Sample records for climate change large

  1. Responses of large mammals to climate change.

    PubMed

    Hetem, Robyn S; Fuller, Andrea; Maloney, Shane K; Mitchell, Duncan

    2014-01-01

    Most large terrestrial mammals, including the charismatic species so important for ecotourism, do not have the luxury of rapid micro-evolution or sufficient range shifts as strategies for adjusting to climate change. The rate of climate change is too fast for genetic adaptation to occur in mammals with longevities of decades, typical of large mammals, and landscape fragmentation and population by humans too widespread to allow spontaneous range shifts of large mammals, leaving only the expression of latent phenotypic plasticity to counter effects of climate change. The expression of phenotypic plasticity includes anatomical variation within the same species, changes in phenology, and employment of intrinsic physiological and behavioral capacity that can buffer an animal against the effects of climate change. Whether that buffer will be realized is unknown, because little is known about the efficacy of the expression of plasticity, particularly for large mammals. Future research in climate change biology requires measurement of physiological characteristics of many identified free-living individual animals for long periods, probably decades, to allow us to detect whether expression of phenotypic plasticity will be sufficient to cope with climate change.

  2. Responses of large mammals to climate change

    PubMed Central

    Hetem, Robyn S; Fuller, Andrea; Maloney, Shane K; Mitchell, Duncan

    2014-01-01

    Most large terrestrial mammals, including the charismatic species so important for ecotourism, do not have the luxury of rapid micro-evolution or sufficient range shifts as strategies for adjusting to climate change. The rate of climate change is too fast for genetic adaptation to occur in mammals with longevities of decades, typical of large mammals, and landscape fragmentation and population by humans too widespread to allow spontaneous range shifts of large mammals, leaving only the expression of latent phenotypic plasticity to counter effects of climate change. The expression of phenotypic plasticity includes anatomical variation within the same species, changes in phenology, and employment of intrinsic physiological and behavioral capacity that can buffer an animal against the effects of climate change. Whether that buffer will be realized is unknown, because little is known about the efficacy of the expression of plasticity, particularly for large mammals. Future research in climate change biology requires measurement of physiological characteristics of many identified free-living individual animals for long periods, probably decades, to allow us to detect whether expression of phenotypic plasticity will be sufficient to cope with climate change. PMID:27583293

  3. Global climate forcing from albedo change caused by large-scale deforestation and reforestation: quantification and attribution of geographic variation

    USDA-ARS?s Scientific Manuscript database

    Large-scale deforestation and reforestation have contributed substantially to historical and contemporary global climate change in part through albedo-induced radiative forcing, with meaningful implications for forest management aiming to mitigate climate change. Associated warming or cooling varies...

  4. Regulation of snow-fed rivers affects flow regimes more than climate change.

    PubMed

    Arheimer, B; Donnelly, C; Lindström, G

    2017-07-05

    River flow is mainly controlled by climate, physiography and regulations, but their relative importance over large landmasses is poorly understood. Here we show from computational modelling that hydropower regulation is a key driver of flow regime change in snow-dominated regions and is more important than future climate changes. This implies that climate adaptation needs to include regulation schemes. The natural river regime in snowy regions has low flow when snow is stored and a pronounced peak flow when snow is melting. Global warming and hydropower regulation change this temporal pattern similarly, causing less difference in river flow between seasons. We conclude that in snow-fed rivers globally, the future climate change impact on flow regime is minor compared to regulation downstream of large reservoirs, and of similar magnitude over large landmasses. Our study not only highlights the impact of hydropower production but also that river regulation could be turned into a measure for climate adaptation to maintain biodiversity on floodplains under climate change.Global warming and hydropower regulations are major threats to future fresh-water availability and biodiversity. Here, the authors show that their impact on flow regime over a large landmass result in similar changes, but hydropower is more critical locally and may have potential for climate adaptation in floodplains.

  5. Contrasting responses to long-term climate change of carbon flows to benthic consumers in two different sized lakes in the Baltic area.

    NASA Astrophysics Data System (ADS)

    Belle, Simon; Freiberg, Rene; Poska, Anneli; Agasild, Helen; Alliksaar, Tiiu; Tõnno, Ilmar

    2018-05-01

    The study of lake sediments and archived biological remains is a promising approach to better understand the impacts of climate change on aquatic ecosystems. Small lakes have been shown to be strongly sensitive to past climate change, but similar information is lacking for large lakes. By identifying responses to climate change of carbon flows through benthic food web in two different sized lakes, we aimed to understand how lake morphometry can mediate the effects of climate change. We reconstructed the dynamics of phytoplankton community composition and carbon resources sustaining chironomid biomass during the Holocene from the combined analysis of sedimentary pigment quantification and carbon stable isotopic composition of subfossil chironomid head capsules (δ13CHC) in a large lake in the Baltic area (Estonia). Our results showed that chironomid biomass in the large lake was mainly sustained by phytoplankton, with no significant relationship between δ13CHC values and temperature fluctuations. We suggest that lake morphometry (including distance of the sampling zone to the shoreline, and lake volume for primary producers) mediates the effects of climate change, making large lakes less sensitive to climate change. Complementary studies are needed to better understand differences in organic matter dynamics in different sized lakes and to characterize the response of the aquatic carbon cycle to past climate change.

  6. Land degradation and climate change: building climate resilience in agriculture

    USDA-ARS?s Scientific Manuscript database

    Land degradation and climate change pose enormous risks to global food security. Land degradation increases the vulnerability of agroecological systems to climate change and reduces the effectiveness of adaptation options. Yet these interactions have largely been omitted from climate impact assessme...

  7. Ecosystem size structure response to 21st century climate projection: large fish abundance decreases in the central North Pacific and increases in the California Current.

    PubMed

    Woodworth-Jefcoats, Phoebe A; Polovina, Jeffrey J; Dunne, John P; Blanchard, Julia L

    2013-03-01

    Output from an earth system model is paired with a size-based food web model to investigate the effects of climate change on the abundance of large fish over the 21st century. The earth system model, forced by the Intergovernmental Panel on Climate Change (IPCC) Special report on emission scenario A2, combines a coupled climate model with a biogeochemical model including major nutrients, three phytoplankton functional groups, and zooplankton grazing. The size-based food web model includes linkages between two size-structured pelagic communities: primary producers and consumers. Our investigation focuses on seven sites in the North Pacific, each highlighting a specific aspect of projected climate change, and includes top-down ecosystem depletion through fishing. We project declines in large fish abundance ranging from 0 to 75.8% in the central North Pacific and increases of up to 43.0% in the California Current (CC) region over the 21st century in response to change in phytoplankton size structure and direct physiological effects. We find that fish abundance is especially sensitive to projected changes in large phytoplankton density and our model projects changes in the abundance of large fish being of the same order of magnitude as changes in the abundance of large phytoplankton. Thus, studies that address only climate-induced impacts to primary production without including changes to phytoplankton size structure may not adequately project ecosystem responses. © 2012 Blackwell Publishing Ltd.

  8. Climate change beliefs and hazard mitigation behaviors: Homeowners and wildfire risk

    Treesearch

    Hannah Brenkert-Smith; James R. Meldrum; Patricia A. Champ

    2015-01-01

    Downscaled climate models provide projections of how climate change may exacerbate the local impacts of natural hazards. The extent to which people facing exacerbated hazard conditions understand or respond to climate-related changes to local hazards has been largely overlooked. In this article, we examine the relationships among climate change beliefs, environmental...

  9. Species interactions reverse grassland responses to changing climate.

    PubMed

    Suttle, K B; Thomsen, Meredith A; Power, Mary E

    2007-02-02

    Predictions of ecological response to climate change are based largely on direct climatic effects on species. We show that, in a California grassland, species interactions strongly influence responses to changing climate, overturning direct climatic effects within 5 years. We manipulated the seasonality and intensity of rainfall over large, replicate plots in accordance with projections of leading climate models and examined responses across several trophic levels. Changes in seasonal water availability had pronounced effects on individual species, but as precipitation regimes were sustained across years, feedbacks and species interactions overrode autecological responses to water and reversed community trajectories. Conditions that sharply increased production and diversity through 2 years caused simplification of the food web and deep reductions in consumer abundance after 5 years. Changes in these natural grassland communities suggest a prominent role for species interactions in ecosystem response to climate change.

  10. Plant trait-based models identify direct and indirect effects of climate change on bundles of grassland ecosystem services

    PubMed Central

    Lamarque, Pénélope; Lavorel, Sandra; Mouchet, Maud; Quétier, Fabien

    2014-01-01

    Land use and climate change are primary causes of changes in the supply of ecosystem services (ESs). Although the consequences of climate change on ecosystem properties and associated services are well documented, the cascading impacts of climate change on ESs through changes in land use are largely overlooked. We present a trait-based framework based on an empirical model to elucidate how climate change affects tradeoffs among ESs. Using alternative scenarios for mountain grasslands, we predicted how direct effects of climate change on ecosystems and indirect effects through farmers’ adaptations are likely to affect ES bundles through changes in plant functional properties. ES supply was overall more sensitive to climate than to induced management change, and ES bundles remained stable across scenarios. These responses largely reflected the restricted extent of management change in this constrained system, which was incorporated when scaling up plot level climate and management effects on ecosystem properties to the entire landscape. The trait-based approach revealed how the combination of common driving traits and common responses to changed fertility determined interactions and tradeoffs among ESs. PMID:25225382

  11. Plant trait-based models identify direct and indirect effects of climate change on bundles of grassland ecosystem services.

    PubMed

    Lamarque, Pénélope; Lavorel, Sandra; Mouchet, Maud; Quétier, Fabien

    2014-09-23

    Land use and climate change are primary causes of changes in the supply of ecosystem services (ESs). Although the consequences of climate change on ecosystem properties and associated services are well documented, the cascading impacts of climate change on ESs through changes in land use are largely overlooked. We present a trait-based framework based on an empirical model to elucidate how climate change affects tradeoffs among ESs. Using alternative scenarios for mountain grasslands, we predicted how direct effects of climate change on ecosystems and indirect effects through farmers' adaptations are likely to affect ES bundles through changes in plant functional properties. ES supply was overall more sensitive to climate than to induced management change, and ES bundles remained stable across scenarios. These responses largely reflected the restricted extent of management change in this constrained system, which was incorporated when scaling up plot level climate and management effects on ecosystem properties to the entire landscape. The trait-based approach revealed how the combination of common driving traits and common responses to changed fertility determined interactions and tradeoffs among ESs.

  12. Progressive Mid-latitude Afforestation: Local and Remote Climate Impacts in the Framework of Two Coupled Earth System Models

    NASA Astrophysics Data System (ADS)

    Lague, Marysa

    Vegetation influences the atmosphere in complex and non-linear ways, such that large-scale changes in vegetation cover can drive changes in climate on both local and global scales. Large-scale land surface changes have been shown to introduce excess energy to one hemisphere, causing a shift in atmospheric circulation on a global scale. However, past work has not quantified how the climate response scales with the area of vegetation. Here, we systematically evaluate the response of climate to linearly increasing the area of forest cover over the northern mid-latitudes. We show that the magnitude of afforestation of the northern mid-latitudes determines the climate response in a non-linear fashion, and identify a threshold in vegetation-induced cloud feedbacks - a concept not previously addressed by large-scale vegetation manipulation experiments. Small increases in tree cover drive compensating cloud feedbacks, while latent heat fluxes reach a threshold after sufficiently large increases in tree cover, causing the troposphere to warm and dry, subsequently reducing cloud cover. Increased absorption of solar radiation at the surface is driven by both surface albedo changes and cloud feedbacks. We identify how vegetation-induced changes in cloud cover further feedback on changes in the global energy balance. We also show how atmospheric cross-equatorial energy transport changes as the area of afforestation is incrementally increased (a relationship which has not previously been demonstrated). This work demonstrates that while some climate effects (such as energy transport) of large scale mid-latitude afforestation scale roughly linearly across a wide range of afforestation areas, others (such as the local partitioning of the surface energy budget) are non-linear, and sensitive to the particular magnitude of mid-latitude forcing. Our results highlight the importance of considering both local and remote climate responses to large-scale vegetation change, and explore the scaling relationship between changes in vegetation cover and the resulting climate impacts.

  13. Large-Scale Ocean Circulation-Cloud Interactions Reduce the Pace of Transient Climate Change

    NASA Technical Reports Server (NTRS)

    Trossman, D. S.; Palter, J. B.; Merlis, T. M.; Huang, Y.; Xia, Y.

    2016-01-01

    Changes to the large scale oceanic circulation are thought to slow the pace of transient climate change due, in part, to their influence on radiative feedbacks. Here we evaluate the interactions between CO2-forced perturbations to the large-scale ocean circulation and the radiative cloud feedback in a climate model. Both the change of the ocean circulation and the radiative cloud feedback strongly influence the magnitude and spatial pattern of surface and ocean warming. Changes in the ocean circulation reduce the amount of transient global warming caused by the radiative cloud feedback by helping to maintain low cloud coverage in the face of global warming. The radiative cloud feedback is key in affecting atmospheric meridional heat transport changes and is the dominant radiative feedback mechanism that responds to ocean circulation change. Uncertainty in the simulated ocean circulation changes due to CO2 forcing may contribute a large share of the spread in the radiative cloud feedback among climate models.

  14. Large storage operations under climate change: expanding uncertainties and evolving tradeoffs

    NASA Astrophysics Data System (ADS)

    Giuliani, Matteo; Anghileri, Daniela; Castelletti, Andrea; Vu, Phuong Nam; Soncini-Sessa, Rodolfo

    2016-03-01

    In a changing climate and society, large storage systems can play a key role for securing water, energy, and food, and rebalancing their cross-dependencies. In this letter, we study the role of large storage operations as flexible means of adaptation to climate change. In particular, we explore the impacts of different climate projections for different future time horizons on the multi-purpose operations of the existing system of large dams in the Red River basin (China-Laos-Vietnam). We identify the main vulnerabilities of current system operations, understand the risk of failure across sectors by exploring the evolution of the system tradeoffs, quantify how the uncertainty associated to climate scenarios is expanded by the storage operations, and assess the expected costs if no adaptation is implemented. Results show that, depending on the climate scenario and the time horizon considered, the existing operations are predicted to change on average from -7 to +5% in hydropower production, +35 to +520% in flood damages, and +15 to +160% in water supply deficit. These negative impacts can be partially mitigated by adapting the existing operations to future climate, reducing the loss of hydropower to 5%, potentially saving around 34.4 million US year-1 at the national scale. Since the Red River is paradigmatic of many river basins across south east Asia, where new large dams are under construction or are planned to support fast growing economies, our results can support policy makers in prioritizing responses and adaptation strategies to the changing climate.

  15. Climate Change in the Classroom: Patterns, Motivations, and Barriers to Instruction among Colorado Science Teachers

    ERIC Educational Resources Information Center

    Wise, Sarah B.

    2010-01-01

    A large online survey of Colorado public school science teachers (n = 628) on the topic of climate change instruction was conducted in 2007. A majority of Earth science teachers were found to include climate and climate change in their courses. However, the majority of teachers of other science subjects only informally discuss climate change, if…

  16. High-Resolution Climate Data Visualization through GIS- and Web-based Data Portals

    NASA Astrophysics Data System (ADS)

    WANG, X.; Huang, G.

    2017-12-01

    Sound decisions on climate change adaptation rely on an in-depth assessment of potential climate change impacts at regional and local scales, which usually requires finer resolution climate projections at both spatial and temporal scales. However, effective downscaling of global climate projections is practically difficult due to the lack of computational resources and/or long-term reference data. Although a large volume of downscaled climate data has been make available to the public, how to understand and interpret the large-volume climate data and how to make use of the data to drive impact assessment and adaptation studies are still challenging for both impact researchers and decision makers. Such difficulties have become major barriers preventing informed climate change adaptation planning at regional scales. Therefore, this research will explore new GIS- and web-based technologies to help visualize the large-volume regional climate data with high spatiotemporal resolutions. A user-friendly public data portal, named Climate Change Data Portal (CCDP, http://ccdp.network), will be established to allow intuitive and open access to high-resolution regional climate projections at local scales. The CCDP offers functions of visual representation through geospatial maps and data downloading for a variety of climate variables (e.g., temperature, precipitation, relative humidity, solar radiation, and wind) at multiple spatial resolutions (i.e., 25 - 50 km) and temporal resolutions (i.e., annual, seasonal, monthly, daily, and hourly). The vast amount of information the CCDP encompasses can provide a crucial basis for assessing impacts of climate change on local communities and ecosystems and for supporting better decision making under a changing climate.

  17. Impacts of climate change on large forest wildfire of Washington and Oregon

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Davis, R. J.; Yost, A.; Cohen, W. B.

    2014-12-01

    Climate changes in the 21st century were projected to have major impact on wildfire. The state of Washington and Oregon contains a tightly coupled forest ecosystem and fire regime. The objective of this study was to examine the impact of future climate changes for large wildfire in the two states. MAXENT algorithm was used to develop a large forest wildfire suitability model using historical fire for the 1971-2000 time period and validated for 1981-2010 time period . Input variables include climate (e.g. July-August temperature) and topographic variables (e.g. elevation). The model test AUC of 0.77±0.1. Using the predicted versus expected curve and methods described by Hirzel and others (Hirzel et al. 2006), we reclassified the model into four classes; low suitability (0-0.36), moderate suitability 0.36-0.5), high suitability (0.5-0.75), and very high suitability (0.75-1.0). To examine the future climate change impact, climate scenarios (RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5) from 33 different climate models were used to predict the large wildfire suitability from 1971-2100 using the NASA Earth Exchange (NEX) Downscaled Climate Projections (NEX-DCP30) dataset. Results from ensembles of all the climate scenarios showed that the area with high and very high suitability for large wildfire increased under all 4 climate scenarios from 1971 to 2100. However, under RCP 2.6, the area start to decline from 2080 while the other three scenarios keep increasing. On the extreme case of RCP 8.5, very high suitable area increases from less than 1% during 1971-2000 to 14.9% during 2070-2100. Details about temporal patterns for the study area and changes by ecoregions will be presented.

  18. Abrupt climate change: can society cope?

    PubMed

    Hulme, Mike

    2003-09-15

    Consideration of abrupt climate change has generally been incorporated neither in analyses of climate-change impacts nor in the design of climate adaptation strategies. Yet the possibility of abrupt climate change triggered by human perturbation of the climate system is used to support the position of both those who urge stronger and earlier mitigative action than is currently being contemplated and those who argue that the unknowns in the Earth system are too large to justify such early action. This paper explores the question of abrupt climate change in terms of its potential implications for society, focusing on the UK and northwest Europe in particular. The nature of abrupt climate change and the different ways in which it has been defined and perceived are examined. Using the example of the collapse of the thermohaline circulation (THC), the suggested implications for society of abrupt climate change are reviewed; previous work has been largely speculative and has generally considered the implications only from economic and ecological perspectives. Some observations about the implications from a more social and behavioural science perspective are made. If abrupt climate change simply implies changes in the occurrence or intensity of extreme weather events, or an accelerated unidirectional change in climate, the design of adaptation to climate change can proceed within the existing paradigm, with appropriate adjustments. Limits to adaptation in some sectors or regions may be reached, and the costs of appropriate adaptive behaviour may be large, but strategy can develop on the basis of a predicted long-term unidirectional change in climate. It would be more challenging, however, if abrupt climate change implied a directional change in climate, as, for example, may well occur in northwest Europe following a collapse of the THC. There are two fundamental problems for society associated with such an outcome: first, the future changes in climate currently being anticipated and prepared for may reverse and, second, the probability of such a scenario occurring remains fundamentally unknown. The implications of both problems for climate policy and for decision making have not been researched. It is premature to argue therefore that abrupt climate change - in the sense referred to here - imposes unacceptable costs on society or the world economy, represents a catastrophic impact of climate change or constitutes a dangerous change in climate that should be avoided at all reasonable cost. We conclude by examining the implications of this contention for future research and policy formation.

  19. A global economic assessment of city policies to reduce climate change impacts

    NASA Astrophysics Data System (ADS)

    Estrada, Francisco; Botzen, W. J. Wouter; Tol, Richard S. J.

    2017-06-01

    Climate change impacts can be especially large in cities. Several large cities are taking climate change into account in long-term strategies, for which it is important to have information on the costs and benefits of adaptation. Studies on climate change impacts in cities mostly focus on a limited set of countries and risks, for example sea-level rise, health and water resources. Most of these studies are qualitative, except for the costs of sea-level rise in cities. These impact estimates do not take into account that large cities will experience additional warming due to the urban heat island effect, that is, the change of local climate patterns caused by urbanization. Here we provide a quantitative assessment of the economic costs of the joint impacts of local and global climate change for all main cities around the world. Cost-benefit analyses are presented of urban heat island mitigation options, including green and cool roofs and cool pavements. It is shown that local actions can be a climate risk-reduction instrument. Furthermore, limiting the urban heat island through city adaptation plans can significantly amplify the benefits of international mitigation efforts.

  20. Palaeoclimatic insights into future climate challenges.

    PubMed

    Alley, Richard B

    2003-09-15

    Palaeoclimatic data document a sensitive climate system subject to large and perhaps difficult-to-predict abrupt changes. These data suggest that neither the sensitivity nor the variability of the climate are fully captured in some climate-change projections, such as the Intergovernmental Panel on Climate Change (IPCC) Summary for Policymakers. Because larger, faster and less-expected climate changes can cause more problems for economies and ecosystems, the palaeoclimatic data suggest the hypothesis that the future may be more challenging than anticipated in ongoing policy making. Large changes have occurred repeatedly with little net forcing. Increasing carbon dioxide concentration appears to have globalized deglacial warming, with climate sensitivity near the upper end of values from general circulation models (GCMs) used to project human-enhanced greenhouse warming; data from the warm Cretaceous period suggest a similarly high climate sensitivity to CO(2). Abrupt climate changes of the most recent glacial-interglacial cycle occurred during warm as well as cold times, linked especially to changing North Atlantic freshwater fluxes. GCMs typically project greenhouse-gas-induced North Atlantic freshening and circulation changes with notable but not extreme consequences; however, such models often underestimate the magnitude, speed or extent of past changes. Targeted research to assess model uncertainties would help to test these hypotheses.

  1. Contrasting impacts of climate and competition on large sugar pine growth and defense in a fire-excluded forest of the Central Sierra Nevada

    Treesearch

    Andrew Slack; Jeffrey Kane; Eric Knapp; Rosemary Sherriff

    2017-01-01

    Many forest ecosystems with a large pine component in the western United States have experienced environmental stress associated with climate change and increased competition with forest densification in the absence of fire. Information on how changes in climate and competition affect carbon allocation to tree growth and defense is needed to anticipate changes to tree...

  2. Climate catastrophes

    NASA Astrophysics Data System (ADS)

    Budyko, Mikhail

    1999-05-01

    Climate catastrophes, which many times occurred in the geological past, caused the extinction of large or small populations of animals and plants. Changes in the terrestrial and marine biota caused by the catastrophic climate changes undoubtedly resulted in considerable fluctuations in global carbon cycle and atmospheric gas composition. Primarily, carbon dioxide and other greenhouse gas contents were affected. The study of these catastrophes allows a conclusion that climate system is very sensitive to relatively small changes in climate-forcing factors (transparency of the atmosphere, changes in large glaciations, etc.). It is important to take this conclusion into account while estimating the possible consequences of now occurring anthropogenic warming caused by the increase in greenhouse gas concentration in the atmosphere.

  3. Integrated approaches to climate-crop modelling: needs and challenges.

    PubMed

    Betts, Richard A

    2005-11-29

    This paper discusses the need for a more integrated approach to modelling changes in climate and crops, and some of the challenges posed by this. While changes in atmospheric composition are expected to exert an increasing radiative forcing of climate change leading to further warming of global mean temperatures and shifts in precipitation patterns, these are not the only climatic processes which may influence crop production. Changes in the physical characteristics of the land cover may also affect climate; these may arise directly from land use activities and may also result from the large-scale responses of crops to seasonal, interannual and decadal changes in the atmospheric state. Climate models used to drive crop models may, therefore, need to consider changes in the land surface, either as imposed boundary conditions or as feedbacks from an interactive climate-vegetation model. Crops may also respond directly to changes in atmospheric composition, such as the concentrations of carbon dioxide (CO2), ozone (03) and compounds of sulphur and nitrogen, so crop models should consider these processes as well as climate change. Changes in these, and the responses of the crops, may be intimately linked with meteorological processes so crop and climate models should consider synergies between climate and atmospheric chemistry. Some crop responses may occur at scales too small to significantly influence meteorology, so may not need to be included as feedbacks within climate models. However, the volume of data required to drive the appropriate crop models may be very large, especially if short-time-scale variability is important. Implementation of crop models within climate models would minimize the need to transfer large quantities of data between separate modelling systems. It should also be noted that crop responses to climate change may interact with other impacts of climate change, such as hydrological changes. For example, the availability of water for irrigation may be affected by changes in runoff as a direct consequence of climate change, and may also be affected by climate-related changes in demand for water for other uses. It is, therefore, necessary to consider the interactions between the responses of several impacts sectors to climate change. Overall, there is a strong case for a much closer coupling between models of climate, crops and hydrology, but this in itself poses challenges arising from issues of scale and errors in the models. A strategy is proposed whereby the pursuit of a fully coupled climate-chemistry-crop-hydrology model is paralleled by continued use of separate climate and land surface models but with a focus on consistency between the models.

  4. Climate change in grasslands, shrublands, and deserts of the interior American West: a review and needs assessment

    Treesearch

    Deborah M. Finch

    2012-01-01

    Recent research and species distribution modeling predict large changes in the distributions of species and vegetation types in the western interior of the United States in response to climate change. This volume reviews existing climate models that predict species and vegetation changes in the western United States, and it synthesizes knowledge about climate change...

  5. Elevational shifts in thermal suitability for mountain pine beetle population growth in a changing climate

    Treesearch

    Barbara J. Bentz; Jacob P. Duncan; James A. Powell

    2016-01-01

    Future forests are being shaped by changing climate and disturbances. Climate change is causing large-scale forest declines globally, in addition to distributional shifts of many tree species. Because environmental cues dictate insect seasonality and population success, climate change is also influencing tree-killing bark beetles. The mountain pine beetle,...

  6. Regional projections of the likelihood of very large wildland fires under a changing climate in the contiguous Western United States

    Treesearch

    Donald McKenzie; John T. Abatzoglou; E. Natasha Stavros; Narasimhan K. Larkin

    2014-01-01

    Seasonal changes in the climatic potential for very large wildfires (VLWF >= 50,000 ac~20,234 ha) across the western contiguous United States are projected over the 21st century using generalized linear models and downscaled climate projections for two representative concentration pathways (RCPs). Significant (p

  7. Climate analogues suggest limited potential for intensification of production on current croplands under climate change

    PubMed Central

    Pugh, T.A.M.; Müller, C.; Elliott, J.; Deryng, D.; Folberth, C.; Olin, S.; Schmid, E.; Arneth, A.

    2016-01-01

    Climate change could pose a major challenge to efforts towards strongly increase food production over the coming decades. However, model simulations of future climate-impacts on crop yields differ substantially in the magnitude and even direction of the projected change. Combining observations of current maximum-attainable yield with climate analogues, we provide a complementary method of assessing the effect of climate change on crop yields. Strong reductions in attainable yields of major cereal crops are found across a large fraction of current cropland by 2050. These areas are vulnerable to climate change and have greatly reduced opportunity for agricultural intensification. However, the total land area, including regions not currently used for crops, climatically suitable for high attainable yields of maize, wheat and rice is similar by 2050 to the present-day. Large shifts in land-use patterns and crop choice will likely be necessary to sustain production growth rates and keep pace with demand. PMID:27646707

  8. Climate Analogues Suggest Limited Potential for Intensification of Production on Current Croplands Under Climate Change

    NASA Technical Reports Server (NTRS)

    Pugh, T. A. M.; Mueller, C.; Elliott, J.; Deryng, D.; Folberth, C.; Olin, S.; Schmid, E.; Arneth, A.

    2016-01-01

    Climate change could pose a major challenge to efforts towards strongly increase food production over the coming decades. However, model simulations of future climate-impacts on crop yields differ substantially in the magnitude and even direction of the projected change. Combining observations of current maximum-attainable yield with climate analogues, we provide a complementary method of assessing the effect of climate change on crop yields. Strong reductions in attainable yields of major cereal crops are found across a large fraction of current cropland by 2050. These areas are vulnerable to climate change and have greatly reduced opportunity for agricultural intensification. However, the total land area, including regions not currently used for crops, climatically suitable for high attainable yields of maize, wheat and rice is similar by 2050 to the present-day. Large shifts in land-use patterns and crop choice will likely be necessary to sustain production growth rates and keep pace with demand.

  9. Climate analogues suggest limited potential for intensification of production on current croplands under climate change

    NASA Astrophysics Data System (ADS)

    Pugh, T. A. M.; Müller, C.; Elliott, J.; Deryng, D.; Folberth, C.; Olin, S.; Schmid, E.; Arneth, A.

    2016-09-01

    Climate change could pose a major challenge to efforts towards strongly increase food production over the coming decades. However, model simulations of future climate-impacts on crop yields differ substantially in the magnitude and even direction of the projected change. Combining observations of current maximum-attainable yield with climate analogues, we provide a complementary method of assessing the effect of climate change on crop yields. Strong reductions in attainable yields of major cereal crops are found across a large fraction of current cropland by 2050. These areas are vulnerable to climate change and have greatly reduced opportunity for agricultural intensification. However, the total land area, including regions not currently used for crops, climatically suitable for high attainable yields of maize, wheat and rice is similar by 2050 to the present-day. Large shifts in land-use patterns and crop choice will likely be necessary to sustain production growth rates and keep pace with demand.

  10. A global conservation system for climate-change adaptation.

    PubMed

    Hannah, Lee

    2010-02-01

    Climate change has created the need for a new strategic framework for conservation. This framework needs to include new protected areas that account for species range shifts and management that addresses large-scale change across international borders. Actions within the framework must be effective in international waters and across political frontiers and have the ability to accommodate large income and ability-to-pay discrepancies between countries. A global protected-area system responds to these needs. A fully implemented global system of protected areas will help in the transition to a new conservation paradigm robust to climate change and will ensure the integrity of the climate services provided by carbon sequestration from the world's natural habitats. The internationally coordinated response to climate change afforded by such a system could have significant cost savings relative to a system of climate adaptation that unfolds solely at a country level. Implementation of a global system is needed very soon because the effects of climate change on species and ecosystems are already well underway.

  11. Global climate change impacts in the United States

    DOT National Transportation Integrated Search

    2009-06-01

    This report summarizes the science of climate change and the impacts of climate change on the United States, now and in the future. It is largely based on results of the U.S. Global Change Research Program (USGCRP), a and integrates those results wit...

  12. An imperative need for global change research in tropical forests.

    PubMed

    Zhou, Xuhui; Fu, Yuling; Zhou, Lingyan; Li, Bo; Luo, Yiqi

    2013-09-01

    Tropical forests play a crucial role in regulating regional and global climate dynamics, and model projections suggest that rapid climate change may result in forest dieback or savannization. However, these predictions are largely based on results from leaf-level studies. How tropical forests respond and feedback to climate change is largely unknown at the ecosystem level. Several complementary approaches have been used to evaluate the effects of climate change on tropical forests, but the results are conflicting, largely due to confounding effects of multiple factors. Although altered precipitation and nitrogen deposition experiments have been conducted in tropical forests, large-scale warming and elevated carbon dioxide (CO2) manipulations are completely lacking, leaving many hypotheses and model predictions untested. Ecosystem-scale experiments to manipulate temperature and CO2 concentration individually or in combination are thus urgently needed to examine their main and interactive effects on tropical forests. Such experiments will provide indispensable data and help gain essential knowledge on biogeochemical, hydrological and biophysical responses and feedbacks of tropical forests to climate change. These datasets can also inform regional and global models for predicting future states of tropical forests and climate systems. The success of such large-scale experiments in natural tropical forests will require an international framework to coordinate collaboration so as to meet the challenges in cost, technological infrastructure and scientific endeavor.

  13. On the limitations of General Circulation Climate Models

    NASA Technical Reports Server (NTRS)

    Stone, Peter H.; Risbey, James S.

    1990-01-01

    General Circulation Models (GCMs) by definition calculate large-scale dynamical and thermodynamical processes and their associated feedbacks from first principles. This aspect of GCMs is widely believed to give them an advantage in simulating global scale climate changes as compared to simpler models which do not calculate the large-scale processes from first principles. However, it is pointed out that the meridional transports of heat simulated GCMs used in climate change experiments differ from observational analyses and from other GCMs by as much as a factor of two. It is also demonstrated that GCM simulations of the large scale transports of heat are sensitive to the (uncertain) subgrid scale parameterizations. This leads to the question whether current GCMs are in fact superior to simpler models for simulating temperature changes associated with global scale climate change.

  14. Leveraging the Novel Climates of Arboreta to Understand Tree Responses to Climate Change

    NASA Astrophysics Data System (ADS)

    Ettinger, A.; Wolkovich, E. M.; Joly, S.

    2016-12-01

    Rising global temperatures are expected to cause large-scale changes to forests, including altered mortality and recruitment rates, and dramatic changes in species composition, but exactly how tree growth will be affected by climate change is uncertain. Studies to date suggest that temperate and boreal tree responses to warming range from growing faster, slower, or at unchanged rates. Here we present an approach and preliminary findings that will improve predictions of tree responses to climate change by studying how tree traits, including phenology (e.g. the timing of leaf-out), wood density, leaf mass area, and height, relate to climate sensitivity (i.e. growth responses to annual changes in climate, Figure 1). We demonstrate how arboreta can be used to understand tree responses to climate change using 500 individuals across 65 tree species growing at the Arnold Arboretum, Boston, Massachusetts. Arboretum provide a unique opportunities for understanding temperate tree responses to climate change: they provide large collections of woody species growing together that enable traits to be studied across diverse species in a phylogenetic context. Furthermore, many species in arboreta are nonnative and have been exposed to "novel" climates that may resemble future conditions in their native distributions. We use a phylogenetic approach to understand how annual growth and climate sensitivity relate to focal traits, and asses what these findings may tell us about tree responses to climate change.

  15. Transferability of optimally-selected climate models in the quantification of climate change impacts on hydrology

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Brissette, François P.; Lucas-Picher, Philippe

    2016-11-01

    Given the ever increasing number of climate change simulations being carried out, it has become impractical to use all of them to cover the uncertainty of climate change impacts. Various methods have been proposed to optimally select subsets of a large ensemble of climate simulations for impact studies. However, the behaviour of optimally-selected subsets of climate simulations for climate change impacts is unknown, since the transfer process from climate projections to the impact study world is usually highly non-linear. Consequently, this study investigates the transferability of optimally-selected subsets of climate simulations in the case of hydrological impacts. Two different methods were used for the optimal selection of subsets of climate scenarios, and both were found to be capable of adequately representing the spread of selected climate model variables contained in the original large ensemble. However, in both cases, the optimal subsets had limited transferability to hydrological impacts. To capture a similar variability in the impact model world, many more simulations have to be used than those that are needed to simply cover variability from the climate model variables' perspective. Overall, both optimal subset selection methods were better than random selection when small subsets were selected from a large ensemble for impact studies. However, as the number of selected simulations increased, random selection often performed better than the two optimal methods. To ensure adequate uncertainty coverage, the results of this study imply that selecting as many climate change simulations as possible is the best avenue. Where this was not possible, the two optimal methods were found to perform adequately.

  16. Continued warming could transform Greater Yellowstone fire regimes by mid-21st century

    Treesearch

    Anthony L. Westerling; Monica G. Turner; Erica A. H. Smithwick; William H. Romme; Michael G. Ryan

    2011-01-01

    Climate change is likely to alter wildfire regimes, but the magnitude and timing of potential climate-driven changes in regional fire regimes are not well understood. We considered how the occurrence, size, and spatial location of large fires might respond to climate projections in the Greater Yellowstone ecosystem (GYE) (Wyoming), a large wildland ecosystem dominated...

  17. The causality analysis of climate change and large-scale human crisis

    PubMed Central

    Zhang, David D.; Lee, Harry F.; Wang, Cong; Li, Baosheng; Pei, Qing; Zhang, Jane; An, Yulun

    2011-01-01

    Recent studies have shown strong temporal correlations between past climate changes and societal crises. However, the specific causal mechanisms underlying this relation have not been addressed. We explored quantitative responses of 14 fine-grained agro-ecological, socioeconomic, and demographic variables to climate fluctuations from A.D. 1500–1800 in Europe. Results show that cooling from A.D. 1560–1660 caused successive agro-ecological, socioeconomic, and demographic catastrophes, leading to the General Crisis of the Seventeenth Century. We identified a set of causal linkages between climate change and human crisis. Using temperature data and climate-driven economic variables, we simulated the alternation of defined “golden” and “dark” ages in Europe and the Northern Hemisphere during the past millennium. Our findings indicate that climate change was the ultimate cause, and climate-driven economic downturn was the direct cause, of large-scale human crises in preindustrial Europe and the Northern Hemisphere. PMID:21969578

  18. The causality analysis of climate change and large-scale human crisis.

    PubMed

    Zhang, David D; Lee, Harry F; Wang, Cong; Li, Baosheng; Pei, Qing; Zhang, Jane; An, Yulun

    2011-10-18

    Recent studies have shown strong temporal correlations between past climate changes and societal crises. However, the specific causal mechanisms underlying this relation have not been addressed. We explored quantitative responses of 14 fine-grained agro-ecological, socioeconomic, and demographic variables to climate fluctuations from A.D. 1500-1800 in Europe. Results show that cooling from A.D. 1560-1660 caused successive agro-ecological, socioeconomic, and demographic catastrophes, leading to the General Crisis of the Seventeenth Century. We identified a set of causal linkages between climate change and human crisis. Using temperature data and climate-driven economic variables, we simulated the alternation of defined "golden" and "dark" ages in Europe and the Northern Hemisphere during the past millennium. Our findings indicate that climate change was the ultimate cause, and climate-driven economic downturn was the direct cause, of large-scale human crises in preindustrial Europe and the Northern Hemisphere.

  19. Quantifying streamflow change caused by forest disturbance at a large spatial scale: A single watershed study

    NASA Astrophysics Data System (ADS)

    Wei, Xiaohua; Zhang, Mingfang

    2010-12-01

    Climatic variability and forest disturbance are commonly recognized as two major drivers influencing streamflow change in large-scale forested watersheds. The greatest challenge in evaluating quantitative hydrological effects of forest disturbance is the removal of climatic effect on hydrology. In this paper, a method was designed to quantify respective contributions of large-scale forest disturbance and climatic variability on streamflow using the Willow River watershed (2860 km2) located in the central part of British Columbia, Canada. Long-term (>50 years) data on hydrology, climate, and timber harvesting history represented by equivalent clear-cutting area (ECA) were available to discern climatic and forestry influences on streamflow by three steps. First, effective precipitation, an integrated climatic index, was generated by subtracting evapotranspiration from precipitation. Second, modified double mass curves were developed by plotting accumulated annual streamflow against annual effective precipitation, which presented a much clearer picture of the cumulative effects of forest disturbance on streamflow following removal of climatic influence. The average annual streamflow changes that were attributed to forest disturbances and climatic variability were then estimated to be +58.7 and -72.4 mm, respectively. The positive (increasing) and negative (decreasing) values in streamflow change indicated opposite change directions, which suggest an offsetting effect between forest disturbance and climatic variability in the study watershed. Finally, a multivariate Autoregressive Integrated Moving Average (ARIMA) model was generated to establish quantitative relationships between accumulated annual streamflow deviation attributed to forest disturbances and annual ECA. The model was then used to project streamflow change under various timber harvesting scenarios. The methodology can be effectively applied to any large-scale single watershed where long-term data (>50 years) are available.

  20. Integrated approaches to climate–crop modelling: needs and challenges

    PubMed Central

    A. Betts, Richard

    2005-01-01

    This paper discusses the need for a more integrated approach to modelling changes in climate and crops, and some of the challenges posed by this. While changes in atmospheric composition are expected to exert an increasing radiative forcing of climate change leading to further warming of global mean temperatures and shifts in precipitation patterns, these are not the only climatic processes which may influence crop production. Changes in the physical characteristics of the land cover may also affect climate; these may arise directly from land use activities and may also result from the large-scale responses of crops to seasonal, interannual and decadal changes in the atmospheric state. Climate models used to drive crop models may, therefore, need to consider changes in the land surface, either as imposed boundary conditions or as feedbacks from an interactive climate–vegetation model. Crops may also respond directly to changes in atmospheric composition, such as the concentrations of carbon dioxide (CO2), ozone (O3) and compounds of sulphur and nitrogen, so crop models should consider these processes as well as climate change. Changes in these, and the responses of the crops, may be intimately linked with meteorological processes so crop and climate models should consider synergies between climate and atmospheric chemistry. Some crop responses may occur at scales too small to significantly influence meteorology, so may not need to be included as feedbacks within climate models. However, the volume of data required to drive the appropriate crop models may be very large, especially if short-time-scale variability is important. Implementation of crop models within climate models would minimize the need to transfer large quantities of data between separate modelling systems. It should also be noted that crop responses to climate change may interact with other impacts of climate change, such as hydrological changes. For example, the availability of water for irrigation may be affected by changes in runoff as a direct consequence of climate change, and may also be affected by climate-related changes in demand for water for other uses. It is, therefore, necessary to consider the interactions between the responses of several impacts sectors to climate change. Overall, there is a strong case for a much closer coupling between models of climate, crops and hydrology, but this in itself poses challenges arising from issues of scale and errors in the models. A strategy is proposed whereby the pursuit of a fully coupled climate–chemistry–crop–hydrology model is paralleled by continued use of separate climate and land surface models but with a focus on consistency between the models. PMID:16433093

  1. Warming climate may negatively affect native forest understory plant richness and composition by increasing invasions of non-native plants

    NASA Astrophysics Data System (ADS)

    Dovciak, M.; Wason, J. W., III; Frair, J.; Lesser, M.; Hurst, J.

    2016-12-01

    Warming climate is often expected to cause poleward and upslope migrations of native plant species and facilitate the spread of non-native plants, and thus affect the composition and diversity of forest understory plant communities. However, changing climate can often interact with other components of global environmental change, and especially so with land use, which often varies along extant climatic gradients making it more difficult to predict species and biodiversity responses to changing climate. We used large national databases (USDA FIA, NLCD, and PRISM) within GLM and NMDS analytical frameworks to study the effects of climate (temperature and precipitation), and land management (type, fragmentation, time since disturbance) on the diversity and composition of native and non-native plant species in forest understories across large geographical (environmental) gradients of the northeastern United States. We tested how non-native and native species diversity and composition responded to existing climate gradients and land-use drivers, and we approximated how changing climate may affect both native and non-native species composition and richness under different climate change scenarios (+1.5, 2, and 4.8 degrees C). Many understory forest plant communities already contain large proportions of non-native plants, particularly so in relatively warmer and drier areas, at lower elevations, and in areas with more substantial land-use histories. On the other hand, cooler and moister areas, higher elevations, and areas used predominantly for forestry or nature conservation (i.e., large contiguous forest cover) were characterized by a low proportion of non-native plant species in terms of both species cover and richness. In contrast to native plants, non-native plant richness was related positively to mean annual temperature and negatively to precipitation. Mountain areas appeared to serve as refugia for native forest understory species under the current climate, but considering various climate change scenarios (including IPCC) suggested that many of these climate refugia may considerably decline even under more moderate climate change scenarios as they may become increasingly invaded by non-native plant species.

  2. Response of the tropical Pacific to abrupt climate change 8,200 years ago

    NASA Astrophysics Data System (ADS)

    Atwood, A. R.; Battisti, D.; Bitz, C. M.; Sachs, J. P.

    2017-12-01

    The relatively stable climate of the Holocene epoch was punctuated by a period of large and abrupt climate change ca. 8,200 yr BP, when an outburst of glacial meltwater into the Labrador Sea drove large and abrupt climate changes across the globe. However, little is known about the response of the tropical Pacific to this event. We present the first evidence for large perturbations to the eastern tropical Pacific climate, based on sedimentary biomarker and hydrogen isotopic records from a freshwater lake in the Galápagos Islands. We inform these reconstructions with freshwater forcing simulations performed with the Community Climate System Model version 4. Together, the biomarker records and model simulations provide evidence for a mechanistic link between (1) a southward shift of the Intertropical Convergence Zone in the eastern equatorial Pacific and (2) decreased frequency and/or intensity of Eastern Pacific El Niño events during the 8,200 BP event. While climate theory and modeling studies support a southward shift of the ITCZ in response to a weakened AMOC, the dynamical drivers for the observed change in ENSO variability are less well developed. To explore these linkages, we perform simulations with an intermediate complexity model of the tropical Pacific. These results provide valuable insight into the controls of tropical Pacific climate variability and the mechanisms behind the global response to abrupt climate change.

  3. Effects of fire suppression under a changing climate in Pacific Northwest mixed-pine forests

    NASA Astrophysics Data System (ADS)

    Hanan, E. J.; Tague, C.; Bart, R. R.; Kennedy, M. C.; Abatzoglou, J. T.; Kolden, C.; Adam, J. C.

    2017-12-01

    The frequency of large and severe wildfires has increased over recent decades in many regions across the Western U.S., including the Pacific and Inland Northwest. This increase is likely driven in large part by wildfire suppression, which has promoted fuel accumulation in western landscapes. Recent studies also suggest that anthropogenic climate change intensifies wildfire activity by increasing fuel aridity. However, the contribution of these drivers to observed changes in fire regime is not well quantified at regional scales. Understanding the relative influence of climate and fire suppression is crucial for both projecting the effects of climate change on future fire spread, and for developing site-specific fuel management strategies under a new climate paradigm. To quantify the extent to which fire suppression and climate change have contributed to increases in wildfire activity in the Pacific Northwest, we conduct a modeling experiment using the ecohydrologic model RHESSys and the coupled stochastic fire spread model WMFire. Specifically, we use historical climate inputs from GCMs, combined with fire suppression scenarios to gauge the extent to which these drivers promote the spread of severe wildfires in Johnson Creek, a large (565-km2) mixed-pine dominated subcatchment of the Southfork Salmon River; part of the larger Columbia River Basin. We run 500 model iterations for suppressed, intermediate, and unsuppressed fire management scenarios, both with and without climate change in a factorial design, focusing on fire spread surrounding two extreme fire years in Johnson Creek (1998 and 2007). After deriving fire spread "fingerprints" for each combination of possible drivers, we evaluate the extent to which these fingerprints match observations in the fire record. We expect that climate change plays a role in the spread of large and severe wildfires in Johnson Creek, but the magnitude of this effect is mediated by prior suppression. Preliminary results suggest that management strategies aimed at reducing the extent of contiguous even-aged fuels may help curtail climate-driven increases in wildfire severity in Pacific Northwest watersheds.

  4. Modeling climate change impacts on groundwater resources using transient stochastic climatic scenarios

    NASA Astrophysics Data System (ADS)

    Goderniaux, Pascal; BrouyèRe, Serge; Blenkinsop, Stephen; Burton, Aidan; Fowler, Hayley J.; Orban, Philippe; Dassargues, Alain

    2011-12-01

    Several studies have highlighted the potential negative impact of climate change on groundwater reserves, but additional work is required to help water managers plan for future changes. In particular, existing studies provide projections for a stationary climate representative of the end of the century, although information is demanded for the near future. Such time-slice experiments fail to account for the transient nature of climatic changes over the century. Moreover, uncertainty linked to natural climate variability is not explicitly considered in previous studies. In this study we substantially improve upon the state-of-the-art by using a sophisticated transient weather generator in combination with an integrated surface-subsurface hydrological model (Geer basin, Belgium) developed with the finite element modeling software "HydroGeoSphere." This version of the weather generator enables the stochastic generation of large numbers of equiprobable climatic time series, representing transient climate change, and used to assess impacts in a probabilistic way. For the Geer basin, 30 equiprobable climate change scenarios from 2010 to 2085 have been generated for each of six different regional climate models (RCMs). Results show that although the 95% confidence intervals calculated around projected groundwater levels remain large, the climate change signal becomes stronger than that of natural climate variability by 2085. Additionally, the weather generator's ability to simulate transient climate change enabled the assessment of the likely time scale and associated uncertainty of a specific impact, providing managers with additional information when planning further investment. This methodology constitutes a real improvement in the field of groundwater projections under climate change conditions.

  5. Response of Sierra Nevada forests to projected climate-wildfire interactions.

    PubMed

    Liang, Shuang; Hurteau, Matthew D; Westerling, Anthony LeRoy

    2017-05-01

    Climate influences forests directly and indirectly through disturbance. The interaction of climate change and increasing area burned has the potential to alter forest composition and community assembly. However, the overall forest response is likely to be influenced by species-specific responses to environmental change and the scale of change in overstory species cover. In this study, we sought to quantify how projected changes in climate and large wildfire size would alter forest communities and carbon (C) dynamics, irrespective of competition from nontree species and potential changes in other fire regimes, across the Sierra Nevada, USA. We used a species-specific, spatially explicit forest landscape model (LANDIS-II) to evaluate forest response to climate-wildfire interactions under historical (baseline) climate and climate projections from three climate models (GFDL, CCSM3, and CNRM) forced by a medium-high emission scenario (A2) in combination with corresponding climate-specific large wildfire projections. By late century, we found modest changes in the spatial distribution of dominant species by biomass relative to baseline, but extensive changes in recruitment distribution. Although forest recruitment declined across much of the Sierra, we found that projected climate and wildfire favored the recruitment of more drought-tolerant species over less drought-tolerant species relative to baseline, and this change was greatest at mid-elevations. We also found that projected climate and wildfire decreased tree species richness across a large proportion of the study area and transitioned more area to a C source, which reduced landscape-level C sequestration potential. Our study, although a conservative estimate, suggests that by late century, forest community distributions may not change as intact units as predicted by biome-based modeling, but are likely to trend toward simplified community composition as communities gradually disaggregate and the least tolerant species are no longer able to establish. The potential exists for substantial community composition change and forest simplification beyond this century. © 2016 John Wiley & Sons Ltd.

  6. The global land rush and climate change

    NASA Astrophysics Data System (ADS)

    Davis, Kyle Frankel; Rulli, Maria Cristina; D'Odorico, Paolo

    2015-08-01

    Climate change poses a serious global challenge in the face of rapidly increasing human demand for energy and food. A recent phenomenon in which climate change may play an important role is the acquisition of large tracts of land in the developing world by governments and corporations. In the target countries, where land is relatively inexpensive, the potential to increase crop yields is generally high and property rights are often poorly defined. By acquiring land, investors can realize large profits and countries can substantially alter the land and water resources under their control, thereby changing their outlook for meeting future demand. While the drivers, actors, and impacts involved with land deals have received substantial attention in the literature, we propose that climate change plays an important yet underappreciated role, both through its direct effects on agricultural production and through its influence on mitigative or adaptive policy decisions. Drawing from various literature sources as well as a new global database on reported land deals, we trace the evolution of the global land rush and highlight prominent examples in which the role of climate change is evident. We find that climate change—both historical and anticipated—interacts substantially with drivers of land acquisitions, having important implications for the resilience of communities in targeted areas. As a result of this synthesis, we ultimately contend that considerations of climate change should be integrated into future policy decisions relating to the large-scale land acquisitions.

  7. Large Scale Relationship between Aquatic Insect Traits and Climate.

    PubMed

    Bhowmik, Avit Kumar; Schäfer, Ralf B

    2015-01-01

    Climate is the predominant environmental driver of freshwater assemblage pattern on large spatial scales, and traits of freshwater organisms have shown considerable potential to identify impacts of climate change. Although several studies suggest traits that may indicate vulnerability to climate change, the empirical relationship between freshwater assemblage trait composition and climate has been rarely examined on large scales. We compared the responses of the assumed climate-associated traits from six grouping features to 35 bioclimatic indices (~18 km resolution) for five insect orders (Diptera, Ephemeroptera, Odonata, Plecoptera and Trichoptera), evaluated their potential for changing distribution pattern under future climate change and identified the most influential bioclimatic indices. The data comprised 782 species and 395 genera sampled in 4,752 stream sites during 2006 and 2007 in Germany (~357,000 km² spatial extent). We quantified the variability and spatial autocorrelation in the traits and orders that are associated with the combined and individual bioclimatic indices. Traits of temperature preference grouping feature that are the products of several other underlying climate-associated traits, and the insect order Ephemeroptera exhibited the strongest response to the bioclimatic indices as well as the highest potential for changing distribution pattern. Regarding individual traits, insects in general and ephemeropterans preferring very cold temperature showed the highest response, and the insects preferring cold and trichopterans preferring moderate temperature showed the highest potential for changing distribution. We showed that the seasonal radiation and moisture are the most influential bioclimatic aspects, and thus changes in these aspects may affect the most responsive traits and orders and drive a change in their spatial distribution pattern. Our findings support the development of trait-based metrics to predict and detect climate-related changes of freshwater assemblages.

  8. Does climate variability influence the demography of wild primates? Evidence from long-term life-history data in seven species.

    PubMed

    Campos, Fernando A; Morris, William F; Alberts, Susan C; Altmann, Jeanne; Brockman, Diane K; Cords, Marina; Pusey, Anne; Stoinski, Tara S; Strier, Karen B; Fedigan, Linda M

    2017-11-01

    Earth's rapidly changing climate creates a growing need to understand how demographic processes in natural populations are affected by climate variability, particularly among organisms threatened by extinction. Long-term, large-scale, and cross-taxon studies of vital rate variation in relation to climate variability can be particularly valuable because they can reveal environmental drivers that affect multiple species over extensive regions. Few such data exist for animals with slow life histories, particularly in the tropics, where climate variation over large-scale space is asynchronous. As our closest relatives, nonhuman primates are especially valuable as a resource to understand the roles of climate variability and climate change in human evolutionary history. Here, we provide the first comprehensive investigation of vital rate variation in relation to climate variability among wild primates. We ask whether primates are sensitive to global changes that are universal (e.g., higher temperature, large-scale climate oscillations) or whether they are more sensitive to global change effects that are local (e.g., more rain in some places), which would complicate predictions of how primates in general will respond to climate change. To address these questions, we use a database of long-term life-history data for natural populations of seven primate species that have been studied for 29-52 years to investigate associations between vital rate variation, local climate variability, and global climate oscillations. Associations between vital rates and climate variability varied among species and depended on the time windows considered, highlighting the importance of temporal scale in detection of such effects. We found strong climate signals in the fertility rates of three species. However, survival, which has a greater impact on population growth, was little affected by climate variability. Thus, we found evidence for demographic buffering of life histories, but also evidence of mechanisms by which climate change could affect the fates of wild primates. © 2017 John Wiley & Sons Ltd.

  9. Cross - Scale Intercomparison of Climate Change Impacts Simulated by Regional and Global Hydrological Models in Eleven Large River Basins

    NASA Technical Reports Server (NTRS)

    Hattermann, F. F.; Krysanova, V.; Gosling, S. N.; Dankers, R.; Daggupati, P.; Donnelly, C.; Florke, M.; Huang, S.; Motovilov, Y.; Buda, S.; hide

    2017-01-01

    Ideally, the results from models operating at different scales should agree in trend direction and magnitude of impacts under climate change. However, this implies that the sensitivity to climate variability and climate change is comparable for impact models designed for either scale. In this study, we compare hydrological changes simulated by 9 global and 9 regional hydrological models (HM) for 11 large river basins in all continents under reference and scenario conditions. The foci are on model validation runs, sensitivity of annual discharge to climate variability in the reference period, and sensitivity of the long-term average monthly seasonal dynamics to climate change. One major result is that the global models, mostly not calibrated against observations, often show a considerable bias in mean monthly discharge, whereas regional models show a better reproduction of reference conditions. However, the sensitivity of the two HM ensembles to climate variability is in general similar. The simulated climate change impacts in terms of long-term average monthly dynamics evaluated for HM ensemble medians and spreads show that the medians are to a certain extent comparable in some cases, but have distinct differences in other cases, and the spreads related to global models are mostly notably larger. Summarizing, this implies that global HMs are useful tools when looking at large-scale impacts of climate change and variability. Whenever impacts for a specific river basin or region are of interest, e.g. for complex water management applications, the regional-scale models calibrated and validated against observed discharge should be used.

  10. Climate change impacts on extreme events in the United States: an uncertainty analysis

    EPA Science Inventory

    Extreme weather and climate events, such as heat waves, droughts and severe precipitation events, have substantial impacts on ecosystems and the economy. However, future climate simulations display large uncertainty in mean changes. As a result, the uncertainty in future changes ...

  11. Early warning of climate tipping points

    NASA Astrophysics Data System (ADS)

    Lenton, Timothy M.

    2011-07-01

    A climate 'tipping point' occurs when a small change in forcing triggers a strongly nonlinear response in the internal dynamics of part of the climate system, qualitatively changing its future state. Human-induced climate change could push several large-scale 'tipping elements' past a tipping point. Candidates include irreversible melt of the Greenland ice sheet, dieback of the Amazon rainforest and shift of the West African monsoon. Recent assessments give an increased probability of future tipping events, and the corresponding impacts are estimated to be large, making them significant risks. Recent work shows that early warning of an approaching climate tipping point is possible in principle, and could have considerable value in reducing the risk that they pose.

  12. Climate Change and Macro-Economic Cycles in Pre-Industrial Europe

    PubMed Central

    Pei, Qing; Zhang, David D.; Lee, Harry F.; Li, Guodong

    2014-01-01

    Climate change has been proven to be the ultimate cause of social crisis in pre-industrial Europe at a large scale. However, detailed analyses on climate change and macro-economic cycles in the pre-industrial era remain lacking, especially within different temporal scales. Therefore, fine-grained, paleo-climate, and economic data were employed with statistical methods to quantitatively assess the relations between climate change and agrarian economy in Europe during AD 1500 to 1800. In the study, the Butterworth filter was adopted to filter the data series into a long-term trend (low-frequency) and short-term fluctuations (high-frequency). Granger Causality Analysis was conducted to scrutinize the associations between climate change and macro-economic cycle at different frequency bands. Based on quantitative results, climate change can only show significant effects on the macro-economic cycle within the long-term. In terms of the short-term effects, society can relieve the influences from climate variations by social adaptation methods and self-adjustment mechanism. On a large spatial scale, temperature holds higher importance for the European agrarian economy than precipitation. By examining the supply-demand mechanism in the grain market, population during the study period acted as the producer in the long term, whereas as the consumer in the short term. These findings merely reflect the general interactions between climate change and macro-economic cycles at the large spatial region with a long-term study period. The findings neither illustrate individual incidents that can temporarily distort the agrarian economy nor explain some specific cases. In the study, the scale thinking in the analysis is raised as an essential methodological issue for the first time to interpret the associations between climatic impact and macro-economy in the past agrarian society within different temporal scales. PMID:24516601

  13. Climate change and macro-economic cycles in pre-industrial europe.

    PubMed

    Pei, Qing; Zhang, David D; Lee, Harry F; Li, Guodong

    2014-01-01

    Climate change has been proven to be the ultimate cause of social crisis in pre-industrial Europe at a large scale. However, detailed analyses on climate change and macro-economic cycles in the pre-industrial era remain lacking, especially within different temporal scales. Therefore, fine-grained, paleo-climate, and economic data were employed with statistical methods to quantitatively assess the relations between climate change and agrarian economy in Europe during AD 1500 to 1800. In the study, the Butterworth filter was adopted to filter the data series into a long-term trend (low-frequency) and short-term fluctuations (high-frequency). Granger Causality Analysis was conducted to scrutinize the associations between climate change and macro-economic cycle at different frequency bands. Based on quantitative results, climate change can only show significant effects on the macro-economic cycle within the long-term. In terms of the short-term effects, society can relieve the influences from climate variations by social adaptation methods and self-adjustment mechanism. On a large spatial scale, temperature holds higher importance for the European agrarian economy than precipitation. By examining the supply-demand mechanism in the grain market, population during the study period acted as the producer in the long term, whereas as the consumer in the short term. These findings merely reflect the general interactions between climate change and macro-economic cycles at the large spatial region with a long-term study period. The findings neither illustrate individual incidents that can temporarily distort the agrarian economy nor explain some specific cases. In the study, the scale thinking in the analysis is raised as an essential methodological issue for the first time to interpret the associations between climatic impact and macro-economy in the past agrarian society within different temporal scales.

  14. Communicating Uncertainty about Climate Change for Application to Security Risk Management

    NASA Astrophysics Data System (ADS)

    Gulledge, J. M.

    2011-12-01

    The science of climate change has convincingly demonstrated that human activities, including the release of greenhouse gases, land-surface changes, particle emissions, and redistribution of water, are changing global and regional climates. Consequently, key institutions are now concerned about the potential social impacts of climate change. For example, the 2010 Quadrennial Defense Review Report from the U.S. Department of Defense states that "climate change, energy security, and economic stability are inextricably linked." Meanwhile, insured losses from climate and weather-related natural disasters have risen dramatically over the past thirty years. Although these losses stem largely from socioeconomic trends, insurers are concerned that climate change could exacerbate this trend and render certain types of climate risk non-diversifiable. Meanwhile, the climate science community-broadly defined as physical, biological, and social scientists focused on some aspect of climate change-remains largely focused scholarly activities that are valued in the academy but not especially useful to decision makers. On the other hand, climate scientists who engage in policy discussions have generally permitted vested interests who support or oppose climate policies to frame the discussion of climate science within the policy arena. Such discussions focus on whether scientific uncertainties are sufficiently resolved to justify policy and the vested interests overstate or understate key uncertainties to support their own agendas. Consequently, the scientific community has become absorbed defending scientific findings to the near exclusion of developing novel tools to aid in risk-based decision-making. For example, the Intergovernmental Panel on Climate Change (IPCC), established expressly for the purpose of informing governments, has largely been engaged in attempts to reduce unavoidable uncertainties rather than helping the world's governments define a science-based risk-management framework for climate security. The IPCC's Fourth Assessment Report concluded that "Responding to climate change involves an iterative risk management process that includes both adaptation and mitigation and takes into account climate change damages, co-benefits, sustainability, equity and attitudes to risk." In risk management, key uncertainties guide action aimed at reducing risk and cannot be ignored or used to justify inaction. Security policies such as arms control and counter-terrorism demonstrate that high-impact outcomes matter to decision makers even if they are likely to be rare events. In spite of this fact, the long tail on the probability distribution of climate sensitivity was largely ignored by the climate science community until recently and its implications for decision making are still not receiving adequate attention. Informing risk management requires scientists to shift from a singular aversion to type I statistical error (i.e. false positive) to a balanced presentation of both type I error and type II error (i.e. false negative) when the latter may have serious consequences. Examples from national security, extreme weather, and economics illustrate these concepts.

  15. Modeling distributional changes in winter precipitation of Canada using Bayesian spatiotemporal quantile regression subjected to different teleconnections

    NASA Astrophysics Data System (ADS)

    Tan, Xuezhi; Gan, Thian Yew; Chen, Shu; Liu, Bingjun

    2018-05-01

    Climate change and large-scale climate patterns may result in changes in probability distributions of climate variables that are associated with changes in the mean and variability, and severity of extreme climate events. In this paper, we applied a flexible framework based on the Bayesian spatiotemporal quantile (BSTQR) model to identify climate changes at different quantile levels and their teleconnections to large-scale climate patterns such as El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO) and Pacific-North American (PNA). Using the BSTQR model with time (year) as a covariate, we estimated changes in Canadian winter precipitation and their uncertainties at different quantile levels. There were some stations in eastern Canada showing distributional changes in winter precipitation such as an increase in low quantiles but a decrease in high quantiles. Because quantile functions in the BSTQR model vary with space and time and assimilate spatiotemporal precipitation data, the BSTQR model produced much spatially smoother and less uncertain quantile changes than the classic regression without considering spatiotemporal correlations. Using the BSTQR model with five teleconnection indices (i.e., SOI, PDO, PNA, NP and NAO) as covariates, we investigated effects of large-scale climate patterns on Canadian winter precipitation at different quantile levels. Winter precipitation responses to these five teleconnections were found to occur differently at different quantile levels. Effects of five teleconnections on Canadian winter precipitation were stronger at low and high than at medium quantile levels.

  16. Terrestrial Biosphere Dynamics in the Climate System: Past and Future

    NASA Astrophysics Data System (ADS)

    Overpeck, J.; Whitlock, C.; Huntley, B.

    2002-12-01

    The paleoenvironmental record makes it clear that climate change as large as is likely to occur in the next two centuries will drive change in the terrestrial biosphere that is both large and difficult to predict, or plan for. Many species, communities and ecosystems could experience rates of climate change, and "destination climates" that are unprecedented in their time on earth. The paleorecord also makes it clear that a wide range of possible climate system behavior, such as decades-long droughts, increases in large storm and flood frequency, and rapid sea level rise, all occurred repeatedly in the past, and for poorly understood reasons. These types of events, if they were to reoccur in the future, could have especially devastating impacts on biodiversity, both because their timing and spatial extent cannot be anticipated, and because the biota's natural defenses have been compromised by land-use, reductions in genetic flexibility, pollution, excess water utilization, invasive species, and other human influences. Vegetation disturbance (e.g., by disease, pests and fire) will undoubtedly be exacerbated by climate change (stress), but could also speed the rate at which terrestrial biosphere change takes place in the future. The paleoenvironmental record makes it clear that major scientific challenges include an improved ability to model regional biospheric change, both past and future. This in turn will be a prerequisite to obtaining realistic estimates of future biogeochemical and biophysical feedbacks, and thus to obtaining better assessments of future climate change. These steps will help generate the improved understanding of climate variability that is needed to manage global biodiversity. However, the most troubling message from the paleoenvironmental record is that unchecked anthropogenic climate change could make the Earth's 6th major mass extinction unavoidable.

  17. Analysis of the ability of large-scale reanalysis data to define Siberian fire danger in preparation for future fire prediction

    NASA Astrophysics Data System (ADS)

    Soja, Amber; Westberg, David; Stackhouse, Paul, Jr.; McRae, Douglas; Jin, Ji-Zhong; Sukhinin, Anatoly

    2010-05-01

    Fire is the dominant disturbance that precipitates ecosystem change in boreal regions, and fire is largely under the control of weather and climate. Fire frequency, fire severity, area burned and fire season length are predicted to increase in boreal regions under current climate change scenarios. Therefore, changes in fire regimes have the potential to compel ecological change, moving ecosystems more quickly towards equilibrium with a new climate. The ultimate goal of this research is to assess the viability of large-scale (1°) data to be used to define fire weather danger and fire regimes, so that large-scale data can be confidently used to predict future fire regimes using large-scale fire weather data, like that available from current Intergovernmental Panel on Climate Change (IPCC) climate change scenarios. In this talk, we intent to: (1) evaluate Fire Weather Indices (FWI) derived using reanalysis and interpolated station data; (2) discuss the advantages and disadvantages of using these distinct data sources; and (3) highlight established relationships between large-scale fire weather data, area burned, active fires and ecosystems burned. Specifically, the Canadian Forestry Service (CFS) Fire Weather Index (FWI) will be derived using: (1) NASA Goddard Earth Observing System version 4 (GEOS-4) large-scale reanalysis and NASA Global Precipitation Climatology Project (GPCP) data; and National Climatic Data Center (NCDC) surface station-interpolated data. Requirements of the FWI are local noon surface-level air temperature, relative humidity, wind speed, and daily (noon-noon) rainfall. GEOS-4 reanalysis and NCDC station-interpolated fire weather indices are generally consistent spatially, temporally and quantitatively. Additionally, increased fire activity coincides with increased FWI ratings in both data products. Relationships have been established between large-scale FWI to area burned, fire frequency, ecosystem types, and these can be use to estimate historic and future fire regimes.

  18. Importance of Anthropogenic Aerosols for Climate Prediction: a Study on East Asian Sulfate Aerosols

    NASA Astrophysics Data System (ADS)

    Bartlett, R. E.; Bollasina, M. A.

    2017-12-01

    Climate prediction is vital to ensure that we are able to adapt to our changing climate. Understandably, the main focus for such prediction is greenhouse gas forcing, as this will be the main anthropogenic driver of long-term global climate change; however, other forcings could still be important. Atmospheric aerosols represent one such forcing, especially in regions with high present-day aerosol loading such as Asia; yet, uncertainty in their future emissions are under-sampled by commonly used climate forcing projections, such as the Representative Concentration Pathways (RCPs). Globally, anthropogenic aerosols exert a net cooling, but their effects show large variation at regional scales. Studies have shown that aerosols impact locally upon temperature, precipitation and hydroclimate, and also upon larger scale atmospheric circulation (for example, the Asian monsoon) with implications for climate remote from aerosol sources. We investigate how future climate could evolve differently given the same greenhouse gas forcing pathway but differing aerosol emissions. Specifically, we use climate modelling experiments (using HadGEM2-ES) of two scenarios based upon RCP2.6 greenhouse gas forcing but with large differences in sulfur dioxide emissions over East Asia. Results show that increased sulfate aerosols (associated with increased sulfur dioxide) lead to large regional cooling through aerosol-radiation and aerosol-cloud interactions. Focussing on dynamical mechanisms, we explore the consequences of this cooling for the Asian summer and winter monsoons. In addition to local temperature and precipitation changes, we find significant changes to large scale atmospheric circulation. Wave-like responses to upper-level atmospheric changes propagate across the northern hemisphere with far-reaching effects on surface climate, for example, cooling over Europe. Within the tropics, we find alterations to zonal circulation (notably, shifts in the Pacific Walker cell) and monsoon systems outside of Asia. These results indicate that anthropogenic aerosols have significant climate impacts against a background of greenhouse gas-induced climate change, and thus represent a key source of uncertainty in near-term climate projection that should be seriously considered in future climate assessments.

  19. Climate Impacts of Fire-Induced Land-Surface Changes

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Hao, X.; Qu, J. J.

    2017-12-01

    One of the consequences of wildfires is the changes in land-surface properties such as removal of vegetation. This will change local and regional climate through modifying the land-air heat and water fluxes. This study investigates mechanism by developing and a parameterization of fire-induced land-surface property changes and applying it to modeling of the climate impacts of large wildfires in the United States. Satellite remote sensing was used to quantitatively evaluate the land-surface changes from large fires provided from the Monitoring Trends in Burning Severity (MTBS) dataset. It was found that the changes in land-surface properties induced by fires are very complex, depending on vegetation type and coverage, climate type, season and time after fires. The changes in LAI are remarkable only if the actual values meet a threshold. Large albedo changes occur in winter for fires in cool climate regions. The signs are opposite between the first post-fire year and the following years. Summer day-time temperature increases after fires, while nigh-time temperature changes in various patterns. The changes are larger in forested lands than shrub / grassland lands. In the parameterization scheme, the detected post-fire changes are decomposed into trends using natural exponential functions and fluctuations of periodic variations with the amplitudes also determined by natural exponential functions. The final algorithm is a combination of the trends, periods, and amplitude functions. This scheme is used with Earth system models to simulate the local and regional climate effects of wildfires.

  20. Unexpected patterns of vegetation distribution response and climate change velocities in cold ecosystems

    NASA Astrophysics Data System (ADS)

    Macias-Fauria, M.; Johnson, E. A.; Forbes, B. C.; Willis, K. J.

    2013-12-01

    In cold ecosystems such as sub-alpine forests and forest-tundra, vegetation geographical ranges are expected to expand upward/northward in a warmer world. Such moving fronts have been predicted to 1) decrease the remaining alpine area in mountain systems, increasing fragmentation and extinction risk of many alpine taxa, and 2) fundamentally modify the energy budget of newly afforested areas, enhancing further regional warming due to a reduction in albedo. The latter is particularly significant in the forest-tundra, where changes over large regions can have regional-to-global effects on climate. An integral part of the expected range shifts is their velocity. Whereas range shifts across thermal gradients can theoretically be fast in an elevation gradient relative to climate velocity (i.e. rate of climate change) due to the short distances involved, large lags are expected over the flat forest-tundra. Mountain regions have thus been identified as buffer areas where species can track climate change, in opposition to flat terrain where climate velocity is faster. Thus, much shorter time-to-equilibrium are expected for advancing upslope sub-alpine forest than for advancing northern boreal forest. We contribute to this discussion by showing two mechanisms that might largely alter the above predictions in opposite directions: 1) In mountain regions, terrain heterogeneity not only allows for slower climate velocities, but slope processes largely affect the advance of vegetation. Indeed, such mechanisms can potentially reduce the climatic signal in vegetation distribution limits (e.g. treeline), precluding it from migrating to climatically favourable areas - since these areas occur in geologically unfavourable ones. Such seemingly local control to species range shifts was found to reduce the climate-sensitive treeline areas in the sub-alpine forest of the Canadian Rocky Mountains to ~5% at a landscape scale, fundamentally altering the predictions of vegetation response to climate warming in the region (Macias-Fauria & Johnson 20013, PNAS). 2) In the low arctic tundra, un-treed to treed landscapes have sprouted in several parts of the tundra in a matter of decades, as opposed to the previously predicted response times of several centuries for boreal forest to advance to its new climate optimum (migrational lags). This takes place not through very rapid moving fronts, but through phenotypic responses of extant vegetation with highly flexible life forms, such as woody deciduous shrubs (Salix, Alnus, Betula). The resulting vegetation response creates strong energy feedbacks while at the same time potentially further reduces the speed of northward displacement of the boreal forest, that has to compete with a new treed ecosystem (Macias-Fauria et al. 2012, Nature Climate Change). In conclusion, control of rates of migration by factors other than climate in mountain systems can largely reduce the ability of vegetation to track climate change, and emergence of structurally novel ecosystems in low arctic tundra might largely alter current predictions based on climate response of vegetation, by accelerating ecosystem change and reducing migrational rates simultaneously.

  1. Effects of land use/land cover and climate changes on surface runoff in a semi-humid and semi-arid transition zone in northwest China

    NASA Astrophysics Data System (ADS)

    Yin, Jing; He, Fan; Jiu Xiong, Yu; Qiu, Guo Yu

    2017-01-01

    Water resources, which are considerably affected by land use/land cover (LULC) and climate changes, are a key limiting factor in highly vulnerable ecosystems in arid and semi-arid regions. The impacts of LULC and climate changes on water resources must be assessed in these areas. However, conflicting results regarding the effects of LULC and climate changes on runoff have been reported in relatively large basins, such as the Jinghe River basin (JRB), which is a typical catchment (> 45 000 km2) located in a semi-humid and arid transition zone on the central Loess Plateau, northwest China. In this study, we focused on quantifying both the combined and isolated impacts of LULC and climate changes on surface runoff. We hypothesized that under climatic warming and drying conditions, LULC changes, which are primarily caused by intensive human activities such as the Grain for Green Program, will considerably alter runoff in the JRB. The Soil and Water Assessment Tool (SWAT) was adopted to perform simulations. The simulated results indicated that although runoff increased very little between the 1970s and the 2000s due to the combined effects of LULC and climate changes, LULC and climate changes affected surface runoff differently in each decade, e.g., runoff increased with increased precipitation between the 1970s and the 1980s (precipitation contributed to 88 % of the runoff increase). Thereafter, runoff decreased and was increasingly influenced by LULC changes, which contributed to 44 % of the runoff changes between the 1980s and 1990s and 71 % of the runoff changes between the 1990s and 2000s. Our findings revealed that large-scale LULC under the Grain for Green Program has had an important effect on the hydrological cycle since the late 1990s. Additionally, the conflicting findings regarding the effects of LULC and climate changes on runoff in relatively large basins are likely caused by uncertainties in hydrological simulations.

  2. Large extents of intensive land use limit community reorganization during climate warming.

    PubMed

    Oliver, Tom H; Gillings, Simon; Pearce-Higgins, James W; Brereton, Tom; Crick, Humphrey Q P; Duffield, Simon J; Morecroft, Michael D; Roy, David B

    2017-06-01

    Climate change is increasingly altering the composition of ecological communities, in combination with other environmental pressures such as high-intensity land use. Pressures are expected to interact in their effects, but the extent to which intensive human land use constrains community responses to climate change is currently unclear. A generic indicator of climate change impact, the community temperature index (CTI), has previously been used to suggest that both bird and butterflies are successfully 'tracking' climate change. Here, we assessed community changes at over 600 English bird or butterfly monitoring sites over three decades and tested how the surrounding land has influenced these changes. We partitioned community changes into warm- and cold-associated assemblages and found that English bird communities have not reorganized successfully in response to climate change. CTI increases for birds are primarily attributable to the loss of cold-associated species, whilst for butterflies, warm-associated species have tended to increase. Importantly, the area of intensively managed land use around monitoring sites appears to influence these community changes, with large extents of intensively managed land limiting 'adaptive' community reorganization in response to climate change. Specifically, high-intensity land use appears to exacerbate declines in cold-adapted bird and butterfly species, and prevent increases in warm-associated birds. This has broad implications for managing landscapes to promote climate change adaptation. © 2017 John Wiley & Sons Ltd.

  3. Changing Climate Drives Lagging and Accelerating Glacier Responses and Accelerating Adjustments of the Hazard Regime

    NASA Astrophysics Data System (ADS)

    Kargel, Jeffrey

    2013-04-01

    It is virtually universally recognized among climate and cryospheric scientists that climate and greenhouse gas abundances are closely correlated. Disagreements mainly pertain to the fundamental triggers for large fluctuations in climate and greenhouse gases during the pre-industrial era, and exactly how coupling is achieved amongst the dynamic solid Earth, the Sun, orbital and rotational dynamics, greenhouse gas abundances, and climate. Also unsettled is the climate sensitivity defined as the absolute linkage between the magnitude of climate warming/cooling and greenhouse gas increase/decrease. Important questions concern lagging responses (either greenhouse gases lagging climate fluctuations, or vice versa) and the causes of the lags. In terms of glacier and ice sheet responses to climate change, there also exist several processes causing lagging responses to climate change inputs. The simplest parameterization giving a glacier's lagging response time, τ, is that given by Jóhanneson et al. (1989), modified slightly here as τ = b/h, where b is a measure of ablation rate and h is a measure of glacier thickness. The exact definitions of τ, b, and h are subject to some interpretive license, but for a back-of-the-envelope approximation, we may take b as the magnitude of the mean ablation rate over the whole ablation area, and h as the mean glacier thickness in the glacier ablation zone. τ remains a bit ambiguous but may be considered as an exponential time scale for a decreasing response of b to a climatic step change. For some climate changes, b and h can be taken as the values prior to the climate change, but for large climatic shifts, this parameterization must be iterated. The actual response of a glacier at any time is the sum of exponentially decreasing responses from past changes. (Several aspects of glacier dynamics cause various glacier responses to differ from this idealized glacier-response theory.) Some important details relating to the retreat (or advances) of glaciers due to historic and future anthropogenic and longer term climate change relate to a changing glacier hazard regime. Climate change is connected to changes in the geographic distribution and magnitudes of potentially hazardous glacier lakes, large rock and ice avalanches, ice-dammed rivers, and surges. I shall consider these changes in hazard environment in relation to response-time theory and dynamical divergences from idealized response-time theory. Case histories of certain hazard-prone regions, including developments in fast-response-type glaciers and slow-response glaciers and ice sheets will also be discussed. In short, there will be a strong tendency of the hazard regimes of glacierized regions to shift far more rapidly in the 21st century than they did in the 20th century. The magnitude of the shifts will be more dramatic than any simple linear scaling to climate warming would suggest; this is largely because, due to lagging responses, glaciers are still trying to catch up to a new equilibrium for 20th century climate, while climate change remains a moving target that will drive accelerating glacier responses (including responses in hazard environments) in most glacierized regions.

  4. Regional-Scale Climate Change: Observations and Model Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, Raymond S; Diaz, Henry F

    2010-12-14

    This collaborative proposal addressed key issues in understanding the Earth's climate system, as highlighted by the U.S. Climate Science Program. The research focused on documenting past climatic changes and on assessing future climatic changes based on suites of global and regional climate models. Geographically, our emphasis was on the mountainous regions of the world, with a particular focus on the Neotropics of Central America and the Hawaiian Islands. Mountain regions are zones where large variations in ecosystems occur due to the strong climate zonation forced by the topography. These areas are particularly susceptible to changes in critical ecological thresholds, andmore » we conducted studies of changes in phonological indicators based on various climatic thresholds.« less

  5. Fostering Hope in Climate Change Educators

    ERIC Educational Resources Information Center

    Swim, Janet K.; Fraser, John

    2013-01-01

    Climate Change is a complex set of issues with large social and ecological risks. Addressing it requires an attentive and climate literate population capable of making informed decisions. Informal science educators are well-positioned to teach climate science and motivate engagement, but many have resisted the topic because of self-doubt about…

  6. A Climate Change Course for Undergraduate Students

    ERIC Educational Resources Information Center

    Nam, Y.; Ito, E.

    2011-01-01

    For the past 10 years, a climate change course has been offered in a large Midwest university. This course has been focusing on improving college students' scientific knowledge of climate change and human interactions using historical evidence as well as improving their information literacy in science through a course project that requires…

  7. Modelling the combined impacts of climate change and direct anthropogenic drivers on the ecosystem of the northwest European continental shelf

    NASA Astrophysics Data System (ADS)

    Wakelin, Sarah L.; Artioli, Yuri; Butenschön, Momme; Allen, J. Icarus; Holt, Jason T.

    2015-12-01

    The potential response of the marine ecosystem of the northwest European continental shelf to climate change under a medium emissions scenario (SRES A1B) is investigated using the coupled hydrodynamics-ecosystem model POLCOMS-ERSEM. Changes in the near future (2030-2040) and the far future (2082-2099) are compared to the recent past (1983-2000). The sensitivity of the ecosystem to potential changes in multiple anthropogenic drivers (river nutrient loads and benthic trawling) in the near future is compared to the impact of changes in climate. With the exception of the biomass of benthic organisms, the influence of the anthropogenic drivers only exceeds the impact of climate change in coastal regions. Increasing river nitrogen loads has a limited impact on the ecosystem whilst reducing river nitrogen and phosphate concentrations affects net primary production (netPP) and phytoplankton and zooplankton biomass. Direct anthropogenic forcing is seen to mitigate/amplify the effects of climate change. Increasing river nitrogen has the potential to amplify the effects of climate change at the coast by increasing netPP. Reducing river nitrogen and phosphate mitigates the effects of climate change for netPP and the biomass of small phytoplankton and large zooplankton species but amplifies changes in the biomass of large phytoplankton and small zooplankton.

  8. Changes of climate regimes during the last millennium and the twenty-first century simulated by the Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Feng, Song; Liu, Chang; Chen, Jie; Chen, Jianhui; Chen, Fahu

    2018-01-01

    This study examines the shifts in terrestrial climate regimes using the Köppen-Trewartha (K-T) climate classification by analyzing the Community Earth System Model Last Millennium Ensemble (CESM-LME) simulations for the period 850-2005 and CESM Medium Ensemble (CESM-ME), CESM Large Ensemble (CESM-LE) and CESM with fixed aerosols Medium Ensemble (CESM-LE_FixA) simulations for the period 1920-2080. We compare K-T climate types from the Medieval Climate Anomaly (MCA) (950-1250) with the Little Ice Age (LIA) (1550-1850), from present day (PD) (1971-2000) with the last millennium (LM) (850-1850), and from the future (2050-2080) with the LM in order to place anthropogenic changes in the context of changes due to natural forcings occurring during the last millennium. For CESM-LME, we focused on the simulations with all forcings, though the impacts of individual forcings (e.g., solar activities, volcanic eruptions, greenhouse gases, aerosols and land use changes) were also analyzed. We found that the climate types changed slightly between the MCA and the LIA due to weak changes in temperature and precipitation. The climate type changes in PD relative to the last millennium have been largely driven by greenhouse gas-induced warming, but anthropogenic aerosols have also played an important role on regional scales. At the end of the twenty-first century, the anthropogenic forcing has a much greater effect on climate types than the PD. Following the reduction of aerosol emissions, the impact of greenhouse gases will further promote global warming in the future. Compared to precipitation, changes in climate types are dominated by greenhouse gas-induced warming. The large shift in climate types by the end of this century suggests possible wide-spread redistribution of surface vegetation and a significant change in species distributions.

  9. Spatial variation in messaging effects

    NASA Astrophysics Data System (ADS)

    Warshaw, Christopher

    2018-05-01

    There is large geographic variation in the public's views about climate change in the United States. Research now shows that climate messages can influence public beliefs about the scientific consensus on climate change, particularly in the places that are initially more skeptical.

  10. Modelling impacts of climate change on arable crop diseases: progress, challenges and applications.

    PubMed

    Newbery, Fay; Qi, Aiming; Fitt, Bruce Dl

    2016-08-01

    Combining climate change, crop growth and crop disease models to predict impacts of climate change on crop diseases can guide planning of climate change adaptation strategies to ensure future food security. This review summarises recent developments in modelling climate change impacts on crop diseases, emphasises some major challenges and highlights recent trends. The use of multi-model ensembles in climate change modelling and crop modelling is contributing towards measures of uncertainty in climate change impact projections but other aspects of uncertainty remain largely unexplored. Impact assessments are still concentrated on few crops and few diseases but are beginning to investigate arable crop disease dynamics at the landscape level. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Climate change as a driver for future human migration

    NASA Astrophysics Data System (ADS)

    Chen, M.; Ricke, K.; Caldeira, K.

    2016-12-01

    Human migration is driven by a multitude of factors, both socioeconomic and environmental. However, as impacts of anthropogenic climate change emerge and grow, it is widely conjectured that climate change will induce migration of human populations from areas that are adversely affected by climate change to areas that are less adversely or positively affected by climate change. Both low- and high-frequency climate changes have been empirically linked to migration in areas across the globe, but there has been little global-scale quantitative analysis projecting the scale and geography of climate-motivated migration. Considering temperature and precipitation in isolation from all other factors, here we project climate-driven impacts on the areal-density of human population. From this, we infer potential destinations and origins for the climate-motivated migration. Our results indicate that tropical and sub-tropical countries are the largest likely sources of migrants, with India being the country with the greatest number of potential climate emigrants. Global warming has the potential to motivate hundreds of millions of people to migrate in the coming decades, largely from warm tropical and subtropical countries to cooler temperate countries. Migration decisions will depend on many factors beyond climate; nevertheless our work establishes a foundation for quantifying future climate-motivated migration that can act as a starting point of more comprehensive assessments. The large number of potential climate migrants indicated by our analyses provides additional incentive to reduce greenhouse gas emissions, take adaptive measures, and carefully consider migration policy.

  12. Vulnerability of forest vegetation to anthropogenic climate change in China.

    PubMed

    Wan, Ji-Zhong; Wang, Chun-Jing; Qu, Hong; Liu, Ran; Zhang, Zhi-Xiang

    2018-04-15

    China has large areas of forest vegetation that are critical to biodiversity and carbon storage. It is important to assess vulnerability of forest vegetation to anthropogenic climate change in China because it may change the distributions and species compositions of forest vegetation. Based on the equilibrium assumption of forest communities across different spatial and temporal scales, we used species distribution modelling coupled with endemics-area relationship to assess the vulnerability of 204 forest communities across 16 vegetation types under different climate change scenarios in China. By mapping the vulnerability of forest vegetation to climate change, we determined that 78.9% and 61.8% of forest vegetation should be relatively stable in the low and high concentration scenarios, respectively. There were large vulnerable areas of forest vegetation under anthropogenic climate change in northeastern and southwestern China. The vegetation of subtropical mixed broadleaf evergreen and deciduous forest, cold-temperate and temperate mountains needleleaf forest, and temperate mixed needleleaf and broadleaf deciduous forest types were the most vulnerable under climate change. Furthermore, the vulnerability of forest vegetation may increase due to high greenhouse gas concentrations. Given our estimates of forest vegetation vulnerability to anthropogenic climate change, it is critical that we ensure long-term monitoring of forest vegetation responses to future climate change to assess our projections against observations. We need to better integrate projected changes of temperature and precipitation into climate-adaptive conservation strategies for forest vegetation in China. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Projected Future Vegetation Changes for the Northwest United States and Southwest Canada at a Fine Spatial Resolution Using a Dynamic Global Vegetation Model.

    PubMed

    Shafer, Sarah L; Bartlein, Patrick J; Gray, Elizabeth M; Pelltier, Richard T

    2015-01-01

    Future climate change may significantly alter the distributions of many plant taxa. The effects of climate change may be particularly large in mountainous regions where climate can vary significantly with elevation. Understanding potential future vegetation changes in these regions requires methods that can resolve vegetation responses to climate change at fine spatial resolutions. We used LPJ, a dynamic global vegetation model, to assess potential future vegetation changes for a large topographically complex area of the northwest United States and southwest Canada (38.0-58.0°N latitude by 136.6-103.0°W longitude). LPJ is a process-based vegetation model that mechanistically simulates the effect of changing climate and atmospheric CO2 concentrations on vegetation. It was developed and has been mostly applied at spatial resolutions of 10-minutes or coarser. In this study, we used LPJ at a 30-second (~1-km) spatial resolution to simulate potential vegetation changes for 2070-2099. LPJ was run using downscaled future climate simulations from five coupled atmosphere-ocean general circulation models (CCSM3, CGCM3.1(T47), GISS-ER, MIROC3.2(medres), UKMO-HadCM3) produced using the A2 greenhouse gases emissions scenario. Under projected future climate and atmospheric CO2 concentrations, the simulated vegetation changes result in the contraction of alpine, shrub-steppe, and xeric shrub vegetation across the study area and the expansion of woodland and forest vegetation. Large areas of maritime cool forest and cold forest are simulated to persist under projected future conditions. The fine spatial-scale vegetation simulations resolve patterns of vegetation change that are not visible at coarser resolutions and these fine-scale patterns are particularly important for understanding potential future vegetation changes in topographically complex areas.

  14. Scenarios of large mammal loss in Europe for the 21st century.

    PubMed

    Rondinini, Carlo; Visconti, Piero

    2015-08-01

    Distributions and populations of large mammals are declining globally, leading to an increase in their extinction risk. We forecasted the distribution of extant European large mammals (17 carnivores and 10 ungulates) based on 2 Rio+20 scenarios of socioeconomic development: business as usual and reduced impact through changes in human consumption of natural resources. These scenarios are linked to scenarios of land-use change and climate change through the spatial allocation of land conversion up to 2050. We used a hierarchical framework to forecast the extent and distribution of mammal habitat based on species' habitat preferences (as described in the International Union for Conservation of Nature Red List database) within a suitable climatic space fitted to the species' current geographic range. We analyzed the geographic and taxonomic variation of habitat loss for large mammals and the potential effect of the reduced impact policy on loss mitigation. Averaging across scenarios, European large mammals were predicted to lose 10% of their habitat by 2050 (25% in the worst-case scenario). Predicted loss was much higher for species in northwestern Europe, where habitat is expected to be lost due to climate and land-use change. Change in human consumption patterns was predicted to substantially improve the conservation of habitat for European large mammals, but not enough to reduce extinction risk if species cannot adapt locally to climate change or disperse. © 2015 Society for Conservation Biology.

  15. The changing effects of Alaska’s boreal forests on the climate system

    USGS Publications Warehouse

    Euskirchen, E.S.; McGuire, A. David; Chapin, F.S.; Rupp, T.S.

    2010-01-01

    In the boreal forests of Alaska, recent changes in climate have influenced the exchange of trace gases, water, and energy between these forests and the atmosphere. These changes in the structure and function of boreal forests can then feed back to impact regional and global climates. In this manuscript, we examine the type and magnitude of the climate feedbacks from boreal forests in Alaska. Research generally suggests that the net effect of a warming climate is a positive regional feedback to warming. Currently, the primary positive climate feedbacks are likely related to decreases in surface albedo due to decreases in snow cover. Fewer negative feedbacks have been identified, and they may not be large enough to counterbalance the large positive feedbacks. These positive feedbacks are most pronounced at the regional scale and reduce the resilience of the boreal vegetation – climate system by amplifying the rate of regional warming. Given the recent warming in this region, the large variety of associated mechanisms that can alter terrestrial ecosystems and influence the climate system, and a reduction in the boreal forest resilience, there is a strong need to continue to quantify and evaluate the feedback pathways.

  16. Wetland extent and plant community composition vulnerability to climate change

    Treesearch

    Michael Nassry; Denice H. Wardrop; Anna T. Hamilton; Christopher J. Duffy; Jordan M. West

    2016-01-01

    The potential impact of climate change on wetland-provided ecosystem services has been largely unspecified because of the difficulty in predicting changing hydrologic conditions, which are a major driver of...

  17. A survey of urban climate change experiments in 100 cities

    PubMed Central

    Castán Broto, Vanesa; Bulkeley, Harriet

    2013-01-01

    Cities are key sites where climate change is being addressed. Previous research has largely overlooked the multiplicity of climate change responses emerging outside formal contexts of decision-making and led by actors other than municipal governments. Moreover, existing research has largely focused on case studies of climate change mitigation in developed economies. The objective of this paper is to uncover the heterogeneous mix of actors, settings, governance arrangements and technologies involved in the governance of climate change in cities in different parts of the world. The paper focuses on urban climate change governance as a process of experimentation. Climate change experiments are presented here as interventions to try out new ideas and methods in the context of future uncertainties. They serve to understand how interventions work in practice, in new contexts where they are thought of as innovative. To study experimentation, the paper presents evidence from the analysis of a database of 627 urban climate change experiments in a sample of 100 global cities. The analysis suggests that, since 2005, experimentation is a feature of urban responses to climate change across different world regions and multiple sectors. Although experimentation does not appear to be related to particular kinds of urban economic and social conditions, some of its core features are visible. For example, experimentation tends to focus on energy. Also, both social and technical forms of experimentation are visible, but technical experimentation is more common in urban infrastructure systems. While municipal governments have a critical role in climate change experimentation, they often act alongside other actors and in a variety of forms of partnership. These findings point at experimentation as a key tool to open up new political spaces for governing climate change in the city. PMID:23805029

  18. Flood events across the North Atlantic region - past development and future perspectives

    NASA Astrophysics Data System (ADS)

    Matti, Bettina; Dieppois, Bastien; Lawler, Damian; Dahlke, Helen E.; Lyon, Steve W.

    2016-04-01

    Flood events have a large impact on humans, both socially and economically. An increase in winter and spring flooding across much of northern Europe in recent years opened up the question of changing underlying hydro-climatic drivers of flood events. Predicting the manifestation of such changes is difficult due to the natural variability and fluctuations in northern hydrological systems caused by large-scale atmospheric circulations, especially under altered climate conditions. Improving knowledge on the complexity of these hydrological systems and their interactions with climate is essential to be able to determine drivers of flood events and to predict changes in these drivers under altered climate conditions. This is particularly true for the North Atlantic region where both physical catchment properties and large-scale atmospheric circulations have a profound influence on floods. This study explores changes in streamflow across North Atlantic region catchments. An emphasis is placed on high-flow events, namely the timing and magnitude of past flood events, and selected flood percentiles were tested for stationarity by applying a flood frequency analysis. The issue of non-stationarity of flood return periods is important when linking streamflow to large-scale atmospheric circulations. Natural fluctuations in these circulations are found to have a strong influence on the outcome causing natural variability in streamflow records. Long time series and a multi-temporal approach allows for determining drivers of floods and linking streamflow to large-scale atmospheric circulations. Exploring changes in selected hydrological signatures consistency was found across much of the North Atlantic region suggesting a shift in flow regime. The lack of an overall regional pattern suggests that how catchments respond to changes in climatic drivers is strongly influenced by their physical characteristics. A better understanding of hydrological response to climate drivers is essential for example for forecasting purposes.

  19. Northwest regional climate hub assessment of climate change vulnerability and adaptation and mitigation strategies

    USDA-ARS?s Scientific Manuscript database

    This assessment draws from a large bank of information developed by scientists and extension specialists in the Northwest to describe where we need to focus when dealing with climate risks to working landscapes. The changing climate has many secondary effects, such as irrigation water loss, increase...

  20. Evaluating European Climate Change Policy: An Ecological Justice Approach

    ERIC Educational Resources Information Center

    Muhovic-Dorsner, Kamala

    2005-01-01

    To date, the concept of ecological justice, when applied to international climate change policy, has largely focused on the North-South dichotomy and has yet to be extended to Central and Eastern European countries. This article argues that current formulations of climate change policy cannot address potential issues of ecological injustice to…

  1. Divergence of species responses to climate change

    Treesearch

    Songlin Fei; Johanna M. Desprez; Kevin M. Potter; Insu Jo; Jonathan A. Knott; Christopher M. Oswalt

    2017-01-01

    Climate change can have profound impacts on biodiversity and the sustainability of many ecosystems. Various studies have investigated the impacts of climate change, but large-scale, trait-specific impactsare less understood.Weanalyze abundance data over time for 86 tree species/groups across the eastern United States spanning the last three decades. We show that more...

  2. Ready for the Storm: Education for Disaster Risk Reduction and Climate Change Adaptation and Mitigation

    ERIC Educational Resources Information Center

    Kagawa, Fumiyo; Selby, David

    2012-01-01

    Incidences of disaster and climate change impacts are rising globally. Disaster risk reduction and climate change education are two educational responses to present and anticipated increases in the severity and frequency of hazards. They share significant complementarities and potential synergies, the latter as yet largely unexploited. Three…

  3. Four cultures: new synergies for engaging society on climate change

    Treesearch

    Matthew C. Nisbet; Mark A. Hixon; Kathleen Dean Moore; Michael Nelson

    2010-01-01

    The scientific community has largely reached consensus that climate change is real, is exacerbated by human activities, and is causing detectable shifts in both living and non-living components of the biosphere. Yet, documenting and predicting the ecological, economic, social, and cultural consequences of climate change have not yet stimulated an appropriately strong...

  4. Climate and wildfires in the North American boreal forest.

    PubMed

    Macias Fauria, Marc; Johnson, E A

    2008-07-12

    The area burned in the North American boreal forest is controlled by the frequency of mid-tropospheric blocking highs that cause rapid fuel drying. Climate controls the area burned through changing the dynamics of large-scale teleconnection patterns (Pacific Decadal Oscillation/El Niño Southern Oscillation and Arctic Oscillation, PDO/ENSO and AO) that control the frequency of blocking highs over the continent at different time scales. Changes in these teleconnections may be caused by the current global warming. Thus, an increase in temperature alone need not be associated with an increase in area burned in the North American boreal forest. Since the end of the Little Ice Age, the climate has been unusually moist and variable: large fire years have occurred in unusual years, fire frequency has decreased and fire-climate relationships have occurred at interannual to decadal time scales. Prolonged and severe droughts were common in the past and were partly associated with changes in the PDO/ENSO system. Under these conditions, large fire years become common, fire frequency increases and fire-climate relationships occur at decadal to centennial time scales. A suggested return to the drier climate regimes of the past would imply major changes in the temporal dynamics of fire-climate relationships and in area burned, a reduction in the mean age of the forest, and changes in species composition of the North American boreal forest.

  5. Estimates of the long-term U.S. economic impacts of global climate change-induced drought.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehlen, Mark Andrew; Loose, Verne W.; Warren, Drake E.

    2010-01-01

    While climate-change models have done a reasonable job of forecasting changes in global climate conditions over the past decades, recent data indicate that actual climate change may be much more severe. To better understand some of the potential economic impacts of these severe climate changes, Sandia economists estimated the impacts to the U.S. economy of climate change-induced impacts to U.S. precipitation over the 2010 to 2050 time period. The economists developed an impact methodology that converts changes in precipitation and water availability to changes in economic activity, and conducted simulations of economic impacts using a large-scale macroeconomic model of themore » U.S. economy.« less

  6. Signal to noise quantification of regional climate projections

    NASA Astrophysics Data System (ADS)

    Li, S.; Rupp, D. E.; Mote, P.

    2016-12-01

    One of the biggest challenges in interpreting climate model outputs for impacts studies and adaptation planning is understanding the sources of disagreement among models (which is often used imperfectly as a stand-in for system uncertainty). Internal variability is a primary source of uncertainty in climate projections, especially for precipitation, for which models disagree about even the sign of changes in large areas like the continental US. Taking advantage of a large initial-condition ensemble of regional climate simulations, this study quantifies the magnitude of changes forced by increasing greenhouse gas concentrations relative to internal variability. Results come from a large initial-condition ensemble of regional climate model simulations generated by weather@home, a citizen science computing platform, where the western United States climate was simulated for the recent past (1985-2014) and future (2030-2059) using a 25-km horizontal resolution regional climate model (HadRM3P) nested in global atmospheric model (HadAM3P). We quantify grid point level signal-to-noise not just in temperature and precipitation responses, but also the energy and moisture flux terms that are related to temperature and precipitation responses, to provide important insights regarding uncertainty in climate change projections at local and regional scales. These results will aid modelers in determining appropriate ensemble sizes for different climate variables and help users of climate model output with interpreting climate model projections.

  7. Synoptic circulation and temperature pattern during severe wildland fires

    Treesearch

    Warren E. Heilman

    1996-01-01

    Large-scale changes in the atmosphere associated with a globally changed climate and changes in climatic variability may have important regional impacts on the frequency and severity of wildland fires in the future.

  8. A framework for modeling uncertainty in regional climate change

    EPA Science Inventory

    In this study, we present a new modeling framework and a large ensemble of climate projections to investigate the uncertainty in regional climate change over the United States associated with four dimensions of uncertainty. The sources of uncertainty considered in this framework ...

  9. An analytical approach to separate climate and human contributions to basin streamflow variability

    NASA Astrophysics Data System (ADS)

    Li, Changbin; Wang, Liuming; Wanrui, Wang; Qi, Jiaguo; Linshan, Yang; Zhang, Yuan; Lei, Wu; Cui, Xia; Wang, Peng

    2018-04-01

    Climate variability and anthropogenic regulations are two interwoven factors in the ecohydrologic system across large basins. Understanding the roles that these two factors play under various hydrologic conditions is of great significance for basin hydrology and sustainable water utilization. In this study, we present an analytical approach based on coupling water balance method and Budyko hypothesis to derive effectiveness coefficients (ECs) of climate change, as a way to disentangle contributions of it and human activities to the variability of river discharges under different hydro-transitional situations. The climate dominated streamflow change (ΔQc) by EC approach was compared with those deduced by the elasticity method and sensitivity index. The results suggest that the EC approach is valid and applicable for hydrologic study at large basin scale. Analyses of various scenarios revealed that contributions of climate change and human activities to river discharge variation differed among the regions of the study area. Over the past several decades, climate change dominated hydro-transitions from dry to wet, while human activities played key roles in the reduction of streamflow during wet to dry periods. Remarkable decline of discharge in upstream was mainly due to human interventions, although climate contributed more to runoff increasing during dry periods in the semi-arid downstream. Induced effectiveness on streamflow changes indicated a contribution ratio of 49% for climate and 51% for human activities at the basin scale from 1956 to 2015. The mathematic derivation based simple approach, together with the case example of temporal segmentation and spatial zoning, could help people understand variation of river discharge with more details at a large basin scale under the background of climate change and human regulations.

  10. Recent projections of 21st-century climate change and watershed responses in the Sierra Nevada

    Treesearch

    Michael D. Dettinger; Daniel R. Cayan; Noah Knowles; Anthony Westerling; Mary K. Tyree

    2004-01-01

    In the near future, the Sierra Nevada’s climate is projected to experience a new form of climate change due to increasing concentrations of greenhouse gases in the global atmosphere from the burning of fossil fuels and other human activities. If the changes occur, they presumably will be added to the large interannual and longer-term climate variations in the recent...

  11. Vulnerability of the global terrestrial ecosystems to climate change.

    PubMed

    Li, Delong; Wu, Shuyao; Liu, Laibao; Zhang, Yatong; Li, Shuangcheng

    2018-05-27

    Climate change has far-reaching impacts on ecosystems. Recent attempts to quantify such impacts focus on measuring exposure to climate change but largely ignore ecosystem resistance and resilience, which may also affect the vulnerability outcomes. In this study, the relative vulnerability of global terrestrial ecosystems to short-term climate variability was assessed by simultaneously integrating exposure, sensitivity, and resilience at a high spatial resolution (0.05°). The results show that vulnerable areas are currently distributed primarily in plains. Responses to climate change vary among ecosystems and deserts and xeric shrublands are the most vulnerable biomes. Global vulnerability patterns are determined largely by exposure, while ecosystem sensitivity and resilience may exacerbate or alleviate external climate pressures at local scales; there is a highly significant negative correlation between exposure and sensitivity. Globally, 61.31% of the terrestrial vegetated area is capable of mitigating climate change impacts and those areas are concentrated in polar regions, boreal forests, tropical rainforests, and intact forests. Under current sensitivity and resilience conditions, vulnerable areas are projected to develop in high Northern Hemisphere latitudes in the future. The results suggest that integrating all three aspects of vulnerability (exposure, sensitivity, and resilience) may offer more comprehensive and spatially explicit adaptation strategies to reduce the impacts of climate change on terrestrial ecosystems. © 2018 John Wiley & Sons Ltd.

  12. Beyond just sea-level rise: Considering macroclimatic drivers within coastal wetland vulnerability assessments to climate change

    USGS Publications Warehouse

    Osland, Michael J.; Enwright, Nicholas M.; Day, Richard H.; Gabler, Christopher A.; Stagg, Camille L.; Grace, James B.

    2016-01-01

    Due to their position at the land-sea interface, coastal wetlands are vulnerable to many aspects of climate change. However, climate change vulnerability assessments for coastal wetlands generally focus solely on sea-level rise without considering the effects of other facets of climate change. Across the globe and in all ecosystems, macroclimatic drivers (e.g., temperature and rainfall regimes) greatly influence ecosystem structure and function. Macroclimatic drivers have been the focus of climate-change related threat evaluations for terrestrial ecosystems, but largely ignored for coastal wetlands. In some coastal wetlands, changing macroclimatic conditions are expected to result in foundation plant species replacement, which would affect the supply of certain ecosystem goods and services and could affect ecosystem resilience. As examples, we highlight several ecological transition zones where small changes in macroclimatic conditions would result in comparatively large changes in coastal wetland ecosystem structure and function. Our intent in this communication is not to minimize the importance of sea-level rise. Rather, our overarching aim is to illustrate the need to also consider macroclimatic drivers within vulnerability assessments for coastal wetlands.

  13. Coincident scales of forest feedback on climate and conservation in a diversity hot spot

    PubMed Central

    Webb, Thomas J; Gaston, Kevin J; Hannah, Lee; Ian Woodward, F

    2005-01-01

    The dynamic relationship between vegetation and climate is now widely acknowledged. Climate influences the distribution of vegetation; and through a number of feedback mechanisms vegetation affects climate. This implies that land-use changes such as deforestation will have climatic consequences. However, the spatial scales at which such feedbacks occur remain largely unknown. Here, we use a large database of precipitation and tree cover records for an area of the biodiversity-rich Atlantic forest region in south eastern Brazil to investigate the forest–rainfall feedback at a range of spatial scales from ca 101–104 km2. We show that the strength of the feedback increases up to scales of at least 103 km2, with the climate at a particular locality influenced by the pattern of landcover extending over a large area. Thus, smaller forest fragments, even if well protected, may suffer degradation due to the climate responding to land-use change in the surrounding area. Atlantic forest vertebrate taxa also require large areas of forest to support viable populations. Areas of forest of ca 103 km2 would be large enough to support such populations at the same time as minimizing the risk of climatic feedbacks resulting from deforestation. PMID:16608697

  14. Coincident scales of forest feedback on climate and conservation in a diversity hot spot.

    PubMed

    Webb, Thomas J; Gaston, Kevin J; Hannah, Lee; Ian Woodward, F

    2006-03-22

    The dynamic relationship between vegetation and climate is now widely acknowledged. Climate influences the distribution of vegetation; and through a number of feedback mechanisms vegetation affects climate. This implies that land-use changes such as deforestation will have climatic consequences. However, the spatial scales at which such feedbacks occur remain largely unknown. Here, we use a large database of precipitation and tree cover records for an area of the biodiversity-rich Atlantic forest region in south eastern Brazil to investigate the forest-rainfall feedback at a range of spatial scales from ca 10(1)-10(4) km2. We show that the strength of the feedback increases up to scales of at least 10(3) km2, with the climate at a particular locality influenced by the pattern of landcover extending over a large area. Thus, smaller forest fragments, even if well protected, may suffer degradation due to the climate responding to land-use change in the surrounding area. Atlantic forest vertebrate taxa also require large areas of forest to support viable populations. Areas of forest of ca 10(3) km2 would be large enough to support such populations at the same time as minimizing the risk of climatic feedbacks resulting from deforestation.

  15. Projecting malaria hazard from climate change in eastern Africa using large ensembles to estimate uncertainty.

    PubMed

    Leedale, Joseph; Tompkins, Adrian M; Caminade, Cyril; Jones, Anne E; Nikulin, Grigory; Morse, Andrew P

    2016-03-31

    The effect of climate change on the spatiotemporal dynamics of malaria transmission is studied using an unprecedented ensemble of climate projections, employing three diverse bias correction and downscaling techniques, in order to partially account for uncertainty in climate- driven malaria projections. These large climate ensembles drive two dynamical and spatially explicit epidemiological malaria models to provide future hazard projections for the focus region of eastern Africa. While the two malaria models produce very distinct transmission patterns for the recent climate, their response to future climate change is similar in terms of sign and spatial distribution, with malaria transmission moving to higher altitudes in the East African Community (EAC) region, while transmission reduces in lowland, marginal transmission zones such as South Sudan. The climate model ensemble generally projects warmer and wetter conditions over EAC. The simulated malaria response appears to be driven by temperature rather than precipitation effects. This reduces the uncertainty due to the climate models, as precipitation trends in tropical regions are very diverse, projecting both drier and wetter conditions with the current state-of-the-art climate model ensemble. The magnitude of the projected changes differed considerably between the two dynamical malaria models, with one much more sensitive to climate change, highlighting that uncertainty in the malaria projections is also associated with the disease modelling approach.

  16. Climate Change and Water Resources Management: A Federal Perspective

    USGS Publications Warehouse

    Brekke, Levi D.; Kiang, Julie E.; Olsen, J. Rolf; Pulwarty, Roger S.; Raff, David A.; Turnipseed, D. Phil; Webb, Robert S.; White, Kathleen D.

    2009-01-01

    Many challenges, including climate change, face the Nation's water managers. The Intergovernmental Panel on Climate Change (IPCC) has provided estimates of how climate may change, but more understanding of the processes driving the changes, the sequences of the changes, and the manifestation of these global changes at different scales could be beneficial. Since the changes will likely affect fundamental drivers of the hydrological cycle, climate change may have a large impact on water resources and water resources managers. The purpose of this interagency report prepared by the U.S. Geological Survey (USGS), U.S. Army Corps of Engineers (USACE), Bureau of Reclamation (Reclamation), and National Oceanic and Atmospheric Administration (NOAA) is to explore strategies to improve water management by tracking, anticipating, and responding to climate change. This report describes the existing and still needed underpinning science crucial to addressing the many impacts of climate change on water resources management.

  17. Climate change impacts on human health over Europe through its effect on air quality.

    PubMed

    Doherty, Ruth M; Heal, Mathew R; O'Connor, Fiona M

    2017-12-05

    This review examines the current literature on the effects of future emissions and climate change on particulate matter (PM) and O 3 air quality and on the consequent health impacts, with a focus on Europe. There is considerable literature on the effects of climate change on O 3 but fewer studies on the effects of climate change on PM concentrations. Under the latest Intergovernmental Panel on Climate Change (IPCC) 5th assessment report (AR5) Representative Concentration Pathways (RCPs), background O 3 entering Europe is expected to decrease under most scenarios due to higher water vapour concentrations in a warmer climate. However, under the extreme pathway RCP8.5 higher (more than double) methane (CH 4 ) abundances lead to increases in background O 3 that offset the O 3 decrease due to climate change especially for the 2100 period. Regionally, in polluted areas with high levels of nitrogen oxides (NO x ), elevated surface temperatures and humidities yield increases in surface O 3 - termed the O 3 climate penalty - especially in southern Europe. The O 3 response is larger for metrics that represent the higher end of the O 3 distribution, such as daily maximum O 3 . Future changes in PM concentrations due to climate change are much less certain, although several recent studies also suggest a PM climate penalty due to high temperatures and humidity and reduced precipitation in northern mid-latitude land regions in 2100.A larger number of studies have examined both future climate and emissions changes under the RCP scenarios. Under these pathways the impact of emission changes on air quality out to the 2050s will be larger than that due to climate change, because of large reductions in emissions of O 3 and PM pollutant precursor emissions and the more limited climate change response itself. Climate change will also affect climate extreme events such as heatwaves. Air pollution episodes are associated with stagnation events and sometimes heat waves. Air quality during the 2003 heatwave over Europe has been examined in numerous studies and mechanisms for enhancing O 3 have been identified.There are few studies on health effects associated with climate change impacts alone on air quality, but these report higher O 3 -related health burdens in polluted populated regions and greater PM 2.5 health burdens in these emission regions. Studies that examine the combined impacts of climate change and anthropogenic emissions change under the RCP scenarios report reductions in global and European premature O 3 -respiratory related and PM mortalities arising from the large decreases in precursor emissions. Under RCP 8.5 the large increase in CH 4 leads to global and European excess O 3 -respiratory related mortalities in 2100. For future health effects, besides uncertainty in future O 3 and particularly PM concentrations, there is also uncertainty in risk estimates such as effect modification by temperature on pollutant-response relationships and potential future adaptation that would alter exposure risk.

  18. Climatic Changes and Consequences on the French West Indies (C3AF), Hurricane and Tsunami Hazards Assessment

    NASA Astrophysics Data System (ADS)

    Arnaud, G.; Krien, Y.; Zahibo, N.; Dudon, B.

    2017-12-01

    Coastal hazards are among the most worrying threats of our time. In a context of climate change coupled to a large population increase, tropical areas could be the most exposed zones of the globe. In such circumstances, understanding the underlying processes can help to better predict storm surges and the associated global risks.Here we present the partial preliminary results integrated in a multidisciplinary project focused on climatic change effects over the coastal threat in the French West Indies and funded by the European Regional Development Fund. The study aims to provide a coastal hazard assessment based on hurricane surge and tsunami modeling including several aspects of climate changes that can affect hazards such as sea level rise, crustal subsidence/uplift, coastline changes etc. Several tsunamis scenarios have been simulated including tele-tsunamis to ensure a large range of tsunami hazards. Surge level of hurricane have been calculated using a large number of synthetic hurricanes to cover the actual and forecasted climate over the tropical area of Atlantic ocean. This hazard assessment will be later coupled with stakes assessed over the territory to provide risk maps.

  19. Cross-scale intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large river basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hattermann, F. F.; Krysanova, V.; Gosling, S. N.

    Ideally, the results from models operating at different scales should agree in trend direction and magnitude of impacts under climate change. However, this implies that the sensitivity of impact models designed for either scale to climate variability and change is comparable. In this study, we compare hydrological changes simulated by 9 global and 9 regional hydrological models (HM) for 11 large river basins in all continents under reference and scenario conditions. The foci are on model validation runs, sensitivity of annual discharge to climate variability in the reference period, and sensitivity of the long-term average monthly seasonal dynamics to climatemore » change. One major result is that the global models, mostly not calibrated against observations, often show a considerable bias in mean monthly discharge, whereas regional models show a much better reproduction of reference conditions. However, the sensitivity of two HM ensembles to climate variability is in general similar. The simulated climate change impacts in terms of long-term average monthly dynamics evaluated for HM ensemble medians and spreads show that the medians are to a certain extent comparable in some cases with distinct differences in others, and the spreads related to global models are mostly notably larger. Summarizing, this implies that global HMs are useful tools when looking at large-scale impacts of climate change and variability, but whenever impacts for a specific river basin or region are of interest, e.g. for complex water management applications, the regional-scale models validated against observed discharge should be used.« less

  20. Buildings: Mitigation Opportunities with a Focus on Health Implications

    EPA Science Inventory

    For Frank Princiotta’s book, Global Climate Change—The Technology Challenge Addressing building energy use is the critical first step in any strategic plan for mitigating climate change. Buildings have a direct impact on estimated global climate change due to their large carbon ...

  1. Large rainfall changes consistently projected over substantial areas of tropical land

    NASA Astrophysics Data System (ADS)

    Chadwick, Robin; Good, Peter; Martin, Gill; Rowell, David P.

    2016-02-01

    Many tropical countries are exceptionally vulnerable to changes in rainfall patterns, with floods or droughts often severely affecting human life and health, food and water supplies, ecosystems and infrastructure. There is widespread disagreement among climate model projections of how and where rainfall will change over tropical land at the regional scales relevant to impacts, with different models predicting the position of current tropical wet and dry regions to shift in different ways. Here we show that despite uncertainty in the location of future rainfall shifts, climate models consistently project that large rainfall changes will occur for a considerable proportion of tropical land over the twenty-first century. The area of semi-arid land affected by large changes under a higher emissions scenario is likely to be greater than during even the most extreme regional wet or dry periods of the twentieth century, such as the Sahel drought of the late 1960s to 1990s. Substantial changes are projected to occur by mid-century--earlier than previously expected--and to intensify in line with global temperature rise. Therefore, current climate projections contain quantitative, decision-relevant information on future regional rainfall changes, particularly with regard to climate change mitigation policy.

  2. Potential redistribution of tree species habitat under five climate change scenarios in the eastern US

    Treesearch

    Louis R. Iverson; Anantha M. Prasad; Anantha M. Prasad

    2002-01-01

    Global climate change could have profound effects on the Earth's biota, including large redistributions of tree species and forest types. We used DISTRIB, a deterministic regression tree analysis model, to examine environmental drivers related to current forest-species distributions and then model potential suitable habitat under five climate change scenarios...

  3. Changes in Seasonal and Extreme Hydrologic Conditions of the Georgia Basin/Puget Sound in an Ensemble Regional Climate Simulation for the Mid-Century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leung, Lai R.; Qian, Yun

    This study examines an ensemble of climate change projections simulated by a global climate model (GCM) and downscaled with a region climate model (RCM) to 40 km spatial resolution for the western North America. One control and three ensemble future climate simulations were produced by the GCM following a business as usual scenario for greenhouse gases and aerosols emissions from 1995 to 2100. The RCM was used to downscale the GCM control simulation (1995-2015) and each ensemble future GCM climate (2040-2060) simulation. Analyses of the regional climate simulations for the Georgia Basin/Puget Sound showed a warming of 1.5-2oC and statisticallymore » insignificant changes in precipitation by the mid-century. Climate change has large impacts on snowpack (about 50% reduction) but relatively smaller impacts on the total runoff for the basin as a whole. However, climate change can strongly affect small watersheds such as those located in the transient snow zone, causing a higher likelihood of winter flooding as a higher percentage of precipitation falls in the form of rain rather than snow, and reduced streamflow in early summer. In addition, there are large changes in the monthly total runoff above the upper 1% threshold (or flood volume) from October through May, and the December flood volume of the future climate is 60% above the maximum monthly flood volume of the control climate. Uncertainty of the climate change projections, as characterized by the spread among the ensemble future climate simulations, is relatively small for the basin mean snowpack and runoff, but increases in smaller watersheds, especially in the transient snow zone, and associated with extreme events. This emphasizes the importance of characterizing uncertainty through ensemble simulations.« less

  4. Regional modeling of large wildfires under current and potential future climates in Colorado and Wyoming, USA

    USGS Publications Warehouse

    West, Amanda; Kumar, Sunil; Jarnevich, Catherine S.

    2016-01-01

    Regional analysis of large wildfire potential given climate change scenarios is crucial to understanding areas most at risk in the future, yet wildfire models are not often developed and tested at this spatial scale. We fit three historical climate suitability models for large wildfires (i.e. ≥ 400 ha) in Colorado andWyoming using topography and decadal climate averages corresponding to wildfire occurrence at the same temporal scale. The historical models classified points of known large wildfire occurrence with high accuracies. Using a novel approach in wildfire modeling, we applied the historical models to independent climate and wildfire datasets, and the resulting sensitivities were 0.75, 0.81, and 0.83 for Maxent, Generalized Linear, and Multivariate Adaptive Regression Splines, respectively. We projected the historic models into future climate space using data from 15 global circulation models and two representative concentration pathway scenarios. Maps from these geospatial analyses can be used to evaluate the changing spatial distribution of climate suitability of large wildfires in these states. April relative humidity was the most important covariate in all models, providing insight to the climate space of large wildfires in this region. These methods incorporate monthly and seasonal climate averages at a spatial resolution relevant to land management (i.e. 1 km2) and provide a tool that can be modified for other regions of North America, or adapted for other parts of the world.

  5. Controls on the Archean climate system investigated with a global climate model.

    PubMed

    Wolf, E T; Toon, O B

    2014-03-01

    The most obvious means of resolving the faint young Sun paradox is to invoke large quantities of greenhouse gases, namely, CO2 and CH4. However, numerous changes to the Archean climate system have been suggested that may have yielded additional warming, thus easing the required greenhouse gas burden. Here, we use a three-dimensional climate model to examine some of the factors that controlled Archean climate. We examine changes to Earth's rotation rate, surface albedo, cloud properties, and total atmospheric pressure following proposals from the recent literature. While the effects of increased planetary rotation rate on surface temperature are insignificant, plausible changes to the surface albedo, cloud droplet number concentrations, and atmospheric nitrogen inventory may each impart global mean warming of 3-7 K. While none of these changes present a singular solution to the faint young Sun paradox, a combination can have a large impact on climate. Global mean surface temperatures at or above 288 K could easily have been maintained throughout the entirety of the Archean if plausible changes to clouds, surface albedo, and nitrogen content occurred.

  6. Taking a climate chance: a procedural critique of Vietnam's climate change strategy.

    PubMed

    Fortier, François

    2010-01-01

    This article asks through what processes and for which interests the emerging Vietnamese climate change strategy is being designed, and if, ultimately, it is likely or not to be effective in the face of the looming threat. Through a review of an emerging body of literature and field observations, the paper finds the strategy partial and problematic in several ways. Its technocratic process prevents a pluralist representation of interests, obfuscating and perpetuating sectorial ones, at the expense of a more transparent and democratic resource allocation. The strategy therefore reflects and reinforces existing power relations in both politics and production. It feeds into a business-as-usual complacency, protecting national and international interests vested in unchallenged continuity, even when considering post-carbon technological fixes, which largely serve to expand capital accumulation opportunities. The article concludes that the national climate change strategy provides an illusion of intervention and security, but largely fails to identify and mitigate the underlying causes of climate change, or to lay the ground for a robust mid- and long-term adaptation strategy that can cope with yet unknown levels of climatic and other structural changes.

  7. Evolution in response to climate change: in pursuit of the missing evidence.

    PubMed

    Merilä, Juha

    2012-09-01

    Climate change is imposing intensified and novel selection pressures on organisms by altering abiotic and biotic environmental conditions on Earth, but studies demonstrating genetic adaptation to climate change mediated selection are still scarce. Evidence is accumulating to indicate that both genetic and ecological constrains may often limit populations' abilities to adapt to large scale effects of climate warming. These constraints may predispose many organisms to respond to climate change with range shifts and phenotypic plasticity, rather than through evolutionary adaptation. In general, broad conclusions about the role of evolutionary adaptation in mitigating climate change induced fitness loss in the wild are as yet difficult to make. Copyright © 2012 WILEY Periodicals, Inc.

  8. Modelling the influence of land-use changes on biophysical and biochemical interactions at regional and global scales.

    PubMed

    Devaraju, N; Bala, G; Nemani, R

    2015-09-01

    Land-use changes since the start of the industrial era account for nearly one-third of the cumulative anthropogenic CO2 emissions. In addition to the greenhouse effect of CO2 emissions, changes in land use also affect climate via changes in surface physical properties such as albedo, evapotranspiration and roughness length. Recent modelling studies suggest that these biophysical components may be comparable with biochemical effects. In regard to climate change, the effects of these two distinct processes may counterbalance one another both regionally and, possibly, globally. In this article, through hypothetical large-scale deforestation simulations using a global climate model, we contrast the implications of afforestation on ameliorating or enhancing anthropogenic contributions from previously converted (agricultural) land surfaces. Based on our review of past studies on this subject, we conclude that the sum of both biophysical and biochemical effects should be assessed when large-scale afforestation is used for countering global warming, and the net effect on global mean temperature change depends on the location of deforestation/afforestation. Further, although biochemical effects trigger global climate change, biophysical effects often cause strong local and regional climate change. The implication of the biophysical effects for adaptation and mitigation of climate change in agriculture and agroforestry sectors is discussed. © 2014 John Wiley & Sons Ltd.

  9. Small lakes show muted climate change signal in deepwater temperatures

    USGS Publications Warehouse

    Winslow, Luke A.; Read, Jordan S.; Hansen, Gretchen J. A.; Hanson, Paul C.

    2015-01-01

    Water temperature observations were collected from 142 lakes across Wisconsin, USA, to examine variation in temperature of lakes exposed to similar regional climate. Whole lake water temperatures increased across the state from 1990 to 2012, with an average trend of 0.042°C yr−1 ± 0.01°C yr−1. In large (>0.5 km2) lakes, the positive temperature trend was similar across all depths. In small lakes (<0.5 km2), the warming trend was restricted to shallow waters, with no significant temperature trend observed in water >0.5 times the maximum lake depth. The differing response of small versus large lakes is potentially a result of wind-sheltering reducing turbulent mixing magnitude in small lakes. These results demonstrate that small lakes respond differently to climate change than large lakes, suggesting that current predictions of impacts to lakes from climate change may require modification.

  10. Climate and streamflow trends in the Columbia River Basin: evidence for ecological and engineering resilience to climate change

    Treesearch

    K.L. Hatcher; J.A. Jones

    2013-01-01

    Large river basins transfer the water signal from the atmosphere to the ocean. Climate change is widely expected to alter streamflow and potentially disrupt water management systems. We tested the ecological resilience—capacity of headwater ecosystems to sustain streamflow under climate change—and the engineering resilience—capacity of dam and reservoir management to...

  11. Variance decomposition shows the importance of human-climate feedbacks in the Earth system

    NASA Astrophysics Data System (ADS)

    Calvin, K. V.; Bond-Lamberty, B. P.; Jones, A. D.; Shi, X.; Di Vittorio, A. V.; Thornton, P. E.

    2017-12-01

    The human and Earth systems are intricately linked: climate influences agricultural production, renewable energy potential, and water availability, for example, while anthropogenic emissions from industry and land use change alter temperature and precipitation. Such feedbacks have the potential to significantly alter future climate change. Current climate change projections contain significant uncertainties, however, and because Earth System Models do not generally include dynamic human (demography, economy, energy, water, land use) components, little is known about how climate feedbacks contribute to that uncertainty. Here we use variance decomposition of a novel coupled human-earth system model to show that the influence of human-climate feedbacks can be as large as 17% of the total variance in the near term for global mean temperature rise, and 11% in the long term for cropland area. The near-term contribution of energy and land use feedbacks to the climate on global mean temperature rise is as large as that from model internal variability, a factor typically considered in modeling studies. Conversely, the contribution of climate feedbacks to cropland extent, while non-negligible, is less than that from socioeconomics, policy, or model. Previous assessments have largely excluded these feedbacks, with the climate community focusing on uncertainty due to internal variability, scenario, and model and the integrated assessment community focusing on uncertainty due to socioeconomics, technology, policy, and model. Our results set the stage for a new generation of models and hypothesis testing to determine when and how bidirectional feedbacks between human and Earth systems should be considered in future assessments of climate change.

  12. Impact of regional climate change on human health

    NASA Astrophysics Data System (ADS)

    Patz, Jonathan A.; Campbell-Lendrum, Diarmid; Holloway, Tracey; Foley, Jonathan A.

    2005-11-01

    The World Health Organisation estimates that the warming and precipitation trends due to anthropogenic climate change of the past 30years already claim over 150,000 lives annually. Many prevalent human diseases are linked to climate fluctuations, from cardiovascular mortality and respiratory illnesses due to heatwaves, to altered transmission of infectious diseases and malnutrition from crop failures. Uncertainty remains in attributing the expansion or resurgence of diseases to climate change, owing to lack of long-term, high-quality data sets as well as the large influence of socio-economic factors and changes in immunity and drug resistance. Here we review the growing evidence that climate-health relationships pose increasing health risks under future projections of climate change and that the warming trend over recent decades has already contributed to increased morbidity and mortality in many regions of the world. Potentially vulnerable regions include the temperate latitudes, which are projected to warm disproportionately, the regions around the Pacific and Indian oceans that are currently subjected to large rainfall variability due to the El Niño/Southern Oscillation sub-Saharan Africa and sprawling cities where the urban heat island effect could intensify extreme climatic events.

  13. Impact of regional climate change on human health.

    PubMed

    Patz, Jonathan A; Campbell-Lendrum, Diarmid; Holloway, Tracey; Foley, Jonathan A

    2005-11-17

    The World Health Organisation estimates that the warming and precipitation trends due to anthropogenic climate change of the past 30 years already claim over 150,000 lives annually. Many prevalent human diseases are linked to climate fluctuations, from cardiovascular mortality and respiratory illnesses due to heatwaves, to altered transmission of infectious diseases and malnutrition from crop failures. Uncertainty remains in attributing the expansion or resurgence of diseases to climate change, owing to lack of long-term, high-quality data sets as well as the large influence of socio-economic factors and changes in immunity and drug resistance. Here we review the growing evidence that climate-health relationships pose increasing health risks under future projections of climate change and that the warming trend over recent decades has already contributed to increased morbidity and mortality in many regions of the world. Potentially vulnerable regions include the temperate latitudes, which are projected to warm disproportionately, the regions around the Pacific and Indian oceans that are currently subjected to large rainfall variability due to the El Niño/Southern Oscillation sub-Saharan Africa and sprawling cities where the urban heat island effect could intensify extreme climatic events.

  14. Plasticity and genetic adaptation mediate amphibian and reptile responses to climate change.

    PubMed

    Urban, Mark C; Richardson, Jonathan L; Freidenfelds, Nicole A

    2014-01-01

    Phenotypic plasticity and genetic adaptation are predicted to mitigate some of the negative biotic consequences of climate change. Here, we evaluate evidence for plastic and evolutionary responses to climate variation in amphibians and reptiles via a literature review and meta-analysis. We included studies that either document phenotypic changes through time or space. Plasticity had a clear and ubiquitous role in promoting phenotypic changes in response to climate variation. For adaptive evolution, we found no direct evidence for evolution of amphibians or reptiles in response to climate change over time. However, we found many studies that documented adaptive responses to climate along spatial gradients. Plasticity provided a mixture of adaptive and maladaptive responses to climate change, highlighting that plasticity frequently, but not always, could ameliorate climate change. Based on our review, we advocate for more experiments that survey genetic changes through time in response to climate change. Overall, plastic and genetic variation in amphibians and reptiles could buffer some of the formidable threats from climate change, but large uncertainties remain owing to limited data.

  15. Plasticity and genetic adaptation mediate amphibian and reptile responses to climate change

    PubMed Central

    Urban, Mark C; Richardson, Jonathan L; Freidenfelds, Nicole A

    2014-01-01

    Phenotypic plasticity and genetic adaptation are predicted to mitigate some of the negative biotic consequences of climate change. Here, we evaluate evidence for plastic and evolutionary responses to climate variation in amphibians and reptiles via a literature review and meta-analysis. We included studies that either document phenotypic changes through time or space. Plasticity had a clear and ubiquitous role in promoting phenotypic changes in response to climate variation. For adaptive evolution, we found no direct evidence for evolution of amphibians or reptiles in response to climate change over time. However, we found many studies that documented adaptive responses to climate along spatial gradients. Plasticity provided a mixture of adaptive and maladaptive responses to climate change, highlighting that plasticity frequently, but not always, could ameliorate climate change. Based on our review, we advocate for more experiments that survey genetic changes through time in response to climate change. Overall, plastic and genetic variation in amphibians and reptiles could buffer some of the formidable threats from climate change, but large uncertainties remain owing to limited data. PMID:24454550

  16. Pace of shifts in climate regions increases with global temperature

    NASA Astrophysics Data System (ADS)

    Mahlstein, Irina; Daniel, John S.; Solomon, Susan

    2013-08-01

    Human-induced climate change causes significant changes in local climates, which in turn lead to changes in regional climate zones. Large shifts in the world distribution of Köppen-Geiger climate classifications by the end of this century have been projected. However, only a few studies have analysed the pace of these shifts in climate zones, and none has analysed whether the pace itself changes with increasing global mean temperature. In this study, pace refers to the rate at which climate zones change as a function of amount of global warming. Here we show that present climate projections suggest that the pace of shifting climate zones increases approximately linearly with increasing global temperature. Using the RCP8.5 emissions pathway, the pace nearly doubles by the end of this century and about 20% of all land area undergoes a change in its original climate. This implies that species will have increasingly less time to adapt to Köppen zone changes in the future, which is expected to increase the risk of extinction.

  17. Statistical downscaling of daily precipitation over Llobregat river basin in Catalonia (Spain) using three downscaling methods.

    NASA Astrophysics Data System (ADS)

    Ballinas, R.; Versini, P.-A.; Sempere, D.; Escaler, I.

    2009-09-01

    Any long-term change in the patterns of average weather in a global or regional scale is called climate change. It may cause a progressive increase of atmospheric temperature and consequently may change the amount, frequency and intensity of precipitation. All these changes of meteorological parameters may modify the water cycle: run-off, infiltration, aquifer recharge, etc. Recent studies in Catalonia foresee changes in hydrological systems caused by climate change. This will lead to alterations in the hydrological cycle that could impact in land use, in the regimen of water extractions, in the hydrological characteristics of the territory and reduced groundwater recharge. Besides, can expect a loss of flow in rivers. In addition to possible increases in the frequency of extreme rainfall, being necessary to modify the design of infrastructure. Because this, it work focuses on studying the impacts of climate change in one of the most important basins in Catalonia, the Llobregat River Basin. The basin is the hub of the province of Barcelona. It is a highly populated and urbanized catchment, where water resources are used for different purposes, as drinking water production, agricultural irrigation, industry and hydro-electrical energy production. In consequence, many companies and communities depend on these resources. To study the impact of climate change in the Llobregat basin, storms (frequency, intensity) mainly, we will need regional climate change information. A regional climate is determined by interactions at large, regional and local scales. The general circulation models (GCMs) are run at too coarse resolution to permit accurate description of these regional and local interactions. So far, they have been unable to provide consistent estimates of climate change on a local scale. Several regionalization techniques have been developed to bridge the gap between the large-scale information provided by GCMs and fine spatial scales required for regional and environmental impact studies. Downscaling methods to assess the effect of large-scale circulations on local parameters have. Statistical downscaling methods are based on the view that regional climate can be conditioned by two factors: large-scale climatic state and regional/local features. Local climate information is derived by first developing a statistical model which relates large-scale variables or "predictors" for which GCMs are trustable to regional or local surface "predictands" for which models are less skilful. The main advantage of these methods is that they are computationally inexpensive, and can be applied to outputs from different GCM experiments. Three statistical downscaling methods are applied: Analogue method, Delta Change and Direct Forcing. These methods have been used to determine daily precipitation projections at rain gauge location to study the intensity, frequency and variability of storms in a context of climate change in the Llobregat River Basin in Catalonia, Spain. This work is part of the European project "Water Change" (included in the LIFE + Environment Policy and Governance program). It deals with Medium and long term water resources modelling as a tool for planning and global change adaptation. Two stakeholders involved in the project provided the historical time series: Catalan Water Agency (ACA) and the State Meteorological Agency (AEMET).

  18. Heterogeneous Sensitivity of Tropical Precipitation Extremes during Growth and Mature Phases of Atmospheric Warming

    NASA Astrophysics Data System (ADS)

    Parhi, P.; Giannini, A.; Lall, U.; Gentine, P.

    2016-12-01

    Assessing and managing risks posed by climate variability and change is challenging in the tropics, from both a socio-economic and a scientific perspective. Most of the vulnerable countries with a limited climate adaptation capability are in the tropics. However, climate projections, particularly of extreme precipitation, are highly uncertain there. The CMIP5 (Coupled Model Inter- comparison Project - Phase 5) inter-model range of extreme precipitation sensitivity to the global temperature under climate change is much larger in the tropics as compared to the extra-tropics. It ranges from nearly 0% to greater than 30% across models (O'Gorman 2012). The uncertainty is also large in historical gauge or satellite based observational records. These large uncertainties in the sensitivity of tropical precipitation extremes highlight the need to better understand how tropical precipitation extremes respond to warming. We hypothesize that one of the factors explaining the large uncertainty is due to differing sensitivities during different phases of warming. We consider the `growth' and `mature' phases of warming under climate variability case- typically associated with an El Niño event. In the remote tropics (away from tropical Pacific Ocean), the response of the precipitation extremes during the two phases can be through different pathways: i) a direct and fast changing radiative forcing in an atmospheric column, acting top-down due to the tropospheric warming, and/or ii) an indirect effect via changes in surface temperatures, acting bottom-up through surface water and energy fluxes. We also speculate that the insights gained here might be useful in interpreting the large sensitivity under climate change scenarios, since the physical mechanisms during the two warming phases under climate variability case, have some correspondence with an increasing and stabilized green house gas emission scenarios.

  19. Exploring the Climate Change, Migration and Conflict Nexus.

    PubMed

    Burrows, Kate; Kinney, Patrick L

    2016-04-22

    The potential link between climate change, migration, and conflict has been widely discussed and is increasingly viewed by policy makers as a security issue. However, considerable uncertainty remains regarding the role that climate variability and change play among the many drivers of migration and conflict. The overall objective of this paper is to explore the potential pathways linking climate change, migration and increased risk of conflict. We review the existing literature surrounding this issue and break the problem into two components: the links between climate change and migration, and those between migration and conflict. We found a large range of views regarding the importance of climate change as a driver for increasing rates of migration and subsequently of conflict. We argue that future research should focus not only on the climate-migration-conflict pathway but also work to understand the other pathways by which climate variability and change might exacerbate conflict. We conclude by proposing five questions to help guide future research on the link between climate change, migration, and conflict.

  20. Exploring the Climate Change, Migration and Conflict Nexus

    PubMed Central

    Burrows, Kate; Kinney, Patrick L.

    2016-01-01

    The potential link between climate change, migration, and conflict has been widely discussed and is increasingly viewed by policy makers as a security issue. However, considerable uncertainty remains regarding the role that climate variability and change play among the many drivers of migration and conflict. The overall objective of this paper is to explore the potential pathways linking climate change, migration and increased risk of conflict. We review the existing literature surrounding this issue and break the problem into two components: the links between climate change and migration, and those between migration and conflict. We found a large range of views regarding the importance of climate change as a driver for increasing rates of migration and subsequently of conflict. We argue that future research should focus not only on the climate-migration-conflict pathway but also work to understand the other pathways by which climate variability and change might exacerbate conflict. We conclude by proposing five questions to help guide future research on the link between climate change, migration, and conflict. PMID:27110806

  1. Climate change may alter breeding ground distributions of eastern migratory monarchs (Danaus plexippus) via range expansion of Asclepias host plants.

    PubMed

    Lemoine, Nathan P

    2015-01-01

    Climate change can profoundly alter species' distributions due to changes in temperature, precipitation, or seasonality. Migratory monarch butterflies (Danaus plexippus) may be particularly susceptible to climate-driven changes in host plant abundance or reduced overwintering habitat. For example, climate change may significantly reduce the availability of overwintering habitat by restricting the amount of area with suitable microclimate conditions. However, potential effects of climate change on monarch northward migrations remain largely unknown, particularly with respect to their milkweed (Asclepias spp.) host plants. Given that monarchs largely depend on the genus Asclepias as larval host plants, the effects of climate change on monarch northward migrations will most likely be mediated by climate change effects on Asclepias. Here, I used MaxEnt species distribution modeling to assess potential changes in Asclepias and monarch distributions under moderate and severe climate change scenarios. First, Asclepias distributions were projected to extend northward throughout much of Canada despite considerable variability in the environmental drivers of each individual species. Second, Asclepias distributions were an important predictor of current monarch distributions, indicating that monarchs may be constrained as much by the availability of Asclepias host plants as environmental variables per se. Accordingly, modeling future distributions of monarchs, and indeed any tightly coupled plant-insect system, should incorporate the effects of climate change on host plant distributions. Finally, MaxEnt predictions of Asclepias and monarch distributions were remarkably consistent among general circulation models. Nearly all models predicted that the current monarch summer breeding range will become slightly less suitable for Asclepias and monarchs in the future. Asclepias, and consequently monarchs, should therefore undergo expanded northern range limits in summer months while encountering reduced habitat suitability throughout the northern migration.

  2. Climate Change May Alter Breeding Ground Distributions of Eastern Migratory Monarchs (Danaus plexippus) via Range Expansion of Asclepias Host Plants

    PubMed Central

    Lemoine, Nathan P.

    2015-01-01

    Climate change can profoundly alter species’ distributions due to changes in temperature, precipitation, or seasonality. Migratory monarch butterflies (Danaus plexippus) may be particularly susceptible to climate-driven changes in host plant abundance or reduced overwintering habitat. For example, climate change may significantly reduce the availability of overwintering habitat by restricting the amount of area with suitable microclimate conditions. However, potential effects of climate change on monarch northward migrations remain largely unknown, particularly with respect to their milkweed (Asclepias spp.) host plants. Given that monarchs largely depend on the genus Asclepias as larval host plants, the effects of climate change on monarch northward migrations will most likely be mediated by climate change effects on Asclepias. Here, I used MaxEnt species distribution modeling to assess potential changes in Asclepias and monarch distributions under moderate and severe climate change scenarios. First, Asclepias distributions were projected to extend northward throughout much of Canada despite considerable variability in the environmental drivers of each individual species. Second, Asclepias distributions were an important predictor of current monarch distributions, indicating that monarchs may be constrained as much by the availability of Asclepias host plants as environmental variables per se. Accordingly, modeling future distributions of monarchs, and indeed any tightly coupled plant-insect system, should incorporate the effects of climate change on host plant distributions. Finally, MaxEnt predictions of Asclepias and monarch distributions were remarkably consistent among general circulation models. Nearly all models predicted that the current monarch summer breeding range will become slightly less suitable for Asclepias and monarchs in the future. Asclepias, and consequently monarchs, should therefore undergo expanded northern range limits in summer months while encountering reduced habitat suitability throughout the northern migration. PMID:25705876

  3. North American vegetation model for land-use planning in a changing climate: A solution to large classification problems

    Treesearch

    Gerald E. Rehfeldt; Nicholas L. Crookston; Cuauhtemoc Saenz-Romero; Elizabeth M. Campbell

    2012-01-01

    Data points intensively sampling 46 North American biomes were used to predict the geographic distribution of biomes from climate variables using the Random Forests classification tree. Techniques were incorporated to accommodate a large number of classes and to predict the future occurrence of climates beyond the contemporary climatic range of the biomes. Errors of...

  4. Environmental and economic risks assessment under climate changes for three land uses scenarios analysis across Teshio watershed, northernmost of Japan.

    PubMed

    Fan, Min; Shibata, Hideaki; Chen, Li

    2017-12-01

    Land use and climate changes affect on the economy and environment with different patterns and magnitudes in the watershed. This study used risk analysis model stochastic efficiency with respect to a function (SERF) to evaluate economic and environmental risks caused by four climate change scenarios (baseline, small-, mid- and large changes) and three land uses (paddy dominated, paddy-farmland mixture and farmland dominated for agriculture) in Teshio watershed in northern Hokkaido, Japan. Under the baseline climate conditions, the lower ranking of economic income of crop yield and higher ranking of pollutant load from agricultural land were both predicted in paddy dominated for agriculture, suggesting that the paddy dominated system caused higher risks of economic and environmental variables compared to other two land uses. Increase of temperature and precipitation increased crop yields under all three climate changes which resulted in increase of the ranking of economic income, indicating that those climate changes could reduce economic risk. The increased temperature and precipitation also accelerated mineralization of organic nutrient and nutrient leaching to river course of Teshio which resulted in increase of the ranking of pollutant load, suggesting that those climate changes could lead to more environmental risk. The rankings of economic income in mid- and large changes of climate were lower than that in small change of climate under paddy-farmland mixture and farmland dominated systems due to decrease of crop yield, suggesting that climate change led to more economic risk. In summary, the results suggested that increase in temperature and precipitation caused higher risks of both economic and environmental perspectives, and the impacts was higher than those of land use changes in the studied watershed. Those findings would help producers and watershed managers to measure the tradeoffs between environmental protection and agricultural economic development for making decision under land use and climate changes. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Detecting Change in Landscape Greenness over Large Areas: An Example for New Mexico, USA

    EPA Science Inventory

    Monitoring and quantifying changes in vegetation cover over large areas using remote sensing can potentially detect large-scale, slow changes (e.g., climate change), as well as more local and rapid changes (e.g., fire, land development). A useful indicator for detecting change i...

  6. Climate mitigation and the future of tropical landscapes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomson, Allison M.; Calvin, Katherine V.; Chini, Louise Parsons

    2010-11-16

    Land use change to meet 21st Century demands for food, fuel, and fiber will occur in the context of both a changing climate as well as societal efforts to mitigate climate change. This changing natural and human environment will have large consequences for forest resources, terrestrial carbon storage and emissions, and food and energy crop production over the next century. Any climate change mitigation policies enacted will change the environment under which land-use decisions are made and alter global land use change patterns. Here we use the GCAM integrated assessment model to explore how climate mitigation policies that achieve amore » climate stabilization at 4.5 W m-2 radiative forcing in 2100 and value carbon in terrestrial ecosystems interact with future agricultural productivity and food and energy demands to influence land use in the tropics. The regional land use results are downscaled from GCAM regions to produce gridded maps of tropical land use change. We find that tropical forests are preserved only in cases where a climate mitigation policy that values terrestrial carbon is in place, and crop productivity growth continues throughout the century. Crop productivity growth is also necessary to avoid large scale deforestation globally and enable the production of bioenergy crops. The terrestrial carbon pricing assumptions in GCAM are effective at avoiding deforestation even when cropland must expand to meet future food demand.« less

  7. The rise of the mediocre forest: why chronically stressed trees may better survive extreme episodic climate variability

    Treesearch

    Steven G. McNulty; Johnny L. Boggs; Ge Sun

    2014-01-01

    Anthropogenic climate change is a relatively new phenomenon, largely occurring over the past 150 years, and much of the discussion on climate change impacts to forests has focused on long-term shifts in temperature and precipitation. However, individual trees respond to the much shorter impacts of climate variability. Historically, fast growing, fully canopied, non-...

  8. The impacts of climate change on poverty in 2030, and the potential from rapid, inclusive and climate-informed development

    NASA Astrophysics Data System (ADS)

    Rozenberg, J.; Hallegatte, S.

    2016-12-01

    There is a consensus on the fact that poor people are more vulnerable to climate change than the rest of the population, but, until recently, few quantified estimates had been proposed and few frameworks existed to design policies for addressing the issue. In this paper, we analyze the impacts of climate change on poverty using micro-simulation approaches. We start from household surveys that describe the current distribution of income and occupations, we project these households into the future and we look at the impacts of climate change on people's income. To project households into the future, we explore a large range of assumptions on future demographic changes (including on education), technological changes, and socio-economic trends (including redistribution policies). This approach allows us to identify the main combination of factors that lead to fast poverty reduction, and the ones that lead to high climate change impacts on the poor. Identifying these factors is critical for designing efficient policies to protect the poorest from climate change impacts and making economic growth more inclusive. Conclusions are twofold. First, by 2030 climate change can have a large impact on poverty, with between 3 and 122 million more people in poverty, but climate change remains a secondary driver of poverty trends within this time horizon. Climate change impacts do not only affect the poorest: in 2030, the bottom 40 percent lose more than 4 percent of income in many countries. The regional hotspots are Sub-Saharan Africa and - to a lesser extent - India and the rest of South Asia. The most important channel through which climate change increases poverty is through agricultural income and food prices. Second, by 2030 and in the absence of surprises on climate impacts, inclusive climate-informed development can prevent most of (but not all) the impacts on poverty. In a scenario with rapid, inclusive and climate-proof development, climate change impact on poverty is between 3 and 16 million, vs. between 35 and 122 million if development is delayed and less inclusive. Development and inclusive policies appears to reduce the impact of climate change on poverty much more than it reduces aggregated losses expressed in percentage of GDP.

  9. Climate-induced changes in vulnerability to biological threats in the southern United States

    Treesearch

    Rabiu Olatinwo; Qinfeng Guo; Songlin Fei; William Otrosina; Kier Klepzig; Douglas Streett

    2014-01-01

    Forest land managers face the challenges of preparing their forests for the impacts of climate change. However, climate change adds a new dimension to the task of developing and testing science-based management options to deal with the effects of stressors on forest ecosystems in the southern United States. The large spatial scale and complex interactions make...

  10. 2700 years of Mediterranean environmental change in central Italy: a synthesis of sedimentary and cultural records to interpret past impacts of climate on society

    NASA Astrophysics Data System (ADS)

    Mensing, Scott A.; Tunno, Irene; Sagnotti, Leonardo; Florindo, Fabio; Noble, Paula; Archer, Claire; Zimmerman, Susan; Pavón-Carrasco, Francisco Javier; Cifani, Gabriele; Passigli, Susanna; Piovesan, Gianluca

    2015-05-01

    Abrupt climate change in the past is thought to have disrupted societies by accelerating environmental degradation, potentially leading to cultural collapse. Linking climate change directly to societal disruption is challenging because socioeconomic factors also play a large role, with climate being secondary or sometimes inconsequential. Combining paleolimnologic, historical, and archaeological methods provides for a more secure basis for interpreting the past impacts of climate on society. We present pollen, non-pollen palynomorph, geochemical, paleomagnetic and sedimentary data from a high-resolution 2700 yr lake sediment core from central Italy and compare these data with local historical documents and archeological surveys to reconstruct a record of environmental change in relation to socioeconomic history and climatic fluctuations. Here we document cases in which environmental change is strongly linked to changes in local land management practices in the absence of clear climatic change, as well as examples when climate change appears to have been a strong catalyst that resulted in significant environmental change that impacted local communities. During the Imperial Roman period, despite a long period of stable, mild climate, and a large urban population in nearby Rome, our site shows only limited evidence for environmental degradation. Warm and mild climate during the Medieval Warm period, on the other hand, led to widespread deforestation and erosion. The ability of the Romans to utilize imported resources through an extensive trade network may have allowed for preservation of the environment near the Roman capital, whereas during medieval time, the need to rely on local resources led to environmental degradation. Cool wet climate during the Little Ice Age led to a breakdown in local land use practices, widespread land abandonment and rapid reforestation. Our results present a high-resolution regional case study that explores the effect of climate change on society for an under-documented region of Europe.

  11. Tribal engagement strategy of the South Central Climate Science Center, 2014

    USGS Publications Warehouse

    Andrews, William J.; Taylor, April; Winton, Kimberly T.

    2014-01-01

    The South Central Climate Science Center was established by the U.S. Department of the Interior in 2012 to increase understanding of climate change and coordinate an effective response to climate-change effects on Native American tribes and natural and cultural resources that the Department manages. The eight regional Climate Science Centers of the U.S. Department of the Interior work closely with natural-resource management agencies, university researchers, and others such as tribes and private landowners on climate-change issues. The relatively large number of Native Americans in the south central United States and their special knowledge of changing ecosystems make working with tribes and tribal members on climate-change issues particularly important in this part of the Nation. This circular describes priorities of the South Central Climate Science Center and provides information about resources available from Climate Science Centers and partner agencies regarding climate change. The circular also describes how this Climate Science Center, tribes and tribal members, and others can collaborate to minimize potential harmful effects of climate change on human society and our surrounding ecosystems.

  12. Effects of global climate change on the US forest sector: response functions derived from a dynamic resource and market simulator.

    Treesearch

    Bruce A. McCarl; Darius M. Adams; Ralph J. Alig; Diana Burton; Chi-Chung. Chen

    2000-01-01

    A multiperiod, regional, mathematical programming economic model is used to evaluate the potential economic impacts of global climatic change on the US forest sector. A wide range of scenarios for the biological response of forests to climate change are developed, ranging from small to large changes in forest growth rates. These scenarios are simulated in the economic...

  13. Changes in forest habitat classes under alternative climate and land-use change scenarios in the northeast and midwest, USA

    Treesearch

    Brian G. Tavernia; Mark D. Nelson; Michael E. Goerndt; Brian F. Walters; Chris Toney

    2013-01-01

    Large-scale and long-term habitat management plans are needed to maintain the diversity of habitat classes required by wildlife species. Planning efforts would benefit from assessments of potential climate and land-use change effects on habitats. We assessed climate and land-use driven changes in areas of closed- and open-canopy forest across the Northeast and Midwest...

  14. More rapid climate change promotes evolutionary rescue through selection for increased dispersal distance.

    PubMed

    Boeye, Jeroen; Travis, Justin M J; Stoks, Robby; Bonte, Dries

    2013-02-01

    Species can either adapt to new conditions induced by climate change or shift their range in an attempt to track optimal environmental conditions. During current range shifts, species are simultaneously confronted with a second major anthropogenic disturbance, landscape fragmentation. Using individual-based models with a shifting climate window, we examine the effect of different rates of climate change on the evolution of dispersal distances through changes in the genetically determined dispersal kernel. Our results demonstrate that the rate of climate change is positively correlated to the evolved dispersal distances although too fast climate change causes the population to crash. When faced with realistic rates of climate change, greater dispersal distances evolve than those required for the population to keep track of the climate, thereby maximizing population size. Importantly, the greater dispersal distances that evolve when climate change is more rapid, induce evolutionary rescue by facilitating the population in crossing large gaps in the landscape. This could ensure population persistence in case of range shifting in fragmented landscapes. Furthermore, we highlight problems in using invasion speed as a proxy for potential range shifting abilities under climate change.

  15. Verification of GCM-generated regional seasonal precipitation for current climate and of statistical downscaling estimates under changing climate conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busuioc, A.; Storch, H. von; Schnur, R.

    Empirical downscaling procedures relate large-scale atmospheric features with local features such as station rainfall in order to facilitate local scenarios of climate change. The purpose of the present paper is twofold: first, a downscaling technique is used as a diagnostic tool to verify the performance of climate models on the regional scale; second, a technique is proposed for verifying the validity of empirical downscaling procedures in climate change applications. The case considered is regional seasonal precipitation in Romania. The downscaling model is a regression based on canonical correlation analysis between observed station precipitation and European-scale sea level pressure (SLP). Themore » climate models considered here are the T21 and T42 versions of the Hamburg ECHAM3 atmospheric GCM run in time-slice mode. The climate change scenario refers to the expected time of doubled carbon dioxide concentrations around the year 2050. Generally, applications of statistical downscaling to climate change scenarios have been based on the assumption that the empirical link between the large-scale and regional parameters remains valid under a changed climate. In this study, a rationale is proposed for this assumption by showing the consistency of the 2 x CO{sub 2} GCM scenarios in winter, derived directly from the gridpoint data, with the regional scenarios obtained through empirical downscaling. Since the skill of the GCMs in regional terms is already established, it is concluded that the downscaling technique is adequate for describing climatically changing regional and local conditions, at least for precipitation in Romania during winter.« less

  16. The health effects of climate change: a survey of recent quantitative research.

    PubMed

    Grasso, Margherita; Manera, Matteo; Chiabai, Aline; Markandya, Anil

    2012-05-01

    In recent years there has been a large scientific and public debate on climate change and its direct as well as indirect effects on human health. In particular, a large amount of research on the effects of climate changes on human health has addressed two fundamental questions. First, can historical data be of some help in revealing how short-run or long-run climate variations affect the occurrence of infectious diseases? Second, is it possible to build more accurate quantitative models which are capable of predicting the future effects of different climate conditions on the transmissibility of particularly dangerous infectious diseases? The primary goal of this paper is to review the most relevant contributions which have directly tackled those questions, both with respect to the effects of climate changes on the diffusion of non-infectious and infectious diseases, with malaria as a case study. Specific attention will be drawn on the methodological aspects of each study, which will be classified according to the type of quantitative model considered, namely time series models, panel data and spatial models, and non-statistical approaches. Since many different disciplines and approaches are involved, a broader view is necessary in order to provide a better understanding of the interactions between climate and health. In this respect, our paper also presents a critical summary of the recent literature related to more general aspects of the impacts of climate changes on human health, such as: the economics of climate change; how to manage the health effects of climate change; the establishment of Early Warning Systems for infectious diseases.

  17. The Health Effects of Climate Change: A Survey of Recent Quantitative Research

    PubMed Central

    Grasso, Margherita; Manera, Matteo; Chiabai, Aline; Markandya, Anil

    2012-01-01

    In recent years there has been a large scientific and public debate on climate change and its direct as well as indirect effects on human health. In particular, a large amount of research on the effects of climate changes on human health has addressed two fundamental questions. First, can historical data be of some help in revealing how short-run or long-run climate variations affect the occurrence of infectious diseases? Second, is it possible to build more accurate quantitative models which are capable of predicting the future effects of different climate conditions on the transmissibility of particularly dangerous infectious diseases? The primary goal of this paper is to review the most relevant contributions which have directly tackled those questions, both with respect to the effects of climate changes on the diffusion of non-infectious and infectious diseases, with malaria as a case study. Specific attention will be drawn on the methodological aspects of each study, which will be classified according to the type of quantitative model considered, namely time series models, panel data and spatial models, and non-statistical approaches. Since many different disciplines and approaches are involved, a broader view is necessary in order to provide a better understanding of the interactions between climate and health. In this respect, our paper also presents a critical summary of the recent literature related to more general aspects of the impacts of climate changes on human health, such as: the economics of climate change; how to manage the health effects of climate change; the establishment of Early Warning Systems for infectious diseases. PMID:22754455

  18. CLIMATE CONSTRAINTS AND ISSUES OF SCALE CONTROLLING REGIONAL BIOMES

    EPA Science Inventory

    The prosepct of climate change threatens to cause large changes in regional biomes. hese effects could be in the form of qualitative changes within biomes, as well as spatial changes in the boundaries of biomes. he boundaries, or ecotones, between biomes have been suggested as po...

  19. Tropical forests and the changing earth system.

    PubMed

    Lewis, Simon L

    2006-01-29

    Tropical forests are global epicentres of biodiversity and important modulators of the rate of climate change. Recent research on deforestation rates and ecological changes within intact forests, both areas of recent research and debate, are reviewed, and the implications for biodiversity (species loss) and climate change (via the global carbon cycle) addressed. Recent impacts have most likely been: (i) a large source of carbon to the atmosphere, and major loss of species, from deforestation and (ii) a large carbon sink within remaining intact forest, accompanied by accelerating forest dynamism and widespread biodiversity changes. Finally, I look to the future, suggesting that the current carbon sink in intact forests is unlikely to continue, and that the tropical forest biome may even become a large net source of carbon, via one or more of four plausible routes: changing photosynthesis and respiration rates, biodiversity changes in intact forest, widespread forest collapse via drought, and widespread forest collapse via fire. Each of these scenarios risks potentially dangerous positive feedbacks with the climate system that could dramatically accelerate and intensify climate change. Given that continued land-use change alone is already thought to be causing the sixth mass extinction event in Earth's history, should such feedbacks occur, the resulting biodiversity and societal consequences would be even more severe.

  20. Climate drives phenological reassembly of a mountain wildflower meadow community.

    PubMed

    Theobald, Elli J; Breckheimer, Ian; HilleRisLambers, Janneke

    2017-11-01

    Spatial community reassembly driven by changes in species abundances or habitat occupancy is a well-documented response to anthropogenic global change, but communities can also reassemble temporally if the environment drives differential shifts in the timing of life events across community members. Much like spatial community reassembly, temporal reassembly could be particularly important when critical species interactions are temporally concentrated (e.g., plant-pollinator dynamics during flowering). Previous studies have documented species-specific shifts in phenology driven by climate change, implying that temporal reassembly, a process we term "phenological reassembly," is likely. However, few studies have documented changes in the temporal co-occurrence of community members driven by environmental change, likely because few datasets of entire communities exist. We addressed this gap by quantifying the relationship between flowering phenology and climate for 48 co-occurring subalpine wildflower species at Mount Rainier (Washington, USA) in a large network of plots distributed across Mt. Rainier's steep environmental gradients; large spatio-temporal variability in climate over the 6 yr of our study (including the earliest and latest snowmelt year on record) provided robust estimates of climate-phenology relationships for individual species. We used these relationships to examine changes to community co-flowering composition driven by 'climate change analog' conditions experienced at our sites in 2015. We found that both the timing and duration of flowering of focal species was strongly sensitive to multiple climatic factors (snowmelt, temperature, and soil moisture). Some consistent responses emerged, including earlier snowmelt and warmer growing seasons driving flowering phenology earlier for all focal species. However, variation among species in their phenological sensitivities to these climate drivers was large enough that phenological reassembly occurred in the climate change analog conditions of 2015. An unexpected driver of phenological reassembly was fine-scale variation in the direction and magnitude of climatic change, causing phenological reassembly to be most apparent early and late in the season and in topographic locations where snow duration was shortest (i.e., at low elevations and on ridges in the landscape). Because phenological reassembly may have implications for many types of ecological interactions, failing to monitor community-level repercussions of species-specific phenological shifts could underestimate climate change impacts. © 2017 by the Ecological Society of America.

  1. How do the methodological choices of your climate change study affect your results? A hydrologic case study across the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Chegwidden, O.; Nijssen, B.; Rupp, D. E.; Kao, S. C.; Clark, M. P.

    2017-12-01

    We describe results from a large hydrologic climate change dataset developed across the Pacific Northwestern United States and discuss how the analysis of those results can be seen as a framework for other large hydrologic ensemble investigations. This investigation will better inform future modeling efforts and large ensemble analyses across domains within and beyond the Pacific Northwest. Using outputs from the Coupled Model Intercomparison Project Phase 5 (CMIP5), we provide projections of hydrologic change for the domain through the end of the 21st century. The dataset is based upon permutations of four methodological choices: (1) ten global climate models (2) two representative concentration pathways (3) three meteorological downscaling methods and (4) four unique hydrologic model set-ups (three of which entail the same hydrologic model using independently calibrated parameter sets). All simulations were conducted across the Columbia River Basin and Pacific coastal drainages at a 1/16th ( 6 km) resolution and at a daily timestep. In total, the 172 distinct simulations offer an updated, comprehensive view of climate change projections through the end of the 21st century. The results consist of routed streamflow at 400 sites throughout the domain as well as distributed spatial fields of relevant hydrologic variables like snow water equivalent and soil moisture. In this presentation, we discuss the level of agreement with previous hydrologic projections for the study area and how these projections differ with specific methodological choices. By controlling for some methodological choices we can show how each choice affects key climatic change metrics. We discuss how the spread in results varies across hydroclimatic regimes. We will use this large dataset as a case study for distilling a wide range of hydroclimatological projections into useful climate change assessments.

  2. Projected future vegetation changes for the northwest United States and southwest Canada at a fine spatial resolution using a dynamic global vegetation model.

    USGS Publications Warehouse

    Shafer, Sarah; Bartlein, Patrick J.; Gray, Elizabeth M.; Pelltier, Richard T.

    2015-01-01

    Future climate change may significantly alter the distributions of many plant taxa. The effects of climate change may be particularly large in mountainous regions where climate can vary significantly with elevation. Understanding potential future vegetation changes in these regions requires methods that can resolve vegetation responses to climate change at fine spatial resolutions. We used LPJ, a dynamic global vegetation model, to assess potential future vegetation changes for a large topographically complex area of the northwest United States and southwest Canada (38.0–58.0°N latitude by 136.6–103.0°W longitude). LPJ is a process-based vegetation model that mechanistically simulates the effect of changing climate and atmospheric CO2 concentrations on vegetation. It was developed and has been mostly applied at spatial resolutions of 10-minutes or coarser. In this study, we used LPJ at a 30-second (~1-km) spatial resolution to simulate potential vegetation changes for 2070–2099. LPJ was run using downscaled future climate simulations from five coupled atmosphere-ocean general circulation models (CCSM3, CGCM3.1(T47), GISS-ER, MIROC3.2(medres), UKMO-HadCM3) produced using the A2 greenhouse gases emissions scenario. Under projected future climate and atmospheric CO2 concentrations, the simulated vegetation changes result in the contraction of alpine, shrub-steppe, and xeric shrub vegetation across the study area and the expansion of woodland and forest vegetation. Large areas of maritime cool forest and cold forest are simulated to persist under projected future conditions. The fine spatial-scale vegetation simulations resolve patterns of vegetation change that are not visible at coarser resolutions and these fine-scale patterns are particularly important for understanding potential future vegetation changes in topographically complex areas.

  3. Projected Future Vegetation Changes for the Northwest United States and Southwest Canada at a Fine Spatial Resolution Using a Dynamic Global Vegetation Model

    PubMed Central

    Shafer, Sarah L.; Bartlein, Patrick J.; Gray, Elizabeth M.; Pelltier, Richard T.

    2015-01-01

    Future climate change may significantly alter the distributions of many plant taxa. The effects of climate change may be particularly large in mountainous regions where climate can vary significantly with elevation. Understanding potential future vegetation changes in these regions requires methods that can resolve vegetation responses to climate change at fine spatial resolutions. We used LPJ, a dynamic global vegetation model, to assess potential future vegetation changes for a large topographically complex area of the northwest United States and southwest Canada (38.0–58.0°N latitude by 136.6–103.0°W longitude). LPJ is a process-based vegetation model that mechanistically simulates the effect of changing climate and atmospheric CO2 concentrations on vegetation. It was developed and has been mostly applied at spatial resolutions of 10-minutes or coarser. In this study, we used LPJ at a 30-second (~1-km) spatial resolution to simulate potential vegetation changes for 2070–2099. LPJ was run using downscaled future climate simulations from five coupled atmosphere-ocean general circulation models (CCSM3, CGCM3.1(T47), GISS-ER, MIROC3.2(medres), UKMO-HadCM3) produced using the A2 greenhouse gases emissions scenario. Under projected future climate and atmospheric CO2 concentrations, the simulated vegetation changes result in the contraction of alpine, shrub-steppe, and xeric shrub vegetation across the study area and the expansion of woodland and forest vegetation. Large areas of maritime cool forest and cold forest are simulated to persist under projected future conditions. The fine spatial-scale vegetation simulations resolve patterns of vegetation change that are not visible at coarser resolutions and these fine-scale patterns are particularly important for understanding potential future vegetation changes in topographically complex areas. PMID:26488750

  4. Climate Change and Hydrological Extreme Events - Risks and Perspectives for Water Management in Bavaria and Québec

    NASA Astrophysics Data System (ADS)

    Ludwig, R.

    2017-12-01

    There is as yet no confirmed knowledge whether and how climate change contributes to the magnitude and frequency of hydrological extreme events and how regional water management could adapt to the corresponding risks. The ClimEx project (2015-2019) investigates the effects of climate change on the meteorological and hydrological extreme events and their implications for water management in Bavaria and Québec. High Performance Computing is employed to enable the complex simulations in a hydro-climatological model processing chain, resulting in a unique high-resolution and transient (1950-2100) dataset of climatological and meteorological forcing and hydrological response: (1) The climate module has developed a large ensemble of high resolution data (12km) of the CRCM5 RCM for Central Europe and North-Eastern North America, downscaled from 50 members of the CanESM2 GCM. The dataset is complemented by all available data from the Euro-CORDEX project to account for the assessment of both natural climate variability and climate change. The large ensemble with several thousand model years provides the potential to catch rare extreme events and thus improves the process understanding of extreme events with return periods of 1000+ years. (2) The hydrology module comprises process-based and spatially explicit model setups (e.g. WaSiM) for all major catchments in Bavaria and Southern Québec in high temporal (3h) and spatial (500m) resolution. The simulations form the basis for in depth analysis of hydrological extreme events based on the inputs from the large climate model dataset. The specific data situation enables to establish a new method for `virtual perfect prediction', which assesses climate change impacts on flood risk and water resources management by identifying patterns in the data which reveal preferential triggers of hydrological extreme events. The presentation will highlight first results from the analysis of the large scale ClimEx model ensemble, showing the current and future ratio of natural variability and climate change impacts on meteorological extreme events. Selected data from the ensemble is used to drive a hydrological model experiment to illustrate the capacity to better determine the recurrence periods of hydrological extreme events under conditions of climate change.

  5. Changing Minds about the Changing Climate: a Longitudinal Study of the Impacts of a Climate Change Curriculum on Undergraduate Student Knowledge and Attitudes.

    NASA Astrophysics Data System (ADS)

    Burkholder, K. C.; Mooney, S.

    2016-12-01

    In the fall of 2013, 24 sophomore students enrolled in a three-course Learning Community entitled "The Ethics and Science of Climate Change." This learning community was comprised of two disciplinary courses in environmental ethics and environmental science as well as a seminar course in which the students designed and delivered climate change education events in the community beyond campus. Students were surveyed prior to and upon completion of the semester using a variant of the Yale Climate Literacy Survey in order to assess their knowledge of and attitudes towards climate change. An analysis of those survey results demonstrated that the non-traditional curriculum resulted in significant improvements that extended beyond disciplinary knowledge of climate change: the student attitudes about climate change and our cultural response to the issues associated with climate change shifted as well. Finally, a third administration of the survey (n=17) plus follow up interviews with 10 of those original students conducted during the students' senior year in 2016 suggest that the changes that the students underwent as sophomores were largely retained.

  6. Socio-ecological transitions trigger fire regime shifts and modulate fire-climate interactions in the Sierra Nevada, CA, 1600-2015 CE

    NASA Astrophysics Data System (ADS)

    Trouet, V.; Taylor, A. H.; Skinner, C. N.; Stephens, S.

    2016-12-01

    In California, large wildfires cause significant socio-ecological impacts and they incur high federal funding costs for fire suppression. Future fire activity is projected to increase with climate change, but anthropogenic effects can modulate or even override climatic effects causing large uncertainty in fire projections. We developed a 415-year fire history record (1600-2015 CE) based on tree-ring fire-scar data from 29 sites throughout the Sierra Nevada, California. Changes in socio-ecological systems from the Native American to the current period drove large historical fire regime shifts in our record and socio-ecological conditions amplified and buffered fire response to climate. Fire activity was highest and fire-climate relationships were strongest after Native American depopulation - following mission establishment ca. 1775 CE - reduced the self-limiting effect of Native American burns on fire spread. With the Gold Rush and Euro-American immigration (ca. 1865 CE), area burned declined and the strong multidecadal relationship between temperature and fire decayed and then disappeared after implementation of fire suppression (ca. 1900 CE). The past anthropogenic modulation of fire-climate relationships underscores the need for nuanced representations of human-fire interactions to improve the skill of future fire-climate projections. In California, large wildfires cause significant socio-ecological impacts and they incur high federal funding costs for fire suppression. Future fire activity is projected to increase with climate change, but anthropogenic effects can modulate or even override climatic effects causing large uncertainty in fire projections. We developed a 415-year fire history record (1600-2015 CE) based on tree-ring fire-scar data from 29 sites throughout the Sierra Nevada, California. Changes in socio-ecological systems from the Native American to the current period drove large historical fire regime shifts in our record and socio-ecological conditions amplified and buffered fire response to climate. Fire activity was highest and fire-climate relationships were strongest after Native American depopulation - following mission establishment ca. 1775 CE - reduced the self-limiting effect of Native American burns on fire spread. With the Gold Rush and Euro-American immigration (ca. 1865 CE), area burned declined and the strong multidecadal relationship between temperature and fire decayed and then disappeared after implementation of fire suppression (ca. 1900 CE). The past anthropogenic modulation of fire-climate relationships underscores the need for nuanced representations of human-fire interactions to improve the skill of future fire-climate projections.

  7. Climate Sensitivity Controls Uncertainty in Future Terrestrial Carbon Sink

    NASA Astrophysics Data System (ADS)

    Schurgers, Guy; Ahlström, Anders; Arneth, Almut; Pugh, Thomas A. M.; Smith, Benjamin

    2018-05-01

    For the 21st century, carbon cycle models typically project an increase of terrestrial carbon with increasing atmospheric CO2 and a decrease with the accompanying climate change. However, these estimates are poorly constrained, primarily because they typically rely on a limited number of emission and climate scenarios. Here we explore a wide range of combinations of CO2 rise and climate change and assess their likelihood with the climate change responses obtained from climate models. Our results demonstrate that the terrestrial carbon uptake depends critically on the climate sensitivity of individual climate models, representing a large uncertainty of model estimates. In our simulations, the terrestrial biosphere is unlikely to become a strong source of carbon with any likely combination of CO2 and climate change in the absence of land use change, but the fraction of the emissions taken up by the terrestrial biosphere will decrease drastically with higher emissions.

  8. Untangling climate signals from autogenic changes in long-term peatland development

    NASA Astrophysics Data System (ADS)

    Morris, Paul J.; Baird, Andy J.; Young, Dylan M.; Swindles, Graeme T.

    2015-12-01

    Peatlands represent important archives of Holocene paleoclimatic information. However, autogenic processes may disconnect peatland hydrological behavior from climate and overwrite climatic signals in peat records. We use a simulation model of peatland development driven by a range of Holocene climate reconstructions to investigate climate signal preservation in peat records. Simulated water-table depths and peat decomposition profiles exhibit homeostatic recovery from prescribed changes in rainfall, whereas changes in temperature cause lasting alterations to peatland structure and function. Autogenic ecohydrological feedbacks provide both high- and low-pass filters for climatic information, particularly rainfall. Large-magnitude climatic changes of an intermediate temporal scale (i.e., multidecadal to centennial) are most readily preserved in our simulated peat records. Simulated decomposition signals are offset from the climatic changes that generate them due to a phenomenon known as secondary decomposition. Our study provides the mechanistic foundations for a framework to separate climatic and autogenic signals in peat records.

  9. Climate and reproduction of grizzly bears in Yellowstone National Park

    USGS Publications Warehouse

    Picton, Harold D.

    1978-01-01

    Controversy surrounds the conflicts between the requirements of human safety and the preservation of grizzly bears (Ursus arctos horribilis) in western North America. It has been difficult to separate the effect of factors such as the closure of garbage dumps from that of the climate. It has also proved difficult to relate climatic data to changes in the populations of large mammals. I report here a correlation of climatic change with fluctuations in the sizes of litters of grizzly bears born in Yellowstone National Park, Wyoming, during 1958–1976. The decrease in litter sizes observed since the closure of garbage dumps seems to be largely a consequence of unfavourable weather during the periods of the final fattening of the mother, winter sleep, birth, lactation and early spring foraging. This study represents one of the few times that the effects of climate have been demonstrated for large omnivorous or carnivorous mammals.

  10. Spatial heterogeneity in ecologically important climate variables at coarse and fine scales in a high-snow mountain landscape.

    PubMed

    Ford, Kevin R; Ettinger, Ailene K; Lundquist, Jessica D; Raleigh, Mark S; Hille Ris Lambers, Janneke

    2013-01-01

    Climate plays an important role in determining the geographic ranges of species. With rapid climate change expected in the coming decades, ecologists have predicted that species ranges will shift large distances in elevation and latitude. However, most range shift assessments are based on coarse-scale climate models that ignore fine-scale heterogeneity and could fail to capture important range shift dynamics. Moreover, if climate varies dramatically over short distances, some populations of certain species may only need to migrate tens of meters between microhabitats to track their climate as opposed to hundreds of meters upward or hundreds of kilometers poleward. To address these issues, we measured climate variables that are likely important determinants of plant species distributions and abundances (snow disappearance date and soil temperature) at coarse and fine scales at Mount Rainier National Park in Washington State, USA. Coarse-scale differences across the landscape such as large changes in elevation had expected effects on climatic variables, with later snow disappearance dates and lower temperatures at higher elevations. However, locations separated by small distances (∼20 m), but differing by vegetation structure or topographic position, often experienced differences in snow disappearance date and soil temperature as great as locations separated by large distances (>1 km). Tree canopy gaps and topographic depressions experienced later snow disappearance dates than corresponding locations under intact canopy and on ridges. Additionally, locations under vegetation and on topographic ridges experienced lower maximum and higher minimum soil temperatures. The large differences in climate we observed over small distances will likely lead to complex range shift dynamics and could buffer species from the negative effects of climate change.

  11. Spatial Heterogeneity in Ecologically Important Climate Variables at Coarse and Fine Scales in a High-Snow Mountain Landscape

    PubMed Central

    Ford, Kevin R.; Ettinger, Ailene K.; Lundquist, Jessica D.; Raleigh, Mark S.; Hille Ris Lambers, Janneke

    2013-01-01

    Climate plays an important role in determining the geographic ranges of species. With rapid climate change expected in the coming decades, ecologists have predicted that species ranges will shift large distances in elevation and latitude. However, most range shift assessments are based on coarse-scale climate models that ignore fine-scale heterogeneity and could fail to capture important range shift dynamics. Moreover, if climate varies dramatically over short distances, some populations of certain species may only need to migrate tens of meters between microhabitats to track their climate as opposed to hundreds of meters upward or hundreds of kilometers poleward. To address these issues, we measured climate variables that are likely important determinants of plant species distributions and abundances (snow disappearance date and soil temperature) at coarse and fine scales at Mount Rainier National Park in Washington State, USA. Coarse-scale differences across the landscape such as large changes in elevation had expected effects on climatic variables, with later snow disappearance dates and lower temperatures at higher elevations. However, locations separated by small distances (∼20 m), but differing by vegetation structure or topographic position, often experienced differences in snow disappearance date and soil temperature as great as locations separated by large distances (>1 km). Tree canopy gaps and topographic depressions experienced later snow disappearance dates than corresponding locations under intact canopy and on ridges. Additionally, locations under vegetation and on topographic ridges experienced lower maximum and higher minimum soil temperatures. The large differences in climate we observed over small distances will likely lead to complex range shift dynamics and could buffer species from the negative effects of climate change. PMID:23762277

  12. The susceptibility of large river basins to orogenic and climatic drivers

    NASA Astrophysics Data System (ADS)

    Haedke, Hanna; Wittmann, Hella; von Blanckenburg, Friedhelm

    2017-04-01

    Large rivers are known to buffer pulses in sediment production driven by changes in climate as sediment is transported through lowlands. Our new dataset of in situ cosmogenic nuclide concentration and chemical composition of 62 sandy bedload samples from the world largest rivers integrates over 25% of Earth's terrestrial surface, distributed over a variety of climatic zones across all continents, and represents the millennial-scale denudation rate of the sediment's source area. We can show that these denudation rates do not respond to climatic forcing, but faithfully record orogenic forcing, when analyzed with respective variables representing orogeny (strain rate, relief, bouguer anomaly, free-air anomaly), and climate (runoff, temperature, precipitation) and basin properties (floodplain response time, drainage area). In contrast to this orogenic forcing of denudation rates, elemental bedload chemistry from the fine-grained portion of the same samples correlates with climate-related variables (precipitation, runoff) and floodplain response times. It is also well-known from previous compilations of river-gauged sediment loads that the short-term basin-integrated sediment export is also climatically controlled. The chemical composition of detrital sediment shows a climate control that can originate in the rivers source area, but this signal is likely overprinted during transfer through the lowlands because we also find correlation with floodplain response times. At the same time, cosmogenic nuclides robustly preserve the orogenic forcing of the source area denudation signal through of the floodplain buffer. Conversely, previous global compilations of cosmogenic nuclides in small river basins show the preservation of climate drivers in their analysis, but these are buffered in large lowland rivers. Hence, we can confirm the assumption that cosmogenic nuclides in large rivers are poorly susceptible to climate changes, but are at the same time highly suited to detect changes in orogenic forcing in their paleo sedimentary records.

  13. How Teachers' Beliefs About Climate Change Influence Their Instruction and Resulting Student Outcomes

    NASA Astrophysics Data System (ADS)

    Nation, M.; Feldman, A.; Smith, G.

    2017-12-01

    The purpose of the study was to understand the relationship between teachers' beliefs and understandings of climate change and their instructional practices to determine if and how they impact student outcomes. Limited research has been done in the area of teacher beliefs on climate change, their instruction, and resulting student outcomes. This study contributes to the greater understanding of teachers' beliefs and impact on climate change curriculum implementation. The study utilized a mixed methods approach to data collection and analysis. Data were collected in the form of classroom observations, surveys, and interviews from teachers and students participating in the study over a four-month period. Qualitative and quantitative findings were analyzed through thematic coding and descriptive analysis and compared in an effort to triangulate findings. The results of the study suggest teachers and students believe climate change is occurring and humans are largely to blame. Personal beliefs are important when teaching controversial topics, such as climate change, but participants maintained neutrality within their instruction of the topic, as not to appear biased or influence students' decisions about climate change, and avoid political controversy in the classroom. Overall, the study found teachers' level of understandings and beliefs about climate change had little impact on their instruction and resulting student outcomes. Based on the findings, simply adding climate change to the existing science curriculum is not sufficient for teachers or students. Teachers need to be better prepared about effective pedagogical practices of the content in order to effectively teach a climate-centered curriculum. The barriers that exist for the inclusion of teachers' personal beliefs need to be removed in order for teachers to assert their own personal beliefs about climate change within their classroom instruction. Administrators and stakeholders need to support science teachers' beliefs about climate change, and uphold the efforts of the scientific community, regardless of political hierarchy. Students are loosing an opportunity for insight into educated, knowledgeable mentors, and are by-in-large left to the opinions of climate change that overwhelm news media, which may not be as trustworthy.

  14. Beyond just sea-level rise: considering macroclimatic drivers within coastal wetland vulnerability assessments to climate change.

    PubMed

    Osland, Michael J; Enwright, Nicholas M; Day, Richard H; Gabler, Christopher A; Stagg, Camille L; Grace, James B

    2016-01-01

    Due to their position at the land-sea interface, coastal wetlands are vulnerable to many aspects of climate change. However, climate change vulnerability assessments for coastal wetlands generally focus solely on sea-level rise without considering the effects of other facets of climate change. Across the globe and in all ecosystems, macroclimatic drivers (e.g., temperature and rainfall regimes) greatly influence ecosystem structure and function. Macroclimatic drivers have been the focus of climate change-related threat evaluations for terrestrial ecosystems, but largely ignored for coastal wetlands. In some coastal wetlands, changing macroclimatic conditions are expected to result in foundation plant species replacement, which would affect the supply of certain ecosystem goods and services and could affect ecosystem resilience. As examples, we highlight several ecological transition zones where small changes in macroclimatic conditions would result in comparatively large changes in coastal wetland ecosystem structure and function. Our intent in this communication is not to minimize the importance of sea-level rise. Rather, our overarching aim is to illustrate the need to also consider macroclimatic drivers within vulnerability assessments for coastal wetlands. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  15. Uncertainties associated with quantifying climate change impacts on human health: a case study for diarrhea.

    PubMed

    Kolstad, Erik W; Johansson, Kjell Arne

    2011-03-01

    Climate change is expected to have large impacts on health at low latitudes where droughts and malnutrition, diarrhea, and malaria are projected to increase. The main objective of this study was to indicate a method to assess a range of plausible health impacts of climate change while handling uncertainties in a unambiguous manner. We illustrate this method by quantifying the impacts of projected regional warming on diarrhea in this century. We combined a range of linear regression coefficients to compute projections of future climate change-induced increases in diarrhea using the results from five empirical studies and a 19-member climate model ensemble for which future greenhouse gas emissions were prescribed. Six geographical regions were analyzed. The model ensemble projected temperature increases of up to 4°C over land in the tropics and subtropics by the end of this century. The associated mean projected increases of relative risk of diarrhea in the six study regions were 8-11% (with SDs of 3-5%) by 2010-2039 and 22-29% (SDs of 9-12%) by 2070-2099. Even our most conservative estimates indicate substantial impacts from climate change on the incidence of diarrhea. Nevertheless, our main conclusion is that large uncertainties are associated with future projections of diarrhea and climate change. We believe that these uncertainties can be attributed primarily to the sparsity of empirical climate-health data. Our results therefore highlight the need for empirical data in the cross section between climate and human health.

  16. Hotspots of climate change impacts in sub-Saharan Africa and implications for adaptation and development.

    PubMed

    Müller, Christoph; Waha, Katharina; Bondeau, Alberte; Heinke, Jens

    2014-08-01

    Development efforts for poverty reduction and food security in sub-Saharan Africa will have to consider future climate change impacts. Large uncertainties in climate change impact assessments do not necessarily complicate, but can inform development strategies. The design of development strategies will need to consider the likelihood, strength, and interaction of climate change impacts across biosphere properties. We here explore the spread of climate change impact projections and develop a composite impact measure to identify hotspots of climate change impacts, addressing likelihood and strength of impacts. Overlapping impacts in different biosphere properties (e.g. flooding, yields) will not only claim additional capacity to respond, but will also narrow the options to respond and develop. Regions with severest projected climate change impacts often coincide with regions of high population density and poverty rates. Science and policy need to propose ways of preparing these areas for development under climate change impacts. © 2014 John Wiley & Sons Ltd.

  17. An effective online data monitoring and saving strategy for large-scale climate simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xian, Xiaochen; Archibald, Rick; Mayer, Benjamin

    Large-scale climate simulation models have been developed and widely used to generate historical data and study future climate scenarios. These simulation models often have to run for a couple of months to understand the changes in the global climate over the course of decades. This long-duration simulation process creates a huge amount of data with both high temporal and spatial resolution information; however, how to effectively monitor and record the climate changes based on these large-scale simulation results that are continuously produced in real time still remains to be resolved. Due to the slow process of writing data to disk,more » the current practice is to save a snapshot of the simulation results at a constant, slow rate although the data generation process runs at a very high speed. This study proposes an effective online data monitoring and saving strategy over the temporal and spatial domains with the consideration of practical storage and memory capacity constraints. Finally, our proposed method is able to intelligently select and record the most informative extreme values in the raw data generated from real-time simulations in the context of better monitoring climate changes.« less

  18. An effective online data monitoring and saving strategy for large-scale climate simulations

    DOE PAGES

    Xian, Xiaochen; Archibald, Rick; Mayer, Benjamin; ...

    2018-01-22

    Large-scale climate simulation models have been developed and widely used to generate historical data and study future climate scenarios. These simulation models often have to run for a couple of months to understand the changes in the global climate over the course of decades. This long-duration simulation process creates a huge amount of data with both high temporal and spatial resolution information; however, how to effectively monitor and record the climate changes based on these large-scale simulation results that are continuously produced in real time still remains to be resolved. Due to the slow process of writing data to disk,more » the current practice is to save a snapshot of the simulation results at a constant, slow rate although the data generation process runs at a very high speed. This study proposes an effective online data monitoring and saving strategy over the temporal and spatial domains with the consideration of practical storage and memory capacity constraints. Finally, our proposed method is able to intelligently select and record the most informative extreme values in the raw data generated from real-time simulations in the context of better monitoring climate changes.« less

  19. Textbooks of Doubt: Using Systemic Functional Analysis to Explore the Framing of Climate Change in Middle-School Science Textbooks

    ERIC Educational Resources Information Center

    Román, Diego; Busch, K. C.

    2016-01-01

    Middle school students are learning about climate change in large part through textbooks used in their classes. Therefore, it is crucial to understand how the language employed in these materials frames this topic. To this end, we used systemic functional analysis to study the language of the chapters related to climate change in four sixth grade…

  20. Response in the trophic state of stratified lakes to changes in hydrology and water level: potential effects of climate change

    USGS Publications Warehouse

    Robertson, Dale M.; Rose, William J.

    2011-01-01

    To determine how climate-induced changes in hydrology and water level may affect the trophic state (productivity) of stratified lakes, two relatively pristine dimictic temperate lakes in Wisconsin, USA, were examined. Both are closed-basin lakes that experience changes in water level and degradation in water quality during periods of high water. One, a seepage lake with no inlets or outlets, has a small drainage basin and hydrology dominated by precipitation and groundwater exchange causing small changes in water and phosphorus (P) loading, which resulted in small changes in water level, P concentrations, and productivity. The other, a terminal lake with inlets but no outlets, has a large drainage basin and hydrology dominated by runoff causing large changes in water and P loading, which resulted in large changes in water level, P concentrations, and productivity. Eutrophication models accurately predicted the effects of changes in hydrology, P loading, and water level on their trophic state. If climate changes, larger changes in hydrology and water levels than previously observed could occur. If this causes increased water and P loading, stratified (dimictic and monomictic) lakes are expected to experience higher water levels and become more eutrophic, especially those with large developed drainage basins.

  1. Quantifying the Effects of Historical Land Cover Conversion Uncertainty on Global Carbon and Climate Estimates

    NASA Astrophysics Data System (ADS)

    Di Vittorio, A. V.; Mao, J.; Shi, X.; Chini, L.; Hurtt, G.; Collins, W. D.

    2018-01-01

    Previous studies have examined land use change as a driver of global change, but the translation of land use change into land cover conversion has been largely unconstrained. Here we quantify the effects of land cover conversion uncertainty on the global carbon and climate system using the integrated Earth System Model. Our experiments use identical land use change data and vary land cover conversions to quantify associated uncertainty in carbon and climate estimates. Land cover conversion uncertainty is large, constitutes a 5 ppmv range in estimated atmospheric CO2 in 2004, and generates carbon uncertainty that is equivalent to 80% of the net effects of CO2 and climate and 124% of the effects of nitrogen deposition during 1850-2004. Additionally, land cover uncertainty generates differences in local surface temperature of over 1°C. We conclude that future studies addressing land use, carbon, and climate need to constrain and reduce land cover conversion uncertainties.

  2. Quantifying the Effects of Historical Land Cover Conversion Uncertainty on Global Carbon and Climate Estimates

    DOE PAGES

    Di Vittorio, A. V.; Mao, J.; Shi, X.; ...

    2018-01-03

    Previous studies have examined land use change as a driver of global change, but the translation of land use change into land cover conversion has been largely unconstrained. In this paper, we quantify the effects of land cover conversion uncertainty on the global carbon and climate system using the integrated Earth System Model. Our experiments use identical land use change data and vary land cover conversions to quantify associated uncertainty in carbon and climate estimates. Land cover conversion uncertainty is large, constitutes a 5 ppmv range in estimated atmospheric CO 2 in 2004, and generates carbon uncertainty that is equivalentmore » to 80% of the net effects of CO 2 and climate and 124% of the effects of nitrogen deposition during 1850–2004. Additionally, land cover uncertainty generates differences in local surface temperature of over 1°C. Finally, we conclude that future studies addressing land use, carbon, and climate need to constrain and reduce land cover conversion uncertainties.« less

  3. Quantifying the Effects of Historical Land Cover Conversion Uncertainty on Global Carbon and Climate Estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Vittorio, A. V.; Mao, J.; Shi, X.

    Previous studies have examined land use change as a driver of global change, but the translation of land use change into land cover conversion has been largely unconstrained. In this paper, we quantify the effects of land cover conversion uncertainty on the global carbon and climate system using the integrated Earth System Model. Our experiments use identical land use change data and vary land cover conversions to quantify associated uncertainty in carbon and climate estimates. Land cover conversion uncertainty is large, constitutes a 5 ppmv range in estimated atmospheric CO 2 in 2004, and generates carbon uncertainty that is equivalentmore » to 80% of the net effects of CO 2 and climate and 124% of the effects of nitrogen deposition during 1850–2004. Additionally, land cover uncertainty generates differences in local surface temperature of over 1°C. Finally, we conclude that future studies addressing land use, carbon, and climate need to constrain and reduce land cover conversion uncertainties.« less

  4. Probabilistic projections of 21st century climate change over Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Monier, E.; Sokolov, A. P.; Schlosser, C. A.; Scott, J. R.; Gao, X.

    2013-12-01

    We present probabilistic projections of 21st century climate change over Northern Eurasia using the Massachusetts Institute of Technology (MIT) Integrated Global System Model (IGSM), an integrated assessment model that couples an earth system model of intermediate complexity, with a two-dimensional zonal-mean atmosphere, to a human activity model. Regional climate change is obtained by two downscaling methods: a dynamical downscaling, where the IGSM is linked to a three dimensional atmospheric model; and a statistical downscaling, where a pattern scaling algorithm uses climate-change patterns from 17 climate models. This framework allows for key sources of uncertainty in future projections of regional climate change to be accounted for: emissions projections; climate system parameters (climate sensitivity, strength of aerosol forcing and ocean heat uptake rate); natural variability; and structural uncertainty. Results show that the choice of climate policy and the climate parameters are the largest drivers of uncertainty. We also nd that dierent initial conditions lead to dierences in patterns of change as large as when using different climate models. Finally, this analysis reveals the wide range of possible climate change over Northern Eurasia, emphasizing the need to consider all sources of uncertainty when modeling climate impacts over Northern Eurasia.

  5. Probabilistic projections of 21st century climate change over Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Monier, Erwan; Sokolov, Andrei; Schlosser, Adam; Scott, Jeffery; Gao, Xiang

    2013-12-01

    We present probabilistic projections of 21st century climate change over Northern Eurasia using the Massachusetts Institute of Technology (MIT) Integrated Global System Model (IGSM), an integrated assessment model that couples an Earth system model of intermediate complexity with a two-dimensional zonal-mean atmosphere to a human activity model. Regional climate change is obtained by two downscaling methods: a dynamical downscaling, where the IGSM is linked to a three-dimensional atmospheric model, and a statistical downscaling, where a pattern scaling algorithm uses climate change patterns from 17 climate models. This framework allows for four major sources of uncertainty in future projections of regional climate change to be accounted for: emissions projections, climate system parameters (climate sensitivity, strength of aerosol forcing and ocean heat uptake rate), natural variability, and structural uncertainty. The results show that the choice of climate policy and the climate parameters are the largest drivers of uncertainty. We also find that different initial conditions lead to differences in patterns of change as large as when using different climate models. Finally, this analysis reveals the wide range of possible climate change over Northern Eurasia, emphasizing the need to consider these sources of uncertainty when modeling climate impacts over Northern Eurasia.

  6. Modeling Earth system changes of the past

    NASA Technical Reports Server (NTRS)

    Kutzbach, John E.

    1992-01-01

    This review outlines some of the challenging problems to be faced in understanding the causes and mechanisms of large climatic changes and gives examples of initial studies of these problems with climate models. The review covers climatic changes in three main periods of earth history: (1) the past several centuries; (2) the past several glacial-interglacial cycles; and (3) the past several million years. The review will concentrate on studies of climate but, where possible, will mention broader aspects of the earth system.

  7. Physio-climatic controls on vulnerability of watersheds to climate and land use change across the U. S.

    NASA Astrophysics Data System (ADS)

    Deshmukh, Ankit; Singh, Riddhi

    2016-11-01

    Understanding how a watershed's physio-climatic characteristics affect its vulnerability to environmental (climatic and land use) change is crucial for managing these complex systems. In this study, we combine the strengths of recently developed exploratory modeling frameworks and comparative hydrology to quantify the relationship between watershed's vulnerability and its physio-climatic characteristics. We propose a definition of vulnerability that can be used by a diverse range of water system managers and is useful in the presence of large uncertainties in drivers of environmental change. This definition is related to adverse climate change and land use thresholds that are quantified using a recently developed exploratory modeling approach. In this way, we estimate the vulnerability of 69 watersheds in the United States to climate and land use change. We explore definitions of vulnerability that describe average or extreme flow conditions, as well as others that are relevant from the point of view of instream organisms. In order to understand the dominant controls on vulnerability, we correlate these indices with watershed's characteristics describing its topography, geology, drainage, climate, and land use. We find that mean annual flow is more vulnerable to reductions in precipitation in watersheds with lower average soil permeability, lower baseflow index, lower forest cover, higher topographical wetness index, and vice-versa. Our results also indicate a potential mediation of climate change impacts by regional groundwater systems. By developing such relationships across a large range of watersheds, such information can potentially be used to assess the vulnerability of ungauged watersheds to uncertain environmental change.

  8. Climate change and the permafrost carbon feedback

    USGS Publications Warehouse

    Schuur, E.A.G.; McGuire, A. David; Schädel, C.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Koven, C.D.; Kuhry, P.; Lawrence, D.M.; Natali, Susan M.; Olefeldt, David; Romanovsky, V.E.; Schaefer, K.; Turetsky, M.R.; Treat, C.C.; Vonk, J.E.

    2015-01-01

    Large quantities of organic carbon are stored in frozen soils (permafrost) within Arctic and sub-Arctic regions. A warming climate can induce environmental changes that accelerate the microbial breakdown of organic carbon and the release of the greenhouse gases carbon dioxide and methane. This feedback can accelerate climate change, but the magnitude and timing of greenhouse gas emission from these regions and their impact on climate change remain uncertain. Here we find that current evidence suggests a gradual and prolonged release of greenhouse gas emissions in a warming climate and present a research strategy with which to target poorly understood aspects of permafrost carbon dynamics.

  9. Climate change and the permafrost carbon feedback.

    PubMed

    Schuur, E A G; McGuire, A D; Schädel, C; Grosse, G; Harden, J W; Hayes, D J; Hugelius, G; Koven, C D; Kuhry, P; Lawrence, D M; Natali, S M; Olefeldt, D; Romanovsky, V E; Schaefer, K; Turetsky, M R; Treat, C C; Vonk, J E

    2015-04-09

    Large quantities of organic carbon are stored in frozen soils (permafrost) within Arctic and sub-Arctic regions. A warming climate can induce environmental changes that accelerate the microbial breakdown of organic carbon and the release of the greenhouse gases carbon dioxide and methane. This feedback can accelerate climate change, but the magnitude and timing of greenhouse gas emission from these regions and their impact on climate change remain uncertain. Here we find that current evidence suggests a gradual and prolonged release of greenhouse gas emissions in a warming climate and present a research strategy with which to target poorly understood aspects of permafrost carbon dynamics.

  10. Climate change. Climate in Medieval time.

    PubMed

    Bradley, Raymond S; Hughes, Malcolm K; Diaz, Henry F

    2003-10-17

    Many papers have referred to a "Medieval Warm Period." But how well defined is climate in this period, and was it as warm as or warmer than it is today? In their Perspective, Bradley et al. review the evidence and conclude that although the High Medieval (1100 to 1200 A.D.) was warmer than subsequent centuries, it was not warmer than the late 20th century. Moreover, the warmest Medieval temperatures were not synchronous around the globe. Large changes in precipitation patterns are a particular characteristic of "High Medieval" time. The underlying mechanisms for such changes must be elucidated further to inform the ongoing debate on natural climate variability and anthropogenic climate change.

  11. Bipolar correlation of volcanism with millennial climate change

    PubMed Central

    Bay, Ryan C.; Bramall, Nathan; Price, P. Buford

    2004-01-01

    Analyzing data from our optical dust logger, we find that volcanic ash layers from the Siple Dome (Antarctica) borehole are simultaneous (with >99% rejection of the null hypothesis) with the onset of millennium-timescale cooling recorded at Greenland Ice Sheet Project 2 (GISP2; Greenland). These data are the best evidence yet for a causal connection between volcanism and millennial climate change and lead to possibilities of a direct causal relationship. Evidence has been accumulating for decades that volcanic eruptions can perturb climate and possibly affect it on long timescales and that volcanism may respond to climate change. If rapid climate change can induce volcanism, this result could be further evidence of a southern-lead North–South climate asynchrony. Alternatively, a volcanic-forcing viewpoint is of particular interest because of the high correlation and relative timing of the events, and it may involve a scenario in which volcanic ash and sulfate abruptly increase the soluble iron in large surface areas of the nutrient-limited Southern Ocean, stimulate growth of phytoplankton, which enhance volcanic effects on planetary albedo and the global carbon cycle, and trigger northern millennial cooling. Large global temperature swings could be limited by feedback within the volcano–climate system. PMID:15096586

  12. Responding to the Consequences of Climate Change

    NASA Technical Reports Server (NTRS)

    Hildebrand, Peter H.

    2011-01-01

    The talk addresses the scientific consensus concerning climate change, and outlines the many paths that are open to mitigate climate change and its effects on human activities. Diverse aspects of the changing water cycle on Earth are used to illustrate the reality climate change. These include melting snowpack, glaciers, and sea ice; changes in runoff; rising sea level; moving ecosystems, an more. Human forcing of climate change is then explained, including: greenhouse gasses, atmospheric aerosols, and changes in land use. Natural forcing effects are briefly discussed, including volcanoes and changes in the solar cycle. Returning to Earth's water cycle, the effects of climate-induced changes in water resources is presented. Examples include wildfires, floods and droughts, changes in the production and availability of food, and human social reactions to these effects. The lk then passes to a discussion of common human reactions to these forecasts of climate change effects, with a summary of recent research on the subject, plus several recent historical examples of large-scale changes in human behavior that affect the climate and ecosystems. Finally, in the face for needed action on climate, the many options for mitigation of climate change and adaptation to its effects are presented, with examples of the ability to take affordable, and profitable action at most all levels, from the local, through national.

  13. Rise of interdisciplinary research on climate

    PubMed Central

    Weart, Spencer

    2013-01-01

    Until the middle of the 20th century, the discipline of climatology was a stagnant field preoccupied with regional statistics. It had little to do with meteorology, which itself was predominantly a craft that paid scant attention to physical theory. The Second World War and Cold War promoted a rapid growth of meteorology, which some practitioners increasingly combined with physical science in hopes of understanding global climate dynamics. However, the dozen or so scientific disciplines that had something to say about climate were largely isolated from one another. In the 1960s and 1970s, worries about climate change helped to push the diverse fields into contact. Scientists interested in climate change kept their identification with different disciplines but developed ways to communicate across the boundaries (for example, in large international projects). Around the turn of the 21st century, the Intergovernmental Panel on Climate Change institutionalized an unprecedented process of exchanges; its reports relied especially on computer modeling, which became a center of fully integrated interdisciplinary cooperation. PMID:22778431

  14. weather@home 2: validation of an improved global-regional climate modelling system

    NASA Astrophysics Data System (ADS)

    Guillod, Benoit P.; Jones, Richard G.; Bowery, Andy; Haustein, Karsten; Massey, Neil R.; Mitchell, Daniel M.; Otto, Friederike E. L.; Sparrow, Sarah N.; Uhe, Peter; Wallom, David C. H.; Wilson, Simon; Allen, Myles R.

    2017-05-01

    Extreme weather events can have large impacts on society and, in many regions, are expected to change in frequency and intensity with climate change. Owing to the relatively short observational record, climate models are useful tools as they allow for generation of a larger sample of extreme events, to attribute recent events to anthropogenic climate change, and to project changes in such events into the future. The modelling system known as weather@home, consisting of a global climate model (GCM) with a nested regional climate model (RCM) and driven by sea surface temperatures, allows one to generate a very large ensemble with the help of volunteer distributed computing. This is a key tool to understanding many aspects of extreme events. Here, a new version of the weather@home system (weather@home 2) with a higher-resolution RCM over Europe is documented and a broad validation of the climate is performed. The new model includes a more recent land-surface scheme in both GCM and RCM, where subgrid-scale land-surface heterogeneity is newly represented using tiles, and an increase in RCM resolution from 50 to 25 km. The GCM performs similarly to the previous version, with some improvements in the representation of mean climate. The European RCM temperature biases are overall reduced, in particular the warm bias over eastern Europe, but large biases remain. Precipitation is improved over the Alps in summer, with mixed changes in other regions and seasons. The model is shown to represent the main classes of regional extreme events reasonably well and shows a good sensitivity to its drivers. In particular, given the improvements in this version of the weather@home system, it is likely that more reliable statements can be made with regards to impact statements, especially at more localized scales.

  15. Impacts of climate variability and future climate change on harmful algal blooms and human health.

    PubMed

    Moore, Stephanie K; Trainer, Vera L; Mantua, Nathan J; Parker, Micaela S; Laws, Edward A; Backer, Lorraine C; Fleming, Lora E

    2008-11-07

    Anthropogenically-derived increases in atmospheric greenhouse gas concentrations have been implicated in recent climate change, and are projected to substantially impact the climate on a global scale in the future. For marine and freshwater systems, increasing concentrations of greenhouse gases are expected to increase surface temperatures, lower pH, and cause changes to vertical mixing, upwelling, precipitation, and evaporation patterns. The potential consequences of these changes for harmful algal blooms (HABs) have received relatively little attention and are not well understood. Given the apparent increase in HABs around the world and the potential for greater problems as a result of climate change and ocean acidification, substantial research is needed to evaluate the direct and indirect associations between HABs, climate change, ocean acidification, and human health. This research will require a multidisciplinary approach utilizing expertise in climatology, oceanography, biology, epidemiology, and other disciplines. We review the interactions between selected patterns of large-scale climate variability and climate change, oceanic conditions, and harmful algae.

  16. Impacts of climate variability and future climate change on harmful algal blooms and human health

    PubMed Central

    Moore, Stephanie K; Trainer, Vera L; Mantua, Nathan J; Parker, Micaela S; Laws, Edward A; Backer, Lorraine C; Fleming, Lora E

    2008-01-01

    Anthropogenically-derived increases in atmospheric greenhouse gas concentrations have been implicated in recent climate change, and are projected to substantially impact the climate on a global scale in the future. For marine and freshwater systems, increasing concentrations of greenhouse gases are expected to increase surface temperatures, lower pH, and cause changes to vertical mixing, upwelling, precipitation, and evaporation patterns. The potential consequences of these changes for harmful algal blooms (HABs) have received relatively little attention and are not well understood. Given the apparent increase in HABs around the world and the potential for greater problems as a result of climate change and ocean acidification, substantial research is needed to evaluate the direct and indirect associations between HABs, climate change, ocean acidification, and human health. This research will require a multidisciplinary approach utilizing expertise in climatology, oceanography, biology, epidemiology, and other disciplines. We review the interactions between selected patterns of large-scale climate variability and climate change, oceanic conditions, and harmful algae. PMID:19025675

  17. Visualizing the Chemistry of Climate Change (VC3Chem): Online resources for teaching and learning chemistry through the rich context of climate science

    NASA Astrophysics Data System (ADS)

    McKenzie, L.; Versprille, A.; Towns, M.; Mahaffy, P.; Martin, B.; Kirchhoff, M.

    2013-12-01

    Global climate change is one of the most pressing environmental challenges facing humanity. Many of the important underlying concepts require mental models that are built on a fundamental understanding of chemistry, yet connections to climate science and global climate change are largely missing from undergraduate chemistry courses for science majors. In Visualizing the Chemistry of Climate Change (VC3Chem), we have developed and piloted a set of online modules that addresses this gap by teaching core chemistry concepts through the rich context of climate science. These interactive web-based digital learning experiences enable students to learn about isotopes and their relevance in determining historical temperature records, IR absorption by greenhouse gases, and acid/base chemistry and the impacts on changing ocean pH. The efficacy of these tools and this approach has been assessed through measuring changes in students' understanding about both climate change and core chemistry concepts.

  18. Climate Drivers of Alaska Summer Stream Temperature

    NASA Astrophysics Data System (ADS)

    Bieniek, P.; Bhatt, U. S.; Plumb, E. W.; Thoman, R.; Trammell, E. J.

    2016-12-01

    The temperature of the water in lakes, rivers and streams has wide ranging impacts from local water quality and fish habitats to global climate change. Salmon fisheries in Alaska, a critical source of food in many subsistence communities, are sensitive to large-scale climate variability and river and stream temperatures have also been linked with salmon production in Alaska. Given current and projected climate change, understanding the mechanisms that link the large-scale climate and river and stream temperatures is essential to better understand the changes that may occur with aquatic life in Alaska's waterways on which subsistence users depend. An analysis of Alaska stream temperatures in the context of reanalysis, downscaled, station and other climate data is undertaken in this study to fill that need. Preliminary analysis identified eight stream observation sites with sufficiently long (>15 years) data available for climate-scale analysis in Alaska with one station, Terror Creek in Kodiak, having a 30-year record. Cross-correlation of summer (June-August) water temperatures between the stations are generally high even though they are spread over a large geographic region. Correlation analysis of the Terror Creek summer observations with seasonal sea surface temperatures (SSTs) in the North Pacific broadly resembles the SST anomaly fields typically associated with the Pacific Decadal Oscillation (PDO). A similar result was found for the remaining stations and in both cases PDO-like correlation patterns also occurred in the preceding spring. These preliminary results demonstrate that there is potential to diagnose the mechanisms that link the large-scale climate system and Alaska stream temperatures.

  19. Climate change threatens European conservation areas

    PubMed Central

    Araújo, Miguel B; Alagador, Diogo; Cabeza, Mar; Nogués-Bravo, David; Thuiller, Wilfried

    2011-01-01

    Europe has the world's most extensive network of conservation areas. Conservation areas are selected without taking into account the effects of climate change. How effectively would such areas conserve biodiversity under climate change? We assess the effectiveness of protected areas and the Natura 2000 network in conserving a large proportion of European plant and terrestrial vertebrate species under climate change. We found that by 2080, 58 ± 2.6% of the species would lose suitable climate in protected areas, whereas losses affected 63 ± 2.1% of the species of European concern occurring in Natura 2000 areas. Protected areas are expected to retain climatic suitability for species better than unprotected areas (P<0.001), but Natura 2000 areas retain climate suitability for species no better and sometimes less effectively than unprotected areas. The risk is high that ongoing efforts to conserve Europe's biodiversity are jeopardized by climate change. New policies are required to avert this risk. PMID:21447141

  20. Conflict in a changing climate

    NASA Astrophysics Data System (ADS)

    Carleton, T.; Hsiang, S. M.; Burke, M.

    2016-05-01

    A growing body of research illuminates the role that changes in climate have had on violent conflict and social instability in the recent past. Across a diversity of contexts, high temperatures and irregular rainfall have been causally linked to a range of conflict outcomes. These findings can be paired with climate model output to generate projections of the impact future climate change may have on conflicts such as crime and civil war. However, there are large degrees of uncertainty in such projections, arising from (i) the statistical uncertainty involved in regression analysis, (ii) divergent climate model predictions, and (iii) the unknown ability of human societies to adapt to future climate change. In this article, we review the empirical evidence of the climate-conflict relationship, provide insight into the likely extent and feasibility of adaptation to climate change as it pertains to human conflict, and discuss new methods that can be used to provide projections that capture these three sources of uncertainty.

  1. The Effect of Mitigation Policy on Regional Climate Impacts on the U.S. Electric Sector

    NASA Astrophysics Data System (ADS)

    Cohen, S. M.; Sun, Y.; Strzepek, K.; McFarland, J.; Boehlert, B.; Fant, C.

    2017-12-01

    Climate change can influence the U.S. electricity sector in many ways, the nature of which can be shaped by energy and environmental policy choices. Changing temperatures affect electricity demand largely through heating and cooling needs, and temperatures also affect generation and transmission system performance. Altered precipitation patterns affect the regional and seasonal distribution of surface water runoff, which changes hydropower operation and thermal cooling water availability. The extent to which these stimuli influence U.S. power sector operation and planning will depend to some extent on whether or not proactive policies are enacted to mitigate these impacts. Mitigation policies such as CO2 emissions limits or technology restrictions can change the makeup of the electricity system while reducing the extent of climate change itself. We use the National Renewable Energy Laboratory's Regional Energy Deployment System (ReEDS), a U.S. electric sector capacity expansion model, to explore electric sector evolution through 2050 under alternative climate and policy assumptions. The model endogenously represents climate impacts on load, power system performance, cooling water availability, and hydropower, allowing internally consistent system responses to climate change along with projected technology, market, and policy conditions. We compare climate impacts across 5 global circulation models for a 8.5 W/m2 representative concentration pathway (RCP) without a climate mitigation policy and a 4.5 W/m2 RCP with climate mitigation. Climate drivers affect the capacity and generation mix at the national and regional levels, with relative growth of wind, solar, and natural gas-based technologies depending on local electricity system characteristics. These differences affect regional economic impacts, measured here as changes to electricity price and system costs. Mitigation policy reduces the economic and system impacts of climate change largely by moderating temperature-induced load but also by lessening water- and temperature-based performance constraints. Policy impacts are nuanced and region-specific, and this analysis underscores the importance of climate mitigation policy to regional electricity system planning decisions.

  2. Application of the new scenario framework for climate change research: Future social vulnerability in large urban areas

    NASA Astrophysics Data System (ADS)

    Rohat, Guillaume; Flacke, Johannes; Dao, Hy

    2016-04-01

    It is by now widely acknowledged that future social vulnerability to climate change depends on both future climate state and future socio-economic conditions. Nevertheless, while most of the vulnerability assessments are using climate projections, the integration of socio-economic projections into the assessment of vulnerabilities has been very limited. Up to now, the vast majority of vulnerability assessments has been using current socio-economic conditions, hence has failed to consider the influence of socio-economic developments in the construction of vulnerability. To enhance the use of socio-economic projections into climate change impacts, adaptation and vulnerability assessments, the climate change research community has been recently involved in the development of a new model for creating scenarios that integrate future changes in climate as well as in society, known under the name of the new scenario framework for climate change research. This theoretical framework is made of a set of alternative futures of socio-economic developments (known as shared socio-economic pathways - SSPs), a set of hypothesis about future climate policies (known as shared policy assumptions - SPAs) and a set of greenhouse gas concentration trajectories (known as representative concentration pathways - RCPs), which are all combined into a scenario matrix architecture (SMA) whose aim is to facilitate the use of this framework. Despite calls by the climate change research community for the use of this conceptual framework in impacts, adaptation and vulnerability research, its use and its assessment has been very limited. Focusing on case-studies (i.e. specific cities as well as specific climate impacts and their associated human exposures and vulnerabilities), the study presented here will attempt to operationalize this theoretical framework for the assessment of future social vulnerability in large urban areas. A particular attention will be paid to less advanced and more vulnerable countries in the global south. We will discuss how this framework can be implemented for large urban agglomerations. To do so, we will examine: (i) by what means globally-developed SSPs can be extended into sector-specific and location-specific socio-economic development scenarios, (ii) in what manner the quantification of key socio-economic indicators (in accordance with the different SSPs), coupled with regional climate projections under different RCPs, can lead to a quantitative and reliable assessment of the evolution of future social vulnerability, and (iii) to which extent the SMA, i.e. the combination of extended SSPs, regional climate projections (under different RCPs) and various locally-developed SPAs, can answer some of the key questions regarding climate change adaptation policies, from a vulnerability perspective.

  3. Farmers and Climate Change: A Cross-National Comparison of Beliefs and Risk Perceptions in High-Income Countries.

    PubMed

    Prokopy, Linda S; Arbuckle, J G; Barnes, Andrew P; Haden, V R; Hogan, Anthony; Niles, Meredith T; Tyndall, John

    2015-08-01

    Climate change has serious implications for the agricultural industry-both in terms of the need to adapt to a changing climate and to modify practices to mitigate for the impacts of climate change. In high-income countries where farming tends to be very intensive and large scale, it is important to understand farmers' beliefs and concerns about climate change in order to develop appropriate policies and communication strategies. Looking across six study sites-Scotland, Midwestern United States, California, Australia, and two locations in New Zealand-this paper finds that over half of farmers in each location believe that climate change is occurring. However, there is a wide range of beliefs regarding the anthropogenic nature of climate change; only in Australia do a majority of farmers believe that climate change is anthropogenic. In all locations, a majority of farmers believe that climate change is not a threat to local agriculture. The different policy contexts and existing impacts from climate change are discussed as possible reasons for the variation in beliefs. This study compared varying surveys from the different locations and concludes that survey research on farmers and climate change in diverse locations should strive to include common questions to facilitate comparisons.

  4. What Is a Mild Winter? Regional Differences in Within-Species Responses to Climate Change.

    PubMed

    Vetter, Sebastian G; Ruf, Thomas; Bieber, Claudia; Arnold, Walter

    2015-01-01

    Climate change is known to affect ecosystems globally, but our knowledge of its impact on large and widespread mammals, and possibly population-specific responses is still sparse. We investigated large-scale and long-term effects of climate change on local population dynamics using the wild boar (Sus scrofa L.) as a model species. Our results show that population increases across Europe are strongly associated with increasingly mild winters, yet with region-specific threshold temperatures for the onset of exponential growth. Additionally, we found that abundant availability of critical food resources, e.g. beech nuts, can outweigh the negative effects of cold winters on population growth of wild boar. Availability of beech nuts is highly variable and highest in years of beech mast which increased in frequency since 1980, according to our data. We conclude that climate change drives population growth of wild boar directly by relaxing the negative effect of cold winters on survival and reproduction, and indirectly by increasing food availability. However, region-specific responses need to be considered in order to fully understand a species' demographic response to climate change.

  5. Impacts of Near-Term Climate Change on Irrigation Demands and Crop Yields in the Columbia River Basin

    NASA Astrophysics Data System (ADS)

    Rajagopalan, K.; Chinnayakanahalli, K. J.; Stockle, C. O.; Nelson, R. L.; Kruger, C. E.; Brady, M. P.; Malek, K.; Dinesh, S. T.; Barber, M. E.; Hamlet, A. F.; Yorgey, G. G.; Adam, J. C.

    2018-03-01

    Adaptation to a changing climate is critical to address future global food and water security challenges. While these challenges are global, successful adaptation strategies are often generated at regional scales; therefore, regional-scale studies are critical to inform adaptation decision making. While climate change affects both water supply and demand, water demand is relatively understudied, especially at regional scales. The goal of this work is to address this gap, and characterize the direct impacts of near-term (for the 2030s) climate change and elevated CO2 levels on regional-scale crop yields and irrigation demands for the Columbia River basin (CRB). This question is addressed through a coupled crop-hydrology model that accounts for site-specific and crop-specific characteristics that control regional-scale response to climate change. The overall near-term outlook for agricultural production in the CRB is largely positive, with yield increases for most crops and small overall increases in irrigation demand. However, there are crop-specific and location-specific negative impacts as well, and the aggregate regional response of irrigation demands to climate change is highly sensitive to the spatial crop mix. Low-value pasture/hay varieties of crops—typically not considered in climate change assessments—play a significant role in determining the regional response of irrigation demands to climate change, and thus cannot be overlooked. While, the overall near-term outlook for agriculture in the region is largely positive, there may be potential for a negative outlook further into the future, and it is important to consider this in long-term planning.

  6. Fire as the dominant driver of central Canadian boreal forest carbon balance.

    PubMed

    Bond-Lamberty, Ben; Peckham, Scott D; Ahl, Douglas E; Gower, Stith T

    2007-11-01

    Changes in climate, atmospheric carbon dioxide concentration and fire regimes have been occurring for decades in the global boreal forest, with future climate change likely to increase fire frequency--the primary disturbance agent in most boreal forests. Previous attempts to assess quantitatively the effect of changing environmental conditions on the net boreal forest carbon balance have not taken into account the competition between different vegetation types on a large scale. Here we use a process model with three competing vascular and non-vascular vegetation types to examine the effects of climate, carbon dioxide concentrations and fire disturbance on net biome production, net primary production and vegetation dominance in 100 Mha of Canadian boreal forest. We find that the carbon balance of this region was driven by changes in fire disturbance from 1948 to 2005. Climate changes affected the variability, but not the mean, of the landscape carbon balance, with precipitation exerting a more significant effect than temperature. We show that more frequent and larger fires in the late twentieth century resulted in deciduous trees and mosses increasing production at the expense of coniferous trees. Our model did not however exhibit the increases in total forest net primary production that have been inferred from satellite data. We find that poor soil drainage decreased the variability of the landscape carbon balance, which suggests that increased climate and hydrological changes have the potential to affect disproportionately the carbon dynamics of these areas. Overall, we conclude that direct ecophysiological changes resulting from global climate change have not yet been felt in this large boreal region. Variations in the landscape carbon balance and vegetation dominance have so far been driven largely by increases in fire frequency.

  7. Contributions of changes in climatology and perturbation and the resulting nonlinearity to regional climate change.

    PubMed

    Adachi, Sachiho A; Nishizawa, Seiya; Yoshida, Ryuji; Yamaura, Tsuyoshi; Ando, Kazuto; Yashiro, Hisashi; Kajikawa, Yoshiyuki; Tomita, Hirofumi

    2017-12-20

    Future changes in large-scale climatology and perturbation may have different impacts on regional climate change. It is important to understand the impacts of climatology and perturbation in terms of both thermodynamic and dynamic changes. Although many studies have investigated the influence of climatology changes on regional climate, the significance of perturbation changes is still debated. The nonlinear effect of these two changes is also unknown. We propose a systematic procedure that extracts the influences of three factors: changes in climatology, changes in perturbation and the resulting nonlinear effect. We then demonstrate the usefulness of the procedure, applying it to future changes in precipitation. All three factors have the same degree of influence, especially for extreme rainfall events. Thus, regional climate assessments should consider not only the climatology change but also the perturbation change and their nonlinearity. This procedure can advance interpretations of future regional climates.

  8. Robust changes in the socio-climate risk over CONUS by mid 21st century

    NASA Astrophysics Data System (ADS)

    Ashfaq, M.; Rastogi, D.; Batibeniz, F.; Alifa, M.; Pagán, B. R.; Bonds, B. W.; Pal, J. S.; Diffenbaugh, N. S.; Preston, B. L.

    2017-12-01

    Using high-resolution near-term ensemble projections of hydro-climatic changes, we investigate impacts of climate change on natural and human systems across the CONUS. Climate projections are based a hybrid downscaling approach where a combination of regional and hydrological models are used to downscales 11 Global Climate Models from the 5th phase of Coupled Model Inter-comparison Project to 4km horizontal grid spacing for 41 years in the historical period (1965-2005) and 41 years in the near-term future period (2010-2050) under Representative Concentration Pathway 8.5. Should emissions continue to rise, climatic changes will likely intensify the regional hydrological cycle over CONUS through the acceleration of the historical trends in cold, warm and wet extremes. Our results show robust changes in the occurrence of severe weather conditions and in the likelihood of ice, freezing rain and snowstorms that may have disruptive impact on large human population across the U.S. More summer like conditions will also drive increase in cooling demands and a net increase in the energy consumption over many regions. We further use an integrated vulnerability index that combines human exposure to different climate extremes (hot, cold, wet and dry) and changes in socioeconomic pathways (due to changes in population and income levels), to reveal that future exposure to potentially damaging climatic conditions will likely increase manifold for population living in major urban centers in California, Texas, Florida, Michigan, Illinois and Northeast. With the current trajectory of emissions, these results warrant that a large human population across the U.S. may feel the impacts of climate change within its lifespan.

  9. Global Pyrogeography: the Current and Future Distribution of Wildfire

    PubMed Central

    Krawchuk, Meg A.; Moritz, Max A.; Parisien, Marc-André; Van Dorn, Jeff; Hayhoe, Katharine

    2009-01-01

    Climate change is expected to alter the geographic distribution of wildfire, a complex abiotic process that responds to a variety of spatial and environmental gradients. How future climate change may alter global wildfire activity, however, is still largely unknown. As a first step to quantifying potential change in global wildfire, we present a multivariate quantification of environmental drivers for the observed, current distribution of vegetation fires using statistical models of the relationship between fire activity and resources to burn, climate conditions, human influence, and lightning flash rates at a coarse spatiotemporal resolution (100 km, over one decade). We then demonstrate how these statistical models can be used to project future changes in global fire patterns, highlighting regional hotspots of change in fire probabilities under future climate conditions as simulated by a global climate model. Based on current conditions, our results illustrate how the availability of resources to burn and climate conditions conducive to combustion jointly determine why some parts of the world are fire-prone and others are fire-free. In contrast to any expectation that global warming should necessarily result in more fire, we find that regional increases in fire probabilities may be counter-balanced by decreases at other locations, due to the interplay of temperature and precipitation variables. Despite this net balance, our models predict substantial invasion and retreat of fire across large portions of the globe. These changes could have important effects on terrestrial ecosystems since alteration in fire activity may occur quite rapidly, generating ever more complex environmental challenges for species dispersing and adjusting to new climate conditions. Our findings highlight the potential for widespread impacts of climate change on wildfire, suggesting severely altered fire regimes and the need for more explicit inclusion of fire in research on global vegetation-climate change dynamics and conservation planning. PMID:19352494

  10. More rapid climate change promotes evolutionary rescue through selection for increased dispersal distance

    PubMed Central

    Boeye, Jeroen; Travis, Justin M J; Stoks, Robby; Bonte, Dries

    2013-01-01

    Species can either adapt to new conditions induced by climate change or shift their range in an attempt to track optimal environmental conditions. During current range shifts, species are simultaneously confronted with a second major anthropogenic disturbance, landscape fragmentation. Using individual-based models with a shifting climate window, we examine the effect of different rates of climate change on the evolution of dispersal distances through changes in the genetically determined dispersal kernel. Our results demonstrate that the rate of climate change is positively correlated to the evolved dispersal distances although too fast climate change causes the population to crash. When faced with realistic rates of climate change, greater dispersal distances evolve than those required for the population to keep track of the climate, thereby maximizing population size. Importantly, the greater dispersal distances that evolve when climate change is more rapid, induce evolutionary rescue by facilitating the population in crossing large gaps in the landscape. This could ensure population persistence in case of range shifting in fragmented landscapes. Furthermore, we highlight problems in using invasion speed as a proxy for potential range shifting abilities under climate change. PMID:23467649

  11. A collaborative characterization of North American grasslands and rangelands: climate, ecohydrology and carbon sink-source dynamics

    NASA Astrophysics Data System (ADS)

    Petrie, M. D.; Brunsell, N. A.; Vargas, R.; Collins, S. L.

    2013-12-01

    Grassland and rangeland ecoregions extend across the North American continent and exhibit diversity in climate, ecosystem services, and biophysical processes. In many grasslands and rangelands, the potential for reductions in ecosystem services and for large-scale ecosystem state change may increase under future climate scenarios. Climate change projections for North America vary, however, and the way changing climate will influence specific ecoregions is largely unknown. To better understand the regional effects of climate change on grasslands and rangelands, it is important to better understand the biophysical characteristics of these systems locally, and to identify the sensitivity of these characteristics to observed climate variation. In our study, we propose to use eddy covariance, soil moisture and precipitation data to identify how the grasslands and rangelands of North America differ in their responses to climate variability through time, with specific focus on the active growing season. Our primary goal is to determine the sensitivity of ecosystem Net Primary Productivity [NPP] to variation in temperature and precipitation patterns, and classify North American grasslands and rangelands by these sensitivities in addition to more standard climate and productivity variables. Our preliminary analyses in mesic, semiarid and arid grasslands in Kansas, Colorado and New Mexico show significant (P < 0.05) differences in climate, carbon sink strength and growing season length, and suggest that patterns of seasonal productivity and precipitation sensitivity may elucidate important grassland and rangeland responses to changing climate. Using change in Gross Primary Productivity (GPP) as an indicator of the onset of photosynthesis in spring and of senescense in the fall, grassland and rangeland ecosystems in Kansas (top and bottom left panels) and New Mexico (bottom right panel) display differing patterns of activity throughout the year.

  12. Changes and Relationships of Climatic and Hydrological Droughts in the Jialing River Basin, China.

    PubMed

    Zeng, Xiaofan; Zhao, Na; Sun, Huaiwei; Ye, Lei; Zhai, Jianqing

    2015-01-01

    The comprehensive assessment of climatic and hydrological droughts in terms of their temporal and spatial evolutions is very important for water resources management and social development in the basin scale. To study the spatial and temporal changes of climatic and hydrological droughts and the relationships between them, the SPEI and SDI are adopted to assess the changes and the correlations of climatic and hydrological droughts by selecting the Jialing River basin, China as the research area. The SPEI and SDI at different time scales are assessed both at the entire Jialing River basin and at the regional levels of the three sub basins. The results show that the SPEI and SDI are very suitable for assessing the changes and relationships of climatic and hydrological droughts in large basins. Based on the assessment, for the Jialing River basin, climatic and hydrological droughts have the increasing tendency during recent several decades, and the increasing trend of climatic droughts is significant or extremely significant in the western and northern basin, while hydrological drought has a less significant increasing trend. Additionally, climatic and hydrological droughts tend to increase in the next few years. The results also show that on short time scales, climatic droughts have one or two months lag impact on hydrological droughts in the north-west area of the basin, and have one month lag impact in south-east area of the basin. The assessment of climatic and hydrological droughts based on the SPEI and SDI could be very useful for water resources management and climate change adaptation at large basin scale.

  13. Changes and Relationships of Climatic and Hydrological Droughts in the Jialing River Basin, China

    PubMed Central

    Zeng, Xiaofan; Zhao, Na; Sun, Huaiwei; Ye, Lei; Zhai, Jianqing

    2015-01-01

    The comprehensive assessment of climatic and hydrological droughts in terms of their temporal and spatial evolutions is very important for water resources management and social development in the basin scale. To study the spatial and temporal changes of climatic and hydrological droughts and the relationships between them, the SPEI and SDI are adopted to assess the changes and the correlations of climatic and hydrological droughts by selecting the Jialing River basin, China as the research area. The SPEI and SDI at different time scales are assessed both at the entire Jialing River basin and at the regional levels of the three sub basins. The results show that the SPEI and SDI are very suitable for assessing the changes and relationships of climatic and hydrological droughts in large basins. Based on the assessment, for the Jialing River basin, climatic and hydrological droughts have the increasing tendency during recent several decades, and the increasing trend of climatic droughts is significant or extremely significant in the western and northern basin, while hydrological drought has a less significant increasing trend. Additionally, climatic and hydrological droughts tend to increase in the next few years. The results also show that on short time scales, climatic droughts have one or two months lag impact on hydrological droughts in the north-west area of the basin, and have one month lag impact in south-east area of the basin. The assessment of climatic and hydrological droughts based on the SPEI and SDI could be very useful for water resources management and climate change adaptation at large basin scale. PMID:26544070

  14. Does internal climate variability overwhelm climate change signals in streamflow? The upper Po and Rhone basin case studies.

    PubMed

    Fatichi, S; Rimkus, S; Burlando, P; Bordoy, R

    2014-09-15

    Projections of climate change effects in streamflow are increasingly required to plan water management strategies. These projections are however largely uncertain due to the spread among climate model realizations, internal climate variability, and difficulties in transferring climate model results at the spatial and temporal scales required by catchment hydrology. A combination of a stochastic downscaling methodology and distributed hydrological modeling was used in the ACQWA project to provide projections of future streamflow (up to year 2050) for the upper Po and Rhone basins, respectively located in northern Italy and south-western Switzerland. Results suggest that internal (stochastic) climate variability is a fundamental source of uncertainty, typically comparable or larger than the projected climate change signal. Therefore, climate change effects in streamflow mean, frequency, and seasonality can be masked by natural climatic fluctuations in large parts of the analyzed regions. An exception to the overwhelming role of stochastic variability is represented by high elevation catchments fed by glaciers where streamflow is expected to be considerably reduced due to glacier retreat, with consequences appreciable in the main downstream rivers in August and September. Simulations also identify regions (west upper Rhone and Toce, Ticino river basins) where a strong precipitation increase in the February to April period projects streamflow beyond the range of natural climate variability during the melting season. This study emphasizes the importance of including internal climate variability in climate change analyses, especially when compared to the limited uncertainty that would be accounted for by few deterministic projections. The presented results could be useful in guiding more specific impact studies, although design or management decisions should be better based on reliability and vulnerability criteria as suggested by recent literature. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Modeled impact of anthropogenic land cover change on climate

    USGS Publications Warehouse

    Findell, K.L.; Shevliakova, E.; Milly, P.C.D.; Stouffer, R.J.

    2007-01-01

    Equilibrium experiments with the Geophysical Fluid Dynamics Laboratory's climate model are used to investigate the impact of anthropogenic land cover change on climate. Regions of altered land cover include large portions of Europe, India, eastern China, and the eastern United States. Smaller areas of change are present in various tropical regions. This study focuses on the impacts of biophysical changes associated with the land cover change (albedo, root and stomatal properties, roughness length), which is almost exclusively a conversion from forest to grassland in the model; the effects of irrigation or other water management practices and the effects of atmospheric carbon dioxide changes associated with land cover conversion are not included in these experiments. The model suggests that observed land cover changes have little or no impact on globally averaged climatic variables (e.g., 2-m air temperature is 0.008 K warmer in a simulation with 1990 land cover compared to a simulation with potential natural vegetation cover). Differences in the annual mean climatic fields analyzed did not exhibit global field significance. Within some of the regions of land cover change, however, there are relatively large changes of many surface climatic variables. These changes are highly significant locally in the annual mean and in most months of the year in eastern Europe and northern India. They can be explained mainly as direct and indirect consequences of model-prescribed increases in surface albedo, decreases in rooting depth, and changes of stomatal control that accompany deforestation. ?? 2007 American Meteorological Society.

  16. Detection and Attribution of Temperature Trends in the Presence of Natural Variability

    NASA Astrophysics Data System (ADS)

    Wallace, J. M.

    2014-12-01

    The fingerprint of human-induced global warming stands out clearly above the noise In the time series of global-mean temperature, but not local temperature. At extratropical latitudes over land the standard error of 50-year linear temperature trends at a fixed point is as large as the cumulative rise in global-mean temperature over the past century. Much of the samping variability in local temperature trends is "dynamically-induced", i.e., attributable to the fact that the seasonally-varying mean circulation varies substantially from one year to the next and anomalous circulation patterns are generally accompanied by anomalous temperature patterns. In the presence of such large sampling variability it is virtually impossible to identify the spatial signature of greenhouse warming based on observational data or to partition observed local temperature trends into natural and human-induced components. It follows that previous IPCC assessments, which have focused on the deterministic signature of human-induced climate change, are inherently limited as to what they can tell us about the attribution of the past record of local temperature change or about how much the temperature at a particular place is likely to rise in the next few decades in response to global warming. To obtain more informative assessments of regional and local climate variability and change it will be necessary to take a probabilistic approach. Just as the use of the ensembles has contributed to more informative extended range weather predictions, large ensembles of climate model simulations can provide a statistical context for interpreting observed climate change and for framing projections of future climate. For some purposes, statistics relating to the interannual variability in the historical record can serve as a surrogate for statistics relating to the diversity of climate change scenarios in large ensembles.

  17. Forest disturbances under climate change

    NASA Astrophysics Data System (ADS)

    Seidl, Rupert; Thom, Dominik; Kautz, Markus; Martin-Benito, Dario; Peltoniemi, Mikko; Vacchiano, Giorgio; Wild, Jan; Ascoli, Davide; Petr, Michal; Honkaniemi, Juha; Lexer, Manfred J.; Trotsiuk, Volodymyr; Mairota, Paola; Svoboda, Miroslav; Fabrika, Marek; Nagel, Thomas A.; Reyer, Christopher P. O.

    2017-06-01

    Forest disturbances are sensitive to climate. However, our understanding of disturbance dynamics in response to climatic changes remains incomplete, particularly regarding large-scale patterns, interaction effects and dampening feedbacks. Here we provide a global synthesis of climate change effects on important abiotic (fire, drought, wind, snow and ice) and biotic (insects and pathogens) disturbance agents. Warmer and drier conditions particularly facilitate fire, drought and insect disturbances, while warmer and wetter conditions increase disturbances from wind and pathogens. Widespread interactions between agents are likely to amplify disturbances, while indirect climate effects such as vegetation changes can dampen long-term disturbance sensitivities to climate. Future changes in disturbance are likely to be most pronounced in coniferous forests and the boreal biome. We conclude that both ecosystems and society should be prepared for an increasingly disturbed future of forests.

  18. Forest disturbances under climate change

    PubMed Central

    Seidl, Rupert; Thom, Dominik; Kautz, Markus; Martin-Benito, Dario; Peltoniemi, Mikko; Vacchiano, Giorgio; Wild, Jan; Ascoli, Davide; Petr, Michal; Honkaniemi, Juha; Lexer, Manfred J.; Trotsiuk, Volodymyr; Mairota, Paola; Svoboda, Miroslav; Fabrika, Marek; Nagel, Thomas A.; Reyer, Christopher P. O.

    2017-01-01

    Forest disturbances are sensitive to climate. However, our understanding of disturbance dynamics in response to climatic changes remains incomplete, particularly regarding large-scale patterns, interaction effects and dampening feedbacks. Here we provide a global synthesis of climate change effects on important abiotic (fire, drought, wind, snow and ice) and biotic (insects and pathogens) disturbance agents. Warmer and drier conditions particularly facilitate fire, drought and insect disturbances, while warmer and wetter conditions increase disturbances from wind and pathogens. Widespread interactions between agents are likely to amplify disturbances, while indirect climate effects such as vegetation changes can dampen long-term disturbance sensitivities to climate. Future changes in disturbance are likely to be most pronounced in coniferous forests and the boreal biome. We conclude that both ecosystems and society should be prepared for an increasingly disturbed future of forests. PMID:28861124

  19. Impacts of Land Cover Changes on Climate over China

    NASA Astrophysics Data System (ADS)

    Chen, L.; Frauenfeld, O. W.

    2014-12-01

    Land cover changes can influence regional climate through modifying the surface energy balance and water fluxes, and can also affect climate at large scales via changes in atmospheric general circulation. With rapid population growth and economic development, China has experienced significant land cover changes, such as deforestation, grassland degradation, and farmland expansion. In this study, the Community Earth System Model (CESM) is used to investigate the climate impacts of anthropogenic land cover changes over China. To isolate the climatic effects of land cover change, we focus on the CAM and CLM models, with prescribed climatological sea surface temperature and sea ice cover. Two experiments were performed, one with current vegetation and the other with potential vegetation. Current vegetation conditions were derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations, and potential vegetation over China was obtained from Ramankutty and Foley's global potential vegetation dataset. Impacts of land cover changes on surface air temperature and precipitation are assessed based on the difference of the two experiments. Results suggest that land cover changes have a cold-season cooling effect in a large region of China, but a warming effect in summer. These temperature changes can be reconciled with albedo forcing and evapotranspiration. Moreover, impacts on atmospheric circulation and the Asian Monsoon is also discussed.

  20. Development of a database system for near-future climate change projections under the Japanese National Project SI-CAT

    NASA Astrophysics Data System (ADS)

    Nakagawa, Y.; Kawahara, S.; Araki, F.; Matsuoka, D.; Ishikawa, Y.; Fujita, M.; Sugimoto, S.; Okada, Y.; Kawazoe, S.; Watanabe, S.; Ishii, M.; Mizuta, R.; Murata, A.; Kawase, H.

    2017-12-01

    Analyses of large ensemble data are quite useful in order to produce probabilistic effect projection of climate change. Ensemble data of "+2K future climate simulations" are currently produced by Japanese national project "Social Implementation Program on Climate Change Adaptation Technology (SI-CAT)" as a part of a database for Policy Decision making for Future climate change (d4PDF; Mizuta et al. 2016) produced by Program for Risk Information on Climate Change. Those data consist of global warming simulations and regional downscaling simulations. Considering that those data volumes are too large (a few petabyte) to download to a local computer of users, a user-friendly system is required to search and download data which satisfy requests of the users. We develop "a database system for near-future climate change projections" for providing functions to find necessary data for the users under SI-CAT. The database system for near-future climate change projections mainly consists of a relational database, a data download function and user interface. The relational database using PostgreSQL is a key function among them. Temporally and spatially compressed data are registered on the relational database. As a first step, we develop the relational database for precipitation, temperature and track data of typhoon according to requests by SI-CAT members. The data download function using Open-source Project for a Network Data Access Protocol (OPeNDAP) provides a function to download temporally and spatially extracted data based on search results obtained by the relational database. We also develop the web-based user interface for using the relational database and the data download function. A prototype of the database system for near-future climate change projections are currently in operational test on our local server. The database system for near-future climate change projections will be released on Data Integration and Analysis System Program (DIAS) in fiscal year 2017. Techniques of the database system for near-future climate change projections might be quite useful for simulation and observational data in other research fields. We report current status of development and some case studies of the database system for near-future climate change projections.

  1. Mid-21st- century climate changes increase predicted fire occurrence and fire season length, Northern Rocky Mountains, United States

    Treesearch

    Karin L. Riley; Rachel A. Loehman

    2016-01-01

    Climate changes are expected to increase fire frequency, fire season length, and cumulative area burned in the western United States. We focus on the potential impact of mid-21st- century climate changes on annual burn probability, fire season length, and large fire characteristics including number and size for a study area in the Northern Rocky Mountains....

  2. The greenhouse theory of climate change - A test by an inadvertent global experiment

    NASA Technical Reports Server (NTRS)

    Ramanathan, V.

    1988-01-01

    The greenhouse theory of climate change has reached the crucial stage of verification. Surface warming as large as that predicted by models would be unprecedented during an interglacial period such as the present. The theory, its scope for verification, and the emerging complexities of the climate feedback mechanisms are discussed in this paper. The evidence for change is described and competing nonclimatic forcings are discussed.

  3. Corporate funding and ideological polarization about climate change

    PubMed Central

    Farrell, Justin

    2016-01-01

    Drawing on large-scale computational data and methods, this research demonstrates how polarization efforts are influenced by a patterned network of political and financial actors. These dynamics, which have been notoriously difficult to quantify, are illustrated here with a computational analysis of climate change politics in the United States. The comprehensive data include all individual and organizational actors in the climate change countermovement (164 organizations), as well as all written and verbal texts produced by this network between 1993–2013 (40,785 texts, more than 39 million words). Two main findings emerge. First, that organizations with corporate funding were more likely to have written and disseminated texts meant to polarize the climate change issue. Second, and more importantly, that corporate funding influences the actual thematic content of these polarization efforts, and the discursive prevalence of that thematic content over time. These findings provide new, and comprehensive, confirmation of dynamics long thought to be at the root of climate change politics and discourse. Beyond the specifics of climate change, this paper has important implications for understanding ideological polarization more generally, and the increasing role of private funding in determining why certain polarizing themes are created and amplified. Lastly, the paper suggests that future studies build on the novel approach taken here that integrates large-scale textual analysis with social networks. PMID:26598653

  4. Corporate funding and ideological polarization about climate change.

    PubMed

    Farrell, Justin

    2016-01-05

    Drawing on large-scale computational data and methods, this research demonstrates how polarization efforts are influenced by a patterned network of political and financial actors. These dynamics, which have been notoriously difficult to quantify, are illustrated here with a computational analysis of climate change politics in the United States. The comprehensive data include all individual and organizational actors in the climate change countermovement (164 organizations), as well as all written and verbal texts produced by this network between 1993-2013 (40,785 texts, more than 39 million words). Two main findings emerge. First, that organizations with corporate funding were more likely to have written and disseminated texts meant to polarize the climate change issue. Second, and more importantly, that corporate funding influences the actual thematic content of these polarization efforts, and the discursive prevalence of that thematic content over time. These findings provide new, and comprehensive, confirmation of dynamics long thought to be at the root of climate change politics and discourse. Beyond the specifics of climate change, this paper has important implications for understanding ideological polarization more generally, and the increasing role of private funding in determining why certain polarizing themes are created and amplified. Lastly, the paper suggests that future studies build on the novel approach taken here that integrates large-scale textual analysis with social networks.

  5. Consistent response of bird populations to climate change on two continents

    USGS Publications Warehouse

    Stephens, Philip A.; Mason, Lucy R.; Green, Rhys E.; Gregory, Richard D.; Sauer, John R.; Alison, Jamie; Aunins, Ainars; Brotons, Lluís; Butchart, Stuart H.M.; Campedelli, Tommaso; Chodkiewicz, Tomasz; Chylarecki, Przemyslaw; Crowe, Olivia; Elts, Jaanus; Escandell, Virginia; Foppen, Ruud P.B.; Heldbjerg, Henning; Herrando, Sergi; Husby, Magne; Jiguet, Frédéric; Lehikoinen, Aleksi; Lindström, Åke; Noble, David G.; Paquet, Jean-Yves; Reif, Jiri; Sattler, Thomas; Szép, Tibor; Teufelbauer, Norbert; Trautmann, Sven; Van Strien, Arco; van Turnhout, Chris A.M.; Vorisek, Petr; Willis, Stephen G.

    2016-01-01

    Global climate change is a major threat to biodiversity. Large-scale analyses have generally focused on the impacts of climate change on the geographic ranges of species and on phenology, the timing of ecological phenomena. We used long-term monitoring of the abundance of breeding birds across Europe and the United States to produce, for both regions, composite population indices for two groups of species: those for which climate suitability has been either improving or declining since 1980. The ratio of these composite indices, the climate impact indicator (CII), reflects the divergent fates of species favored or disadvantaged by climate change. The trend in CII is positive and similar in the two regions. On both continents, interspecific and spatial variation in population abundance trends are well predicted by climate suitability trends.

  6. Shifts in tree functional composition amplify the response of forest biomass to climate

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Niinemets, Ülo; Sheffield, Justin; Lichstein, Jeremy W.

    2018-04-01

    Forests have a key role in global ecosystems, hosting much of the world’s terrestrial biodiversity and acting as a net sink for atmospheric carbon. These and other ecosystem services that are provided by forests may be sensitive to climate change as well as climate variability on shorter time scales (for example, annual to decadal). Previous studies have documented responses of forest ecosystems to climate change and climate variability, including drought-induced increases in tree mortality rates. However, relationships between forest biomass, tree species composition and climate variability have not been quantified across a large region using systematically sampled data. Here we use systematic forest inventories from the 1980s and 2000s across the eastern USA to show that forest biomass responds to decadal-scale changes in water deficit, and that this biomass response is amplified by concurrent changes in community-mean drought tolerance, a functionally important aspect of tree species composition. The amplification of the direct effects of water stress on biomass occurs because water stress tends to induce a shift in tree species composition towards species that are more tolerant to drought but are slower growing. These results demonstrate concurrent changes in forest species composition and biomass carbon storage across a large, systematically sampled region, and highlight the potential for climate-induced changes in forest ecosystems across the world, resulting from both direct effects of climate on forest biomass and indirect effects mediated by shifts in species composition.

  7. Shifts in tree functional composition amplify the response of forest biomass to climate.

    PubMed

    Zhang, Tao; Niinemets, Ülo; Sheffield, Justin; Lichstein, Jeremy W

    2018-04-05

    Forests have a key role in global ecosystems, hosting much of the world's terrestrial biodiversity and acting as a net sink for atmospheric carbon. These and other ecosystem services that are provided by forests may be sensitive to climate change as well as climate variability on shorter time scales (for example, annual to decadal). Previous studies have documented responses of forest ecosystems to climate change and climate variability, including drought-induced increases in tree mortality rates. However, relationships between forest biomass, tree species composition and climate variability have not been quantified across a large region using systematically sampled data. Here we use systematic forest inventories from the 1980s and 2000s across the eastern USA to show that forest biomass responds to decadal-scale changes in water deficit, and that this biomass response is amplified by concurrent changes in community-mean drought tolerance, a functionally important aspect of tree species composition. The amplification of the direct effects of water stress on biomass occurs because water stress tends to induce a shift in tree species composition towards species that are more tolerant to drought but are slower growing. These results demonstrate concurrent changes in forest species composition and biomass carbon storage across a large, systematically sampled region, and highlight the potential for climate-induced changes in forest ecosystems across the world, resulting from both direct effects of climate on forest biomass and indirect effects mediated by shifts in species composition.

  8. A climate-change adaptation framework to reduce continental-scale vulnerability across conservation reserves

    Treesearch

    D.R. Magness; J.M. Morton; F. Huettmann; F.S. Chapin; A.D. McGuire

    2011-01-01

    Rapid climate change, in conjunction with other anthropogenic drivers, has the potential to cause mass species extinction. To minimize this risk, conservation reserves need to be coordinated at multiple spatial scales because the climate envelopes of many species may shift rapidly across large geographic areas. In addition, novel species assemblages and ecological...

  9. Tree mortality from drought, insects, and their interactions in a changing climate

    Treesearch

    William R. L. Anderegg; Jeffrey A. Hicke; Rosie A. Fisher; Craig D. Allen; Juliann Aukema; Barbara Bentz; Sharon Hood; Jeremy W. Lichstein; Alison K. Macalady; Nate McDowell; Yude Pan; Kenneth Raffa; Anna Sala; John D. Shaw; Nathan L. Stephenson; Christina Tague; Melanie Zeppel

    2015-01-01

    Climate change is expected to drive increased tree mortality through drought, heat stress, and insect attacks, with manifold impacts on forest ecosystems. Yet, climate-induced tree mortality and biotic disturbance agents are largely absent from process-based ecosystem models. Using data sets from the western USA and associated studies, we present a framework for...

  10. Vulnerability of forests of the Midwest and Northeast United States to climate change

    Treesearch

    Chris Swanston; Leslie A. Brandt; Maria K. Janowiak; Stephen D. Handler; Patricia Butler-Leopold; Louis Iverson; Frank R. Thompson; Todd A. Ontl; P. Danielle Shannon

    2018-01-01

    Forests of the Midwest and Northeast significantly define the character, culture, and economy of this large region but face an uncertain future as the climate continues to change. Forests vary widely across the region, and vulnerabilities are strongly influenced by regional differences in climate impacts and adaptive capacity. Not all forests are vulnerable; longer...

  11. Teaching in the Age of Humans: Helping Students Think about Climate Change

    ERIC Educational Resources Information Center

    Smith, Grinell

    2017-01-01

    To convey the magnitude and rapidity of current climate change and the severity of predictions for the next century, I present essential climate science information using four key sets of data and contextualize that information with personal anecdotes. I then consider the reasons for the large gap between the scientific consensus about…

  12. Simple three-pool model accurately describes patterns of long-term litter decomposition in diverse climates

    Treesearch

    E. Carol Adair; William J. Parton; Steven J. Del Grosso; Shendee L. Silver; Mark E. Harmon; Sonia A. Hall; Ingrid C. Burke; Stephen C. Hart

    2008-01-01

    As atmospheric CO2 increases, ecosystem carbon sequestration will largely depend on how global changes in climate will alter the balance between net primary production and decomposition. The response of primary production to climatic change has been examined using well-validated mechanistic models, but the same is not true for decomposition, a...

  13. Assessing Potential Climate Change Effects on Loblolly Pine Growth: A Probabilistic Regional Modeling Approach

    Treesearch

    Peter B. Woodbury; James E. Smith; David A. Weinstein; John A. Laurence

    1998-01-01

    Most models of the potential effects of climate change on forest growth have produced deterministic predictions. However, there are large uncertainties in data on regional forest condition, estimates of future climate, and quantitative relationships between environmental conditions and forest growth rate. We constructed a new model to analyze these uncertainties...

  14. The influence of large-scale wind power on global climate.

    PubMed

    Keith, David W; Decarolis, Joseph F; Denkenberger, David C; Lenschow, Donald H; Malyshev, Sergey L; Pacala, Stephen; Rasch, Philip J

    2004-11-16

    Large-scale use of wind power can alter local and global climate by extracting kinetic energy and altering turbulent transport in the atmospheric boundary layer. We report climate-model simulations that address the possible climatic impacts of wind power at regional to global scales by using two general circulation models and several parameterizations of the interaction of wind turbines with the boundary layer. We find that very large amounts of wind power can produce nonnegligible climatic change at continental scales. Although large-scale effects are observed, wind power has a negligible effect on global-mean surface temperature, and it would deliver enormous global benefits by reducing emissions of CO(2) and air pollutants. Our results may enable a comparison between the climate impacts due to wind power and the reduction in climatic impacts achieved by the substitution of wind for fossil fuels.

  15. Data Visualization and Analysis for Climate Studies using NASA Giovanni Online System

    NASA Technical Reports Server (NTRS)

    Rui, Hualan; Leptoukh, Gregory; Lloyd, Steven

    2008-01-01

    With many global earth observation systems and missions focused on climate systems and the associated large volumes of observational data available for exploring and explaining how climate is changing and why, there is an urgent need for climate services. Giovanni, the NASA GES DISC Interactive Online Visualization ANd ANalysis Infrastructure, is a simple to use yet powerful tool for analysing these data for research on global warming and climate change, as well as for applications to weather. air quality, agriculture, and water resources,

  16. Influence of blocking on Northern European and Western Russian heatwaves in large climate model ensembles

    NASA Astrophysics Data System (ADS)

    Schaller, N.; Sillmann, J.; Anstey, J.; Fischer, E. M.; Grams, C. M.; Russo, S.

    2018-05-01

    Better preparedness for summer heatwaves could mitigate their adverse effects on society. This can potentially be attained through an increased understanding of the relationship between heatwaves and one of their main dynamical drivers, atmospheric blocking. In the 1979–2015 period, we find that there is a significant correlation between summer heatwave magnitudes and the number of days influenced by atmospheric blocking in Northern Europe and Western Russia. Using three large global climate model ensembles, we find similar correlations, indicating that these three models are able to represent the relationship between extreme temperature and atmospheric blocking, despite having biases in their simulation of individual climate variables such as temperature or geopotential height. Our results emphasize the need to use large ensembles of different global climate models as single realizations do not always capture this relationship. The three large ensembles further suggest that the relationship between summer heatwaves and atmospheric blocking will not change in the future. This could be used to statistically model heatwaves with atmospheric blocking as a covariate and aid decision-makers in planning disaster risk reduction and adaptation to climate change.

  17. Changes in Landscape Greenness and Climatic Factors over 25 Years (1989–2013) in the USA

    EPA Science Inventory

    Monitoring and quantifying changes in vegetation cover over large areas using remote sensing can be achieved using the Normalized Difference Vegetation Index (NDVI), an indicator of greenness. However, distinguishing gradual shifts in NDVI (e.g. climate change) versus direct and ...

  18. Weathercasters' views on climate change: A state-of-the-community review

    NASA Astrophysics Data System (ADS)

    Timm, K.; Perkins, D. R., IV; Myers, T.; Maibach, E.

    2017-12-01

    As a community of practice, TV weathercasters are positioned at a crucial intersection between climate scientists and the general public. Weathercasters have the opportunity to use their scientific training and public communication skills to educate viewers about climate change. Though early research found high rates of skepticism about climate change among TV weathercasters, the most current and comprehensive analysis to date of TV weathercasters' views on climate change suggests that their views have evolved in several important ways. Surveys of all working TV weathercasters in the United States conducted in 2015, 2016 and 2017 show that the weathercaster community now holds views of climate change that are similar to that of climate scientists—in particular, that human-caused climate change is happening today and it is impacting American communities in many harmful ways. Ninety-five percent of TV weathercasters now believe that climate change (as defined by the American Meteorological Society) is occurring, and certainty in that belief has grown. Nearly 50% of TV weathercasters believe the climate change that has occurred over the past 50 years has been caused mostly (34%), or largely to entirely (15%), by human activity. Additionally, surveys suggest that weathercasters tend to underestimate the scientific consensus on climate change. Weathercasters, on average, estimate 75% of climate scientists believe humans have caused the majority of recent climate change as compared to the actual value of 97%. Despite convergence in weathercasters' climate change beliefs, this analysis suggests that opportunities remain for building climate literacy among America's TV weathercasters. Increasing this personal knowledge of climate change is one of several factors that empower weathercasters to become public climate educators to increase understanding of climate change causes in communities around the country.

  19. Macroclimatic change expected to transform coastal wetland ecosystems this century

    USGS Publications Warehouse

    Gabler, Christopher A.; Osland, Michael J.; Grace, James B.; Stagg, Camille L.; Day, Richard H.; Hartley, Stephen B.; Enwright, Nicholas M.; From, Andrew; McCoy, Meagan L.; McLeod, Jennie L.

    2017-01-01

    Coastal wetlands, existing at the interface between land and sea, are highly vulnerable to climate change. Macroclimate (for example, temperature and precipitation regimes) greatly influences coastal wetland ecosystem structure and function. However, research on climate change impacts in coastal wetlands has concentrated primarily on sea-level rise and largely ignored macroclimatic drivers, despite their power to transform plant community structure and modify ecosystem goods and services. Here, we model wetland plant community structure based on macroclimate using field data collected across broad temperature and precipitation gradients along the northern Gulf of Mexico coast. Our analyses quantify strongly nonlinear temperature thresholds regulating the potential for marsh-to-mangrove conversion. We also identify precipitation thresholds for dominance by various functional groups, including succulent plants and unvegetated mudflats. Macroclimate-driven shifts in foundation plant species abundance will have large effects on certain ecosystem goods and services. Based on current and projected climatic conditions, we project that transformative ecological changes are probable throughout the region this century, even under conservative climate scenarios. Coastal wetland ecosystems are functionally similar worldwide, so changes in this region are indicative of potential future changes in climatically similar regions globally.

  20. The Ophidia framework: toward cloud-based data analytics for climate change

    NASA Astrophysics Data System (ADS)

    Fiore, Sandro; D'Anca, Alessandro; Elia, Donatello; Mancini, Marco; Mariello, Andrea; Mirto, Maria; Palazzo, Cosimo; Aloisio, Giovanni

    2015-04-01

    The Ophidia project is a research effort on big data analytics facing scientific data analysis challenges in the climate change domain. It provides parallel (server-side) data analysis, an internal storage model and a hierarchical data organization to manage large amount of multidimensional scientific data. The Ophidia analytics platform provides several MPI-based parallel operators to manipulate large datasets (data cubes) and array-based primitives to perform data analysis on large arrays of scientific data. The most relevant data analytics use cases implemented in national and international projects target fire danger prevention (OFIDIA), interactions between climate change and biodiversity (EUBrazilCC), climate indicators and remote data analysis (CLIP-C), sea situational awareness (TESSA), large scale data analytics on CMIP5 data in NetCDF format, Climate and Forecast (CF) convention compliant (ExArch). Two use cases regarding the EU FP7 EUBrazil Cloud Connect and the INTERREG OFIDIA projects will be presented during the talk. In the former case (EUBrazilCC) the Ophidia framework is being extended to integrate scalable VM-based solutions for the management of large volumes of scientific data (both climate and satellite data) in a cloud-based environment to study how climate change affects biodiversity. In the latter one (OFIDIA) the data analytics framework is being exploited to provide operational support regarding processing chains devoted to fire danger prevention. To tackle the project challenges, data analytics workflows consisting of about 130 operators perform, among the others, parallel data analysis, metadata management, virtual file system tasks, maps generation, rolling of datasets, import/export of datasets in NetCDF format. Finally, the entire Ophidia software stack has been deployed at CMCC on 24-nodes (16-cores/node) of the Athena HPC cluster. Moreover, a cloud-based release tested with OpenNebula is also available and running in the private cloud infrastructure of the CMCC Supercomputing Centre.

  1. Contrasted effects of climate change on temperate large lakes oxygen-depletion (Lakes Geneva, Bourget, Annecy)

    NASA Astrophysics Data System (ADS)

    Jenny, Jean-Philippe; Arnaud, Fabien; Dorioz, Jean-Marcel; Alric, Benjamin; Sabatier, Pierre; Perga, Marie-Elodie

    2013-04-01

    Among manifestations of the entry in a new geological era -The Anthropocene- marked by the fingerprinting of human activities in global ecology, the development of persistent zones of oxygen-depletion particularly threatens aquatic ecosystems. This results in a loss of fisheries, a loss of biodiversity, an alteration of food-webs and even, in extreme cases, mass mortality of fauna1. Whereas hypoxia -defined as dissolved oxygen ≤2 mg/l- has long been considered as a consequence of the sole eutrophication, recent studies showed it also depends on climate change. Despite basic processes of oxygen-depletion are well-known, till now no study evaluated the contrasted effects of climate changes on a long-term perspective. Here we show that climate change paced fluctuation of hypoxia in 3 large lakes (Lake Geneva, Lake Bourget and Lake Annecy) that were previously disturbed by unprecedented nutrient input. Our approach couples century-scale paleo-reconstruction of 1) hypoxia, 2) flood regime and 3) nutrient level, thanks to an exceptional 80 sediment core data collection taken in three large lakes (Geneva, Bourget, Annecy), and monitoring data. Our results show that volume of hypoxia can be annually estimated according to varve records through large lakes. Quantitative additive models were then used to identify and hierarchy environmental forcings on hypoxia. Flood regime and air temperatures hence appeared as significant forcing factors of hypolimnetic hypoxia. Noticeably, their effects are highly contrasted between lakes, depending on specific lake morphology and local hydrological regime. We hence show that greater is the lake specific river discharge the more is the control of winter mixing and the lower is the control of thermal stratification on oxygen depletion. Our study confirms that the perturbation of food web due to nutrient input led to a higher vulnerability of aquatic ecosystems to climate change. We further show specific hydrological regime play a crucial role in oxygen-depletion processes. This implies a careful attention must be paid to changes in hydrological patterns while assessing the effect of climate change on large water bodies.

  2. Climate Science: A Journalist's View

    NASA Astrophysics Data System (ADS)

    Roosevelt, M.

    2011-12-01

    U.S. public opinion polls show that concern over global warming has dropped precipitously in the wake of economic turmoil. With a dearth of climate change coverage on network news, and in large newspapers and magazines, the public largely gets its climate news--and science news generally--from local TV weathermen. At the same time, many local weathercasters have little time to educate themselves about climate change--although the National Science Foundation is funding an effort to inform them. The Heartland Institute and other climate-skeptic organizations are reaching out to TV weathermen, and some prominent weathercasters have embraced the skeptics' arguments, but websites such as Climate Central, and blogs such as DotEarth are seeking to fill the void. The innate caution of climate scientists, most of whom are reluctant to extrapolate from a narrow study on, say, carbon flux or sea ice, to talk about why the planet is in danger is another challenge. For the most part, they don't want to stick their necks out for fear of professional retribution. When scientists limit themselves to talking about narrow results, journalists' eyes glaze over and no one connects the dots. Much attention is devoted to whether or not the media is doing a good job in covering climate change, when energy might better be spent on applying pressure to decision makers? The media can't make legislators vote for progressive climate change policies--only constituents can do that.

  3. A large-scale integrated karst-vegetation recharge model to understand the impact of climate and land cover change

    NASA Astrophysics Data System (ADS)

    Sarrazin, Fanny; Hartmann, Andreas; Pianosi, Francesca; Wagener, Thorsten

    2017-04-01

    Karst aquifers are an important source of drinking water in many regions of the world, but their resources are likely to be affected by changes in climate and land cover. Karst areas are highly permeable and produce large amounts of groundwater recharge, while surface runoff is typically negligible. As a result, recharge in karst systems may be particularly sensitive to environmental changes compared to other less permeable systems. However, current large-scale hydrological models poorly represent karst specificities. They tend to provide an erroneous water balance and to underestimate groundwater recharge over karst areas. A better understanding of karst hydrology and estimating karst groundwater resources at a large-scale is therefore needed for guiding water management in a changing world. The first objective of the present study is to introduce explicit vegetation processes into a previously developed karst recharge model (VarKarst) to better estimate evapotranspiration losses depending on the land cover characteristics. The novelty of the approach for large-scale modelling lies in the assessment of model output uncertainty, and parameter sensitivity to avoid over-parameterisation. We find that the model so modified is able to produce simulations consistent with observations of evapotranspiration and soil moisture at Fluxnet sites located in carbonate rock areas. Secondly, we aim to determine the model sensitivities to climate and land cover characteristics, and to assess the relative influence of changes in climate and land cover on aquifer recharge. We perform virtual experiments using synthetic climate inputs, and varying the value of land cover parameters. In this way, we can control for variations in climate input characteristics (e.g. precipitation intensity, precipitation frequency) and vegetation characteristics (e.g. canopy water storage capacity, rooting depth), and we can isolate the effect that each of these quantities has on recharge. Our results show that these factors are strongly interacting and are generating non-linear responses in recharge.

  4. Fine-resolution conservation planning with limited climate-change information.

    PubMed

    Shah, Payal; Mallory, Mindy L; Ando, Amy W; Guntenspergen, Glenn R

    2017-04-01

    Climate-change induced uncertainties in future spatial patterns of conservation-related outcomes make it difficult to implement standard conservation-planning paradigms. A recent study translates Markowitz's risk-diversification strategy from finance to conservation settings, enabling conservation agents to use this diversification strategy for allocating conservation and restoration investments across space to minimize the risk associated with such uncertainty. However, this method is information intensive and requires a large number of forecasts of ecological outcomes associated with possible climate-change scenarios for carrying out fine-resolution conservation planning. We developed a technique for iterative, spatial portfolio analysis that can be used to allocate scarce conservation resources across a desired level of subregions in a planning landscape in the absence of a sufficient number of ecological forecasts. We applied our technique to the Prairie Pothole Region in central North America. A lack of sufficient future climate information prevented attainment of the most efficient risk-return conservation outcomes in the Prairie Pothole Region. The difference in expected conservation returns between conservation planning with limited climate-change information and full climate-change information was as large as 30% for the Prairie Pothole Region even when the most efficient iterative approach was used. However, our iterative approach allowed finer resolution portfolio allocation with limited climate-change forecasts such that the best possible risk-return combinations were obtained. With our most efficient iterative approach, the expected loss in conservation outcomes owing to limited climate-change information could be reduced by 17% relative to other iterative approaches. © 2016 Society for Conservation Biology.

  5. Implications of Climate Mitigation for Future Agricultural Production

    NASA Technical Reports Server (NTRS)

    Mueller, Christoph; Elliott, Joshua; Chryssanthacopoulos, James; Deryng, Delphine; Folberth, Christian; Pugh, Thomas A. M.; Schmid, Erwin

    2015-01-01

    Climate change is projected to negatively impact biophysical agricultural productivity in much of the world. Actions taken to reduce greenhouse gas emissions and mitigate future climate changes, are thus of central importance for agricultural production. Climate impacts are, however, not unidirectional; some crops in some regions (primarily higher latitudes) are projected to benefit, particularly if increased atmospheric carbon dioxide is assumed to strongly increase crop productivity at large spatial and temporal scales. Climate mitigation measures that are implemented by reducing atmospheric carbon dioxide concentrations lead to reductions both in the strength of climate change and in the benefits of carbon dioxide fertilization. Consequently, analysis of the effects of climate mitigation on agricultural productivity must address not only regions for which mitigation is likely to reduce or even reverse climate damages. There are also regions that are likely to see increased crop yields due to climate change, which may lose these added potentials under mitigation action. Comparing data from the most comprehensive archive of crop yield projections publicly available, we find that climate mitigation leads to overall benefits from avoided damages at the global scale and especially in many regions that are already at risk of food insecurity today. Ignoring controversial carbon dioxide fertilization effects on crop productivity, we find that for the median projection aggressive mitigation could eliminate approximately 81% of the negative impacts of climate change on biophysical agricultural productivity globally by the end of the century. In this case, the benefits of mitigation typically extend well into temperate regions, but vary by crop and underlying climate model projections. Should large benefits to crop yields from carbon dioxide fertilization be realized, the effects of mitigation become much more mixed, though still positive globally and beneficial in many food insecure countries.

  6. Ecosystem resilience despite large-scale altered hydro climatic conditions

    USDA-ARS?s Scientific Manuscript database

    Climate change is predicted to increase both drought frequency and duration, and when coupled with substantial warming, will establish a new hydroclimatological paradigm for many regions. Large-scale, warm droughts have recently impacted North America, Africa, Europe, Amazonia, and Australia result...

  7. Future Climate Change Will Favour Non-Specialist Mammals in the (Sub)Arctics

    PubMed Central

    Hof, Anouschka R.; Jansson, Roland; Nilsson, Christer

    2012-01-01

    Arctic and subarctic (i.e., [sub]arctic) ecosystems are predicted to be particularly susceptible to climate change. The area of tundra is expected to decrease and temperate climates will extend further north, affecting species inhabiting northern environments. Consequently, species at high latitudes should be especially susceptible to climate change, likely experiencing significant range contractions. Contrary to these expectations, our modelling of species distributions suggests that predicted climate change up to 2080 will favour most mammals presently inhabiting (sub)arctic Europe. Assuming full dispersal ability, most species will benefit from climate change, except for a few cold-climate specialists. However, most resident species will contract their ranges if they are not able to track their climatic niches, but no species is predicted to go extinct. If climate would change far beyond current predictions, however, species might disappear. The reason for the relative stability of mammalian presence might be that arctic regions have experienced large climatic shifts in the past, filtering out sensitive and range-restricted taxa. We also provide evidence that for most (sub)arctic mammals it is not climate change per se that will threaten them, but possible constraints on their dispersal ability and changes in community composition. Such impacts of future changes in species communities should receive more attention in literature. PMID:23285098

  8. Multi-model approach to assess the impact of climate change on runoff

    NASA Astrophysics Data System (ADS)

    Dams, J.; Nossent, J.; Senbeta, T. B.; Willems, P.; Batelaan, O.

    2015-10-01

    The assessment of climate change impacts on hydrology is subject to uncertainties related to the climate change scenarios, stochastic uncertainties of the hydrological model and structural uncertainties of the hydrological model. This paper focuses on the contribution of structural uncertainty of hydrological models to the overall uncertainty of the climate change impact assessment. To quantify the structural uncertainty of hydrological models, four physically based hydrological models (SWAT, PRMS and a semi- and fully distributed version of the WetSpa model) are set up for a catchment in Belgium. Each model is calibrated using four different objective functions. Three climate change scenarios with a high, mean and low hydrological impact are statistically perturbed from a large ensemble of climate change scenarios and are used to force the hydrological models. This methodology allows assessing and comparing the uncertainty introduced by the climate change scenarios with the uncertainty introduced by the hydrological model structure. Results show that the hydrological model structure introduces a large uncertainty on both the average monthly discharge and the extreme peak and low flow predictions under the climate change scenarios. For the low impact climate change scenario, the uncertainty range of the mean monthly runoff is comparable to the range of these runoff values in the reference period. However, for the mean and high impact scenarios, this range is significantly larger. The uncertainty introduced by the climate change scenarios is larger than the uncertainty due to the hydrological model structure for the low and mean hydrological impact scenarios, but the reverse is true for the high impact climate change scenario. The mean and high impact scenarios project increasing peak discharges, while the low impact scenario projects increasing peak discharges only for peak events with return periods larger than 1.6 years. All models suggest for all scenarios a decrease of the lowest flows, except for the SWAT model with the mean hydrological impact climate change scenario. The results of this study indicate that besides the uncertainty introduced by the climate change scenarios also the hydrological model structure uncertainty should be taken into account in the assessment of climate change impacts on hydrology. To make it more straightforward and transparent to include model structural uncertainty in hydrological impact studies, there is a need for hydrological modelling tools that allow flexible structures and methods to validate model structures in their ability to assess impacts under unobserved future climatic conditions.

  9. A topographically forced asymmetry in the martian circulation and climate.

    PubMed

    Richardson, Mark I; Wilson, R John

    2002-03-21

    Large seasonal and hemispheric asymmetries in the martian climate system are generally ascribed to variations in solar heating associated with orbital eccentricity. As the orbital elements slowly change (over a period of >104 years), characteristics of the climate such as dustiness and the vigour of atmospheric circulation are thought to vary, as should asymmetries in the climate (for example, the deposition of water ice at the northern versus the southern pole). Such orbitally driven climate change might be responsible for the observed layering in Mars' polar deposits by modulating deposition of dust and water ice. Most current theories assume that climate asymmetries completely reverse as the angular distance between equinox and perihelion changes by 180 degrees. Here we describe a major climate mechanism that will not precess in this way. We show that Mars' global north-south elevation difference forces a dominant southern summer Hadley circulation that is independent of perihelion timing. The Hadley circulation, a tropical overturning cell responsible for trade winds, largely controls interhemispheric transport of water and the bulk dustiness of the atmosphere. The topography therefore imprints a strong handedness on climate, with water ice and the active formation of polar layered deposits more likely in the north.

  10. Social and health dimensions of climate change in the Amazon.

    PubMed

    Brondízio, Eduardo S; de Lima, Ana C B; Schramski, Sam; Adams, Cristina

    2016-07-01

    The Amazon region has been part of climate change debates for decades, yet attention to its social and health dimensions has been limited. This paper assesses literature on the social and health dimensions of climate change in the Amazon. A conceptual framework underscores multiple stresses and exposures created by interactions between climate change and local social-environmental conditions. Using the Thomson-Reuter Web of Science, this study bibliometrically assessed the overall literature on climate change in the Amazon, including Physical Sciences, Social Sciences, Anthropology, Environmental Science/Ecology and Public, Environmental/Occupational Health. From this assessment, a relevant sub-sample was selected and complemented with literature from the Brazilian database SciELO. This sample discusses three dimensions of climate change impacts in the region: livelihood changes, vector-borne diseases and microbial proliferation, and respiratory diseases. This analysis elucidates imbalance and disconnect between ecological, physical and social and health dimensions of climate change and between continental and regional climate analysis, and sub-regional and local levels. Work on the social and health implications of climate change in the Amazon falls significantly behind other research areas, limiting reliable information for analytical models and for Amazonian policy-makers and society at large. Collaborative research is called for.

  11. Dominant forest tree species are potentially vulnerable to climate change over large portions of their range even at high latitudes

    PubMed Central

    de Blois, Sylvie

    2016-01-01

    Projecting suitable conditions for a species as a function of future climate provides a reasonable, although admittedly imperfect, spatially explicit estimate of species vulnerability associated with climate change. Projections emphasizing range shifts at continental scale, however, can mask contrasting patterns at local or regional scale where management and policy decisions are made. Moreover, models usually show potential for areas to become climatically unsuitable, remain suitable, or become suitable for a particular species with climate change, but each of these outcomes raises markedly different ecological and management issues. Managing forest decline at sites where climatic stress is projected to increase is likely to be the most immediate challenge resulting from climate change. Here we assess habitat suitability with climate change for five dominant tree species of eastern North American forests, focusing on areas of greatest vulnerability (loss of suitability in the baseline range) in Quebec (Canada) rather than opportunities (increase in suitability). Results show that these species are at risk of maladaptation over a remarkably large proportion of their baseline range. Depending on species, 5–21% of currently climatically suitable habitats are projected to be at risk of becoming unsuitable. This suggests that species that have traditionally defined whole regional vegetation assemblages could become less adapted to these regions, with significant impact on ecosystems and forest economy. In spite of their well-recognised limitations and the uncertainty that remains, regionally-explicit risk assessment approaches remain one of the best options to convey that message and the need for climate policies and forest management adaptation strategies. PMID:27478706

  12. Dominant forest tree species are potentially vulnerable to climate change over large portions of their range even at high latitudes.

    PubMed

    Périé, Catherine; de Blois, Sylvie

    2016-01-01

    Projecting suitable conditions for a species as a function of future climate provides a reasonable, although admittedly imperfect, spatially explicit estimate of species vulnerability associated with climate change. Projections emphasizing range shifts at continental scale, however, can mask contrasting patterns at local or regional scale where management and policy decisions are made. Moreover, models usually show potential for areas to become climatically unsuitable, remain suitable, or become suitable for a particular species with climate change, but each of these outcomes raises markedly different ecological and management issues. Managing forest decline at sites where climatic stress is projected to increase is likely to be the most immediate challenge resulting from climate change. Here we assess habitat suitability with climate change for five dominant tree species of eastern North American forests, focusing on areas of greatest vulnerability (loss of suitability in the baseline range) in Quebec (Canada) rather than opportunities (increase in suitability). Results show that these species are at risk of maladaptation over a remarkably large proportion of their baseline range. Depending on species, 5-21% of currently climatically suitable habitats are projected to be at risk of becoming unsuitable. This suggests that species that have traditionally defined whole regional vegetation assemblages could become less adapted to these regions, with significant impact on ecosystems and forest economy. In spite of their well-recognised limitations and the uncertainty that remains, regionally-explicit risk assessment approaches remain one of the best options to convey that message and the need for climate policies and forest management adaptation strategies.

  13. Changes in extremes due to half a degree warming in observations and models

    NASA Astrophysics Data System (ADS)

    Fischer, E. M.; Schleussner, C. F.; Pfleiderer, P.

    2017-12-01

    Assessing the climate impacts of half-a-degree warming increments is high on the post-Paris science agenda. Discriminating those effects is particularly challenging for climate extremes such as heavy precipitation and heat extremes for which model uncertainties are generally large, and for which internal variability is so important that it can easily offset or strongly amplify the forced local changes induced by half a degree warming. Despite these challenges we provide evidence for large-scale changes in the intensity and frequency of climate extremes due to half a degree warming. We first assess the difference in extreme climate indicators in observational data for the 1960s and 1970s versus the recent past, two periods differ by half a degree. We identify distinct differences for the global and continental-scale occurrence of heat and heavy precipitation extremes. We show that those observed changes in heavy precipitation and heat extremes broadly agree with simulated historical differences and are informative for the projected differences between 1.5 and 2°C warming despite different radiative forcings. We therefore argue that evidence from the observational record can inform the debate about discernible climate impacts in the light of model uncertainty by providing a conservative estimate of the implications of 0.5°C warming. A limitation of using the observational record arises from potential non-linearities in the response of climate extremes to a certain level of warming. We test for potential non-linearities in the response of heat and heavy precipitation extremes in a large ensemble of transient climate simulations. We further quantify differences between a time-window approach in a coupled model large ensemble vs. time-slice experiments using prescribed SST experiments performed in the context of the HAPPI-MIP project. Thereby we provide different lines of evidence that half a degree warming leads to substantial changes in the expected occurrence of heat and heavy precipitation extremes.

  14. Beyond naturalness: Adapting wilderness stewardship to an era of rapid global change

    Treesearch

    David N. Cole

    2012-01-01

    Climate change and its effects are writ large across wilderness landscapes. They always have been and always will be (see Figure 1). But contemporary change is different. For the first time, the pace and direction of climate change appear to be driven significantly by human activities (IPCC 2007), and this change is playing out across landscapes already affected by...

  15. A crisis in the making: responses of Amazonian forests to land use and climate change.

    PubMed

    Laurance, W F

    1998-10-01

    At least three global-change phenomena are having major impacts on Amazonian forests: (1) accelerating deforestation and logging; (2) rapidly changing patterns of forest loss; and (3) interactions between human land-use and climatic variability. Additional alterations caused by climatic change, rising concentrations of atmospheric carbon dioxide, mining, overhunting and other large-scale phenomena could also have important effects on the Amazon ecosystem. Consequently, decisions regarding Amazon forest use in the next decade are crucial to its future existence.

  16. Coastal wetlands and global change: overview

    USGS Publications Warehouse

    Guntenspergen, G.R.; Vairin, B.; Burkett, V.R.

    1997-01-01

    The potential impacts of climate change are of great practical concern to those interested in coastal wetland resources. Among the areas of greatest risk in the United States are low-lying coastal habitats with easily eroded substrates which occur along the northern Gulf of Mexico and southeast Atlantic coasts. The Intergovernmental Panel on Climate Change (IPCC) and the World Meteorological Organization (WMO) have identified coastal wetlands as ecosystems most vulnerable to direct, large-scale impacts of climate change, primarily because of their sensitivity to increases in sea-level rise.

  17. Large decadal-scale changes in uranium and bicarbonate in groundwater of the irrigated western U.S

    USGS Publications Warehouse

    Burow, Karen R.; Belitz, Kenneth; Dubrovsky, Neil M.; Jurgens, Bryant C.

    2017-01-01

    Samples collected about one decade apart from 1105 wells from across the U.S. were compiled to assess whether uranium concentrations in the arid climate are linked to changing bicarbonate concentrations in the irrigated western U.S. Uranium concentrations in groundwater were high in the arid climate in the western U.S, where uranium sources are abundant. Sixty-four wells (6%) were above the U.S. EPA MCL of 30 μg/L; all but one are in the arid west. Concentrations were low to non-detectable in the humid climate. Large uranium and bicarbonate increases (differences are greater than the uncertainty in concentrations) occur in 109 wells between decade 1 and decade 2. Similarly, large uranium and bicarbonate decreases occur in 76 wells between the two decades. Significantly more wells are concordant (uranium and bicarbonate are both going the same direction) than discordant (uranium and bicarbonate are going opposite directions) (p < 0.001; Chi-square test). The largest percent difference in uranium concentrations occur in wells where uranium is increasing and bicarbonate is also increasing. These large differences occur mostly in the arid climate. Results are consistent with the hypothesis that changing uranium concentrations are linked to changes in bicarbonate in irrigated areas of the western U.S.

  18. Influences of Regional Climate Change on Air Quality Across the Continental U.S. Projected from Downscaling IPCC AR5 Simulations. Chapter 2

    NASA Technical Reports Server (NTRS)

    Nolte, Christopher; Otte, Tanya; Pinder, Robert; Bowden, J.; Herwehe, J.; Faluvegi, Gregory; Shindell, Drew

    2013-01-01

    Projecting climate change scenarios to local scales is important for understanding, mitigating, and adapting to the effects of climate change on society and the environment. Many of the global climate models (GCMs) that are participating in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) do not fully resolve regional-scale processes and therefore cannot capture regional-scale changes in temperatures and precipitation. We use a regional climate model (RCM) to dynamically downscale the GCM's large-scale signal to investigate the changes in regional and local extremes of temperature and precipitation that may result from a changing climate. In this paper, we show preliminary results from downscaling the NASA/GISS ModelE IPCC AR5 Representative Concentration Pathway (RCP) 6.0 scenario. We use the Weather Research and Forecasting (WRF) model as the RCM to downscale decadal time slices (1995-2005 and 2025-2035) and illustrate potential changes in regional climate for the continental U.S. that are projected by ModelE and WRF under RCP6.0. The regional climate change scenario is further processed using the Community Multiscale Air Quality modeling system to explore influences of regional climate change on air quality.

  19. A plant’s perspective of extremes: Terrestrial plant responses to changing climatic variability

    PubMed Central

    Reyer, C.; Leuzinger, S.; Rammig, A.; Wolf, A.; Bartholomeus, R. P.; Bonfante, A.; de Lorenzi, F.; Dury, M.; Gloning, P.; Abou Jaoudé, R.; Klein, T.; Kuster, T. M.; Martins, M.; Niedrist, G.; Riccardi, M.; Wohlfahrt, G.; de Angelis, P.; de Dato, G.; François, L.; Menzel, A.; Pereira, M.

    2013-01-01

    We review observational, experimental and model results on how plants respond to extreme climatic conditions induced by changing climatic variability. Distinguishing between impacts of changing mean climatic conditions and changing climatic variability on terrestrial ecosystems is generally underrated in current studies. The goals of our review are thus (1) to identify plant processes that are vulnerable to changes in the variability of climatic variables rather than to changes in their mean, and (2) to depict/evaluate available study designs to quantify responses of plants to changing climatic variability. We find that phenology is largely affected by changing mean climate but also that impacts of climatic variability are much less studied but potentially damaging. We note that plant water relations seem to be very vulnerable to extremes driven by changes in temperature and precipitation and that heatwaves and flooding have stronger impacts on physiological processes than changing mean climate. Moreover, interacting phenological and physiological processes are likely to further complicate plant responses to changing climatic variability. Phenological and physiological processes and their interactions culminate in even more sophisticated responses to changing mean climate and climatic variability at the species and community level. Generally, observational studies are well suited to study plant responses to changing mean climate, but less suitable to gain a mechanistic understanding of plant responses to climatic variability. Experiments seem best suited to simulate extreme events. In models, temporal resolution and model structure are crucial to capture plant responses to changing climatic variability. We highlight that a combination of experimental, observational and /or modeling studies have the potential to overcome important caveats of the respective individual approaches. PMID:23504722

  20. Impacts of Changing Climatic Drivers and Land use features on Future Stormwater Runoff in the Northwest Florida Basin: A Large-Scale Hydrologic Modeling Assessment

    NASA Astrophysics Data System (ADS)

    Khan, M.; Abdul-Aziz, O. I.

    2017-12-01

    Potential changes in climatic drivers and land cover features can significantly influence the stormwater budget in the Northwest Florida Basin. We investigated the hydro-climatic and land use sensitivities of stormwater runoff by developing a large-scale process-based rainfall-runoff model for the large basin by using the EPA Storm Water Management Model (SWMM 5.1). Climatic and hydrologic variables, as well as land use/cover features were incorporated into the model to account for the key processes of coastal hydrology and its dynamic interactions with groundwater and sea levels. We calibrated and validated the model by historical daily streamflow observations during 2009-2012 at four major rivers in the basin. Downscaled climatic drivers (precipitation, temperature, solar radiation) projected by twenty GCMs-RCMs under CMIP5, along with the projected future land use/cover features were also incorporated into the model. The basin storm runoff was then simulated for the historical (2000s = 1976-2005) and two future periods (2050s = 2030-2059, and 2080s = 2070-2099). Comparative evaluation of the historical and future scenarios leads to important guidelines for stormwater management in Northwest Florida and similar regions under a changing climate and environment.

  1. Drought in the Horn of Africa: attribution of a damaging and repeating extreme event

    NASA Astrophysics Data System (ADS)

    Marthews, Toby; Otto, Friederike; Mitchell, Daniel; Dadson, Simon; Jones, Richard

    2015-04-01

    We have applied detection and attribution techniques to the severe drought that hit the Horn of Africa in 2014. The short rains failed in late 2013 in Kenya, South Sudan, Somalia and southern Ethiopia, leading to a very dry growing season January to March 2014, and subsequently to the current drought in many agricultural areas of the sub-region. We have made use of the weather@home project, which uses publicly-volunteered distributed computing to provide a large ensemble of simulations sufficient to sample regional climate uncertainty. Based on this, we have estimated the occurrence rates of the kinds of the rare and extreme events implicated in this large-scale drought. From land surface model runs based on these ensemble simulations, we have estimated the impacts of climate anomalies during this period and therefore we can reliably identify some factors of the ongoing drought as attributable to human-induced climate change. The UNFCCC's Adaptation Fund is attempting to support projects that bring about an adaptation to "the adverse effects of climate change", but in order to formulate such projects we need a much clearer way to assess how much climate change is human-induced and how much is a consequence of climate anomalies and large-scale teleconnections, which can only be provided by robust attribution techniques.

  2. Future Climate Change in the Baltic Sea Area

    NASA Astrophysics Data System (ADS)

    Bøssing Christensen, Ole; Kjellström, Erik; Zorita, Eduardo; Sonnenborg, Torben; Meier, Markus; Grinsted, Aslak

    2015-04-01

    Regional climate models have been used extensively since the first assessment of climate change in the Baltic Sea region published in 2008, not the least for studies of Europe (and including the Baltic Sea catchment area). Therefore, conclusions regarding climate model results have a better foundation than was the case for the first BACC report of 2008. This presentation will report model results regarding future climate. What is the state of understanding about future human-driven climate change? We will cover regional models, statistical downscaling, hydrological modelling, ocean modelling and sea-level change as it is projected for the Baltic Sea region. Collections of regional model simulations from the ENSEMBLES project for example, financed through the European 5th Framework Programme and the World Climate Research Programme Coordinated Regional Climate Downscaling Experiment, have made it possible to obtain an increasingly robust estimation of model uncertainty. While the first Baltic Sea assessment mainly used four simulations from the European 5th Framework Programme PRUDENCE project, an ensemble of 13 transient regional simulations with twice the horizontal resolution reaching the end of the 21st century has been available from the ENSEMBLES project; therefore it has been possible to obtain more quantitative assessments of model uncertainty. The literature about future climate change in the Baltic Sea region is largely built upon the ENSEMBLES project. Also within statistical downscaling, a considerable number of papers have been published, encompassing now the application of non-linear statistical models, projected changes in extremes and correction of climate model biases. The uncertainty of hydrological change has received increasing attention since the previous Baltic Sea assessment. Several studies on the propagation of uncertainties originating in GCMs, RCMs, and emission scenarios are presented. The number of studies on uncertainties related to downscaling and impact models is relatively small, but more are emerging. A large number of coupled climate-environmental scenario simulations for the Baltic Sea have been performed within the BONUS+ projects (ECOSUPPORT, INFLOW, AMBER and Baltic-C (2009-2011)), using various combinations of output from GCMs, RCMs, hydrological models and scenarios for load and emission of nutrients as forcing for Baltic Sea models. Such a large ensemble of scenario simulations for the Baltic Sea has never before been produced and enables for the first time an estimation of uncertainties.

  3. Assessment of bias correction under transient climate change

    NASA Astrophysics Data System (ADS)

    Van Schaeybroeck, Bert; Vannitsem, Stéphane

    2015-04-01

    Calibration of climate simulations is necessary since large systematic discrepancies are generally found between the model climate and the observed climate. Recent studies have cast doubt upon the common assumption of the bias being stationary when the climate changes. This led to the development of new methods, mostly based on linear sensitivity of the biases as a function of time or forcing (Kharin et al. 2012). However, recent studies uncovered more fundamental problems using both low-order systems (Vannitsem 2011) and climate models, showing that the biases may display complicated non-linear variations under climate change. This last analysis focused on biases derived from the equilibrium climate sensitivity, thereby ignoring the effect of the transient climate sensitivity. Based on the linear response theory, a general method of bias correction is therefore proposed that can be applied on any climate forcing scenario. The validity of the method is addressed using twin experiments with a climate model of intermediate complexity LOVECLIM (Goosse et al., 2010). We evaluate to what extent the bias change is sensitive to the structure (frequency) of the applied forcing (here greenhouse gases) and whether the linear response theory is valid for global and/or local variables. To answer these question we perform large-ensemble simulations using different 300-year scenarios of forced carbon-dioxide concentrations. Reality and simulations are assumed to differ by a model error emulated as a parametric error in the wind drag or in the radiative scheme. References [1] H. Goosse et al., 2010: Description of the Earth system model of intermediate complexity LOVECLIM version 1.2, Geosci. Model Dev., 3, 603-633. [2] S. Vannitsem, 2011: Bias correction and post-processing under climate change, Nonlin. Processes Geophys., 18, 911-924. [3] V.V. Kharin, G. J. Boer, W. J. Merryfield, J. F. Scinocca, and W.-S. Lee, 2012: Statistical adjustment of decadal predictions in a changing climate, Geophys. Res. Lett., 39, L19705.

  4. Climate change induced transformations of agricultural systems: insights from a global model

    NASA Astrophysics Data System (ADS)

    Leclère, D.; Havlík, P.; Fuss, S.; Schmid, E.; Mosnier, A.; Walsh, B.; Valin, H.; Herrero, M.; Khabarov, N.; Obersteiner, M.

    2014-12-01

    Climate change might impact crop yields considerably and anticipated transformations of agricultural systems are needed in the coming decades to sustain affordable food provision. However, decision-making on transformational shifts in agricultural systems is plagued by uncertainties concerning the nature and geography of climate change, its impacts, and adequate responses. Locking agricultural systems into inadequate transformations costly to adjust is a significant risk and this acts as an incentive to delay action. It is crucial to gain insight into how much transformation is required from agricultural systems, how robust such strategies are, and how we can defuse the associated challenge for decision-making. While implementing a definition related to large changes in resource use into a global impact assessment modelling framework, we find transformational adaptations to be required of agricultural systems in most regions by 2050s in order to cope with climate change. However, these transformations widely differ across climate change scenarios: uncertainties in large-scale development of irrigation span in all continents from 2030s on, and affect two-thirds of regions by 2050s. Meanwhile, significant but uncertain reduction of major agricultural areas affects the Northern Hemisphere’s temperate latitudes, while increases to non-agricultural zones could be large but uncertain in one-third of regions. To help reducing the associated challenge for decision-making, we propose a methodology exploring which, when, where and why transformations could be required and uncertain, by means of scenario analysis.

  5. Improving the effectiveness of communication about climate science: Insights from the "Global Warming's Six Americas" audience segmentation research project

    NASA Astrophysics Data System (ADS)

    Maibach, E.; Roser-Renouf, C.

    2011-12-01

    That the climate science community has not been entirely effective in sharing what it knows about climate change with the broader public - and with policy makers and organizations that should be considering climate change when making decisions - is obvious. Our research shows that a large majority of the American public trusts scientists (76%) and science-based agencies (e.g., 76% trust NOAA) as sources of information about climate change. Yet, despite the widespread agreement in the climate science community that the climate is changing as a result of human activity, only 64% of the public understand that the world's average temperature has been increasing (and only about half of them are sure), less than half (47%) understand that the warming is caused mostly by human activity, and only 39% understand that most scientists think global warming is happening (in fact, only 13% understand that the large majority of climate scientists think global warming is happening). Less obvious is what the climate science community should do to become more effective in sharing what it knows. In this paper, we will use evidence from our "Global Warming's Six Americas" audience segmentation research project to suggest ways that individual climate scientists -- and perhaps more importantly, ways in which climate science agencies and professional societies -- can enhance the effectiveness of their communication efforts. We will conclude by challenging members of the climate science community to identify and convey "simple, clear messages, repeated often, by a variety of trusted sources" - an approach to communication repeatedly shown to be effective by the public health community.

  6. Dealing with uncertainty: Response-resilient climate change mitigation polices for long-lived and short-lived climate pollutants

    NASA Astrophysics Data System (ADS)

    Millar, R.; Boneham, J.; Hepburn, C.; Allen, M. R.

    2015-12-01

    Climate change solutions are subject to many inherent uncertainties. One of the most important is the uncertainty over the magnitude of the physical response of the climate system to external forcing. The risk of extremely large responses to forcing, so called "fat-tail" outcomes, cannot be ruled out from the latest science and offer profound challenges when creating policies that aim to meet a specific target of global temperature change. This study offers examples of how mitigation policies can be made resilient to this uncertainty in the physical climate response via indexing policies against an attributable anthropogenic warming index (the magnitude of the observed global mean warming that is can be traced to human activities), the AWI, instead of against time directly. We show that indexing policy measures that influence the total stock of carbon in the atmosphere (such as the fraction of extracted carbon sequestered) against the AWI can largely eliminate the risk of missing the specified warming goal due to unexpectedly large climate responses as well as the risk of costly over-mitigation if the physical response turned out to be lower than expected. We offer further examples of how this methodology can be expanded to include short-lived climate pollutants as well as long-lived carbon dioxide. Indexing policies against the AWI can have important consequences for the actions of governments acting to design national climate mitigation policies as well as private sector investors looking to incentivise the transition to a climate-stable economy. We conclude with some thoughts on how these indexes can help focus attention on the long-term perspective that is consistent with the conclusions of the latest climate science on what is required to ultimately stabilise the global climate system.

  7. Global climate change implications for coastal and offshore oil and gas development

    USGS Publications Warehouse

    Burkett, V.

    2011-01-01

    The discussion and debate about climate change and oil and gas resource development has generally focused on how fossil fuel use affects the Earth's climate. This paper explores how the changing climate is likely to affect oil and gas operations in low-lying coastal areas and the outer continental shelf. Oil and gas production in these regions comprises a large sector of the economies of many energy producing nations. Six key climate change drivers in coastal and marine regions are characterized with respect to oil and gas development: changes in carbon dioxide levels and ocean acidity, air and water temperature, precipitation patterns, the rate of sea level rise, storm intensity, and wave regime. These key drivers have the potential to independently and cumulatively affect coastal and offshore oil and gas exploration, production, and transportation, and several impacts of climate change have already been observed in North America. ?? 2011.

  8. Can increasing carbon dioxide cause climate change?

    PubMed Central

    Lindzen, Richard S.

    1997-01-01

    The realistic physical functioning of the greenhouse effect is reviewed, and the role of dynamic transport and water vapor is identified. Model errors and uncertainties are quantitatively compared with the forcing due to doubling CO2, and they are shown to be too large for reliable model evaluations of climate sensitivities. The possibility of directly measuring climate sensitivity is reviewed. A direct approach using satellite data to relate changes in globally averaged radiative flux changes at the top of the atmosphere to naturally occurring changes in global mean temperature is described. Indirect approaches to evaluating climate sensitivity involving the response to volcanic eruptions and Eocene climate change are also described. Finally, it is explained how, in principle, a climate that is insensitive to gross radiative forcing as produced by doubling CO2 might still be able to undergo major changes of the sort associated with ice ages and equable climates. PMID:11607742

  9. Mesocosms Reveal Ecological Surprises from Climate Change.

    PubMed

    Fordham, Damien A

    2015-12-01

    Understanding, predicting, and mitigating the impacts of climate change on biodiversity poses one of the most crucial challenges this century. Currently, we know more about how future climates are likely to shift across the globe than about how species will respond to these changes. Two recent studies show how mesocosm experiments can hasten understanding of the ecological consequences of climate change on species' extinction risk, community structure, and ecosystem functions. Using a large-scale terrestrial warming experiment, Bestion et al. provide the first direct evidence that future global warming can increase extinction risk for temperate ectotherms. Using aquatic mesocosms, Yvon-Durocher et al. show that human-induced climate change could, in some cases, actually enhance the diversity of local communities, increasing productivity. Blending these theoretical and empirical results with computational models will improve forecasts of biodiversity loss and altered ecosystem processes due to climate change.

  10. Climate-Driven Risk of Large Fire Occurrence in the Western United States, 1500 to 2003

    NASA Astrophysics Data System (ADS)

    Crockett, J.; Westerling, A. L.

    2017-12-01

    Spatially comprehensive fire climatology has provided managers with tools to understand thecauses and consequences of large forest wildfires, but a paleoclimate context is necessary foranticipating the trajectory of future climate-fire relationships. Although accumulated charcoalrecords and tree scars have been utilized in high resolution, regional fire reconstructions, there isuncertainty as to how current climate-fire relationships of the western United States (WUS) fitwithin the natural long-term variability. While contemporary PDSI falls within the naturalvariability of the past, contemporary temperatures skew higher. Here, we develop a WUSfire reconstruction by applying climate-fire-topography model built on the 1972 to 2003 periodto the past 500 years, validated by recently updated fire-scar histories from WUS forests. Theresultant narrative provides insight into changing climate-fire relationships during extendedperiods of high aridity and temperature, providing land managers with historical precedent toeffectively anticipate disturbances during future climate change.

  11. Climate change-associated trends in net biomass change are age dependent in western boreal forests of Canada.

    PubMed

    Chen, Han Y H; Luo, Yong; Reich, Peter B; Searle, Eric B; Biswas, Shekhar R

    2016-09-01

    The impacts of climate change on forest net biomass change are poorly understood but critical for predicting forest's contribution to the global carbon cycle. Recent studies show climate change-associated net biomass declines in mature forest plots. The representativeness of these plots for regional forests, however, remains uncertain because we lack an assessment of whether climate change impacts differ with forest age. Using data from plots of varying ages from 17 to 210 years, monitored from 1958 to 2011 in western Canada, we found that climate change has little effect on net biomass change in forests ≤ 40 years of age due to increased growth offsetting increased mortality, but has led to large decreases in older forests due to increased mortality accompanying little growth gain. Our analysis highlights the need to incorporate forest age profiles in examining past and projecting future forest responses to climate change. © 2016 John Wiley & Sons Ltd/CNRS.

  12. How uncertain are climate model projections of water availability indicators across the Middle East?

    PubMed

    Hemming, Debbie; Buontempo, Carlo; Burke, Eleanor; Collins, Mat; Kaye, Neil

    2010-11-28

    The projection of robust regional climate changes over the next 50 years presents a considerable challenge for the current generation of climate models. Water cycle changes are particularly difficult to model in this area because major uncertainties exist in the representation of processes such as large-scale and convective rainfall and their feedback with surface conditions. We present climate model projections and uncertainties in water availability indicators (precipitation, run-off and drought index) for the 1961-1990 and 2021-2050 periods. Ensembles from two global climate models (GCMs) and one regional climate model (RCM) are used to examine different elements of uncertainty. Although all three ensembles capture the general distribution of observed annual precipitation across the Middle East, the RCM is consistently wetter than observations, especially over the mountainous areas. All future projections show decreasing precipitation (ensemble median between -5 and -25%) in coastal Turkey and parts of Lebanon, Syria and Israel and consistent run-off and drought index changes. The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) GCM ensemble exhibits drying across the north of the region, whereas the Met Office Hadley Centre work Quantifying Uncertainties in Model ProjectionsAtmospheric (QUMP-A) GCM and RCM ensembles show slight drying in the north and significant wetting in the south. RCM projections also show greater sensitivity (both wetter and drier) and a wider uncertainty range than QUMP-A. The nature of these uncertainties suggests that both large-scale circulation patterns, which influence region-wide drying/wetting patterns, and regional-scale processes, which affect localized water availability, are important sources of uncertainty in these projections. To reduce large uncertainties in water availability projections, it is suggested that efforts would be well placed to focus on the understanding and modelling of both large-scale processes and their teleconnections with Middle East climate and localized processes involved in orographic precipitation.

  13. Volcanic effects on climate

    NASA Technical Reports Server (NTRS)

    Robock, Alan

    1991-01-01

    Volcanic eruptions which inject large amounts of sulfur-rich gas into the stratosphere produce dust veils which last years and cool the earth's surface. At the same time, these dust veils absorb enough solar radiation to warm the stratosphere. Since these temperature changes at the earth's surface and in the stratosphere are both in the opposite direction of hypothesized effects from greenhouse gases, they act to delay and mask the detection of greenhouse effects on the climate system. Tantalizing recent research results have suggested regional effects of volcanic eruptions, including effects on El Nino/Southern Oscillation (ENSO). In addition, a large portion of the global climate change of the past 100 years may be due to the effects of volcanoes, but a definite answer is not yet clear. While effects of several years were demonstrated with both data studies and numerical models, long-term effects, while found in climate model calculations, await confirmation with more realistic models. Extremely large explosive prehistoric eruptions may have produced severe weather and climate effects, sometimes called a 'volcanic winter'. Complete understanding of the above effects of volcanoes is hampered by inadequacies of data sets on volcanic dust veils and on climate change. Space observations can play an increasingly important role in an observing program in the future. The effects of volcanoes are not adequately separated from ENSO events, and climate modeling of the effects of volcanoes is in its infancy. Specific suggestions are made for future work to improve the knowledge of this important component of the climate system.

  14. Specialization in Plant-Hummingbird Networks Is Associated with Species Richness, Contemporary Precipitation and Quaternary Climate-Change Velocity

    PubMed Central

    Dalsgaard, Bo; Magård, Else; Fjeldså, Jon; Martín González, Ana M.; Rahbek, Carsten; Olesen, Jens M.; Ollerton, Jeff; Alarcón, Ruben; Cardoso Araujo, Andrea; Cotton, Peter A.; Lara, Carlos; Machado, Caio Graco; Sazima, Ivan; Sazima, Marlies; Timmermann, Allan; Watts, Stella; Sandel, Brody; Sutherland, William J.; Svenning, Jens-Christian

    2011-01-01

    Large-scale geographical patterns of biotic specialization and the underlying drivers are poorly understood, but it is widely believed that climate plays an important role in determining specialization. As climate-driven range dynamics should diminish local adaptations and favor generalization, one hypothesis is that contemporary biotic specialization is determined by the degree of past climatic instability, primarily Quaternary climate-change velocity. Other prominent hypotheses predict that either contemporary climate or species richness affect biotic specialization. To gain insight into geographical patterns of contemporary biotic specialization and its drivers, we use network analysis to determine the degree of specialization in plant-hummingbird mutualistic networks sampled at 31 localities, spanning a wide range of climate regimes across the Americas. We found greater biotic specialization at lower latitudes, with latitude explaining 20–22% of the spatial variation in plant-hummingbird specialization. Potential drivers of specialization - contemporary climate, Quaternary climate-change velocity, and species richness - had superior explanatory power, together explaining 53–64% of the variation in specialization. Notably, our data provides empirical evidence for the hypothesized roles of species richness, contemporary precipitation and Quaternary climate-change velocity as key predictors of biotic specialization, whereas contemporary temperature and seasonality seem unimportant in determining specialization. These results suggest that both ecological and evolutionary processes at Quaternary time scales can be important in driving large-scale geographical patterns of contemporary biotic specialization, at least for co-evolved systems such as plant-hummingbird networks. PMID:21998716

  15. Evaluating the ClimEx Single Model Large Ensemble in Comparison with EURO-CORDEX Results of Seasonal Means and Extreme Precipitation Indicators

    NASA Astrophysics Data System (ADS)

    von Trentini, F.; Schmid, F. J.; Braun, M.; Brisette, F.; Frigon, A.; Leduc, M.; Martel, J. L.; Willkofer, F.; Wood, R. R.; Ludwig, R.

    2017-12-01

    Meteorological extreme events seem to become more frequent in the present and future, and a seperation of natural climate variability and a clear climate change effect on these extreme events gains more and more interest. Since there is only one realisation of historical events, natural variability in terms of very long timeseries for a robust statistical analysis is not possible with observation data. A new single model large ensemble (SMLE), developed for the ClimEx project (Climate change and hydrological extreme events - risks and perspectives for water management in Bavaria and Québec) is supposed to overcome this lack of data by downscaling 50 members of the CanESM2 (RCP 8.5) with the Canadian CRCM5 regional model (using the EURO-CORDEX grid specifications) for timeseries of 1950-2099 each, resulting in 7500 years of simulated climate. This allows for a better probabilistic analysis of rare and extreme events than any preceding dataset. Besides seasonal sums, several extreme indicators like R95pTOT, RX5day and others are calculated for the ClimEx ensemble and several EURO-CORDEX runs. This enables us to investigate the interaction between natural variability (as it appears in the CanESM2-CRCM5 members) and a climate change signal of those members for past, present and future conditions. Adding the EURO-CORDEX results to this, we can also assess the role of internal model variability (or natural variability) in climate change simulations. A first comparison shows similar magnitudes of variability of climate change signals between the ClimEx large ensemble and the CORDEX runs for some indicators, while for most indicators the spread of the SMLE is smaller than the spread of different CORDEX models.

  16. Climate response to projected changes in short-lived species under an A1B scenario from 2000-2050 in the GISS climate model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menon, Surabi; Shindell, Drew T.; Faluvegi, Greg

    2007-03-26

    We investigate the climate forcing from and response to projected changes in short-lived species and methane under the A1B scenario from 2000-2050 in the GISS climate model. We present a meta-analysis of new simulations of the full evolution of gas and aerosol species and other existing experiments with variations of the same model. The comparison highlights the importance of several physical processes in determining radiative forcing, especially the effect of climate change on stratosphere-troposphere exchange, heterogeneous sulfate-nitrate-dust chemistry, and changes in methane oxidation and natural emissions. However, the impact of these fairly uncertain physical effects is substantially less than themore » difference between alternative emission scenarios for all short-lived species. The net global mean annual average direct radiative forcing from the short-lived species is .02 W/m{sup 2} or less in our projections, as substantial positive ozone forcing is largely offset by negative aerosol direct forcing. Since aerosol reductions also lead to a reduced indirect effect, the global mean surface temperature warms by {approx}0.07 C by 2030 and {approx}0.13 C by 2050, adding 19% and 17%, respectively, to the warming induced by long-lived greenhouse gases. Regional direct forcings are large, up to 3.8 W/m{sup 2}. The ensemble-mean climate response shows little regional correlation with the spatial pattern of the forcing, however, suggesting that oceanic and atmospheric mixing generally overwhelms the effect of even large localized forcings. Exceptions are the polar regions, where ozone and aerosols may induce substantial seasonal climate changes.« less

  17. Projected effects of climate and development on California wildfire emissions through 2100.

    PubMed

    Hurteau, Matthew D; Westerling, Anthony L; Wiedinmyer, Christine; Bryant, Benjamin P

    2014-02-18

    Changing climatic conditions are influencing large wildfire frequency, a globally widespread disturbance that affects both human and natural systems. Understanding how climate change, population growth, and development patterns will affect the area burned by and emissions from wildfires and how populations will in turn be exposed to emissions is critical for climate change adaptation and mitigation planning. We quantified the effects of a range of population growth and development patterns in California on emission projections from large wildfires under six future climate scenarios. Here we show that end-of-century wildfire emissions are projected to increase by 19-101% (median increase 56%) above the baseline period (1961-1990) in California for a medium-high temperature scenario, with the largest emissions increases concentrated in northern California. In contrast to other measures of wildfire impacts previously studied (e.g., structural loss), projected population growth and development patterns are unlikely to substantially influence the amount of projected statewide wildfire emissions. However, increases in wildfire emissions due to climate change may have detrimental impacts on air quality and, combined with a growing population, may result in increased population exposure to unhealthy air pollutants.

  18. Weak hydrological sensitivity to temperature change over land, independent of climate forcing

    NASA Astrophysics Data System (ADS)

    Samset, Bjorn H.

    2017-04-01

    As the global surface temperature changes, so will patterns and rates of precipitation. Theoretically, these changes can be understood in terms of changes to the energy balance of the atmosphere, caused by introducing drivers of climate change such as greenhouse gases, aerosols and altered insolation. Climate models, however, disagree strongly in their prediction of precipitation changes, both for historical and future emission pathways, and per degree of surface warming in idealized experiments. The latter value, often termed the apparent hydrological sensitivity, has also been found to differ substantially between climate drivers. Here, we present the global and regional hydrological sensitivity (HS) to surface temperature changes, for perturbations to CO2, CH4, sulfate and black carbon concentrations, and solar irradiance. Based on results from 10 climate models participating in the Precipitation Driver and Response Model Intercomparison Project (PDRMIP), we show how modeled global mean precipitation increases by 2-3 % per kelvin of global mean surface warming, independent of driver, when the effects of rapid adjustments are removed. Previously reported differences in response between drivers are therefore mainly ascribable to rapid atmospheric adjustment processes. All models show a sharp contrast in behavior over land and over ocean, with a strong surface temperature driven (slow) ocean HS of 3-5 %/K, while the slow land HS is only 0-2 %/K. Separating the response into convective and large-scale cloud processes, we find larger inter-model differences, in particular over land regions. Large-scale precipitation changes are most relevant at high latitudes, while the equatorial HS is dominated by convective precipitation changes. Black carbon stands out as the driver with the largest inter-model slow HS variability, and also the strongest contrast between a weak land and strong sea response. Convective precipitation in the Arctic and large scale precipitation around the Equator are found to be topics where further model investigations and observational constraints may provide rapid improvements to modelling of the precipitation response to future, CO2 dominated climate change.

  19. Dominant climatic factors driving annual runoff changes at the catchment scale across China

    NASA Astrophysics Data System (ADS)

    Huang, Zhongwei; Yang, Hanbo; Yang, Dawen

    2016-07-01

    With global climate changes intensifying, the hydrological response to climate changes has attracted more attention. It is beneficial not only for hydrology and ecology but also for water resource planning and management to understand the impact of climate change on runoff. In addition, there are large spatial variations in climate type and geographic characteristics across China. To gain a better understanding of the spatial variation of the response of runoff to changes in climatic factors and to detect the dominant climatic factors driving changes in annual runoff, we chose the climate elasticity method proposed by Yang and Yang (2011). It is shown that, in most catchments of China, increasing air temperature and relative humidity have negative impacts on runoff, while declining net radiation and wind speed have positive impacts on runoff, which slow the overall decline in runoff. The dominant climatic factors driving annual runoff are precipitation in most parts of China, net radiation mainly in some catchments of southern China, air temperature and wind speed mainly in some catchments in northern China.

  20. Mid-to-late Holocene climate change record in palaeo-notch sediment from London Island, Svalbard

    NASA Astrophysics Data System (ADS)

    Yang, Zhongkang; Sun, Liguang; Zhou, Xin; Wang, Yuhong

    2018-06-01

    The Arctic region is very sensitive to climate change and important in the Earth's climate system. However, proxy datasets for Arctic climate are unevenly distributed and especially scarce for Svalbard because glaciers during the Little Ice Age, the most extensive in the Holocene, destroyed large quantities of sediment records in Svalbard. Fortunately, palaeo-notch sediments could withstand glaciers and be well-preserved after deposition. In this study, we reconstructed a mid-to-late Holocene record of climate changes in a palaeo-notch sediment sequence from London Island. Multiple weathering indices were determined, they all showed consistent weathering conditions in the study area, and they were closely linked to climate changes. Total organic carbon (TOC) and total nitrogen (TN) were also determined, and their variation profiles were similar to those of weathering indices. The climate change record in our sediment sequence is consistent with ice rafting record from North Atlantic and glacier activity from Greenland, Iceland and Svalbard, and four cold periods are clearly present. Our study provides a relatively long-term climate change record for climate conditions from mid-to-late Holocene in Svalbard.

  1. Carbon-climate-human interactions in an integrated human-Earth system model

    NASA Astrophysics Data System (ADS)

    Calvin, K. V.; Bond-Lamberty, B. P.; Jones, A. D.; Shi, X.

    2016-12-01

    The C4MIP and CMIP5 results highlighted large uncertainties in climate projections, driven to a large extent by limited understanding of the interactions between terrestrial carbon-cycle and climate feedbacks, and their associated uncertainties. These feedbacks are dominated by uncertainties in soil processes, disturbance dynamics, ecosystem response to climate change, and agricultural productivity, and land-use change. This research addresses three questions: (1) how do terrestrial feedbacks vary across different levels of climate change, (2) what is the relative contribution of CO2 fertilization and climate change, and (3) how robust are the results across different models and methods? We used a coupled modeling framework that integrates an Integrated Assessment Model (modeling economic and energy activity) with an Earth System Model (modeling the natural earth system) to examine how business-as-usual (RCP 8.5) climate change will affect ecosystem productivity, cropland extent, and other aspects of the human-Earth system. We find that higher levels of radiative forcing result in higher productivity growth, that increases in CO2 concentrations are the dominant contributors to that growth, and that our productivity increases fall in the middle of the range when compared to other CMIP5 models and the AgMIP models. These results emphasize the importance of examining both the anthropogenic and natural components of the earth system, and their long-term interactive feedbacks.

  2. Canary in the coal mine: Historical oxygen decline in the Gulf of St. Lawrence due to large scale climate changes

    NASA Astrophysics Data System (ADS)

    Claret, M.; Galbraith, E. D.; Palter, J. B.; Gilbert, D.; Bianchi, D.; Dunne, J. P.

    2016-02-01

    The regional signature of anthropogenic climate change on the atmosphere and upper ocean is often difficult to discern from observational timeseries, dominated as they are by decadal climate variability. Here we argue that a long-term decline of dissolved oxygen concentrations observed in the Gulf of S. Lawrence (GoSL) is consistent with anthropogenic climate change. Oxygen concentrations in the GoSL have declined markedly since 1930 due primarily to an increase of oxygen-poor North Atlantic Central Waters relative to Labrador Current Waters (Gilbert et al. 2005). We compare these observations to a climate warming simulation using a very high-resolution global coupled ocean-atmospheric climate model. The numerical model (CM2.6), developed by the Geophysical Fluid Dynamics Laboratory, is strongly eddying and includes a biogeochemical module with dissolved oxygen. The warming scenario shows that oxygen in the GoSL decreases and it is associated to changes in western boundary currents and wind patterns in the North Atlantic. We speculate that the large-scale changes behind the simulated decrease in GoSL oxygen have also been at play in the real world over the past century, although they are difficult to resolve in noisy atmospheric data.

  3. GCOS reference upper air network (GRUAN): Steps towards assuring future climate records

    NASA Astrophysics Data System (ADS)

    Thorne, P. W.; Vömel, H.; Bodeker, G.; Sommer, M.; Apituley, A.; Berger, F.; Bojinski, S.; Braathen, G.; Calpini, B.; Demoz, B.; Diamond, H. J.; Dykema, J.; Fassò, A.; Fujiwara, M.; Gardiner, T.; Hurst, D.; Leblanc, T.; Madonna, F.; Merlone, A.; Mikalsen, A.; Miller, C. D.; Reale, T.; Rannat, K.; Richter, C.; Seidel, D. J.; Shiotani, M.; Sisterson, D.; Tan, D. G. H.; Vose, R. S.; Voyles, J.; Wang, J.; Whiteman, D. N.; Williams, S.

    2013-09-01

    The observational climate record is a cornerstone of our scientific understanding of climate changes and their potential causes. Existing observing networks have been designed largely in support of operational weather forecasting and continue to be run in this mode. Coverage and timeliness are often higher priorities than absolute traceability and accuracy. Changes in instrumentation used in the observing system, as well as in operating procedures, are frequent, rarely adequately documented and their impacts poorly quantified. For monitoring changes in upper-air climate, which is achieved through in-situ soundings and more recently satellites and ground-based remote sensing, the net result has been trend uncertainties as large as, or larger than, the expected emergent signals of climate change. This is more than simply academic with the tropospheric temperature trends issue having been the subject of intense debate, two international assessment reports and several US congressional hearings. For more than a decade the international climate science community has been calling for the instigation of a network of reference quality measurements to reduce uncertainty in our climate monitoring capabilities. This paper provides a brief history of GRUAN developments to date and outlines future plans. Such reference networks can only be achieved and maintained with strong continuing input from the global metrological community.

  4. Land-use and carbon cycle responses to moderate climate change: implications for land-based mitigation?

    PubMed

    Humpenöder, Florian; Popp, Alexander; Stevanovic, Miodrag; Müller, Christoph; Bodirsky, Benjamin Leon; Bonsch, Markus; Dietrich, Jan Philipp; Lotze-Campen, Hermann; Weindl, Isabelle; Biewald, Anne; Rolinski, Susanne

    2015-06-02

    Climate change has impacts on agricultural yields, which could alter cropland requirements and hence deforestation rates. Thus, land-use responses to climate change might influence terrestrial carbon stocks. Moreover, climate change could alter the carbon storage capacity of the terrestrial biosphere and hence the land-based mitigation potential. We use a global spatially explicit economic land-use optimization model to (a) estimate the mitigation potential of a climate policy that provides economic incentives for carbon stock conservation and enhancement, (b) simulate land-use and carbon cycle responses to moderate climate change (RCP2.6), and (c) investigate the combined effects throughout the 21st century. The climate policy immediately stops deforestation and strongly increases afforestation, resulting in a global mitigation potential of 191 GtC in 2100. Climate change increases terrestrial carbon stocks not only directly through enhanced carbon sequestration (62 GtC by 2100) but also indirectly through less deforestation due to higher crop yields (16 GtC by 2100). However, such beneficial climate impacts increase the potential of the climate policy only marginally, as the potential is already large under static climatic conditions. In the broader picture, this study highlights the importance of land-use dynamics for modeling carbon cycle responses to climate change in integrated assessment modeling.

  5. Effects of simultaneous climate change and geomorphic evolution on thermal characteristics of a shallow Alaskan lake

    USGS Publications Warehouse

    Griffiths, Jennifer R.; Schindler, Daniel E.; Balistrieri, Laurie S.; Ruggerone, Gregory T.

    2011-01-01

    We used a hydrodynamics model to assess the consequences of climate warming and contemporary geomorphic evolution for thermal conditions in a large, shallow Alaskan lake. We evaluated the effects of both known climate and landscape change, including rapid outlet erosion and migration of the principal inlet stream, over the past 50 yr as well as future scenarios of geomorphic restoration. Compared to effects of air temperature during the past 50 yr, lake thermal properties showed little sensitivity to substantial (~60%) loss of lake volume, as the lake maximum depth declined from 6 m to 4 m driven by outlet erosion. The direction and magnitude of future lake thermal responses will be driven largely by the extent of inlet stream migration when it occurs simultaneously with outlet erosion. Maintaining connectivity with inlet streams had substantial effects on buffering lake thermal responses to warming climate. Failing to account for changing rates and types of geomorphic processes under continuing climate change may misidentify the primary drivers of lake thermal responses and reduce our ability to understand the consequences for aquatic organisms.

  6. Climate change adaptation and Integrated Water Resource Management in the water sector

    NASA Astrophysics Data System (ADS)

    Ludwig, Fulco; van Slobbe, Erik; Cofino, Wim

    2014-10-01

    Integrated Water Resources Management (IWRM) was introduced in 1980s to better optimise water uses between different water demanding sectors. However, since it was introduced water systems have become more complicated due to changes in the global water cycle as a result of climate change. The realization that climate change will have a significant impact on water availability and flood risks has driven research and policy making on adaptation. This paper discusses the main similarities and differences between climate change adaptation and IWRM. The main difference between the two is the focus on current and historic issues of IWRM compared to the (long-term) future focus of adaptation. One of the main problems of implementing climate change adaptation is the large uncertainties in future projections. Two completely different approaches to adaptation have been developed in response to these large uncertainties. A top-down approach based on large scale biophysical impacts analyses focussing on quantifying and minimizing uncertainty by using a large range of scenarios and different climate and impact models. The main problem with this approach is the propagation of uncertainties within the modelling chain. The opposite is the bottom up approach which basically ignores uncertainty. It focusses on reducing vulnerabilities, often at local scale, by developing resilient water systems. Both these approaches however are unsuitable for integrating into water management. The bottom up approach focuses too much on socio-economic vulnerability and too little on developing (technical) solutions. The top-down approach often results in an “explosion” of uncertainty and therefore complicates decision making. A more promising direction of adaptation would be a risk based approach. Future research should further develop and test an approach which starts with developing adaptation strategies based on current and future risks. These strategies should then be evaluated using a range of future scenarios in order to develop robust adaptation measures and strategies.

  7. Statistical Analysis of Large Simulated Yield Datasets for Studying Climate Effects

    NASA Technical Reports Server (NTRS)

    Makowski, David; Asseng, Senthold; Ewert, Frank; Bassu, Simona; Durand, Jean-Louis; Martre, Pierre; Adam, Myriam; Aggarwal, Pramod K.; Angulo, Carlos; Baron, Chritian; hide

    2015-01-01

    Many studies have been carried out during the last decade to study the effect of climate change on crop yields and other key crop characteristics. In these studies, one or several crop models were used to simulate crop growth and development for different climate scenarios that correspond to different projections of atmospheric CO2 concentration, temperature, and rainfall changes (Semenov et al., 1996; Tubiello and Ewert, 2002; White et al., 2011). The Agricultural Model Intercomparison and Improvement Project (AgMIP; Rosenzweig et al., 2013) builds on these studies with the goal of using an ensemble of multiple crop models in order to assess effects of climate change scenarios for several crops in contrasting environments. These studies generate large datasets, including thousands of simulated crop yield data. They include series of yield values obtained by combining several crop models with different climate scenarios that are defined by several climatic variables (temperature, CO2, rainfall, etc.). Such datasets potentially provide useful information on the possible effects of different climate change scenarios on crop yields. However, it is sometimes difficult to analyze these datasets and to summarize them in a useful way due to their structural complexity; simulated yield data can differ among contrasting climate scenarios, sites, and crop models. Another issue is that it is not straightforward to extrapolate the results obtained for the scenarios to alternative climate change scenarios not initially included in the simulation protocols. Additional dynamic crop model simulations for new climate change scenarios are an option but this approach is costly, especially when a large number of crop models are used to generate the simulated data, as in AgMIP. Statistical models have been used to analyze responses of measured yield data to climate variables in past studies (Lobell et al., 2011), but the use of a statistical model to analyze yields simulated by complex process-based crop models is a rather new idea. We demonstrate herewith that statistical methods can play an important role in analyzing simulated yield data sets obtained from the ensembles of process-based crop models. Formal statistical analysis is helpful to estimate the effects of different climatic variables on yield, and to describe the between-model variability of these effects.

  8. Developing and applying uncertain global climate change projections for regional water management planning

    NASA Astrophysics Data System (ADS)

    Groves, David G.; Yates, David; Tebaldi, Claudia

    2008-12-01

    Climate change may impact water resources management conditions in difficult-to-predict ways. A key challenge for water managers is how to incorporate highly uncertain information about potential climate change from global models into local- and regional-scale water management models and tools to support local planning. This paper presents a new method for developing large ensembles of local daily weather that reflect a wide range of plausible future climate change scenarios while preserving many statistical properties of local historical weather patterns. This method is demonstrated by evaluating the possible impact of climate change on the Inland Empire Utilities Agency service area in southern California. The analysis shows that climate change could impact the region, increasing outdoor water demand by up to 10% by 2040, decreasing local water supply by up to 40% by 2040, and decreasing sustainable groundwater yields by up to 15% by 2040. The range of plausible climate projections suggests the need for the region to augment its long-range water management plans to reduce its vulnerability to climate change.

  9. An Objective Approach to Select Climate Scenarios when Projecting Species Distribution under Climate Change

    PubMed Central

    Casajus, Nicolas; Périé, Catherine; Logan, Travis; Lambert, Marie-Claude; de Blois, Sylvie; Berteaux, Dominique

    2016-01-01

    An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one. PMID:27015274

  10. An Objective Approach to Select Climate Scenarios when Projecting Species Distribution under Climate Change.

    PubMed

    Casajus, Nicolas; Périé, Catherine; Logan, Travis; Lambert, Marie-Claude; de Blois, Sylvie; Berteaux, Dominique

    2016-01-01

    An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one.

  11. Mid-21st-century climate changes increase predicted fire occurrence and fire season length, Northern Rocky Mountains, United States

    USGS Publications Warehouse

    Riley, Karin L.; Loehman, Rachel A.

    2016-01-01

    Climate changes are expected to increase fire frequency, fire season length, and cumulative area burned in the western United States. We focus on the potential impact of mid-21st-century climate changes on annual burn probability, fire season length, and large fire characteristics including number and size for a study area in the Northern Rocky Mountains. Although large fires are rare they account for most of the area burned in western North America, burn under extreme weather conditions, and exhibit behaviors that preclude methods of direct control. Allocation of resources, development of management plans, and assessment of fire effects on ecosystems all require an understanding of when and where fires are likely to burn, particularly under altered climate regimes that may increase large fire occurrence. We used the large fire simulation model FSim to model ignition, growth, and containment of wildfires under two climate scenarios: contemporary (based on instrumental weather) and mid-century (based on an ensemble average of global climate models driven by the A1B SRES emissions scenario). Modeled changes in fire patterns include increased annual burn probability, particularly in areas of the study region with relatively short contemporary fire return intervals; increased individual fire size and annual area burned; and fewer years without large fires. High fire danger days, represented by threshold values of Energy Release Component (ERC), are projected to increase in number, especially in spring and fall, lengthening the climatic fire season. For fire managers, ERC is an indicator of fire intensity potential and fire economics, with higher ERC thresholds often associated with larger, more expensive fires. Longer periods of elevated ERC may significantly increase the cost and complexity of fire management activities, requiring new strategies to maintain desired ecological conditions and limit fire risk. Increased fire activity (within the historical range of frequency and severity, and depending on the extent to which ecosystems are adapted) may maintain or restore ecosystem functionality; however, in areas that are highly departed from historical fire regimes or where there is disequilibrium between climate and vegetation, ecosystems may be rapidly and persistently altered by wildfires, especially those that burn under extreme conditions.

  12. The I.A.G. / A.I.G. SEDIBUD Book Project: Source-to-Sink Fluxes in Undisturbed Cold Environments

    NASA Astrophysics Data System (ADS)

    Beylich, Achim A.; Dixon, John C.; Zwolinski, Zbigniew

    2015-04-01

    The currently prepared SEDIBUD Book on "Source-to-Sink Fluxes in Undisturbed Cold Environments" (edited by Achim A. Beylich, John C. Dixon and Zbigniew Zwolinski and published by Cambridge University Press) is summarizing and synthesizing the achievements of the International Association of Geomorphologists` (I.A.G./A.I.G.) Working Group SEDIBUD (Sediment Budgets in Cold Environments), which has been active since 2005 (http://www.geomorph.org/wg/wgsb.html). Amplified climate change and ecological sensitivity of largely undisturbed polar and high-altitude cold climate environments have been highlighted as key global environmental issues. The effects of projected climate change will change surface environments in cold regions and will alter the fluxes of sediments, nutrients and solutes, but the absence of quantitative data and coordinated geomorphic process monitoring and analysis to understand the sensitivity of the Earth surface environment in these largely undisturbed environments is acute. Our book addresses this existing key knowledge gap. The applied approach of integrating comparable and longer-term field datasets on contemporary solute and sedimentary fluxes from a number of different defined cold climate catchment geosystems for better understanding (i) the environmental drivers and rates of contemporary denudational surface processes and (ii) possible effects of projected climate change in cold regions is unique in the field of geomorphology. Largely undisturbed cold climate environments can provide baseline data for modeling the effects of environmental change. The book synthesizes work carried out by numerous SEDIBUD Members over the last decade in numerous cold climate catchment geosystems worldwide. For reaching a global cover of different cold climate environments the book is - after providing an introduction part and a basic part on climate change in cold environments and general implications for solute and sedimentary fluxes - dealing in different defined parts with Sub-Arctic and Arctic Environments, Sub-Antarctic and Antarctic Environments, and Alpine / Mountain Environments. The book includes a synthesis key chapter where comparable datasets on contemporary solute and sedimentary fluxes generated during the conducted coordinated research efforts in different cold climate catchment geosystems are integrated with the key goals to (i) identify the main environmental drivers and rates of contemporary solute and sedimentary fluxes, and (ii) model possible effects of projected climate change on solute and sedimentary fluxes in cold climate environments. The SEDIBUD Book provides new key findings on environmental drivers and rates of contemporary solute and sedimentary fluxes, and on spatial variability within global cold climate environments. The book will go in production in July 2015.

  13. Invasive alien pests threaten the carbon stored in Europe's forests.

    PubMed

    Seidl, Rupert; Klonner, Günther; Rammer, Werner; Essl, Franz; Moreno, Adam; Neumann, Mathias; Dullinger, Stefan

    2018-04-24

    Forests mitigate climate change by sequestering large amounts of carbon (C). However, forest C storage is not permanent, and large pulses of tree mortality can thwart climate mitigation efforts. Forest pests are increasingly redistributed around the globe. Yet, the potential future impact of invasive alien pests on the forest C cycle remains uncertain. Here we show that large parts of Europe could be invaded by five detrimental alien pests already under current climate. Climate change increases the potential range of alien pests particularly in Northern and Eastern Europe. We estimate the live C at risk from a potential future invasion as 1027 Tg C (10% of the European total), with a C recovery time of 34 years. We show that the impact of introduced pests could be as severe as the current natural disturbance regime in Europe, calling for increased efforts to halt the introduction and spread of invasive alien species.

  14. Solar ultraviolet radiation in a changing climate

    EPA Science Inventory

    The projected large increases in damaging ultraviolet radiation as a result of global emissions of ozone-depleting substances have been forestalled by the success of the Montreal Protocol. New challenges are now arising in relation to climate change. We highlight the complex inte...

  15. The cumulative effects of forest disturbance and climate variability on baseflow in a large forested watershed

    NASA Astrophysics Data System (ADS)

    Li, Q.; Wei, A.; Giles-Hansen, K.; Zhang, M.; Liu, W.

    2016-12-01

    Assessing how forest disturbance and climate change affect baseflow or groundwater discharge is critical for understanding water resource supply and protecting aquatic functions. Previous studies have mainly evaluated the effects of forest disturbance on streamflow, with rare attention on baseflow, particularly in large watersheds. However, studying this topic is challenging as it requires explicit inclusion of climate into assessment due to their interactions at any large watersheds. In this study, we used Upper Similkameen River watershed (USR) (1810 km2), located in the southern interior of British Columbia, Canada to examine how forest disturbance and climate variability affect baseflow. The conductivity mass balance method was first used for baseflow separation, and the modified double mass curves were then employed to quantitatively separate the relative contributions of forest disturbance and climate variability to annual baseflow. Our results showed that average annual baseflow and baseflow index (baseflow/streamflow) were about 85.2 ± 21.5 mm year-1 and 0.22 ± 0.05 for the study period of 1954-2013, respectively. The forest disturbance increased the annual baseflow of 18.4 mm, while climate variability decreased 19.4 mm. In addition, forest disturbance also shifted the baseflow regime with increasing of the spring baseflow and decreasing of the summer baseflow. We conclude that forest disturbance significantly altered the baseflow magnitudes and patterns, and its role in annual baseflow was equal to that caused by climate variability in the study watershed despite their opposite changing directions. The implications of our results are discussed in the context of future forest disturbance (or land cover changes) and climate changes.

  16. Inadvertent Weather Modification in Urban Areas: Lessons for Global Climate Change.

    NASA Astrophysics Data System (ADS)

    Changnon, Stanley A.

    1992-05-01

    Large metropolitan areas in North America, home to 65% of the nation's population, have created major changes in their climates over the past 150 years. The rate and amount of the urban climate change approximate those being predicted globally using climate models. Knowledge of urban weather and climate modification holds lessons for the global climate change issue. First, adjustments to urban climate changes can provide guidance for adjusting to global change. A second lesson relates to the difficulty but underscores the necessity of providing scientifically credible proof of change within the noise of natural climatic variability. The evolution of understanding about how urban conditions influence weather reveals several unexpected outcomes, particularly relating to precipitation changes. These suggest that similar future surprises can be expected in a changed global climate, a third lesson. In-depth studies of how urban climate changes affected the hydrologic cycle, the regional economy, and human activities were difficult because of data problems, lack of impact methodology, and necessity for multi disciplinary investigations. Similar impact studies for global climate change will require diverse scientific talents and funding commitments adequate to measure the complexity of impacts and human adjustments. Understanding the processes whereby urban areas and other human activities have altered the atmosphere and changed clouds and precipitation regionally appears highly relevant to the global climate-change issue. Scientific and governmental policy development needs to recognize an old axiom that became evident in the studies of inadvertent urban and regional climate change and their behavioral implications: Think globally but act locally. Global climate change is an international issue, and the atmosphere must be treated globally. But the impacts and the will to act and adjust will occur regionally.

  17. Biological response to climate change in the Arctic Ocean: The view from the past

    USGS Publications Warehouse

    Cronin, Thomas M.; Cronin, Matthew A.

    2017-01-01

    The Arctic Ocean is undergoing rapid climatic changes including higher ocean temperatures, reduced sea ice, glacier and Greenland Ice Sheet melting, greater marine productivity, and altered carbon cycling. Until recently, the relationship between climate and Arctic biological systems was poorly known, but this has changed substantially as advances in paleoclimatology, micropaleontology, vertebrate paleontology, and molecular genetics show that Arctic ecosystem history reflects global and regional climatic changes over all timescales and climate states (103–107 years). Arctic climatic extremes include 25°C hyperthermal periods during the Paleocene-Eocene (56–46 million years ago, Ma), Quaternary glacial periods when thick ice shelves and sea ice cover rendered the Arctic Ocean nearly uninhabitable, seasonally sea-ice-free interglacials and abrupt climate reversals. Climate-driven biological impacts included large changes in species diversity, primary productivity, species’ geographic range shifts into and out of the Arctic, community restructuring, and possible hybridization, but evidence is not sufficient to determine whether or when major episodes of extinction occurred.

  18. Accelerating forest growth enhancement due to climate and atmospheric changes in British Colombia, Canada over 1956-2001.

    PubMed

    Wu, Chaoyang; Hember, Robbie A; Chen, Jing M; Kurz, Werner A; Price, David T; Boisvenue, Céline; Gonsamo, Alemu; Ju, Weimin

    2014-03-25

    Changes in climate and atmospheric CO2 and nitrogen (N) over the last several decades have induced significant effects on forest carbon (C) cycling. However, contributions of individual factors are largely unknown because of the lack of long observational data and the undifferentiating between intrinsic factors and external forces in current ecosystem models. Using over four decades (1956-2001) of forest inventory data at 3432 permanent samples in maritime and boreal regions of British Columbia (B.C.), Canada, growth enhancements were reconstructed and partitioned into contributions of climate, CO2 and N after removal of age effects. We found that climate change contributed a particularly large amount (over 70%) of the accumulated growth enhancement, while the remaining was attributed to CO2 and N, respectively. We suggest that climate warming is contributing a widespread growth enhancement in B.C.'s forests, but ecosystem models should consider CO2 and N fertilization effects to fully explain inventory-based observations.

  19. Climate-driven changes in functional biogeography of Arctic marine fish communities

    PubMed Central

    Primicerio, Raul; Kortsch, Susanne; Aune, Magnus; Dolgov, Andrey V.; Fossheim, Maria; Aschan, Michaela M.

    2017-01-01

    Climate change triggers poleward shifts in species distribution leading to changes in biogeography. In the marine environment, fish respond quickly to warming, causing community-wide reorganizations, which result in profound changes in ecosystem functioning. Functional biogeography provides a framework to address how ecosystem functioning may be affected by climate change over large spatial scales. However, there are few studies on functional biogeography in the marine environment, and none in the Arctic, where climate-driven changes are most rapid and extensive. We investigated the impact of climate warming on the functional biogeography of the Barents Sea, which is characterized by a sharp zoogeographic divide separating boreal from Arctic species. Our unique dataset covered 52 fish species, 15 functional traits, and 3,660 stations sampled during the recent warming period. We found that the functional traits characterizing Arctic fish communities, mainly composed of small-sized bottom-dwelling benthivores, are being rapidly replaced by traits of incoming boreal species, particularly the larger, longer lived, and more piscivorous species. The changes in functional traits detected in the Arctic can be predicted based on the characteristics of species expected to undergo quick poleward shifts in response to warming. These are the large, generalist, motile species, such as cod and haddock. We show how functional biogeography can provide important insights into the relationship between species composition, diversity, ecosystem functioning, and environmental drivers. This represents invaluable knowledge in a period when communities and ecosystems experience rapid climate-driven changes across biogeographical regions. PMID:29087943

  20. Twentieth century turnover of Mexican endemic avifaunas: Landscape change versus climate drivers.

    PubMed

    Peterson, A Townsend; Navarro-Sigüenza, Adolfo G; Martínez-Meyer, Enrique; Cuervo-Robayo, Angela P; Berlanga, Humberto; Soberón, Jorge

    2015-05-01

    Numerous climate change effects on biodiversity have been anticipated and documented, including extinctions, range shifts, phenological shifts, and breakdown of interactions in ecological communities, yet the relative balance of different climate drivers and their relationships to other agents of global change (for example, land use and land-use change) remains relatively poorly understood. This study integrated historical and current biodiversity data on distributions of 115 Mexican endemic bird species to document areas of concentrated gains and losses of species in local communities, and then related those changes to climate and land-use drivers. Of all drivers examined, at this relatively coarse spatial resolution, only temperature change had significant impacts on avifaunal turnover; neither precipitation change nor human impact on landscapes had detectable effects. This study, conducted across species' geographic distributions, and covering all of Mexico, thanks to two large-scale biodiversity data sets, could discern relative importance of specific climatic drivers of biodiversity change.

  1. Evolution of carbon sinks in a changing climate.

    PubMed

    Fung, Inez Y; Doney, Scott C; Lindsay, Keith; John, Jasmin

    2005-08-09

    Climate change is expected to influence the capacities of the land and oceans to act as repositories for anthropogenic CO2 and hence provide a feedback to climate change. A series of experiments with the National Center for Atmospheric Research-Climate System Model 1 coupled carbon-climate model shows that carbon sink strengths vary with the rate of fossil fuel emissions, so that carbon storage capacities of the land and oceans decrease and climate warming accelerates with faster CO2 emissions. Furthermore, there is a positive feedback between the carbon and climate systems, so that climate warming acts to increase the airborne fraction of anthropogenic CO2 and amplify the climate change itself. Globally, the amplification is small at the end of the 21st century in this model because of its low transient climate response and the near-cancellation between large regional changes in the hydrologic and ecosystem responses. Analysis of our results in the context of comparable models suggests that destabilization of the tropical land sink is qualitatively robust, although its degree is uncertain.

  2. Evolution of carbon sinks in a changing climate

    PubMed Central

    Fung, Inez Y.; Doney, Scott C.; Lindsay, Keith; John, Jasmin

    2005-01-01

    Climate change is expected to influence the capacities of the land and oceans to act as repositories for anthropogenic CO2 and hence provide a feedback to climate change. A series of experiments with the National Center for Atmospheric Research–Climate System Model 1 coupled carbon–climate model shows that carbon sink strengths vary with the rate of fossil fuel emissions, so that carbon storage capacities of the land and oceans decrease and climate warming accelerates with faster CO2 emissions. Furthermore, there is a positive feedback between the carbon and climate systems, so that climate warming acts to increase the airborne fraction of anthropogenic CO2 and amplify the climate change itself. Globally, the amplification is small at the end of the 21st century in this model because of its low transient climate response and the near-cancellation between large regional changes in the hydrologic and ecosystem responses. Analysis of our results in the context of comparable models suggests that destabilization of the tropical land sink is qualitatively robust, although its degree is uncertain. PMID:16061800

  3. Uncertainties Associated with Quantifying Climate Change Impacts on Human Health: A Case Study for Diarrhea

    PubMed Central

    Kolstad, Erik W.; Johansson, Kjell Arne

    2011-01-01

    Background Climate change is expected to have large impacts on health at low latitudes where droughts and malnutrition, diarrhea, and malaria are projected to increase. Objectives The main objective of this study was to indicate a method to assess a range of plausible health impacts of climate change while handling uncertainties in a unambiguous manner. We illustrate this method by quantifying the impacts of projected regional warming on diarrhea in this century. Methods We combined a range of linear regression coefficients to compute projections of future climate change-induced increases in diarrhea using the results from five empirical studies and a 19-member climate model ensemble for which future greenhouse gas emissions were prescribed. Six geographical regions were analyzed. Results The model ensemble projected temperature increases of up to 4°C over land in the tropics and subtropics by the end of this century. The associated mean projected increases of relative risk of diarrhea in the six study regions were 8–11% (with SDs of 3–5%) by 2010–2039 and 22–29% (SDs of 9–12%) by 2070–2099. Conclusions Even our most conservative estimates indicate substantial impacts from climate change on the incidence of diarrhea. Nevertheless, our main conclusion is that large uncertainties are associated with future projections of diarrhea and climate change. We believe that these uncertainties can be attributed primarily to the sparsity of empirical climate–health data. Our results therefore highlight the need for empirical data in the cross section between climate and human health. PMID:20929684

  4. Climate patriots? Concern over climate change and other environmental issues in Australia.

    PubMed

    Tranter, Bruce; Lester, Libby

    2017-08-01

    Echoing the anti-pollution and resource conservation campaigns in the United States in the early-to-mid-twentieth century, some scholars advocate mobilising support for environmental issues by harnessing the notion of environmental patriotism. Taking action to reduce the impact of global warming has also been cast as a patriotic cause. Drawing upon quantitative data from a recent national survey, we examine the link between patriotism and environmental attitudes in Australia, focussing upon climate change. We find that patriotism has a largely neutral association with concern over environmental issues, with the exception of climate change and, to a lesser extent, wildlife preservation. Expressing concern over climate change appears to be unpatriotic for some Australians. Even after controlling for political party identification and other important correlates of environmental issue concerns, patriots are less likely than others to prioritise climate change as their most urgent environmental issue and less likely to believe that climate change is actually occurring.

  5. Downscaling U.S. public opinion about climate change and the 'Six Americas' to states, cities, and counties

    NASA Astrophysics Data System (ADS)

    Marlon, J. R.; Howe, P. D.; Leiserowitz, A.

    2013-12-01

    For climate change communication to be most effective, messages should be targeted to the characteristics of local audiences. In the U.S., 'Six Americas' have been identified among the public based on their response to the climate change issue. The distribution of these different 'publics' varies between states and communities, yet data about public opinion at the sub-national scale remains scarce. In this presentation, we describe a methodology to statistically downscale results from national-level surveys about the Six Americas, climate literacy, and other aspects of public opinion to smaller areas, including states, metropolitan areas, and counties. The method utilizes multilevel regression with poststratification (MRP) to model public opinion at various scales using a large national-level survey dataset. We present state and county-level estimates of two key beliefs about climate change: belief that climate change is happening, and belief in the scientific consensus about climate change. We further present estimates of how the Six Americas vary across the U.S.

  6. Rates of projected climate change dramatically exceed past rates of climatic niche evolution among vertebrate species.

    PubMed

    Quintero, Ignacio; Wiens, John J

    2013-08-01

    A key question in predicting responses to anthropogenic climate change is: how quickly can species adapt to different climatic conditions? Here, we take a phylogenetic approach to this question. We use 17 time-calibrated phylogenies representing the major tetrapod clades (amphibians, birds, crocodilians, mammals, squamates, turtles) and climatic data from distributions of > 500 extant species. We estimate rates of change based on differences in climatic variables between sister species and estimated times of their splitting. We compare these rates to predicted rates of climate change from 2000 to 2100. Our results are striking: matching projected changes for 2100 would require rates of niche evolution that are > 10,000 times faster than rates typically observed among species, for most variables and clades. Despite many caveats, our results suggest that adaptation to projected changes in the next 100 years would require rates that are largely unprecedented based on observed rates among vertebrate species. © 2013 John Wiley & Sons Ltd/CNRS.

  7. Variability in climate change simulations affects needed long-term riverine nutrient reductions for the Baltic Sea.

    PubMed

    Bring, Arvid; Rogberg, Peter; Destouni, Georgia

    2015-06-01

    Changes to runoff due to climate change may influence management of nutrient loading to the sea. Assuming unchanged river nutrient concentrations, we evaluate the effects of changing runoff on commitments to nutrient reductions under the Baltic Sea Action Plan. For several countries, climate projections point to large variability in load changes in relation to reduction targets. These changes either increase loads, making the target more difficult to reach, or decrease them, leading instead to a full achievement of the target. The impact of variability in climate projections varies with the size of the reduction target and is larger for countries with more limited commitments. In the end, a number of focused actions are needed to manage the effects of climate change on nutrient loads: reducing uncertainty in climate projections, deciding on frameworks to identify best performing models with respect to land surface hydrology, and increasing efforts at sustained monitoring of water flow changes.

  8. Variability in climate change simulations affects needed long-term riverine nutrient reductions for the Baltic Sea

    DOE PAGES

    Bring, Arvid; Rogberg, Peter; Destouni, Georgia

    2015-05-28

    Changes to runoff due to climate change may influence management of nutrient loading to the sea. Assuming unchanged river nutrient concentrations, we evaluate the effects of changing runoff on commitments to nutrient reductions under the Baltic Sea Action Plan. For several countries, climate projections point to large variability in load changes in relation to reduction targets. These changes either increase loads, making the target more difficult to reach, or decrease them, leading instead to a full achievement of the target. The impact of variability in climate projections varies with the size of the reduction target and is larger for countriesmore » with more limited commitments. Finally, in the end, a number of focused actions are needed to manage the effects of climate change on nutrient loads: reducing uncertainty in climate projections, deciding on frameworks to identify best performing models with respect to land surface hydrology, and increasing efforts at sustained monitoring of water flow changes.« less

  9. Variability in climate change simulations affects needed long-term riverine nutrient reductions for the Baltic Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bring, Arvid; Rogberg, Peter; Destouni, Georgia

    Changes to runoff due to climate change may influence management of nutrient loading to the sea. Assuming unchanged river nutrient concentrations, we evaluate the effects of changing runoff on commitments to nutrient reductions under the Baltic Sea Action Plan. For several countries, climate projections point to large variability in load changes in relation to reduction targets. These changes either increase loads, making the target more difficult to reach, or decrease them, leading instead to a full achievement of the target. The impact of variability in climate projections varies with the size of the reduction target and is larger for countriesmore » with more limited commitments. Finally, in the end, a number of focused actions are needed to manage the effects of climate change on nutrient loads: reducing uncertainty in climate projections, deciding on frameworks to identify best performing models with respect to land surface hydrology, and increasing efforts at sustained monitoring of water flow changes.« less

  10. Statistical analysis of large simulated yield datasets for studying climate effects

    USDA-ARS?s Scientific Manuscript database

    Ensembles of process-based crop models are now commonly used to simulate crop growth and development for climate scenarios of temperature and/or precipitation changes corresponding to different projections of atmospheric CO2 concentrations. This approach generates large datasets with thousands of de...

  11. Wind extremes in the North Sea basin under climate change: an ensemble study of 12 CMIP5 GCMs

    NASA Astrophysics Data System (ADS)

    de Winter, R.; Ruessink, G.; Sterl, A.

    2012-12-01

    Coastal safety may be influenced by climate change, as changes in extreme surge levels and wave extremes may increase the vulnerability of dunes and other coastal defenses. In the North Sea, an area already prone to severe flooding, these high surge levels and waves are generated by severe wind speeds during storm events. As a result of the geometry of the North Sea, not only the maximum wind speed is relevant, but also wind direction. Analyzing changes in a changing climate implies that several uncertainties need to be taken into account. First, there is the uncertainty in climate experiments, which represents the possible development of the emission of greenhouse gases. Second, there is uncertainty between the climate models that are used to analyze the effect of different climate experiments. The third uncertainty is the natural variability of the climate. When this system variability is large, small trends will be difficult to detect. The natural variability results in statistical uncertainty, especially for events with high return values. We addressed the first two types of uncertainties for extreme wind conditions in the North Sea using 12 CMIP5 GCMs. To evaluate the differences between the climate experiments, two climate experiments (rcp4.5 and rcp8.5) from 2050-2100 are compared with historical runs, running from 1950-2000. Rcp4.5 is considered to be a middle climate experiment and rcp8.5 represents high-end climate scenarios. The projections of the 12 GCMs for a given scenario illustrate model uncertainty. We focus on the North Sea basin, because changes in wind conditions could have a large impact on safety of the densely populated North Sea coast, an area that has already a high exposure to flooding. Our results show that, consistent with ERA-Interim results, the annual maximum wind speed in the historical run demonstrates large interannual variability. For the North Sea, the annual maximum wind speed is not projected to change in either rcp4.5 or rcp8.5. In fact, the differences in the 12 GCMs are larger than the difference between the three experiments. Furthermore, our results show that, the variation in direction of annual maximum wind speed is large and this precludes a firm statement on climate-change induced changes in these directions. Nonetheless, most models indicate a decrease in annual maximum wind speed from south-eastern directions and an increase from south-western and western directions. This might be caused by a poleward shift of the storm track. The amount of wind from north-west and north-north-west, wind directions that are responsible for the development of extreme storm surges in the southern part of the North Sea, are not projected to change. However, North Sea coasts that have the longest fetch for western direction, e.g. the German Bight, may encounter more often high storm surge levels and extreme waves when the annual maximum wind will indeed be more often from western direction.

  12. Impact of an extreme climatic event on community assembly.

    PubMed

    Thibault, Katherine M; Brown, James H

    2008-03-04

    Extreme climatic events are predicted to increase in frequency and magnitude, but their ecological impacts are poorly understood. Such events are large, infrequent, stochastic perturbations that can change the outcome of entrained ecological processes. Here we show how an extreme flood event affected a desert rodent community that has been monitored for 30 years. The flood (i) caused catastrophic, species-specific mortality; (ii) eliminated the incumbency advantage of previously dominant species; (iii) reset long-term population and community trends; (iv) interacted with competitive and metapopulation dynamics; and (v) resulted in rapid, wholesale reorganization of the community. This and a previous extreme rainfall event were punctuational perturbations-they caused large, rapid population- and community-level changes that were superimposed on a background of more gradual trends driven by climate and vegetation change. Captured by chance through long-term monitoring, the impacts of such large, infrequent events provide unique insights into the processes that structure ecological communities.

  13. Evidence for Large Decadal Variability in the Tropical Mean Radiative Energy Budget

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Wong, Takmeng; Allan, Richard; Slingo, Anthony; Kiehl, Jeffrey T.; Soden, Brian J.; Gordon, C. T.; Miller, Alvin J.; Yang, Shi-Keng; Randall, David R.; hide

    2001-01-01

    It is widely assumed that variations in the radiative energy budget at large time and space scales are very small. We present new evidence from a compilation of over two decades of accurate satellite data that the top-of-atmosphere (TOA) tropical radiative energy budget is much more dynamic and variable than previously thought. We demonstrate that the radiation budget changes are caused by changes In tropical mean cloudiness. The results of several current climate model simulations fall to predict this large observed variation In tropical energy budget. The missing variability in the models highlights the critical need to Improve cloud modeling in the tropics to support Improved prediction of tropical climate on Inter-annual and decadal time scales. We believe that these data are the first rigorous demonstration of decadal time scale changes In the Earth's tropical cloudiness, and that they represent a new and necessary test of climate models.

  14. Regional Climate Change across the Continental U.S. Projected from Downscaling IPCC AR5 Simulations

    NASA Astrophysics Data System (ADS)

    Otte, T. L.; Nolte, C. G.; Otte, M. J.; Pinder, R. W.; Faluvegi, G.; Shindell, D. T.

    2011-12-01

    Projecting climate change scenarios to local scales is important for understanding and mitigating the effects of climate change on society and the environment. Many of the general circulation models (GCMs) that are participating in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) do not fully resolve regional-scale processes and therefore cannot capture local changes in temperature and precipitation extremes. We seek to project the GCM's large-scale climate change signal to the local scale using a regional climate model (RCM) by applying dynamical downscaling techniques. The RCM will be used to better understand the local changes of temperature and precipitation extremes that may result from a changing climate. Preliminary results from downscaling NASA/GISS ModelE simulations of the IPCC AR5 Representative Concentration Pathway (RCP) scenario 6.0 will be shown. The Weather Research and Forecasting (WRF) model will be used as the RCM to downscale decadal time slices for ca. 2000 and ca. 2030 and illustrate potential changes in regional climate for the continental U.S. that are projected by ModelE and WRF under RCP6.0.

  15. The deep ocean under climate change

    NASA Astrophysics Data System (ADS)

    Levin, Lisa A.; Le Bris, Nadine

    2015-11-01

    The deep ocean absorbs vast amounts of heat and carbon dioxide, providing a critical buffer to climate change but exposing vulnerable ecosystems to combined stresses of warming, ocean acidification, deoxygenation, and altered food inputs. Resulting changes may threaten biodiversity and compromise key ocean services that maintain a healthy planet and human livelihoods. There exist large gaps in understanding of the physical and ecological feedbacks that will occur. Explicit recognition of deep-ocean climate mitigation and inclusion in adaptation planning by the United Nations Framework Convention on Climate Change (UNFCCC) could help to expand deep-ocean research and observation and to protect the integrity and functions of deep-ocean ecosystems.

  16. The Effects of Climate Change on Cardiac Health.

    PubMed

    De Blois, Jonathan; Kjellstrom, Tord; Agewall, Stefan; Ezekowitz, Justin A; Armstrong, Paul W; Atar, Dan

    2015-01-01

    The earth's climate is changing and increasing ambient heat levels are emerging in large areas of the world. An important cause of this change is the anthropogenic emission of greenhouse gases. Climate changes have a variety of negative effects on health, including cardiac health. People with pre-existing medical conditions such as cardiovascular disease (including heart failure), people carrying out physically demanding work and the elderly are particularly vulnerable. This review evaluates the evidence base for the cardiac health consequences of climate conditions, with particular reference to increasing heat exposure, and it also explores the potential further implications. © 2015 S. Karger AG, Basel.

  17. Uncertainty in Climate Change Research: An Integrated Approach

    NASA Astrophysics Data System (ADS)

    Mearns, L.

    2017-12-01

    Uncertainty has been a major theme in research regarding climate change from virtually the very beginning. And appropriately characterizing and quantifying uncertainty has been an important aspect of this work. Initially, uncertainties were explored regarding the climate system and how it would react to future forcing. A concomitant area of concern was viewed in the future emissions and concentrations of important forcing agents such as greenhouse gases and aerosols. But, of course we know there are important uncertainties in all aspects of climate change research, not just that of the climate system and emissions. And as climate change research has become more important and of pragmatic concern as possible solutions to the climate change problem are addressed, exploring all the relevant uncertainties has become more relevant and urgent. More recently, over the past five years or so, uncertainties in impacts models, such as agricultural and hydrological models, have received much more attention, through programs such as AgMIP, and some research in this arena has indicated that the uncertainty in the impacts models can be as great or greater than that in the climate system. Still there remains other areas of uncertainty that remain underexplored and/or undervalued. This includes uncertainty in vulnerability and governance. Without more thoroughly exploring these last uncertainties, we likely will underestimate important uncertainties particularly regarding how different systems can successfully adapt to climate change . In this talk I will discuss these different uncertainties and how to combine them to give a complete picture of the total uncertainty individual systems are facing. And as part of this, I will discuss how the uncertainty can be successfully managed even if it is fairly large and deep. Part of my argument will be that large uncertainty is not the enemy, but rather false certainty is the true danger.

  18. Future changes in large-scale transport and stratosphere-troposphere exchange

    NASA Astrophysics Data System (ADS)

    Abalos, M.; Randel, W. J.; Kinnison, D. E.; Garcia, R. R.

    2017-12-01

    Future changes in large-scale transport are investigated in long-term (1955-2099) simulations of the Community Earth System Model - Whole Atmosphere Community Climate Model (CESM-WACCM) under an RCP6.0 climate change scenario. We examine artificial passive tracers in order to isolate transport changes from future changes in emissions and chemical processes. The model suggests enhanced stratosphere-troposphere exchange in both directions (STE), with decreasing tropospheric and increasing stratospheric tracer concentrations in the troposphere. Changes in the different transport processes are evaluated using the Transformed Eulerian Mean continuity equation, including parameterized convective transport. Dynamical changes associated with the rise of the tropopause height are shown to play a crucial role on future transport trends.

  19. Multi-model projections of Indian summer monsoon climate changes under A1B scenario

    NASA Astrophysics Data System (ADS)

    Niu, X.; Wang, S.; Tang, J.

    2016-12-01

    As part of the Regional Climate Model Intercomparison Project for Asia, the projections of Indian summer monsoon climate changes are constructed using three global climate models (GCMs) and seven regional climate models (RCMs) during 2041-2060 based on the Intergovernmental Panel on Climate Change A1B emission scenario. For the control climate of 1981-2000, most nested RCMs show advantage over the driving GCM of European Centre/Hamburg Fifth Generation (ECHAM5) in the temporal-spatial distributions of temperature and precipitation over Indian Peninsula. Following the driving GCM of ECHAM5, most nested RCMs produce advanced monsoon onset in the control climate. For future climate widespread summer warming is projected over Indian Peninsula by all climate models, with the Multi-RCMs ensemble mean (MME) temperature increasing of 1°C to 2.5°C and the maximum warming center located in northern Indian Peninsula. While for the precipitation, a large inter-model spread is projected by RCMs, with wetter condition in MME projections and significant increase over southern India. Driven by the same GCM, most RCMs project advanced monsoon onset while delayed onset is found in two Regional Climate Model (RegCM3) projections, indicating uncertainty can be expected in the Indian Summer Monsoon onset. All climate models except Conformal-Cubic Atmospheric Model with equal resolution (referred as CCAMP) and two RegCM3 models project stronger summer monsoon during 2041-2060. The disagreement in precipitation projections by RCMs indicates that the surface climate change on regional scale is not only dominated by the large-scale forcing which is provided by driving GCM but also sensitive to RCM' internal physics.

  20. Climate drivers of the Amazon forest greening.

    PubMed

    Wagner, Fabien Hubert; Hérault, Bruno; Rossi, Vivien; Hilker, Thomas; Maeda, Eduardo Eiji; Sanchez, Alber; Lyapustin, Alexei I; Galvão, Lênio Soares; Wang, Yujie; Aragão, Luiz E O C

    2017-01-01

    Our limited understanding of the climate controls on tropical forest seasonality is one of the biggest sources of uncertainty in modeling climate change impacts on terrestrial ecosystems. Combining leaf production, litterfall and climate observations from satellite and ground data in the Amazon forest, we show that seasonal variation in leaf production is largely triggered by climate signals, specifically, insolation increase (70.4% of the total area) and precipitation increase (29.6%). Increase of insolation drives leaf growth in the absence of water limitation. For these non-water-limited forests, the simultaneous leaf flush occurs in a sufficient proportion of the trees to be observed from space. While tropical cycles are generally defined in terms of dry or wet season, we show that for a large part of Amazonia the increase in insolation triggers the visible progress of leaf growth, just like during spring in temperate forests. The dependence of leaf growth initiation on climate seasonality may result in a higher sensitivity of these ecosystems to changes in climate than previously thought.

  1. Changes in extreme events and the potential impacts on human health.

    PubMed

    Bell, Jesse E; Brown, Claudia Langford; Conlon, Kathryn; Herring, Stephanie; Kunkel, Kenneth E; Lawrimore, Jay; Luber, George; Schreck, Carl; Smith, Adam; Uejio, Christopher

    2018-04-01

    Extreme weather and climate-related events affect human health by causing death, injury, and illness, as well as having large socioeconomic impacts. Climate change has caused changes in extreme event frequency, intensity, and geographic distribution, and will continue to be a driver for change in the future. Some of these events include heat waves, droughts, wildfires, dust storms, flooding rains, coastal flooding, storm surges, and hurricanes. The pathways connecting extreme events to health outcomes and economic losses can be diverse and complex. The difficulty in predicting these relationships comes from the local societal and environmental factors that affect disease burden. More information is needed about the impacts of climate change on public health and economies to effectively plan for and adapt to climate change. This paper describes some of the ways extreme events are changing and provides examples of the potential impacts on human health and infrastructure. It also identifies key research gaps to be addressed to improve the resilience of public health to extreme events in the future. Extreme weather and climate events affect human health by causing death, injury, and illness, as well as having large socioeconomic impacts. Climate change has caused changes in extreme event frequency, intensity, and geographic distribution, and will continue to be a driver for change in the future. Some of these events include heat waves, droughts, wildfires, flooding rains, coastal flooding, surges, and hurricanes. The pathways connecting extreme events to health outcomes and economic losses can be diverse and complex. The difficulty in predicting these relationships comes from the local societal and environmental factors that affect disease burden.

  2. Adaptive and plastic responses of Quercus petraea populations to climate across Europe.

    PubMed

    Sáenz-Romero, Cuauhtémoc; Lamy, Jean-Baptiste; Ducousso, Alexis; Musch, Brigitte; Ehrenmann, François; Delzon, Sylvain; Cavers, Stephen; Chałupka, Władysław; Dağdaş, Said; Hansen, Jon Kehlet; Lee, Steve J; Liesebach, Mirko; Rau, Hans-Martin; Psomas, Achilleas; Schneck, Volker; Steiner, Wilfried; Zimmermann, Niklaus E; Kremer, Antoine

    2017-07-01

    How temperate forests will respond to climate change is uncertain; projections range from severe decline to increased growth. We conducted field tests of sessile oak (Quercus petraea), a widespread keystone European forest tree species, including more than 150 000 trees sourced from 116 geographically diverse populations. The tests were planted on 23 field sites in six European countries, in order to expose them to a wide range of climates, including sites reflecting future warmer and drier climates. By assessing tree height and survival, our objectives were twofold: (i) to identify the source of differential population responses to climate (genetic differentiation due to past divergent climatic selection vs. plastic responses to ongoing climate change) and (ii) to explore which climatic variables (temperature or precipitation) trigger the population responses. Tree growth and survival were modeled for contemporary climate and then projected using data from four regional climate models for years 2071-2100, using two greenhouse gas concentration trajectory scenarios each. Overall, results indicated a moderate response of tree height and survival to climate variation, with changes in dryness (either annual or during the growing season) explaining the major part of the response. While, on average, populations exhibited local adaptation, there was significant clinal population differentiation for height growth with winter temperature at the site of origin. The most moderate climate model (HIRHAM5-EC; rcp4.5) predicted minor decreases in height and survival, while the most extreme model (CCLM4-GEM2-ES; rcp8.5) predicted large decreases in survival and growth for southern and southeastern edge populations (Hungary and Turkey). Other nonmarginal populations with continental climates were predicted to be severely and negatively affected (Bercé, France), while populations at the contemporary northern limit (colder and humid maritime regions; Denmark and Norway) will probably not show large changes in growth and survival in response to climate change. © 2017 John Wiley & Sons Ltd.

  3. A method to encapsulate model structural uncertainty in ensemble projections of future climate: EPIC v1.0

    NASA Astrophysics Data System (ADS)

    Lewis, Jared; Bodeker, Greg E.; Kremser, Stefanie; Tait, Andrew

    2017-12-01

    A method, based on climate pattern scaling, has been developed to expand a small number of projections of fields of a selected climate variable (X) into an ensemble that encapsulates a wide range of indicative model structural uncertainties. The method described in this paper is referred to as the Ensemble Projections Incorporating Climate model uncertainty (EPIC) method. Each ensemble member is constructed by adding contributions from (1) a climatology derived from observations that represents the time-invariant part of the signal; (2) a contribution from forced changes in X, where those changes can be statistically related to changes in global mean surface temperature (Tglobal); and (3) a contribution from unforced variability that is generated by a stochastic weather generator. The patterns of unforced variability are also allowed to respond to changes in Tglobal. The statistical relationships between changes in X (and its patterns of variability) and Tglobal are obtained in a training phase. Then, in an implementation phase, 190 simulations of Tglobal are generated using a simple climate model tuned to emulate 19 different global climate models (GCMs) and 10 different carbon cycle models. Using the generated Tglobal time series and the correlation between the forced changes in X and Tglobal, obtained in the training phase, the forced change in the X field can be generated many times using Monte Carlo analysis. A stochastic weather generator is used to generate realistic representations of weather which include spatial coherence. Because GCMs and regional climate models (RCMs) are less likely to correctly represent unforced variability compared to observations, the stochastic weather generator takes as input measures of variability derived from observations, but also responds to forced changes in climate in a way that is consistent with the RCM projections. This approach to generating a large ensemble of projections is many orders of magnitude more computationally efficient than running multiple GCM or RCM simulations. Such a large ensemble of projections permits a description of a probability density function (PDF) of future climate states rather than a small number of individual story lines within that PDF, which may not be representative of the PDF as a whole; the EPIC method largely corrects for such potential sampling biases. The method is useful for providing projections of changes in climate to users wishing to investigate the impacts and implications of climate change in a probabilistic way. A web-based tool, using the EPIC method to provide probabilistic projections of changes in daily maximum and minimum temperatures for New Zealand, has been developed and is described in this paper.

  4. Web based visualization of large climate data sets

    USGS Publications Warehouse

    Alder, Jay R.; Hostetler, Steven W.

    2015-01-01

    We have implemented the USGS National Climate Change Viewer (NCCV), which is an easy-to-use web application that displays future projections from global climate models over the United States at the state, county and watershed scales. We incorporate the NASA NEX-DCP30 statistically downscaled temperature and precipitation for 30 global climate models being used in the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC), and hydrologic variables we simulated using a simple water-balance model. Our application summarizes very large, complex data sets at scales relevant to resource managers and citizens and makes climate-change projection information accessible to users of varying skill levels. Tens of terabytes of high-resolution climate and water-balance data are distilled to compact binary format summary files that are used in the application. To alleviate slow response times under high loads, we developed a map caching technique that reduces the time it takes to generate maps by several orders of magnitude. The reduced access time scales to >500 concurrent users. We provide code examples that demonstrate key aspects of data processing, data exporting/importing and the caching technique used in the NCCV.

  5. Climate change, phenology, and butterfly host plant utilization.

    PubMed

    Navarro-Cano, Jose A; Karlsson, Bengt; Posledovich, Diana; Toftegaard, Tenna; Wiklund, Christer; Ehrlén, Johan; Gotthard, Karl

    2015-01-01

    Knowledge of how species interactions are influenced by climate warming is paramount to understand current biodiversity changes. We review phenological changes of Swedish butterflies during the latest decades and explore potential climate effects on butterfly-host plant interactions using the Orange tip butterfly Anthocharis cardamines and its host plants as a model system. This butterfly has advanced its appearance dates substantially, and its mean flight date shows a positive correlation with latitude. We show that there is a large latitudinal variation in host use and that butterfly populations select plant individuals based on their flowering phenology. We conclude that A. cardamines is a phenological specialist but a host species generalist. This implies that thermal plasticity for spring development influences host utilization of the butterfly through effects on the phenological matching with its host plants. However, the host utilization strategy of A. cardamines appears to render it resilient to relatively large variation in climate.

  6. When smoke gets in our eyes: the multiple impacts of atmospheric black carbon on climate, air quality and health.

    PubMed

    Highwood, Eleanor J; Kinnersley, Robert P

    2006-05-01

    With both climate change and air quality on political and social agendas from local to global scale, the links between these hitherto separate fields are becoming more apparent. Black carbon, largely from combustion processes, scatters and absorbs incoming solar radiation, contributes to poor air quality and induces respiratory and cardiovascular problems. Uncertainties in the amount, location, size and shape of atmospheric black carbon cause large uncertainty in both climate change estimates and toxicology studies alike. Increased research has led to new effects and areas of uncertainty being uncovered. Here we draw together recent results and explore the increasing opportunities for synergistic research that will lead to improved confidence in the impact of black carbon on climate change, air quality and human health. Topics of mutual interest include better information on spatial distribution, size, mixing state and measuring and monitoring.

  7. Impact of climate change on cold hardiness of Douglas-fir (Pseudotsuga menziesii): Environmental and genetic considerations

    Treesearch

    Sheel Bansal; Bradley J. St. Clair; Constance A. Harrington; Peter J. Gould

    2015-01-01

    The success of conifers over much of the world’s terrestrial surface is largely attributable to their tolerance to cold stress (i.e., cold hardiness). Due to an increase in climate variability, climate change may reduce conifer cold hardiness, which in turn could impact ecosystem functioning and productivity in conifer-dominated forests. The expression of cold...

  8. Are forest disturbances amplifying or canceling out climate change-induced productivity changes in European forests?

    NASA Astrophysics Data System (ADS)

    Reyer, Christopher P. O.; Bathgate, Stephen; Blennow, Kristina; Borges, Jose G.; Bugmann, Harald; Delzon, Sylvain; Faias, Sonia P.; Garcia-Gonzalo, Jordi; Gardiner, Barry; Gonzalez-Olabarria, Jose Ramon; Gracia, Carlos; Guerra Hernández, Juan; Kellomäki, Seppo; Kramer, Koen; Lexer, Manfred J.; Lindner, Marcus; van der Maaten, Ernst; Maroschek, Michael; Muys, Bart; Nicoll, Bruce; Palahi, Marc; Palma, João HN; Paulo, Joana A.; Peltola, Heli; Pukkala, Timo; Rammer, Werner; Ray, Duncan; Sabaté, Santiago; Schelhaas, Mart-Jan; Seidl, Rupert; Temperli, Christian; Tomé, Margarida; Yousefpour, Rasoul; Zimmermann, Niklaus E.; Hanewinkel, Marc

    2017-03-01

    Recent studies projecting future climate change impacts on forests mainly consider either the effects of climate change on productivity or on disturbances. However, productivity and disturbances are intrinsically linked because 1) disturbances directly affect forest productivity (e.g. via a reduction in leaf area, growing stock or resource-use efficiency), and 2) disturbance susceptibility is often coupled to a certain development phase of the forest with productivity determining the time a forest is in this specific phase of susceptibility. The objective of this paper is to provide an overview of forest productivity changes in different forest regions in Europe under climate change, and partition these changes into effects induced by climate change alone and by climate change and disturbances. We present projections of climate change impacts on forest productivity from state-of-the-art forest models that dynamically simulate forest productivity and the effects of the main European disturbance agents (fire, storm, insects), driven by the same climate scenario in seven forest case studies along a large climatic gradient throughout Europe. Our study shows that, in most cases, including disturbances in the simulations exaggerate ongoing productivity declines or cancel out productivity gains in response to climate change. In fewer cases, disturbances also increase productivity or buffer climate-change induced productivity losses, e.g. because low severity fires can alleviate resource competition and increase fertilization. Even though our results cannot simply be extrapolated to other types of forests and disturbances, we argue that it is necessary to interpret climate change-induced productivity and disturbance changes jointly to capture the full range of climate change impacts on forests and to plan adaptation measures.

  9. Are forest disturbances amplifying or canceling out climate change-induced productivity changes in European forests?

    PubMed Central

    Reyer, Christopher P O; Bathgate, Stephen; Blennow, Kristina; Borges, Jose G; Bugmann, Harald; Delzon, Sylvain; Faias, Sonia P; Garcia-Gonzalo, Jordi; Gardiner, Barry; Gonzalez-Olabarria, Jose Ramon; Gracia, Carlos; Hernández, Juan Guerra; Kellomäki, Seppo; Kramer, Koen; Lexer, Manfred J; Lindner, Marcus; van der Maaten, Ernst; Maroschek, Michael; Muys, Bart; Nicoll, Bruce; Palahi, Marc; Palma, João HN; Paulo, Joana A; Peltola, Heli; Pukkala, Timo; Rammer, Werner; Ray, Duncan; Sabaté, Santiago; Schelhaas, Mart-Jan; Seidl, Rupert; Temperli, Christian; Tomé, Margarida; Yousefpour, Rasoul; Zimmermann, Niklaus E; Hanewinkel, Marc

    2017-01-01

    Recent studies projecting future climate change impacts on forests mainly consider either the effects of climate change on productivity or on disturbances. However, productivity and disturbances are intrinsically linked because 1) disturbances directly affect forest productivity (e.g. via a reduction in leaf area, growing stock or resource-use efficiency), and 2) disturbance susceptibility is often coupled to a certain development phase of the forest with productivity determining the time a forest is in this specific phase of susceptibility. The objective of this paper is to provide an overview of forest productivity changes in different forest regions in Europe under climate change, and partition these changes into effects induced by climate change alone and by climate change and disturbances. We present projections of climate change impacts on forest productivity from state-of-the-art forest models that dynamically simulate forest productivity and the effects of the main European disturbance agents (fire, storm, insects), driven by the same climate scenario in seven forest case studies along a large climatic gradient throughout Europe. Our study shows that, in most cases, including disturbances in the simulations exaggerate ongoing productivity declines or cancel out productivity gains in response to climate change. In fewer cases, disturbances also increase productivity or buffer climate-change induced productivity losses, e.g. because low severity fires can alleviate resource competition and increase fertilization. Even though our results cannot simply be extrapolated to other types of forests and disturbances, we argue that it is necessary to interpret climate change-induced productivity and disturbance changes jointly to capture the full range of climate change impacts on forests and to plan adaptation measures. PMID:28855959

  10. Are forest disturbances amplifying or canceling out climate change-induced productivity changes in European forests?

    PubMed

    Reyer, Christopher P O; Bathgate, Stephen; Blennow, Kristina; Borges, Jose G; Bugmann, Harald; Delzon, Sylvain; Faias, Sonia P; Garcia-Gonzalo, Jordi; Gardiner, Barry; Gonzalez-Olabarria, Jose Ramon; Gracia, Carlos; Hernández, Juan Guerra; Kellomäki, Seppo; Kramer, Koen; Lexer, Manfred J; Lindner, Marcus; van der Maaten, Ernst; Maroschek, Michael; Muys, Bart; Nicoll, Bruce; Palahi, Marc; Palma, João Hn; Paulo, Joana A; Peltola, Heli; Pukkala, Timo; Rammer, Werner; Ray, Duncan; Sabaté, Santiago; Schelhaas, Mart-Jan; Seidl, Rupert; Temperli, Christian; Tomé, Margarida; Yousefpour, Rasoul; Zimmermann, Niklaus E; Hanewinkel, Marc

    2017-03-16

    Recent studies projecting future climate change impacts on forests mainly consider either the effects of climate change on productivity or on disturbances. However, productivity and disturbances are intrinsically linked because 1) disturbances directly affect forest productivity (e.g. via a reduction in leaf area, growing stock or resource-use efficiency), and 2) disturbance susceptibility is often coupled to a certain development phase of the forest with productivity determining the time a forest is in this specific phase of susceptibility. The objective of this paper is to provide an overview of forest productivity changes in different forest regions in Europe under climate change, and partition these changes into effects induced by climate change alone and by climate change and disturbances. We present projections of climate change impacts on forest productivity from state-of-the-art forest models that dynamically simulate forest productivity and the effects of the main European disturbance agents (fire, storm, insects), driven by the same climate scenario in seven forest case studies along a large climatic gradient throughout Europe. Our study shows that, in most cases, including disturbances in the simulations exaggerate ongoing productivity declines or cancel out productivity gains in response to climate change. In fewer cases, disturbances also increase productivity or buffer climate-change induced productivity losses, e.g. because low severity fires can alleviate resource competition and increase fertilization. Even though our results cannot simply be extrapolated to other types of forests and disturbances, we argue that it is necessary to interpret climate change-induced productivity and disturbance changes jointly to capture the full range of climate change impacts on forests and to plan adaptation measures.

  11. Dangerous climate change and the importance of adaptation for the Arctic's Inuit population

    NASA Astrophysics Data System (ADS)

    Ford, James D.

    2009-04-01

    The Arctic's climate is changing rapidly, to the extent that 'dangerous' climate change as defined by the United Nations Framework on Climate Change might already be occurring. These changes are having implications for the Arctic's Inuit population and are being exacerbated by the dependence of Inuit on biophysical resources for livelihoods and the low socio-economic-health status of many northern communities. Given the nature of current climate change and projections of a rapidly warming Arctic, climate policy assumes a particular importance for Inuit regions. This paper argues that efforts to stabilize and reduce greenhouse gas emissions are urgent if we are to avoid runaway climate change in the Arctic, but unlikely to prevent changes which will be dangerous for Inuit. In this context, a new policy discourse on climate change is required for Arctic regions—one that focuses on adaptation. The paper demonstrates that states with Inuit populations and the international community in general has obligations to assist Inuit to adapt to climate change through international human rights and climate change treaties. However, the adaptation deficit, in terms of what we know and what we need to know to facilitate successful adaptation, is particularly large in an Arctic context and limiting the ability to develop response options. Moreover, adaptation as an option of response to climate change is still marginal in policy negotiations and Inuit political actors have been slow to argue the need for adaptation assistance. A new focus on adaptation in both policy negotiations and scientific research is needed to enhance Inuit resilience and reduce vulnerability in a rapidly changing climate.

  12. What Can Plasticity Contribute to Insect Responses to Climate Change?

    PubMed

    Sgrò, Carla M; Terblanche, John S; Hoffmann, Ary A

    2016-01-01

    Plastic responses figure prominently in discussions on insect adaptation to climate change. Here we review the different types of plastic responses and whether they contribute much to adaptation. Under climate change, plastic responses involving diapause are often critical for population persistence, but key diapause responses under dry and hot conditions remain poorly understood. Climate variability can impose large fitness costs on insects showing diapause and other life cycle responses, threatening population persistence. In response to stressful climatic conditions, insects also undergo ontogenetic changes including hardening and acclimation. Environmental conditions experienced across developmental stages or by prior generations can influence hardening and acclimation, although evidence for the latter remains weak. Costs and constraints influence patterns of plasticity across insect clades, but they are poorly understood within field contexts. Plastic responses and their evolution should be considered when predicting vulnerability to climate change-but meaningful empirical data lag behind theory.

  13. Using Unplanned Fires to Help Suppressing Future Large Fires in Mediterranean Forests

    PubMed Central

    Regos, Adrián; Aquilué, Núria; Retana, Javier; De Cáceres, Miquel; Brotons, Lluís

    2014-01-01

    Despite the huge resources invested in fire suppression, the impact of wildfires has considerably increased across the Mediterranean region since the second half of the 20th century. Modulating fire suppression efforts in mild weather conditions is an appealing but hotly-debated strategy to use unplanned fires and associated fuel reduction to create opportunities for suppression of large fires in future adverse weather conditions. Using a spatially-explicit fire–succession model developed for Catalonia (Spain), we assessed this opportunistic policy by using two fire suppression strategies that reproduce how firefighters in extreme weather conditions exploit previous fire scars as firefighting opportunities. We designed scenarios by combining different levels of fire suppression efficiency and climatic severity for a 50-year period (2000–2050). An opportunistic fire suppression policy induced large-scale changes in fire regimes and decreased the area burnt under extreme climate conditions, but only accounted for up to 18–22% of the area to be burnt in reference scenarios. The area suppressed in adverse years tended to increase in scenarios with increasing amounts of area burnt during years dominated by mild weather. Climate change had counterintuitive effects on opportunistic fire suppression strategies. Climate warming increased the incidence of large fires under uncontrolled conditions but also indirectly increased opportunities for enhanced fire suppression. Therefore, to shift fire suppression opportunities from adverse to mild years, we would require a disproportionately large amount of area burnt in mild years. We conclude that the strategic planning of fire suppression resources has the potential to become an important cost-effective fuel-reduction strategy at large spatial scale. We do however suggest that this strategy should probably be accompanied by other fuel-reduction treatments applied at broad scales if large-scale changes in fire regimes are to be achieved, especially in the wider context of climate change. PMID:24727853

  14. Using unplanned fires to help suppressing future large fires in Mediterranean forests.

    PubMed

    Regos, Adrián; Aquilué, Núria; Retana, Javier; De Cáceres, Miquel; Brotons, Lluís

    2014-01-01

    Despite the huge resources invested in fire suppression, the impact of wildfires has considerably increased across the Mediterranean region since the second half of the 20th century. Modulating fire suppression efforts in mild weather conditions is an appealing but hotly-debated strategy to use unplanned fires and associated fuel reduction to create opportunities for suppression of large fires in future adverse weather conditions. Using a spatially-explicit fire-succession model developed for Catalonia (Spain), we assessed this opportunistic policy by using two fire suppression strategies that reproduce how firefighters in extreme weather conditions exploit previous fire scars as firefighting opportunities. We designed scenarios by combining different levels of fire suppression efficiency and climatic severity for a 50-year period (2000-2050). An opportunistic fire suppression policy induced large-scale changes in fire regimes and decreased the area burnt under extreme climate conditions, but only accounted for up to 18-22% of the area to be burnt in reference scenarios. The area suppressed in adverse years tended to increase in scenarios with increasing amounts of area burnt during years dominated by mild weather. Climate change had counterintuitive effects on opportunistic fire suppression strategies. Climate warming increased the incidence of large fires under uncontrolled conditions but also indirectly increased opportunities for enhanced fire suppression. Therefore, to shift fire suppression opportunities from adverse to mild years, we would require a disproportionately large amount of area burnt in mild years. We conclude that the strategic planning of fire suppression resources has the potential to become an important cost-effective fuel-reduction strategy at large spatial scale. We do however suggest that this strategy should probably be accompanied by other fuel-reduction treatments applied at broad scales if large-scale changes in fire regimes are to be achieved, especially in the wider context of climate change.

  15. Consistent response of bird populations to climate change on two continents.

    PubMed

    Stephens, Philip A; Mason, Lucy R; Green, Rhys E; Gregory, Richard D; Sauer, John R; Alison, Jamie; Aunins, Ainars; Brotons, Lluís; Butchart, Stuart H M; Campedelli, Tommaso; Chodkiewicz, Tomasz; Chylarecki, Przemysław; Crowe, Olivia; Elts, Jaanus; Escandell, Virginia; Foppen, Ruud P B; Heldbjerg, Henning; Herrando, Sergi; Husby, Magne; Jiguet, Frédéric; Lehikoinen, Aleksi; Lindström, Åke; Noble, David G; Paquet, Jean-Yves; Reif, Jiri; Sattler, Thomas; Szép, Tibor; Teufelbauer, Norbert; Trautmann, Sven; van Strien, Arco J; van Turnhout, Chris A M; Vorisek, Petr; Willis, Stephen G

    2016-04-01

    Global climate change is a major threat to biodiversity. Large-scale analyses have generally focused on the impacts of climate change on the geographic ranges of species and on phenology, the timing of ecological phenomena. We used long-term monitoring of the abundance of breeding birds across Europe and the United States to produce, for both regions, composite population indices for two groups of species: those for which climate suitability has been either improving or declining since 1980. The ratio of these composite indices, the climate impact indicator (CII), reflects the divergent fates of species favored or disadvantaged by climate change. The trend in CII is positive and similar in the two regions. On both continents, interspecific and spatial variation in population abundance trends are well predicted by climate suitability trends. Copyright © 2016, American Association for the Advancement of Science.

  16. Advances in risk assessment for climate change adaptation policy.

    PubMed

    Adger, W Neil; Brown, Iain; Surminski, Swenja

    2018-06-13

    Climate change risk assessment involves formal analysis of the consequences, likelihoods and responses to the impacts of climate change and the options for addressing these under societal constraints. Conventional approaches to risk assessment are challenged by the significant temporal and spatial dynamics of climate change; by the amplification of risks through societal preferences and values; and through the interaction of multiple risk factors. This paper introduces the theme issue by reviewing the current practice and frontiers of climate change risk assessment, with specific emphasis on the development of adaptation policy that aims to manage those risks. These frontiers include integrated assessments, dealing with climate risks across borders and scales, addressing systemic risks, and innovative co-production methods to prioritize solutions to climate challenges with decision-makers. By reviewing recent developments in the use of large-scale risk assessment for adaptation policy-making, we suggest a forward-looking research agenda to meet ongoing strategic policy requirements in local, national and international contexts.This article is part of the theme issue 'Advances in risk assessment for climate change adaptation policy'. © 2018 The Author(s).

  17. Advances in risk assessment for climate change adaptation policy

    NASA Astrophysics Data System (ADS)

    Adger, W. Neil; Brown, Iain; Surminski, Swenja

    2018-06-01

    Climate change risk assessment involves formal analysis of the consequences, likelihoods and responses to the impacts of climate change and the options for addressing these under societal constraints. Conventional approaches to risk assessment are challenged by the significant temporal and spatial dynamics of climate change; by the amplification of risks through societal preferences and values; and through the interaction of multiple risk factors. This paper introduces the theme issue by reviewing the current practice and frontiers of climate change risk assessment, with specific emphasis on the development of adaptation policy that aims to manage those risks. These frontiers include integrated assessments, dealing with climate risks across borders and scales, addressing systemic risks, and innovative co-production methods to prioritize solutions to climate challenges with decision-makers. By reviewing recent developments in the use of large-scale risk assessment for adaptation policy-making, we suggest a forward-looking research agenda to meet ongoing strategic policy requirements in local, national and international contexts. This article is part of the theme issue `Advances in risk assessment for climate change adaptation policy'.

  18. Advances in risk assessment for climate change adaptation policy

    PubMed Central

    Adger, W. Neil; Brown, Iain; Surminski, Swenja

    2018-01-01

    Climate change risk assessment involves formal analysis of the consequences, likelihoods and responses to the impacts of climate change and the options for addressing these under societal constraints. Conventional approaches to risk assessment are challenged by the significant temporal and spatial dynamics of climate change; by the amplification of risks through societal preferences and values; and through the interaction of multiple risk factors. This paper introduces the theme issue by reviewing the current practice and frontiers of climate change risk assessment, with specific emphasis on the development of adaptation policy that aims to manage those risks. These frontiers include integrated assessments, dealing with climate risks across borders and scales, addressing systemic risks, and innovative co-production methods to prioritize solutions to climate challenges with decision-makers. By reviewing recent developments in the use of large-scale risk assessment for adaptation policy-making, we suggest a forward-looking research agenda to meet ongoing strategic policy requirements in local, national and international contexts. This article is part of the theme issue ‘Advances in risk assessment for climate change adaptation policy’. PMID:29712800

  19. Regional Climate Change across North America in 2030 Projected from RCP6.0

    NASA Astrophysics Data System (ADS)

    Otte, T.; Nolte, C. G.; Faluvegi, G.; Shindell, D. T.

    2012-12-01

    Projecting climate change scenarios to local scales is important for understanding and mitigating the effects of climate change on society and the environment. Many of the general circulation models (GCMs) that are participating in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) do not fully resolve regional-scale processes and therefore cannot capture local changes in temperature and precipitation extremes. We seek to project the GCM's large-scale climate change signal to the local scale using a regional climate model (RCM) by applying dynamical downscaling techniques. The RCM will be used to better understand the local changes of temperature and precipitation extremes that may result from a changing climate. In this research, downscaling techniques that we developed with historical data are now applied to GCM fields. Results from downscaling NASA/GISS ModelE2 simulations of the IPCC AR5 Representative Concentration Pathway (RCP) scenario 6.0 will be shown. The Weather Research and Forecasting (WRF) model has been used as the RCM to downscale decadal time slices for ca. 2000 and ca. 2030 over North America and illustrate potential changes in regional climate that are projected by ModelE2 and WRF under RCP6.0. The analysis focuses on regional climate fields that most strongly influence the interactions between climate change and air quality. In particular, an analysis of extreme temperature and precipitation events will be presented.

  20. Assessing the 100-Year Climate Change Mitigation Potential of Large-Scale Tropical Forest Restoration Under the Bonn Challenge

    NASA Astrophysics Data System (ADS)

    Wheeler, C. E.; Mitchard, E. T.; Lewis, S. L.

    2017-12-01

    Restoring degraded and deforested tropical lands to sequester carbon is widely considered to offer substantial climate change mitigation opportunities, if conducted over large spatial scales. Despite this assertion, explicit estimates of how much carbon could be sequestered because of large-scale restoration are rare and have large uncertainties. This is principally due to the many different characteristics of land available for restoration, and different potential restoration activities, which together cause very different rates of carbon sequestration. For different restoration pathways: natural regeneration of degraded and secondary forest, timber plantations and agroforestry, we estimate carbon sequestration rates from the published literature. Then based on tropical restoration commitments made under the Bonn challenge and using carbon density maps, these carbon sequestration rates were used to predict total pan-tropical carbon sequestration to 2100. Restoration of degraded or secondary forest via natural regeneration offers the greatest carbon sequestration potential, considerably exceeding the carbon captured by either timber plantations or agroforestry. This is predominantly due to naturally regenerating forests representing a more permanent store of carbon in comparison to timber plantations and agroforestry land-use options, which, due to their rotational nature, result in the sequential return of carbon to the atmosphere. If the Bonn Challenge is to achieve its ambition of providing substantial climate change mitigation from restoration it must incorporate large areas of natural regeneration back to an intact forest state, otherwise it stands to be a missed opportunity in helping meet the Paris climate change goals.

  1. Building Public Will for Climate Change Solutions: Which Beliefs Are Most Helpful?

    NASA Astrophysics Data System (ADS)

    Roser-Renouf, C.; Maibach, E.; Lewandowsky, S.; Cook, J.

    2016-12-01

    At the COP21 meeting in December 2015, the nations of the world set an ambitious climate change goal - to limit warming to no more than 2 degrees (C), ideally limiting the warming to 1.5 degrees. Achieving this ambitious goal will require building and/or sustaining a high degree of political will in dozens or hundreds of nations, especially highly industrialized nations. One important means of building/sustaining political will is to build public will (i.e., public demand) in support of this goal. Over the past decade, there has been a considerable amount of empirical social science research on public engagement with climate change. In this presentation, we will briefly review the findings of some of this research to suggest that five key beliefs largely form the basis for public will to address climate change. Specifically, people who hold the following beliefs are more likely to support actions to limit climate change, and to personally be taking helpful actions themselves: (1) climate change is real; (2) climate change is human-caused; (3) there is expert consensus about human-caused climate change; (4) climate change is harmful to people; (5) actions can be taken to limit climate change. We will also briefly review what is known about how to successfully communicate these ideas in ways that minimize the societal polarization about climate change (what we call the "acceptance gap") that has developed between liberals and conservatives in several primarily English-speaking nations.

  2. Climate variability rather than overstocking causes recent large scale cover changes of Tibetan pastures.

    PubMed

    Lehnert, L W; Wesche, K; Trachte, K; Reudenbach, C; Bendix, J

    2016-04-13

    The Tibetan Plateau (TP) is a globally important "water tower" that provides water for nearly 40% of the world's population. This supply function is claimed to be threatened by pasture degradation on the TP and the associated loss of water regulation functions. However, neither potential large scale degradation changes nor their drivers are known. Here, we analyse trends in a high-resolution dataset of grassland cover to determine the interactions among vegetation dynamics, climate change and human impacts on the TP. The results reveal that vegetation changes have regionally different triggers: While the vegetation cover has increased since the year 2000 in the north-eastern part of the TP due to an increase in precipitation, it has declined in the central and western parts of the TP due to rising air temperature and declining precipitation. Increasing livestock numbers as a result of land use changes exacerbated the negative trends but were not their exclusive driver. Thus, we conclude that climate variability instead of overgrazing has been the primary cause for large scale vegetation cover changes on the TP since the new millennium. Since areas of positive and negative changes are almost equal in extent, pasture degradation is not generally proceeding.

  3. Regionally heterogeneous paleoenvironmental responses in the West African and South American monsoon systems on glacial to millennial timescales

    NASA Astrophysics Data System (ADS)

    Shanahan, T. M.; Hughen, K. A.; van Mooy, B.; Overpeck, J. T.; Baker, P. A.; Fritz, S.; Peck, J. A.; Scholz, C. A.; King, J. W.

    2008-12-01

    Although millennial-scale paleoenvironmental changes have been well characterized for high latitude sites, short-term climate variability in the tropics is less well understood. While the Intertropical Convergence Zone may act as an integrator of tropical climate changes, regional factors also play an important role in controlling the tropical response to climate forcing. Understanding these influences, and how they modulate the response to global climate forcing under different mean climate states is thus important for assessing how the tropics may respond to future climate change. Here, we examine new centennial-resolution records of paleoenvironmental change from isotopic and relative abundance data from molecular biomarkers in sediment cores from Lake Bosumtwi and Lake Titicaca. We assess the relative response of the West African and South American monsoon systems to millennial and suborbital-scale climate variability over the last ca. 30,000 years. While there is evidence for synchronous climate variability in the two systems, the dominant paleoenvironmental changes appear largely decoupled, highlighting the importance of regional climatology in controlling the response to climate forcing in tropical regions.

  4. Projections of Water Stress Based on an Ensemble of Socioeconomic Growth and Climate Change Scenarios: A Case Study in Asia.

    PubMed

    Fant, Charles; Schlosser, C Adam; Gao, Xiang; Strzepek, Kenneth; Reilly, John

    2016-01-01

    The sustainability of future water resources is of paramount importance and is affected by many factors, including population, wealth and climate. Inherent in current methods to estimate these factors in the future is the uncertainty of their prediction. In this study, we integrate a large ensemble of scenarios--internally consistent across economics, emissions, climate, and population--to develop a risk portfolio of water stress over a large portion of Asia that includes China, India, and Mainland Southeast Asia in a future with unconstrained emissions. We isolate the effects of socioeconomic growth from the effects of climate change in order to identify the primary drivers of stress on water resources. We find that water needs related to socioeconomic changes, which are currently small, are likely to increase considerably in the future, often overshadowing the effect of climate change on levels of water stress. As a result, there is a high risk of severe water stress in densely populated watersheds by 2050, compared to recent history. There is strong evidence to suggest that, in the absence of autonomous adaptation or societal response, a much larger portion of the region's population will live in water-stressed regions in the near future. Tools and studies such as these can effectively investigate large-scale system sensitivities and can be useful in engaging and informing decision makers.

  5. Projections of Water Stress Based on an Ensemble of Socioeconomic Growth and Climate Change Scenarios: A Case Study in Asia

    PubMed Central

    Fant, Charles; Schlosser, C. Adam; Gao, Xiang; Strzepek, Kenneth; Reilly, John

    2016-01-01

    The sustainability of future water resources is of paramount importance and is affected by many factors, including population, wealth and climate. Inherent in current methods to estimate these factors in the future is the uncertainty of their prediction. In this study, we integrate a large ensemble of scenarios—internally consistent across economics, emissions, climate, and population—to develop a risk portfolio of water stress over a large portion of Asia that includes China, India, and Mainland Southeast Asia in a future with unconstrained emissions. We isolate the effects of socioeconomic growth from the effects of climate change in order to identify the primary drivers of stress on water resources. We find that water needs related to socioeconomic changes, which are currently small, are likely to increase considerably in the future, often overshadowing the effect of climate change on levels of water stress. As a result, there is a high risk of severe water stress in densely populated watersheds by 2050, compared to recent history. There is strong evidence to suggest that, in the absence of autonomous adaptation or societal response, a much larger portion of the region’s population will live in water-stressed regions in the near future. Tools and studies such as these can effectively investigate large-scale system sensitivities and can be useful in engaging and informing decision makers. PMID:27028871

  6. Analyses of infrequent (quasi-decadal) large groundwater recharge events in the northern Great Basin: Their importance for groundwater availability, use, and management

    USGS Publications Warehouse

    Masbruch, Melissa D.; Rumsey, Christine; Gangopadhyay, Subhrendu; Susong, David D.; Pruitt, Tom

    2016-01-01

    There has been a considerable amount of research linking climatic variability to hydrologic responses in the western United States. Although much effort has been spent to assess and predict changes in surface water resources, little has been done to understand how climatic events and changes affect groundwater resources. This study focuses on characterizing and quantifying the effects of large, multiyear, quasi-decadal groundwater recharge events in the northern Utah portion of the Great Basin for the period 1960–2013. Annual groundwater level data were analyzed with climatic data to characterize climatic conditions and frequency of these large recharge events. Using observed water-level changes and multivariate analysis, five large groundwater recharge events were identified with a frequency of about 11–13 years. These events were generally characterized as having above-average annual precipitation and snow water equivalent and below-average seasonal temperatures, especially during the spring (April through June). Existing groundwater flow models for several basins within the study area were used to quantify changes in groundwater storage from these events. Simulated groundwater storage increases per basin from a single recharge event ranged from about 115 to 205 Mm3. Extrapolating these amounts over the entire northern Great Basin indicates that a single large quasi-decadal recharge event could result in billions of cubic meters of groundwater storage. Understanding the role of these large quasi-decadal recharge events in replenishing aquifers and sustaining water supplies is crucial for long-term groundwater management.

  7. Continuous evolutionary change in Plio-Pleistocene mammals of eastern Africa

    NASA Astrophysics Data System (ADS)

    Bibi, Faysal; Kiessling, Wolfgang

    2015-08-01

    Much debate has revolved around the question of whether the mode of evolutionary and ecological turnover in the fossil record of African mammals was continuous or pulsed, and the degree to which faunal turnover tracked changes in global climate. Here, we assembled and analyzed large specimen databases of the fossil record of eastern African Bovidae (antelopes) and Turkana Basin large mammals. Our results indicate that speciation and extinction proceeded continuously throughout the Pliocene and Pleistocene, as did increases in the relative abundance of arid-adapted bovids, and in bovid body mass. Species durations were similar among clades with different ecological attributes. Occupancy patterns were unimodal, with long and nearly symmetrical origination and extinction phases. A single origination pulse may be present at 2.0-1.75 Ma, but besides this, there is no evidence that evolutionary or ecological changes in the eastern African record tracked rapid, 100,000-y-scale changes in global climate. Rather, eastern African large mammal evolution tracked global or regional climatic trends at long (million year) time scales, while local, basin-scale changes (e.g., tectonic or hydrographic) and biotic interactions ruled at shorter timescales.

  8. Short-term stream water temperature observations permit rapid assessment of potential climate change impacts

    Treesearch

    Peter Caldwell; Catalina Segura; Shelby Gull Laird; Ge Sun; Steven G. McNulty; Maria Sandercock; Johnny Boggs; James M. Vose

    2015-01-01

    Assessment of potential climate change impacts on stream water temperature (Ts) across large scales remains challenging for resource managers because energy exchange processes between the atmosphere and the stream environment are complex and uncertain, and few long-term datasets are available to evaluate changes over time. In this study, we...

  9. Large-scale impact of climate change vs. land-use change on future biome shifts in Latin America.

    PubMed

    Boit, Alice; Sakschewski, Boris; Boysen, Lena; Cano-Crespo, Ana; Clement, Jan; Garcia-Alaniz, Nashieli; Kok, Kasper; Kolb, Melanie; Langerwisch, Fanny; Rammig, Anja; Sachse, René; van Eupen, Michiel; von Bloh, Werner; Clara Zemp, Delphine; Thonicke, Kirsten

    2016-11-01

    Climate change and land-use change are two major drivers of biome shifts causing habitat and biodiversity loss. What is missing is a continental-scale future projection of the estimated relative impacts of both drivers on biome shifts over the course of this century. Here, we provide such a projection for the biodiverse region of Latin America under four socio-economic development scenarios. We find that across all scenarios 5-6% of the total area will undergo biome shifts that can be attributed to climate change until 2099. The relative impact of climate change on biome shifts may overtake land-use change even under an optimistic climate scenario, if land-use expansion is halted by the mid-century. We suggest that constraining land-use change and preserving the remaining natural vegetation early during this century creates opportunities to mitigate climate-change impacts during the second half of this century. Our results may guide the evaluation of socio-economic scenarios in terms of their potential for biome conservation under global change. © 2016 John Wiley & Sons Ltd.

  10. Hydroclimatic Extremes and Cholera Dynamics in the 21st Century

    NASA Astrophysics Data System (ADS)

    Akanda, A. S.; Jutla, A. S.; Islam, S.

    2012-12-01

    Cholera, an acute water-borne diarrheal illness, has reemerged as a significant health threat across much of the developing world. Despite major advances in the ecological and the microbiological understanding of the causative agent, V. cholerae, the role of the underlying climatic and environmental processes in propagating transmission is not adequately understood. Recent findings suggest a more prominent role of hydroclimatic extremes - droughts and floods - on the unique dual cholera peaks in the Bengal Delta region of South Asia, the native homeland of cholera. Increasing water scarcity and abundance, and coastal sea-level rise, influenced by changing climate patterns and large-scale climatic phenomena, is likely to adversely impact cholera transmission in South Asia. We focus on understanding how associated changes in macro-scale conditions in this region will impact micro-scale processes related to cholera in coming decades. We use the PRECIS Regional Climate Model over the Ganges-Brahmaputra-Meghna (GBM) basin region to simulate detailed high resolution projections of climate patterns for the 21st century. Precipitation outputs are analyzed for the 1980-2040 period to identify the trends and changes in hydroclimatic extremes and potential impacts on cholera dynamics over the next three decades (2010-2040), in relation to the cholera surveillance operations over the past three decades (1980-2010). We find that an increased number of extreme precipitation events with prolonged dry periods in the Ganges basin region will likely adversely affect dry season cholera outbreaks. Increased monsoon precipitation volumes in the Brahmaputra basin catchments are likely to cause record floods and subsequently trigger large epidemics in downstream areas. Our results provide new insight by identifying the changes in the two distinctly different, pre and post monsoon, cholera transmission mechanisms related to large-scale climatic controls that prevail in the region. A quantitative understanding of the changes in seasonal hydroclimatic controls and underlying dominant processes will form the basis for forecasting future epidemic cholera outbreaks in light of changing climate patterns.

  11. The effects of climate change associated abiotic stresses on maize phytochemical defenses

    USDA-ARS?s Scientific Manuscript database

    Reliable large-scale maize production is an essential component of global food security; however, sustained efforts are needed to ensure optimized resilience under diverse crop stress conditions. Climate changes are expected to increase the frequency and intensity of both abiotic and biotic stress. ...

  12. Spatial resilience of forested landscapes under climate change and management

    Treesearch

    Melissa S. Lucash; Robert M. Scheller; Eric J. Gustafson; Brian R. Sturtevant

    2017-01-01

    Context Resilience, the ability to recover from disturbance, has risen to the forefront of scientific policy, but is difficult to quantify, particularly in large, forested landscapes subject to disturbances, management, and climate change. Objectives Our objective was to determine which spatial drivers will control landscape...

  13. Terrestrial ecosystems and their change

    Treesearch

    Anatoly Z. Shvidenko; Eric Gustafson; A. David McGuire; Vjacheslav I. Kharuk; Dmitry G. Schepaschenko; Herman H. Shugart; Nadezhda M. Tchebakova; Natalia N. Vygodskaya; Alexander A. Onuchin; Daniel J. Hayes; Ian McCallum; Shamil Maksyutov; Ludmila V. Mukhortova; Amber J. Soja; Luca Belelli-Marchesini; Julia A. Kurbatova; Alexander V. Oltchev; Elena I. Parfenova; Jacquelyn K. Shuman

    2012-01-01

    This chapter considers the current state of Siberian terrestrial ecosystems, their spatial distribution, and major biometric characteristics. Ongoing climate change and the dramatic increase of accompanying anthropogenic pressure provide different but mostly negative impacts on Siberian ecosystems. Future climates of the region may lead to substantial drying on large...

  14. The radiative heating response to climate change

    NASA Astrophysics Data System (ADS)

    Maycock, Amanda

    2016-04-01

    The structure and magnitude of radiative heating rates in the atmosphere can change markedly in response to climate forcings; diagnosing the causes of these changes can aid in understanding parts of the large-scale circulation response to climate change. This study separates the relative drivers of projected changes in longwave and shortwave radiative heating rates over the 21st century into contributions from radiatively active gases, such as carbon dioxide, ozone and water vapour, and from changes in atmospheric and surface temperatures. Results are shown using novel radiative diagnostics applied to timeslice experiments from the UM-UKCA chemistry-climate model; these online estimates are compared to offline radiative transfer calculations. Line-by-line calculations showing spectrally-resolved changes in heating rates due to different gases will also be presented.

  15. Drivers and uncertainties of forecasted range shifts for warm-water fishes under climate and land cover change

    USGS Publications Warehouse

    Bouska, Kristen; Whitledge, Gregory W.; Lant, Christopher; Schoof, Justin

    2018-01-01

    Land cover is an important determinant of aquatic habitat and is projected to shift with climate changes, yet climate-driven land cover changes are rarely factored into climate assessments. To quantify impacts and uncertainty of coupled climate and land cover change on warm-water fish species’ distributions, we used an ensemble model approach to project distributions of 14 species. For each species, current range projections were compared to 27 scenario-based projections and aggregated to visualize uncertainty. Multiple regression and model selection techniques were used to identify drivers of range change. Novel, or no-analogue, climates were assessed to evaluate transferability of models. Changes in total probability of occurrence ranged widely across species, from a 63% increase to a 65% decrease. Distributional gains and losses were largely driven by temperature and flow variables and underscore the importance of habitat heterogeneity and connectivity to facilitate adaptation to changing conditions. Finally, novel climate conditions were driven by mean annual maximum temperature, which stresses the importance of understanding the role of temperature on fish physiology and the role of temperature-mitigating management practices.

  16. Signatures of large-scale and local climates on the demography of white-tailed ptarmigan in Rocky Mountain National Park, Colorado, USA.

    PubMed

    Wang, Guiming; Hobbs, N Thompson; Galbraith, Hector; Giesen, Kenneth M

    2002-09-01

    Global climate change may impact wildlife populations by affecting local weather patterns, which, in turn, can impact a variety of ecological processes. However, it is not clear that local variations in ecological processes can be explained by large-scale patterns of climate. The North Atlantic oscillation (NAO) is a large-scale climate phenomenon that has been shown to influence the population dynamics of some animals. Although effects of the NAO on vertebrate population dynamics have been studied, it remains uncertain whether it broadly predicts the impact of weather on species. We examined the ability of local weather data and the NAO to explain the annual variation in population dynamics of white-tailed ptarmigan ( Lagopus leucurus) in Rocky Mountain National Park, USA. We performed canonical correlation analysis on the demographic subspace of ptarmigan and local-climate subspace defined by the empirical orthogonal function (EOF) using data from 1975 to 1999. We found that two subspaces were significantly correlated on the first canonical variable. The Pearson correlation coefficient of the first EOF values of the demographic and local-climate subspaces was significant. The population density and the first EOF of local-climate subspace influenced the ptarmigan population with 1-year lags in the Gompertz model. However, the NAO index was neither related to the first two EOF of local-climate subspace nor to the first EOF of the demographic subspace of ptarmigan. Moreover, the NAO index was not a significant term in the Gompertz model for the ptarmigan population. Therefore, local climate had stronger signature on the demography of ptarmigan than did a large-scale index, i.e., the NAO index. We conclude that local responses of wildlife populations to changing climate may not be adequately explained by models that project large-scale climatic patterns.

  17. Socioecological transitions trigger fire regime shifts and modulate fire-climate interactions in the Sierra Nevada, USA, 1600-2015 CE.

    PubMed

    Taylor, Alan H; Trouet, Valerie; Skinner, Carl N; Stephens, Scott

    2016-11-29

    Large wildfires in California cause significant socioecological impacts, and half of the federal funds for fire suppression are spent each year in California. Future fire activity is projected to increase with climate change, but predictions are uncertain because humans can modulate or even override climatic effects on fire activity. Here we test the hypothesis that changes in socioecological systems from the Native American to the current period drove shifts in fire activity and modulated fire-climate relationships in the Sierra Nevada. We developed a 415-y record (1600-2015 CE) of fire activity by merging a tree-ring-based record of Sierra Nevada fire history with a 20th-century record based on annual area burned. Large shifts in the fire record corresponded with socioecological change, and not climate change, and socioecological conditions amplified and buffered fire response to climate. Fire activity was highest and fire-climate relationships were strongest after Native American depopulation-following mission establishment (ca. 1775 CE)-reduced the self-limiting effect of Native American burns on fire spread. With the Gold Rush and Euro-American settlement (ca. 1865 CE), fire activity declined, and the strong multidecadal relationship between temperature and fire decayed and then disappeared after implementation of fire suppression (ca. 1904 CE). The amplification and buffering of fire-climate relationships by humans underscores the need for parameterizing thresholds of human- vs. climate-driven fire activity to improve the skill and value of fire-climate models for addressing the increasing fire risk in California.

  18. Socioecological transitions trigger fire regime shifts and modulate fire–climate interactions in the Sierra Nevada, USA, 1600–2015 CE

    PubMed Central

    Taylor, Alan H.; Trouet, Valerie; Skinner, Carl N.; Stephens, Scott

    2016-01-01

    Large wildfires in California cause significant socioecological impacts, and half of the federal funds for fire suppression are spent each year in California. Future fire activity is projected to increase with climate change, but predictions are uncertain because humans can modulate or even override climatic effects on fire activity. Here we test the hypothesis that changes in socioecological systems from the Native American to the current period drove shifts in fire activity and modulated fire–climate relationships in the Sierra Nevada. We developed a 415-y record (1600–2015 CE) of fire activity by merging a tree-ring–based record of Sierra Nevada fire history with a 20th-century record based on annual area burned. Large shifts in the fire record corresponded with socioecological change, and not climate change, and socioecological conditions amplified and buffered fire response to climate. Fire activity was highest and fire–climate relationships were strongest after Native American depopulation—following mission establishment (ca. 1775 CE)—reduced the self-limiting effect of Native American burns on fire spread. With the Gold Rush and Euro-American settlement (ca. 1865 CE), fire activity declined, and the strong multidecadal relationship between temperature and fire decayed and then disappeared after implementation of fire suppression (ca. 1904 CE). The amplification and buffering of fire–climate relationships by humans underscores the need for parameterizing thresholds of human- vs. climate-driven fire activity to improve the skill and value of fire–climate models for addressing the increasing fire risk in California. PMID:27849589

  19. Predicting the effect of climate change on African trypanosomiasis: integrating epidemiology with parasite and vector biology

    PubMed Central

    Moore, Sean; Shrestha, Sourya; Tomlinson, Kyle W.; Vuong, Holly

    2012-01-01

    Climate warming over the next century is expected to have a large impact on the interactions between pathogens and their animal and human hosts. Vector-borne diseases are particularly sensitive to warming because temperature changes can alter vector development rates, shift their geographical distribution and alter transmission dynamics. For this reason, African trypanosomiasis (sleeping sickness), a vector-borne disease of humans and animals, was recently identified as one of the 12 infectious diseases likely to spread owing to climate change. We combine a variety of direct effects of temperature on vector ecology, vector biology and vector–parasite interactions via a disease transmission model and extrapolate the potential compounding effects of projected warming on the epidemiology of African trypanosomiasis. The model predicts that epidemics can occur when mean temperatures are between 20.7°C and 26.1°C. Our model does not predict a large-range expansion, but rather a large shift of up to 60 per cent in the geographical extent of the range. The model also predicts that 46–77 million additional people may be at risk of exposure by 2090. Future research could expand our analysis to include other environmental factors that influence tsetse populations and disease transmission such as humidity, as well as changes to human, livestock and wildlife distributions. The modelling approach presented here provides a framework for using the climate-sensitive aspects of vector and pathogen biology to predict changes in disease prevalence and risk owing to climate change. PMID:22072451

  20. Climate-smart management of biodiversity

    USGS Publications Warehouse

    Nadeau, Christopher P.; Fuller, Angela K.; Rosenblatt, Daniel L.

    2015-01-01

    Determining where biodiversity is likely to be most vulnerable to climate change and methods to reduce that vulnerability are necessary first steps to incorporate climate change into biodiversity management plans. Here, we use a spatial climate change vulnerability assessment to (1) map the potential vulnerability of terrestrial biodiversity to climate change in the northeastern United States and (2) provide guidance on how and where management actions for biodiversity could provide long-term benefits under climate change (i.e., climate-smart management considerations). Our model suggests that biodiversity will be most vulnerable in Delaware, Maryland, and the District of Columbia due to the combination of high climate change velocity, high landscape resistance, and high topoclimate homogeneity. Biodiversity is predicted to be least vulnerable in Vermont, Maine, and New Hampshire because large portions of these states have low landscape resistance, low climate change velocity, and low topoclimate homogeneity. Our spatial climate-smart management considerations suggest that: (1) high topoclimate diversity could moderate the effects of climate change across 50% of the region; (2) decreasing local landscape resistance in conjunction with other management actions could increase the benefit of those actions across 17% of the region; and (3) management actions across 24% of the region could provide long-term benefits by promoting short-term population persistence that provides a source population capable of moving in the future. The guidance and framework we provide here should allow conservation organizations to incorporate our climate-smart management considerations into management plans without drastically changing their approach to biodiversity conservation.

  1. The influence of land cover change in the Asian monsoon region on present-day and mid-Holocene climate

    NASA Astrophysics Data System (ADS)

    Dallmeyer, A.; Claussen, M.

    2011-02-01

    Using the general circulation model ECHAM5/JSBACH, we investigate the biogeophysical effect of large-scale afforestation and deforestation in the Asian monsoon domain on present-day and mid-Holocene climate. We demonstrate that the applied land cover change does not only modify the local climate but also change the climate in North Africa and the Middle East via teleconnections. Deforestation in the Asian monsoon domain enhances the rainfall in North Africa. In parts of the Sahara summer precipitation is more than doubled. In contrast, afforestation strongly decreases summer rainfall in the Middle East and even leads to the cessation of the rainfall-activity in some parts of this region. Regarding the local climate, deforestation results in a reduction of precipitation and a cooler climate as grass mostly has a higher albedo than forests. However, in the core region of the Asian monsoon the decrease of evaporative cooling in the monsoon season overcompensates this signal and results in a net warming. Afforestation has mainly the opposite effect, although the pattern of change is less clear. It leads to more precipitation in most parts of the Asian monsoon domain and a warmer climate except for the southern regions where a stronger evaporation decreases near-surface temperatures in the monsoon season. When prescribing mid-Holocene insolation, the pattern of local precipitation change differs. Afforestation particularly increases monsoon rainfall in the region along the Yellow River which was the settlement area of major prehistoric cultures. In this region, the effect of land cover change on precipitation is half as large as the orbitally-induced precipitation change. Thus, our model results reveal that mid- to late-Holocene land cover change could strongly have contributed to the decreasing Asian monsoon precipitation during the Holocene known from reconstructions.

  2. The influence of land cover change in the Asian monsoon region on present-day and mid-Holocene climate

    NASA Astrophysics Data System (ADS)

    Dallmeyer, A.; Claussen, M.

    2011-06-01

    Using the general circulation model ECHAM5/JSBACH, we investigate the biogeophysical effect of large-scale afforestation and deforestation in the Asian monsoon domain on present-day and mid-Holocene climate. We demonstrate that the applied land cover change does not only modify the local climate but also change the climate in North Africa and the Middle East via teleconnections. Deforestation in the Asian monsoon domain enhances the rainfall in North Africa. In parts of the Sahara summer precipitation is more than doubled. In contrast, afforestation strongly decreases summer rainfall in the Middle East and even leads to the cessation of the rainfall-activity in some parts of this region. Regarding the local climate, deforestation results in a reduction of precipitation and a cooler climate as grass mostly has a higher albedo than forests. However, in the core region of the Asian monsoon the decrease in evaporative cooling in the monsoon season overcompensates this signal and results in a net warming. Afforestation has mainly the opposite effect, although the pattern of change is less clear. It leads to more precipitation in most parts of the Asian monsoon domain and a warmer climate except for the southern regions where a stronger evaporation decreases near-surface temperatures in the monsoon season. When prescribing mid-Holocene insolation, the pattern of local precipitation change differs. Afforestation particularly increases monsoon rainfall in the region along the Yellow River which was the settlement area of major prehistoric cultures. In this region, the effect of land cover change on precipitation is half as large as the orbitally-induced precipitation change. Thus, our model results reveal that mid- to late-Holocene land cover change could strongly have contributed to the decreasing Asian monsoon precipitation during the Holocene known from reconstructions.

  3. Understanding and managing trust at the climate science-policy interface

    NASA Astrophysics Data System (ADS)

    Lacey, Justine; Howden, Mark; Cvitanovic, Christopher; Colvin, R. M.

    2018-01-01

    Climate change effects are accelerating, making the need for appropriate actions informed by sound climate knowledge ever more pressing. A strong climate science-policy relationship facilitates the effective integration of climate knowledge into local, national and global policy processes, increases society's responsiveness to a changing climate, and aligns research activity to policy needs. This complex science-policy relationship requires trust between climate science `producers' and `users', but our understanding of trust at this interface remains largely uncritical. To assist climate scientists and policymakers, this Perspective provides insights into how trust develops and operates at the interface of climate science and policy, and examines the extent to which trust can manage — or even create — risk at this interface.

  4. Engineering a future for amphibians under a changing climate

    Treesearch

    Noreen Parks; Deanna H. Olson

    2011-01-01

    Climate variation exacerbates threats to amphibians such as disease and habitat loss. Yet, by and large existing species- and land-management plans give little if any consideration to climate impacts. Moreover, many management actions that do address emerging climate patterns have yet to be evaluated for feasibility and effectiveness. To help address these needs,...

  5. Educating for Hope in Troubled Times: Climate Change and the Transition to a Post-Carbon Future

    ERIC Educational Resources Information Center

    Hicks, David

    2014-01-01

    This book explores three global issues--climate change, peak oil and the limits to growth. It sets out the facts about the inevitable yet still largely unknown changes, and examines the feelings and attitudes the coming changes engender. It offers teachers ways to engage with vital but too often avoided issues, and to share success stories and…

  6. Attribution of changes in precipitation patterns in African rainforests

    NASA Astrophysics Data System (ADS)

    Otto, F. E.; Jones, R. G.; Halladay, K.; Allen, M. R.

    2013-12-01

    The effects of projected future global and regional climate change on the water cycle and thus on global water security are amongst the most economically and politically important challenges that society faces in the 21st century. The provision of secure access to water resources and the protection of communities from water-related risks have emerged as top priorities amongst policymakers within the public and private sectors alike. Investment decisions on water infrastructure rely heavily on quantitative assessments of risks and uncertainties associated with future changes in water-related threats. Especially with the introduction of loss and damages on the agenda of the UNFCCC additionally the attribution of such changes to anthropogenic climate change and other external climate drivers is crucial. Probabilistic event attribution (PEA) provides a method of evaluating the extent to which human-induced climate change is affecting localised weather events and impacts of such events that relies on good observations as well as climate modelling. The overall approach is to simulate both, the statistics of observed weather, and the statistics of the weather that would have occurred had specific external drivers of climate change been absent. The majority of studies applying PEA have focused on quantifying attributable risk, with changes in risk depending on an assumption of 'all other things being equal', including natural drivers of climate change and vulnerability. Most previous attribution studies have focused on European extreme weather events, but the most vulnerable regions to climate change are in Asia and Africa. One of the most complex hydrological systems is the tropical rainforest, with the rainforests in tropical Africa being some of the most under-researched regions in the world. Research in the Amazonian rainforest suggests potential vulnerability to climate change. We will present results from using the large ensemble of atmosphere-only general circulation model (AGCM) simulations within the weather@home project, and analysing statistics of precipitation in the dry season of the Congo Basin rainforests. Because observed data sets in that region are of very poor quality we show how validation methods not only relying on such data have been used to investigate the applicability of PEA analysis from large model ensembles to this tropical region. Additionally we will present results for the same region but generated with a very large ensemble of regional climate simulations which allows analysing the importance of a realistic simulation of small scale precipitation processes for attribution studies in a tropical climate. We highlight that PEA analysis has the potential to provide valuable scientific evidence of recent or anticipated climatological changes in the water cycle, especially in regions with sparse observational data and unclear projections of future changes. However, the strong influence of SST tele-connection patterns on tropical precipitation provides more challenges in the set-up of attribution studies than studies on mid-latitude rainfall.

  7. Adapting the US Food System to Climate Change Goes Beyond the Farm Gate

    NASA Astrophysics Data System (ADS)

    Easterling, W. E.

    2014-12-01

    The literature on climate change effects on food and agriculture has concentrated primarily on how crops and livestock likely will be directly affected by climate variability and change and by elevated carbon dioxide. Integrated assessments have simulated large-scale economic response to shifting agricultural productivity caused by climate change, including possible changes in food costs and prices. A small but growing literature has shown how different facets of agricultural production inside the farm gate could be adapted to climate variability and change. Very little research has examined how the full food system (production, processing and storage, transportation and trade, and consumption) is likely to be affected by climate change and how different adaptation approaches will be required by different parts of the food system. This paper will share partial results of a major assessment sponsored by USDA to determine how climate change-induced changes in global food security could affect the US food system. Emphasis is given to understanding how adaptation strategies differ widely across the food system. A common thread, however, is risk management-based decision making. Technologies and management strategies may co-evolve with climate change but a risk management framework for implementing those technologies and strategies may provide a stable foundation.

  8. ClimEx - Climate change and hydrological extreme events - risks and perspectives for water management in Bavaria and Québec

    NASA Astrophysics Data System (ADS)

    Ludwig, Ralf; Baese, Frank; Braun, Marco; Brietzke, Gilbert; Brissette, Francois; Frigon, Anne; Giguère, Michel; Komischke, Holger; Kranzlmueller, Dieter; Leduc, Martin; Martel, Jean-Luc; Ricard, Simon; Schmid, Josef; von Trentini, Fabian; Turcotte, Richard; Weismueller, Jens; Willkofer, Florian; Wood, Raul

    2017-04-01

    The recent accumulation of extreme hydrological events in Bavaria and Québec has stimulated scientific and also societal interest. In addition to the challenges of an improved prediction of such situations and the implications for the associated risk management, there is, as yet, no confirmed knowledge whether and how climate change contributes to the magnitude and frequency of hydrological extreme events and how regional water management could adapt to the corresponding risks. The ClimEx project (2015-2019) investigates the effects of climate change on the meteorological and hydrological extreme events and their implications for water management in Bavaria and Québec. High Performance Computing is employed to enable the complex simulations in a hydro-climatological model processing chain, resulting in a unique high-resolution and transient (1950-2100) dataset of climatological and meteorological forcing and hydrological response: (1) The climate module has developed a large ensemble of high resolution data (12km) of the CRCM5 RCM for Central Europe and North-Eastern North America, downscaled from 50 members of the CanESM2 GCM. The dataset is complemented by all available data from the Euro-CORDEX project to account for the assessment of both natural climate variability and climate change. The large ensemble with several thousand model years provides the potential to catch rare extreme events and thus improves the process understanding of extreme events with return periods of 1000+ years. (2) The hydrology module comprises process-based and spatially explicit model setups (e.g. WaSiM) for all major catchments in Bavaria and Southern Québec in high temporal (3h) and spatial (500m) resolution. The simulations form the basis for in depth analysis of hydrological extreme events based on the inputs from the large climate model dataset. The specific data situation enables to establish a new method for 'virtual perfect prediction', which assesses climate change impacts on flood risk and water resources management by identifying patterns in the data which reveal preferential triggers of hydrological extreme events. The presentation will highlight first results from the analysis of the large scale ClimEx model ensemble, showing the current and future ratio of natural variability and climate change impacts on meteorological extreme events. Selected data from the ensemble is used to drive a hydrological model experiment to illustrate the capacity to better determine the recurrence periods of hydrological extreme events under conditions of climate change. [The authors acknowledge funding for the project from the Bavarian State Ministry for the Environment and Consumer Protection].

  9. Severe Weather in a Changing Climate: Getting to Adaptation

    NASA Astrophysics Data System (ADS)

    Wuebbles, D. J.; Janssen, E.; Kunkel, K.

    2011-12-01

    Analyses of observation records from U.S. weather stations indicate there is an increasing trend over recent decades in certain types of severe weather, especially large precipitation events. Widespread changes in temperature extremes have been observed over the last 50 years. In particular, the number of heat waves globally (and some parts of the U.S.) has increased, and there have been widespread increases in the numbers of warm nights. Also, analyses show that we are now breaking twice as many heat records as cold records in the U.S. Since 1957, there has been an increase in the number of historically top 1% of heavy precipitation events across the U.S. Our new analyses of the repeat or reoccurrence frequencies of large precipitation storms are showing that such events are occurring more often than in the past. The pattern of precipitation change is one of increases generally at higher northern latitudes and drying in the tropics and subtropics over land. It needs to be recognized that every weather event that happens nowadays takes place in the context of the changes in the background climate system. So nothing is entirely "natural" anymore. It's a fallacy to think that individual events are caused entirely by any one thing, either natural variation or human-induced climate change. Every event is influenced by many factors. Human-induced climate change is now a factor in weather events. The changes occurring in precipitation are consistent with the analyses of our changing climate. For extreme precipitation, we know that more precipitation is falling in very heavy events. And we know key reasons why; warmer air holds more water vapor, and so when any given weather system moves through, the extra water dumps can lead to a heavy downpour. As the climate system continues to warm, models of the Earth's climate system indicate severe precipitation events will likely become more commonplace. Water vapor will continue to increase in the atmosphere along with the warming, and large precipitation events will likely increase in intensity and frequency. In the presentation, we will not only discuss the recent trends in severe weather and the projections of the impacts of climate change on severe weather in the future, but also specific examples of how this information is being used in developing and applying adaptation policies.

  10. Climatic Redistribution of Canada's Water Resources (CROCWR): An analysis of spatial and temporal hydrological trends and patterns in western Canada

    NASA Astrophysics Data System (ADS)

    Bawden, A. J.; Burn, D. H.; Prowse, T. D.

    2012-12-01

    Climate variability and change can have profound impacts on the hydrologic regime of a watershed. These effects are likely to be especially severe in regions particularly sensitive to changes in climate, such as the Canadian north, or when there are other stresses on the hydrologic regime, such as may occur when there are large withdrawals from, or land-use changes within, a watershed. A recent report of the Intergovernmental Panel on Climate Change (IPCC) stressed that future climate is likely to accelerate the hydrologic cycle and hence may affect water security in certain locations. For some regions, this will mean enhanced access to water resources, but because the effects will not be spatially uniform, other regions will experience reduced access. Understanding these patterns is critical for water managers and government agencies in western Canada - an area of highly contrasting hydroclimatic regimes and overlapping water-use and jurisdictional borders - as adapting to climate change may require reconsideration of inter-regional transfers and revised allocation of water resources to competing industrial sectors, including agriculture, hydroelectric production, and oil and gas. This research involves the detection and examination of spatial and temporal streamflow trends in western Canadian rivers as a response to changing climatic factors, including temperature, precipitation, snowmelt, and the synoptic patterns controlling these drivers. The study area, known as the CROCWR region, extends from the Pacific coast of British Columbia as far east as the Saskatchewan-Manitoba border and from the Canada-United States international border through a large portion of the Northwest Territories. This analysis examines hydrologic trends in monthly and annual streamflow for a collection of 34 hydrometric gauging stations believed to adequately represent the overall effects of climate variability and change on flows in western Canada by means of the Mann-Kendall non-parametric trend test. Large-scale spatial patterns are determined through examination of trends and contrasts between upper and lower reaches of individual sub-basins, as well as via analysis of streamflow redistributions within the CROCWR region as an entirety (i.e. north, south, east and/or west-moving patterns). Results are used to predict future implications of hydroclimatic variability and change on western Canada's water resources and recommend measures to be taken by water managers in response to these changes. This research is part of a larger hydroclimatic study that includes an analysis of the climatic drivers contributing to shifting flow regimes in western Canada as well as a study of the controlling synoptic patterns and teleconnections associated with changes in these driving forces.

  11. A global assessment of climate-water quality relationships in large rivers: an elasticity perspective.

    PubMed

    Jiang, Jiping; Sharma, Ashish; Sivakumar, Bellie; Wang, Peng

    2014-01-15

    To uncover climate-water quality relationships in large rivers on a global scale, the present study investigates the climate elasticity of river water quality (CEWQ) using long-term monthly records observed at 14 large rivers. Temperature and precipitation elasticities of 12 water quality parameters, highlighted by N- and P-nutrients, are assessed. General observations on elasticity values show the usefulness of this approach to describe the magnitude of stream water quality responses to climate change, which improves that of simple statistical correlation. Sensitivity type, intensity and variability rank of CEWQ are reported and specific characteristics and mechanism of elasticity of nutrient parameters are also revealed. Among them, the performance of ammonia, total phosphorus-air temperature models, and nitrite, orthophosphorus-precipitation models are the best. Spatial and temporal assessment shows that precipitation elasticity is more variable in space than temperature elasticity and that seasonal variation is more evident for precipitation elasticity than for temperature elasticity. Moreover, both anthropogenic activities and environmental factors are found to impact CEWQ for select variables. The major relationships that can be inferred include: (1) human population has a strong linear correlation with temperature elasticity of turbidity and total phosphorus; and (2) latitude has a strong linear correlation with precipitation elasticity of turbidity and N nutrients. As this work improves our understanding of the relation between climate factors and surface water quality, it is potentially helpful for investigating the effect of climate change on water quality in large rivers, such as on the long-term change of nutrient concentrations. © 2013.

  12. Climate Impacts on Tropospheric Ozone and Hydroxyl

    NASA Technical Reports Server (NTRS)

    Shindell, Drew T.; Bell, N.; Faluvegi, G.

    2003-01-01

    Climate change may influence tropospheric ozone and OH via several main pathways: (1) altering chemistry via temperature and humidity changes, (2) changing ozone and precursor sources via surface emissions, stratosphere-troposphere exchange, and light- ning, and (3) affecting trace gas sinks via the hydrological cycle and dry deposition. We report results from a set of coupled chemistry-climate model simulations designed to systematically study these effects. We compare the various effects with one another and with past and projected future changes in anthropogenic and natural emissions of ozone precursors. We find that white the overall impact of climate on ozone is probably small compared to emission changes, some significant seasonal and regional effects are apparent. The global effect on hydroxyl is quite large, however, similar in size to the effect of emission changes. Additionally, we show that many of the chemistry-climate links that are not yet adequately modeled are potentially important.

  13. Sensitivity of water resources in the Delaware River basin to climate variability and change

    USGS Publications Warehouse

    Ayers, Mark A.; Wolock, David M.; McCabe, Gregory J.; Hay, Lauren E.; Tasker, Gary D.

    1994-01-01

    Because of the greenhouse effect, projected increases in atmospheric carbon dioxide levels might cause global warming, which in turn could result in changes in precipitation patterns and evapotranspiration and in increases in sea level. This report describes the greenhouse effect; discusses the problems and uncertainties associated with the detection, prediction, and effects of climate change; and presents the results of sensitivity analyses of how climate change might affect water resources in the Delaware River basin. Sensitivity analyses suggest that potentially serious shortfalls of certain water resources in the basin could result if some scenarios for climate change come true . The results of model simulations of the basin streamflow demonstrate the difficulty in distinguishing the effects that climate change versus natural climate variability have on streamflow and water supply . The future direction of basin changes in most water resources, furthermore, cannot be precisely determined because of uncertainty in current projections of regional temperature and precipitation . This large uncertainty indicates that, for resource planning, information defining the sensitivities of water resources to a range of climate change is most relevant . The sensitivity analyses could be useful in developing contingency plans for evaluating and responding to changes, should they occur.

  14. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability.

    PubMed

    Cox, Peter M; Pearson, David; Booth, Ben B; Friedlingstein, Pierre; Huntingford, Chris; Jones, Chris D; Luke, Catherine M

    2013-02-21

    The release of carbon from tropical forests may exacerbate future climate change, but the magnitude of the effect in climate models remains uncertain. Coupled climate-carbon-cycle models generally agree that carbon storage on land will increase as a result of the simultaneous enhancement of plant photosynthesis and water use efficiency under higher atmospheric CO(2) concentrations, but will decrease owing to higher soil and plant respiration rates associated with warming temperatures. At present, the balance between these effects varies markedly among coupled climate-carbon-cycle models, leading to a range of 330 gigatonnes in the projected change in the amount of carbon stored on tropical land by 2100. Explanations for this large uncertainty include differences in the predicted change in rainfall in Amazonia and variations in the responses of alternative vegetation models to warming. Here we identify an emergent linear relationship, across an ensemble of models, between the sensitivity of tropical land carbon storage to warming and the sensitivity of the annual growth rate of atmospheric CO(2) to tropical temperature anomalies. Combined with contemporary observations of atmospheric CO(2) concentration and tropical temperature, this relationship provides a tight constraint on the sensitivity of tropical land carbon to climate change. We estimate that over tropical land from latitude 30° north to 30° south, warming alone will release 53 ± 17 gigatonnes of carbon per kelvin. Compared with the unconstrained ensemble of climate-carbon-cycle projections, this indicates a much lower risk of Amazon forest dieback under CO(2)-induced climate change if CO(2) fertilization effects are as large as suggested by current models. Our study, however, also implies greater certainty that carbon will be lost from tropical land if warming arises from reductions in aerosols or increases in other greenhouse gases.

  15. Gray Wolves as Climate Change Buffers in Yellowstone

    PubMed Central

    Getz, Wayne M

    2005-01-01

    Understanding the mechanisms by which climate and predation patterns by top predators co-vary to affect community structure accrues added importance as humans exert growing influence over both climate and regional predator assemblages. In Yellowstone National Park, winter conditions and reintroduced gray wolves (Canis lupus) together determine the availability of winter carrion on which numerous scavenger species depend for survival and reproduction. As climate changes in Yellowstone, therefore, scavenger species may experience a dramatic reshuffling of food resources. As such, we analyzed 55 y of weather data from Yellowstone in order to determine trends in winter conditions. We found that winters are getting shorter, as measured by the number of days with snow on the ground, due to decreased snowfall and increased number of days with temperatures above freezing. To investigate synergistic effects of human and climatic alterations of species interactions, we used an empirically derived model to show that in the absence of wolves, early snow thaw leads to a substantial reduction in late-winter carrion, causing potential food bottlenecks for scavengers. In addition, by narrowing the window of time over which carrion is available and thereby creating a resource pulse, climate change likely favors scavengers that can quickly track food sources over great distances. Wolves, however, largely mitigate late-winter reduction in carrion due to earlier snow thaws. By buffering the effects of climate change on carrion availability, wolves allow scavengers to adapt to a changing environment over a longer time scale more commensurate with natural processes. This study illustrates the importance of restoring and maintaining intact food chains in the face of large-scale environmental perturbations such as climate change. PMID:15757363

  16. Gray wolves as climate change buffers in Yellowstone.

    PubMed

    Wilmers, Christopher C; Getz, Wayne M

    2005-04-01

    Understanding the mechanisms by which climate and predation patterns by top predators co-vary to affect community structure accrues added importance as humans exert growing influence over both climate and regional predator assemblages. In Yellowstone National Park, winter conditions and reintroduced gray wolves (Canis lupus) together determine the availability of winter carrion on which numerous scavenger species depend for survival and reproduction. As climate changes in Yellowstone, therefore, scavenger species may experience a dramatic reshuffling of food resources. As such, we analyzed 55 y of weather data from Yellowstone in order to determine trends in winter conditions. We found that winters are getting shorter, as measured by the number of days with snow on the ground, due to decreased snowfall and increased number of days with temperatures above freezing. To investigate synergistic effects of human and climatic alterations of species interactions, we used an empirically derived model to show that in the absence of wolves, early snow thaw leads to a substantial reduction in late-winter carrion, causing potential food bottlenecks for scavengers. In addition, by narrowing the window of time over which carrion is available and thereby creating a resource pulse, climate change likely favors scavengers that can quickly track food sources over great distances. Wolves, however, largely mitigate late-winter reduction in carrion due to earlier snow thaws. By buffering the effects of climate change on carrion availability, wolves allow scavengers to adapt to a changing environment over a longer time scale more commensurate with natural processes. This study illustrates the importance of restoring and maintaining intact food chains in the face of large-scale environmental perturbations such as climate change.

  17. An Coral Ensemble Approach to Reconstructing Central Pacific Climate Change During the Holocene

    NASA Astrophysics Data System (ADS)

    Atwood, A. R.; Cobb, K. M.; Grothe, P. R.; Sayani, H. R.; Southon, J. R.; Edwards, R. L.; Deocampo, D.; Chen, T.; Townsend, K. J.; Hagos, M. M.; Chiang, J. C. H.

    2016-12-01

    The processes that control El Niño-Southern Oscillation (ENSO) variability on long timescales are still poorly understood. As a consequence, limited progress has been made in understanding how ENSO will change under greenhouse gas forcing. The mid-Holocene provides a well-defined target to study the fundamental controls of ENSO variability. A large number of paleo-ENSO records spanning the tropical Pacific indicate that ENSO variability was reduced by as much as 50% between 3000-6000 yr BP, relative to modern times. Dynamical models of ENSO suggest that ENSO properties can shift in response to changes in the tropical Pacific mean state and/or seasonal cycle, but few proxy records can resolve such changes during the interval in question with enough accuracy. While decades of research have demonstrated the fidelity of tropical Pacific coral d18O records to quantify interannual temperature and precipitation anomalies associated with ENSO, substantial mean offsets exist across overlapping coral sequences that have made it difficult to quantify past changes in mean climate. Here, we test a new approach to reconstruct changes in mean climate from coral records using a large ensemble of bulk d18O measurements on radiometrically-dated fossil corals from Christmas Island that span the Holocene. In contrast to the traditional method of high-resolution sampling to reconstruct monthly climate conditions, we implement a bulk approach, which dramatically reduces the analysis time needed to estimate mean coral d18O and enables a large number of corals to be analyzed in the production of an ensemble of mean climate estimates. A pseudo-coral experiment based on simulations with a Linear Inverse Model and a coupled GCM is used to determine the number of bulk coral estimates that are required to resolve a given mean climate perturbation. In addition to these bulk measurements, short transects are sampled at high resolution to constrain changes in the amplitude of the seasonal cycle. We present preliminary results from our joint bulk/high-resolution sampling approach that provide new constraints on changes in mean climate and seasonality in the central equatorial Pacific over the last 6,000 yr BP.

  18. Open NASA Earth Exchange (OpenNEX): A Public-Private Partnership for Climate Change Research

    NASA Astrophysics Data System (ADS)

    Nemani, R. R.; Lee, T. J.; Michaelis, A.; Ganguly, S.; Votava, P.

    2014-12-01

    NASA Earth Exchange (NEX) is a data, computing and knowledge collaborative that houses satellite, climate and ancillary data where a community of researchers can come together to share modeling and analysis codes, scientific results, knowledge and expertise on a centralized platform with access to large supercomputing resources. As a part of broadening the community beyond NASA-funded researchers, NASA through an agreement with Amazon Inc. made available to the public a large collection of Climate and Earth Sciences satellite data. The data, available through the Open NASA Earth Exchange (OpenNEX) platform hosted by Amazon Web Services (AWS) public cloud, consists of large amounts of global land surface imaging, vegetation conditions, climate observations and climate projections. In addition to the data, users of OpenNEX platform can also watch lectures from leading experts, learn basic access and use of the available data sets. In order to advance White House initiatives such as Open Data, Big Data and Climate Data and the Climate Action Plan, NASA over the past six months conducted the OpenNEX Challenge. The two-part challenge was designed to engage the public in creating innovative ways to use NASA data and address climate change impacts on economic growth, health and livelihood. Our intention was that the challenges allow citizen scientists to realize the value of NASA data assets and offers NASA new ideas on how to share and use that data. The first "ideation" challenge, closed on July 31st attracted over 450 participants consisting of climate scientists, hobbyists, citizen scientists, IT experts and App developers. Winning ideas from the first challenge will be incorporated into the second "builder" challenge currently targeted to launch mid-August and close by mid-November. The winner(s) will be formally announced at AGU in December of 2014. We will share our experiences and lessons learned over the past year from OpenNEX, a public-private partnership for engaging and enabling a large community of citizen scientists to better understand global climate changes and in creating climate resilience.

  19. Climate-driven changes in functional biogeography of Arctic marine fish communities.

    PubMed

    Frainer, André; Primicerio, Raul; Kortsch, Susanne; Aune, Magnus; Dolgov, Andrey V; Fossheim, Maria; Aschan, Michaela M

    2017-11-14

    Climate change triggers poleward shifts in species distribution leading to changes in biogeography. In the marine environment, fish respond quickly to warming, causing community-wide reorganizations, which result in profound changes in ecosystem functioning. Functional biogeography provides a framework to address how ecosystem functioning may be affected by climate change over large spatial scales. However, there are few studies on functional biogeography in the marine environment, and none in the Arctic, where climate-driven changes are most rapid and extensive. We investigated the impact of climate warming on the functional biogeography of the Barents Sea, which is characterized by a sharp zoogeographic divide separating boreal from Arctic species. Our unique dataset covered 52 fish species, 15 functional traits, and 3,660 stations sampled during the recent warming period. We found that the functional traits characterizing Arctic fish communities, mainly composed of small-sized bottom-dwelling benthivores, are being rapidly replaced by traits of incoming boreal species, particularly the larger, longer lived, and more piscivorous species. The changes in functional traits detected in the Arctic can be predicted based on the characteristics of species expected to undergo quick poleward shifts in response to warming. These are the large, generalist, motile species, such as cod and haddock. We show how functional biogeography can provide important insights into the relationship between species composition, diversity, ecosystem functioning, and environmental drivers. This represents invaluable knowledge in a period when communities and ecosystems experience rapid climate-driven changes across biogeographical regions. Copyright © 2017 the Author(s). Published by PNAS.

  20. Climate change and the outbreak ranges of two North American bark beetles

    Treesearch

    David W. Williams; Andrew M. Liebhold

    2002-01-01

    One expected effect of global climate change on insect populations is a shift in geographical distributions toward higher latitudes and higher elevations. Southern pine beetle Dendroctonus frontalis and mountain pine beetle Dendroctonus ponderosae undergo regional outbreaks that result in large-scale disturbances to pine forests in...

  1. Challenging a trickle-down view of climate change on agriculture and groundwater

    USDA-ARS?s Scientific Manuscript database

    Global climate change is largely viewed as affecting ecohydrology of the Earth’s surface, but various studies are showing deeper effects on groundwater. Agricultural systems may be studied at the land surface and into the root zone with deeper effects of water and chemical movement to groundwater. ...

  2. Spatial forecasting of switchgrass productivity under current and future climate change scenarios

    USDA-ARS?s Scientific Manuscript database

    Evaluating the potential of alternative energy crops across large geographic regions and over time is necessary to determine if feedstock production is feasible and sustainable in the face of growing production demands and climatic change. Panicum virgatum L., a perennial herbaceous grass, is a prom...

  3. Climate change impacts on extreme temperature mortality in select metropolitan areas of the United States

    EPA Science Inventory

    Projected mortality from climate change-driven impacts on extremely hot and cold days increases significantly over the 21st century in a large group of United States Metropolitan Statistical Areas. Increases in projected mortality from more hot days are greater than decreases in ...

  4. Volcanic Eruptions and Climate

    NASA Technical Reports Server (NTRS)

    LeGrande, Allegra N.; Anchukaitis, Kevin J.

    2015-01-01

    Volcanic eruptions represent some of the most climatically important and societally disruptive short-term events in human history. Large eruptions inject ash, dust, sulfurous gases (e.g. SO2, H2S), halogens (e.g. Hcl and Hbr), and water vapor into the Earth's atmosphere. Sulfurous emissions principally interact with the climate by converting into sulfate aerosols that reduce incoming solar radiation, warming the stratosphere and altering ozone creation, reducing global mean surface temperature, and suppressing the hydrological cycle. In this issue, we focus on the history, processes, and consequences of these large eruptions that inject enough material into the stratosphere to significantly affect the climate system. In terms of the changes wrought on the energy balance of the Earth System, these transient events can temporarily have a radiative forcing magnitude larger than the range of solar, greenhouse gas, and land use variability over the last millennium. In simulations as well as modern and paleoclimate observations, volcanic eruptions cause large inter-annual to decadal-scale changes in climate. Active debates persist concerning their role in longer-term (multi-decadal to centennial) modification of the Earth System, however.

  5. Sensitivity of U.S. surface ozone to future emissions and climate changes

    NASA Astrophysics Data System (ADS)

    Tao, Zhining; Williams, Allen; Huang, Ho-Chun; Caughey, Michael; Liang, Xin-Zhong

    2007-04-01

    The relative contributions of projected future emissions and climate changes to U.S. surface ozone concentrations are investigated focusing on California, the Midwest, the Northeast, and Texas. By 2050 regional average ozone concentrations increase by 2-15% under the IPCC SRES A1Fi (``dirty'') scenario, and decrease by 4-12% under the B1 (relatively ``clean'') scenario. However, the magnitudes of ozone changes differ significantly between major metropolitan and rural areas. These ozone changes are dominated by the emissions changes in 61% area of the contiguous U.S. under the B1 scenario, but are largely determined by the projected climate changes in 46% area under the A1Fi scenario. In the ozone responses to climate changes, the biogenic emissions changes contribute strongly over the Northeast, moderately in the Midwest, and negligibly in other regions.

  6. Prehistoric Packrats Piled Up Clues to Climate Change

    USGS Publications Warehouse

    Cole, Kenneth L.

    2008-01-01

    Scientists from the U.S. Geological Survey and Northern Arizona University studying climate change in the Southwestern United States are getting a helping hand?or would that be paw??from prehistoric packrats. By hoarding parts of animals and plants, including seeds and leaves, in garbage piles or ?middens,? these bushy-tailed rodents preserved crucial ecological and environmental information about the past. From these middens, scientists are able to reconstruct plant communities and natural systems from as long ago as 50,000 years. The contents of middens allow scientists to understand how ecosystems responded to rapid, large-scale climate changes of the past. The insights gained from midden research could offer clues to future changes driven by rapid climate shifts.

  7. The deep ocean under climate change.

    PubMed

    Levin, Lisa A; Le Bris, Nadine

    2015-11-13

    The deep ocean absorbs vast amounts of heat and carbon dioxide, providing a critical buffer to climate change but exposing vulnerable ecosystems to combined stresses of warming, ocean acidification, deoxygenation, and altered food inputs. Resulting changes may threaten biodiversity and compromise key ocean services that maintain a healthy planet and human livelihoods. There exist large gaps in understanding of the physical and ecological feedbacks that will occur. Explicit recognition of deep-ocean climate mitigation and inclusion in adaptation planning by the United Nations Framework Convention on Climate Change (UNFCCC) could help to expand deep-ocean research and observation and to protect the integrity and functions of deep-ocean ecosystems. Copyright © 2015, American Association for the Advancement of Science.

  8. On the relationship between large-scale climate modes and regional synoptic patterns that drive Victorian rainfall

    NASA Astrophysics Data System (ADS)

    Verdon-Kidd, D. C.; Kiem, A. S.

    2009-04-01

    In this paper regional (synoptic) and large-scale climate drivers of rainfall are investigated for Victoria, Australia. A non-linear classification methodology known as self-organizing maps (SOM) is used to identify 20 key regional synoptic patterns, which are shown to capture a range of significant synoptic features known to influence the climate of the region. Rainfall distributions are assigned to each of the 20 patterns for nine rainfall stations located across Victoria, resulting in a clear distinction between wet and dry synoptic types at each station. The influence of large-scale climate modes on the frequency and timing of the regional synoptic patterns is also investigated. This analysis revealed that phase changes in the El Niño Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD) and/or the Southern Annular Mode (SAM) are associated with a shift in the relative frequency of wet and dry synoptic types on an annual to inter-annual timescale. In addition, the relative frequency of synoptic types is shown to vary on a multi-decadal timescale, associated with changes in the Inter-decadal Pacific Oscillation (IPO). Importantly, these results highlight the potential to utilise the link between the regional synoptic patterns derived in this study and large-scale climate modes to improve rainfall forecasting for Victoria, both in the short- (i.e. seasonal) and long-term (i.e. decadal/multi-decadal scale). In addition, the regional and large-scale climate drivers identified in this study provide a benchmark by which the performance of Global Climate Models (GCMs) may be assessed.

  9. Novel approaches to reducing uncertainty in regional climate predictions (Invited)

    NASA Astrophysics Data System (ADS)

    Ammann, C. M.

    2009-12-01

    Regional planning in preparation for future climate changes is rapidly gaining importance. However, compared to the global mean projections, correctly anticipating regional climate is often much more difficult, particularly with regard to hydrologic changes. The reason for the high, inherent uncertainty in location specific forecasts arises on one hand from the superposition of large internal variability in the atmosphere-ocean system on the more gradual changes. On the other hand, this problem is confounded by the fact that regional climate records are often short and therefore offer little guidance as to how an underlying trend can be identified within the noise. The use of indirect climate information (proxy records) from a host of natural archives has made significant progress recently. Based on an extended record, process studies can help reveal the regional response to changes in large scale climate that likely have to be expected. But in order to come up with robust, season and parameter specific (temperature versus moisture) climate reconstructions, comprehensive data compilations are needed that integrate proxy records of different characteristics, temporal representations, and different systematic and sampling uncertainties. Based on understanding of physical processes, and making explicit use of that knowledge, new dynamical and statistical techniques in paleoclimatology are being developed and explored. In addition to improved estimates of the past climate, the cascade of uncertainties is directly taken into account so that errors can more comprehensively be assessed. A brief overview of the problems and its potential implications for regional planning is followed by an application that demonstrates how collaboration between paleoclimatologists, climate modelers and statisticians can advance our understanding of the climate system and how agencies, businesses and individuals might be able to make better informed decisions in preparation for future climate.

  10. Modeling responses of large-river fish populations to global climate change through downscaling and incorporation of predictive uncertainty

    USGS Publications Warehouse

    Wildhaber, Mark L.; Wikle, Christopher K.; Anderson, Christopher J.; Franz, Kristie J.; Moran, Edward H.; Dey, Rima; Mader, Helmut; Kraml, Julia

    2012-01-01

    Climate change operates over a broad range of spatial and temporal scales. Understanding its effects on ecosystems requires multi-scale models. For understanding effects on fish populations of riverine ecosystems, climate predicted by coarse-resolution Global Climate Models must be downscaled to Regional Climate Models to watersheds to river hydrology to population response. An additional challenge is quantifying sources of uncertainty given the highly nonlinear nature of interactions between climate variables and community level processes. We present a modeling approach for understanding and accomodating uncertainty by applying multi-scale climate models and a hierarchical Bayesian modeling framework to Midwest fish population dynamics and by linking models for system components together by formal rules of probability. The proposed hierarchical modeling approach will account for sources of uncertainty in forecasts of community or population response. The goal is to evaluate the potential distributional changes in an ecological system, given distributional changes implied by a series of linked climate and system models under various emissions/use scenarios. This understanding will aid evaluation of management options for coping with global climate change. In our initial analyses, we found that predicted pallid sturgeon population responses were dependent on the climate scenario considered.

  11. Climate Change, Human Health, and Biomedical Research: Analysis of the National Institutes of Health Research Portfolio

    PubMed Central

    Balbus, John M.; Christian, Carole; Haque, Ehsanul; Howe, Sally E.; Newton, Sheila A.; Reid, Britt C.; Roberts, Luci; Wilhelm, Erin; Rosenthal, Joshua P.

    2013-01-01

    Background: According to a wide variety of analyses and projections, the potential effects of global climate change on human health are large and diverse. The U.S. National Institutes of Health (NIH), through its basic, clinical, and population research portfolio of grants, has been increasing efforts to understand how the complex interrelationships among humans, ecosystems, climate, climate variability, and climate change affect domestic and global health. Objectives: In this commentary we present a systematic review and categorization of the fiscal year (FY) 2008 NIH climate and health research portfolio. Methods: A list of candidate climate and health projects funded from FY 2008 budget appropriations were identified and characterized based on their relevance to climate change and health and based on climate pathway, health impact, study type, and objective. Results: This analysis identified seven FY 2008 projects focused on climate change, 85 climate-related projects, and 706 projects that focused on disease areas associated with climate change but did not study those associations. Of the nearly 53,000 awards that NIH made in 2008, approximately 0.17% focused on or were related to climate. Conclusions: Given the nature and scale of the potential effects of climate change on human health and the degree of uncertainty that we have about these effects, we think that it is helpful for the NIH to engage in open discussions with science and policy communities about government-wide needs and opportunities in climate and health, and about how NIH’s strengths in human health research can contribute to understanding the health implications of global climate change. This internal review has been used to inform more recent initiatives by the NIH in climate and health. PMID:23552460

  12. Climate change, human health, and biomedical research: analysis of the National Institutes of Health research portfolio.

    PubMed

    Jessup, Christine M; Balbus, John M; Christian, Carole; Haque, Ehsanul; Howe, Sally E; Newton, Sheila A; Reid, Britt C; Roberts, Luci; Wilhelm, Erin; Rosenthal, Joshua P

    2013-04-01

    According to a wide variety of analyses and projections, the potential effects of global climate change on human health are large and diverse. The U.S. National Institutes of Health (NIH), through its basic, clinical, and population research portfolio of grants, has been increasing efforts to understand how the complex interrelationships among humans, ecosystems, climate, climate variability, and climate change affect domestic and global health. In this commentary we present a systematic review and categorization of the fiscal year (FY) 2008 NIH climate and health research portfolio. A list of candidate climate and health projects funded from FY 2008 budget appropriations were identified and characterized based on their relevance to climate change and health and based on climate pathway, health impact, study type, and objective. This analysis identified seven FY 2008 projects focused on climate change, 85 climate-related projects, and 706 projects that focused on disease areas associated with climate change but did not study those associations. Of the nearly 53,000 awards that NIH made in 2008, approximately 0.17% focused on or were related to climate. Given the nature and scale of the potential effects of climate change on human health and the degree of uncertainty that we have about these effects, we think that it is helpful for the NIH to engage in open discussions with science and policy communities about government-wide needs and opportunities in climate and health, and about how NIH's strengths in human health research can contribute to understanding the health implications of global climate change. This internal review has been used to inform more recent initiatives by the NIH in climate and health.

  13. Modeling and predicting vegetation response of western USA grasslands, shrublands, and deserts to climate change (Chapter 1)

    Treesearch

    Megan M. Friggens; Marcus V. Warwell; Jeanne C. Chambers; Stanley G. Kitchen

    2012-01-01

    Experimental research and species distribution modeling predict large changes in the distributions of species and vegetation types in the Interior West due to climate change. Species’ responses will depend not only on their physiological tolerances but also on their phenology, establishment properties, biotic interactions, and capacity to evolve and migrate. Because...

  14. The potential impact of regional climate change on fire weather in the United States

    Treesearch

    Ying Tang; Shiyuan Zhong; Lifeng Luo; Xindi Bian; Warren E. Heilman; Julie. Winkler

    2015-01-01

    Climate change is expected to alter the frequency and severity of atmospheric conditions conducive for wildfires. In this study, we assess potential changes in fire weather conditions for the contiguous United States using the Haines Index (HI), a fire weather index that has been employed operationally to detect atmospheric conditions favorable for large and erratic...

  15. Uncertainties in Past and Future Global Water Availability

    NASA Astrophysics Data System (ADS)

    Sheffield, J.; Kam, J.

    2014-12-01

    Understanding how water availability changes on inter-annual to decadal time scales and how it may change in the future under climate change are a key part of understanding future stresses on water and food security. Historic evaluations of water availability on regional to global scales are generally based on large-scale model simulations with their associated uncertainties, in particular for long-term changes. Uncertainties are due to model errors and missing processes, parameter uncertainty, and errors in meteorological forcing data. Recent multi-model inter-comparisons and impact studies have highlighted large differences for past reconstructions, due to different simplifying assumptions in the models or the inclusion of physical processes such as CO2 fertilization. Modeling of direct anthropogenic factors such as water and land management also carry large uncertainties in their physical representation and from lack of socio-economic data. Furthermore, there is little understanding of the impact of uncertainties in the meteorological forcings that underpin these historic simulations. Similarly, future changes in water availability are highly uncertain due to climate model diversity, natural variability and scenario uncertainty, each of which dominates at different time scales. In particular, natural climate variability is expected to dominate any externally forced signal over the next several decades. We present results from multi-land surface model simulations of the historic global availability of water in the context of natural variability (droughts) and long-term changes (drying). The simulations take into account the impact of uncertainties in the meteorological forcings and the incorporation of water management in the form of reservoirs and irrigation. The results indicate that model uncertainty is important for short-term drought events, and forcing uncertainty is particularly important for long-term changes, especially uncertainty in precipitation due to reduced gauge density in recent years. We also discuss uncertainties in future projections from these models as driven by bias-corrected and downscaled CMIP5 climate projections, in the context of the balance between climate model robustness and climate model diversity.

  16. Population response to climate change: linear vs. non-linear modeling approaches.

    PubMed

    Ellis, Alicia M; Post, Eric

    2004-03-31

    Research on the ecological consequences of global climate change has elicited a growing interest in the use of time series analysis to investigate population dynamics in a changing climate. Here, we compare linear and non-linear models describing the contribution of climate to the density fluctuations of the population of wolves on Isle Royale, Michigan from 1959 to 1999. The non-linear self excitatory threshold autoregressive (SETAR) model revealed that, due to differences in the strength and nature of density dependence, relatively small and large populations may be differentially affected by future changes in climate. Both linear and non-linear models predict a decrease in the population of wolves with predicted changes in climate. Because specific predictions differed between linear and non-linear models, our study highlights the importance of using non-linear methods that allow the detection of non-linearity in the strength and nature of density dependence. Failure to adopt a non-linear approach to modelling population response to climate change, either exclusively or in addition to linear approaches, may compromise efforts to quantify ecological consequences of future warming.

  17. Hydrological changes in the tropics: an Holocene perspective

    NASA Astrophysics Data System (ADS)

    Braconnot, Pascale

    2015-04-01

    Past climates offer a large set of natural experiences that can be used to better understand the relative role of different climate feedbacks arising from changes in the Earth's global energetics, Earth's hydrological cycle or from the coupling between climate and biogeochemical cycles. In addition, the numerous climate reconstructions from different and independent ice, marine and terrestrial climate archives allow to test how climate models reproduce past changes and to assess their credibility when used for future climate projections. The presentation will review some of the mechanisms affecting the long term trend in the location of the intertropical convergence zone and the Afro-Asian monsoon. Using simulations of the PMIP project, as well as sensitivity experiments with the IPSL model, I'll discuss the role of monsoon changes in the global Earth's energetics and the different feedbacks from ocean and land-surface. The presentation will contrast the conditions in the Early, the mid and late Holocene and show how robust features of monsoon changes can be used to better assess future changes in regions where model results are uncertain, such as West Africa.

  18. History and Progress of GCM Simulations on Recent Mars Climate Change

    NASA Technical Reports Server (NTRS)

    Haberle, R. M.

    2004-01-01

    The Mars Global Surveyor and Odyssey spacecraft reveal evidence that Mars may have experienced significant climate change in the recent past (105-106 Myr ago). Examples include gullies [1], cold-based tropical glaciers [2], paleolakes [3], and youthful near-surface ice [4]. Except for the gullies, the evidence for recent climate change requires ice and/or liquid water at low latitudes. An obvious question, therefore, is how is it possible for ice and/or liquid water to exist at low latitudes which is not possible in the present climate system? There are several mechanisms to consider. An episode of intense volcanic activity could alter the mean composition of the atmosphere and, therefore, the climate system. Impacts, depending on the size, composition, and velocity of the impactor are another way to dramatically alter the climate system. Polar wander and solar variability are also possibilities. However, the most promising way to change the climate is through changes in orbital properties. Mars, because of its proximity to Jupiter and lack of a large stabilizing moon, experiences much greater changes in its orbit properties than the Earth.

  19. History and Progress of GCM Simulations on Recent Mars Climate Change

    NASA Technical Reports Server (NTRS)

    Haberle, R. M.

    2004-01-01

    The Mars Global Surveyor and Odyssey spacecraft reveal evidence that Mars may have experienced significant climate change in the recent past (10(exp 5) - 10(exp 6) Myr ago). Examples include gullies, cold-based tropical glaciers, paleolakes, and youthful near-surface ice. Except for the gullies, the evidence for recent climate change requires ice and/or liquid water at low latitudes. An obvious question, therefore, is how is it possible for ice and/or liquid water to exist at low latitudes which is not possible in the present climate system? There are several mechanisms to consider. An episode of intense volcanic activity could alter the mean composition of the atmosphere and, therefore, the climate system. Impacts, depending on the size, composition, and velocity of the impactor are another way to dramatically alter the climate system. Polar wander and solar variability are also possibilities. However, the most promising way to change the climate is through changes in orbital properties. Mars, because of its proximity to Jupiter and lack of a large stabilizing moon, experiences much greater changes in its orbit properties than the Earth.

  20. Climate Change Vulnerability Assessment for Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher P. Ischay; Ernest L. Fossum; Polly C. Buotte

    2014-10-01

    The University of Idaho (UI) was asked to participate in the development of a climate change vulnerability assessment for Idaho National Laboratory (INL). This report describes the outcome of that assessment. The climate change happening now, due in large part to human activities, is expected to continue in the future. UI and INL used a common framework for assessing vulnerability that considers exposure (future climate change), sensitivity (system or component responses to climate), impact (exposure combined with sensitivity), and adaptive capacity (capability of INL to modify operations to minimize climate change impacts) to assess vulnerability. Analyses of climate change (exposure)more » revealed that warming that is ongoing at INL will continue in the coming decades, with increased warming in later decades and under scenarios of greater greenhouse gas emissions. Projections of precipitation are more uncertain, with multi model means exhibiting somewhat wetter conditions and more wet days per year. Additional impacts relevant to INL include estimates of more burned area and increased evaporation and transpiration, leading to reduced soil moisture and plant growth.« less

  1. How will biotic interactions influence climate change-induced range shifts?

    PubMed

    HilleRisLambers, Janneke; Harsch, Melanie A; Ettinger, Ailene K; Ford, Kevin R; Theobald, Elinore J

    2013-09-01

    Biotic interactions present a challenge in determining whether species distributions will track climate change. Interactions with competitors, consumers, mutualists, and facilitators can strongly influence local species distributions, but few studies assess how and whether these interactions will impede or accelerate climate change-induced range shifts. In this paper, we explore how ecologists might move forward on this question. We first outline the conditions under which biotic interactions can result in range shifts that proceed faster or slower than climate velocity and result in ecological surprises. Next, we use our own work to demonstrate that experimental studies documenting the strength of biotic interactions across large environmental gradients are a critical first step for understanding whether they will influence climate change-induced range shifts. Further progress could be made by integrating results from these studies into modeling frameworks to predict how or generalize when biotic interactions mediate how changing climates influence range shifts. Finally, we argue that many more case studies like those described here are needed to explore the importance of biotic interactions during climate change-induced range shifts. © 2013 New York Academy of Sciences.

  2. Communicating uncertainty in circulation aspects of climate change

    NASA Astrophysics Data System (ADS)

    Shepherd, Ted

    2017-04-01

    The usual way of representing uncertainty in climate change is to define a likelihood range of possible futures, conditioned on a particular pathway of greenhouse gas concentrations (RCPs). Typically these likelihood ranges are derived from multi-model ensembles. However, there is no obvious basis for treating such ensembles as probability distributions. Moreover, for aspects of climate related to atmospheric circulation, such an approach generally leads to large uncertainty and low confidence in projections. Yet this does not mean that the associated climate risks are small. We therefore need to develop suitable ways of communicating climate risk whilst acknowledging the uncertainties. This talk will outline an approach based on conditioning the purely thermodynamic aspects of climate change, concerning which there is comparatively high confidence, on circulation-related aspects, and treating the latter through non-probabilistic storylines.

  3. Study of phase clustering method for analyzing large volumes of meteorological observation data

    NASA Astrophysics Data System (ADS)

    Volkov, Yu. V.; Krutikov, V. A.; Botygin, I. A.; Sherstnev, V. S.; Sherstneva, A. I.

    2017-11-01

    The article describes an iterative parallel phase grouping algorithm for temperature field classification. The algorithm is based on modified method of structure forming by using analytic signal. The developed method allows to solve tasks of climate classification as well as climatic zoning for any time or spatial scale. When used to surface temperature measurement series, the developed algorithm allows to find climatic structures with correlated changes of temperature field, to make conclusion on climate uniformity in a given area and to overview climate changes over time by analyzing offset in type groups. The information on climate type groups specific for selected geographical areas is expanded by genetic scheme of class distribution depending on change in mutual correlation level between ground temperature monthly average.

  4. From climate model ensembles to climate change impacts and adaptation: A case study of water resource management in the southwest of England

    NASA Astrophysics Data System (ADS)

    Lopez, Ana; Fung, Fai; New, Mark; Watts, Glenn; Weston, Alan; Wilby, Robert L.

    2009-08-01

    The majority of climate change impacts and adaptation studies so far have been based on at most a few deterministic realizations of future climate, usually representing different emissions scenarios. Large ensembles of climate models are increasingly available either as ensembles of opportunity or perturbed physics ensembles, providing a wealth of additional data that is potentially useful for improving adaptation strategies to climate change. Because of the novelty of this ensemble information, there is little previous experience of practical applications or of the added value of this information for impacts and adaptation decision making. This paper evaluates the value of perturbed physics ensembles of climate models for understanding and planning public water supply under climate change. We deliberately select water resource models that are already used by water supply companies and regulators on the assumption that uptake of information from large ensembles of climate models will be more likely if it does not involve significant investment in new modeling tools and methods. We illustrate the methods with a case study on the Wimbleball water resource zone in the southwest of England. This zone is sufficiently simple to demonstrate the utility of the approach but with enough complexity to allow a variety of different decisions to be made. Our research shows that the additional information contained in the climate model ensemble provides a better understanding of the possible ranges of future conditions, compared to the use of single-model scenarios. Furthermore, with careful presentation, decision makers will find the results from large ensembles of models more accessible and be able to more easily compare the merits of different management options and the timing of different adaptation. The overhead in additional time and expertise for carrying out the impacts analysis will be justified by the increased quality of the decision-making process. We remark that even though we have focused our study on a water resource system in the United Kingdom, our conclusions about the added value of climate model ensembles in guiding adaptation decisions can be generalized to other sectors and geographical regions.

  5. Albedo feedbacks to future climate via climate change impacts on dryland biocrusts.

    PubMed

    Rutherford, William A; Painter, Thomas H; Ferrenberg, Scott; Belnap, Jayne; Okin, Gregory S; Flagg, Cody; Reed, Sasha C

    2017-03-10

    Drylands represent the planet's largest terrestrial biome and evidence suggests these landscapes have large potential for creating feedbacks to future climate. Recent studies also indicate that dryland ecosystems are responding markedly to climate change. Biological soil crusts (biocrusts) ‒ soil surface communities of lichens, mosses, and/or cyanobacteria ‒ comprise up to 70% of dryland cover and help govern fundamental ecosystem functions, including soil stabilization and carbon uptake. Drylands are expected to experience significant changes in temperature and precipitation regimes, and such alterations may impact biocrust communities by promoting rapid mortality of foundational species. In turn, biocrust community shifts affect land surface cover and roughness-changes that can dramatically alter albedo. We tested this hypothesis in a full-factorial warming (+4 °C above ambient) and altered precipitation (increased frequency of 1.2 mm monsoon-type watering events) experiment on the Colorado Plateau, USA. We quantified changes in shortwave albedo via multi-angle, solar-reflectance measurements. Warming and watering treatments each led to large increases in albedo (>30%). This increase was driven by biophysical factors related to treatment effects on cyanobacteria cover and soil surface roughness following treatment-induced moss and lichen mortality. A rise in dryland surface albedo may represent a previously unidentified feedback to future climate.

  6. Albedo feedbacks to future climate via climate change impacts on dryland biocrusts

    NASA Astrophysics Data System (ADS)

    Rutherford, William A.; Painter, Thomas H.; Ferrenberg, Scott; Belnap, Jayne; Okin, Gregory S.; Flagg, Cody; Reed, Sasha C.

    2017-03-01

    Drylands represent the planet’s largest terrestrial biome and evidence suggests these landscapes have large potential for creating feedbacks to future climate. Recent studies also indicate that dryland ecosystems are responding markedly to climate change. Biological soil crusts (biocrusts) ‒ soil surface communities of lichens, mosses, and/or cyanobacteria ‒ comprise up to 70% of dryland cover and help govern fundamental ecosystem functions, including soil stabilization and carbon uptake. Drylands are expected to experience significant changes in temperature and precipitation regimes, and such alterations may impact biocrust communities by promoting rapid mortality of foundational species. In turn, biocrust community shifts affect land surface cover and roughness—changes that can dramatically alter albedo. We tested this hypothesis in a full-factorial warming (+4 °C above ambient) and altered precipitation (increased frequency of 1.2 mm monsoon-type watering events) experiment on the Colorado Plateau, USA. We quantified changes in shortwave albedo via multi-angle, solar-reflectance measurements. Warming and watering treatments each led to large increases in albedo (>30%). This increase was driven by biophysical factors related to treatment effects on cyanobacteria cover and soil surface roughness following treatment-induced moss and lichen mortality. A rise in dryland surface albedo may represent a previously unidentified feedback to future climate.

  7. Albedo feedbacks to future climate via climate change impacts on dryland biocrusts

    USGS Publications Warehouse

    Rutherford, William A.; Painter, Thomas H.; Ferrenberg, Scott; Belnap, Jayne; Okin, Gregory S.; Flagg, Cody B.; Reed, Sasha C.

    2017-01-01

    Drylands represent the planet’s largest terrestrial biome and evidence suggests these landscapes have large potential for creating feedbacks to future climate. Recent studies also indicate that dryland ecosystems are responding markedly to climate change. Biological soil crusts (biocrusts) ‒ soil surface communities of lichens, mosses, and/or cyanobacteria ‒ comprise up to 70% of dryland cover and help govern fundamental ecosystem functions, including soil stabilization and carbon uptake. Drylands are expected to experience significant changes in temperature and precipitation regimes, and such alterations may impact biocrust communities by promoting rapid mortality of foundational species. In turn, biocrust community shifts affect land surface cover and roughness—changes that can dramatically alter albedo. We tested this hypothesis in a full-factorial warming (+4 °C above ambient) and altered precipitation (increased frequency of 1.2 mm monsoon-type watering events) experiment on the Colorado Plateau, USA. We quantified changes in shortwave albedo via multi-angle, solar-reflectance measurements. Warming and watering treatments each led to large increases in albedo (>30%). This increase was driven by biophysical factors related to treatment effects on cyanobacteria cover and soil surface roughness following treatment-induced moss and lichen mortality. A rise in dryland surface albedo may represent a previously unidentified feedback to future climate.

  8. Large-scale climatic anomalies affect marine predator foraging behaviour and demography.

    PubMed

    Bost, Charles A; Cotté, Cedric; Terray, Pascal; Barbraud, Christophe; Bon, Cécile; Delord, Karine; Gimenez, Olivier; Handrich, Yves; Naito, Yasuhiko; Guinet, Christophe; Weimerskirch, Henri

    2015-10-27

    Determining the links between the behavioural and population responses of wild species to environmental variations is critical for understanding the impact of climate variability on ecosystems. Using long-term data sets, we show how large-scale climatic anomalies in the Southern Hemisphere affect the foraging behaviour and population dynamics of a key marine predator, the king penguin. When large-scale subtropical dipole events occur simultaneously in both subtropical Southern Indian and Atlantic Oceans, they generate tropical anomalies that shift the foraging zone southward. Consequently the distances that penguins foraged from the colony and their feeding depths increased and the population size decreased. This represents an example of a robust and fast impact of large-scale climatic anomalies affecting a marine predator through changes in its at-sea behaviour and demography, despite lack of information on prey availability. Our results highlight a possible behavioural mechanism through which climate variability may affect population processes.

  9. Large-scale climatic anomalies affect marine predator foraging behaviour and demography

    NASA Astrophysics Data System (ADS)

    Bost, Charles A.; Cotté, Cedric; Terray, Pascal; Barbraud, Christophe; Bon, Cécile; Delord, Karine; Gimenez, Olivier; Handrich, Yves; Naito, Yasuhiko; Guinet, Christophe; Weimerskirch, Henri

    2015-10-01

    Determining the links between the behavioural and population responses of wild species to environmental variations is critical for understanding the impact of climate variability on ecosystems. Using long-term data sets, we show how large-scale climatic anomalies in the Southern Hemisphere affect the foraging behaviour and population dynamics of a key marine predator, the king penguin. When large-scale subtropical dipole events occur simultaneously in both subtropical Southern Indian and Atlantic Oceans, they generate tropical anomalies that shift the foraging zone southward. Consequently the distances that penguins foraged from the colony and their feeding depths increased and the population size decreased. This represents an example of a robust and fast impact of large-scale climatic anomalies affecting a marine predator through changes in its at-sea behaviour and demography, despite lack of information on prey availability. Our results highlight a possible behavioural mechanism through which climate variability may affect population processes.

  10. A Big Data Guide to Understanding Climate Change: The Case for Theory-Guided Data Science.

    PubMed

    Faghmous, James H; Kumar, Vipin

    2014-09-01

    Global climate change and its impact on human life has become one of our era's greatest challenges. Despite the urgency, data science has had little impact on furthering our understanding of our planet in spite of the abundance of climate data. This is a stark contrast from other fields such as advertising or electronic commerce where big data has been a great success story. This discrepancy stems from the complex nature of climate data as well as the scientific questions climate science brings forth. This article introduces a data science audience to the challenges and opportunities to mine large climate datasets, with an emphasis on the nuanced difference between mining climate data and traditional big data approaches. We focus on data, methods, and application challenges that must be addressed in order for big data to fulfill their promise with regard to climate science applications. More importantly, we highlight research showing that solely relying on traditional big data techniques results in dubious findings, and we instead propose a theory-guided data science paradigm that uses scientific theory to constrain both the big data techniques as well as the results-interpretation process to extract accurate insight from large climate data .

  11. Role of Perturbing Ocean Initial Condition in Simulated Regional Sea Level Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Aixue; Meehl, Gerald; Stammer, Detlef

    Multiple lines of observational evidence indicate that the global climate has been getting warmer since the early 20th century. This warmer climate has led to a global mean sea level rise of about 18 cm during the 20th century, and over 6 cm for the first 15 years of the 21st century. Regionally the sea level rise is not uniform due in large part to internal climate variability. To better serve the community, the uncertainties of predicting/projecting regional sea level changes associated with internal climate variability need to be quantified. Previous research on this topic has used single-model large ensemblesmore » with perturbed atmospheric initial conditions (ICs). Here we compare uncertainties associated with perturbing ICs in just the atmosphere and just the ocean using a state-of-the-art coupled climate model. We find that by perturbing the oceanic ICs, the uncertainties in regional sea level changes increase compared to those with perturbed atmospheric ICs. In order for us to better assess the full spectrum of the impacts of such internal climate variability on regional and global sea level rise, approaches that involve perturbing both atmospheric and oceanic initial conditions are thus necessary.« less

  12. Role of Perturbing Ocean Initial Condition in Simulated Regional Sea Level Change

    DOE PAGES

    Hu, Aixue; Meehl, Gerald; Stammer, Detlef; ...

    2017-06-05

    Multiple lines of observational evidence indicate that the global climate has been getting warmer since the early 20th century. This warmer climate has led to a global mean sea level rise of about 18 cm during the 20th century, and over 6 cm for the first 15 years of the 21st century. Regionally the sea level rise is not uniform due in large part to internal climate variability. To better serve the community, the uncertainties of predicting/projecting regional sea level changes associated with internal climate variability need to be quantified. Previous research on this topic has used single-model large ensemblesmore » with perturbed atmospheric initial conditions (ICs). Here we compare uncertainties associated with perturbing ICs in just the atmosphere and just the ocean using a state-of-the-art coupled climate model. We find that by perturbing the oceanic ICs, the uncertainties in regional sea level changes increase compared to those with perturbed atmospheric ICs. In order for us to better assess the full spectrum of the impacts of such internal climate variability on regional and global sea level rise, approaches that involve perturbing both atmospheric and oceanic initial conditions are thus necessary.« less

  13. Drinking-water treatment, climate change, and childhood gastrointestinal illness projections for northern Wisconsin (USA) communities drinking untreated groundwater

    NASA Astrophysics Data System (ADS)

    Uejio, Christopher K.; Christenson, Megan; Moran, Colleen; Gorelick, Mark

    2017-06-01

    This study examined the relative importance of climate change and drinking-water treatment for gastrointestinal illness incidence in children (age <5 years) from period 2046-2065 compared to 1991-2010. The northern Wisconsin (USA) study focused on municipalities distributing untreated groundwater. A time-series analysis first quantified the observed (1991-2010) precipitation and gastrointestinal illness associations after controlling for seasonality and temporal trends. Precipitation likely transported pathogens into drinking-water sources or into leaking water-distribution networks. Building on observed relationships, the second analysis projected how climate change and drinking-water treatment installation may alter gastrointestinal illness incidence. Future precipitation values were modeled by 13 global climate models and three greenhouse-gas emissions levels. The second analysis was rerun using three pathways: (1) only climate change, (2) climate change and the same slow pace of treatment installation observed over 1991-2010, and (3) climate change and the rapid rate of installation observed over 2011-2016. The results illustrate the risks that climate change presents to small rural groundwater municipalities without drinking water treatment. Climate-change-related seasonal precipitation changes will marginally increase the gastrointestinal illness incidence rate (mean: ˜1.5%, range: -3.6-4.3%). A slow pace of treatment installation somewhat decreased precipitation-associated gastrointestinal illness incidence (mean: ˜3.0%, range: 0.2-7.8%) in spite of climate change. The rapid treatment installation rate largely decreases the gastrointestinal illness incidence (mean: ˜82.0%, range: 82.0-83.0%).

  14. Emerging migration flows in a changing climate in dryland Africa

    NASA Astrophysics Data System (ADS)

    Kniveton, Dominic R.; Smith, Christopher D.; Black, Richard

    2012-06-01

    Fears of the movement of large numbers of people as a result of changes in the environment were first voiced in the 1980s (ref. ). Nearly thirty years later the numbers likely to migrate as a result of the impacts of climate change are still, at best, guesswork. Owing to the high prevalence of rainfed agriculture, many livelihoods in sub-Saharan African drylands are particularly vulnerable to changes in climate. One commonly adopted response strategy used by populations to deal with the resulting livelihood stress is migration. Here, we use an agent-based model developed around the theory of planned behaviour to explore how climate and demographic change, defined by the ENSEMBLES project and the United Nations Statistics Division of the Department of Economic and Social Affairs, combine to influence migration within and from Burkina Faso. The emergent migration patterns modelled support framing the nexus of climate change and migration as a complex adaptive system. Using this conceptual framework, we show that the extent of climate-change-related migration is likely to be highly nonlinear and the extent of this nonlinearity is dependent on population growth; therefore supporting migration policy interventions based on both demographic and climate change adaptation.

  15. Tolerance adaptation and precipitation changes complicate latitudinal patterns of climate change impacts.

    PubMed

    Bonebrake, Timothy C; Mastrandrea, Michael D

    2010-07-13

    Global patterns of biodiversity and comparisons between tropical and temperate ecosystems have pervaded ecology from its inception. However, the urgency in understanding these global patterns has been accentuated by the threat of rapid climate change. We apply an adaptive model of environmental tolerance evolution to global climate data and climate change model projections to examine the relative impacts of climate change on different regions of the globe. Our results project more adverse impacts of warming on tropical populations due to environmental tolerance adaptation to conditions of low interannual variability in temperature. When applied to present variability and future forecasts of precipitation data, the tolerance adaptation model found large reductions in fitness predicted for populations in high-latitude northern hemisphere regions, although some tropical regions had comparable reductions in fitness. We formulated an evolutionary regional climate change index (ERCCI) to additionally incorporate the predicted changes in the interannual variability of temperature and precipitation. Based on this index, we suggest that the magnitude of climate change impacts could be much more heterogeneous across latitude than previously thought. Specifically, tropical regions are likely to be just as affected as temperate regions and, in some regions under some circumstances, possibly more so.

  16. The Influence of Drivers and Barriers on Urban Adaptation and Mitigation Plans—An Empirical Analysis of European Cities

    PubMed Central

    Reckien, Diana; Flacke, Johannes

    2015-01-01

    Cities are recognised as key players in global adaptation and mitigation efforts because the majority of people live in cities. However, in Europe, which is highly urbanized and one of the most advanced regions in terms of environmental policies, there is considerable diversity in the regional distribution, ambition and scope of climate change responses. This paper explores potential factors contributing to such diversity in 200 large and medium-sized cities across 11 European countries. We statistically investigate institutional, socio-economic, environmental and vulnerability characteristics of cities as potential drivers of or barriers to the development of urban climate change plans. Our results show that factors such as membership of climate networks, population size, GDP per capita and adaptive capacity act as drivers of mitigation and adaptation plans. By contrast, factors such as the unemployment rate, warmer summers, proximity to the coast and projected exposure to future climate impacts act as barriers. We see that, overall, it is predominantly large and prosperous cities that engage in climate planning, while vulnerable cities and those at risk of severe climate impacts in the future are less active. Our analysis suggests that climate change planning in European cities is not proactive, i.e. not significantly influenced by anticipated future impacts. Instead, we found that the current adaptive capacity of a city significantly relates to climate planning. Along with the need to further explore these relations, we see a need for more economic and institutional support for smaller and less resourceful cities and those at high risk from climate change impacts in the future. PMID:26317420

  17. The Influence of Drivers and Barriers on Urban Adaptation and Mitigation Plans-An Empirical Analysis of European Cities.

    PubMed

    Reckien, Diana; Flacke, Johannes; Olazabal, Marta; Heidrich, Oliver

    2015-01-01

    Cities are recognised as key players in global adaptation and mitigation efforts because the majority of people live in cities. However, in Europe, which is highly urbanized and one of the most advanced regions in terms of environmental policies, there is considerable diversity in the regional distribution, ambition and scope of climate change responses. This paper explores potential factors contributing to such diversity in 200 large and medium-sized cities across 11 European countries. We statistically investigate institutional, socio-economic, environmental and vulnerability characteristics of cities as potential drivers of or barriers to the development of urban climate change plans. Our results show that factors such as membership of climate networks, population size, GDP per capita and adaptive capacity act as drivers of mitigation and adaptation plans. By contrast, factors such as the unemployment rate, warmer summers, proximity to the coast and projected exposure to future climate impacts act as barriers. We see that, overall, it is predominantly large and prosperous cities that engage in climate planning, while vulnerable cities and those at risk of severe climate impacts in the future are less active. Our analysis suggests that climate change planning in European cities is not proactive, i.e. not significantly influenced by anticipated future impacts. Instead, we found that the current adaptive capacity of a city significantly relates to climate planning. Along with the need to further explore these relations, we see a need for more economic and institutional support for smaller and less resourceful cities and those at high risk from climate change impacts in the future.

  18. Responding to climate change: A toolbox of management strategies: Chapter 11

    USGS Publications Warehouse

    Cole, David; Stephenson, Nathan L.; Millar, Constance I.

    2010-01-01

    Climate change and its effects are writ large across the landscape and in the natural and cultural heritage of parks and wilderness. They always have been and always will be. The sculpted walls of Yosemite National Park and the jagged scenery of the Sierra Nevada wilderness would not be as spectacular if periods of glaciation had not been followed by periods of deglaciation. High biodiversity in forests of the Great Smoky Mountains reflects a legacy of climate change, migrating species, and isolated climatic refugia. Fossils unearthed at Dinosaur National Monument reflect a time when the climate was very different than it is today, as do ruins left by peoples who practiced agriculture in places in the American Southwest where food production is not possible today. Over eons, climate change has molded the diversity of life and landscape in areas now protected as parks and wilderness.

  19. Future potential distribution of the emerging amphibian chytrid fungus under anthropogenic climate change.

    PubMed

    Rödder, Dennis; Kielgast, Jos; Lötters, Stefan

    2010-11-01

    Anthropogenic climate change poses a major threat to global biodiversity with a potential to alter biological interactions at all spatial scales. Amphibians are the most threatened vertebrates and have been subject to increasing conservation attention over the past decade. A particular concern is the pandemic emergence of the parasitic chytrid fungus Batrachochytrium dendrobatidis, which has been identified as the cause of extremely rapid large-scale declines and species extinctions. Experimental and observational studies have demonstrated that the host-pathogen system is strongly influenced by climatic parameters and thereby potentially affected by climate change. Herein we project a species distribution model of the pathogen onto future climatic scenarios generated by the IPCC to examine their potential implications on the pandemic. Results suggest that predicted anthropogenic climate change may reduce the geographic range of B. dendrobatidis and its potential influence on amphibian biodiversity.

  20. Changing precipitation in western Europe, climate change or natural variability?

    NASA Astrophysics Data System (ADS)

    Aalbers, Emma; Lenderink, Geert; van Meijgaard, Erik; van den Hurk, Bart

    2017-04-01

    Multi-model RCM-GCM ensembles provide high resolution climate projections, valuable for among others climate impact assessment studies. While the application of multiple models (both GCMs and RCMs) provides a certain robustness with respect to model uncertainty, the interpretation of differences between ensemble members - the combined result of model uncertainty and natural variability of the climate system - is not straightforward. Natural variability is intrinsic to the climate system, and a potentially large source of uncertainty in climate change projections, especially for projections on the local to regional scale. To quantify the natural variability and get a robust estimate of the forced climate change response (given a certain model and forcing scenario), large ensembles of climate model simulations of the same model provide essential information. While for global climate models (GCMs) a number of such large single model ensembles exists and have been analyzed, for regional climate models (RCMs) the number and size of single model ensembles is limited, and the predictability of the forced climate response at the local to regional scale is still rather uncertain. We present a regional downscaling of a 16-member single model ensemble over western Europe and the Alps at a resolution of 0.11 degrees (˜12km), similar to the highest resolution EURO-CORDEX simulations. This 16-member ensemble was generated by the GCM EC-EARTH, which was downscaled with the RCM RACMO for the period 1951-2100. This single model ensemble has been investigated in terms of the ensemble mean response (our estimate of the forced climate response), as well as the difference between the ensemble members, which measures natural variability. We focus on the response in seasonal mean and extreme precipitation (seasonal maxima and extremes with a return period up to 20 years) for the near to far future. For most precipitation indices we can reliably determine the climate change signal, given the applied model chain and forcing scenario. However, the analysis also shows how limited the information in single ensemble members is on the local scale forced climate response, even for high levels of global warming when the forced response has emerged from natural variability. Analysis and application of multi-model ensembles like EURO-CORDEX should go hand-in-hand with single model ensembles, like the one presented here, to be able to correctly interpret the fine-scale information in terms of a forced signal and random noise due to natural variability.

  1. Whitebark pine (Pinus albicaulis) in Cascadia: A climate change prognosis

    Treesearch

    Sierra C. McLane

    2011-01-01

    Species distribution models (SDMs) predict that whitebark pine (Pinus albicaulis) will lose much of its current climatic range in Cascadia (the Pacific Northwest in the United States plus British Columbia, Canada) by the 2080s as the climate warms. However, the same models indicate that the species will simultaneously gain a large, climatically-favorable habitat...

  2. Global Priority Conservation Areas in the Face of 21st Century Climate Change

    PubMed Central

    Li, Junsheng; Lin, Xin; Chen, Anping; Peterson, Townsend; Ma, Keping; Bertzky, Monika; Ciais, Philippe; Kapos, Valerie; Peng, Changhui; Poulter, Benjamin

    2013-01-01

    In an era when global biodiversity is increasingly impacted by rapidly changing climate, efforts to conserve global biodiversity may be compromised if we do not consider the uneven distribution of climate-induced threats. Here, via a novel application of an aggregate Regional Climate Change Index (RCCI) that combines changes in mean annual temperature and precipitation with changes in their interannual variability, we assess multi-dimensional climate changes across the “Global 200” ecoregions – a set of priority ecoregions designed to “achieve the goal of saving a broad diversity of the Earth’s ecosystems” – over the 21st century. Using an ensemble of 62 climate scenarios, our analyses show that, between 1991–2010 and 2081–2100, 96% of the ecoregions considered will be likely (more than 66% probability) to face moderate-to-pronounced climate changes, when compared to the magnitudes of change during the past five decades. Ecoregions at high northern latitudes are projected to experience most pronounced climate change, followed by those in the Mediterranean Basin, Amazon Basin, East Africa, and South Asia. Relatively modest RCCI signals are expected over ecoregions in Northwest South America, West Africa, and Southeast Asia, yet with considerable uncertainties. Although not indicative of climate-change impacts per se, the RCCI-based assessment can help policy-makers gain a quantitative and comprehensive overview of the unevenly distributed climate risks across the G200 ecoregions. Whether due to significant climate change signals or large uncertainties, the ecoregions highlighted in the assessment deserve special attention in more detailed impact assessments to inform effective conservation strategies under future climate change. PMID:23359638

  3. GCM simulations of volcanic aerosol forcing. I - Climate changes induced by steady-state perturbations

    NASA Technical Reports Server (NTRS)

    Pollack, James B.; Rind, David; Lacis, Andrew; Hansen, James E.; Sato, Makiko; Ruedy, Reto

    1993-01-01

    The response of the climate system to a temporally and spatially constant amount of volcanic particles is simulated using a general circulation model (GCM). The optical depth of the aerosols is chosen so as to produce approximately the same amount of forcing as results from doubling the present CO2 content of the atmosphere and from the boundary conditions associated with the peak of the last ice age. The climate changes produced by long-term volcanic aerosol forcing are obtained by differencing this simulation and one made for the present climate with no volcanic aerosol forcing. The simulations indicate that a significant cooling of the troposphere and surface can occur at times of closely spaced multiple sulfur-rich volcanic explosions that span time scales of decades to centuries. The steady-state climate response to volcanic forcing includes a large expansion of sea ice, especially in the Southern Hemisphere; a resultant large increase in surface and planetary albedo at high latitudes; and sizable changes in the annually and zonally averaged air temperature.

  4. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems.

    PubMed

    Hisano, Masumi; Searle, Eric B; Chen, Han Y H

    2018-02-01

    Forest ecosystems are critical to mitigating greenhouse gas emissions through carbon sequestration. However, climate change has affected forest ecosystem functioning in both negative and positive ways, and has led to shifts in species/functional diversity and losses in plant species diversity which may impair the positive effects of diversity on ecosystem functioning. Biodiversity may mitigate climate change impacts on (I) biodiversity itself, as more-diverse systems could be more resilient to climate change impacts, and (II) ecosystem functioning through the positive relationship between diversity and ecosystem functioning. By surveying the literature, we examined how climate change has affected forest ecosystem functioning and plant diversity. Based on the biodiversity effects on ecosystem functioning (B→EF), we specifically address the potential for biodiversity to mitigate climate change impacts on forest ecosystem functioning. For this purpose, we formulate a concept whereby biodiversity may reduce the negative impacts or enhance the positive impacts of climate change on ecosystem functioning. Further B→EF studies on climate change in natural forests are encouraged to elucidate how biodiversity might influence ecosystem functioning. This may be achieved through the detailed scrutiny of large spatial/long temporal scale data sets, such as long-term forest inventories. Forest management strategies based on B→EF have strong potential for augmenting the effectiveness of the roles of forests in the mitigation of climate change impacts on ecosystem functioning. © 2017 Cambridge Philosophical Society.

  5. The CESM Large Ensemble Project: Inspiring New Ideas and Understanding

    NASA Astrophysics Data System (ADS)

    Kay, J. E.; Deser, C.

    2016-12-01

    While internal climate variability is known to affect climate projections, its influence is often underappreciated and confused with model error. Why? In general, modeling centers contribute a small number of realizations to international climate model assessments [e.g., phase 5 of the Coupled Model Intercomparison Project (CMIP5)]. As a result, model error and internal climate variability are difficult, and at times impossible, to disentangle. In response, the Community Earth System Model (CESM) community designed the CESM Large Ensemble (CESM-LE) with the explicit goal of enabling assessment of climate change in the presence of internal climate variability. All CESM-LE simulations use a single CMIP5 model (CESM with the Community Atmosphere Model, version 5). The core simulations replay the twenty to twenty-first century (1920-2100) 40+ times under historical and representative concentration pathway 8.5 external forcing with small initial condition differences. Two companion 2000+-yr-long preindustrial control simulations (fully coupled, prognostic atmosphere and land only) allow assessment of internal climate variability in the absence of climate change. Comprehensive outputs, including many daily fields, are available as single-variable time series on the Earth System Grid for anyone to use. Examples of scientists and stakeholders that are using the CESM-LE outputs to help interpret the observational record, to understand projection spread and to plan for a range of possible futures influenced by both internal climate variability and forced climate change will be highlighted the presentation.

  6. Ensemble tropical-extratropical cyclone coastal flood hazard assessment with climate change

    NASA Astrophysics Data System (ADS)

    Orton, P. M.; Lin, N.; Colle, B.

    2016-12-01

    A challenge with quantifying future changes in coastal flooding for the U.S. East Coast is that climate change has varying effects on different types of storms, in addition to raising mean sea levels. Moreover, future flood hazard uncertainties are large and come from many sources. Here, a new coastal flood hazard assessment approach is demonstrated that separately evaluates and then combines probabilities of storm tide generated from tropical cyclones (TCs) and extratropical cyclones (ETCs). The separation enables us to incorporate climate change impacts on both types of storms. The assessment accounts for epistemic storm tide uncertainty using an ensemble of different prior studies and methods of assessment, merged with uncertainty in climate change effects on storm tides and sea levels. The assessment is applied for New York Harbor, under the auspices of the New York City Panel on Climate Change (NPCC). In the New York Bight region and much of the U.S. East Coast, differing flood exceedance curve slopes for TCs and ETCs arise due to their differing physics. It is demonstrated how errors can arise for this region from mixing together storm types in an extreme value statistical analysis, a common practice when using observations. The effects of climate change on TC and ETC flooding have recently been assessed for this region, for TCs using a Global Climate Model (GCM) driven hurricane model with hydrodynamic modeling, and for ETCs using a GCM-driven multilinear regression-based storm surge model. The results of these prior studies are applied to our central estimates of the flood exceedance curve probabilities, transforming them for climate change effects. The results are useful for decision-makers because they highlight the large uncertainty in present-day and future flood risk, and also for scientists because they identify the areas where further research is most needed.

  7. Coupled Downscaled Climate Models and Ecophysiological Metrics Forecast Habitat Compression for an Endangered Estuarine Fish

    PubMed Central

    Brown, Larry R.; Komoroske, Lisa M.; Wagner, R. Wayne; Morgan-King, Tara; May, Jason T.; Connon, Richard E.; Fangue, Nann A.

    2016-01-01

    Climate change is driving rapid changes in environmental conditions and affecting population and species’ persistence across spatial and temporal scales. Integrating climate change assessments into biological resource management, such as conserving endangered species, is a substantial challenge, partly due to a mismatch between global climate forecasts and local or regional conservation planning. Here, we demonstrate how outputs of global climate change models can be downscaled to the watershed scale, and then coupled with ecophysiological metrics to assess climate change effects on organisms of conservation concern. We employed models to estimate future water temperatures (2010–2099) under several climate change scenarios within the large heterogeneous San Francisco Estuary. We then assessed the warming effects on the endangered, endemic Delta Smelt, Hypomesus transpacificus, by integrating localized projected water temperatures with thermal sensitivity metrics (tolerance, spawning and maturation windows, and sublethal stress thresholds) across life stages. Lethal temperatures occurred under several scenarios, but sublethal effects resulting from chronic stressful temperatures were more common across the estuary (median >60 days above threshold for >50% locations by the end of the century). Behavioral avoidance of such stressful temperatures would make a large portion of the potential range of Delta Smelt unavailable during the summer and fall. Since Delta Smelt are not likely to migrate to other estuaries, these changes are likely to result in substantial habitat compression. Additionally, the Delta Smelt maturation window was shortened by 18–85 days, revealing cumulative effects of stressful summer and fall temperatures with early initiation of spring spawning that may negatively impact fitness. Our findings highlight the value of integrating sublethal thresholds, life history, and in situ thermal heterogeneity into global change impact assessments. As downscaled climate models are becoming widely available, we conclude that similar assessments at management-relevant scales will improve the scientific basis for resource management decisions. PMID:26796147

  8. Coupled Downscaled Climate Models and Ecophysiological Metrics Forecast Habitat Compression for an Endangered Estuarine Fish.

    PubMed

    Brown, Larry R; Komoroske, Lisa M; Wagner, R Wayne; Morgan-King, Tara; May, Jason T; Connon, Richard E; Fangue, Nann A

    2016-01-01

    Climate change is driving rapid changes in environmental conditions and affecting population and species' persistence across spatial and temporal scales. Integrating climate change assessments into biological resource management, such as conserving endangered species, is a substantial challenge, partly due to a mismatch between global climate forecasts and local or regional conservation planning. Here, we demonstrate how outputs of global climate change models can be downscaled to the watershed scale, and then coupled with ecophysiological metrics to assess climate change effects on organisms of conservation concern. We employed models to estimate future water temperatures (2010-2099) under several climate change scenarios within the large heterogeneous San Francisco Estuary. We then assessed the warming effects on the endangered, endemic Delta Smelt, Hypomesus transpacificus, by integrating localized projected water temperatures with thermal sensitivity metrics (tolerance, spawning and maturation windows, and sublethal stress thresholds) across life stages. Lethal temperatures occurred under several scenarios, but sublethal effects resulting from chronic stressful temperatures were more common across the estuary (median >60 days above threshold for >50% locations by the end of the century). Behavioral avoidance of such stressful temperatures would make a large portion of the potential range of Delta Smelt unavailable during the summer and fall. Since Delta Smelt are not likely to migrate to other estuaries, these changes are likely to result in substantial habitat compression. Additionally, the Delta Smelt maturation window was shortened by 18-85 days, revealing cumulative effects of stressful summer and fall temperatures with early initiation of spring spawning that may negatively impact fitness. Our findings highlight the value of integrating sublethal thresholds, life history, and in situ thermal heterogeneity into global change impact assessments. As downscaled climate models are becoming widely available, we conclude that similar assessments at management-relevant scales will improve the scientific basis for resource management decisions.

  9. Coupled downscaled climate models and ecophysiological metrics forecast habitat compression for an endangered estuarine fish

    USGS Publications Warehouse

    Brown, Larry R.; Komoroske, Lisa M; Wagner, R Wayne; Morgan-King, Tara; May, Jason T.; Connon, Richard E; Fangue, Nann A.

    2016-01-01

    Climate change is driving rapid changes in environmental conditions and affecting population and species’ persistence across spatial and temporal scales. Integrating climate change assessments into biological resource management, such as conserving endangered species, is a substantial challenge, partly due to a mismatch between global climate forecasts and local or regional conservation planning. Here, we demonstrate how outputs of global climate change models can be downscaled to the watershed scale, and then coupled with ecophysiological metrics to assess climate change effects on organisms of conservation concern. We employed models to estimate future water temperatures (2010–2099) under several climate change scenarios within the large heterogeneous San Francisco Estuary. We then assessed the warming effects on the endangered, endemic Delta Smelt, Hypomesus transpacificus, by integrating localized projected water temperatures with thermal sensitivity metrics (tolerance, spawning and maturation windows, and sublethal stress thresholds) across life stages. Lethal temperatures occurred under several scenarios, but sublethal effects resulting from chronic stressful temperatures were more common across the estuary (median >60 days above threshold for >50% locations by the end of the century). Behavioral avoidance of such stressful temperatures would make a large portion of the potential range of Delta Smelt unavailable during the summer and fall. Since Delta Smelt are not likely to migrate to other estuaries, these changes are likely to result in substantial habitat compression. Additionally, the Delta Smelt maturation window was shortened by 18–85 days, revealing cumulative effects of stressful summer and fall temperatures with early initiation of spring spawning that may negatively impact fitness. Our findings highlight the value of integrating sublethal thresholds, life history, and in situ thermal heterogeneity into global change impact assessments. As downscaled climate models are becoming widely available, we conclude that similar assessments at management-relevant scales will improve the scientific basis for resource management decisions.

  10. Large-scale Meteorological Patterns Associated with Extreme Precipitation Events over Portland, OR

    NASA Astrophysics Data System (ADS)

    Aragon, C.; Loikith, P. C.; Lintner, B. R.; Pike, M.

    2017-12-01

    Extreme precipitation events can have profound impacts on human life and infrastructure, with broad implications across a range of stakeholders. Changes to extreme precipitation events are a projected outcome of climate change that warrants further study, especially at regional- to local-scales. While global climate models are generally capable of simulating mean climate at global-to-regional scales with reasonable skill, resiliency and adaptation decisions are made at local-scales where most state-of-the-art climate models are limited by coarse resolution. Characterization of large-scale meteorological patterns associated with extreme precipitation events at local-scales can provide climatic information without this scale limitation, thus facilitating stakeholder decision-making. This research will use synoptic climatology as a tool by which to characterize the key large-scale meteorological patterns associated with extreme precipitation events in the Portland, Oregon metro region. Composite analysis of meteorological patterns associated with extreme precipitation days, and associated watershed-specific flooding, is employed to enhance understanding of the climatic drivers behind such events. The self-organizing maps approach is then used to characterize the within-composite variability of the large-scale meteorological patterns associated with extreme precipitation events, allowing us to better understand the different types of meteorological conditions that lead to high-impact precipitation events and associated hydrologic impacts. A more comprehensive understanding of the meteorological drivers of extremes will aid in evaluation of the ability of climate models to capture key patterns associated with extreme precipitation over Portland and to better interpret projections of future climate at impact-relevant scales.

  11. Solar Forcing of Regional Climate Change During the Maunder Minimum

    NASA Technical Reports Server (NTRS)

    Shindell, Drew T.; Schmidt, Gavin A.; Mann, Michael E.; Rind, David; Waple, Anne; Hansen, James E. (Technical Monitor)

    2002-01-01

    We examine the climate response to solar irradiance changes between the late 17th century Maunder Minimum and the late 18th century. Global average temperature changes are small (about 0.3 to 0.4 C) in both a climate model and empirical reconstructions. However, regional temperature changes are quite large. In the model, these occur primarily through a forced shift toward the low index state of the Arctic Oscillation/North Atlantic Oscillation. This leads to colder temperatures over the Northern Hemisphere continents, especially in winter (1 to 2 C), in agreement with historical records and proxy data for surface temperatures.

  12. The Climate-G testbed: towards a large scale data sharing environment for climate change

    NASA Astrophysics Data System (ADS)

    Aloisio, G.; Fiore, S.; Denvil, S.; Petitdidier, M.; Fox, P.; Schwichtenberg, H.; Blower, J.; Barbera, R.

    2009-04-01

    The Climate-G testbed provides an experimental large scale data environment for climate change addressing challenging data and metadata management issues. The main scope of Climate-G is to allow scientists to carry out geographical and cross-institutional climate data discovery, access, visualization and sharing. Climate-G is a multidisciplinary collaboration involving both climate and computer scientists and it currently involves several partners such as: Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Institut Pierre-Simon Laplace (IPSL), Fraunhofer Institut für Algorithmen und Wissenschaftliches Rechnen (SCAI), National Center for Atmospheric Research (NCAR), University of Reading, University of Catania and University of Salento. To perform distributed metadata search and discovery, we adopted a CMCC metadata solution (which provides a high level of scalability, transparency, fault tolerance and autonomy) leveraging both on P2P and grid technologies (GRelC Data Access and Integration Service). Moreover, data are available through OPeNDAP/THREDDS services, Live Access Server as well as the OGC compliant Web Map Service and they can be downloaded, visualized, accessed into the proposed environment through the Climate-G Data Distribution Centre (DDC), the web gateway to the Climate-G digital library. The DDC is a data-grid portal allowing users to easily, securely and transparently perform search/discovery, metadata management, data access, data visualization, etc. Godiva2 (integrated into the DDC) displays 2D maps (and animations) and also exports maps for display on the Google Earth virtual globe. Presently, Climate-G publishes (through the DDC) about 2TB of data related to the ENSEMBLES project (also including distributed replicas of data) as well as to the IPCC AR4. The main results of the proposed work are: wide data access/sharing environment for climate change; P2P/grid metadata approach; production-level Climate-G DDC; high quality tools for data visualization; metadata search/discovery across several countries/institutions; open environment for climate change data sharing.

  13. Identifying the world's most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals.

    PubMed

    Foden, Wendy B; Butchart, Stuart H M; Stuart, Simon N; Vié, Jean-Christophe; Akçakaya, H Resit; Angulo, Ariadne; DeVantier, Lyndon M; Gutsche, Alexander; Turak, Emre; Cao, Long; Donner, Simon D; Katariya, Vineet; Bernard, Rodolphe; Holland, Robert A; Hughes, Adrian F; O'Hanlon, Susannah E; Garnett, Stephen T; Sekercioğlu, Cagan H; Mace, Georgina M

    2013-01-01

    Climate change will have far-reaching impacts on biodiversity, including increasing extinction rates. Current approaches to quantifying such impacts focus on measuring exposure to climatic change and largely ignore the biological differences between species that may significantly increase or reduce their vulnerability. To address this, we present a framework for assessing three dimensions of climate change vulnerability, namely sensitivity, exposure and adaptive capacity; this draws on species' biological traits and their modeled exposure to projected climatic changes. In the largest such assessment to date, we applied this approach to each of the world's birds, amphibians and corals (16,857 species). The resulting assessments identify the species with greatest relative vulnerability to climate change and the geographic areas in which they are concentrated, including the Amazon basin for amphibians and birds, and the central Indo-west Pacific (Coral Triangle) for corals. We found that high concentration areas for species with traits conferring highest sensitivity and lowest adaptive capacity differ from those of highly exposed species, and we identify areas where exposure-based assessments alone may over or under-estimate climate change impacts. We found that 608-851 bird (6-9%), 670-933 amphibian (11-15%), and 47-73 coral species (6-9%) are both highly climate change vulnerable and already threatened with extinction on the IUCN Red List. The remaining highly climate change vulnerable species represent new priorities for conservation. Fewer species are highly climate change vulnerable under lower IPCC SRES emissions scenarios, indicating that reducing greenhouse emissions will reduce climate change driven extinctions. Our study answers the growing call for a more biologically and ecologically inclusive approach to assessing climate change vulnerability. By facilitating independent assessment of the three dimensions of climate change vulnerability, our approach can be used to devise species and area-specific conservation interventions and indices. The priorities we identify will strengthen global strategies to mitigate climate change impacts.

  14. Identifying the World's Most Climate Change Vulnerable Species: A Systematic Trait-Based Assessment of all Birds, Amphibians and Corals

    PubMed Central

    Foden, Wendy B.; Butchart, Stuart H. M.; Stuart, Simon N.; Vié, Jean-Christophe; Akçakaya, H. Resit; Angulo, Ariadne; DeVantier, Lyndon M.; Gutsche, Alexander; Turak, Emre; Cao, Long; Donner, Simon D.; Katariya, Vineet; Bernard, Rodolphe; Holland, Robert A.; Hughes, Adrian F.; O’Hanlon, Susannah E.; Garnett, Stephen T.; Şekercioğlu, Çagan H.; Mace, Georgina M.

    2013-01-01

    Climate change will have far-reaching impacts on biodiversity, including increasing extinction rates. Current approaches to quantifying such impacts focus on measuring exposure to climatic change and largely ignore the biological differences between species that may significantly increase or reduce their vulnerability. To address this, we present a framework for assessing three dimensions of climate change vulnerability, namely sensitivity, exposure and adaptive capacity; this draws on species’ biological traits and their modeled exposure to projected climatic changes. In the largest such assessment to date, we applied this approach to each of the world’s birds, amphibians and corals (16,857 species). The resulting assessments identify the species with greatest relative vulnerability to climate change and the geographic areas in which they are concentrated, including the Amazon basin for amphibians and birds, and the central Indo-west Pacific (Coral Triangle) for corals. We found that high concentration areas for species with traits conferring highest sensitivity and lowest adaptive capacity differ from those of highly exposed species, and we identify areas where exposure-based assessments alone may over or under-estimate climate change impacts. We found that 608–851 bird (6–9%), 670–933 amphibian (11–15%), and 47–73 coral species (6–9%) are both highly climate change vulnerable and already threatened with extinction on the IUCN Red List. The remaining highly climate change vulnerable species represent new priorities for conservation. Fewer species are highly climate change vulnerable under lower IPCC SRES emissions scenarios, indicating that reducing greenhouse emissions will reduce climate change driven extinctions. Our study answers the growing call for a more biologically and ecologically inclusive approach to assessing climate change vulnerability. By facilitating independent assessment of the three dimensions of climate change vulnerability, our approach can be used to devise species and area-specific conservation interventions and indices. The priorities we identify will strengthen global strategies to mitigate climate change impacts. PMID:23950785

  15. Hydrologic Impacts of Climate Change: Quantification of Uncertainties (Alexander von Humboldt Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Mujumdar, Pradeep P.

    2014-05-01

    Climate change results in regional hydrologic change. The three prominent signals of global climate change, viz., increase in global average temperatures, rise in sea levels and change in precipitation patterns convert into signals of regional hydrologic change in terms of modifications in water availability, evaporative water demand, hydrologic extremes of floods and droughts, water quality, salinity intrusion in coastal aquifers, groundwater recharge and other related phenomena. A major research focus in hydrologic sciences in recent years has been assessment of impacts of climate change at regional scales. An important research issue addressed in this context deals with responses of water fluxes on a catchment scale to the global climatic change. A commonly adopted methodology for assessing the regional hydrologic impacts of climate change is to use the climate projections provided by the General Circulation Models (GCMs) for specified emission scenarios in conjunction with the process-based hydrologic models to generate the corresponding hydrologic projections. The scaling problem arising because of the large spatial scales at which the GCMs operate compared to those required in distributed hydrologic models, and their inability to satisfactorily simulate the variables of interest to hydrology are addressed by downscaling the GCM simulations to hydrologic scales. Projections obtained with this procedure are burdened with a large uncertainty introduced by the choice of GCMs and emission scenarios, small samples of historical data against which the models are calibrated, downscaling methods used and other sources. Development of methodologies to quantify and reduce such uncertainties is a current area of research in hydrology. In this presentation, an overview of recent research carried out by the author's group on assessment of hydrologic impacts of climate change addressing scale issues and quantification of uncertainties is provided. Methodologies developed with conditional random fields, Dempster-Shafer theory, possibility theory, imprecise probabilities and non-stationary extreme value theory are discussed. Specific applications on uncertainty quantification in impacts on streamflows, evaporative water demands, river water quality and urban flooding are presented. A brief discussion on detection and attribution of hydrologic change at river basin scales, contribution of landuse change and likely alterations in return levels of hydrologic extremes is also provided.

  16. Direct and indirect effects of climate change on the risk of infection by water-transmitted pathogens.

    PubMed

    Sterk, Ankie; Schijven, Jack; de Nijs, Ton; de Roda Husman, Ana Maria

    2013-11-19

    Climate change is likely to affect the infectious disease burden from exposure to pathogens in water used for drinking and recreation. Effective intervention measures require quantification of impacts of climate change on the distribution of pathogens in the environment and their potential effects on human health. Objectives of this systematic review were to summarize current knowledge available to estimate how climate change may directly and indirectly affect infection risks due to Campylobacter, Cryptosporidium, norovirus, and Vibrio. Secondary objectives were to prioritize natural processes and interactions that are susceptible to climate change and to identify knowledge gaps. Search strategies were determined based on a conceptual model and scenarios with the main emphasis on The Netherlands. The literature search resulted in a large quantity of publications on climate variables affecting pathogen input and behavior in aquatic environments. However, not all processes and pathogens are evenly covered by the literature, and in many cases, the direction of change is still unclear. To make useful predictions of climate change, it is necessary to combine both negative and positive effects. This review provides an overview of the most important effects of climate change on human health and shows the importance of QMRA to quantify the net effects.

  17. Temporal Variation Analysis on Climate of Dry-Hot Valley Since 1950s in Upper Yangtze River Basin, China

    NASA Astrophysics Data System (ADS)

    Sun, L.; Cai, Y.

    2017-12-01

    Climate of dry-hot valley areas regarding their long term temporal changes are seldom studied. In this paper, climate change in lower reach of Yalongjiang River, a typical dry-hot valley area locating in upper Yangtze River Basin, was analyzed. Ten single meteorological factors were used to investigate basic climatic characteristics, and two integrated index (i.e. relative evapotranspiration(AET/P), standard precipitation evapotranspiration index(SPEI)) were selected to reflect changes from human activities and gauge climate drought regime. Mann-Kendall mutation test was applied to identify mutation year, and variation trends were diagnosed with linear regression and distance average analysis. Mean values were tested to find if there were significant changes resulting from a large artificial reservoir constructed in 1999. Results of mutation test showed that minimum temperature, relative humidity, and AET/P in two stations changed significantly in 2000s. Temperature increased since 1990s, and other single index fluctuated in recent 50 years. Precipitation decreased and temperature increased in autumn significantly, while precipitation in summer decreased slightly. The variation of SPEI implied that the area was humid from 1980s to 2000s, but drought in 2010s. The results of mean test indicated that 56% meteorological index changed significantly, which might be related to the construction of the large reservoir. This research not only reveals the climate change in a dry-hot valley, but also helps study concerning human activities especially the construction of cascade reservoirs in the future in this area.

  18. Risk of large-scale fires in boreal forests of Finland under changing climate

    NASA Astrophysics Data System (ADS)

    Lehtonen, I.; Venäläinen, A.; Kämäräinen, M.; Peltola, H.; Gregow, H.

    2016-01-01

    The target of this work was to assess the impact of projected climate change on forest-fire activity in Finland with special emphasis on large-scale fires. In addition, we were particularly interested to examine the inter-model variability of the projected change of fire danger. For this purpose, we utilized fire statistics covering the period 1996-2014 and consisting of almost 20 000 forest fires, as well as daily meteorological data from five global climate models under representative concentration pathway RCP4.5 and RCP8.5 scenarios. The model data were statistically downscaled onto a high-resolution grid using the quantile-mapping method before performing the analysis. In examining the relationship between weather and fire danger, we applied the Canadian fire weather index (FWI) system. Our results suggest that the number of large forest fires may double or even triple during the present century. This would increase the risk that some of the fires could develop into real conflagrations which have become almost extinct in Finland due to active and efficient fire suppression. However, the results reveal substantial inter-model variability in the rate of the projected increase of forest-fire danger, emphasizing the large uncertainty related to the climate change signal in fire activity. We moreover showed that the majority of large fires in Finland occur within a relatively short period in May and June due to human activities and that FWI correlates poorer with the fire activity during this time of year than later in summer when lightning is a more important cause of fires.

  19. Evaluating the ClimEx Single Model large ensemble in comparison with EURO-CORDEX results of heatwave and drought indicators

    NASA Astrophysics Data System (ADS)

    von Trentini, F.; Schmid, F. J.; Braun, M.; Frigon, A.; Leduc, M.; Martel, J. L.; Willkofer, F.; Wood, R. R.; Ludwig, R.

    2017-12-01

    Meteorological extreme events seem to become more frequent in the present and future, and a seperation of natural climate variability and a clear climate change effect on these extreme events gains more and more interest. Since there is only one realisation of historical events, natural variability in terms of very long timeseries for a robust statistical analysis is not possible with observation data. A new single model large ensemble (SMLE), developed for the ClimEx project (Climate change and hydrological extreme events - risks and perspectives for water management in Bavaria and Québec) is supposed to overcome this lack of data by downscaling 50 members of the CanESM2 (RCP 8.5) with the Canadian CRCM5 regional model (using the EURO-CORDEX grid specifications) for timeseries of 1950-2099 each, resulting in 7500 years of simulated climate. This allows for a better probabilistic analysis of rare and extreme events than any preceding dataset. Besides seasonal sums, several indicators concerning heatwave frequency, duration and mean temperature a well as number and maximum length of dry periods (cons. days <1mm) are calculated for the ClimEx ensemble and several EURO-CORDEX runs. This enables us to investigate the interaction between natural variability (as it appears in the CanESM2-CRCM5 members) and a climate change signal of those members for past, present and future conditions. Adding the EURO-CORDEX results to this, we can also assess the role of internal model variability (or natural variability) in climate change simulations. A first comparison shows similar magnitudes of variability of climate change signals between the ClimEx large ensemble and the CORDEX runs for some indicators, while for most indicators the spread of the SMLE is smaller than the spread of different CORDEX models.

  20. Analysis of Infrequent (Quasi-Decadal) Large Groundwater Recharge Events: A Case Study for Northern Utah, United States

    NASA Astrophysics Data System (ADS)

    Masbruch, M.; Rumsey, C.; Gangopadhyay, S.; Susong, D.; Pruitt, T.

    2015-12-01

    There has been a considerable amount of research linking climatic variability to hydrologic responses in arid and semi-arid regions such as the western United States. Although much effort has been spent to assess and predict changes in surface-water resources, little has been done to understand how climatic events and changes affect groundwater resources. This study focuses on quantifying the effects of large quasi-decadal groundwater recharge events on groundwater in the northern Utah portion of the Great Basin for the period 1960 to 2013. Groundwater-level monitoring data were analyzed with climatic data to characterize climatic conditions and frequency of these large recharge events. Using observed water-level changes and multivariate analysis, five large groundwater recharge events were identified within the study area and period, with a frequency of about 11 to 13 years. These events were generally characterized as having above-average annual precipitation and snow water equivalent and below-average seasonal temperatures, especially during the spring (April through June). Existing groundwater flow models for several basins within the study area were used to quantify changes in groundwater storage from these events. Simulated groundwater storage increases per basin from a single event ranged from about 115 Mm3 (93,000 acre-feet) to 205 Mm3 (166,000 acre-ft). Extrapolating these amounts over the entire northern Great Basin indicates that even a single large quasi-decadal recharge event could result in billions of cubic meters (millions of acre-feet) of groundwater recharge. Understanding the role of these large quasi-decadal recharge events in replenishing aquifers and sustaining water supplies is crucial for making informed water management decisions.

  1. Past-focused environmental comparisons promote proenvironmental outcomes for conservatives

    PubMed Central

    Baldwin, Matthew; Lammers, Joris

    2016-01-01

    Conservatives appear more skeptical about climate change and global warming and less willing to act against it than liberals. We propose that this unwillingness could result from fundamental differences in conservatives’ and liberals’ temporal focus. Conservatives tend to focus more on the past than do liberals. Across six studies, we rely on this notion to demonstrate that conservatives are positively affected by past- but not by future-focused environmental comparisons. Past comparisons largely eliminated the political divide that separated liberal and conservative respondents’ attitudes toward and behavior regarding climate change, so that across these studies conservatives and liberals were nearly equally likely to fight climate change. This research demonstrates how psychological processes, such as temporal comparison, underlie the prevalent ideological gap in addressing climate change. It opens up a promising avenue to convince conservatives effectively of the need to address climate change and global warming. PMID:27956619

  2. Creationism & Climate Change (Invited)

    NASA Astrophysics Data System (ADS)

    Newton, S.

    2009-12-01

    Although creationists focus on the biological sciences, recently creationists have also expanded their attacks to include the earth sciences, especially on the topic of climate change. The creationist effort to deny climate change, in addition to evolution and radiometric dating, is part of a broader denial of the methodology and validity of science itself. Creationist misinformation can pose a serious problem for science educators, who are further hindered by the poor treatment of the earth sciences and climate change in state science standards. Recent changes to Texas’ science standards, for example, require that students learn “different views on the existence of global warming.” Because of Texas’ large influence on the national textbook market, textbooks presenting non-scientific “different views” about climate change—or simply omitting the subject entirely because of the alleged “controversy”—could become part of K-12 classrooms across the country.

  3. Responses of Hail and Storm Days to Climate Change in the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zou, Tian; Zhang, Qinghong; Li, Wenhong; Li, Jihong

    2018-05-01

    There is increasing concern that local severe storm occurrence may be changing as a result of climate change. The Tibetan Plateau (TP), one of the world's most sensitive areas to climate change, became significantly warmer during recent decades. Since 1960 (1980), storm (hail) days have been decreasing by 6.2%/decade (18.3%/decade) in the region. However, what caused the frequency changes of storm and hail in the TP is largely unknown. Based on 53-year continuous weather records at 48 TP stations and reanalysis data, we show here for the first time that the consistent decline of storm days is strongly related to a drier midtroposphere since 1960. Further analysis demonstrated that fewer hail days are driven by an elevation of the melting level (thermodynamically) and a weaker wind shear (dynamically) in a warming climate. These results imply that less storm and hail may occur over TP when climate warms.

  4. Projected changes to growth and mortality of Hawaiian corals over the next 100 years.

    PubMed

    Hoeke, Ron K; Jokiel, Paul L; Buddemeier, Robert W; Brainard, Russell E

    2011-03-29

    Recent reviews suggest that the warming and acidification of ocean surface waters predicated by most accepted climate projections will lead to mass mortality and declining calcification rates of reef-building corals. This study investigates the use of modeling techniques to quantitatively examine rates of coral cover change due to these effects. Broad-scale probabilities of change in shallow-water scleractinian coral cover in the Hawaiian Archipelago for years 2000-2099 A.D. were calculated assuming a single middle-of-the-road greenhouse gas emissions scenario. These projections were based on ensemble calculations of a growth and mortality model that used sea surface temperature (SST), atmospheric carbon dioxide (CO(2)), observed coral growth (calcification) rates, and observed mortality linked to mass coral bleaching episodes as inputs. SST and CO(2) predictions were derived from the World Climate Research Programme (WCRP) multi-model dataset, statistically downscaled with historical data. The model calculations illustrate a practical approach to systematic evaluation of climate change effects on corals, and also show the effect of uncertainties in current climate predictions and in coral adaptation capabilities on estimated changes in coral cover. Despite these large uncertainties, this analysis quantitatively illustrates that a large decline in coral cover is highly likely in the 21(st) Century, but that there are significant spatial and temporal variances in outcomes, even under a single climate change scenario.

  5. Projected changes to growth and mortality of Hawaiian corals over the next 100 years

    USGS Publications Warehouse

    Hoeke, R.K.; Jokiel, P.L.; Buddemeier, R.W.; Brainard, R.E.

    2011-01-01

    Background: Recent reviews suggest that the warming and acidification of ocean surface waters predicated by most accepted climate projections will lead to mass mortality and declining calcification rates of reef-building corals. This study investigates the use of modeling techniques to quantitatively examine rates of coral cover change due to these effects. Methodology/Principal Findings: Broad-scale probabilities of change in shallow-water scleractinian coral cover in the Hawaiian Archipelago for years 2000-2099 A.D. were calculated assuming a single middle-of-the-road greenhouse gas emissions scenario. These projections were based on ensemble calculations of a growth and mortality model that used sea surface temperature (SST), atmospheric carbon dioxide (CO2), observed coral growth (calcification) rates, and observed mortality linked to mass coral bleaching episodes as inputs. SST and CO2 predictions were derived from the World Climate Research Programme (WCRP) multi-model dataset, statistically downscaled with historical data. Conclusions/Significance: The model calculations illustrate a practical approach to systematic evaluation of climate change effects on corals, and also show the effect of uncertainties in current climate predictions and in coral adaptation capabilities on estimated changes in coral cover. Despite these large uncertainties, this analysis quantitatively illustrates that a large decline in coral cover is highly likely in the 21st Century, but that there are significant spatial and temporal variances in outcomes, even under a single climate change scenario.

  6. Direct and indirect effects of climate change on projected future fire regimes in the western United States.

    PubMed

    Liu, Zhihua; Wimberly, Michael C

    2016-01-15

    We asked two research questions: (1) What are the relative effects of climate change and climate-driven vegetation shifts on different components of future fire regimes? (2) How does incorporating climate-driven vegetation change into future fire regime projections alter the results compared to projections based only on direct climate effects? We used the western United States (US) as study area to answer these questions. Future (2071-2100) fire regimes were projected using statistical models to predict spatial patterns of occurrence, size and spread for large fires (>400 ha) and a simulation experiment was conducted to compare the direct climatic effects and the indirect effects of climate-driven vegetation change on fire regimes. Results showed that vegetation change amplified climate-driven increases in fire frequency and size and had a larger overall effect on future total burned area in the western US than direct climate effects. Vegetation shifts, which were highly sensitive to precipitation pattern changes, were also a strong determinant of the future spatial pattern of burn rates and had different effects on fire in currently forested and grass/shrub areas. Our results showed that climate-driven vegetation change can exert strong localized effects on fire occurrence and size, which in turn drive regional changes in fire regimes. The effects of vegetation change for projections of the geographic patterns of future fire regimes may be at least as important as the direct effects of climate change, emphasizing that accounting for changing vegetation patterns in models of future climate-fire relationships is necessary to provide accurate projections at continental to global scales. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Climate change streamflow scenarios designed for critical period water resources planning studies

    NASA Astrophysics Data System (ADS)

    Hamlet, A. F.; Snover, A. K.; Lettenmaier, D. P.

    2003-04-01

    Long-range water planning in the United States is usually conducted by individual water management agencies using a critical period planning exercise based on a particular period of the observed streamflow record and a suite of internally-developed simulation tools representing the water system. In the context of planning for climate change, such an approach is flawed in that it assumes that the future climate will be like the historic record. Although more sophisticated planning methods will probably be required as time goes on, a short term strategy for incorporating climate uncertainty into long-range water planning as soon as possible is to create alternate inputs to existing planning methods that account for climate uncertainty as it affects both supply and demand. We describe a straight-forward technique for constructing streamflow scenarios based on the historic record that include the broad-based effects of changed regional climate simulated by several global climate models (GCMs). The streamflow scenarios are based on hydrologic simulations driven by historic climate data perturbed according to regional climate signals from four GCMs using the simple "delta" method. Further data processing then removes systematic hydrologic model bias using a quantile-based bias correction scheme, and lastly, the effects of random errors in the raw hydrologic simulations are removed. These techniques produce streamflow scenarios that are consistent in time and space with the historic streamflow record while incorporating fundamental changes in temperature and precipitation from the GCM scenarios. Planning model simulations based on these climate change streamflow scenarios can therefore be compared directly to planning model simulations based on the historic record of streamflows to help planners understand the potential impacts of climate uncertainty. The methods are currently being tested and refined in two large-scale planning exercises currently being conducted in the Pacific Northwest (PNW) region of the US, and the resulting streamflow scenarios will be made freely available on the internet for a large number of sites in the PNW to help defray the costs of including climate change information in other studies.

  8. Large historical growth in global terrestrial gross primary production

    DOE PAGES

    Campbell, J. E.; Berry, J. A.; Seibt, U.; ...

    2017-04-05

    Growth in terrestrial gross primary production (GPP) may provide a negative feedback for climate change. It remains uncertain, however, to what extent biogeochemical processes can suppress global GPP growth. In consequence, model estimates of terrestrial carbon storage and carbon cycle –climate feedbacks remain poorly constrained. Here we present a global, measurement-based estimate of GPP growth during the twentieth century based on long-term atmospheric carbonyl sulphide (COS) records derived from ice core, firn, and ambient air samples. Here, we interpret these records using a model that simulates changes in COS concentration due to changes in its sources and sinks, including amore » large sink that is related to GPP. We find that the COS record is most consistent with climate-carbon cycle model simulations that assume large GPP growth during the twentieth century (31% ± 5%; mean ± 95% confidence interval). Finally, while this COS analysis does not directly constrain estimates of future GPP growth it provides a global-scale benchmark for historical carbon cycle simulations.« less

  9. Large historical growth in global terrestrial gross primary production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, J. E.; Berry, J. A.; Seibt, U.

    Growth in terrestrial gross primary production (GPP) may provide a negative feedback for climate change. It remains uncertain, however, to what extent biogeochemical processes can suppress global GPP growth. In consequence, model estimates of terrestrial carbon storage and carbon cycle –climate feedbacks remain poorly constrained. Here we present a global, measurement-based estimate of GPP growth during the twentieth century based on long-term atmospheric carbonyl sulphide (COS) records derived from ice core, firn, and ambient air samples. Here, we interpret these records using a model that simulates changes in COS concentration due to changes in its sources and sinks, including amore » large sink that is related to GPP. We find that the COS record is most consistent with climate-carbon cycle model simulations that assume large GPP growth during the twentieth century (31% ± 5%; mean ± 95% confidence interval). Finally, while this COS analysis does not directly constrain estimates of future GPP growth it provides a global-scale benchmark for historical carbon cycle simulations.« less

  10. Effects of climate change on landslide hazard in Europe (Invited)

    NASA Astrophysics Data System (ADS)

    Nadim, F.; Solheim, A.

    2009-12-01

    Landslides represent a major threat to human life, property and constructed facilities, infrastructure and natural environment in most mountainous and hilly regions of the world. As a consequence of climatic changes and potential global warming, an increase of landslide activity is expected in some parts of the world in the future. This will be due to increased extreme rainfall events, changes of hydrological cycles, meteorological events followed by sea storms causing coastal erosion and melting of snow and of frozen soils in the high mountains. During the past century, Europe experienced many fatalities and significant economic losses due to landslides. Since in many parts of Europe landslides are the most serious natural hazard, several recent European research projects are looking into the effects of climate change on the risk associated with landslides. Examples are the recently initiated SafeLand project, which looks into this problem across the continent, and GeoExtreme, which focused on Norway. The ongoing project SafeLand (www.safeland-fp7.eu) is a large, integrating project financed by the European Commission. It involves close to 30 organizations from 13 countries in Europe, and it looks into the effects of global change (mainly changes in demography and climate change) on the pattern of landslide risk in Europe. The SafeLand objectives are to (1) provide policy-makers, public administrators, researchers, scientists, educators and other stakeholders with improved harmonized framework and methodology for the assessment and quantification of landslide risk in Europe's regions; (2) evaluate the changes in risk pattern caused by climate change, human activity and policy changes; and (3) provide guidelines for choosing the most appropriate risk management strategies, including risk mitigation and prevention measures. To assess the changes in the landslide risk pattern in Norway over the next 50 years, the four-year integrated research project GeoExtreme (www.geoextreme.no) was executed. Different modules of the project established the database of landslide and avalanche events in Norway, investigated the coupling between climatic parameters and the occurrence of avalanches and landslides, developed regional, down-scaled climate scenarios for the next 50 years, and simulated a picture of possible future geohazards risk in Norway. The socioeconomic implications of geohazards in Norway, both in the past, and under the predicted future climate scenarios were also studied in the project. The latter study considered the costs related to damage by natural disasters and mitigation measures, ability to learn by experience, changes in preparedness, and impact of policy decisions. The main conclusion of the GeoExtreme project was that in a country with large climatic variation like Norway, the effects of climate change on the geohazard situation will vary significantly from location to location. Over a short time interval of 50 years, the largest increase in the direct socio-economic costs will most likely be in the transport sector. However, better adaptation to the present climate and geohazard problems would also require large investments, and this would in fact be the most important step in preparing for the expected changes during the next 50 years.

  11. Assessing the Impacts of Climate Change on the Water-Energy Nexus

    NASA Astrophysics Data System (ADS)

    Mo, W.; Jacobs, J. M.

    2014-12-01

    Water-energy nexus refers to the fact that a lot of energy is used for treating and delivering water, and a large amount of water is needed for energy production. This interrelation reinforces water and energy consumptions and challenges the sustainable management of both resources in light of growing population, developing economy, and dwindling resources. Climate change often exacerbates the negative effects of the water-energy nexus by intervening water and energy allocation, availability, and quality, forcing communities to seek more energy dependent alternative water sources and/or more water dependent alternative energy sources. The climate-water-energy interrelations play an important role in water and energy management, yet our understandings on the interactions between climate and the water-energy nexus are still very limited. Therefore, this study aims at qualitatively and quantitatively assessing the impacts of climate change from the water-energy nexus perspective by investigating previous literatures, case studies, climate change patterns, and recent extreme climate events. Management difficulties resulted from climate related source shifts as well as policy and regulation changes will be illustrated and discussed. Research needs and gaps on the climate-water-energy interrelations will be addressed.

  12. Projections of water stress based on an ensemble of socioeconomic growth and climate change scenarios: A case study in Asia

    DOE PAGES

    Fant, Charles; Schlosser, C. Adam; Gao, Xiang; ...

    2016-03-30

    The sustainability of future water resources is of paramount importance and is affected by many factors, including population, wealth and climate. Inherent in current methods to estimate these factors in the future is the uncertainty of their prediction. In this study, we integrate a large ensemble of scenarios—internally consistent across economics, emissions, climate, and population—to develop a risk portfolio of water stress over a large portion of Asia that includes China, India, and Mainland Southeast Asia in a future with unconstrained emissions. We isolate the effects of socioeconomic growth from the effects of climate change in order to identify themore » primary drivers of stress on water resources. We find that water needs related to socioeconomic changes, which are currently small, are likely to increase considerably in the future, often overshadowing the effect of climate change on levels of water stress. As a result, there is a high risk of severe water stress in densely populated watersheds by 2050, compared to recent history. There is strong evidence to suggest that, in the absence of autonomous adaptation or societal response, a much larger portion of the region’s population will live in water-stressed regions in the near future. Lastly, tools and studies such as these can effectively investigate large-scale system sensitivities and can be useful in engaging and informing decision makers.« less

  13. Climate change and consequences in the Arctic: perception of climate change by the Nenets people of Vaigach Island.

    PubMed

    Davydov, Alexander N; Mikhailova, Galina V

    2011-01-01

    Arctic climate change is already having a significant impact on the environment, economic activity, and public health. For the northern peoples, traditions and cultural identity are closely related to the natural environment so any change will have consequences for society in several ways. A questionnaire was given to the population on the Vaigach island, the Nenets who rely to a large degree on hunting, fishing and reindeer herding for survival. Semi-structured interviews were also conducted about perception of climate change. Climate change is observed and has already had an impact on daily life according to more than 50% of the respondents. The winter season is now colder and longer and the summer season colder and shorter. A decrease in standard of living was noticeable but few were planning to leave. Climate change has been noticed in the region and it has a negative impact on the standard of living for the Nenets. However, as of yet they do not want to leave as cultural identity is important for their overall well-being.

  14. Climate change and consequences in the Arctic: perception of climate change by the Nenets people of Vaigach Island

    PubMed Central

    Davydov, Alexander N.; Mikhailova, Galina V.

    2011-01-01

    Background Arctic climate change is already having a significant impact on the environment, economic activity, and public health. For the northern peoples, traditions and cultural identity are closely related to the natural environment so any change will have consequences for society in several ways. Methods A questionnaire was given to the population on the Vaigach island, the Nenets who rely to a large degree on hunting, fishing and reindeer herding for survival. Semi-structured interviews were also conducted about perception of climate change. Results Climate change is observed and has already had an impact on daily life according to more than 50% of the respondents. The winter season is now colder and longer and the summer season colder and shorter. A decrease in standard of living was noticeable but few were planning to leave. Conclusion Climate change has been noticed in the region and it has a negative impact on the standard of living for the Nenets. However, as of yet they do not want to leave as cultural identity is important for their overall well-being. PMID:22091216

  15. Climate Change: Vulnerability Assessment for Water Resources Management in South Florida

    NASA Astrophysics Data System (ADS)

    Obeysekera, J.

    2008-12-01

    South Florida is home to over 7 million people and its population is projected to increase to over 10 million people by 2025 and possibly 12-15 million by 2050. Through Federal/State/Local partnerships, the Greater Everglades is being restored under numerous water resources management projects requiring large investments of time and money. Recent climate change projections as published in the most recent report of the Intergovernmental Panel on Climate Change (IPCC) have the potential to cause significant impacts on flood control and water supply functions of water resources management, and on existing and future ecosystem restoration projects in south Florida. More recent estimates of sea level rise for south Florida are much higher than those in the IPCC report and if such projections become a reality, consequences may be disastrous. It is extremely important to understand the extent of global projections for various emission scenarios, their ability to represent the climatology of local regions, and the potential vulnerabilities of both climate change and sea level rise on water resources management. Implications of natural variability of the climate and teleconnections in South Florida are understood with a reasonable degree of certainty. Recent emphasis on climate change due to human-induced impacts have generated new questions on the sustainability of coastal environments with a heightened concern for the success of large-scale environmental projects throughout South Florida. An assessment of the precipitation projections of the General Circulation Models (GCMs) shows that their ability to represent the landscape of Florida and predict historical climate patterns may be limited. In order to understand the vulnerability of the water management system in south Florida under changing precipitation and evapotranspiration patterns, a sensitivity analysis using a regional-scale, hydrologic simulation model was conducted. The results show the vulnerability of projected climate change on water supply for all water sectors including the environment, and the potential impact of sea level rise on coastal regions. Questions on the potential impacts of climate change including sea level rise need to be investigated along with the uncertainties of projections to provide critical information for decision making on the planned infrastructure and operational changes in south Florida.

  16. Climate change reduces the net sink of CH4 and N2O in a semiarid grassland

    USDA-ARS?s Scientific Manuscript database

    Methane (CH4) and nitrous oxide (N2O) are potent greenhouse gases; their concentrations in the atmosphere have increased because of human activity. Soils are important sources and sinks of both gases where their production and consumption are largely regulated by biological processes. Climate change...

  17. Vulnerability of amphibians to climate change: implications for rangeland management

    Treesearch

    Karen E. Bagne; Deborah M. Finch; Megan M. Friggens

    2011-01-01

    Many amphibian populations have declined drastically in recent years due to a large number of factors including the emerging threat of climate change (Wake 2007). Rangelands provide important habitat for amphibians. In addition to natural wetlands, stock tanks and other artificial water catchments provide habitat for many amphibian species (Euliss et al. 2004).

  18. Aquatic ecosystems in a changing climate

    USGS Publications Warehouse

    Inamdar, Shreeram; Shanley, James B.; McDowell, William H.

    2017-01-01

    Extreme climate events (ECEs) such as tropical storms and hurricanes, thunderstorms, heat waves, droughts, ice storms, and snow storms have increased and are projected to further increase in intensity and frequency across the world. These events are expected to have significant consequences for aquatic ecosystems with the potential for large changes in ecosystem processes, responses, and functions.

  19. Influences of man-made emissions and climate changes on tropospheric ozone, methane, and sulfate at 2030 from a broad range of possible futures

    NASA Astrophysics Data System (ADS)

    Unger, Nadine; Shindell, Drew T.; Koch, Dorothy M.; Amann, Markus; Cofala, Janusz; Streets, David G.

    2006-06-01

    We apply the Goddard Institute for Space Studies composition-climate model to an assessment of tropospheric O3, CH4, and sulfate at 2030. We compare four different anthropogenic emissions forecasts: A1B and B1 from the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios and Current Legislation (CLE) and Maximum Feasible Reduction (MFR) from the International Institute for Applied Systems Analysis. The projections encompass a wide range of possible man-made emissions changes. The A1B, B1, and CLE forecasts all suggest large increases in surface O3 and sulfate baseline pollution at tropical and subtropical latitudes, especially over the Indian subcontinent, where the pollution increases may be as large as 100%. The ranges of annual mean regional ground level O3 and sulfate changes across all scenarios are -10 to +30 ppbv and -1200 to +3000 pptv, respectively. Physical climate changes reduce future surface O3, but tend to increase ground level sulfate locally over North Africa because of an enhancement of aqueous-phase SO2 oxidation. For all examined future scenarios the combined sum of the CH4, O3, and sulfate radiative forcings is positive, even for the MFR scenario, because of the large reduction in sulfate. For A1B the forcings are as much as half of that of the preindustrial to present-day forcing for each species. For MFR the sign of the forcing for each species is reversed with respect to the other scenarios. At 2030, global changes in climate-sensitive natural emissions of CH4 from wetlands, NOx from lightning, and dimethyl sulfide from the ocean appear to be small (<5%).

  20. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes

    PubMed Central

    García-Palacios, Pablo; Maestre, Fernando T.; Kattge, Jens; Wall, Diana H.

    2015-01-01

    Climate and litter quality have been identified as major drivers of litter decomposition at large spatial scales. However, the role played by soil fauna remains largely unknown, despite its importance for litter fragmentation and microbial activity. We synthesized litterbag studies to quantify the effect sizes of soil fauna on litter decomposition rates at the global and biome scales, and to assess how climate, litter quality and soil fauna interact to determine such rates. Soil fauna consistently enhanced litter decomposition at both global and biome scales (average increment ~27%). However, climate and litter quality differently modulated the effects of soil fauna on decomposition rates between biomes, from climate-driven biomes to those where climate effects were mediated by changes in litter quality. Our results advocate for the inclusion of biome-specific soil fauna effects on litter decomposition as a mean to reduce the unexplained variation in large-scale decomposition models. PMID:23763716

  1. Gender specific reproductive strategies of an arctic key species (Boreogadus saida) and implications of climate change.

    PubMed

    Nahrgang, Jasmine; Varpe, Oystein; Korshunova, Ekaterina; Murzina, Svetlana; Hallanger, Ingeborg G; Vieweg, Ireen; Berge, Jørgen

    2014-01-01

    The Arctic climate is changing at an unprecedented rate. What consequences this may have on the Arctic marine ecosystem depends to a large degree on how its species will respond both directly to elevated temperatures and more indirectly through ecological interactions. But despite an alarming recent warming of the Arctic with accompanying sea ice loss, reports evaluating ecological impacts of climate change in the Arctic remain sparse. Here, based upon a large-scale field study, we present basic new knowledge regarding the life history traits for one of the most important species in the entire Arctic, the polar cod (Boreogadus saida). Furthermore, by comparing regions of contrasting climatic influence (domains), we present evidence as to how its growth and reproductive success is impaired in the warmer of the two domains. As the future Arctic is predicted to resemble today's Atlantic domains, we forecast changes in growth and life history characteristics of polar cod that will lead to alteration of its role as an Arctic keystone species. This will in turn affect community dynamics and energy transfer in the entire Arctic food chain.

  2. The key role of dry days in changing regional climate and precipitation regimes

    USGS Publications Warehouse

    Polade, Suraj; Pierce, David W.; Cayan, Daniel R.; Gershunov, Alexander; Dettinger, Michael D.

    2014-01-01

    Future changes in the number of dry days per year can either reinforce or counteract projected increases in daily precipitation intensity as the climate warms. We analyze climate model projected changes in the number of dry days using 28 coupled global climate models from the Coupled Model Intercomparison Project, version 5 (CMIP5). We find that the Mediterranean Sea region, parts of Central and South America, and western Indonesia could experience up to 30 more dry days per year by the end of this century. We illustrate how changes in the number of dry days and the precipitation intensity on precipitating days combine to produce changes in annual precipitation, and show that over much of the subtropics the change in number of dry days dominates the annual changes in precipitation and accounts for a large part of the change in interannual precipitation variability.

  3. Climate change presents increased potential for very large fires in the contiguous United States

    Treesearch

    R. Barbero; J. T. Abatzoglou; Sim Larkin; C. A. Kolden; B. Stocks

    2015-01-01

    Very large fires (VLFs) have important implications for communities, ecosystems, air quality and fire suppression expenditures. VLFs over the contiguous US have been strongly linked with meteorological and climatological variability. Building on prior modelling of VLFs (>5000 ha), an ensemble of 17 global climate models were statistically downscaled over the US...

  4. Declining body size: a third universal response to warming?

    PubMed

    Gardner, Janet L; Peters, Anne; Kearney, Michael R; Joseph, Leo; Heinsohn, Robert

    2011-06-01

    A recently documented correlate of anthropogenic climate change involves reductions in body size, the nature and scale of the pattern leading to suggestions of a third universal response to climate warming. Because body size affects thermoregulation and energetics, changing body size has implications for resilience in the face of climate change. A review of recent studies shows heterogeneity in the magnitude and direction of size responses, exposing a need for large-scale phylogenetically controlled comparative analyses of temporal size change. Integrative analyses of museum data combined with new theoretical models of size-dependent thermoregulatory and metabolic responses will increase both understanding of the underlying mechanisms and physiological consequences of size shifts and, therefore, the ability to predict the sensitivities of species to climate change. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Climate variability rather than overstocking causes recent large scale cover changes of Tibetan pastures

    PubMed Central

    Lehnert, L. W.; Wesche, K.; Trachte, K.; Reudenbach, C.; Bendix, J.

    2016-01-01

    The Tibetan Plateau (TP) is a globally important “water tower” that provides water for nearly 40% of the world’s population. This supply function is claimed to be threatened by pasture degradation on the TP and the associated loss of water regulation functions. However, neither potential large scale degradation changes nor their drivers are known. Here, we analyse trends in a high-resolution dataset of grassland cover to determine the interactions among vegetation dynamics, climate change and human impacts on the TP. The results reveal that vegetation changes have regionally different triggers: While the vegetation cover has increased since the year 2000 in the north-eastern part of the TP due to an increase in precipitation, it has declined in the central and western parts of the TP due to rising air temperature and declining precipitation. Increasing livestock numbers as a result of land use changes exacerbated the negative trends but were not their exclusive driver. Thus, we conclude that climate variability instead of overgrazing has been the primary cause for large scale vegetation cover changes on the TP since the new millennium. Since areas of positive and negative changes are almost equal in extent, pasture degradation is not generally proceeding. PMID:27073126

  6. Climate variability rather than overstocking causes recent large scale cover changes of Tibetan pastures

    NASA Astrophysics Data System (ADS)

    Lehnert, L. W.; Wesche, K.; Trachte, K.; Reudenbach, C.; Bendix, J.

    2016-04-01

    The Tibetan Plateau (TP) is a globally important “water tower” that provides water for nearly 40% of the world’s population. This supply function is claimed to be threatened by pasture degradation on the TP and the associated loss of water regulation functions. However, neither potential large scale degradation changes nor their drivers are known. Here, we analyse trends in a high-resolution dataset of grassland cover to determine the interactions among vegetation dynamics, climate change and human impacts on the TP. The results reveal that vegetation changes have regionally different triggers: While the vegetation cover has increased since the year 2000 in the north-eastern part of the TP due to an increase in precipitation, it has declined in the central and western parts of the TP due to rising air temperature and declining precipitation. Increasing livestock numbers as a result of land use changes exacerbated the negative trends but were not their exclusive driver. Thus, we conclude that climate variability instead of overgrazing has been the primary cause for large scale vegetation cover changes on the TP since the new millennium. Since areas of positive and negative changes are almost equal in extent, pasture degradation is not generally proceeding.

  7. Measuring the Dynamics of Climate Change Communication in Mass Media and Social Networks with Computer-Assisted Content Analysis

    NASA Astrophysics Data System (ADS)

    Kirilenko, A.; Stepchenkova, S.

    2012-12-01

    To date, multiple authors have examined media representations of and public attitudes towards climate change, as well as how these representations and attitudes differ from scientific knowledge on the issue of climate change. Content analysis of newspaper publications, TV news, and, recently, Internet blogs has allowed for identification of major discussion themes within the climate change domain (e.g., newspaper trends, comparison of climate change discourse in different countries, contrasting liberal vs. conservative press). The majority of these studies, however, have processed texts manually, limiting textual population size, restricting the analysis to a relatively small number of themes, and using time-expensive coding procedures. The use of computer-assisted text analysis (CATA) software is important because the difficulties with manual processing become more severe with an increased volume of data. We developed a CATA approach that allows a large body of text materials to be surveyed in a quantifiable, objective, transparent, and time-efficient manner. While staying within the quantitative tradition of content analysis, the approach allows for an interpretation of the public discourse closer to one of more qualitatively oriented methods. The methodology used in this study contains several steps: (1) sample selection; (2) data preparation for computer processing and obtaining a matrix of keyword frequencies; (3) identification of themes in the texts using Exploratory Factor Analysis (EFA); (4) combining identified themes into higher order themes using Confirmatory Factor Analysis (CFA); (5) interpretation of obtained public discourse themes using factor scores; and (6) tracking the development of the main themes of the climate change discourse through time. In the report, we concentrate on two examples of CATA applied to study public perception of climate change. First example is an analysis of temporal change in public discourse on climate change. Applying CATA to a conservatively selected sample of 4043 articles published on climate change in The New York Times from 1995, we found a considerable change in major topics of discussion. One of the most significant tendencies is a gradual decline in the volume of material within the "Science" topic and an expansion of themes classified under the "Politics" topic. The second example is the analysis of public ability to detect climate change, in which we used a database of over 1 million Twitter messages on climate change that we have collected. We compared the intensity of tweeting on climate change with the "common-sense climate index" by Hansen et al (1999) and found that the weather extremes experienced at a certain location is immediately reflected in the number of tweets discussing climate change originating from that location. Although the CATA approach certainly has its limitations, we are convinced that it has a number of advantages over manual processing: it is able to analyze large textual bodies, is more time efficient, has a higher level of detail, enhances the richness of interpretation, and is able to reliably track discourse development through time.

  8. : “Developing Regional Modeling Techniques Applicable for Simulating Future Climate Conditions in the Carolinas”

    EPA Science Inventory

    Global climate models (GCMs) are currently used to obtain information about future changes in the large-scale climate. However, such simulations are typically done at coarse spatial resolutions, with model grid boxes on the order of 100 km on a horizontal side. Therefore, techniq...

  9. Changing Permafrost in the Arctic and its Global Effects in the 21st Century (PAGE21): A very large international and integrated project to measure the impact of permafrost degradation on the climate system

    NASA Astrophysics Data System (ADS)

    Lantuit, Hugues; Boike, Julia; Dahms, Melanie; Hubberten, Hans-Wolfgang

    2013-04-01

    The northern permafrost region contains approximately 50% of the estimated global below-ground organic carbon pool and more than twice as much as is contained in the current atmos-pheric carbon pool. The sheer size of this carbon pool, together with the large amplitude of predicted arctic climate change im-plies that there is a high potential for global-scale feedbacks from arctic climate change if these carbon reservoirs are desta-bilized. Nonetheless, significant gaps exist in our current state of knowledge that prevent us from producing accurate assess-ments of the vulnerability of the arctic permafrost to climate change, or of the implications of future climate change for global greenhouse gas (GHG) emissions. Specifically: • Our understanding of the physical and biogeochemical processes at play in permafrost areas is still insuffi-cient in some key aspects • Size estimates for the high latitude continental carbon and nitrogen stocks vary widely between regions and research groups. • The representation of permafrost-related processes in global climate models still tends to be rudimentary, and is one reason for the frequently poor perform-ances of climate models at high latitudes. The key objectives of PAGE21 are: • to improve our understanding of the processes affect-ing the size of the arctic permafrost carbon and nitro-gen pools through detailed field studies and monitor-ing, in order to quantify their size and their vulnerability to climate change, • to produce, assemble and assess high-quality datasets in order to develop and evaluate representations of permafrost and related processes in global models, • to improve these models accordingly, • to use these models to reduce the uncertainties in feed-backs from arctic permafrost to global change, thereby providing the means to assess the feasibility of stabili-zation scenarios, and • to ensure widespread dissemination of our results in order to provide direct input into the ongoing debate on climate-change mitigation. The concept of PAGE21 is to directly address these questions through a close interaction between monitoring activities, proc-ess studies and modeling on the pertinent temporal and spatial scales. Field sites have been selected to cover a wide range of environmental conditions for the validation of large scale mod-els, the development of permafrost monitoring capabilities, the study of permafrost processes, and for overlap with existing monitoring programs. PAGE21 will contribute to upgrading the project sites with the objective of providing a measurement baseline, both for process studies and for modeling programs. PAGE21 is determined to break down the traditional barriers in permafrost sciences between observational and model-supported site studies and large-scale climate modeling. Our concept for the interaction between site-scale studies and large-scale modeling is to establish and maintain a direct link be-tween these two areas for developing and evaluating, on all spatial scales, the land-surface modules of leading European global climate models taking part in the Coupled Model Inter-comparison Project Phase 5 (CMIP5), designed to inform the IPCC process. The timing of this project is such that the main scientific results from PAGE21, and in particular the model-based assessments will build entirely on new outputs and results from the CMIP5 Climate Model Intercomparison Project designed to inform the IPCC Fifth Assessment Report. However, PAGE21 is designed to leave a legacy that will en-dure beyond the lifetime of the projections that it produces. This legacy will comprise • an improved understanding of the key processes and parameters that determine the vulnerability of arctic permafrost to climate change, • the production of a suite of major European coupled climate models including detailed and validated repre-sentations of permafrost-related processes, that will reduce uncertainties in future climate projections pro-duced well beyond the lifetime of PAGE21, and • the training of a new generation of permafrost scien-tists who will bridge the long-standing gap between permafrost field science and global climate modeling, for the long-term benefit of science and society.

  10. Testing the sensitivity of snowpack to climatic change in a large physiographically diverse watershed

    NASA Astrophysics Data System (ADS)

    MacDonald, R. J.; Byrne, J. M.; Kienzle, S. W.; Sauchyn, D.

    2009-12-01

    Snowpack in mountain watersheds provide a large portion of fresh water for many human and ecosystem function. Given the sensitivity of snow processes to temperature, it is likely that available water from snowpack will be reduced under future climate warming. It is important to understand how mountain environments will respond to changes in climate in order to properly manage water future resources. In order to assess potential changes in mountain snowpack and subsequent effects on water supply, we use a combination of hydrometeorological and general circulation models (GCMs). This work describes the application of the GENESYS (GENerate Earth SYstems Science input) spatial hydrometeorological model in simulating potential future changes in snowpack for the North Saskatchewan River watershed, Alberta. Snowpack in the North Saskatchewan River watershed supplies fresh water for over one million people and supports a wide range of ecosystem processes. To assess how snowpack may change in the watershed, scenarios from five GCMs are applied by perturbing the 1961-90 time series with mean changes in temperature and precipitation for the 2010-39, 2040-69 and 2070-99 periods. This study demonstrates that snowpack in the North Saskatchewan River watershed is highly susceptible to climate change and adaptive management strategies should be implemented to ensure sustainable water resources in the region.

  11. The Mekong's future flows under multiple driving factors: How future climate change, hydropower developments and irrigation expansion drive hydrological changes?

    NASA Astrophysics Data System (ADS)

    Hoang, L. P.; van Vliet, M. T. H.; Lauri, H.; Kummu, M.; Koponen, J.; Supit, I.; Leemans, R.; Kabat, P.; Ludwig, F.

    2016-12-01

    The Mekong River's flows and water resources are in many ways essential for sustaining economic growths, flood security of about 70 million people and biodiversity in one of the world's most ecologically productive wetland systems. The river's hydrological cycle, however, are increasingly perturbed by climate change, large-scale hydropower developments and rapid irrigated land expansions. This study presents an integrated impact assessment to characterize and quantify future hydrological changes induced by these driving factors, both separately and combined. We have integrated a crop simulation module and a hydropower dam module into a distributed hydrological model (VMod) and simulated the Mekong's hydrology under multiple climate change and development scenarios. Our results show that the Mekong's hydrological regime will experience substantial changes caused by the considered factors. Magnitude-wise, hydropower dam developments exhibit the largest impacts on river flows, with projected higher flows (up to +35%) during the dry season and lower flows (up to -44%) during the wet season. Annual flow changes caused by the dams, however, are relatively marginal. In contrast to this, climate change is projected to increase the Mekong's annual flows (up to +16%) while irrigated land expansions result in annual flow reductions (-1% to -3%). Combining the impacts of these three drivers, we found that river flow changes, especially those at the monthly scale, largely differ from changes under the individual driving factors. This is explained by large differences in impacts' magnitudes and contrasting impacts' directions for the individual drivers. We argue that the Mekong's future flows are likely driven by multiple factors and thus advocate for integrated assessment approaches and tools that support proper considerations of these factors and their interplays.

  12. Early-Holocene warming in Beringia and its mediation by sea-level and vegetation changes

    USGS Publications Warehouse

    Bartlein, P.J.; Edwards, M.E.; Hostetler, Steven W.; Shafer, Sarah; Anderson, P.M.; Brubaker, L. B; Lozhkin, A. V

    2015-01-01

    Arctic land-cover changes induced by recent global climate change (e.g., expansion of woody vegetation into tundra and effects of permafrost degradation) are expected to generate further feedbacks to the climate system. Past changes can be used to assess our understanding of feedback mechanisms through a combination of process modeling and paleo-observations. The subcontinental region of Beringia (northeastern Siberia, Alaska, and northwestern Canada) was largely ice-free at the peak of deglacial warming and experienced both major vegetation change and loss of permafrost when many arctic regions were still ice covered. The evolution of Beringian climate at this time was largely driven by global features, such as the amplified seasonal cycle of Northern Hemisphere insolation and changes in global ice volume and atmospheric composition, but changes in regional land-surface controls, such as the widespread development of thaw lakes, the replacement of tundra by deciduous forest or woodland, and the flooding of the Bering–Chukchi land bridge, were probably also important. We examined the sensitivity of Beringia's early Holocene climate to these regional-scale controls using a regional climate model (RegCM). Lateral and oceanic boundary conditions were provided by global climate simulations conducted using the GENESIS V2.01 atmospheric general circulation model (AGCM) with a mixed-layer ocean. We carried out two present-day simulations of regional climate – one with modern and one with 11 ka geography – plus another simulation for 6 ka. In addition, we performed five ~ 11 ka climate simulations, each driven by the same global AGCM boundary conditions: (i) 11 ka Control, which represents conditions just prior to the major transitions (exposed land bridge, no thaw lakes or wetlands, widespread tundra vegetation), (ii) sea-level rise, which employed present-day continental outlines, (iii) vegetation change, with deciduous needleleaf and deciduous broadleaf boreal vegetation types distributed as suggested by the paleoecological record, (iv) thaw lakes, which used the present-day distribution of lakes and wetlands, and (v) post-11 ka All, incorporating all boundary conditions changed in experiments (ii)–(iv). We find that regional-scale controls strongly mediate the climate responses to changes in the large-scale controls, amplifying them in some cases, damping them in others, and, overall, generating considerable spatial heterogeneity in the simulated climate changes. The change from tundra to deciduous woodland produces additional widespread warming in spring and early summer over that induced by the 11 ka insolation regime alone, and lakes and wetlands produce modest and localized cooling in summer and warming in winter. The greatest effect is the flooding of the land bridge and shelves, which produces generally cooler conditions in summer but warmer conditions in winter and is most clearly manifest on the flooded shelves and in eastern Beringia. By 6 ka continued amplification of the seasonal cycle of insolation and loss of the Laurentide ice sheet produce temperatures similar to or higher than those at 11 ka, plus a longer growing season.

  13. Extreme heat reduces and shifts United States premium wine production in the 21st century

    PubMed Central

    White, M. A.; Diffenbaugh, N. S.; Jones, G. V.; Pal, J. S.; Giorgi, F.

    2006-01-01

    Premium wine production is limited to regions climatically conducive to growing grapes with balanced composition and varietal typicity. Three central climatic conditions are required: (i) adequate heat accumulation; (ii) low risk of severe frost damage; and (iii) the absence of extreme heat. Although wine production is possible in an extensive climatic range, the highest-quality wines require a delicate balance among these three conditions. Although historical and projected average temperature changes are known to influence global wine quality, the potential future response of wine-producing regions to spatially heterogeneous changes in extreme events is largely unknown. Here, by using a high-resolution regional climate model forced by the Intergovernmental Panel on Climate Change Special Report on Emission Scenarios A2 greenhouse gas emission scenario, we estimate that potential premium winegrape production area in the conterminous United States could decline by up to 81% by the late 21st century. While increases in heat accumulation will shift wine production to warmer climate varieties and/or lower-quality wines, and frost constraints will be reduced, increases in the frequency of extreme hot days (>35°C) in the growing season are projected to eliminate winegrape production in many areas of the United States. Furthermore, grape and wine production will likely be restricted to a narrow West Coast region and the Northwest and Northeast, areas currently facing challenges related to excess moisture. Our results not only imply large changes for the premium wine industry, but also highlight the importance of incorporating fine-scale processes and extreme events in climate-change impact studies. PMID:16840557

  14. Adapting agriculture to climate change: a review

    NASA Astrophysics Data System (ADS)

    Anwar, Muhuddin Rajin; Liu, De Li; Macadam, Ian; Kelly, Georgina

    2013-07-01

    The agricultural sector is highly vulnerable to future climate changes and climate variability, including increases in the incidence of extreme climate events. Changes in temperature and precipitation will result in changes in land and water regimes that will subsequently affect agricultural productivity. Given the gradual change of climate in the past, historically, farmers have adapted in an autonomous manner. However, with large and discrete climate change anticipated by the end of this century, planned and transformational changes will be needed. In light of these, the focus of this review is on farm-level and farmers responses to the challenges of climate change both spatially and over time. In this review of adapting agriculture to climate change, the nature, extent, and causes of climate change are analyzed and assessed. These provide the context for adapting agriculture to climate change. The review identifies the binding constraints to adaptation at the farm level. Four major priority areas are identified to relax these constraints, where new initiatives would be required, i.e., information generation and dissemination to enhance farm-level awareness, research and development (R&D) in agricultural technology, policy formulation that facilitates appropriate adaptation at the farm level, and strengthening partnerships among the relevant stakeholders. Forging partnerships among R&D providers, policy makers, extension agencies, and farmers would be at the heart of transformational adaptation to climate change at the farm level. In effecting this transformational change, sustained efforts would be needed for the attendant requirements of climate and weather forecasting and innovation, farmer's training, and further research to improve the quality of information, invention, and application in agriculture. The investment required for these would be highly significant. The review suggests a sequenced approach through grouping research initiatives into short-term, medium-term, and long-term initiatives, with each initiative in one stage contributing to initiatives in a subsequent stage. The learning by doing inherent in such a process-oriented approach is a requirement owing to the many uncertainties associated with climate change.

  15. Global Climate Forcing from Albedo Change Caused by Large-scale Deforestation and Reforestation: Quantification and Attribution of Geographic Variation

    NASA Technical Reports Server (NTRS)

    Gao, Feng; Ghimire, Bardan; Jiao, Tong; Williams, Christopher A.; Masek, Jeffrey; Schaaf, Crystal

    2017-01-01

    Large-scale deforestation and reforestation have contributed substantially to historical and contemporary global climate change in part through albedo-induced radiative forcing, with meaningful implications for forest management aiming to mitigate climate change. Associated warming or cooling varies widely across the globe due to a range of factors including forest type, snow cover, and insolation, but resulting geographic variation remain spoorly described and has been largely based on model assessments. This study provides an observation-based approach to quantify local and global radiative forcings from large-scale deforestation and reforestation and further examines mechanisms that result in the spatial heterogeneity of radiative forcing. We incorporate a new spatially and temporally explicit land cover-specific albedo product derived from Moderate Resolution Imaging Spectroradiometer with a historical land use data set (Land Use Harmonization product). Spatial variation in radiative forcing was attributed to four mechanisms, including the change in snow-covered albedo, change in snow-free albedo, snow cover fraction, and incoming solar radiation. We find an albedo-only radiative forcing (RF) of -0.819 W m(exp -2) if year 2000 forests were completely deforested and converted to croplands. Albedo RF from global reforestation of present-day croplands to recover year 1700 forests is estimated to be 0.161 W m)exp -2). Snow-cover fraction is identified as the primary factor in determining the spatial variation of radiative forcing in winter, while the magnitude of the change in snow-free albedo is the primary factor determining variations in summertime RF. Findings reinforce the notion that, for conifers at the snowier high latitudes, albedo RF diminishes the warming from forest loss and the cooling from forest gain more so than for other forest types, latitudes, and climate settings.

  16. Climate Research Must Sharpen Its View

    NASA Technical Reports Server (NTRS)

    Marotzke, Jochem; Jakob, Christian; Bony, Sandrine; Dirmeyer, Paul A.; O'Gorman, Paul; Hawkins, Ed; Perkins-Kirkpatrick, Sarah; Le Quere, Corinne; Nowicki, Sophie; Paulavets, Katsia; hide

    2017-01-01

    Human activity is changing Earth's climate. Now that this has been acknowledged and accepted ininternational negotiations, climate research needs to define its next frontiers. The 2015 Paris agreement at COP21 has liberated climate research from discussing what is already known: the world is warming and humans are largely responsible. As society aims to limit further warming by reducing greenhouse-gas emissions, climate research must probe deeper into the unknown.

  17. Recent Regional Climate State and Change - Derived through Downscaling Homogeneous Large-scale Components of Re-analyses

    NASA Astrophysics Data System (ADS)

    Von Storch, H.; Klehmet, K.; Geyer, B.; Li, D.; Schubert-Frisius, M.; Tim, N.; Zorita, E.

    2015-12-01

    Global re-analyses suffer from inhomogeneities, as they process data from networks under development. However, the large-scale component of such re-analyses is mostly homogeneous; additional observational data add in most cases to a better description of regional details and less so on large-scale states. Therefore, the concept of downscaling may be applied to homogeneously complementing the large-scale state of the re-analyses with regional detail - wherever the condition of homogeneity of the large-scales is fulfilled. Technically this can be done by using a regional climate model, or a global climate model, which is constrained on the large scale by spectral nudging. This approach has been developed and tested for the region of Europe, and a skillful representation of regional risks - in particular marine risks - was identified. While the data density in Europe is considerably better than in most other regions of the world, even here insufficient spatial and temporal coverage is limiting risk assessments. Therefore, downscaled data-sets are frequently used by off-shore industries. We have run this system also in regions with reduced or absent data coverage, such as the Lena catchment in Siberia, in the Yellow Sea/Bo Hai region in East Asia, in Namibia and the adjacent Atlantic Ocean. Also a global (large scale constrained) simulation has been. It turns out that spatially detailed reconstruction of the state and change of climate in the three to six decades is doable for any region of the world.The different data sets are archived and may freely by used for scientific purposes. Of course, before application, a careful analysis of the quality for the intended application is needed, as sometimes unexpected changes in the quality of the description of large-scale driving states prevail.

  18. Characterizing the "Time of Emergence" of Air Quality Climate Penalties

    NASA Astrophysics Data System (ADS)

    Rothenberg, D. A.; Garcia-Menendez, F.; Monier, E.; Solomon, S.; Selin, N. E.

    2017-12-01

    By driving not only local changes in temperature, but also precipitation and regional-scale changes in seasonal circulation patterns, climate change can directly and indirectly influence changes in air quality and its extremes. These changes - often referred to as "climate penalties" - can have important implications for human health, which is often targeted when assessing the potential co-benefits of climate policy. But because climate penalties are driven by slow, spatially-varying, temporal changes in the climate system, their emergence in the real world should also have a spatio-temporal component following regional variability in background air quality. In this work, we attempt to estimate the spatially-varying "time of emergence" of climate penalty signals by using an ensemble modeling framework based on the MIT Integrated Global System Model (MIT IGSM). With this framework we assess three climate policy scenarios assuming three different underlying climate sensitivities, and conduct a 5-member ensemble for each case to capture internal variability within the model. These simulations are used to drive offline chemical transport modeling (using CAM-Chem and GEOS-Chem). In these simulations, we find that the air quality response to climate change can vary dramatically across different regions of the globe. To analyze these regionally-varying climate signals, we employ a hierarchical clustering technique to identify regions with similar seasonal patterns of air quality change. Our simulations suggest that the earliest emergence of ozone climate penalties would occur in Southern Europe (by 2035), should the world neglect climate change and rely on a "business-as-usual" emissions policy. However, even modest climate policy dramatically pushes back the time of emergence of these penalties - to beyond 2100 - across most of the globe. The emergence of climate-forced changes in PM2.5 are much more difficult to detect, partially owing to the large role that changes in the frequency and spatial distribution of precipitation play in limiting the accumulation and duration of particulate pollution episodes.

  19. Using fuzzy logic to determine the vulnerability of marine species to climate change.

    PubMed

    Jones, Miranda C; Cheung, William W L

    2018-02-01

    Marine species are being impacted by climate change and ocean acidification, although their level of vulnerability varies due to differences in species' sensitivity, adaptive capacity and exposure to climate hazards. Due to limited data on the biological and ecological attributes of many marine species, as well as inherent uncertainties in the assessment process, climate change vulnerability assessments in the marine environment frequently focus on a limited number of taxa or geographic ranges. As climate change is already impacting marine biodiversity and fisheries, there is an urgent need to expand vulnerability assessment to cover a large number of species and areas. Here, we develop a modelling approach to synthesize data on species-specific estimates of exposure, and ecological and biological traits to undertake an assessment of vulnerability (sensitivity and adaptive capacity) and risk of impacts (combining exposure to hazards and vulnerability) of climate change (including ocean acidification) for global marine fishes and invertebrates. We use a fuzzy logic approach to accommodate the variability in data availability and uncertainties associated with inferring vulnerability levels from climate projections and species' traits. Applying the approach to estimate the relative vulnerability and risk of impacts of climate change in 1074 exploited marine species globally, we estimated their index of vulnerability and risk of impacts to be on average 52 ± 19 SD and 66 ± 11 SD, scaling from 1 to 100, with 100 being the most vulnerable and highest risk, respectively, under the 'business-as-usual' greenhouse gas emission scenario (Representative Concentration Pathway 8.5). We identified 157 species to be highly vulnerable while 294 species are identified as being at high risk of impacts. Species that are most vulnerable tend to be large-bodied endemic species. This study suggests that the fuzzy logic framework can help estimate climate vulnerabilities and risks of exploited marine species using publicly and readily available information. © 2017 John Wiley & Sons Ltd.

  20. Temperate Mountain Forest Biodiversity under Climate Change: Compensating Negative Effects by Increasing Structural Complexity

    PubMed Central

    Braunisch, Veronika; Coppes, Joy; Arlettaz, Raphaël; Suchant, Rudi; Zellweger, Florian; Bollmann, Kurt

    2014-01-01

    Species adapted to cold-climatic mountain environments are expected to face a high risk of range contractions, if not local extinctions under climate change. Yet, the populations of many endothermic species may not be primarily affected by physiological constraints, but indirectly by climate-induced changes of habitat characteristics. In mountain forests, where vertebrate species largely depend on vegetation composition and structure, deteriorating habitat suitability may thus be mitigated or even compensated by habitat management aiming at compositional and structural enhancement. We tested this possibility using four cold-adapted bird species with complementary habitat requirements as model organisms. Based on species data and environmental information collected in 300 1-km2 grid cells distributed across four mountain ranges in central Europe, we investigated (1) how species’ occurrence is explained by climate, landscape, and vegetation, (2) to what extent climate change and climate-induced vegetation changes will affect habitat suitability, and (3) whether these changes could be compensated by adaptive habitat management. Species presence was modelled as a function of climate, landscape and vegetation variables under current climate; moreover, vegetation-climate relationships were assessed. The models were extrapolated to the climatic conditions of 2050, assuming the moderate IPCC-scenario A1B, and changes in species’ occurrence probability were quantified. Finally, we assessed the maximum increase in occurrence probability that could be achieved by modifying one or multiple vegetation variables under altered climate conditions. Climate variables contributed significantly to explaining species occurrence, and expected climatic changes, as well as climate-induced vegetation trends, decreased the occurrence probability of all four species, particularly at the low-altitudinal margins of their distribution. These effects could be partly compensated by modifying single vegetation factors, but full compensation would only be achieved if several factors were changed in concert. The results illustrate the possibilities and limitations of adaptive species conservation management under climate change. PMID:24823495

  1. Temperate mountain forest biodiversity under climate change: compensating negative effects by increasing structural complexity.

    PubMed

    Braunisch, Veronika; Coppes, Joy; Arlettaz, Raphaël; Suchant, Rudi; Zellweger, Florian; Bollmann, Kurt

    2014-01-01

    Species adapted to cold-climatic mountain environments are expected to face a high risk of range contractions, if not local extinctions under climate change. Yet, the populations of many endothermic species may not be primarily affected by physiological constraints, but indirectly by climate-induced changes of habitat characteristics. In mountain forests, where vertebrate species largely depend on vegetation composition and structure, deteriorating habitat suitability may thus be mitigated or even compensated by habitat management aiming at compositional and structural enhancement. We tested this possibility using four cold-adapted bird species with complementary habitat requirements as model organisms. Based on species data and environmental information collected in 300 1-km2 grid cells distributed across four mountain ranges in central Europe, we investigated (1) how species' occurrence is explained by climate, landscape, and vegetation, (2) to what extent climate change and climate-induced vegetation changes will affect habitat suitability, and (3) whether these changes could be compensated by adaptive habitat management. Species presence was modelled as a function of climate, landscape and vegetation variables under current climate; moreover, vegetation-climate relationships were assessed. The models were extrapolated to the climatic conditions of 2050, assuming the moderate IPCC-scenario A1B, and changes in species' occurrence probability were quantified. Finally, we assessed the maximum increase in occurrence probability that could be achieved by modifying one or multiple vegetation variables under altered climate conditions. Climate variables contributed significantly to explaining species occurrence, and expected climatic changes, as well as climate-induced vegetation trends, decreased the occurrence probability of all four species, particularly at the low-altitudinal margins of their distribution. These effects could be partly compensated by modifying single vegetation factors, but full compensation would only be achieved if several factors were changed in concert. The results illustrate the possibilities and limitations of adaptive species conservation management under climate change.

  2. Plastic and evolutionary responses to climate change in fish

    PubMed Central

    Crozier, Lisa G; Hutchings, Jeffrey A

    2014-01-01

    The physical and ecological ‘fingerprints’ of anthropogenic climate change over the past century are now well documented in many environments and taxa. We reviewed the evidence for phenotypic responses to recent climate change in fish. Changes in the timing of migration and reproduction, age at maturity, age at juvenile migration, growth, survival and fecundity were associated primarily with changes in temperature. Although these traits can evolve rapidly, only two studies attributed phenotypic changes formally to evolutionary mechanisms. The correlation-based methods most frequently employed point largely to ‘fine-grained’ population responses to environmental variability (i.e. rapid phenotypic changes relative to generation time), consistent with plastic mechanisms. Ultimately, many species will likely adapt to long-term warming trends overlaid on natural climate oscillations. Considering the strong plasticity in all traits studied, we recommend development and expanded use of methods capable of detecting evolutionary change, such as the long term study of selection coefficients and temporal shifts in reaction norms, and increased attention to forecasting adaptive change in response to the synergistic interactions of the multiple selection pressures likely to be associated with climate change. PMID:24454549

  3. Plastic and evolutionary responses to climate change in fish.

    PubMed

    Crozier, Lisa G; Hutchings, Jeffrey A

    2014-01-01

    The physical and ecological 'fingerprints' of anthropogenic climate change over the past century are now well documented in many environments and taxa. We reviewed the evidence for phenotypic responses to recent climate change in fish. Changes in the timing of migration and reproduction, age at maturity, age at juvenile migration, growth, survival and fecundity were associated primarily with changes in temperature. Although these traits can evolve rapidly, only two studies attributed phenotypic changes formally to evolutionary mechanisms. The correlation-based methods most frequently employed point largely to 'fine-grained' population responses to environmental variability (i.e. rapid phenotypic changes relative to generation time), consistent with plastic mechanisms. Ultimately, many species will likely adapt to long-term warming trends overlaid on natural climate oscillations. Considering the strong plasticity in all traits studied, we recommend development and expanded use of methods capable of detecting evolutionary change, such as the long term study of selection coefficients and temporal shifts in reaction norms, and increased attention to forecasting adaptive change in response to the synergistic interactions of the multiple selection pressures likely to be associated with climate change.

  4. Transitions between multiple equilibria of paleo climate: a glimpse in to the dynamics of abrupt climate change

    NASA Astrophysics Data System (ADS)

    Ferreira, David; Marshall, John; Ito, Takamitsu; McGee, David; Moreno-Chamarro, Eduardo

    2017-04-01

    The dynamics regulating large climatic transitions such as glacial-interglacial cycles or DO events remains a puzzle. Forcings behind these transitions are not robustly identified and potential candidates (e.g. Milankovitch cycles, freshwater perturbations) often appear too weak to explain such dramatic transitions. A potential solution to this long-standing puzzle is that Earth's climate is endowed with multiple equilibrium states of global extent. Such states are commonly found in low-order or conceptual climate models, but it is unclear whether a system as complex as Earth's climate can sustain multiple equilibrium states. Here we report that multiple equilibrium states of the climate system are also possible in a complex, fully dynamical coupled ocean-atmosphere-sea ice GCM with idealized Earth-like geometry, resolved weather systems and a hydrological cycle. In our model, two equilibrium states coexist for the same parameters and external forcings: a Warm climate with a small Northern hemisphere sea ice cap and a large southern one and a Cold climate with large ice caps at both poles. The dynamical states of the Warm and Cold solutions exhibit striking similarities with our present-day climate and the climate of the Last Glacial Maximum, respectively. A carbon cycle model driven by the two dynamical states produces an atmospheric pCO2 draw-down of about 110 pm between the Warm and Cold states, close to Glacial-Interglacial differences found in ice cores. Mechanism controlling the existence of the multiple states and changes in the atmospheric CO2 will be briefly presented. Finally we willdescribe transition experiments from the Cold to the Warm state, focusing on the lead-lags in the system, notably between the Northern and Southern Hemispheres climates.

  5. Climate of the Arctic marine environment.

    PubMed

    Walsh, John E

    2008-03-01

    The climate of the Arctic marine environment is characterized by strong seasonality in the incoming solar radiation and by tremendous spatial variations arising from a variety of surface types, including open ocean, sea ice, large islands, and proximity to major landmasses. Interannual and decadal-scale variations are prominent features of Arctic climate, complicating the distinction between natural and anthropogenically driven variations. Nevertheless, climate models consistently indicate that the Arctic is the most climatically sensitive region of the Northern Hemisphere, especially near the sea ice margins. The Arctic marine environment has shown changes over the past several decades, and these changes are part of a broader global warming that exceeds the range of natural variability over the past 1000 years. Record minima of sea ice coverage during the past few summers and increased melt from Greenland have important implications for the hydrographic regime of the Arctic marine environment. The recent changes in the atmosphere (temperature, precipitation, pressure), sea ice, and ocean appear to be a coordinated response to systematic variations of the large-scale atmospheric circulation, superimposed on a general warming that is likely associated with increasing greenhouse gases. The changes have been sufficiently large in some sectors (e.g., the Bering/Chukchi Seas) that consequences for marine ecosystems appear to be underway. Global climate models indicate an additional warming of several degrees Celsius in much of the Arctic marine environment by 2050. However, the warming is seasonal (largest in autumn and winter), spatially variable, and closely associated with further retreat of sea ice. Additional changes predicted for 2050 are a general decrease of sea level pressure (largest in the Bering sector) and an increase of precipitation. While predictions of changes in storminess cannot be made with confidence, the predicted reduction of sea ice cover will almost certainly lead to increased oceanic mixing, ocean wave generation, and coastal flooding.

  6. A global database with parallel measurements to study non-climatic changes

    NASA Astrophysics Data System (ADS)

    Venema, Victor; Auchman, Renate; Aguilar, Enric

    2017-04-01

    In this work we introduce the rationale behind the ongoing compilation of a parallel measurements database, in the framework of the International Surface Temperatures Initiative (ISTI) and with the support of the World Meteorological Organization. We intend this database to become instrumental for a better understanding of inhomogeneities affecting the evaluation of long-term changes in daily climate data. Long instrumental climate records are usually affected by non-climatic changes, due to, e.g., (i) station re- locations, (ii) instrument height changes, (iii) instrumentation changes, (iv) observing environment changes, (v) different sampling intervals or data collection procedures, among others. These so-called inhomogeneities distort the climate signal and can hamper the assessment of long-term trends and variability of climate. Thus to study climatic changes we need to accurately distinguish non-climatic and climatic signals. The most direct way to study the influence of non-climatic changes on the distribution and to understand the reasons for these biases is the analysis of parallel measurements representing the old and new situation (in terms of e.g. instruments, location, different radiation shields, etc.). According to the limited number of available studies and our understanding of the causes of inhomogeneity, we expect that they will have a strong impact on the tails of the distribution of air temperatures and most likely of other climate elements. Our abilities to statistically homogenize daily data will be increased by systematically studying different causes of inhomogeneity replicated through parallel measurements. Current studies of non-climatic changes using parallel data are limited to local and regional case studies. However, the effect of specific transitions depends on the local climate and the most interesting climatic questions are about the systematic large-scale biases produced by transitions that occurred in many regions. Important potentially biasing transitions are the adoption of Stevenson screens, relocations (to airports) efforts to reduce undercatchment of precipitation or the move to automatic weather stations. Thus a large global parallel dataset is highly desirable as it allows for the study of systematic biases in the global record. We are interested in data from all climate variables at all time scales; from annual to sub-daily. High-resolution data is important for understanding the physical causes for the differences between the parallel measurements. For the same reason, we are also interested in other climate variables measured at the same station. For example, in case of parallel air temperature measurements, the influencing factors are expected to be global radiation, wind, humidity and cloud cover; in case of parallel precipitation measurements, wind and wet-bulb temperature are potentially important.

  7. European scale climate information services for water use sectors

    NASA Astrophysics Data System (ADS)

    van Vliet, Michelle T. H.; Donnelly, Chantal; Strömbäck, Lena; Capell, René; Ludwig, Fulco

    2015-09-01

    This study demonstrates a climate information service for pan-European water use sectors that are vulnerable to climate change induced hydrological changes, including risk and safety (disaster preparedness), agriculture, energy (hydropower and cooling water use for thermoelectric power) and environment (water quality). To study the climate change impacts we used two different hydrological models forced with an ensemble of bias-corrected general circulation model (GCM) output for both the lowest (2.6) and highest (8.5) representative concentration pathways (RCP). Selected indicators of water related vulnerability for each sector were then calculated from the hydrological model results. Our results show a distinct north-south divide in terms of climate change impacts; in the south the water availability will reduce while in the north water availability will increase. Across different climate models precipitation and streamflow increase in northern Europe and decrease in southern Europe, but the latitude at which this change occurs varies depending on the GCM. Hydrological extremes are increasing over large parts of Europe. The agricultural sector will be affected by reduced water availability (in the south) and increased drought. Both streamflow and soil moistures droughts are projected to increase in most parts of Europe except in northern Scandinavia and the Alps. The energy sector will be affected by lower hydropower potential in most European countries and reduced cooling water availability due to higher water temperatures and reduced summer river flows. Our results show that in particular in the Mediterranean the pressures are high because of increasing drought which will have large impacts on both the agriculture and energy sectors. In France and Italy this is combined with increased flood hazards. Our results show important impacts of climate change on European water use sectors indicating a clear need for adaptation.

  8. Preserving the world second largest hypersaline lake under future irrigation and climate change.

    PubMed

    Shadkam, Somayeh; Ludwig, Fulco; van Vliet, Michelle T H; Pastor, Amandine; Kabat, Pavel

    2016-07-15

    Iran Urmia Lake, the world second largest hypersaline lake, has been largely desiccated over the last two decades resulting in socio-environmental consequences similar or even larger than the Aral Sea disaster. To rescue the lake a new water management plan has been proposed, a rapid 40% decline in irrigation water use replacing a former plan which intended to develop reservoirs and irrigation. However, none of these water management plans, which have large socio-economic impacts, have been assessed under future changes in climate and water availability. By adapting a method of environmental flow requirements (EFRs) for hypersaline lakes, we estimated annually 3.7·10(9)m(3) water is needed to preserve Urmia Lake. Then, the Variable Infiltration Capacity (VIC) hydrological model was forced with bias-corrected climate model outputs for both the lowest (RCP2.6) and highest (RCP8.5) greenhouse-gas concentration scenarios to estimate future water availability and impacts of water management strategies. Results showed a 10% decline in future water availability in the basin under RCP2.6 and 27% under RCP8.5. Our results showed that if future climate change is highly limited (RCP2.6) inflow can be just enough to meet the EFRs by implementing the reduction irrigation plan. However, under more rapid climate change scenario (RCP8.5) reducing irrigation water use will not be enough to save the lake and more drastic measures are needed. Our results showed that future water management plans are not robust under climate change in this region. Therefore, an integrated approach of future land-water use planning and climate change adaptation is therefore needed to improve future water security and to reduce the desiccating of this hypersaline lake. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Incorporating climate change into systematic conservation planning

    USGS Publications Warehouse

    Groves, Craig R.; Game, Edward T.; Anderson, Mark G.; Cross, Molly; Enquist, Carolyn; Ferdana, Zach; Girvetz, Evan; Gondor, Anne; Hall, Kimberly R.; Higgins, Jonathan; Marshall, Rob; Popper, Ken; Schill, Steve; Shafer, Sarah L.

    2012-01-01

    The principles of systematic conservation planning are now widely used by governments and non-government organizations alike to develop biodiversity conservation plans for countries, states, regions, and ecoregions. Many of the species and ecosystems these plans were designed to conserve are now being affected by climate change, and there is a critical need to incorporate new and complementary approaches into these plans that will aid species and ecosystems in adjusting to potential climate change impacts. We propose five approaches to climate change adaptation that can be integrated into existing or new biodiversity conservation plans: (1) conserving the geophysical stage, (2) protecting climatic refugia, (3) enhancing regional connectivity, (4) sustaining ecosystem process and function, and (5) capitalizing on opportunities emerging in response to climate change. We discuss both key assumptions behind each approach and the trade-offs involved in using the approach for conservation planning. We also summarize additional data beyond those typically used in systematic conservation plans required to implement these approaches. A major strength of these approaches is that they are largely robust to the uncertainty in how climate impacts may manifest in any given region.

  10. Sensitivity of water resources in the Delaware River basin to climate variability and change

    USGS Publications Warehouse

    Ayers, Mark A.; Wolock, David M.; McCabe, Gregory J.; Hay, Lauren E.; Tasker, Gary D.

    1993-01-01

    Because of the "greenhouse effect," projected increases in atmospheric carbon dioxide levels might cause global warming, which in turn could result in changes in precipitation patterns and evapotranspiration and in increases in sea level. This report describes the greenhouse effect; discusses the problems and uncertainties associated with the detection, prediction, and effects of climatic change, and presents the results of sensitivity-analysis studies of the potential effects of climate change on water resources in the Delaware River basin. On the basis of sensitivity analyses, potentially serious shortfalls of certain water resources in the basin could result if some climatic-change scenarios become true. The results of basin streamflow-model simulations in this study demonstrate the difficulty in distinguishing effects of climatic change on streamflow and water supply from effects of natural variability in current climate. The future direction of basin changes in most water resources, furthermore, cannot be determined precisely because of uncertainty in current projections of regional temperature and precipitation. This large uncertainty indicates that, for resource planning, information defining the sensitivities of water resources to a range of climate change is most relevant. The sensitivity analyses could be useful in developing contingency plans on how to evaluate and respond to changes, should they occur.

  11. The impact of 850,000 years of climate changes on the structure and dynamics of mammal food webs.

    PubMed

    Nenzén, Hedvig K; Montoya, Daniel; Varela, Sara

    2014-01-01

    Most evidence of climate change impacts on food webs comes from modern studies and little is known about how ancient food webs have responded to climate changes in the past. Here, we integrate fossil evidence from 71 fossil sites, body-size relationships and actualism to reconstruct food webs for six large mammal communities that inhabited the Iberian Peninsula at different times during the Quaternary. We quantify the long-term dynamics of these food webs and study how their structure changed across the Quaternary, a period for which fossil data and climate changes are well known. Extinction, immigration and turnover rates were correlated with climate changes in the last 850 kyr. Yet, we find differences in the dynamics and structural properties of Pleistocene versus Holocene mammal communities that are not associated with glacial-interglacial cycles. Although all Quaternary mammal food webs were highly nested and robust to secondary extinctions, general food web properties changed in the Holocene. These results highlight the ability of communities to re-organize with the arrival of phylogenetically similar species without major structural changes, and the impact of climate change and super-generalist species (humans) on Iberian Holocene mammal communities.

  12. The Impact of 850,000 Years of Climate Changes on the Structure and Dynamics of Mammal Food Webs

    PubMed Central

    Nenzén, Hedvig K.; Montoya, Daniel; Varela, Sara

    2014-01-01

    Most evidence of climate change impacts on food webs comes from modern studies and little is known about how ancient food webs have responded to climate changes in the past. Here, we integrate fossil evidence from 71 fossil sites, body-size relationships and actualism to reconstruct food webs for six large mammal communities that inhabited the Iberian Peninsula at different times during the Quaternary. We quantify the long-term dynamics of these food webs and study how their structure changed across the Quaternary, a period for which fossil data and climate changes are well known. Extinction, immigration and turnover rates were correlated with climate changes in the last 850 kyr. Yet, we find differences in the dynamics and structural properties of Pleistocene versus Holocene mammal communities that are not associated with glacial-interglacial cycles. Although all Quaternary mammal food webs were highly nested and robust to secondary extinctions, general food web properties changed in the Holocene. These results highlight the ability of communities to re-organize with the arrival of phylogenetically similar species without major structural changes, and the impact of climate change and super-generalist species (humans) on Iberian Holocene mammal communities. PMID:25207754

  13. Hydrologic drivers of tree biodiversity: The impact of climate change (Invited)

    NASA Astrophysics Data System (ADS)

    Rodriguez-Iturbe, I.; Konar, M.; Muneepeerakul, R.; Azaele, S.; Bertuzzo, E.; Rinaldo, A.

    2009-12-01

    Biodiversity of forests is of major importance for society. The possible impact of climate change on the characteristics of tree diversity is a topic of crucial importance with relevant implications for conservation campaigns and resource management. Here we present the main results of the expected biodiversity changes in the Mississippi-Missouri River Basin (MMRS) and two of its subregions under different scenarios of possible climate change. A mechanistic neutral metapopulation model is developed to study the main drivers of large scale biodiversity signatures in the MMRS system. The region is divided into 824 Direct Tributary Areas (DTAs), each one characterized by its own habitat capacity. Data for the spatial occurrence of the 231 species present in the system is taken from the US Forest Service Inventory and Analysis Database. The model has permeable boundaries to account for immigration from the regions surrounding the MMRS. The model accounts for key aspects of ecological dynamics (e.g., birth, death, speciation, and migration) and is fundamentally driven by the mean annual precipitation characteristic of each of the DTAs in the system. It is found that such a simple model, with only four parameters, yields an excellent representation of the observed local species richness (LSR), between-community (β) diversity, and species rank-occupancy function. The mean annual rainfall of each DTA is then changed according to the climate scenarios and new habitat capacities are thus obtained throughout the MMRS and its subregions. The resulting large-scale biodiversity signatures are computed and compared with those of the present scenario, showing that there are very important changes arising from the climate change conditions. For the dry scenarios, it is shown that there is a considerable decrease of species richness, both at local and regional scales, and a contraction of species' geographic ranges. These findings link the hydrologic and ecological dynamics of the MMRS under climate change conditions and are important for a comprehensive evaluation of the climate change impacts over the United States.

  14. Contrasting fire responses to climate and management: insights from two Australian ecosystems.

    PubMed

    King, Karen J; Cary, Geoffrey J; Bradstock, Ross A; Marsden-Smedley, Jonathan B

    2013-04-01

    This study explores effects of climate change and fuel management on unplanned fire activity in ecosystems representing contrasting extremes of the moisture availability spectrum (mesic and arid). Simulation modelling examined unplanned fire activity (fire incidence and area burned, and the area burned by large fires) for alternate climate scenarios and prescribed burning levels in: (i) a cool, moist temperate forest and wet moorland ecosystem in south-west Tasmania (mesic); and (ii) a spinifex and mulga ecosystem in central Australia (arid). Contemporary fire activity in these case study systems is limited, respectively, by fuel availability and fuel amount. For future climates, unplanned fire incidence and area burned increased in the mesic landscape, but decreased in the arid landscape in accordance with predictions based on these limiting factors. Area burned by large fires (greater than the 95th percentile of historical, unplanned fire size) increased with future climates in the mesic landscape. Simulated prescribed burning was more effective in reducing unplanned fire activity in the mesic landscape. However, the inhibitory effects of prescribed burning are predicted to be outweighed by climate change in the mesic landscape, whereas in the arid landscape prescribed burning reinforced a predicted decline in fire under climate change. The potentially contrasting direction of future changes to fire will have fundamentally different consequences for biodiversity in these contrasting ecosystems, and these will need to be accommodated through contrasting, innovative management solutions. © 2012 Blackwell Publishing Ltd.

  15. Tracing Multi-Scale Climate Change at Low Latitude from Glacier Shrinkage

    NASA Astrophysics Data System (ADS)

    Moelg, T.; Cullen, N. J.; Hardy, D. R.; Kaser, G.

    2009-12-01

    Significant shrinkage of glaciers on top of Africa's highest mountain (Kilimanjaro, 5895 m a.s.l.) has been observed between the late 19th century and the present. Multi-year data from our automatic weather station on the largest remaining slope glacier at 5873 m allow us to force and verify a process-based distributed glacier mass balance model. This generates insights into energy and mass fluxes at the glacier-atmosphere interface, their feedbacks, and how they are linked to atmospheric conditions. By means of numerical atmospheric modeling and global climate model simulations, we explore the linkages of the local climate in Kilimanjaro's summit zone to larger-scale climate dynamics - which suggests a causal connection between Indian Ocean dynamics, mesoscale mountain circulation, and glacier mass balance. Based on this knowledge, the verified mass balance model is used for backward modeling of the steady-state glacier extent observed in the 19th century, which yields the characteristics of local climate change between that time and the present (30-45% less precipitation, 0.1-0.3 hPa less water vapor pressure, 2-4 percentage units less cloud cover at present). Our multi-scale approach provides an important contribution, from a cryospheric viewpoint, to the understanding of how large-scale climate change propagates to the tropical free troposphere. Ongoing work in this context targets the millennium-scale relation between large-scale climate and glacier behavior (by downscaling precipitation), and the possible effects of regional anthropogenic activities (land use change) on glacier mass balance.

  16. European climate change at global mean temperature increases of 1.5 and 2 °C above pre-industrial conditions as simulated by the EURO-CORDEX regional climate models

    NASA Astrophysics Data System (ADS)

    Kjellström, Erik; Nikulin, Grigory; Strandberg, Gustav; Bøssing Christensen, Ole; Jacob, Daniela; Keuler, Klaus; Lenderink, Geert; van Meijgaard, Erik; Schär, Christoph; Somot, Samuel; Sørland, Silje Lund; Teichmann, Claas; Vautard, Robert

    2018-05-01

    We investigate European regional climate change for time periods when the global mean temperature has increased by 1.5 and 2 °C compared to pre-industrial conditions. Results are based on regional downscaling of transient climate change simulations for the 21st century with global climate models (GCMs) from the fifth-phase Coupled Model Intercomparison Project (CMIP5). We use an ensemble of EURO-CORDEX high-resolution regional climate model (RCM) simulations undertaken at a computational grid of 12.5 km horizontal resolution covering Europe. The ensemble consists of a range of RCMs that have been used for downscaling different GCMs under the RCP8.5 forcing scenario. The results indicate considerable near-surface warming already at the lower 1.5 °C of warming. Regional warming exceeds that of the global mean in most parts of Europe, being the strongest in the northernmost parts of Europe in winter and in the southernmost parts of Europe together with parts of Scandinavia in summer. Changes in precipitation, which are less robust than the ones in temperature, include increases in the north and decreases in the south with a borderline that migrates from a northerly position in summer to a southerly one in winter. Some of these changes are already seen at 1.5 °C of warming but are larger and more robust at 2 °C. Changes in near-surface wind speed are associated with a large spread among individual ensemble members at both warming levels. Relatively large areas over the North Atlantic and some parts of the continent show decreasing wind speed while some ocean areas in the far north show increasing wind speed. The changes in temperature, precipitation and wind speed are shown to be modified by changes in mean sea level pressure, indicating a strong relationship with the large-scale circulation and its internal variability on decade-long timescales. By comparing to a larger ensemble of CMIP5 GCMs we find that the RCMs can alter the results, leading either to attenuation or amplification of the climate change signal in the underlying GCMs. We find that the RCMs tend to produce less warming and more precipitation (or less drying) in many areas in both winter and summer.

  17. Transformational adaptation when incremental adaptations to climate change are insufficient

    PubMed Central

    Kates, Robert W.; Travis, William R.; Wilbanks, Thomas J.

    2012-01-01

    All human–environment systems adapt to climate and its natural variation. Adaptation to human-induced change in climate has largely been envisioned as increments of these adaptations intended to avoid disruptions of systems at their current locations. In some places, for some systems, however, vulnerabilities and risks may be so sizeable that they require transformational rather than incremental adaptations. Three classes of transformational adaptations are those that are adopted at a much larger scale, that are truly new to a particular region or resource system, and that transform places and shift locations. We illustrate these with examples drawn from Africa, Europe, and North America. Two conditions set the stage for transformational adaptation to climate change: large vulnerability in certain regions, populations, or resource systems; and severe climate change that overwhelms even robust human use systems. However, anticipatory transformational adaptation may be difficult to implement because of uncertainties about climate change risks and adaptation benefits, the high costs of transformational actions, and institutional and behavioral actions that tend to maintain existing resource systems and policies. Implementing transformational adaptation requires effort to initiate it and then to sustain the effort over time. In initiating transformational adaptation focusing events and multiple stresses are important, combined with local leadership. In sustaining transformational adaptation, it seems likely that supportive social contexts and the availability of acceptable options and resources for actions are key enabling factors. Early steps would include incorporating transformation adaptation into risk management and initiating research to expand the menu of innovative transformational adaptations. PMID:22509036

  18. Transformational adaptation when incremental adaptations to climate change are insufficient.

    PubMed

    Kates, Robert W; Travis, William R; Wilbanks, Thomas J

    2012-05-08

    All human-environment systems adapt to climate and its natural variation. Adaptation to human-induced change in climate has largely been envisioned as increments of these adaptations intended to avoid disruptions of systems at their current locations. In some places, for some systems, however, vulnerabilities and risks may be so sizeable that they require transformational rather than incremental adaptations. Three classes of transformational adaptations are those that are adopted at a much larger scale, that are truly new to a particular region or resource system, and that transform places and shift locations. We illustrate these with examples drawn from Africa, Europe, and North America. Two conditions set the stage for transformational adaptation to climate change: large vulnerability in certain regions, populations, or resource systems; and severe climate change that overwhelms even robust human use systems. However, anticipatory transformational adaptation may be difficult to implement because of uncertainties about climate change risks and adaptation benefits, the high costs of transformational actions, and institutional and behavioral actions that tend to maintain existing resource systems and policies. Implementing transformational adaptation requires effort to initiate it and then to sustain the effort over time. In initiating transformational adaptation focusing events and multiple stresses are important, combined with local leadership. In sustaining transformational adaptation, it seems likely that supportive social contexts and the availability of acceptable options and resources for actions are key enabling factors. Early steps would include incorporating transformation adaptation into risk management and initiating research to expand the menu of innovative transformational adaptations.

  19. Climate change: The necessary, the possible and the desirable Earth League climate statement on the implications for climate policy from the 5th IPCC Assessment

    NASA Astrophysics Data System (ADS)

    Rockström, Johan; Brasseur, Guy; Hoskins, Brian; Lucht, Wolfgang; Schellnhuber, John; Kabat, Pavel; Nakicenovic, Nebojsa; Gong, Peng; Schlosser, Peter; Máñez Costa, Maria; Humble, April; Eyre, Nick; Gleick, Peter; James, Rachel; Lucena, Andre; Masera, Omar; Moench, Marcus; Schaeffer, Roberto; Seitzinger, Sybil; van der Leeuw, Sander; Ward, Bob; Stern, Nicholas; Hurrell, James; Srivastava, Leena; Morgan, Jennifer; Nobre, Carlos; Sokona, Youba; Cremades, Roger; Roth, Ellinor; Liverman, Diana; Arnott, James

    2014-12-01

    The development of human civilisations has occurred at a time of stable climate. This climate stability is now threatened by human activity. The rising global climate risk occurs at a decisive moment for world development. World nations are currently discussing a global development agenda consequent to the Millennium Development Goals (MDGs), which ends in 2015. It is increasingly possible to envisage a world where absolute poverty is largely eradicated within one generation and where ambitious goals on universal access and equal opportunities for dignified lives are adopted. These grand aspirations for a world population approaching or even exceeding nine billion in 2050 is threatened by substantial global environmental risks and by rising inequality. Research shows that development gains, in both rich and poor nations, can be undermined by social, economic and ecological problems caused by human-induced global environmental change. Climate risks, and associated changes in marine and terrestrial ecosystems that regulate the resilience of the climate system, are at the forefront of these global risks. We, as citizens with a strong engagement in Earth system science and socio-ecological dynamics, share the vision of a more equitable and prosperous future for the world, yet we also see threats to this future from shifts in climate and environmental processes. Without collaborative action now, our shared Earth system may not be able to sustainably support a large proportion of humanity in the decades ahead.

  20. Projected Impacts of 21st Century Climate Change on Potential Habitat for Vegetation and Forest Types in Russia

    NASA Astrophysics Data System (ADS)

    Soja, A. J.; Tchebakova, N. M.; Parfenova, E. I.; Cantin, A.; Conard, S. G.

    2015-12-01

    Global GCMs have demonstrated profound potential for projections to affect the distribution of terrestrial ecosystems and individual species at all hierarchical levels. We modeled progression of potential Russian ecotones and forest-forming species as the climate changes. Large-scale bioclimatic models were developed to predict Russian zonal vegetation (RuBCliM) and forest types (ForCliM) from three bioclimatic indices (1) growing degree-days above 5 degrees C; (2) negative degree-days below 0 C ; and (3) an annual moisture index (ratio of growing degree days to annual precipitation). The presence or absence of continuous permafrost was explicitly included in the models as limiting the forests and tree species distribution. All simulations to predict vegetation change across Russia were run by coupling our bioclimatic models with bioclimatic indices and the permafrost distribution for the baseline period and for the future 2020, 2050 and 2100 simulated by 3 GCMs (CGCM3.1, HadCM3 and IPSLCM4) and 3 climate change scenarios (A1B, A2 and B1). Under these climate scenarios, it is projected the zonobiomes will shift far northward to reach equilibrium with the change in climate. Under the warmer and drier projected future climate, about half of Russia would be suitable for the forest-steppe ecotone and grasslands, rather than for forests. Water stress tolerant light-needled taiga would have an increased advantage over water-loving dark-needled taiga. Permafrost-tolerant L. dahurica taiga would remain the dominant forest across permafrost. Increases in severe fire weather would lead to increases in large, high-severity fires, especially at boundaries between forest ecotones, which can be expected to facilitate a more rapid progression of vegetation towards a new equilibrium with the climate. Adaptation to climate change may be facilitated by: assisting migration of forests by seed transfers to establish genotypes that may be more ecologically suited as climate changes; and the introduction of suitable agricultural crops that may be potentially adapted to a warmer climate in the expected steppe and forest-steppe.

  1. Linear and nonlinear effects of temperature and precipitation on ecosystem properties in tidal saline wetlands

    USGS Publications Warehouse

    Feher, Laura C.; Osland, Michael J.; Griffith, Kereen T.; Grace, James B.; Howard, Rebecca J.; Stagg, Camille L.; Enwright, Nicholas M.; Krauss, Ken W.; Gabler, Christopher A.; Day, Richard H.; Rogers, Kerrylee

    2017-01-01

    Climate greatly influences the structure and functioning of tidal saline wetland ecosystems. However, there is a need to better quantify the effects of climatic drivers on ecosystem properties, particularly near climate-sensitive ecological transition zones. Here, we used climate- and literature-derived ecological data from tidal saline wetlands to test hypotheses regarding the influence of climatic drivers (i.e., temperature and precipitation regimes) on the following six ecosystem properties: canopy height, biomass, productivity, decomposition, soil carbon density, and soil carbon accumulation. Our analyses quantify and elucidate linear and nonlinear effects of climatic drivers. We quantified positive linear relationships between temperature and above-ground productivity and strong positive nonlinear (sigmoidal) relationships between (1) temperature and above-ground biomass and canopy height and (2) precipitation and canopy height. Near temperature-controlled mangrove range limits, small changes in temperature are expected to trigger comparatively large changes in biomass and canopy height, as mangrove forests grow, expand, and, in some cases, replace salt marshes. However, within these same transition zones, temperature-induced changes in productivity are expected to be comparatively small. Interestingly, despite the significant above-ground height, biomass, and productivity relationships across the tropical–temperate mangrove–marsh transition zone, the relationships between temperature and soil carbon density or soil carbon accumulation were not significant. Our literature review identifies several ecosystem properties and many regions of the world for which there are insufficient data to fully evaluate the influence of climatic drivers, and the identified data gaps can be used by scientists to guide future research. Our analyses indicate that near precipitation-controlled transition zones, small changes in precipitation are expected to trigger comparatively large changes in canopy height. However, there are scant data to evaluate the influence of precipitation on other ecosystem properties. There is a need for more decomposition data across climatic gradients, and to advance understanding of the influence of changes in precipitation and freshwater availability, additional ecological data are needed from tidal saline wetlands in arid climates. Collectively, our results can help scientists and managers better anticipate the linear and nonlinear ecological consequences of climate change for coastal wetlands.

  2. Different regional climatic drivers of Holocene large wildfires in boreal forests of northeastern America

    NASA Astrophysics Data System (ADS)

    Remy, Cécile C.; Hély, Christelle; Blarquez, Olivier; Magnan, Gabriel; Bergeron, Yves; Lavoie, Martin; Ali, Adam A.

    2017-03-01

    Global warming could increase climatic instability and large wildfire activity in circumboreal regions, potentially impairing both ecosystem functioning and human health. However, links between large wildfire events and climatic and/or meteorological conditions are still poorly understood, partly because few studies have covered a wide range of past climate-fire interactions. We compared palaeofire and simulated climatic data over the last 7000 years to assess causes of large wildfire events in three coniferous boreal forest regions in north-eastern Canada. These regions span an east-west cline, from a hilly region influenced by the Atlantic Ocean currently dominated by Picea mariana and Abies balsamea to a flatter continental region dominated by Picea mariana and Pinus banksiana. The largest wildfires occurred across the entire study zone between 3000 and 1000 cal. BP. In western and central continental regions these events were triggered by increases in both the fire-season length and summer/spring temperatures, while in the eastern region close to the ocean they were likely responses to hydrological (precipitation/evapotranspiration) variability. The impact of climatic drivers on fire size varied spatially across the study zone, confirming that regional climate dynamics could modulate effects of global climate change on wildfire regimes.

  3. Impacts of climate variability and change on crop yield in sub-Sahara Africa

    NASA Astrophysics Data System (ADS)

    Pan, S.; Zhang, J.; Yang, J.; Chen, G.; Xu, R.; Zhang, B.; Lou, Y.

    2017-12-01

    Much concern has been raised about the impacts of climate change and climate extremes on Africa's food security. The impact of climate change on Africa's agriculture is likely to be severe compared to other continents due to high rain-fed agricultural dependence, and limited ability to mitigate and adapt to climate change. In recent decades, warming in Africa is more pronounced and faster than the global average and this trend is likely to continue in the future. However, quantitative assessment on impacts of climate extremes and climate change on crop yield has not been well investigated yet. By using an improved agricultural module of the Dynamic Land Ecosystem Model (DLEM-AG2) driven by spatially-explicit information on land use, climate and other environmental changes, we have assessed impacts of historical climate variability and future climate change on food crop yield across the sub-Sahara Africa during1980-2016 and the rest of the 21st century (2017-2099). Our simulated results indicate that African crop yield in the past three decades shows an increasing trend primarily due to cropland expansion. However, crop yield shows substantially spatial and temporal variation due to inter-annual and inter-decadal climate variability and spatial heterogeneity of environmental drivers. Droughts have largely reduced crop yield in the most vulnerable regions of Sub-Sahara Africa. Future projections with DLEM-AG2 show that food crop production in Sub-Sahara Africa would be favored with limiting end-of-century warming to below 1.50 C.

  4. Climate warming and humans played different roles in triggering Late Quaternary extinctions in east and west Eurasia

    PubMed Central

    Wan, Xinru

    2017-01-01

    Climate change and humans are proposed as the two key drivers of total extinction of many large mammals in the Late Pleistocene and Early Holocene, but disentangling their relative roles remains challenging owing to a lack of quantitative evaluation of human impact and climate-driven distribution changes on the extinctions of these large mammals in a continuous temporal–spatial dimension. Here, our analyses showed that temperature change had significant effects on mammoth (genus Mammuthus), rhinoceros (Rhinocerotidae), horse (Equidae) and deer (Cervidae). Rapid global warming was the predominant factor driving the total extinction of mammoths and rhinos in frigid zones from the Late Pleistocene and Early Holocene. Humans showed significant, negative effects on extirpations of the four mammalian taxa, and were the predominant factor causing the extinction or major extirpations of rhinos and horses. Deer survived both rapid climate warming and extensive human impacts. Our study indicates that both the current rates of warming and range shifts of species are much faster than those from the Late Pleistocene to Holocene. Our results provide new insight into the extinction of Late Quaternary megafauna by demonstrating taxon-, period- and region-specific differences in extinction drivers of climate change and human disturbances, and some implications about the extinction risk of animals by recent and ongoing climate warming. PMID:28330916

  5. Climate warming and humans played different roles in triggering Late Quaternary extinctions in east and west Eurasia.

    PubMed

    Wan, Xinru; Zhang, Zhibin

    2017-03-29

    Climate change and humans are proposed as the two key drivers of total extinction of many large mammals in the Late Pleistocene and Early Holocene, but disentangling their relative roles remains challenging owing to a lack of quantitative evaluation of human impact and climate-driven distribution changes on the extinctions of these large mammals in a continuous temporal-spatial dimension. Here, our analyses showed that temperature change had significant effects on mammoth (genus Mammuthus ), rhinoceros (Rhinocerotidae), horse (Equidae) and deer (Cervidae). Rapid global warming was the predominant factor driving the total extinction of mammoths and rhinos in frigid zones from the Late Pleistocene and Early Holocene. Humans showed significant, negative effects on extirpations of the four mammalian taxa, and were the predominant factor causing the extinction or major extirpations of rhinos and horses. Deer survived both rapid climate warming and extensive human impacts. Our study indicates that both the current rates of warming and range shifts of species are much faster than those from the Late Pleistocene to Holocene. Our results provide new insight into the extinction of Late Quaternary megafauna by demonstrating taxon-, period- and region-specific differences in extinction drivers of climate change and human disturbances, and some implications about the extinction risk of animals by recent and ongoing climate warming. © 2017 The Author(s).

  6. Variation in Estimated Ozone-Related Health Impacts of Climate Change due to Modeling Choices and Assumptions

    PubMed Central

    Post, Ellen S.; Grambsch, Anne; Weaver, Chris; Morefield, Philip; Leung, Lai-Yung; Nolte, Christopher G.; Adams, Peter; Liang, Xin-Zhong; Zhu, Jin-Hong; Mahoney, Hardee

    2012-01-01

    Background: Future climate change may cause air quality degradation via climate-induced changes in meteorology, atmospheric chemistry, and emissions into the air. Few studies have explicitly modeled the potential relationships between climate change, air quality, and human health, and fewer still have investigated the sensitivity of estimates to the underlying modeling choices. Objectives: Our goal was to assess the sensitivity of estimated ozone-related human health impacts of climate change to key modeling choices. Methods: Our analysis included seven modeling systems in which a climate change model is linked to an air quality model, five population projections, and multiple concentration–response functions. Using the U.S. Environmental Protection Agency’s (EPA’s) Environmental Benefits Mapping and Analysis Program (BenMAP), we estimated future ozone (O3)-related health effects in the United States attributable to simulated climate change between the years 2000 and approximately 2050, given each combination of modeling choices. Health effects and concentration–response functions were chosen to match those used in the U.S. EPA’s 2008 Regulatory Impact Analysis of the National Ambient Air Quality Standards for O3. Results: Different combinations of methodological choices produced a range of estimates of national O3-related mortality from roughly 600 deaths avoided as a result of climate change to 2,500 deaths attributable to climate change (although the large majority produced increases in mortality). The choice of the climate change and the air quality model reflected the greatest source of uncertainty, with the other modeling choices having lesser but still substantial effects. Conclusions: Our results highlight the need to use an ensemble approach, instead of relying on any one set of modeling choices, to assess the potential risks associated with O3-related human health effects resulting from climate change. PMID:22796531

  7. The uncertainty of future water supply adequacy in megacities: Effects of population growth and climate change

    NASA Astrophysics Data System (ADS)

    Alarcon, T.; Garcia, M. E.; Small, D. L.; Portney, K.; Islam, S.

    2013-12-01

    Providing water to the expanding population of megacities, which have over 10 million people, with a stressed and aging water infrastructure creates unprecedented challenges. These challenges are exacerbated by dwindling supply and competing demands, altered precipitation and runoff patterns in a changing climate, fragmented water utility business models, and changing consumer behavior. While there is an extensive literature on the effects of climate change on water resources, the uncertainty of climate change predictions continues to be high. This hinders the value of these predictions for municipal water supply planning. The ability of water utilities to meet future water needs will largely depend on their capacity to make decisions under uncertainty. Water stressors, like changes in demographics, climate, and socioeconomic patterns, have varying degrees of uncertainty. Identifying which stressors will have a greater impact on water resources, may reduce the level of future uncertainty for planning and managing water utilities. Within this context, we analyze historical and projected changes of population and climate to quantify the relative impacts of these two stressors on water resources. We focus on megacities that rely primarily on surface water resources to evaluate (a) population growth pattern from 1950-2010 and projected population for 2010-2060; (b) climate change impact on projected climate change scenarios for 2010-2060; and (c) water access for 1950-2010; projected needs for 2010-2060.

  8. Impact of Desiccation of Aral Sea on the Regional Climate of Central Asia Using WRF Model

    NASA Astrophysics Data System (ADS)

    Sharma, Ashish; Huang, Huei-Ping; Zavialov, Peter; Khan, Valentina

    2018-01-01

    This study explores the impacts of the desiccation of the Aral Sea and large-scale climate change on the regional climate of Central Asia in the post-1960 era. A series of climate downscaling experiments for the 1960's and 2000's decades were performed using the Weather Research and Forecast model at 12-km horizontal resolution. To quantify the impacts of the changing surface boundary condition, a set of simulations with an identical lateral boundary condition but different extents of the Aral Sea were performed. It was found that the desiccation of the Aral Sea leads to more snow (and less rain) as desiccated winter surface is relatively much colder than water surface. In summer, desiccation led to substantial warming over the Aral Sea. These impacts were largely confined to within the area covered by the former Aral Sea and its immediate vicinity, although desiccation of the Sea also led to minor cooling over the greater Central Asia in winter. A contrasting set of simulations with an identical surface boundary condition but different lateral boundary conditions produced more identifiable changes in regional climate over the greater Central Asia which was characterized by a warming trend in both winter and summer. Simulations also showed that while the desiccation of the Aral Sea has significant impacts on the local climate over the Sea, the climate over the greater Central Asia on inter-decadal time scale was more strongly influenced by the continental or global-scale climate change on that time scale.

  9. Soil ecosystem functioning under climate change: plant species and community effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kardol, Paul; Cregger, Melissa; Campany, Courtney E

    2010-01-01

    Feedbacks of terrestrial ecosystems to climate change depend on soil ecosystem dynamics. Soil ecosystems can directly and indirectly respond to climate change. For example, warming directly alters microbial communities by increasing their activity. Climate change may also alter plant community composition, thus indirectly altering the microbial communities that feed on their inputs. To better understand how climate change may directly and indirectly alter soil ecosystem functioning, we investigated old-field plant community and soil ecosystem responses to single and combined effects of elevated [CO2], warming, and water availability. Specifically, we collected soils at the plot level (plant community soils), and beneathmore » dominant plant species (plant-specific soils). We used microbial enzyme activities and soil nematodes as indicators for soil ecosystem functioning. Our study resulted in two main findings: 1) Overall, while there were some interactions, water, relative to increases in [CO2] and warming, had the largest impact on plant community composition, soil enzyme activities, and soil nematodes. Multiple climate change factors can interact to shape ecosystems, but in this case, those interactions were largely driven by changes in water availability. 2) Indirect effects of climate change, via changes in plant communities, had a significant impact on soil ecosystem functioning and this impact was not obvious when looking at plant community soils. Climate change effects on enzyme activities and soil nematode abundance and community structure strongly differed between plant community soils and plant-specific soils, but also within plant-specific soils. In sum, these results indicate that accurate assessments of climate change impacts on soil ecosystem functioning require incorporating the concurrent changes in plant function and plant community composition. Climate change-induced shifts in plant community composition will likely modify or counteract the direct impact of climate change on soil ecosystem functioning, and hence, these indirect effects should be taken into account when predicting how climate change will alter ecosystem functioning.« less

  10. Choice of baseline climate data impacts projected species' responses to climate change.

    PubMed

    Baker, David J; Hartley, Andrew J; Butchart, Stuart H M; Willis, Stephen G

    2016-07-01

    Climate data created from historic climate observations are integral to most assessments of potential climate change impacts, and frequently comprise the baseline period used to infer species-climate relationships. They are often also central to downscaling coarse resolution climate simulations from General Circulation Models (GCMs) to project future climate scenarios at ecologically relevant spatial scales. Uncertainty in these baseline data can be large, particularly where weather observations are sparse and climate dynamics are complex (e.g. over mountainous or coastal regions). Yet, importantly, this uncertainty is almost universally overlooked when assessing potential responses of species to climate change. Here, we assessed the importance of historic baseline climate uncertainty for projections of species' responses to future climate change. We built species distribution models (SDMs) for 895 African bird species of conservation concern, using six different climate baselines. We projected these models to two future periods (2040-2069, 2070-2099), using downscaled climate projections, and calculated species turnover and changes in species-specific climate suitability. We found that the choice of baseline climate data constituted an important source of uncertainty in projections of both species turnover and species-specific climate suitability, often comparable with, or more important than, uncertainty arising from the choice of GCM. Importantly, the relative contribution of these factors to projection uncertainty varied spatially. Moreover, when projecting SDMs to sites of biodiversity importance (Important Bird and Biodiversity Areas), these uncertainties altered site-level impacts, which could affect conservation prioritization. Our results highlight that projections of species' responses to climate change are sensitive to uncertainty in the baseline climatology. We recommend that this should be considered routinely in such analyses. © 2016 John Wiley & Sons Ltd.

  11. Slow Response or No Response? Distinguishing Non-Climatic Range Limits from Demographic Inertia

    NASA Astrophysics Data System (ADS)

    Hillerislambers, J.; Anderegg, L. D. L.; Breckheimer, I.; Ford, K.; Kroiss, S.

    2016-12-01

    One of the greatest challenges ecologists face is forecasting how species distributions will respond to climate change. In general, species distributions have moved polewards and upslope with recent climate change (i.e. range shifts), supporting the assumption that range limits are climatically determined. However, studies also document a surprising number of species whose distributions have remained unchanged in the last 50-100 years, despite significant warming during that time period. This apparent lack of response to warming can arise for species whose range limits are determined by factors other than climate (e.g. species interactions) OR for long-lived, slow-growing, and/or dispersal-limited species whose range shifts are unable to keep pace with rapid climate change. Unfortunately, while these two possibilities are often difficult to distinguish, they have very different implications for the long-term viability of the species in question. Here, we use extensive demographic data for long-lived and slow-growing conifers collected across a large climatic gradient at Mount Rainier (WA, USA) to explore A) evidence for climatically determined range limits and B) the rate at which altitudinal distributions could shift in response to climate change in the region. In doing so, we highlight some of the complications we face in identifying whether species will be sensitive or resilient to climate change.

  12. What we know, do not know, and need to know about climate change vulnerability in the western Canadian Arctic: a systematic literature review

    NASA Astrophysics Data System (ADS)

    Ford, James D.; Pearce, Tristan

    2010-01-01

    This letter systematically reviews and synthesizes scientific and gray literature publications (n = 420) to identify and characterize the nature of climate change vulnerability in the Inuvialuit Settlement Region of the western Canadian Arctic and identify gaps in understanding. The literature documents widespread evidence of climate change, with implications for human and biophysical systems. Adaptations are being employed to manage changing conditions and are indicative of a high adaptive capacity. However, barriers to adaptation are evident and are expected to constrain adaptive capacity to future climate change. Continued climate change is predicted for the region, with differential exposure sensitivity for communities, groups and sectors: a function of social-economic-biophysical characteristics and projected future climatic conditions. Existing climate risks are expected to increase in magnitude and frequency, although the interaction between projected changes and socio-economic-demographic trends has not been assessed. The capacity for adapting to future climate change has also not been studied. The review identifies the importance of targeted vulnerability research that works closely with community members and other stakeholders to address research needs. Importantly, the fully categorized list of reviewed references accompanying this letter will be a valuable resource for those working or planning to work in the region, capturing climate change research published since 1990. At a broader level, the systematic review methodology offers a promising tool for climate/environmental change studies in general where there is a large and emerging body of research but limited understanding of research gaps and needs.

  13. Threat to the Planet: Dark and Bright Sides of Global Warming

    NASA Astrophysics Data System (ADS)

    Hansen, J. E.

    2008-12-01

    . Earth's history reveals that climate is sensitive to forcings, imposed perturbations of the planet's energy balance. Human-made forcings now dwarf natural forcings. Despite the climate system's great inertia, climate changes are emerging above the 'noise' of unforced chaotic variability, and greater changes are 'in the pipeline'. There is a clear and present danger of the climate passing certain 'tipping points', climate states where warming in the pipeline and positive feedbacks guarantee large relatively rapid changes with no additional climate forcing. The fact that we are close to dangerous consequences has a bright side: we must reduce greenhouse gas emissions to a level that will minimize many impacts that had begun to seem almost inevitable, including ocean acidification, intensification of regional climate extremes, and fresh water shortages. Actions required to stabilize climate, including prompt phase-out of coal emissions, are defined well enough by our understanding of the climate system, the carbon cycle, and fossil fuel reservoirs. These actions would also yield cleaner air and water, with ancillary benefits for human health, agricultural productivity, and wildlife preservation. Yet the actions required to stabilize climate are not being pursued. Denial of climate change by the fossil fuel industry and reactionary governments has been replaced by 'greenwash'. The policies of even the 'greenest' nations are demonstrably impotent for the purpose of averting climate disasters. I conclude that inaction stems in large part from 'success' of special financial interests in subverting the intent of the democratic process to operate for the general good. The consequence is intergenerational inequity and injustice, affecting negatively the young and the unborn. The defense of prior generations, that they 'did not know', is no longer viable. Indeed, actions by fossil fuel interests that served to deceive the public about the dangers of human-made climate change raise questions of ethics and legal liabilities. Youth, at least those who are not too young or unborn, have recourse through democratic systems, but continued failure of the political process may cause increasing public protests.

  14. Increasing climate whiplash in 21st century California

    NASA Astrophysics Data System (ADS)

    Swain, D. L.; Langenbrunner, B.; Neelin, J. D.; Hall, A. D.

    2017-12-01

    Temperate "Mediterranean" climate regimes across the globe are particularly susceptible to wide swings between drought and flood—of which California's rapid transition from record multi-year dryness between 2012-2016 to extreme wetness during 2016-2017 provides a dramatic example. The wide-ranging human and environmental impacts of this recent "climate whiplash" event in a highly-populated, economically critical, and biodiverse region highlight the importance of understanding weather and climate extremes at both ends of the hydroclimatic spectrum. Previous studies have examined the potential contribution of anthropogenic warming to recent California extremes, but findings to date have been mixed and primarily drought-focused. Here, we use specific historical California flood and drought events as thresholds for quantifying long-term changes in precipitation extremes using a large ensemble of multi-decadal climate model simulations (CESM-LENS). We find that greenhouse gas emissions are already responsible for a detectable increase in both wet and dry extremes across portions of California, and that increasing 21st century "climate whiplash" will likely yield large increases in the frequency of both rapid "dry-to-wet" transitions and severe flood events over a wide range of timescales. This projected intensification of California's hydrological cycle would seriously challenge the region's existing water storage, conveyance, and flood control infrastructure—even absent large changes in mean precipitation.

  15. Assessment of climate impacts on the karst-related carbon sink in SW China using MPD and GIS

    NASA Astrophysics Data System (ADS)

    Zeng, Sibo; Jiang, Yongjun; Liu, Zaihua

    2016-09-01

    Riverine carbon fluxes of some catchments in the world have significantly changed due to contemporary climate change and human activities. As a large region with an extensive karstic area of nearly 7.5 × 105 km2, Southwest (SW) China has experienced dramatic climate changes during recent decades. Although some studies have investigated the karst-related carbon sink in some parts of this region, the importance of climate impacts have not been assessed. This research examined the impacts of recent climate change on the karst-related carbon sink in the SW China for the period 1970-2013, using a modified maximal potential dissolution (MPD) method and GIS. We first analyzed the major determinants of carbonate dissolution at a spatial scale, calculated the total karst-related carbon sink (TCS) and carbon sink fluxes (CSFs) in the SW China karst region with different types of carbonate rocks, and then compared with other methods, and analyzed the causes of CSFs variations under the changed climate conditions. The results show that the TCS in SW China experienced a dramatic change with regional climate, and there was a trend with TCS decreasing by about 19% from 1970s to 2010s. This decrease occurred mostly in Guizhou and Yunnan provinces, which experienced larger decreases in runoff depth in the past 40 years (190 mm and 90 mm, respectively) due to increased air temperature (0.33 °C and 1.04 °C, respectively) and decreased precipitation (156 mm and 106 mm, respectively). The mean value of CSFs in SW China, calculated by the modified MPD method, was approximately 9.36 t C km- 2 a- 1. In addition, there were large differences in CSFs among the provinces, attributed to differences in regional climate and to carbonate lithologies. These spatiotemporal changes depended mainly on hydrological variations (i.e., discharge or runoff depth). This work, thus, suggests that the karst-related carbon sink could respond to future climate change quickly, and needs to be considered in the modern global carbon cycle model.

  16. Managing for Climate Change Adaptation in Forests: a Case Study from the U.S. Southwest

    NASA Astrophysics Data System (ADS)

    Kerhoulas, L. P.; Kolb, T.; Koch, G. W.; Hurteau, M. D.

    2016-12-01

    Forest mortality related to climate change is an increasingly common global phenomenon. We provide a case study of the U.S. Southwest to investigate the interactions among forest restoration treatments that alter stand density, tree growth, and drought resistance in trees of different size classes. Using cores taken from five positions in large trees (coarse roots, breast height, base of live crown, mid-crown branch, and treetop) and breast height in small trees, we investigated how radial growth response to thinning and precipitation availability varied in 72 ponderosa pines Pinus ponderosa Dougl. in northern Arizona. Ten years after thinning, growth of small trees did not respond significantly to thinning whereas growth of large trees increased following moderate and heaving thinning, and this response was similar across within-tree core sample positions. The intensity of thinning treatment did not significantly affect dry-year growth in small trees. In large trees, dry-year growth after thinning was maintained at pre-thinning levels in moderate and heavy thinning treatments but decreased in the light thinning and control treatments. Our findings indicate that more aggressive thinning treatments used for forest restoration stimulate growth throughout large residual trees from coarse roots to branches and also improve drought resistance, providing a greater resilience to future climate-related stress. These responses to treatment are more pronounced in large trees than small trees. Forest thinning is therefore recommended in systems that are likely to experience increased temperature and decreased precipitation as a result of climate change.

  17. Changes of benthic fauna in the Kattegat - An indication of climate change at mid-latitudes?

    NASA Astrophysics Data System (ADS)

    Göransson, Peter

    2017-07-01

    Several predictions point to changes in the marine benthic macrofauna associated with climate change, but so far only a few and minor changes have been reported. This study relates observed changes in the species composition to climate change by looking on the past decades in the Kattegat between Denmark and Sweden. A reduction of the total number species and a reduction of species with a northern range parallel to an increase of species with a southern range have been observed. The most likely explanation of the changes is the increase in temperature of the bottom water. Increased temperature could change the species distributions but also decrease primary production which impacts recruitment and growth. Hypoxia and bottom trawling could also act synergistic in this process. A sparse occurrence of previously encountered Arctic-Boreal species and critical foundation species, which gives the area its special character, suggests a change in biodiversity and might therefore be designated as early warning signals of a warmer climate. The northern fauna below the halocline with limited capacity of dispersal and low reproduction potential, can be considered as sensitive with low adaptive capacity to climate change. Therefore, not only tropical and high-latitude species, but also benthos on deep bottoms at mid-latitudes, could be vulnerable to warming. As many species live at the edge of their range in the Kattegat, and also are dependent of distant recruitment, large scale changes will probably be detected here at an early stage. It is important to protect relatively undisturbed reference areas in the Kattegat for future studies, but also for preserving a large number of ecosystem services, biotopes, habitats, and fish species.

  18. The limit of irrigation adaption due to the inter-crop conflict of water use under changing climate and landuse

    NASA Astrophysics Data System (ADS)

    Okada, M.; Iizumi, T.; Sakamoto, T.; Kotoku, M.; Sakurai, G.; Nishimori, M.

    2017-12-01

    Replacing rainfed cropping system by irrigated one is assumed to be an effective measure for climate change adaptation in agriculture. However, in many agricultural impact assessments, future irrigation scenarios are externally given and do not consider variations in the availability of irrigation water under changing climate and land use. Therefore, we assess the potential effects of adaption measure expanding irrigated area under climate change by using a large-scale crop-river coupled model, CROVER [Okada et al. 2015, JAMES]. The CROVER model simulates the large-scale terrestrial hydrological cycle and crop growth depending on climate, soil properties, landuse, crop cultivation management, socio-economic water demand, and reservoir operation management. The bias-corrected GCMs outputs under the RCP 8.5 scenario were used. The future expansion of irrigation area was estimated by using the extrapolation method based on the historical change in irrigated and rainfed areas. As the results, the irrigation adaptation has only a limited effect on the rice production in East Asia due to the conflict of water use for irrigation with the other crops, whose farmlands require unsustainable water extraction with the excessively expanding irrigated area. In contrast, the irrigation adaptation benefits maize production in Europe due to the little conflict of water use for irrigation. Our findings suggest the importance of simulating the river water availability and crop production in a single model for the more realistic assessment in the irrigation adaptation potential effects of crop production under changing climate and land use.

  19. Scandinavian Treelines are Impacted by Herbivory

    NASA Astrophysics Data System (ADS)

    Cairns, D. M.; Granberg, T. C.; Lafon, C. W.; Young, A. B.; Moen, J.

    2011-12-01

    Forest tundra boundaries occur world wide in both Arctic and alpine locations and respond to changes in climate over both short and long time spans. The treeline environments of Fennoscandia are particularly sensitive indicators of climate change. Trees at these treelines are subject to herbivory by a variety of large and small animals, and recent studies have shown that herbivores may be limiting the ability of treeline to migrate upslope in response to climate change. However, the data are typically for small areas. In this paper, we present the results of a dendroecological study of mountain birch (Betula pubescens ssp. czerepanovii) that encompasses a large portion of the Swedish Scandes in northern Sweden. Results are based on data from more than 4700 stems gathered at 65 sites in Norrbotten and Vasterbotten counties. Stems from small trees reveal the historical establishment of new individuals at the treeline, and data from large trees are used to detect outbreaks of the autumnal moth. These data indicate that historic autumnal moth outbreaks can be identified and that the effects of reindeer herbivory are equivocal. Data from mountain birch seedlings and saplings indicate that pulses in mountain birch establishment are influenced by both climate and herbivory. These results indicate that the response of both the pattern and location of the treeline should be interpreted as a complex interaction of both climate and herbivory.

  20. Significantly Increased Extreme Precipitation Expected in Europe and North America from Extratropical Storms

    NASA Astrophysics Data System (ADS)

    Hawcroft, M.; Hodges, K.; Walsh, E.; Zappa, G.

    2017-12-01

    For the Northern Hemisphere extratropics, changes in circulation are key to determining the impacts of climate warming. The mechanisms governing these circulation changes are complex, leading to the well documented uncertainty in projections of the future location of the mid-latitude storm tracks simulated by climate models. These storms are the primary source of precipitation for North America and Europe and generate many of the large-scale precipitation extremes associated with flooding and severe economic loss. Here, we show that in spite of the uncertainty in circulation changes, by analysing the behaviour of the storms themselves, we find entirely consistent and robust projections across an ensemble of climate models. In particular, we find that projections of change in the most intensely precipitating storms (above the present day 99th percentile) in the Northern Hemisphere are substantial and consistent across models, with large increases in the frequency of both summer (June-August, +226±68%) and winter (December-February, +186±34%) extreme storms by the end of the century. Regionally, both North America (summer +202±129%, winter +232±135%) and Europe (summer +390±148%, winter +318±114%) are projected to experience large increases in the frequency of intensely precipitating storms. These changes are thermodynamic and driven by surface warming, rather than by changes in the dynamical behaviour of the storms. Such changes in storm behaviour have the potential to have major impacts on society given intensely precipitating storms are responsible for many large-scale flooding events.

Top