.; Taylor, Ione L.; Belnap, Jayne; Cronin, Thomas M.; Dettinger, Michael D.; Frazier, Eldrich L.; Haines, John W.; Kirtland, David A.; Loveland, Thomas R.; Milly, Paul C.D.; O'Malley, Robin; Thompson, Robert S.

    2011-01-01

    This U.S. Geological Survey (USGS) Global Change Science Strategy expands on the Climate Variability and Change science component of the USGS 2007 Science Strategy, “Facing Tomorrow’s Challenges: USGS Science in the Coming Decade” (U.S. Geological Survey, 2007). Here we embrace the broad definition of global change provided in the U.S. Global Change Research Act of 1990 (Public Law 101–606,104 Stat. 3096–3104)—“Changes in the global environment (including alterations in climate, land productivity, oceans or other water resources, atmospheric chemistry, and ecological systems) that may alter the capacity of the Earth to sustain life”—with a focus on climate and land-use change.There are three major characteristics of this science strategy. First, it addresses the science required to broadly inform global change policy, while emphasizing the needs of natural-resource managers and reflecting the role of the USGS as the science provider for the Department of the Interior and other resource-management agencies. Second, the strategy identifies core competencies, noting 10 critical capabilities and strengths the USGS uses to overcome key problem areas. We highlight those areas in which the USGS is a science leader, recognizing the strong partnerships and effective collaboration that are essential to address complex global environmental challenges. Third, it uses a query-based approach listing key research questions that need to be addressed to create an agenda for hypothesis-driven global change science organized under six strategic goals. Overall, the strategy starts from where we are, provides a vision for where we want to go, and then describes high-priority strategic actions, including outcomes, products, and partnerships that can get us there. Global change science is a well-defined research field with strong linkages to the ecosystems, water, energy and minerals, natural hazards, and environmental health components of the USGS Science Strategy (2007). When science strategies that cover these other components are developed, coordinated implementation will be necessary to achieve Bureau-level synergies and optimize capabilities and expertise.In October 2010, USGS realigned its management and budget structure to implement its 2007 Science Strategy. The new organizational structure, in which “Global Change” is one of seven key mission areas, lends itself to the advancement of the established six strategic goals. USGS global change science is formally represented by the “Climate and Land-Use Change” Mission Area in the FY 2012 budget (USGS, 2011).This plan was developed by the USGS Global Change Science Strategy Planning Team (SSPT) appointed by the USGS Director on March 4, 2010 and charged with developing a Global Change Science Strategy for the coming decade (McNutt, 2010). USGS managers and science staff are the main audience for this science strategy. This document is also intended to serve as the foundation for consistent USGS collaboration and communication with partners and stakeholders.

  18. Climate, Water and Energy in the Nordic Countries

    NASA Astrophysics Data System (ADS)

    Snorrason, A.; Jonsdottir, J. F.

    2003-04-01

    In light of the recent IPCC Climate Change Assessment and recent progress made in meteorological and hydrological modelling, the directors of the Nordic hydrological institutes (CHIN) initiated a research project "Climate, Water and Energy" (CWE) with funding from the Nordic Energy Research and the Nordic Council of Ministers focusing on climatic impact assessment in the energy sector. Climatic variability and change affect the hydrological systems, which in turn affect the energy sector, this will increase the risk associated with the development and use of water resources in the Nordic countries. Within the CWE project four thematic groups work on this issue of climatic change and how changes in precipitation and temperature will have direct influences on runoff. A primary aim of the CWE climate group is to derive a common scenario or a "best-guess" estimate of climate change in northern Europe and Greenland, based on recent regional climate change experiments and representing the change from 1990 to 2050 under the IPCC SRES B2 emission scenario. A data set, along with the most important information for using the scenario is available at the project web site. The glacier group has chosen 8 glaciers from Greenland, Iceland, Norway and Sweden for an analysis of the response of glaciers to climate changes. Mass balance and dynamical changes, corresponding to the common scenario for climate changes, will be modelled and effects on glacier hydrology will be estimated. The long time series group has reported on the status of time series analysis in the Nordic countries. The group will select and quality control time series of stream flow to be included in the Nordic component of the database FRIEND. Also the group will collect information on time series for other variables and these series will be systematically analysed with respect to trend and other long-term changes. The hydrological modelling group has reported on "Climate change impacts on water resources in the Nordic countries - State of the art and discussion of principles". The group will compare different hydrological models and discuss uncertainties in models and climate scenarios, while production of new results based on the composite scenario from the CWE-climate group depends on other projects. The product of the project will be an in-depth analysis of the present status of research and know-how in the sphere of climatic and hydrological research in the Nordic countries. It will be a synthesis and integration of present research with focus on the needs of the energy sector. It will also identify and prioritise key future research areas that are of benefit to the energy sector.

  19. The amplitude of decadal to multidecadal variability in precipitation simulated by state-of-the-art climate models

    NASA Astrophysics Data System (ADS)

    Ault, T. R.; Cole, J. E.; St. George, S.

    2012-11-01

    We assess the magnitude of decadal to multidecadal (D2M) variability in Climate Model Intercomparison Project 5 (CMIP5) simulations that will be used to understand, and plan for, climate change as part of the Intergovernmental Panel on Climate Change's 5th Assessment Report. Model performance on D2M timescales is evaluated using metrics designed to characterize the relative and absolute magnitude of variability at these frequencies. In observational data, we find that between 10% and 35% of the total variance occurs on D2M timescales. Regions characterized by the high end of this range include Africa, Australia, western North America, and the Amazon region of South America. In these areas D2M fluctuations are especially prominent and linked to prolonged drought. D2M fluctuations account for considerably less of the total variance (between 5% and 15%) in the CMIP5 archive of historical (1850-2005) simulations. The discrepancy between observation and model based estimates of D2M prominence reflects two features of the CMIP5 archive. First, interannual components of variability are generally too energetic. Second, decadal components are too weak in several key regions. Our findings imply that projections of the future lack sufficient decadal variability, presenting a limited view of prolonged drought and pluvial risk.

  20. Changes in climate suitability for tourism at Adriatic coast since 1961

    NASA Astrophysics Data System (ADS)

    Zaninovic, Ksenija

    2017-04-01

    The aim of the paper is the comparison of suitability of climate conditions for tourism at the eastern Adriatic coast in the period 1961-2015. For quantitative estimation of suitability of climate for different kinds of tourism, climate index for tourism (CIT) is used. CIT integrates thermal, aesthetic and physical facets of atmospheric environment and therefore is suitable for estimation of climate satisfaction that ranges from very poor to very good. The thermal component is estimated using the physiologically equivalent temperature (PET). The index is applied for: beach tourism, cycling, hiking, cultural tourism, golf, football, motor boating and sailing. Changes in climate potential of tourism are estimated by differences of distribution of climate index for tourism. For the warmest part of the day, the results indicate the extension of the summer tourist season for beach tourism at the end of the analyzed period. On the other hand, for other tourist activities in the same period the results indicate more pronounced bimodal distribution of CIT during year, resulting with the seasonality shift of ideal conditions for most activities to spring and autumn. Besides, in the morning the improvement of favourable climate conditions for all types of tourism at the end of the period.

  1. I-C-SEA Change: A participatory tool for rapid assessment of vulnerability of tropical coastal communities to climate change impacts.

    PubMed

    Licuanan, Wilfredo Y; Samson, Maricar S; Mamauag, Samuel S; David, Laura T; Borja-Del Rosario, Roselle; Quibilan, Miledel Christine C; Siringan, Fernando P; Sta Maria, Ma Yvainne Y; España, Norievill B; Villanoy, Cesar L; Geronimo, Rollan C; Cabrera, Olivia C; Martinez, Renmar Jun S; Aliño, Porfirio M

    2015-12-01

    We present a synoptic, participatory vulnerability assessment tool to help identify the likely impacts of climate change and human activity in coastal areas and begin discussions among stakeholders on the coping and adaptation measures necessary to minimize these impacts. Vulnerability assessment tools are most needed in the tropical Indo-Pacific, where burgeoning populations and inequitable economic growth place even greater burdens on natural resources and support ecosystems. The Integrated Coastal Sensitivity, Exposure, and Adaptive Capacity for Climate Change (I-C-SEA Change) tool is built around a series of scoring rubrics to guide non-specialists in assigning scores to the sensitivity and adaptive capacity components of vulnerability, particularly for coral reef, seagrass, and mangrove habitats, along with fisheries and coastal integrity. These scores are then weighed against threat or exposure to climate-related impacts such as marine flooding and erosion. The tool provides opportunities for learning by engaging more stakeholders in participatory planning and group decision-making. It also allows for information to be collated and processed during a "town-hall" meeting, facilitating further discussion, data validation, and even interactive scenario building.

  2. Half-century evidence from western Canada shows forest dynamics are primarily driven by competition followed by climate

    PubMed Central

    Zhang, Jian; Huang, Shongming; He, Fangliang

    2015-01-01

    Tree mortality, growth, and recruitment are essential components of forest dynamics and resiliency, for which there is great concern as climate change progresses at high latitudes. Tree mortality has been observed to increase over the past decades in many regions, but the causes of this increase are not well understood, and we know even less about long-term changes in growth and recruitment rates. Using a dataset of long-term (1958–2009) observations on 1,680 permanent sample plots from undisturbed natural forests in western Canada, we found that tree demographic rates have changed markedly over the last five decades. We observed a widespread, significant increase in tree mortality, a significant decrease in tree growth, and a similar but weaker trend of decreasing recruitment. However, these changes varied widely across tree size, forest age, ecozones, and species. We found that competition was the primary factor causing the long-term changes in tree mortality, growth, and recruitment. Regional climate had a weaker yet still significant effect on tree mortality, but little effect on tree growth and recruitment. This finding suggests that internal community-level processes—more so than external climatic factors—are driving forest dynamics. PMID:25775576

  3. Half-century evidence from western Canada shows forest dynamics are primarily driven by competition followed by climate.

    PubMed

    Zhang, Jian; Huang, Shongming; He, Fangliang

    2015-03-31

    Tree mortality, growth, and recruitment are essential components of forest dynamics and resiliency, for which there is great concern as climate change progresses at high latitudes. Tree mortality has been observed to increase over the past decades in many regions, but the causes of this increase are not well understood, and we know even less about long-term changes in growth and recruitment rates. Using a dataset of long-term (1958-2009) observations on 1,680 permanent sample plots from undisturbed natural forests in western Canada, we found that tree demographic rates have changed markedly over the last five decades. We observed a widespread, significant increase in tree mortality, a significant decrease in tree growth, and a similar but weaker trend of decreasing recruitment. However, these changes varied widely across tree size, forest age, ecozones, and species. We found that competition was the primary factor causing the long-term changes in tree mortality, growth, and recruitment. Regional climate had a weaker yet still significant effect on tree mortality, but little effect on tree growth and recruitment. This finding suggests that internal community-level processes-more so than external climatic factors-are driving forest dynamics.

  4. OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project

    NASA Astrophysics Data System (ADS)

    Griffies, Stephen M.; Danabasoglu, Gokhan; Durack, Paul J.; Adcroft, Alistair J.; Balaji, V.; Böning, Claus W.; Chassignet, Eric P.; Curchitser, Enrique; Deshayes, Julie; Drange, Helge; Fox-Kemper, Baylor; Gleckler, Peter J.; Gregory, Jonathan M.; Haak, Helmuth; Hallberg, Robert W.; Heimbach, Patrick; Hewitt, Helene T.; Holland, David M.; Ilyina, Tatiana; Jungclaus, Johann H.; Komuro, Yoshiki; Krasting, John P.; Large, William G.; Marsland, Simon J.; Masina, Simona; McDougall, Trevor J.; Nurser, A. J. George; Orr, James C.; Pirani, Anna; Qiao, Fangli; Stouffer, Ronald J.; Taylor, Karl E.; Treguier, Anne Marie; Tsujino, Hiroyuki; Uotila, Petteri; Valdivieso, Maria; Wang, Qiang; Winton, Michael; Yeager, Stephen G.

    2016-09-01

    The Ocean Model Intercomparison Project (OMIP) is an endorsed project in the Coupled Model Intercomparison Project Phase 6 (CMIP6). OMIP addresses CMIP6 science questions, investigating the origins and consequences of systematic model biases. It does so by providing a framework for evaluating (including assessment of systematic biases), understanding, and improving ocean, sea-ice, tracer, and biogeochemical components of climate and earth system models contributing to CMIP6. Among the WCRP Grand Challenges in climate science (GCs), OMIP primarily contributes to the regional sea level change and near-term (climate/decadal) prediction GCs.OMIP provides (a) an experimental protocol for global ocean/sea-ice models run with a prescribed atmospheric forcing; and (b) a protocol for ocean diagnostics to be saved as part of CMIP6. We focus here on the physical component of OMIP, with a companion paper (Orr et al., 2016) detailing methods for the inert chemistry and interactive biogeochemistry. The physical portion of the OMIP experimental protocol follows the interannual Coordinated Ocean-ice Reference Experiments (CORE-II). Since 2009, CORE-I (Normal Year Forcing) and CORE-II (Interannual Forcing) have become the standard methods to evaluate global ocean/sea-ice simulations and to examine mechanisms for forced ocean climate variability. The OMIP diagnostic protocol is relevant for any ocean model component of CMIP6, including the DECK (Diagnostic, Evaluation and Characterization of Klima experiments), historical simulations, FAFMIP (Flux Anomaly Forced MIP), C4MIP (Coupled Carbon Cycle Climate MIP), DAMIP (Detection and Attribution MIP), DCPP (Decadal Climate Prediction Project), ScenarioMIP, HighResMIP (High Resolution MIP), as well as the ocean/sea-ice OMIP simulations.

  5. The effects of temperature on nest predation by mammals, birds, and snakes

    Treesearch

    W. Andrew Cox; F.R. Thompson III; J.L. Reidy

    2013-01-01

    Understanding how weather influences survival and reproduction is an important component of forecasting how climate change will influence wildlife population viability. Nest predation is the primary source of reproductive failure for passerine birds and can change in response to temperature. However, it is unclear which predator species are responsible for such...

  6. Studying Weather and Climate Extremes in a Non-stationary Framework

    NASA Astrophysics Data System (ADS)

    Wu, Z.

    2010-12-01

    The study of weather and climate extremes often uses the theory of extreme values. Such a detection method has a major problem: to obtain the probability distribution of extremes, one has to implicitly assume the Earth’s climate is stationary over a long period within which the climatology is defined. While such detection makes some sense in a purely statistical view of stationary processes, it can lead to misleading statistical properties of weather and climate extremes caused by long term climate variability and change, and may also cause enormous difficulty in attributing and predicting these extremes. To alleviate this problem, here we report a novel non-stationary framework for studying weather and climate extremes in a non-stationary framework. In this new framework, the weather and climate extremes will be defined as timescale-dependent quantities derived from the anomalies with respect to non-stationary climatologies of different timescales. With this non-stationary framework, the non-stationary and nonlinear nature of climate system will be taken into account; and the attribution and the prediction of weather and climate extremes can then be separated into 1) the change of the statistical properties of the weather and climate extremes themselves and 2) the background climate variability and change. The new non-stationary framework will use the ensemble empirical mode decomposition (EEMD) method, which is a recent major improvement of the Hilbert-Huang Transform for time-frequency analysis. Using this tool, we will adaptively decompose various weather and climate data from observation and climate models in terms of the components of the various natural timescales contained in the data. With such decompositions, the non-stationary statistical properties (both spatial and temporal) of weather and climate anomalies and of their corresponding climatologies will be analyzed and documented.

  7. Simulation of future land use change and climate change impacts on hydrological processes in a tropical catchment

    NASA Astrophysics Data System (ADS)

    Marhaento, H.; Booij, M. J.; Hoekstra, A. Y.

    2017-12-01

    Future hydrological processes in the Samin catchment (278 km2) in Java, Indonesia have been simulated using the Soil and Water Assessment Tool (SWAT) model using inputs from predicted land use distributions in the period 2030 - 2050, bias corrected Regional Climate Model (RCM) output and output of six Global Climate Models (GCMs) to include climate model uncertainty. Two land use change scenarios namely a business-as-usual (BAU) scenario, where no measures are taken to control land use change, and a controlled (CON) scenario, where the future land use follows the land use planning, were used in the simulations together with two climate change scenarios namely Representative Concentration Pathway (RCP) 4.5 and 8.5. It was predicted that in 2050 settlement and agriculture area of the study catchment will increase by 33.9% and 3.5%, respectively under the BAU scenario, whereas agriculture area and evergreen forest will increase by 15.2% and 10.2%, respectively under the CON scenario. In comparison to the baseline conditions (1983 - 2005), the predicted mean annual maximum and minimum temperature in 2030 - 2050 will increase by an average of +10C, while changes in the mean annual rainfall range from -20% to +19% under RCP 4.5 and from -25% to +15% under RCP 8.5. The results show that land use change and climate change individually will cause changes in the water balance components, but that more pronounced changes are expected if the drivers are combined, in particular for changes in annual stream flow and surface runoff. It was observed that combination of the RCP 4.5 climate scenario and BAU land use scenario resulted in an increase of the mean annual stream flow from -7% to +64% and surface runoff from +21% to +102%, which is 40% and 60% more than when land use change is acting alone. Furthermore, under the CON scenario the annual stream flow and surface runoff could be potentially reduced by up to 10% and 30%, respectively indicating the effectiveness of applied land use planning. The findings of this study will be useful for the water resource managers to mitigate future risks associated with land use and climate changes in the study catchment. Keywords: land use change, climate change, hydrological impact assessment, Samin catchment

  8. The MIT IGSM-CAM framework for uncertainty studies in global and regional climate change

    NASA Astrophysics Data System (ADS)

    Monier, E.; Scott, J. R.; Sokolov, A. P.; Forest, C. E.; Schlosser, C. A.

    2011-12-01

    The MIT Integrated Global System Model (IGSM) version 2.3 is an intermediate complexity fully coupled earth system model that allows simulation of critical feedbacks among its various components, including the atmosphere, ocean, land, urban processes and human activities. A fundamental feature of the IGSM2.3 is the ability to modify its climate parameters: climate sensitivity, net aerosol forcing and ocean heat uptake rate. As such, the IGSM2.3 provides an efficient tool for generating probabilistic distribution functions of climate parameters using optimal fingerprint diagnostics. A limitation of the IGSM2.3 is its zonal-mean atmosphere model that does not permit regional climate studies. For this reason, the MIT IGSM2.3 was linked to the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM) version 3 and new modules were developed and implemented in CAM in order to modify its climate sensitivity and net aerosol forcing to match that of the IGSM. The IGSM-CAM provides an efficient and innovative framework to study regional climate change where climate parameters can be modified to span the range of uncertainty and various emissions scenarios can be tested. This paper presents results from the cloud radiative adjustment method used to modify CAM's climate sensitivity. We also show results from 21st century simulations based on two emissions scenarios (a median "business as usual" scenario where no policy is implemented after 2012 and a policy scenario where greenhouse-gas are stabilized at 660 ppm CO2-equivalent concentrations by 2100) and three sets of climate parameters. The three values of climate sensitivity chosen are median and the bounds of the 90% probability interval of the probability distribution obtained by comparing the observed 20th century climate change with simulations by the IGSM with a wide range of climate parameters values. The associated aerosol forcing values were chosen to ensure a good agreement of the simulations with the observed climate change over the 20th century. Because the concentrations of sulfate aerosols significantly decrease over the 21st century in both emissions scenarios, climate changes obtained in these six simulations provide a good approximation for the median, and the 5th and 95th percentiles of the probability distribution of 21st century climate change.

  9. Understanding Climate Uncertainty with an Ocean Focus

    NASA Astrophysics Data System (ADS)

    Tokmakian, R. T.

    2009-12-01

    Uncertainty in climate simulations arises from various aspects of the end-to-end process of modeling the Earth’s climate. First, there is uncertainty from the structure of the climate model components (e.g. ocean/ice/atmosphere). Even the most complex models are deficient, not only in the complexity of the processes they represent, but in which processes are included in a particular model. Next, uncertainties arise from the inherent error in the initial and boundary conditions of a simulation. Initial conditions are the state of the weather or climate at the beginning of the simulation and other such things, and typically come from observations. Finally, there is the uncertainty associated with the values of parameters in the model. These parameters may represent physical constants or effects, such as ocean mixing, or non-physical aspects of modeling and computation. The uncertainty in these input parameters propagates through the non-linear model to give uncertainty in the outputs. The models in 2020 will no doubt be better than today’s models, but they will still be imperfect, and development of uncertainty analysis technology is a critical aspect of understanding model realism and prediction capability. Smith [2002] and Cox and Stephenson [2007] discuss the need for methods to quantify the uncertainties within complicated systems so that limitations or weaknesses of the climate model can be understood. In making climate predictions, we need to have available both the most reliable model or simulation and a methods to quantify the reliability of a simulation. If quantitative uncertainty questions of the internal model dynamics are to be answered with complex simulations such as AOGCMs, then the only known path forward is based on model ensembles that characterize behavior with alternative parameter settings [e.g. Rougier, 2007]. The relevance and feasibility of using "Statistical Analysis of Computer Code Output" (SACCO) methods for examining uncertainty in ocean circulation due to parameter specification will be described and early results using the ocean/ice components of the CCSM climate model in a designed experiment framework will be shown. Cox, P. and D. Stephenson, Climate Change: A Changing Climate for Prediction, 2007, Science 317 (5835), 207, DOI: 10.1126/science.1145956. Rougier, J. C., 2007: Probabilistic Inference for Future Climate Using an Ensemble of Climate Model Evaluations, Climatic Change, 81, 247-264. Smith L., 2002, What might we learn from climate forecasts? Proc. Nat’l Academy of Sciences, Vol. 99, suppl. 1, 2487-2492 doi:10.1073/pnas.012580599.

  10. Tiny Ultraviolet Polarimeter for Earth Stratosphere from Space Investigation

    NASA Astrophysics Data System (ADS)

    Nevodovskyi, P. V.; Morozhenko, O. V.; Vidmachenko, A. P.; Ivakhiv, O.; Geraimchuk, M.; Zbrutskyi, O.

    2015-09-01

    One of the reasons for climate change (i.e., stratospheric ozone concentrations) is connected with the variations in optical thickness of aerosols in the upper sphere of the atmosphere (at altitudes over 30 km). Therefore, aerosol and gas components of the atmosphere are crucial in the study of the ultraviolet (UV) radiation passing upon the Earth. Moreover, a scrupulous study of aerosol components of the Earth atmosphere at an altitude of 30 km (i.e., stratospheric aerosol), such as the size of particles, the real part of refractive index, optical thickness and its horizontal structure, concentration of ozone or the upper border of the stratospheric ozone layer is an important task in the research of the Earth climate change. At present, the Main Astronomical Observatory of the National Academy of Sciences (NAS) of Ukraine, the National Technical University of Ukraine "KPI"and the Lviv Polytechnic National University are engaged in the development of methodologies for the study of stratospheric aerosol by means of ultraviolet polarimeter using a microsatellite. So fare, there has been created a sample of a tiny ultraviolet polarimeter (UVP) which is considered to be a basic model for carrying out space experiments regarding the impact of the changes in stratospheric aerosols on both global and local climate.

  11. Himalayan/Karakoram Disaster After Disaster: The Pain Will Not Be Ending Anytime Soon

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.; Leonard, G. J.

    2013-12-01

    Are recent natural disasters in the Himalaya/Karakoram partly human-caused? Will disasters diminish or increase in frequency? Natural disasters in this region are nothing new. Earthquakes, floods, landslides, avalanches, and debris flows have occurred in the Himalaya/Karakoram since the mountains first grew from the sea. Simply put, the Himalaya/Karakoram, being South Asia's 'water tower' and an active plate tectonic collision zone, must shed water and debris to the lowlands and the sea. When this activity occurs swiftly and with high intensity at or near human settlements, the results are often deadly. Remote sensing analysis of recent disasters coupled with demography, news accounts, and field studies indicate that there is a component of human responsibility. Two overarching human elements include (1) settlement and infrastructure encroachment into hazardous mountain areas and (2) aggravation of climate change. Both are substantially responsible--separately or together--for most of the recent tragedies. These conclusions provide the answer to when the disasters will end: not soon. Unfortunately, disasters will almost surely increase. Whether natural disasters have increased in frequency over the region's long historical record may be debated and must be researched. This expected link is a challenge to assess due to the stochastic nature of disasters and their triggering events (e.g., earthquakes and extreme weather events). While Himalayan tectonism, rock mechanics, glaciation, and climate are fundamental causes of the disasters, so are human land uses. Encroaching development into ever-hazardous zones is a paramount cause of much human tragedy. Climate change is harder to pin down specifically as a cause of some of these disasters, because some disasters are linked to rare extreme weather events and mass movements, which may be statistically but not individually attributable in part to climate change. Nevertheless, evidence supports a major role of climate change for some natural disasters, and little if any role in others. I select a few recent disaster examples (Attabad rockfall, Gayari avalanche, Seti River flood, and Uttarakhand floods) and summarize their relationships to geology and geomorphology, weather, climate change, habitation, and infrastructure development. Disasters are apt to increase in frequency, effects, and geographic spread due to increased habitation and infrastructure development and changing climate. Whether climate change causes glacier shrinkage or growth, glacier-related hazards are affected. Some of these disasters have international cross-cultural, political, economic, and security components and could spiral into further human catastrophes related to international tensions. Improved international cooperation could ease the chances for disasters to trigger additional unintended consequences between nations. Not all development and human uses of the Himalaya/Karakoram are unwise. Furthermore, some people committed to living in risky places have nowhere else to go. Climate change and shifting mountain processes may have winners and losers. All current and future uses of the region should be weighed against the rapidly changing climate and shifting natural hazard landscape. Acknowledgements: Support from NASA/USAID SERVIR Applied Science Team, NASA Science of Terra & Aqua, and USAID Climbers' Science.

  12. In Brief: Climate Change Science Program comment period; Ocean Commission comment period; Fine-tuning particulate matter research

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2004-04-01

    Public comments on the draft guidelines for the synthesis and assessment products being prepared by the U.S. Climate Change Science Program are being accepted through 7 May; The long-anticipated preliminary report of the U.S. Commission on Ocean Policy is being released on 20 April. The comment period extends through 21 May; Determining the most hazardous chemical components and other characteristics of aerosol particulate matter should be a focus of research by the U.S. Environmental Protection Agency, according to a 24 March report by the National Academies' National Research Council.

  13. An experimental detrending approach to attributing change of pan evaporation in comparison with the traditional partial differential method

    NASA Astrophysics Data System (ADS)

    Wang, Tingting; Sun, Fubao; Xia, Jun; Liu, Wenbin; Sang, Yanfang

    2017-04-01

    In predicting how droughts and hydrological cycles would change in a warming climate, change of atmospheric evaporative demand measured by pan evaporation (Epan) is one crucial element to be understood. Over the last decade, the derived partial differential (PD) form of the PenPan equation is a prevailing attribution approach to attributing changes to Epan worldwide. However, the independency among climatic variables required by the PD approach cannot be met using long term observations. Here we designed a series of numerical experiments to attribute changes of Epan over China by detrending each climatic variable, i.e., an experimental detrending approach, to address the inter-correlation among climate variables, and made comparison with the traditional PD method. The results show that the detrending approach is superior not only to a complicate system with multi-variables and mixing algorithm like aerodynamic component (Ep,A) and Epan, but also to a simple case like radiative component (Ep,R), when compared with traditional PD method. The major reason for this is the strong and significant inter-correlation of input meteorological forcing. Very similar and fine attributing results have been achieved based on detrending approach and PD method after eliminating the inter-correlation of input through a randomize approach. The contribution of Rh and Ta in net radiation and thus Ep,R, which has been overlooked based on the PD method but successfully detected by detrending approach, provides some explanation to the comparing results. We adopted the control run from the detrending approach and applied it to made adjustment of PD method. Much improvement has been made and thus proven this adjustment an effective way in attributing changes to Epan. Hence, the detrending approach and the adjusted PD method are well recommended in attributing changes in hydrological models to better understand and predict water and energy cycle.

  14. Development of a Spatial Decision Support System for Analyzing Changes in Hydro-meteorological Risk

    NASA Astrophysics Data System (ADS)

    van Westen, Cees

    2013-04-01

    In the framework of the EU FP7 Marie Curie ITN Network "CHANGES: Changing Hydro-meteorological Risks, as Analyzed by a New Generation of European Scientists (http://www.changes-itn.eu)", a spatial decision support system is under development with the aim to analyze the effect of risk reduction planning alternatives on reducing the risk now and in the future, and support decision makers in selecting the best alternatives. The SDSS is one of the main outputs of the CHANGES network, which will develop an advanced understanding of how global changes, related to environmental and climate change as well as socio-economical change, may affect the temporal and spatial patterns of hydro-meteorological hazards and associated risks in Europe; how these changes can be assessed, modeled, and incorporated in sustainable risk management strategies, focusing on spatial planning, emergency preparedness and risk communication. The CHANGES network consists of 11 full partners and 6 associate partners of which 5 private companies, representing 10 European countries. The CHANGES network has hired 12 Early Stage Researchers (ESRs) and is currently hiring 3-6 researchers more for the implementation of the SDSS. The Spatial Decision Support System will be composed of a number of integrated components. The Risk Assessment component allows to carry out spatial risk analysis, with different degrees of complexity, ranging from simple exposure (overlay of hazard and assets maps) to quantitative analysis (using different hazard types, temporal scenarios and vulnerability curves) resulting into risk curves. The platform does not include a component to calculate hazard maps, and existing hazard maps are used as input data for the risk component. The second component of the SDSS is a risk reduction planning component, which forms the core of the platform. This component includes the definition of risk reduction alternatives (related to disaster response planning, risk reduction measures and spatial planning) and links back to the risk assessment module to calculate the new level of risk if the measure is implemented, and a cost-benefit (or cost-effectiveness/ Spatial Multi Criteria Evaluation) component to compare the alternatives and make decision on the optimal one. The third component of the SDSS is a temporal scenario component, which allows to define future scenarios in terms of climate change, land use change and population change, and the time periods for which these scenarios will be made. The component doesn't generate these scenarios but uses input maps for the effect of the scenarios on the hazard and assets maps. The last component is a communication and visualization component, which can compare scenarios and alternatives, not only in the form of maps, but also in other forms (risk curves, tables, graphs). The envisaged users of the platform are organizations involved in planning of risk reduction measures, and that have staff capable of visualizing and analyzing spatial data at a municipal scale. This paper presents the main components of the SDSS and the overall design and plans for the user interface.

  15. Climate change impact on the annual water balance in the northwest Florida coastal

    NASA Astrophysics Data System (ADS)

    Alizad, K.; Wang, D.; Alimohammadi, N.; Hagen, S. C.

    2012-12-01

    As the largest tributary to the Apalachicola River, the Chipola River originates in southern Alabama, flows through Florida Panhandle and ended to Gulf of Mexico. The Chipola watershed is located in an intermediate climate environment with aridity index around one. Watershed provides habitat for a number of threatened and endangered animal and plant species. However, climate change affects hydrologic cycle of Chipola River watershed at various temporal and spatial scales. Studying the effects of climate variations is of great importance for water and environmental management purposes in this catchment. This research is mainly focuses on assessing climate change impact on the partitioning pattern of rainfall from mean annual to inter-annual and to seasonal scales. At the mean annual scale, rainfall is partitioned into runoff and evaporation assuming negligible water storage changes. Mean annual runoff is controlled by both mean annual precipitation and potential evaporation. Changes in long term mean runoff caused by variations of long term mean precipitation and potential evaporation will be evaluated based on Budyko hypothesis. At the annual scale, rainfall is partitioned into runoff, evaporation, and storage change. Inter-annual variability of runoff and evaporation are mainly affected by the changes of mean annual climate variables as well as their inter-annual variability. In order to model and evaluate each component of water balance at the annual scale, parsimonious but reliable models, are developed. Budyko hypothesis on the existing balance between available water and energy supply is reconsidered and redefined for the sub-annual time scale and reconstructed accordingly in order to accurately model seasonal hydrologic balance of the catchment. Models are built in the seasonal time frame with a focus on the role of storage change in water cycle. Then for Chipola catchment, models are parameterized based on a sufficient time span of historical data and the their coefficients are quantified. For necessary future predictions, data obtained from climate regional models starting 2040 to 2069 will be utilized. To accommodate the inherent uncertainty of climate projections, an ensemble of regional climate models will be used to assess changes of rainfall and potential evaporation. Then, the climate change impact on seasonal and annual runoff, evaporation, and water storage changes will be projected.

  16. Impacts of Ozone-vegetation Interactions and Biogeochemical Feedbacks on Atmospheric Composition and Air Quality Under Climate Change

    NASA Astrophysics Data System (ADS)

    Sadeke, M.; Tai, A. P. K.; Lombardozzi, D.; Val Martin, M.

    2015-12-01

    Surface ozone pollution is one of the major environmental concerns due to its damaging effects on human and vegetation. One of the largest uncertainties of future surface ozone prediction comes from its interaction with vegetation under a changing climate. Ozone can be modulated by vegetation through, e.g., biogenic emissions, dry deposition and transpiration. These processes are in turn affected by chronic exposure to ozone via lowered photosynthesis rate and stomatal conductance. Both ozone and vegetation growth are expected to be altered by climate change. To better understand these climate-ozone-vegetation interactions and possible feedbacks on ozone itself via vegetation, we implement an online ozone-vegetation scheme [Lombardozzi et al., 2015] into the Community Earth System Model (CESM) with active atmospheric chemistry, climate and land surface components. Previous overestimation of surface ozone in eastern US, Canada and Europe is shown to be reduced by >8 ppb, reflecting improved model-observation comparison. Simulated surface ozone is lower by 3.7 ppb on average globally. Such reductions (and improvements) in simulated ozone are caused mainly by lower isoprene emission arising from reduced leaf area index in response to chronic ozone exposure. Effects via transpiration are also potentially significant but require better characterization. Such findings suggest that ozone-vegetation interaction may substantially alter future ozone simulations, especially under changing climate and ambient CO2 levels, which would further modulate ozone-vegetation interactions. Inclusion of such interactions in Earth system models is thus necessary to give more realistic estimation and prediction of surface ozone. This is crucial for better policy formulation regarding air quality, land use and climate change mitigation. Reference list: Lombardozzi, D., et al. "The Influence of Chronic Ozone Exposure on Global Carbon and Water Cycles." Journal of Climate 28.1 (2015): 292-305.

  17. Whole-farm models to quantify greenhouse gas emissions and their potential use for linking climate change mitigation and adaptation in temperate grassland ruminant-based farming systems.

    PubMed

    Del Prado, A; Crosson, P; Olesen, J E; Rotz, C A

    2013-06-01

    The farm level is the most appropriate scale for evaluating options for mitigating greenhouse gas (GHG) emissions, because the farm represents the unit at which management decisions in livestock production are made. To date, a number of whole farm modelling approaches have been developed to quantify GHG emissions and explore climate change mitigation strategies for livestock systems. This paper analyses the limitations and strengths of the different existing approaches for modelling GHG mitigation by considering basic model structures, approaches for simulating GHG emissions from various farm components and the sensitivity of GHG outputs and mitigation measures to different approaches. Potential challenges for linking existing models with the simulation of impacts and adaptation measures under climate change are explored along with a brief discussion of the effects on other ecosystem services.

  18. Multinationals' Political Activities on Climate Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolk, A.; Pinkse, J.

    2007-06-15

    This article explores the international dimensions of multinationals' corporate political activities, focusing on an international issue - climate change - being implemented differently in a range of countries. Analyzing data from Financial Times Global 500 firms, it examines the influence on types and process of multinationals' political strategies, reckoning with institutional contexts and issue saliency. Findings show that the type of political activities can be characterized as an information strategy to influence policy makers toward market-based solutions, not so much withholding action on emission reduction. Moreover, multinationals pursue self-regulation, targeting a broad range of political actors. The process of politicalmore » strategy is mostly one of collective action. International differences particularly surface in the type of political actors aimed at, with U.S. and Australian firms focusing more on non-government actors (voluntary programs) than European and Japanese firms. Influencing home-country (not host-country) governments is the main component of international political strategy on climate change.« less

  19. IAI Training in Climate and Health in the Americas

    NASA Astrophysics Data System (ADS)

    Aron, J. L.

    2007-05-01

    The Inter-American Institute for Global Change Research (IAI) has addressed training in climate and health in the Americas in two major ways. First, IAI supports students to engage in research training. A multi-country health activity funded by IAI was the collaborative research network (CRN) on Diagnostics and Prediction of Human Health Impacts in the Tropical Americas, which focused principally on the effect of El Nino/Southern Oscillation and other aspects of climate variability on mosquito-borne diseases malaria and dengue. The CRN involved students in Brazil, Mexico, Venezuela, Colombia and Jamaica. The CRN was also linked to other climate and health projects that used a similar approach. Second, IAI organizes training institutes to expand the network of global change research scientists and facilitate the transfer of global change research into practice. The IAI Training Institute on Climate and Health in the Americas was held on November 7 - 18, 2005 at the University of the West Indies in Kingston, Jamaica, engaging participants from the CRN and other programs in the Americas. The Training Institute's central objective was to help strengthen local and regional capacity to address the impacts of climate variability and climate change on human health in the populations of the Americas, particularly Latin America and the Caribbean. The Training Institute had three core components: Science; Applications; and Proposal Development for Seed Grants. Recommendations for future Training Institutes included incorporating new technologies and communicating with policy-makers to develop more proactive societal strategies to manage risks.

  20. A Modified Formula of the First-order Approximation for Assessing the Contribution of Climate Change to Runoff Based on the Budyko Hypothesis

    NASA Astrophysics Data System (ADS)

    Liu, W.; Ning, T.; Han, X.

    2015-12-01

    The climate elasticity based on the Budyko curves has been widely used to evaluate the hydrological responses to climate change. The Mezentsev-Choudhury-Yang formula is one of the representative analytical equations for Budyko curves. Previous researches mostly used the variation of runoff (R) caused by the changes of annual precipitation (P) and potential evapotranspiration (ET0) as the hydrological response to climate change and evaluated it by a first-order approximation in a form of total differential, the major components of which include the partial derivatives of R to P and ET0, as well as climate elasticity on this basis. Based on analytic derivation and the characteristics of Budyko curves, this study proposed a modified formula of the first-order approximation to reduce the errors from the approximation. In the calculation of partial derivatives and climate elasticity, the values of P and ET0 were taken to the sum of their base values and half increments, respectively. The calculation was applied in 33 catchments of the Hai River basin in China and the results showed that the mean absolute value of relative error of approximated runoff change decreased from 8.4% to 0.4% and the maximum value, from 23.4% to 1.3%. Given the variation values of P, ET0 and the controlling parameter (n), the modified formula can exactly quantify the contributions of climate fluctuation and underlying surface change to runoff. Taking the Murray-Darling basin in Australia as an example of the contribution calculated by the modified formula, the reductions of mean annual runoff caused by changes of P, ET0 and n from 1895-1996 to 1997-2006 were 2.6, 0.6 and 2.9 mm, respectively, and the sum of them was 6.1 mm, which was completely consistent with the observed runoff. The modified formula of the first-order approximation proposed in this study can be not only used to assess the contributions of climate change to the runoff, but also widely used to analyze the effects of similar issues based on a certain functional relationship in hydrological and climate changes.

  1. Agricultural response functions to changes in carbon, temperature, and water based on the C3MP data set

    NASA Astrophysics Data System (ADS)

    Snyder, A.; Ruane, A. C.; Phillips, M.; Calvin, K. V.; Clarke, L.

    2017-12-01

    Agricultural yields vary depending on temperature, precipitation/irrigation conditions, fertilizer application, and CO2 concentration. The Coordinated Climate-Crop Modeling Project (C3MP), conducted as a component of the Agricultural Model Intercomparison and Improvement Project (AgMIP), organized a sensitivity experiments across carbon-temperature-water (CTW) space across 1100 management conditions in 50+ countries, sampling 15 crop species and 20 crop models. Such coordinated sensitivity tests allow for the building of emulators of yield response to changes in CTW values, allowing rapid estimation of yield changes from the types of climate changes projected by the climate modeling community. The resulting emulator may be used to supply agricultural responses to climate change in any user-defined scenario, rather than the restriction to the RCPs in many past works. We present the resulting emulators built from the C3MP output data set for use in the Global Change Assessment Model (GCAM) integrated assessment model that allows for the co-evolution of socioeconomic development, greenhouse gas emissions, climate change, and agricultural sector ramifications. C3MP-based emulators may be of use in designing agricultural impact studies in other IAMs, and we place them in the context of past crop modeling efforts, including the Challinor et al. Meta-analysis, the AgMIP Wheat team results, the AgMIP Global Gridded Crop Model Intercomparison (GGCMI) fast-track modeling results, and the MACSUR impact response surface results.

  2. Diagnosis of Middle Atmosphere Climate Sensitivity by the Climate Feedback Response Analysis Method

    NASA Technical Reports Server (NTRS)

    Zhu, Xun; Yee, Jeng-Hwa; Cai, Ming; Swartz, William H.; Coy, Lawrence; Aquila, Valentina; Talaat, Elsayed R.

    2014-01-01

    We present a new method to diagnose the middle atmosphere climate sensitivity by extending the Climate Feedback-Response Analysis Method (CFRAM) for the coupled atmosphere-surface system to the middle atmosphere. The Middle atmosphere CFRAM (MCFRAM) is built on the atmospheric energy equation per unit mass with radiative heating and cooling rates as its major thermal energy sources. MCFRAM preserves the CFRAM unique feature of an additive property for which the sum of all partial temperature changes due to variations in external forcing and feedback processes equals the observed temperature change. In addition, MCFRAM establishes a physical relationship of radiative damping between the energy perturbations associated with various feedback processes and temperature perturbations associated with thermal responses. MCFRAM is applied to both measurements and model output fields to diagnose the middle atmosphere climate sensitivity. It is found that the largest component of the middle atmosphere temperature response to the 11-year solar cycle (solar maximum vs. solar minimum) is directly from the partial temperature change due to the variation of the input solar flux. Increasing CO2 always cools the middle atmosphere with time whereas partial temperature change due to O3 variation could be either positive or negative. The partial temperature changes due to different feedbacks show distinctly different spatial patterns. The thermally driven globally averaged partial temperature change due to all radiative processes is approximately equal to the observed temperature change, ranging from 0.5 K near 70 km from the near solar maximum to the solar minimum.

  3. Detecting Changes of Thermal Environment over the Bohai Coastal Region by Spectral Change Vector Analysis

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Jia, G.

    2009-12-01

    Change vector analysis (CVA) is an effective approach for detecting and characterizing land-cover change by comparing pairs of multi-spectral and multi-temporal datasets over certain area derived from various satellite platforms. NDVI is considered as an effective detector for biophysical changes due to its sensitivity to red and near infrared signals, while land surface temperature (LST) is considered as a valuable indicator for changes of ground thermal conditions. Here we try to apply CVA over satellite derived LST datasets to detect changes of land surface thermal properties parallel to climate change and anthropogenic influence in a city cluster since 2001. In this study, monthly land surface temperature datasets from 2001-2008 derived from MODIS collection 5 were used to examine change pattern of thermal environment over the Bohai coastal region by using spectral change vector analysis. The results from principle component analysis (PCA) for LST show that the PC 1-3 contain over 80% information on monthly variations and these PCA components represent the main processes of land thermal environment change over the study area. Time series of CVA magnitude combined with land cover information show that greatest change occurred in urban and heavily populated area, featured with expansion of urban heat island, while moderate change appeared in grassland area in the north. However few changes were observed over large plain area and forest area. Strong signals also are related to economy level and especially the events of surface cover change, such as emergence of railway and port. Two main processes were also noticed about the changes of thermal environment. First, weak signal was detected in mostly natural area influenced by interannual climate change in temperate broadleaf forest area. Second, land surface temperature changes were controlled by human activities as 1) moderate change of LST happened in grassland influenced by grazing and 2) urban heat island was intensifier in major cities, such as Beijing and Tianjin. Further, the continual drier climate combined with human actions over past fifties years have intensified land thermal pattern change and the continuation will be an important aspects to understand land surface processes and local climate change. Land surface temperature trends from 2000-2008 over the Bohai coastal region

  4. Error Budget for a Calibration Demonstration System for the Reflected Solar Instrument for the Climate Absolute Radiance and Refractivity Observatory

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; McCorkel, Joel; McAndrew, Brendan

    2013-01-01

    A goal of the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission is to observe highaccuracy, long-term climate change trends over decadal time scales. The key to such a goal is to improving the accuracy of SI traceable absolute calibration across infrared and reflected solar wavelengths allowing climate change to be separated from the limit of natural variability. The advances required to reach on-orbit absolute accuracy to allow climate change observations to survive data gaps exist at NIST in the laboratory, but still need demonstration that the advances can move successfully from to NASA and/or instrument vendor capabilities for spaceborne instruments. The current work describes the radiometric calibration error budget for the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. The goal of the CDS is to allow the testing and evaluation of calibration approaches, alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. The resulting SI-traceable error budget for reflectance retrieval using solar irradiance as a reference and methods for laboratory-based, absolute calibration suitable for climatequality data collections is given. Key components in the error budget are geometry differences between the solar and earth views, knowledge of attenuator behavior when viewing the sun, and sensor behavior such as detector linearity and noise behavior. Methods for demonstrating this error budget are also presented.

  5. Hydrological changes of DOM composition and biodegradability of rivers in temperate monsoon climates

    NASA Astrophysics Data System (ADS)

    Shin, Yera; Lee, Eun-Ju; Jeon, Young-Joon; Hur, Jin; Oh, Neung-Hwan

    2016-09-01

    The spatial and hydrological dynamics of dissolved organic matter (DOM) composition and biodegradability were investigated for the five largest rivers in the Republic of Korea (South Korea) during the years 2012-2013 using incubation experiments and spectroscopic measurements, which included parallel factor analysis (PARAFAC). The lower reaches of the five rivers were selected as windows showing the integrated effects of basin biogeochemistry of different land use under Asian monsoon climates, providing an insight on consistency of DOM dynamics across multiple sites which could be difficult to obtain from a study on an individual river. The mean dissolved organic carbon (DOC) concentrations of the five rivers were relatively low, ranging from 1.4 to 3.4 mg L-1, due to the high slope and low percentage of wetland cover in the basin. Terrestrial humic- and fulvic-like components were dominant in all the rivers except for one, where protein-like compounds were up to ∼80%. However, terrestrial components became dominant in all five of the rivers after high precipitation during the summer monsoon season, indicating the strong role of hydrology on riverine DOM compositions for the basins under Asian monsoon climates. Considering that 64% of South Korea is forested, our results suggest that the forests could be a large source of riverine DOM, elevating the DOM loads during monsoon rainfall. Although more DOM was degraded when DOM input increased, regardless of its sources, the percent biodegradability was reduced with increased proportions of terrestrially derived aromatic compounds. The shift in DOM quality towards higher percentages of aromatic terrestrial compounds may alter the balance of the carbon cycle of coastal ecosystems by changing microbial metabolic processes if climate extremes such as heavy storms and typhoons become more frequent due to climate change.

  6. Real-Time Climate Simulations in the Interactive 3D Game Universe Sandbox ²

    NASA Astrophysics Data System (ADS)

    Goldenson, N. L.

    2014-12-01

    Exploration in an open-ended computer game is an engaging way to explore climate and climate change. Everyone can explore physical models with real-time visualization in the educational simulator Universe Sandbox ² (universesandbox.com/2), which includes basic climate simulations on planets. I have implemented a time-dependent, one-dimensional meridional heat transport energy balance model to run and be adjustable in real time in the midst of a larger simulated system. Universe Sandbox ² is based on the original game - at its core a gravity simulator - with other new physically-based content for stellar evolution, and handling collisions between bodies. Existing users are mostly science enthusiasts in informal settings. We believe that this is the first climate simulation to be implemented in a professionally developed computer game with modern 3D graphical output in real time. The type of simple climate model we've adopted helps us depict the seasonal cycle and the more drastic changes that come from changing the orbit or other external forcings. Users can alter the climate as the simulation is running by altering the star(s) in the simulation, dragging to change orbits and obliquity, adjusting the climate simulation parameters directly or changing other properties like CO2 concentration that affect the model parameters in representative ways. Ongoing visuals of the expansion and contraction of sea ice and snow-cover respond to the temperature calculations, and make it accessible to explore a variety of scenarios and intuitive to understand the output. Variables like temperature can also be graphed in real time. We balance computational constraints with the ability to capture the physical phenomena we wish to visualize, giving everyone access to a simple open-ended meridional energy balance climate simulation to explore and experiment with. The software lends itself to labs at a variety of levels about climate concepts including seasons, the Greenhouse effect, reservoirs and flows, albedo feedback, Snowball Earth, climate sensitivity, and model experiment design. Climate calculations are extended to Mars with some modifications to the Earth climate component, and could be used in lessons about the Mars atmosphere, and exploring scenarios of Mars climate history.

  7. Climate Change Impacts on Sediment Transport In a Lowland Watershed System: Controlling Processes and Projection

    NASA Astrophysics Data System (ADS)

    al Aamery, N. M. H.; Mahoney, D. T.; Fox, J.

    2017-12-01

    Future climate change projections suggest extreme impacts on watershed hydrologic systems for some regions of the world including pronounced increases in surface runoff and instream flows. Yet, there remains a lack of research focused on how future changes in hydrologic extremes, as well as relative hydrologic mean changes, impact sediment redistribution within a watershed and sediment flux from a watershed. The authors hypothesized that variations in mean and extreme changes in turn may impact sediments in depositional and erosional dominance in a manner that may not be obvious to the watershed manager. Therefore, the objectives of this study were to investigate the inner processes connecting the combined effect of extreme climate change projections on the vegetation, upland erosion, and instream processes to produce changes in sediment redistribution within watersheds. To do so, research methods were carried out by the authors including simulating sediment processes in forecast and hindcast periods for a lowland watershed system. Publically available climate realizations from several climate factors and the Soil Water Assessment Tool (SWAT) were used to predict hydrologic conditions for the South Elkhorn Watershed in central Kentucky, USA to 2050. The results of the simulated extreme and mean hydrological components were used in simulating upland erosion with the connectivity processes consideration and thereafter used in building and simulating the instream erosion and deposition of sediment processes with the consideration of surface fine grain lamina (SFGL) layer controlling the benthic ecosystem. Results are used to suggest the dominance of erosional and depositional redistribution of sediments under different scenarios associated with extreme and mean hydrologic forecasting. The results are discussed in reference to the benthic ecology of the stream system providing insight on how water managers might consider sediment redistribution in a changing climate.

  8. Improved climate model evaluation using a new, 750-year Antarctic-wide snow accumulation product

    NASA Astrophysics Data System (ADS)

    Medley, B.; Thomas, E. R.

    2017-12-01

    Snow that accumulates over the cold, dry grounded ice of Antarctica is an important component of its mass balance, mitigating the ice sheet's contribution to sea level. Secular trends in accumulation not only result trends in the mass balance of the Antarctic Ice Sheet, but also directly and indirectly impact surface height changes. Long-term and spatiotemporally complete records of snow accumulation are needed to understand part and present Antarctic-wide mass balance, to convert from altimetry derived volume change to mass change, and to evaluate the ability of climate models to reproduce the observed climate change. We need measurements in both time and space, yet they typically sample one dimension at the expense of the other. Here, we develop a spatially complete, annually resolved snow accumulation product for the Antarctic Ice Sheet over the past 750 years by combining a newly compiled database of ice core accumulation records with climate model output. We mainly focus on climate model evaluation. Because the product spans several centuries, we can evaluate model ability in representing the preindustrial as well as present day accumulation change. Significant long-term trends in snow accumulation are found over the Ross and Bellingshausen Sea sectors of West Antarctica, the Antarctic Peninsula, and several sectors in East Antarctica. These results suggest that change is more complex over the Antarctic Ice Sheet than a simple uniform change (i.e., more snowfall in a warming world), which highlights the importance of atmospheric circulation as a major driver of change. By evaluating several climate models' ability to reproduce the observed trends, we can deduce whether their projections are reasonable or potentially biased where the latter would result in a misrepresentation of the Antarctic contribution to sea level.

  9. Impact of Future Climate on Radial Growth of Four Major Boreal Tree Species in the Eastern Canadian Boreal Forest

    PubMed Central

    Huang, Jian-Guo; Bergeron, Yves; Berninger, Frank; Zhai, Lihong; Tardif, Jacques C.; Denneler, Bernhard

    2013-01-01

    Immediate phenotypic variation and the lagged effect of evolutionary adaptation to climate change appear to be two key processes in tree responses to climate warming. This study examines these components in two types of growth models for predicting the 2010–2099 diameter growth change of four major boreal species Betula papyrifera, Pinus banksiana, Picea mariana, and Populus tremuloides along a broad latitudinal gradient in eastern Canada under future climate projections. Climate-growth response models for 34 stands over nine latitudes were calibrated and cross-validated. An adaptive response model (A-model), in which the climate-growth relationship varies over time, and a fixed response model (F-model), in which the relationship is constant over time, were constructed to predict future growth. For the former, we examined how future growth of stands in northern latitudes could be forecasted using growth-climate equations derived from stands currently growing in southern latitudes assuming that current climate in southern locations provide an analogue for future conditions in the north. For the latter, we tested if future growth of stands would be maximally predicted using the growth-climate equation obtained from the given local stand assuming a lagged response to climate due to genetic constraints. Both models predicted a large growth increase in northern stands due to more benign temperatures, whereas there was a minimal growth change in southern stands due to potentially warm-temperature induced drought-stress. The A-model demonstrates a changing environment whereas the F-model highlights a constant growth response to future warming. As time elapses we can predict a gradual transition between a response to climate associated with the current conditions (F-model) to a more adapted response to future climate (A-model). Our modeling approach provides a template to predict tree growth response to climate warming at mid-high latitudes of the Northern Hemisphere. PMID:23468879

  10. Impact of future climate on radial growth of four major boreal tree species in the Eastern Canadian boreal forest.

    PubMed

    Huang, Jian-Guo; Bergeron, Yves; Berninger, Frank; Zhai, Lihong; Tardif, Jacques C; Denneler, Bernhard

    2013-01-01

    Immediate phenotypic variation and the lagged effect of evolutionary adaptation to climate change appear to be two key processes in tree responses to climate warming. This study examines these components in two types of growth models for predicting the 2010-2099 diameter growth change of four major boreal species Betula papyrifera, Pinus banksiana, Picea mariana, and Populus tremuloides along a broad latitudinal gradient in eastern Canada under future climate projections. Climate-growth response models for 34 stands over nine latitudes were calibrated and cross-validated. An adaptive response model (A-model), in which the climate-growth relationship varies over time, and a fixed response model (F-model), in which the relationship is constant over time, were constructed to predict future growth. For the former, we examined how future growth of stands in northern latitudes could be forecasted using growth-climate equations derived from stands currently growing in southern latitudes assuming that current climate in southern locations provide an analogue for future conditions in the north. For the latter, we tested if future growth of stands would be maximally predicted using the growth-climate equation obtained from the given local stand assuming a lagged response to climate due to genetic constraints. Both models predicted a large growth increase in northern stands due to more benign temperatures, whereas there was a minimal growth change in southern stands due to potentially warm-temperature induced drought-stress. The A-model demonstrates a changing environment whereas the F-model highlights a constant growth response to future warming. As time elapses we can predict a gradual transition between a response to climate associated with the current conditions (F-model) to a more adapted response to future climate (A-model). Our modeling approach provides a template to predict tree growth response to climate warming at mid-high latitudes of the Northern Hemisphere.

  11. The effect on Arctic climate of atmospheric meridional energy-transport changes studied based on the CESM climate model

    NASA Astrophysics Data System (ADS)

    Grand Graversen, Rune

    2017-04-01

    The Arctic amplification of global warming, and the pronounced Arctic sea-ice retreat constitute some of the most alarming signs of global climate change. These Arctic changes are likely a consequence of a combination of several processes, for instance enhanced uptake of solar radiation in the Arctic due to a decrease of sea ice (the ice-albedo feedback), and increase in the local Arctic greenhouse effect due to enhanced moister flux from lower latitudes. Many of the proposed processes appear to be dependent on each other, for instance an increase in water-vapour advection to the Arctic enhances the greenhouse effect in the Arctic and the longwave radiation to the surface, leading to sea-ice melt and enhancement of the ice-albedo feedback. The effects of albedo changes and other radiative feedbacks have been investigated in earlier studies based on model experiments designed to examine these effects specifically. Here we instead focus on the effects of meridional transport changes into the Arctic, both of moister and dry-static energy. Hence we here present results of model experiments with the CESM climate model designed specifically to extract the effects of the changes of the two transport components. In the CESM model the moister transport to the Arctic increases, whereas the dry-static transport decreases in response to a doubling of CO2. This is in agreement with other model results. The model is now forced with these transport changes of water-vapour and dry-static energy associated with a CO2 doubling. The results show that changes of the water-vapour transport lead to Arctic warming. This is partly a consequence of the ice-albedo feedback due to sea-ice melt caused by the change of the water-vapour advection. The changes of the dry-static transport lead to Arctic cooling, which however is smaller than the warming induced by the water-vapour component. Hence this study support the hypothesis that changes in the atmospheric circulation contribute to the Arctic temperature amplification of the ongoing global warming.

  12. Understanding Global Change: Frameworks and Models for Teaching Systems Thinking

    NASA Astrophysics Data System (ADS)

    Bean, J. R.; Mitchell, K.; Zoehfeld, K.; Oshry, A.; Menicucci, A. J.; White, L. D.; Marshall, C. R.

    2017-12-01

    The scientific and education communities must impart to teachers, students, and the public an understanding of how the various factors that drive climate and global change operate, and why the rates and magnitudes of these changes related to human perturbation of Earth system processes today are cause for deep concern. Even though effective educational modules explaining components of the Earth and climate system exist, interdisciplinary learning tools are necessary to conceptually link the causes and consequences of global changes. To address this issue, the Understanding Global Change Project at the University of California Museum of Paleontology (UCMP) at UC Berkeley developed an interdisciplinary framework that organizes global change topics into three categories: (1) causes of climate change, both human and non-human (e.g., burning of fossil fuels, deforestation, Earth's tilt and orbit), (2) Earth system processes that shape the way the Earth works (e.g., Earth's energy budget, water cycle), and (3) the measurable changes in the Earth system (e.g., temperature, precipitation, ocean acidification). To facilitate student learning about the Earth as a dynamic, interacting system, a website will provide visualizations of Earth system models and written descriptions of how each framework topic is conceptually linked to other components of the framework. These visualizations and textual summarizations of relationships and feedbacks in the Earth system are a unique and crucial contribution to science communication and education, informed by a team of interdisciplinary scientists and educators. The system models are also mechanisms by which scientists can communicate how their own work informs our understanding of the Earth system. Educators can provide context and relevancy for authentic datasets and concurrently can assess student understanding of the interconnectedness of global change phenomena. The UGC resources will be available through a web-based platform and scalable professional development programming to facilitate systemic changes in the teaching and learning about climate and global change. We are establishing a diverse community of scientists and educators across the country that are using these tools, and plan to create local networks supported by UGC staff and partners.

  13. An analysis of factors that lead to better learning in an integrated and interdisciplinary course on climate change

    NASA Astrophysics Data System (ADS)

    Reed, D. E.; Lyford, M.; Schmidt, L. O.; Bowles-Terry, M.

    2012-12-01

    Climate change education presents many challenges to college educators due to the interdisciplinary nature of the issue as well as the social and political context and implications. This presents multiple barriers to learning for the student, both because it is difficult to address all scientific components in one course, and because many students have strong preconceived feelings or beliefs about climate change. A further barrier to learning for non-science majors is that very often the number of required science courses is low and a highly complex issue such as climate change is difficult to address in introductory science courses. To attempt to address these issues a course for non-science majors, Life Science 1002, Discovering Science, at the University of Wyoming was created as an interdisciplinary and integrated science course that includes a lecture component as well as weekly lab and discussion sections. Our previous work has shown a clear change in the reference sources used by non-science majors when referring to complex topics; namely, students increase their use of scientific journals when they are shown how to use scientific journals and students also report a correlated decrease in non-peer reviewed sources (ie, radio, newspapers, TV). We seek to expand on this work by using pre- and post-topic student surveys in the course at the University of Wyoming to directly measure student performance in different components of the course. The course has enrollment between 120 and 130 students, with nearly equal distribution between grade levels and a wide sampling of non-science majors or undeclared majors. For this work we will use a non-quantitative survey of students to find out which part of the course (lecture, lab or discussion) is most effective for student learning. Further, quantitative analysis of which factors of the student body (class standing, major, gender, background and personal beliefs) will be correlated to help predict who achieved the best and we will apply a non-quantitative analysis to determine which section of the student body had difficulties and why. This work will show other higher education instructors both the methodology and results from this study of the interdisciplinary course on climate change. While this work is limited in only focusing on one introductory course, the large number of students and the diversity of those students allow for a study of which factors in the course are best for student learning.

  14. What are the physiological and immunological responses of coral to climate warming and disease?

    PubMed

    Mydlarz, Laura D; McGinty, Elizabeth S; Harvell, C Drew

    2010-03-15

    Coral mortality due to climate-associated stress is likely to increase as the oceans get warmer and more acidic. Coral bleaching and an increase in infectious disease are linked to above average sea surface temperatures. Despite the uncertain future for corals, recent studies have revealed physiological mechanisms that improve coral resilience to the effects of climate change. Some taxa of bleached corals can increase heterotrophic food intake and exchange symbionts for more thermally tolerant clades; this plasticity can increase the probability of surviving lethal thermal stress. Corals can fight invading pathogens with a suite of innate immune responses that slow and even arrest pathogen growth and reduce further tissue damage. Several of these responses, such as the melanin cascade, circulating amoebocytes and antioxidants, are induced in coral hosts during pathogen invasion or disease. Some components of immunity show thermal resilience and are enhanced during temperature stress and even in bleached corals. These examples suggest some plasticity and resilience to cope with environmental change and even the potential for evolution of resistance to disease. However, there is huge variability in responses among coral species, and the rate of climate change is projected to be so rapid that only extremely hardy taxa are likely to survive the projected changes in climate stressors.

  15. Effects of disturbance and climate change on ecosystem performance in the Yukon River Basin boreal forest

    USGS Publications Warehouse

    Wylie, Bruce K.; Rigge, Matthew B.; Brisco, Brian; Mrnaghan, Kevin; Rover, Jennifer R.; Long, Jordan

    2014-01-01

    A warming climate influences boreal forest productivity, dynamics, and disturbance regimes. We used ecosystem models and 250 m satellite Normalized Difference Vegetation Index (NDVI) data averaged over the growing season (GSN) to model current, and estimate future, ecosystem performance. We modeled Expected Ecosystem Performance (EEP), or anticipated productivity, in undisturbed stands over the 2000–2008 period from a variety of abiotic data sources, using a rule-based piecewise regression tree. The EEP model was applied to a future climate ensemble A1B projection to quantify expected changes to mature boreal forest performance. Ecosystem Performance Anomalies (EPA), were identified as the residuals of the EEP and GSN relationship and represent performance departures from expected performance conditions. These performance data were used to monitor successional events following fire. Results suggested that maximum EPA occurs 30–40 years following fire, and deciduous stands generally have higher EPA than coniferous stands. Mean undisturbed EEP is projected to increase 5.6% by 2040 and 8.7% by 2070, suggesting an increased deciduous component in boreal forests. Our results contribute to the understanding of boreal forest successional dynamics and its response to climate change. This information enables informed decisions to prepare for, and adapt to, climate change in the Yukon River Basin forest.

  16. Sphagnum-dwelling testate amoebae in subarctic bogs are more sensitive to soil warming in the growing season than in winter: the results of eight-year field climate manipulations.

    PubMed

    Tsyganov, Andrey N; Aerts, Rien; Nijs, Ivan; Cornelissen, Johannes H C; Beyens, Louis

    2012-05-01

    Sphagnum-dwelling testate amoebae are widely used in paleoclimate reconstructions as a proxy for climate-induced changes in bogs. However, the sensitivity of proxies to seasonal climate components is an important issue when interpreting proxy records. Here, we studied the effects of summer warming, winter snow addition solely and winter snow addition together with spring warming on testate amoeba assemblages after eight years of experimental field climate manipulations. All manipulations were accomplished using open top chambers in a dry blanket bog located in the sub-Arctic (Abisko, Sweden). We estimated sensitivity of abundance, diversity and assemblage structure of living and empty shell assemblages of testate amoebae in the living and decaying layers of Sphagnum. Our results show that, in a sub-arctic climate, testate amoebae are more sensitive to climate changes in the growing season than in winter. Summer warming reduced species richness and shifted assemblage composition towards predominance of xerophilous species for the living and empty shell assemblages in both layers. The higher soil temperatures during the growing season also decreased abundance of empty shells in both layers hinting at a possible increase in their decomposition rates. Thus, although possible effects of climate changes on preservation of empty shells should always be taken into account, species diversity and structure of testate amoeba assemblages in dry subarctic bogs are sensitive proxies for climatic changes during the growing season. Copyright © 2011 Elsevier GmbH. All rights reserved.

  17. Status of Middle Atmosphere-Climate Models: Results SPARC-GRIPS

    NASA Technical Reports Server (NTRS)

    Pawson, Steven; Kodera, Kunihiko

    2003-01-01

    The middle atmosphere is an important component of the climate system, primarily because of the radiative forcing of ozone. Middle atmospheric ozone can change, over long times, because of changes in the abundance of anthropogenic pollutants which catalytically destroy it, and because of the temperature sensitivity of kinetic reaction rates. There is thus a complex interaction between ozone, involving chemical and climatic mechanisms. One question of interest is how ozone will change over the next decades , as the "greenhouse-gas cooling" of the middle atmosphere increases but the concentrations of chlorine species decreases (because of policy changes). concerns the climate biases in current middle atmosphere-climate models, especially their ability to simulate the correct seasonal cycle at high latitudes, and the existence of temperature biases in the global mean. A major obstacle when addressing this question This paper will present a summary of recent results from the "GCM-Reality Intercomparison Project for SPARC" (GRIPS) initiative. A set of middle atmosphere-climate models has been compared, identifying common biases. Mechanisms for these biases are being studied in some detail, including off-line assessments of the radiation transfer codes and coordinated studies of the impacts of gravity wave drag due to sub-grid-scale processes. ensemble of models will be presented, along with numerical experiments undertaken with one or more models, designed to investigate the mechanisms at work in the atmosphere. The discussion will focus on dynamical and radiative mechanisms in the current climate, but implications for coupled ozone chemistry and the future climate will be assessed.

  18. Relationships between climate and growth of Gymnocypris selincuoensis in the Tibetan Plateau.

    PubMed

    Tao, Juan; Chen, Yifeng; He, Dekui; Ding, Chengzhi

    2015-04-01

    The consequences of climate change are becoming increasingly evident in the Tibetan Plateau, represented by glaciers retreating and lakes expanding, but the biological response to climate change by plateau-lake ecosystems is poorly known. In this study, we applied dendrochronology methods to develop a growth index chronology with otolith increment widths of Selincuo naked carp (Gymnocypris selincuoensis), which is an endemic species in Lake Selincuo (4530 m), and investigated the relationships between fish growth and climate variables (regional and global) in the last three decades. A correlation analysis and principle component regression analysis between regional climate factors and the growth index chronology indicated that the growth of G. selincuoensis was significantly and positively correlated with length of the growing season and temperature-related variables, particularly during the growing season. Most of global climate variables, which are relevant to the Asian monsoon and the midlatitude westerlies, such as El Nino Southern Oscillation Index, the Arctic Oscillation, North Atlantic Oscillation, and North America Pattern, showed negative but not significant correlations with the annual growth of Selincuo naked carp. This may have resulted from the high elevation of the Tibetan Plateau and the high mountains surrounding this area. In comparison, the Pacific Decade Oscillation (PDO) negatively affected the growth of G. selincuoensis. The reason maybe that enhancement of the PDO can lead to cold conditions in this area. Taken together, the results indicate that the Tibetan Plateau fish has been affected by global climate change, particularly during the growing season, and global climate change likely has important effects on productivity of aquatic ecosystems in this area.

  19. The role of internal climate variability for interpreting climate change scenarios

    NASA Astrophysics Data System (ADS)

    Maraun, Douglas

    2013-04-01

    When communicating information on climate change, the use of multi-model ensembles has been advocated to sample uncertainties over a range as wide as possible. To meet the demand for easily accessible results, the ensemble is often summarised by its multi-model mean signal. In rare cases, additional uncertainty measures are given to avoid loosing all information on the ensemble spread, e.g., the highest and lowest projected values. Such approaches, however, disregard the fundamentally different nature of the different types of uncertainties and might cause wrong interpretations and subsequently wrong decisions for adaptation. Whereas scenario and climate model uncertainties are of epistemic nature, i.e., caused by an in principle reducible lack of knowledge, uncertainties due to internal climate variability are aleatory, i.e., inherently stochastic and irreducible. As wisely stated in the proverb "climate is what you expect, weather is what you get", a specific region will experience one stochastic realisation of the climate system, but never exactly the expected climate change signal as given by a multi model mean. Depending on the meteorological variable, region and lead time, the signal might be strong or weak compared to the stochastic component. In cases of a low signal-to-noise ratio, even if the climate change signal is a well defined trend, no trends or even opposite trends might be experienced. Here I propose to use the time of emergence (TOE) to quantify and communicate when climate change trends will exceed the internal variability. The TOE provides a useful measure for end users to assess the time horizon for implementing adaptation measures. Furthermore, internal variability is scale dependent - the more local the scale, the stronger the influence of internal climate variability. Thus investigating the TOE as a function of spatial scale could help to assess the required spatial scale for implementing adaptation measures. I exemplify this proposal with a recently published study on the TOE for mean and heavy precipitation trends in Europe. In some regions trends emerge only late in the 21st century or even later, suggesting that in these regions adaptation to internal variability rather than to climate change is required. Yet in other regions the climate change signal is strong, urging for timely adaptation. Douglas Maraun, When at what scale will trends in European mean and heavy precipitation emerge? Env. Res. Lett., in press, 2013.

  20. Mineral dust transport and deposition to Antarctica: a climate model perspective

    NASA Astrophysics Data System (ADS)

    Albani, S.; Mahowald, N. M.; Maggi, V.; Delmonte, B.

    2009-04-01

    Windblown mineral dust is a useful proxy for paleoclimates. Its life cycle is determined by climate conditions in the source areas, and following the hydrological cycle, and the intensity and dynamics of the atmospheric circulation. In addition aeolian dust itself is an active component of the climate system, influencing the radiative balance of the atmosphere through its interaction with incoming solar radiation and outgoing planetary radiation. The mineral aerosols also have indirect effects on climate, and are linked to interactions with cloud microphysics and atmospheric chemistry as well as to dust's role of carrier of iron and other elements that constitute limitating nutrients for phytoplancton to remote ocean areas. We use climate model (CCSM) simulations that include a scheme for dust mobilization, transport and deposition in order to describe the evolution of dust deposition in some Antarctic ice cores sites where mineral dust records are available. Our focus is to determine the source apportionment for dust deposited to Antarctica under current and Last Glacial Maximum climate conditions, as well as to give an insight in the spatial features of transport patterns. The understanding of spatial and temporal representativeness of an ice core record is crucial to determine its value as a proxy of past climates and a necessary step in order to produce a global picture of how the dust component of the climate system has changed through time.

  1. Safety climate and mindful safety practices in the oil and gas industry.

    PubMed

    Dahl, Øyvind; Kongsvik, Trond

    2018-02-01

    The existence of a positive association between safety climate and the safety behavior of sharp-end workers in high-risk organizations is supported by a considerable body of research. Previous research has primarily analyzed two components of safety behavior, namely safety compliance and safety participation. The present study extends previous research by looking into the relationship between safety climate and another component of safety behavior, namely mindful safety practices. Mindful safety practices are defined as the ability to be aware of critical factors in the environment and to act appropriately when dangers arise. Regression analysis was used to examine whether mindful safety practices are, like compliance and participation, promoted by a positive safety climate, in a questionnaire-based study of 5712 sharp-end workers in the oil and gas industry. The analysis revealed that a positive safety climate promotes mindful safety practices. The regression model accounted for roughly 31% of the variance in mindful safety practices. The most important safety climate factor was safety leadership. The findings clearly demonstrate that mindful safety practices are highly context-dependent, hence, manageable and susceptible to change. In order to improve safety climate in a direction which is favorable for mindful safety practices, the results demonstrate that it is important to give the fundamental features of safety climate high priority and in particular that of safety leadership. Copyright © 2017 National Safety Council and Elsevier Ltd. All rights reserved.

  2. Quantifying the Global Fresh Water Budget: Capabilities from Current and Future Satellite Sensors

    NASA Technical Reports Server (NTRS)

    Hildebrand, Peter; Zaitchik, Benjamin

    2007-01-01

    The global water cycle is complex and its components are difficult to measure, particularly at the global scales and with the precision needed for assessing climate impacts. Recent advances in satellite observational capabilities, however, are greatly improving our knowledge of the key terms in the fresh water flux budget. Many components of the of the global water budget, e.g. precipitation, atmospheric moisture profiles, soil moisture, snow cover, sea ice are now routinely measured globally using instruments on satellites such as TRMM, AQUA, TERRA, GRACE, and ICESat, as well as on operational satellites. New techniques, many using data assimilation approaches, are providing pathways toward measuring snow water equivalent, evapotranspiration, ground water, ice mass, as well as improving the measurement quality for other components of the global water budget. This paper evaluates these current and developing satellite capabilities to observe the global fresh water budget, then looks forward to evaluate the potential for improvements that may result from future space missions as detailed by the US Decadal Survey, and operational plans. Based on these analyses, and on the goal of improved knowledge of the global fresh water budget under the effects of climate change, we suggest some priorities for the future, based on new approaches that may provide the improved measurements and the analyses needed to understand and observe the potential speed-up of the global water cycle under the effects of climate change.

  3. Climate Change and Examples of Combined HyspIRI VSWIR/TIR Advanced Level Products for Urban Ecosystems Analysis

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.

    2010-01-01

    It is estimated that 60-80% of the world population will live in urban environments by the end of this century. This growth of the urban population will effect the climate. This slide presentation examines the use of combined HyspIRI Visible ShortWave Infrared (VSWIR)/Thermal Infrared (TIR) to observe, monitor, measure and model many of the components that comprise urban ecosystems cycles.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duane, Greg; Tsonis, Anastasios; Kocarev, Ljupco

    This collaborative reserach has several components but the main idea is that when imperfect copies of a given nonlinear dynamical system are coupled, they may synchronize for some set of coupling parameters. This idea is to be tested for several IPCC-like models each one with its own formulation and representing an “imperfect” copy of the true climate system. By computing the coupling parameters, which will lead the models to a synchronized state, a consensus on climate change simulations may be achieved.

  5. The future of global water stress: An integrated assessment

    NASA Astrophysics Data System (ADS)

    Schlosser, C. Adam; Strzepek, Kenneth; Gao, Xiang; Fant, Charles; Blanc, Élodie; Paltsev, Sergey; Jacoby, Henry; Reilly, John; Gueneau, Arthur

    2014-08-01

    We assess the ability of global water systems, resolved at 282 assessment subregions (ASRs), to the meet water requirements under integrated projections of socioeconomic growth and climate change. We employ a water resource system (WRS) component embedded within the Massachusetts Institute of Technology Integrated Global System Model (IGSM) framework in a suite of simulations that consider a range of climate policies and regional hydroclimate changes out to 2050. For many developing nations, water demand increases due to population growth and economic activity have a much stronger effect on water stress than climate change. By 2050, economic growth and population change alone can lead to an additional 1.8 billion people living under at least moderate water stress, with 80% of these located in developing countries. Uncertain regional climate change can play a secondary role to either exacerbate or dampen the increase in water stress. The strongest climate impacts on water stress are observed in Africa, but strong impacts also occur over Europe, Southeast Asia, and North America. The combined effects of socioeconomic growth and uncertain climate change lead to a 1.0-1.3 billion increase of the world's 2050 projected population living with overly exploited water conditions—where total potential water requirements will consistently exceed surface water supply. This would imply that adaptive measures would be taken to meet these surface water shortfalls and include: water-use efficiency, reduced and/or redirected consumption, recurrent periods of water emergencies or curtailments, groundwater depletion, additional interbasin transfers, and overdraw from flow intended to maintain environmental requirements.

  6. Concept Mapping to Assess Learning and Understanding of Complexity in Courses on Global Climate Change

    NASA Astrophysics Data System (ADS)

    Rebich-Hespanha, S.; Gautier, C.

    2010-12-01

    The complex nature of climate change science poses special challenges for educators wishing to broaden and deepen student understanding of the climate system and its sensitivity to and impacts upon human activity. Learners have prior knowledge that may limit their perception and processing of the multiple relationships between processes (e.g., feedbacks) that arise in global change science, and these existing mental models serve as the scaffold for all future learning. Because adoption of complex scientific concepts is not likely if instruction includes presentation of information or concepts that are not compatible with the learners’ prior knowledge, providing effective instruction on this complex topic requires learning opportunities that are anchored upon an evaluation of the limitations and inaccuracies of the learners’ existing understandings of the climate system. The formative evaluation that serves as the basis for planning such instruction can also be useful as a baseline against which to evaluate subsequent learning. We will present concept-mapping activities that we have used to assess students’ knowledge and understanding about global climate change in courses that utilized multiple assessment methods including presentations, writings, discussions, and concept maps. The courses in which these activities were completed use a variety of instructional approaches (including standard lectures and lab assignments and a mock summit) to help students understand the inherently interdisciplinary topic of global climate change, its interwoven human and natural causes, and the connections it has with society through a complex range of political, social, technological and economic factors. Two instances of concept map assessment will be presented: one focused on evaluating student understanding of the major components of the climate system and their interconnections, and the other focused on student understanding of the connections between climate change and the global food system. We will discuss how concept mapping can be used to demonstrate evidence of learning and conceptual change, and also how it can be used to provide information about gaps in knowledge and misconceptions students have about the topic.

  7. Climate Change and a Global City: An Assessment of the Metropolitan East Coast Region

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia; Solecki, William

    1999-01-01

    The objective of the research is to derive an assessment of the potential climate change impacts on a global city - in this case the 31 county region that comprises the New York City metropolitan area. This study comprises one of the regional components that contribute to the ongoing U.S. National Assessment: The Potential Consequences of Climate Variability and Change and is an application of state-of-the-art climate change science to a set of linked sectoral assessment analyses for the Metro East Coast (MEC) region. We illustrate how three interacting elements of global cities react and respond to climate variability and change with a broad conceptual model. These elements include: people (e.g., socio- demographic conditions), place (e.g., physical systems), and pulse (e.g., decision-making and economic activities). The model assumes that a comprehensive assessment of potential climate change can be derived from examining the impacts within each of these elements and at their intersections. Thus, the assessment attempts to determine the within-element and the inter-element effects. Five interacting sector studies representing the three intersecting elements are evaluated. They include the Coastal Zone, Infrastructure, Water Supply, Public Health, and Institutional Decision-making. Each study assesses potential climate change impacts on the sector and on the intersecting elements, through the analysis of the following parts: 1. Current conditions of sector in the region; 2. Lessons and evidence derived from past climate variability; 3. Scenario predictions affecting sector; potential impacts of scenario predictions; 4. Knowledge/information gaps and critical issues including identification of additional research questions, effectiveness of modeling efforts, equity of impacts, potential non-local interactions, and policy recommendations; and 5. Identification of coping strategies - i.e., resilience building, mitigation strategies, new technologies, education that affects decision-making, and better preparedness for contingencies.

  8. Response of Landscapes of the Sikhote-Alin Western Slopes to the Middle-Late Holocene Climatic Changes

    NASA Astrophysics Data System (ADS)

    Razzhigaeva, N. G.; Ganzey, L. A.; Panichev, A. M.; Grebennikova, T. A.; Mokhova, L. M.; Kopoteva, T. A.; Kudryavtseva, E. P.; Arslanov, Kh. A.; Maksimov, F. E.; Starikova, A. A.; Zakusin, S. V.

    2017-12-01

    The response of landscape biotic components of the western slope of the Sikhote-Alin Mountains (Bikin River middle flow) to the Middle-Late Holocene climate changes is discussed. The paleoreconstruction object was the Krasny Yar mari, which developed under the control of multidirectional short-term climatic changes. The last millennium was marked by particularly rapid and frequent changes in the local landscapes. The closely spaced orographic barrier strongly affected the development of biotic components and changes in the swamp hydrological regime. The moisture dynamics within the river catchment considerably controlled the development and change of the peat-forming plants. Several stages of the mari development were reconstructed; each began from the accumulation of eutrophic peat. It was followed by the transitional eutrophic-mesotrophic stage, with a higher role of atmospheric supply. The larch forests appeared in this part of the valley within the Atlantic-Subboreal cooling period. Korean pine developed in the forest vegetation in the low mountain relief at the beginning of the Subboreal and became one of the leading trees 2.6-2.3 ka BP. The lower role of the Korean pine and birch forest expansion in the first half of the Subatlantic could be related to the fires. The broadleaf-Korean pine forests became widespread in the Medieval Warm Period. Local swamp landscapes changed dramatically in the Little Ice Age, while the slope vegetation was not subject to any major changes. The landscapes were also affected by the fires, which became more frequent. The derivative communities with birch appeared on the mari. Moreover, this part of the valley was occasionally subject to heavy flooding.

  9. Developing Vulnerability Analysis Method for Climate Change Adaptation on Agropolitan Region in Malang District

    NASA Astrophysics Data System (ADS)

    Sugiarto, Y.; Perdinan; Atmaja, T.; Wibowo, A.

    2017-03-01

    Agriculture plays a strategic role in strengthening sustainable development. Based on agropolitan concept, the village becomes the center of economic activities by combining agriculture, agro-industry, agribusiness and tourism that able to create high value-added economy. The impact of climate change on agriculture and water resources may increase the pressure on agropolitan development. The assessment method is required to measure the vulnerability of area-based communities in the agropolitan to climate change impact. An analysis of agropolitan vulnerability was conducted in Malang district based on four aspects and considering the availability and distribution of water as the problem. The indicators used to measure was vulnerability component which consisted of sensitivity and adaptive capacity and exposure component. The studies earned 21 indicators derived from the 115 village-based data. The results of vulnerability assessments showed that most of the villages were categorised at a moderate level. Around 20% of 388 villages were categorized at high to very high level of vulnerability due to low level of agricultural economic. In agropolitan region within the sub-district of Poncokusumo, the vulnerability of the villages varies between very low to very high. The most villages were vulnerable due to lower adaptive capacity, eventhough the level of sensitivity and exposure of all villages were relatively similar. The existence of water resources was the biggest contributor to the high exposure of the villages in Malang district, while the reception of credit facilities and source of family income were among the indicators that lead to high sensitivity component.

  10. Tropical Ocean Surface Energy Balance Variability: Linking Weather to Climate Scales

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Clayson, Carol Anne

    2013-01-01

    Radiative and turbulent surface exchanges of heat and moisture across the atmosphere-ocean interface are fundamental components of the Earth s energy and water balance. Characterizing the spatiotemporal variability of these exchanges of heat and moisture is critical to understanding the global water and energy cycle variations, quantifying atmosphere-ocean feedbacks, and improving model predictability. These fluxes are integral components to tropical ocean-atmosphere variability; they can drive ocean mixed layer variations and modify the atmospheric boundary layer properties including moist static stability, thereby influencing larger-scale tropical dynamics. Non-parametric cluster-based classification of atmospheric and ocean surface properties has shown an ability to identify coherent weather regimes, each typically associated with similar properties and processes. Using satellite-based observational radiative and turbulent energy flux products, this study investigates the relationship between these weather states and surface energy processes within the context of tropical climate variability. Investigations of surface energy variations accompanying intraseasonal and interannual tropical variability often use composite-based analyses of the mean quantities of interest. Here, a similar compositing technique is employed, but the focus is on the distribution of the heat and moisture fluxes within their weather regimes. Are the observed changes in surface energy components dominated by changes in the frequency of the weather regimes or through changes in the associated fluxes within those regimes? It is this question that the presented work intends to address. The distribution of the surface heat and moisture fluxes is evaluated for both normal and non-normal states. By examining both phases of the climatic oscillations, the symmetry of energy and water cycle responses are considered.

  11. Variability and change of sea level and its components in the Indo-Pacific region during the altimetry era

    NASA Astrophysics Data System (ADS)

    Wu, Quran; Zhang, Xuebin; Church, John A.; Hu, Jianyu

    2017-03-01

    Previous studies have shown that regional sea level exhibits interannual and decadal variations associated with the modes of climate variability. A better understanding of those low-frequency sea level variations benefits the detection and attribution of climate change signals. Nonetheless, the contributions of thermosteric, halosteric, and mass sea level components to sea level variability and trend patterns remain unclear. By focusing on signals associated with dominant climate modes in the Indo-Pacific region, we estimate the interannual and decadal fingerprints and trend of each sea level component utilizing a multivariate linear regression of two adjoint-based ocean reanalyses. Sea level interannual, decadal, and trend patterns primarily come from thermosteric sea level (TSSL). Halosteric sea level (HSSL) is of regional importance in the Pacific Ocean on decadal time scale and dominates sea level trends in the northeast subtropical Pacific. The compensation between TSSL and HSSL is identified in their decadal variability and trends. The interannual and decadal variability of temperature generally peak at subsurface around 100 m but that of salinity tend to be surface-intensified. Decadal temperature and salinity signals extend deeper into the ocean in some regions than their interannual equivalents. Mass sea level (MassSL) is critical for the interannual and decadal variability of sea level over shelf seas. Inconsistencies exist in MassSL trend patterns among various estimates. This study highlights regions where multiple processes work together to control sea level variability and change. Further work is required to better understand the interaction of different processes in those regions.

  12. Historical climate controls soil respiration responses to current soil moisture

    PubMed Central

    Waring, Bonnie G.; Rocca, Jennifer D.; Kivlin, Stephanie N.

    2017-01-01

    Ecosystem carbon losses from soil microbial respiration are a key component of global carbon cycling, resulting in the transfer of 40–70 Pg carbon from soil to the atmosphere each year. Because these microbial processes can feed back to climate change, understanding respiration responses to environmental factors is necessary for improved projections. We focus on respiration responses to soil moisture, which remain unresolved in ecosystem models. A common assumption of large-scale models is that soil microorganisms respond to moisture in the same way, regardless of location or climate. Here, we show that soil respiration is constrained by historical climate. We find that historical rainfall controls both the moisture dependence and sensitivity of respiration. Moisture sensitivity, defined as the slope of respiration vs. moisture, increased fourfold across a 480-mm rainfall gradient, resulting in twofold greater carbon loss on average in historically wetter soils compared with historically drier soils. The respiration–moisture relationship was resistant to environmental change in field common gardens and field rainfall manipulations, supporting a persistent effect of historical climate on microbial respiration. Based on these results, predicting future carbon cycling with climate change will require an understanding of the spatial variation and temporal lags in microbial responses created by historical rainfall. PMID:28559315

  13. Compositing climate change vulnerability of a Mediterranean region using spatiotemporally dynamic proxies for ecological and socioeconomic impacts and stabilities.

    PubMed

    Demirkesen, Ali Can; Evrendilek, Fatih

    2017-01-01

    The study presents a new methodology to quantify spatiotemporal dynamics of climate change vulnerability at a regional scale adopting a new conceptual model of vulnerability as a function of climate change impacts, ecological stability, and socioeconomic stability. Spatiotemporal trends of equally weighted proxy variables for the three vulnerability components were generated to develop a composite climate change vulnerability index (CCVI) for a Mediterranean region of Turkey combining Landsat time series data, digital elevation model (DEM)-derived data, ordinary kriging, and geographical information system. Climate change impact was based on spatiotemporal trends of August land surface temperature (LST) between 1987 and 2016. Ecological stability was based on DEM, slope, aspect, and spatiotemporal trends of normalized difference vegetation index (NDVI), while socioeconomic stability was quantified as a function of spatiotemporal trends of land cover, population density, per capita gross domestic product, and illiteracy. The zones ranked on the five classes of no-to-extreme vulnerability were identified where highly and moderately vulnerable lands covered 0.02% (12 km 2 ) and 11.8% (6374 km 2 ) of the study region, respectively, mostly occurring in the interior central part. The adoption of this composite CCVI approach is expected to lead to spatiotemporally dynamic policy recommendations towards sustainability and tailor preventive and mitigative measures to locally specific characteristics of coupled ecological-socioeconomic systems.

  14. Collaborative Adaptation Planning for Water Security: Preliminary Lessons, Challenges, and the Way Forward for Maipo Basin Adaptation Plan, Chile

    NASA Astrophysics Data System (ADS)

    Vicuna, S.; Scott, C. A.; Bonelli, S.; Bustos, E.; Meza, F. J.

    2014-12-01

    The Maipo basin holds 40% of Chile's total population and almost half of the country's Gross Domestic Product. The basin is located in the semiarid central region of the country and, aside from the typical pressures of growth in developing country basins, the Maipo river faces climate change impacts associated with a reduction in total runoff and changes in its seasonality. Surface water is the main water source for human settlements and economic activities including agriculture. In 2012 we started a research project to create a climate variability and climate change adaptation plan for the basin. The pillars of the plan are co-produced by researchers and a Scenario Building Team (SBT) with membership of relevant water and land use stakeholders (including from civil society, public and private sectors) in the basin. Following similar experiences in other regions in the world that have faced the challenges of dealing with long term planning under uncertainty, the project has divided the task of developing the plan into a series of interconnected elements. A critical first component is to work on the desired vision(s) of the basin for the future. In this regards, the "water security" concept has been chosen as a framework that accommodates all objectives of the SBT members. Understanding and quantifying the uncertainties that could affect the future water security of the basin is another critical aspect of the plan. Near and long term climate scenarios are one dimension of these uncertainties that are combined with base development uncertainties such as urban growth scenarios. A third component constructs the models/tools that allows the assessment of impacts on water security that could arise under these scenarios. The final critical component relates to the development of the adaptation measures that could avoid the negative impacts and/or capture the potential opportunities. After two years in the development of the adaptation plan a series of results has been achieved in all critical components that are presented here. The success in the process now poses a series of new challenges, most importantly: how to implement and monitor the evolution of the adaptation process.

  15. Vulnerability and Tradeoffs of Dairy Farmers to the Impacts of Climate Variability and Change in India

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, A.; Gupta, J.; R, D.

    2016-12-01

    In recent years climate variability has threatened the sustainability of dairy animals and dairy farming in India. The study aims at assessing the vulnerability and tradeoffs of Dairy Based Livelihoods to Climate Variability and Change in the Western Ghat ecosystem and for this purpose; data were aggregated to an overall Livelihood Vulnerability Index (LVI) to Climate Change underlying the principles of IPCC, using 28 indicators and trade-off between vulnerability and milk production was calculated. Data were collected through Participatory Rural Appraisal and personal interviews from 360 randomly selected dairy farmers of three states of Western Ghat region, complemented by thirty years of gridded weather data and livestock data. The index score of dairy based livelihoods of many regions were negative. Lanja taluka of Maharashtra has highest level of vulnerability with overall LVI value -4.17 with 48% farmers falling in highly vulnerable category. There is also significant tradeoff between milk production and components of LVI. Thus our research will provide an important basis for policy makers to develop appropriate adaptation strategies for alarming situation and decision making for farmers to minimize the risk of dairy sector to climate variability.

  16. Identifying and Reconciling Risk Across Sectors: The implications of differing views of risk in climate policy, environmental conservation, and the finance sector

    NASA Astrophysics Data System (ADS)

    Johns, T.; Henderson, I.; Thoumi, G.

    2014-12-01

    The presence and valuation of risk are commonalities that link the diverse fields of climate change science and policy, environmental conservation, and the financial/investment sector. However, the definition and perception of risks vary widely across these critically linked fields. The "Stranded Asset" concept developed by organizations like the Carbon Tracker Initiative begins to elucidate the links between climate change risk and financial risk. Stranded assets are those that may lose some or all value from climate disruption, changes in demand-side dynamics and/or a more stringent regulatory environment. In order to shift financial flows toward climate change mitigation, emissions-heavy activities that present finance and investment opportunities must also be assessed for their GHG-asset risk attributes in terms of their contribution and vulnerability to climate disruption, as well as other environmental externalities. Until the concept of GHG-asset risk in investment is reconciled with the risks of climate change and environmental conservation, it will not be possible to shift business and financial practices, and unlock private sector resources to address the climate change and conservation challenge. UNEP-FI is researching the application of the concept of Value-atRisk (VaR) to explore links between the financial sector and deforestation/REDD+. The research will test the hypothesis that climate risk is a financial risk, and propose tools to identify and quantify risks associated with unsustainable land-use investments. The tools developed in this research will help investors, managers and governments assess their exposures to the material REDD-related risks in their portfolios. This will inform the development of 'zero net deforestation' investment indices to allow investors to lower the 'deforestation' exposure of 'benchmark' financial indices used by many of the largest money managers. A VaR analysis will be performed, combining the notion of externality with the traditional approach of external (exogenous) risk analysis. The VaR component introduces probabilities for different scenarios and may ultimately lead to a full distribution for the holistic losses. These distributions are non-parametric and non-linear since climate change is an "event-risk".

  17. Impact of future climate change on wheat production in relation to plant-available water capacity in a semiaridenvironment

    NASA Astrophysics Data System (ADS)

    Yang, Yanmin; Liu, De Li; Anwar, Muhuddin Rajin; Zuo, Heping; Yang, Yonghui

    2014-02-01

    Conceptions encompassing climate change are irreversible rise of atmospheric carbon dioxide (CO2) concentration, increased temperature, and changes in rainfall both in spatial- and temporal-scales worldwide. This will have a major impact on wheat production, particularly if crops are frequently exposed to a sequence, frequency, and intensity of specific weather events like high temperature during growth period. However, the process of wheat response to climate change is complex and compounded by interactions among atmospheric CO2 concentration, climate variables, soil, nutrition, and agronomic management. In this study, we use the Agricultural Production Systems sIMulator (APSIM)-wheat model, driven by statistically downscaled climate projections of 18 global circulation models (GCMs) under the 2007 Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A2 CO2 emission scenario to examine impact on future wheat yields across key wheat growing regions considering different soil types in New South Wales (NSW) of Australia. The response of wheat yield, yield components, and phenology vary across sites and soil types, but yield is closely related to plant available water capacity (PAWC). Results show a decreasing yield trend during the period of 2021-2040 compared to the baseline period of 1961-1990. Across different wheat-growing regions in NSW, grain yield difference in the future period (2021-2040) over the baseline (1961-1990) varies from +3.4 to -14.7 %, and in most sites, grain number is decreased, while grain size is increased in future climate. Reduction of wheat yield is mainly due to shorter growth duration, where average flowering and maturing time are advanced by an average of 11 and 12 days, respectively. In general, larger negative impacts of climate change are exhibited in those sites with higher PAWC. Current wheat cultivars with shorter growing season properties are viable in the future climate, but breading for early sowing wheat varieties with longer growing duration will be a desirable adaptation strategy for mitigating the impact of changing climate on wheat yield.

  18. Climate Odyssey: Resources for Understanding Coastal Change through Art, Science, and Sail

    NASA Astrophysics Data System (ADS)

    Klos, P. Z.; Holtsnider, L.

    2017-12-01

    Climate Odyssey (climateodyssey.org) is a year-long sailing expedition and continuing collaboration aimed at using overlaps in science and visual art to communicate coastal climate change impacts and solutions. We, visual artist Lucy Holtsnider and climate scientist Zion Klos, are using our complimentary skills in art, science and communication to engage audiences both intuitively and cognitively regarding the urgency of climate change through story and visualization. Over the 2015 - 2016 academic year, we embarked on the sailing portion of Climate Odyssey, beginning in Lake Michigan, continuing along the Eastern Seaboard, and concluding in the tropics. Along the way we photographed climate change impacts and adaptation strategies, interviewed stakeholders, scientists, and artists. We are now sharing our photographs and documented encounters through a tangible artist's book, interactive digital map, blog, and series of K16 lesson plans. Each of our images added to the artist's book and digital map are linked to relevant blog entries and other external scientific resources, making the map both a piece of art and an engaging education tool for sharing the science of climate change impacts and solutions. After completing the sailing component of the project, we have now finalized our multi-media resources and are working to share these with the public via libraries, galleries, and K16 classrooms in coastal communities. At AGU, we will share with our peers the completed version of the series of K16 lesson plans that provide educators an easy-to-use way to introduce and utilize the material in the artist's book, digital map, and online blog. Through this, we hope to both discuss climate-focused education and engagement strategies, as well as showcase this example of art-science outreach with the broader science education and communication community that is focused on climate literacy in the U.S. and beyond.

  19. Climate Literacy: STEM and Climate Change Education and Remote Sensing Applications

    NASA Astrophysics Data System (ADS)

    Reddy, S. R.

    2015-12-01

    NASA Innovations in Climate Education (NICE) is a competitive project to promote climate and Earth system science literacy and seeks to increase the access of underrepresented minority groups to science careers and educational opportunities. A three year funding was received from NASA to partnership with JSU and MSU under cooperative agreement "Strengthening Global Climate Change education through Remote Sensing Application in Coastal Environment using NASA Satellite Data and Models". The goal is to increase the number of highschool and undergraduate students at Jackson State University, a Historically Black University, who are prepared to pursue higher academic degrees and careers in STEM fields. A five Saturday course/workshop was held during March/April 2015 at JSU, focusing on historical and technical concepts of math, enginneering, technology and atmosphere and climate change and remote sensing technology and applications to weather and climate. Nine students from meteorology, biology, industrial technology and computer science/engineering of JSU and 19 high scool students from Jackson Public Schools participated in the course/workshop. The lecture topics include: introduction to remote sensing and GIS, introduction to atmospheric science, math and engineering, climate, introduction to NASA innovations in climate education, introduction to remote sensing technology for bio-geosphere, introduction to earth system science, principles of paleoclimatology and global change, daily weather briefing, satellite image interpretation and so on. In addition to lectures, lab sessions were held for hand-on experiences for remote sensing applications to atmosphere, biosphere, earth system science and climate change using ERDAS/ENVI GIS software and satellite tools. Field trip to Barnett reservoir and National weather Service (NWS) was part of the workshop. Basics of Earth System Science is a non-mathematical introductory course designed for high school seniors, high school teachers and undergraduate students who may or may not have adequate exposure to fundamental concepts of the key components of the modern earth system and their interactions. This is an online course that will be delivered using Blackboard platform available at Jackson State University.

  20. The underestimated potential of solar energy to mitigate climate change

    NASA Astrophysics Data System (ADS)

    Creutzig, Felix; Agoston, Peter; Goldschmidt, Jan Christoph; Luderer, Gunnar; Nemet, Gregory; Pietzcker, Robert C.

    2017-09-01

    The Intergovernmental Panel on Climate Change's fifth assessment report emphasizes the importance of bioenergy and carbon capture and storage for achieving climate goals, but it does not identify solar energy as a strategically important technology option. That is surprising given the strong growth, large resource, and low environmental footprint of photovoltaics (PV). Here we explore how models have consistently underestimated PV deployment and identify the reasons for underlying bias in models. Our analysis reveals that rapid technological learning and technology-specific policy support were crucial to PV deployment in the past, but that future success will depend on adequate financing instruments and the management of system integration. We propose that with coordinated advances in multiple components of the energy system, PV could supply 30-50% of electricity in competitive markets.

  1. Effects of seasonal climatic variability on several toxic contaminants in urban lakes: Implications for the impacts of climate change.

    PubMed

    Wu, Qiong; Xia, Xinghui; Mou, Xinli; Zhu, Baotong; Zhao, Pujun; Dong, Haiyang

    2014-12-01

    Climate change is supposed to have influences on water quality and ecosystem. However, only few studies have assessed the effect of climate change on environmental toxic contaminants in urban lakes. In this research, response of several toxic contaminants in twelve urban lakes in Beijing, China, to the seasonal variations in climatic factors was studied. Fluorides, volatile phenols, arsenic, selenium, and other water quality parameters were analyzed monthly from 2009 to 2012. Multivariate statistical methods including principle component analysis, cluster analysis, and multiple regression analysis were performed to study the relationship between contaminants and climatic factors including temperature, precipitation, wind speed, and sunshine duration. Fluoride and arsenic concentrations in most urban lakes exhibited a significant positive correlation with temperature/precipitation, which is mainly caused by rainfall induced diffuse pollution. A negative correlation was observed between volatile phenols and temperature/precipitation, and this could be explained by their enhanced volatilization and biodegradation rates caused by higher temperature. Selenium did not show a significant response to climatic factor variations, which was attributed to low selenium contents in the lakes and soils. Moreover, the response degrees of contaminants to climatic variations differ among lakes with different contamination levels. On average, temperature/precipitation contributed to 8%, 15%, and 12% of the variations in volatile phenols, arsenic, and fluorides, respectively. Beijing is undergoing increased temperature and heavy rainfall frequency during the past five decades. This study suggests that water quality related to fluoride and arsenic concentrations of most urban lakes in Beijing is becoming worse under this climate change trend. Copyright © 2014. Published by Elsevier B.V.

  2. Analysis of climate change impact on runoff and sediment delivery in a Great Lake watershed using SWAT

    NASA Astrophysics Data System (ADS)

    Verma, S.; Bhattarai, R.; Cooke, R.

    2011-12-01

    The green house gas loading of the atmosphere has been increasing since the mid 19th century which threatens to dramatically change the earth's climate in the 21st Century. Scientific evidences show that earth's global average surface temperature has risen some 0.75°C (1.3°F) since 1850. Third Assessment Report (TAR) from the Intergovernmental Panel on Climate Change (IPCC) concluded that human activities have increased the atmospheric concentration of greenhouse gases (GHGs), which will result in a warming world and other changes in the climate. TAR has projected an increase in globally average surface temperature of 1.4 to 5.8 °C and an increase in precipitation of 5 to 20 % over the period of 1990 to 2100. Assuming a global temperature increase of between 2.8 and 5.2 °C, it was estimated a 7-15% increase in global evaporation and precipitation rates. Global warming and subsequent climate change could raise sea level by several tens of centimeters in the next fifty years. Such a rise may erode beaches, worsen coastal flooding and threaten water quality in estuaries and aquifers. With the climate already changing and further change in climate highly likely to happen, study of impact of climate and the adaptation is a necessary component of any response to climate change. The objective of this study is to analyze the impact of climate change on runoff and sediment delivery in a Great Lake watershed located in Northern Ohio. Maumee River watershed is predominantly an agricultural watershed with an area of 6330 sq mile and drains to Lake Erie. Agricultural area covers about 89.9% of the watershed while wooded area covers 7.3%, 1.2% is urban area and other land uses account for 1.6%. Water Quality Laboratory, Heidelberg College has monitored the watershed for last 25 years. The Soil and Water Assessment Tool (SWAT) model is used for both water quantity and water quality simulations for past and future scenarios. SWAT is a continuous, long-term watershed scale simulation model which operates on a daily time step. The model is physically based, computationally efficient, and capable of assessing the impact of climate and watershed management on water, sediment, and nutrient/chemical yields. SWAT model has been calibrated for flow and sediment yield from 1982 to 2002 for the watershed. The calibrated model will be used to predict future flow and sediment delivery scenarios due to climate change (increase in temperature).

  3. Climate change impact assessment on Veneto and Friuli Plain groundwater. Part I: an integrated modeling approach for hazard scenario construction.

    PubMed

    Baruffi, F; Cisotto, A; Cimolino, A; Ferri, M; Monego, M; Norbiato, D; Cappelletto, M; Bisaglia, M; Pretner, A; Galli, A; Scarinci, A; Marsala, V; Panelli, C; Gualdi, S; Bucchignani, E; Torresan, S; Pasini, S; Critto, A; Marcomini, A

    2012-12-01

    Climate change impacts on water resources, particularly groundwater, is a highly debated topic worldwide, triggering international attention and interest from both researchers and policy makers due to its relevant link with European water policy directives (e.g. 2000/60/EC and 2007/118/EC) and related environmental objectives. The understanding of long-term impacts of climate variability and change is therefore a key challenge in order to address effective protection measures and to implement sustainable management of water resources. This paper presents the modeling approach adopted within the Life+ project TRUST (Tool for Regional-scale assessment of groUndwater Storage improvement in adaptation to climaTe change) in order to provide climate change hazard scenarios for the shallow groundwater of high Veneto and Friuli Plain, Northern Italy. Given the aim to evaluate potential impacts on water quantity and quality (e.g. groundwater level variation, decrease of water availability for irrigation, variations of nitrate infiltration processes), the modeling approach integrated an ensemble of climate, hydrologic and hydrogeologic models running from the global to the regional scale. Global and regional climate models and downscaling techniques were used to make climate simulations for the reference period 1961-1990 and the projection period 2010-2100. The simulation of the recent climate was performed using observed radiative forcings, whereas the projections have been done prescribing the radiative forcings according to the IPCC A1B emission scenario. The climate simulations and the downscaling, then, provided the precipitation, temperatures and evapo-transpiration fields used for the impact analysis. Based on downscaled climate projections, 3 reference scenarios for the period 2071-2100 (i.e. the driest, the wettest and the mild year) were selected and used to run a regional geomorphoclimatic and hydrogeological model. The final output of the model ensemble produced information about the potential variations of the water balance components (e.g. river discharge, groundwater level and volume) due to climate change. Such projections were used to develop potential hazard scenarios for the case study area, to be further applied within climate change risk assessment studies for groundwater resources and associated ecosystems. This paper describes the models' chain and the methodological approach adopted in the TRUST project and analyzes the hazard scenarios produced in order to investigate climate change risks for the case study area. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Earthwatch and the HSBC Climate Partnership: Linking climate change and forests management one citizen scientist at a time

    NASA Astrophysics Data System (ADS)

    Stover, D. B.; Jones, A.; Kusek, K.; Bebber, D.; Phillips, R.; Campbell, J.

    2010-12-01

    Earthwatch has engaged more than 90,000 citizen scientists in long-term research studies since its founding in 1971. One of its newer research and engagement programs is the HSBC Climate Partnership, a five-year global program on climate change to inspire action by individuals, businesses and governments (2007-2012). In this unique NGO-business partnership, Earthwatch has implemented five forest research-focused climate centers in the US, UK, Brazil, India and China. At each center, a team of scientists—supported by HSBC banking employees and local citizen scientists—is gathering data to determine how temperate and tropical forests are affected by changes in climate and human activity. Results are establishing baseline data to empower forest managers, conservationists and communities with the information they need to better manage forests within a changing climate. A critical component of the program is the engagement of 2,200 corporate HSBC employees who spend two weeks out of the office at one of the regional climate centers. They work alongside leading scientists to perform forest research by day, and participate each evening in an interactive education program on the ecological and socioeconomic impacts of climate change—including how climate change impacts HSBC’s bottom line. Program participants are empowered and have successfully developed sustainability projects they implement back in their office, homes and communities that furthers corporate and public commitment to sustainability and combating the effects of climate change. In addition to the corporate engagement model, Earthwatch has successfully engaged scores of local community stakeholders in the HSBC Climate Partnership, including teachers who report back to their classrooms “live from the field,” reporters and other business/NGO leaders in modified one week versions of the field program. New models of citizen science engagement are currently under development, with best practices and stories documenting the effectiveness of the program design from a research, engagement and business perspective. In US, the program has successfully collected over 10,000 hours of data collection in just 2 years and has contributed to our understanding of positive growth response to climate change in the Chesapeake Bay forests. Additionally, preliminary results are indicating that invasive species recruitment in recently logging areas is modifying the future crown species dominance. By the end of the program, nearly 100,000 citizen science research hours will have been invested in the program globally—leading to scientific publications on forest responses to climate change, policy development and citizen engagement.

  5. Regulatory and information support for evaluation of biological productivity of Ukrainian forests and climate change

    NASA Astrophysics Data System (ADS)

    Lakyda, Petro; Vasylyshyn, Roman; Lakyda, Ivan

    2013-04-01

    Stabilization and preservation of the planet's climate system today is regarded as one of the most important global political-economic, environmental and social problems of mankind. Rising concentration of carbon dioxide in the planet's atmosphere due to anthropogenic impact is the main reason leading to global climate change. Due to the above mentioned, social demands on forests are changing their biosphere role and function of natural sink of greenhouse gases becomes top priority. It is known that one of the most essential components of biological productivity of forests is their live biomass. Absorption, long-term sequestration of carbon and generation of oxygen are secured by its components. System research of its parametric structure and development of regulatory and reference information for assessment of aboveground live biomass components of trees and stands of the main forest-forming tree species in Ukraine began over twenty-five years ago at the department of forest mensuration and forest inventory of National University of Life and Environmental Sciences of Ukraine, involving staff from other research institutions. Today, regulatory and reference materials for evaluation of parametric structure of live biomass are developed for trees of the following major forest-forming tree species of Ukraine: Scots pine of natural and artificial origin, Crimean pine, Norway spruce, silver fir, pedunculate oak, European beech, hornbeam, ash, common birch, aspen and black alder (P.I. Lakyda et al., 2011). An ongoing process on development of similar regulatory and reference materials for forest stands of the abovementioned forest-forming tree species of Ukraine is secured by scientists of departments of forest management, and forest mensuration and forest inventory. The total experimental research base is 609 temporary sample plots, where 4880 model trees were processed, including 3195 model trees with estimates of live biomass components. Laboratory studies conducted on 1743 research sections of tree stems, 809 samples of crown branches, 2560 model tree greenery branches, 346 batches of needles and 534 batches of leaves. These materials have high scientific and practical value, forming a basis for quantitative evaluation of biological productivity of forests in Ukraine, which are of great importance for mitigation of climate change. They also can be used as a data source for development of systems of models of various purposes, which find their application in Ukrainian and world forest science and practice.

  6. Tundra Fires in the Noatak National Preserve, Northwestern Alaska, Since 6000 yr BP

    NASA Astrophysics Data System (ADS)

    Chipman, M. L.; Higuera, P. E.; Allen, J.; Rupp, S.; Hu, F. S.

    2008-12-01

    Over 1.7 million hectares of Alaskan tundra have burned over the past 50 years, including the record-setting Anaktuvuk River fire in 2007. Despite this evidence indicating the flammable nature of these ecosystems under warm and dry conditions, land managers and global change scientists lack critical information concerning long-term relationships among fire, climate and tundra vegetation. This knowledge gap limits the ability to assess the response of the tundra fire regime to ongoing and predicted climate warming and potential feedbacks with Earth systems. We utilize macroscopic charcoal from lake-sediment cores to characterize the frequency component of fire regimes in shrub-dominated and herb-dominated tundra ecosystems in northwestern Alaska over the past 6000 years. Here we present the first long-term records of tundra fire regimes from the Noatak National Preserve, a region encompassing some of the most flammable tundra in the state. Results from three lakes indicate that fire has been a consistent process in the region, with fire return intervals (FRIs) ranging from 70 to 800+ years since 6000 yr BP. FRIs were similar between herb- and shrub-dominated tundra sites before ~2000 yr BP, with a mean FRI of 167 yr (95% CI 145-195) Over the past ~2000 years, however, herb- dominated sites burned more frequently (mean FRI 112 yr [95% CI 80-151]) than shrub-dominated sites (mean FRI 247 yr [95% CI 141-377]). At millennial time scales, shifts in historic FRIs were likely related to regional climate changes and/or associated vegetation changes. These results provide a context for resource management and serve to refine the tundra component of an ecosystem model designed to aid land managers in assessing fuels and fire hazards in the context of climatic change.

  7. Testing the impact of virus importation rates and future climate change on dengue activity in Malaysia using a mechanistic entomology and disease model.

    PubMed

    Williams, C R; Gill, B S; Mincham, G; Mohd Zaki, A H; Abdullah, N; Mahiyuddin, W R W; Ahmad, R; Shahar, M K; Harley, D; Viennet, E; Azil, A; Kamaluddin, A

    2015-10-01

    We aimed to reparameterize and validate an existing dengue model, comprising an entomological component (CIMSiM) and a disease component (DENSiM) for application in Malaysia. With the model we aimed to measure the effect of importation rate on dengue incidence, and to determine the potential impact of moderate climate change (a 1 °C temperature increase) on dengue activity. Dengue models (comprising CIMSiM and DENSiM) were reparameterized for a simulated Malaysian village of 10 000 people, and validated against monthly dengue case data from the district of Petaling Jaya in the state of Selangor. Simulations were also performed for 2008-2012 for variable virus importation rates (ranging from 1 to 25 per week) and dengue incidence determined. Dengue incidence in the period 2010-2012 was modelled, twice, with observed daily weather and with a 1 °C increase, the latter to simulate moderate climate change. Strong concordance between simulated and observed monthly dengue cases was observed (up to r = 0·72). There was a linear relationship between importation and incidence. However, a doubling of dengue importation did not equate to a doubling of dengue activity. The largest individual dengue outbreak was observed with the lowest dengue importation rate. Moderate climate change resulted in an overall decrease in dengue activity over a 3-year period, linked to high human seroprevalence early on in the simulation. Our results suggest that moderate reductions in importation with control programmes may not reduce the frequency of large outbreaks. Moderate increases in temperature do not necessarily lead to greater dengue incidence.

  8. Do elevated temperature and CO2 generally have counteracting effects on phenolic phytochemistry of boreal trees?

    Treesearch

    T.O. Veteli; W.J. Mattson; P. Niemela; R. Julkunen-Tiitto; S. Kellomaki; K. Kuokkanen; A. Lavola

    2007-01-01

    Global climate change includes concomitant changes in many components of the abiotic flux necessary for plant life. In this paper, we investigate the combined effects of elevated CO2 (720 ppm) and temperature (+2 K) on the phytochemistry of three deciduous tree species. The analysis revealed that elevated CO2 generally...

  9. The Colorado Climate Preparedness Project: A Systematic Approach to Assessing Efforts Supporting State-Level Adaptation

    NASA Astrophysics Data System (ADS)

    Klein, R.; Gordon, E.

    2010-12-01

    Scholars and policy analysts often contend that an effective climate adaptation strategy must entail "mainstreaming," or incorporating responses to possible climate impacts into existing planning and management decision frameworks. Such an approach, however, makes it difficult to assess the degree to which decisionmaking entities are engaging in adaptive activities that may or may not be explicitly framed around a changing climate. For example, a drought management plan may not explicitly address climate change, but the activities and strategies outlined in it may reduce vulnerabilities posed by a variable and changing climate. Consequently, to generate a strategic climate adaptation plan requires identifying the entire suite of activities that are implicitly linked to climate and may affect adaptive capacity within the system. Here we outline a novel, two-pronged approach, leveraging social science methods, to understanding adaptation throughout state government in Colorado. First, we conducted a series of interviews with key actors in state and federal government agencies, non-governmental organizations, universities, and other entities engaged in state issues. The purpose of these interviews was to elicit information about current activities that may affect the state’s adaptive capacity and to identify future climate-related needs across the state. Second, we have developed an interactive database cataloging organizations, products, projects, and people actively engaged in adaptive planning and policymaking that are relevant to the state of Colorado. The database includes a wiki interface, helping create a dynamic component that will enable frequent updating as climate-relevant information emerges. The results of this project are intended to paint a clear picture of sectors and agencies with higher and lower levels of adaptation awareness and to provide a roadmap for the next gubernatorial administration to pursue a more sophisticated climate adaptation agenda. Project results can also inform numerous other ongoing database efforts connected to the U.S. National Assessment of Climate Change.

  10. Climate change adaptation in a highly urbanized snowmelt dominated basin in Central Chile

    NASA Astrophysics Data System (ADS)

    Vicuna, S.; Bustos, E.; Merino, P.; Henriquez Dole, L. E.; Jansen, S.; Gil, M.; Ocampo, A.; Poblete, D.; Tosoni, D.; Meza, F. J.; Donoso, G.; Melo, O.

    2015-12-01

    The Maipo river basin holds 40% of Chile's total population and produces almost half of the country's Gross Domestic Product. The basin is located in the semiarid and snowmelt dominated central region of the country and, aside from the typical pressures of growth in developing country basins, the Maipo river basin faces climate change impacts associated with a reduction in total runoff and changes in its seasonality. Surface water is the main water source for human settlements, natural ecosystems, and economic activities including agriculture, mining and hydropower production. In 2012 a research project, called MAPA (Maipo Plan de Adaptacion), began with the objective of articulating a climate variability and climate change adaptation plan for the Maipo river basin. The project engaged at the beginning a group of relevant water and land use stakeholders which allowed for a good representation of critical aspects of an adaptation plan such as the definition of objectives and performance indicators, future land use scenarios, modeling of the different components of the system and design of adaptation strategies. The presentation will highlight the main results of the research project with a special focus on the upper catchments of the basin. These results include the assessment of impacts associated with future climate and land use scenarios on key components of the hydrologic cycle including snowmelt and glacier contribution to runoff and subsequent impacts on water availability for the operation of hydropower facilities, satisfaction of instream (recreation and aquatic ecosystem) uses and provision of water for the city of Santiago (7 million people) and to irrigate more than 100,000 hectares of high value crops. The integrative approach followed in this project including different perspectives on the use of water in the basin provides a good opportunity to test the varying degree of impacts that could be associated with a given future scenario and also understand the challenges and opportunities that exist in the process of designing and implementing adaptation strategies.

  11. An investigation of evapotranspiration rates within mid-western agricultural systems in response to elevated carbon dioxide and ozone concentrations and climate change

    NASA Astrophysics Data System (ADS)

    Abdullah, W. F.; Lombardozzi, D.; Levis, S.; Bonan, G. B.

    2013-12-01

    Warith Featherstone Abdullah, Danica Lombardozzi, Samuel Levis and Gordon Bonan Jackson State University Dept. of Physics, Atmospheric Sciences & Geosciences National Center for Atmospheric Research Climate & Global Dynamics Because the human population is expected to surpass 8 billion by the year 2050, food security is a pressing issue. In the face of elevated temperatures associated with climate change (CC), elevated carbon dioxide (CO2) and elevated ozone (O3) concentrations, food productivity is uncertain. Plant stomata must be open to gain carbon which simultaneously causes water loss. Research suggests rising temperatures, elevated CO2 and elevated O3 in the future may impact plant stomata and change the rate plants lose water and take up carbon, affecting plant productivity and crop yields. Evapotranspiration (ET), latent heat fluxes, leaf carbon and net primary productivity (NPP) were analyzed in U.S Mid-west where crop density is greatest. Four simulations were run using the National Center for Atmospheric Research (NCAR) Community Land Model version 4 (CLM4) component of the Community Earth System Model (CESM) with an extended carbon-nitrogen model (CN). Analyses were based on June-July-August seasonal averages through 2080-2100 to compare the individual effects of CC, elevated CO2 and O3, and combined effects of all drivers. Results from model projections show increased ET with CC and all drivers combined, but only small changes from O3 or CO2 alone. Further results show that NPP was reduced with CC and O3 alone, but increased with CO2 alone and only slightly reduced with interacting components. The combined driver simulation, which most accurately represents future global change, suggests deteriorating water usage efficiency, thus potentially decreasing carbon uptake and crop production. However, further research is needed for verification. Midwest seasonal summation estimates for net primary productivity calculated by CLM4CN model. Climate change, CO2 and O3 levels are predicted using IPCC RCP8.5 scenarios.

  12. The uncertainties and causes of the recent changes in global evapotranspiration from 1982 to 2010

    NASA Astrophysics Data System (ADS)

    Dong, Bo; Dai, Aiguo

    2017-07-01

    Recent studies have shown considerable changes in terrestrial evapotranspiration (ET) since the early 1980s, but the causes of these changes remain unclear. In this study, the relative contributions of external climate forcing and internal climate variability to the recent ET changes are examined. Three datasets of global terrestrial ET and the CMIP5 multi-model ensemble mean ET are analyzed, respectively, to quantify the apparent and externally-forced ET changes, while the unforced ET variations are estimated as the apparent ET minus the forced component. Large discrepancies of the ET estimates, in terms of their trend, variability, and temperature- and precipitation-dependence, are found among the three datasets. Results show that the forced global-mean ET exhibits an upward trend of 0.08 mm day-1 century-1 from 1982 to 2010. The forced ET also contains considerable multi-year to decadal variations during the latter half of the 20th century that are caused by volcanic aerosols. The spatial patterns and interannual variations of the forced ET are more closely linked to precipitation than temperature. After removing the forced component, the global-mean ET shows a trend ranging from -0.07 to 0.06 mm day-1 century-1 during 1982-2010 with varying spatial patterns among the three datasets. Furthermore, linkages between the unforced ET and internal climate modes are examined. Variations in Pacific sea surface temperatures (SSTs) are found to be consistently correlated with ET over many land areas among the ET datasets. The results suggest that there are large uncertainties in our current estimates of global terrestrial ET for the recent decades, and the greenhouse gas (GHG) and aerosol external forcings account for a large part of the apparent trend in global-mean terrestrial ET since 1982, but Pacific SST and other internal climate variability dominate recent ET variations and changes over most regions.

  13. Quantifying the hydrological responses to climate change in an intact forested small watershed in Southern China

    USGS Publications Warehouse

    Zhou, G.; Wei, X.; Wu, Y.; Huang, Y.; Yan, J.; Zhang, Dongxiao; Zhang, Q.; Liu, J.; Meng, Z.; Wang, C.; Chu, G.; Liu, S.; Tang, X.; Liu, Xiuying

    2011-01-01

    Responses of hydrological processes to climate change are key components in the Intergovernmental Panel for Climate Change (IPCC) assessment. Understanding these responses is critical for developing appropriate mitigation and adaptation strategies for sustainable water resources management and protection of public safety. However, these responses are not well understood and little long-term evidence exists. Herein, we show how climate change, specifically increased air temperature and storm intensity, can affect soil moisture dynamics and hydrological variables based on both long-term observation and model simulations using the Soil and Water Assessment Tool (SWAT) in an intact forested watershed (the Dinghushan Biosphere Reserve) in Southern China. Our results show that, although total annual precipitation changed little from 1950 to 2009, soil moisture decreased significantly. A significant decline was also found in the monthly 7-day low flow from 2000 to 2009. However, the maximum daily streamflow in the wet season and unconfined groundwater tables have significantly increased during the same 10-year period. The significant decreasing trends on soil moisture and low flow variables suggest that the study watershed is moving towards drought-like condition. Our analysis indicates that the intensification of rainfall storms and the increasing number of annual no-rain days were responsible for the increasing chance of both droughts and floods. We conclude that climate change has indeed induced more extreme hydrological events (e.g. droughts and floods) in this watershed and perhaps other areas of Southern China. This study also demonstrated usefulness of our research methodology and its possible applications on quantifying the impacts of climate change on hydrology in any other watersheds where long-term data are available and human disturbance is negligible. ?? 2011 Blackwell Publishing Ltd.

  14. Quantifying the hydrological responses to climate change in an intact forested small watershed in southern China

    USGS Publications Warehouse

    Zhou, Guo-Yi; Wei, Xiaohua; Wu, Yiping; Liu, Shu-Guang; Huang, Yuhui; Yan, Junhua; Zhang, Deqiang; Zhang, Qianmei; Liu, Juxiu; Meng, Ze; Wang, Chunlin; Chu, Guowei; Liu, Shizhong; Tang, Xu-Li; Liu, Xiaodong

    2011-01-01

    Responses of hydrological processes to climate change are key components in the Intergovernmental Panel for Climate Change (IPCC) assessment. Understanding these responses is critical for developing appropriate mitigation and adaptation strategies for sustainable water resources management and protection of public safety. However, these responses are not well understood and little long-term evidence exists. Herein, we show how climate change, specifically increased air temperature and storm intensity, can affect soil moisture dynamics and hydrological variables based on both long-term observation and model simulations using the Soil and Water Assessment Tool (SWAT) in an intact forested watershed (the Dinghushan Biosphere Reserve) in Southern China. Our results show that, although total annual precipitation changed little from 1950 to 2009, soil moisture decreased significantly. A significant decline was also found in the monthly 7-day low flow from 2000 to 2009. However, the maximum daily streamflow in the wet season and unconfined groundwater tables have significantly increased during the same 10-year period. The significant decreasing trends on soil moisture and low flow variables suggest that the study watershed is moving towards drought-like condition. Our analysis indicates that the intensification of rainfall storms and the increasing number of annual no-rain days were responsible for the increasing chance of both droughts and floods. We conclude that climate change has indeed induced more extreme hydrological events (e.g. droughts and floods) in this watershed and perhaps other areas of Southern China. This study also demonstrated usefulness of our research methodology and its possible applications on quantifying the impacts of climate change on hydrology in any other watersheds where long-term data are available and human disturbance is negligible.

  15. Facilitation among plants in alpine environments in the face of climate change.

    PubMed

    Anthelme, Fabien; Cavieres, Lohengrin A; Dangles, Olivier

    2014-01-01

    While there is a large consensus that plant-plant interactions are a crucial component of the response of plant communities to the effects of climate change, available data remain scarce, particularly in alpine systems. This represents an important obstacle to making consistent predictions about the future of plant communities. Here, we review current knowledge on the effects of climate change on facilitation among alpine plant communities and propose directions for future research. In established alpine communities, while warming seemingly generates a net facilitation release, earlier snowmelt may increase facilitation. Some nurse plants are able to buffer microenvironmental changes in the long term and may ensure the persistence of other alpine plants through local migration events. For communities migrating to higher elevations, facilitation should play an important role in their reorganization because of the harsher environmental conditions. In particular, the absence of efficient nurse plants might slow down upward migration, possibly generating chains of extinction. Facilitation-climate change relationships are expected to shift along latitudinal gradients because (1) the magnitude of warming is predicted to vary along these gradients, and (2) alpine environments are significantly different at low vs. high latitudes. Data on these expected patterns are preliminary and thus need to be tested with further studies on facilitation among plants in alpine environments that have thus far not been considered. From a methodological standpoint, future studies will benefit from the spatial representation of the microclimatic environment of plants to predict their response to climate change. Moreover, the acquisition of long-term data on the dynamics of plant-plant interactions, either through permanent plots or chronosequences of glacial recession, may represent powerful approaches to clarify the relationship between plant interactions and climate change.

  16. Facilitation among plants in alpine environments in the face of climate change

    PubMed Central

    Anthelme, Fabien; Cavieres, Lohengrin A.; Dangles, Olivier

    2014-01-01

    While there is a large consensus that plant–plant interactions are a crucial component of the response of plant communities to the effects of climate change, available data remain scarce, particularly in alpine systems. This represents an important obstacle to making consistent predictions about the future of plant communities. Here, we review current knowledge on the effects of climate change on facilitation among alpine plant communities and propose directions for future research. In established alpine communities, while warming seemingly generates a net facilitation release, earlier snowmelt may increase facilitation. Some nurse plants are able to buffer microenvironmental changes in the long term and may ensure the persistence of other alpine plants through local migration events. For communities migrating to higher elevations, facilitation should play an important role in their reorganization because of the harsher environmental conditions. In particular, the absence of efficient nurse plants might slow down upward migration, possibly generating chains of extinction. Facilitation–climate change relationships are expected to shift along latitudinal gradients because (1) the magnitude of warming is predicted to vary along these gradients, and (2) alpine environments are significantly different at low vs. high latitudes. Data on these expected patterns are preliminary and thus need to be tested with further studies on facilitation among plants in alpine environments that have thus far not been considered. From a methodological standpoint, future studies will benefit from the spatial representation of the microclimatic environment of plants to predict their response to climate change. Moreover, the acquisition of long-term data on the dynamics of plant–plant interactions, either through permanent plots or chronosequences of glacial recession, may represent powerful approaches to clarify the relationship between plant interactions and climate change. PMID:25161660

  17. Uncertainty of a hydrological climate change impact assessment - Is it really all about climate uncertainty?

    NASA Astrophysics Data System (ADS)

    Honti, Mark; Reichert, Peter; Scheidegger, Andreas; Stamm, Christian

    2013-04-01

    Climate change impact assessments have become more and more popular in hydrology since the middle 1980's with another boost after the publication of the IPCC AR4 report. During hundreds of impact studies a quasi-standard methodology emerged, which is mainly shaped by the growing public demand for predicting how water resources management or flood protection should change in the close future. The ``standard'' workflow considers future climate under a specific IPCC emission scenario simulated by global circulation models (GCMs), possibly downscaled by a regional climate model (RCM) and/or a stochastic weather generator. The output from the climate models is typically corrected for bias before feeding it into a calibrated hydrological model, which is run on the past and future meteorological data to analyse the impacts of climate change on the hydrological indicators of interest. The impact predictions are as uncertain as any forecast that tries to describe the behaviour of an extremely complex system decades into the future. Future climate predictions are uncertain due to the scenario uncertainty and the GCM model uncertainty that is obvious on finer resolution than continental scale. Like in any hierarchical model system, uncertainty propagates through the descendant components. Downscaling increases uncertainty with the deficiencies of RCMs and/or weather generators. Bias correction adds a strong deterministic shift to the input data. Finally the predictive uncertainty of the hydrological model ends the cascade that leads to the total uncertainty of the hydrological impact assessment. There is an emerging consensus between many studies on the relative importance of the different uncertainty sources. The prevailing perception is that GCM uncertainty dominates hydrological impact studies. There are only few studies, which found that the predictive uncertainty of hydrological models can be in the same range or even larger than climatic uncertainty. We carried out a climate change impact assessment and estimated the relative importance of the uncertainty sources. The study was performed on 2 small catchments in the Swiss Plateau with a lumped conceptual rainfall runoff model. In the climatic part we applied the standard ensemble approach to quantify uncertainty but in hydrology we used formal Bayesian uncertainty assessment method with 2 different likelihood functions. One was a time-series error model that was able to deal with the complicated statistical properties of hydrological model residuals. The second was a likelihood function for the flow quantiles directly. Due to the better data coverage and smaller hydrological complexity in one of our test catchments we had better performance from the hydrological model and thus could observe that the relative importance of different uncertainty sources varied between sites, boundary conditions and flow indicators. The uncertainty of future climate was important, but not dominant. The deficiencies of the hydrological model were on the same scale, especially for the sites and flow components where model performance for the past observations was further from optimal (Nash-Sutcliffe index = 0.5 - 0.7). The overall uncertainty of predictions was well beyond the expected change signal even for the best performing site and flow indicator.

  18. Metrics for comparing climate impacts of short- and long-lived climate forcing agents

    NASA Astrophysics Data System (ADS)

    Fuglestvedt, J.; Berntsen, T.

    2013-12-01

    Human activities emit a wide variety of gases and aerosols, with different characteristics that influence both air quality and climate. The emissions affect climate both directly and indirectly and operate on both short and long timescales. Tools that allow these emissions to be placed on a common scale in terms of climate impact, i.e. metrics, have a number of applications (e.g. agreements and emission trading schemes, when considering potential trade-offs between changes in emissions). The Kyoto Protocol compares greenhouse gas (GHG) emissions using the Global Warming Potential (GWP) over a 100 year time-horizon. The IPCC First Assessment Report states the GWP was presented to illustrate the difficulties in comparing GHGs. There have been many critiques of the GWP and several alternative emission metrics have been proposed, but there has been little focus on understanding the linkages between, and interpretations of, different emission metrics. Furthermore, the capability to compare components with very different lifetimes and temporal behaviour needs consideration. The temperature based metrics (e.g. the Global Temperature change Potential (GTP)) require a model for the temperature response, and additional uncertainty is thus introduced. Short-lived forcers may also give more spatially heterogeneous responses, and the possibilities to capture these spatial variations by using other indicators than global mean RF or temperature change in metrics will be discussed. The ultimate choice of emission metric(s) and time-horizon(s) should, however, depend on the objectives of climate policy. Alternatives to the current 'multi-gas and single-basket' approach will also be explored and discussed (e.g. how a two-target approach may be implemented using a two-basket approach). One example is measures to reduce near-term rate of warming and long-term stabilization which can be implemented through two separate targets and two baskets with separate set of metrics for each target, but still keeping all components in both baskets.

  19. A Multidisciplinary Approach to Assessing the Causal Components of Climate Change

    NASA Astrophysics Data System (ADS)

    Gosnold, W. D.; Todhunter, P. E.; Dong, X.; Rundquist, B.; Majorowicz, J.; Blackwell, D. D.

    2004-05-01

    Separation of climate forcing by anthropogenic greenhouse gases from natural radiative climate forcing is difficult because the composite temperature signal in the meteorological and multi-proxy temperature records cannot be resolved directly into radiative forcing components. To address this problem, we have initiated a large-scale, multidisciplinary project to test coherence between ground surface temperatures (GST) reconstructed from borehole T-z profiles, surface air temperatures (SAT), soil temperatures, and solar radiation. Our hypothesis is that radiative heating and heat exchange between the ground and the air directly control the ground surface temperature. Consequently, borehole T-z measurements at multi-year intervals spanning time periods when solar radiation, soil and air temperatures have been recorded should enable comparison of the thermal energy stored in the ground to these quantities. If coherence between energy storage, solar radiation, GST, SAT and multi-proxy temperature data can be discerned for a one or two decade scale, synthesis of GST and multi-proxy data over the past several centuries may enable us to separately determine the anthropogenic and natural forcings of climate change. The data we are acquiring include: (1) New T-z measurements in boreholes previously used in paleoclimate and heat flow research in Canada and the United States from the 1970's to the present. (2) Meteorological data from the US Historical Climatology Network and the Automated Weather Data Network of the High Plains Regional Climate Center, and Environment Canada. (3) Direct and remotely sensed data on land use, environment, and soil properties at selected borehole and meteorological sites for the periods between borehole observations. The project addresses three related questions: What is the coherence between the GST, SAT, soil temperatures and solar radiation? Have microclimate changes at borehole sites and climate stations affected temperature trends? If good coherence is obtained, can the coherence between thermal energy stored in the ground and radiative forcing during the time between T-z measurements be extended several centuries into the past?

  20. Evaluation of the multi-model CORDEX-Africa hindcast using RCMES

    NASA Astrophysics Data System (ADS)

    Kim, J.; Waliser, D. E.; Lean, P.; Mattmann, C. A.; Goodale, C. E.; Hart, A.; Zimdars, P.; Hewitson, B.; Jones, C.

    2011-12-01

    Recent global climate change studies have concluded with a high confidence level that the observed increasing trend in the global-mean surface air temperatures since mid-20th century is triggered by the emission of anthropogenic greenhouse gases (GHGs). The increase in the global-mean temperature due to anthropogenic emissions is nearly monotonic and may alter the climatological norms resulting in a new climate normal. In the presence of anthropogenic climate change, assessing regional impacts of the altered climate state and developing the plans for mitigating any adverse impacts are an important concern. Assessing future climate state and its impact remains a difficult task largely because of the uncertainties in future emissions and model errors. Uncertainties in climate projections propagates into impact assessment models and result in uncertainties in the impact assessments. In order to facilitate the evaluation of model data, a fundamental step for assessing model errors, the JPL Regional Climate Model Evaluation System (RCMES: Lean et al. 2010; Hart et al. 2011) has been developed through a joint effort of the investigators from UCLA and JPL. RCMES is also a regional climate component of a larger worldwide ExArch project. We will present the evaluation of the surface temperatures and precipitation from multiple RCMs participating in the African component of the Coordinated Regional Climate Downscaling Experiment (CORDEX) that has organized a suite of regional climate projection experiments in which multiple RCMs and GCMs are incorporated. As a part of the project, CORDEX organized a 20-year regional climate hindcast study in order to quantify and understand the uncertainties originating from model errors. Investigators from JPL, UCLA, and the CORDEX-Africa team collaborate to analyze the RCM hindcast data using RCMES. The analysis is focused on measuring the closeness between individual regional climate model outputs as well as their ensembles and observed data. The model evaluation is quantified in terms of widely used metrics. Details on the conceptual outline and architecture of RCMES is presented in two companion papers "The Regional climate model Evaluation System (RCMES) based on contemporary satellite and other observations for assessing regional climate model fidelity" and "A Reusable Framework for Regional Climate Model Evaluation" in GC07 and IN30, respectively.

Top