Pleune
1997-09-01
/ The purpose of the study was to investigate the extent to which strategies of environmental organizations depend on contexts. I examined this dependence by analyzing the strategies of five environmental organizations in the Netherlands with regard to climate change. These strategies were investigated over time and compared with the strategies these organizations had used in relation to ozone depletion and acidification. The results indicate that several of the organizations changed their strategies with respect to climate change over time. Furthermore, different strategies were used simultaneously in relation to the three problems. The findings suggest that strategies concerning climate change were to a considerable extent determined by the dominant framing of the problem in society. This framing was defined mainly by actors other than environmental organizations. The initial framing of climate change as a CO2 problem, which brought the issue into the energy debate, as well as the more general definition of the problem in the late 1980s as a greenhouse problem, were very important for determining the strategies of the organizations. It can be concluded that strategies of Dutch environmental organizations with regard to climate change were strongly dependent on the context.KEY WORDS: Environmental organization; Strategy; Climate change; Man-nature relationship; Problem definition; Context
Multidisciplinary approaches to climate change questions
Middleton, Beth A.; LePage, Ben A.
2011-01-01
Multidisciplinary approaches are required to address the complex environmental problems of our time. Solutions to climate change problems are good examples of situations requiring complex syntheses of ideas from a vast set of disciplines including science, engineering, social science, and the humanities. Unfortunately, most ecologists have narrow training, and are not equipped to bring their environmental skills to the table with interdisciplinary teams to help solve multidisciplinary problems. To address this problem, new graduate training programs and workshops sponsored by various organizations are providing opportunities for scientists and others to learn to work together in multidisciplinary teams. Two examples of training in multidisciplinary thinking include those organized by the Santa Fe Institute and Dahlem Workshops. In addition, many interdisciplinary programs have had successes in providing insight into climate change problems including the International Panel on Climate Change, the Joint North American Carbon Program, the National Academy of Science Research Grand Challenges Initiatives, and the National Academy of Science. These programs and initiatives have had some notable success in outlining some of the problems and solutions to climate change. Scientists who can offer their specialized expertise to interdisciplinary teams will be more successful in helping to solve the complex problems related to climate change.
Gosselin, Pierre; Bélanger, Diane; Lapaige, Véronique; Labbé, Yolaine
2011-01-01
This paper presents a public health narrative on Quebec's new climatic conditions and human health, and describes the transdisciplinary nature of the climate change adaptation research currently being adopted in Quebec, characterized by the three phases of problem identification, problem investigation, and problem transformation. A transdisciplinary approach is essential for dealing with complex ill-defined problems concerning human-environment interactions (for example, climate change), for allowing joint research, collective leadership, complex collaborations, and significant exchanges among scientists, decision makers, and knowledge users. Such an approach is widely supported in theory but has proved to be extremely difficult to implement in practice, and those who attempt it have met with heavy resistance, succeeding when they find the occasional opportunity within institutional or social contexts. In this paper we narrate the ongoing struggle involved in tackling the negative effects of climate change in multi-actor contexts at local and regional levels, a struggle that began in a quiet way in 1998. The paper will describe how public health adaptation research is supporting transdisciplinary action and implementation while also preparing for the future, and how this interaction to tackle a life-world problem (adaptation of the Quebec public health sector to climate change) in multi-actors contexts has progressively been established during the last 13 years. The first of the two sections introduces the social context of a Quebec undergoing climate changes. Current climatic conditions and expected changes will be described, and attendant health risks for the Quebec population. The second section addresses the scientific, institutional and normative dimensions of the problem. It corresponds to a "public health narrative" presented in three phases: (1) problem identification (1998-2002) beginning in northern Quebec; (2) problem investigation (2002-2006) in which the issues are successively explored, understood, and conceptualized for all of Quebec, and (3) problem transformation (2006-2009), which discusses major interactions among the stakeholders and the presentation of an Action Plan by a central actor, the Quebec government, in alliance with other stakeholders. In conclusion, we underline the importance, in the current context, of providing for a sustained transdisciplinary adaptation to climatic change. This paper should be helpful for (1) public health professionals confronted with establishing a transdisciplinary approach to a real-world problem other than climate change, (2) professionals in other sectors (such as public safety, built environment) confronted with climate change, who wish to implement transdisciplinary adaptive interventions and/or research, and (3) knowledge users (public and private actors; nongovernment organizations; citizens) from elsewhere in multi-contexts/environments/sectors who wish to promote complex collaborations (with us or not), collective leadership, and "transfrontier knowledge-to-action" for implementing climate change-related adaptation measures.
Gosselin, Pierre; Bélanger, Diane; Lapaige, Véronique; Labbé, Yolaine
2011-01-01
This paper presents a public health narrative on Quebec’s new climatic conditions and human health, and describes the transdisciplinary nature of the climate change adaptation research currently being adopted in Quebec, characterized by the three phases of problem identification, problem investigation, and problem transformation. A transdisciplinary approach is essential for dealing with complex ill-defined problems concerning human–environment interactions (for example, climate change), for allowing joint research, collective leadership, complex collaborations, and significant exchanges among scientists, decision makers, and knowledge users. Such an approach is widely supported in theory but has proved to be extremely difficult to implement in practice, and those who attempt it have met with heavy resistance, succeeding when they find the occasional opportunity within institutional or social contexts. In this paper we narrate the ongoing struggle involved in tackling the negative effects of climate change in multi-actor contexts at local and regional levels, a struggle that began in a quiet way in 1998. The paper will describe how public health adaptation research is supporting transdisciplinary action and implementation while also preparing for the future, and how this interaction to tackle a life-world problem (adaptation of the Quebec public health sector to climate change) in multi-actors contexts has progressively been established during the last 13 years. The first of the two sections introduces the social context of a Quebec undergoing climate changes. Current climatic conditions and expected changes will be described, and attendant health risks for the Quebec population. The second section addresses the scientific, institutional and normative dimensions of the problem. It corresponds to a “public health narrative” presented in three phases: (1) problem identification (1998–2002) beginning in northern Quebec; (2) problem investigation (2002–2006) in which the issues are successively explored, understood, and conceptualized for all of Quebec, and (3) problem transformation (2006–2009), which discusses major interactions among the stakeholders and the presentation of an Action Plan by a central actor, the Quebec government, in alliance with other stakeholders. In conclusion, we underline the importance, in the current context, of providing for a sustained transdisciplinary adaptation to climatic change. This paper should be helpful for (1) public health professionals confronted with establishing a transdisciplinary approach to a real-world problem other than climate change, (2) professionals in other sectors (such as public safety, built environment) confronted with climate change, who wish to implement transdisciplinary adaptive interventions and/or research, and (3) knowledge users (public and private actors; nongovernment organizations; citizens) from elsewhere in multi-contexts/environments/sectors who wish to promote complex collaborations (with us or not), collective leadership, and “transfrontier knowledge-to-action” for implementing climate change-related adaptation measures. PMID:21966228
NASA Astrophysics Data System (ADS)
Chung, Duk Ho; Cho, Kyu Seong; Hong, Deok Pyo; Park, Kyeong Jin
2016-04-01
This study aimed to investigate the perception of earth system thinking of science gifted students in future problem solving (FPS) in relation to climate changes. In order to this study, the research problem associated with climate changes was developed through a literature review. The thirty seven science gifted students participated in lessons. The ideas in problem solving process of science gifted students were analyzed using the semantic network analysis method. The results are as follows. In the problem solving processes, science gifted students are ''changes of the sunlight by water layer'', ''changes of the Earth''s temperature'', ''changes of the air pressure'', '' change of the wind and weather''were represented in order. On other hand, regard to earth system thinking for climate changes, while science gifted students were used sub components related to atmospheres frequently, they were used sub components related to biosphere, geosphere, and hydrosphere a little. But, the analytical results of the structural relationship between the sub components related to earth system, they were recognised that biosphere, geosphere, and hydrosphere used very important in network structures. In conclusion, science gifted students were understood well that components of the earth system are influencing each other. Keywords : Science gifted students, Future problem solving, Climate change, Earth system thinking
The Fate of the World is in your hands: computer gaming for multi-faceted climate change education
NASA Astrophysics Data System (ADS)
Bedford, D. P.
2015-12-01
Climate change is a multi-faceted (or 'wicked') problem. True climate literacy therefore requires understanding not only the workings of the climate system, but also the current and potential future impacts of climate change and sea level rise on individuals, communities and countries around the world, as noted in the US Global Change Research Program's (2009) Climate Literacy: The Essential Principles of Climate Sciences. The asymmetric nature of climate change impacts, whereby the world's poorest countries have done the least to cause the problem but will suffer disproportionate consequences, has also been widely noted. Education in climate literacy therefore requires an element of ethics in addition to physical and social sciences. As if addressing these multiple aspects of climate change were not challenging enough, polling data has repeatedly shown that many members of the public tend to see climate change as a far away problem affecting people remote from them at a point in the future, but not themselves. This perspective is likely shared by many students. Computer gaming provides a possible solution to the combined problems of, on the one hand, addressing the multi-faceted nature of climate change, and, on the other hand, making the issue real to students. Fate of the World, a game produced by the company Red Redemption, has been used on several occasions in a small (20-30 students) introductory level general education course on global warming at Weber State University. Players are required to balance difficult decisions about energy investment while managing regional political disputes and attempting to maintain minimum levels of development in the world's poorer countries. By providing a realistic "total immersion" experience, the game has the potential to make climate change issues more immediate to players, and presents them with the ethical dilemmas inherent in climate change. This presentation reports on the use of Fate of the World in an educational setting, highlighting student experiences and lessons learned from two attempts to use the game as a tool for teaching the multi-faceted nature of climate change.
ERIC Educational Resources Information Center
Versprille, Ashley; Zabih, Adam; Holme, Thomas A.; McKenzie, Lallie; Mahaffy, Peter; Martin, Brian; Towns, Marcy
2017-01-01
Climate change is one of the most critical problems facing citizens today. Chemistry faculty are presented with the problem of making general chemistry content simultaneously relevant and interesting. Using climate science to teach chemistry allows faculty to help students learn chemistry content in a rich context. Concepts related to…
Modeling Earth system changes of the past
NASA Technical Reports Server (NTRS)
Kutzbach, John E.
1992-01-01
This review outlines some of the challenging problems to be faced in understanding the causes and mechanisms of large climatic changes and gives examples of initial studies of these problems with climate models. The review covers climatic changes in three main periods of earth history: (1) the past several centuries; (2) the past several glacial-interglacial cycles; and (3) the past several million years. The review will concentrate on studies of climate but, where possible, will mention broader aspects of the earth system.
Improve Climate Change Literacy At Minority Institutions Through Problem-based Teaching And Learning
NASA Astrophysics Data System (ADS)
yang, Z.; Williams, H.
2013-12-01
Climate change is one of most popular topics in the U.S. Currently we are implementing our funded NASA climate change education grant entitled as 'Preparing Science Educators with Climate Change Literacy through Problem-based Teaching and Learning'. This project aims to prepare underrepresented STEM (Science, Technology, Engineering and Mathematics) teachers that are competent for teaching the contents of the Earth, climate, and climate change. In this project, we first developed lectures, assignments, and lab exercises which are related to climate change and then applied those materials in courses which are usually selected by pre-service teachers after modification based on students' evaluation. Also field visits to sites such as landfill and hog farm were provided to North Carolina Central University (NCCU) students in order to help them have better understanding on sources and amount of greenhouse gases emitted from human activities. In addition, summer interns are specifically trained to enhance and improve their knowledge and skills in climate change science. Those strategies have effectively improved climate change literacy of pre-service teachers at NCCU in spite of some challenges.
The Dragons of Inaction: Psychological Barriers That Limit Climate Change Mitigation and Adaptation
ERIC Educational Resources Information Center
Gifford, Robert
2011-01-01
Most people think climate change and sustainability are important problems, but too few global citizens engaged in high-greenhouse-gas-emitting behavior are engaged in enough mitigating behavior to stem the increasing flow of greenhouse gases and other environmental problems. Why is that? Structural barriers such as a climate-averse infrastructure…
Climate Change and Rural Sociology: Broadening the Research Agenda
ERIC Educational Resources Information Center
Dunlap, Riley E.
2010-01-01
Climate change is the preeminent environmental problem of this time, and Joseph Molnar's call for greater attention to it by rural sociologists is both welcome and timely. The agenda he lays out for rural sociology's engagement with climate change, however, seems rather narrow and restrictive. Examining the potential impacts of climate change,…
A CBO Study: The Economics of Climate Change: A Primer
2003-04-01
issues related to climate change , focusing primarily on its economic aspects. The study draws from numerous published sources to summarize the current...state of climate science and provide a conceptual framework for addressing climate change as an economic problem. It also examines public policy
Climate change is a bioethics problem.
Macpherson, Cheryl Cox
2013-07-01
Climate change harms health and damages and diminishes environmental resources. Gradually it will cause health systems to reduce services, standards of care, and opportunities to express patient autonomy. Prominent public health organizations are responding with preparedness, mitigation, and educational programs. The design and effectiveness of these programs, and of similar programs in other sectors, would be enhanced by greater understanding of the values and tradeoffs associated with activities and public policies that drive climate change. Bioethics could generate such understanding by exposing the harms and benefits in different cultural, socioeconomic, and geographic contexts, and through interdisciplinary risk assessments. Climate change is a bioethics problem because it harms everyone and involves health, values, and responsibilities. This article initiates dialog about the responsibility of bioethics to promote transparency and understanding of the social values and conflicts associated with climate change, and the actions and public policies that allow climate change to worsen. © 2013 John Wiley & Sons Ltd.
Science Teachers' Perspectives about Climate Change
ERIC Educational Resources Information Center
Dawson, Vaille
2012-01-01
Climate change and its effects are likely to present challenging problems for future generations of young people. It is important for Australian students to understand the mechanisms and consequences of climate change. If students are to develop a sophisticated understanding, then science teachers need to be well-informed about climate change…
NASA Astrophysics Data System (ADS)
Hufnagel, Elizabeth J.
As we face the challenges of serious environmental issues, science education has made a commitment to improving environmental literacy, in particular climate literacy (NRC, 2012; 2013). With an increased focus on climate change education in the United States, more research on the teaching and learning of this problem in science classrooms is occurring (e.g. Arslan, Cigdemoglu, & Moseley, 2012; Svihla & Linn, 2012). However, even though people experience a range of emotions about global problems like climate change (Hicks & Holden, 2007; Ojala, 2012; Rickinson, 2001), little attention is given to their emotions about the problem in science classrooms. Because emotions are evaluative (Boler, 1999; Keltner & Gross, 1999), they provided a lens for understanding how students engage personally with climate change. In this study, I drew from sociolinguistics, social psychology, and the sociology of emotions to examine a) the social interactions that allowed for emotional expressions to be constructed and b) the ways in which pre-service elementary teachers constructed emotional expressions about climate change in a science course. Three overall findings emerged: 1) emotions provided a means of understanding how students' conceptualized climate to be relevant to their lives, 2) emotional expressions and the aboutness of these expressions indicated that the students conceptualized climate change as distanced, both temporally and spatially, and 3) although most emotional constructions were distanced, there were multiple instances of emotional expressions in which students took climate change personally. Following a discussion of the findings, implications, limitations, and directions for future research are also described.
Füssel, Hans-Martin
2008-02-01
Climate change adaptation assessments aim at assisting policy-makers in reducing the health risks associated with climate change and variability. This paper identifies key characteristics of the climate-health relationship and of the adaptation decision problem that require consideration in climate change adaptation assessments. It then analyzes whether these characteristics are appropriately considered in existing guidelines for climate impact and adaptation assessment and in pertinent conceptual models from environmental epidemiology. The review finds three assessment guidelines based on a generalized risk management framework to be most useful for guiding adaptation assessments of human health. Since none of them adequately addresses all key challenges of the adaptation decision problem, actual adaptation assessments need to combine elements from different guidelines. Established conceptual models from environmental epidemiology are found to be of limited relevance for assessing and planning adaptation to climate change since the prevailing toxicological model of environmental health is not applicable to many climate-sensitive health risks.
Climate Change in Urban Communities | Urban ...
2017-04-10
Climate Change in Urban Communities is a PowerPoint presentation designed to inform urban residents about the impact of climate change, why it's a problem for their communities, and how individual actions can help make a difference as well as save people money.
ERIC Educational Resources Information Center
Eggert, Sabina; Nitsch, Anne; Boone, William J.; Nückles, Matthias; Bögeholz, Susanne
2017-01-01
Climate change is one of the most challenging problems facing today's global society (e.g., IPCC 2013). While climate change is a widely covered topic in the media, and abundant information is made available through the internet, the causes and consequences of climate change in its full complexity are difficult for individuals, especially…
15 CFR 917.21 - National needs and problems.
Code of Federal Regulations, 2012 CFR
2012-01-01
... and problems with respect to ocean and coastal resources:global and regional climate and primary... global sea-level change and determine the impact of this change on coastal areas. (3) Define the... relationship to fluctuations in global and regional climate, primary productivity, and fisheries production. (4...
15 CFR 917.21 - National needs and problems.
Code of Federal Regulations, 2014 CFR
2014-01-01
... and problems with respect to ocean and coastal resources:global and regional climate and primary... global sea-level change and determine the impact of this change on coastal areas. (3) Define the... relationship to fluctuations in global and regional climate, primary productivity, and fisheries production. (4...
15 CFR 917.21 - National needs and problems.
Code of Federal Regulations, 2013 CFR
2013-01-01
... and problems with respect to ocean and coastal resources:global and regional climate and primary... global sea-level change and determine the impact of this change on coastal areas. (3) Define the... relationship to fluctuations in global and regional climate, primary productivity, and fisheries production. (4...
15 CFR 917.21 - National needs and problems.
Code of Federal Regulations, 2010 CFR
2010-01-01
... and problems with respect to ocean and coastal resources:global and regional climate and primary... global sea-level change and determine the impact of this change on coastal areas. (3) Define the... relationship to fluctuations in global and regional climate, primary productivity, and fisheries production. (4...
Conservation Practices to Mitigate and Adapt to Climate Change. Poster Demonstration
USDA-ARS?s Scientific Manuscript database
Climate change and its interaction with other environmental problems such as desertification, deforestation, and depletion of water resources used for irrigation, will increase the challenges for maintaining food security during the next four decades and beyond. Climate change and extreme weather ev...
Mainstreaming of Climate Change into the Ghanaian Tertiary Educational System
NASA Astrophysics Data System (ADS)
Nyarko, B. K.
2013-12-01
The impact of Climate Change has a far-reaching implication for economies and people living in the fragile Regions of Africa analysts project that by 2020, between 75 million and 250 million people will be exposed various forms of Climate Change Stresses. Education as a key strategy identified under Agenda 21 has been incorporated into the efforts of various educational institutions as a means of mitigating climate change and enhancing sustainability. Climate Change education offers many opportunities and benefits for educators, researchers, learners, and for wider society, but there are also many challenges, which can hinder the successful mainstreaming of climate change education. The study aims at understanding barriers for Climate Change Education in selected tertiary institutions in Ghana. The study was conducted among Geoscience Departments of the 7 main public universities of Ghana. The transcript analysis identified issues that hinders the mainstreaming of Climate Change, these includes existing levels of knowledge and understanding of the concept of climate change, appreciating the threshold concepts, ineffective teaching of Climate Change and some Departments are slow in embracing Climate Change as a discipline. Hence to develop strategies to mainstream climate change education it is important to recognise that increasing the efficiency and delivery of Climate Change education requires greater attention and coordination of activities and updating the educators knowledge and skill's. Various Ministries should be challenged to develop and integrate climate change into education policies. In the design of curriculum, there is a need to integrate Climate Change Education into curricula without compromising already overstretched programmes of study. There is a need to encourage and enhance innovative teaching approaches such as Problem-based learning (PBL) is an approach that challenges students to learn through engagement in a real problem. Institutions and Educator should be encouraged to undertake co-curricula activities and finding ways to practicalize Climate Change education.
Effects of climatic variability and change
Michael G. Ryan; James M. Vose
2012-01-01
Climate profoundly shapes forests. Forest species composition, productivity, availability of goods and services, disturbance regimes, and location on the landscape are all regulated by climate. Much research attention has focused on the problem of projecting the response of forests to changing climate, elevated atmospheric carbon dioxide (CO2)...
Climate change: could it help develop 'adaptive expertise'?
Bell, Erica; Horton, Graeme; Blashki, Grant; Seidel, Bastian M
2012-05-01
Preparing health practitioners to respond to the rising burden of disease from climate change is emerging as a priority in health workforce policy and planning. However, this issue is hardly represented in the medical education research. The rapidly evolving wide range of direct and indirect consequences of climate change will require health professionals to have not only broad content knowledge but also flexibility and responsiveness to diverse regional conditions as part of complex health problem-solving and adaptation. It is known that adaptive experts may not necessarily be quick at solving familiar problems, but they do creatively seek to better solve novel problems. This may be the result of an acquired approach to practice or a pathway that can be fostered by learning environments. It is also known that building adaptive expertise in medical education involves putting students on a learning pathway that requires them to have, first, the motivation to innovatively problem-solve and, second, exposure to diverse content material, meaningfully presented. Including curriculum content on the health effects of climate change could help meet these two conditions for some students at least. A working definition and illustrative competencies for adaptive expertise for climate change, as well as examples of teaching and assessment approaches extrapolated from rural curricula, are provided.
The Climate is A-Changin': Teaching Civic Competence for a Sustainable Climate
NASA Technical Reports Server (NTRS)
Harris, Carolyn A.; Kharecha, Pushker; Goble, Pam; Goble, Ryan
2016-01-01
A central aim of social studies curriculum is to prepare young people for making "informed and reasoned decisions for the public good" concerning consequential problems like global climate change. By developing students' "vision of a good society" and exploring what actions and policies move our society in this direction, social studies teachers have an important role in preparing students for a world undergoing enormous environmental change. This article discusses elementary curriculum connections between building students' knowledge and understanding about "their community, nation and world" and global climate change. It also suggests ideas for building civic competency and climate literacy while creating opportunities for students to practice high-value skills like "data collection and analysis, collaboration, decision-making and problem-solving."
Predictions for snow cover, glaciers and runoff in a changing climate
USDA-ARS?s Scientific Manuscript database
The problem of evaluating the hydrological effects of climate change has opened a new field of applications for snowmelt runoff models. The Snowmelt Runoff Model (SRM) has been used to evaluate climate change effects on basins in North America, the Swiss Alps, and the Himalayas. Snow covered area ...
Maibach, Edward W; Chadwick, Amy; McBride, Dennis; Chuk, Michelle; Ebi, Kristie L; Balbus, John
2008-07-30
While climate change is inherently a global problem, its public health impacts will be experienced most acutely at the local and regional level, with some jurisdictions likely to be more burdened than others. The public health infrastructure in the U.S. is organized largely as an interlocking set of public agencies at the federal, state and local level, with lead responsibility for each city or county often residing at the local level. To understand how directors of local public health departments view and are responding to climate change as a public health issue, we conducted a telephone survey with 133 randomly selected local health department directors, representing a 61% response rate. A majority of respondents perceived climate change to be a problem in their jurisdiction, a problem they viewed as likely to become more common or severe over the next 20 years. Only a small minority of respondents, however, had yet made climate change adaptation or prevention a top priority for their health department. This discrepancy between problem recognition and programmatic responses may be due, in part, to several factors: most respondents felt personnel in their health department--and other key stakeholders in their community--had a lack of knowledge about climate change; relatively few respondents felt their own health department, their state health department, or the Centers for Disease Control and Prevention had the necessary expertise to help them create an effective mitigation or adaptation plan for their jurisdiction; and most respondents felt that their health department needed additional funding, staff and staff training to respond effectively to climate change. These data make clear that climate change adaptation and prevention are not currently major activities at most health departments, and that most, if not all, local health departments will require assistance in making this transition. We conclude by making the case that, through their words and actions, local health departments and their staff can and should play a role in alerting members of their community about the prospect of public health impacts from climate change in their jurisdiction.
Maibach, Edward W.; Chadwick, Amy; McBride, Dennis; Chuk, Michelle; Ebi, Kristie L.; Balbus, John
2008-01-01
While climate change is inherently a global problem, its public health impacts will be experienced most acutely at the local and regional level, with some jurisdictions likely to be more burdened than others. The public health infrastructure in the U.S. is organized largely as an interlocking set of public agencies at the federal, state and local level, with lead responsibility for each city or county often residing at the local level. To understand how directors of local public health departments view and are responding to climate change as a public health issue, we conducted a telephone survey with 133 randomly selected local health department directors, representing a 61% response rate. A majority of respondents perceived climate change to be a problem in their jurisdiction, a problem they viewed as likely to become more common or severe over the next 20 years. Only a small minority of respondents, however, had yet made climate change adaptation or prevention a top priority for their health department. This discrepancy between problem recognition and programmatic responses may be due, in part, to several factors: most respondents felt personnel in their health department–and other key stakeholders in their community–had a lack of knowledge about climate change; relatively few respondents felt their own health department, their state health department, or the Centers for Disease Control and Prevention had the necessary expertise to help them create an effective mitigation or adaptation plan for their jurisdiction; and most respondents felt that their health department needed additional funding, staff and staff training to respond effectively to climate change. These data make clear that climate change adaptation and prevention are not currently major activities at most health departments, and that most, if not all, local health departments will require assistance in making this transition. We conclude by making the case that, through their words and actions, local health departments and their staff can and should play a role in alerting members of their community about the prospect of public health impacts from climate change in their jurisdiction. PMID:18665266
Incorporating Student Activities into Climate Change Education
NASA Astrophysics Data System (ADS)
Steele, H.; Kelly, K.; Klein, D.; Cadavid, A. C.
2013-12-01
Under a NASA grant, Mathematical and Geospatial Pathways to Climate Change Education, students at California State University, Northridge integrated Geographic Information Systems (GIS), remote sensing, satellite data technologies, and climate modelling into the study of global climate change under a Pathway for studying the Mathematics of Climate Change (PMCC). The PMCC, which is an interdisciplinary option within the BS in Applied Mathematical Sciences, consists of courses offered by the departments of Mathematics, Physics, and Geography and is designed to prepare students for careers and Ph.D. programs in technical fields relevant to global climate change. Under this option students are exposed to the science, mathematics, and applications of climate change science through a variety of methods including hands-on experience with computer modeling and image processing software. In the Geography component of the program, ESRI's ArcGIS and ERDAS Imagine mapping, spatial analysis and image processing software were used to explore NASA satellite data to examine the earth's atmosphere, hydrosphere and biosphere in areas that are affected by climate change or affect climate. These technology tools were incorporated into climate change and remote sensing courses to enhance students' knowledge and understanding of climate change through hands-on application of image processing techniques to NASA data. Several sets of exercises were developed with specific learning objectives in mind. These were (1) to increase student understanding of climate change and climate change processes; (2) to develop student skills in understanding, downloading and processing satellite data; (3) to teach remote sensing technology and GIS through applications to climate change; (4) to expose students to climate data and methods they can apply to solve real world problems and incorporate in future research projects. In the Math and Physics components of the course, students learned about atmospheric circulation with applications of the Lorenz model, explored the land-sea breeze problem with the Dynamics and Thermodynamics Circulation Model (DTDM), and developed simple radiative transfer models. Class projects explored the effects of varying the content of CO2 and CH4 in the atmosphere, as well as the properties of paleoclimates in atmospheric simulations using EdGCM. Initial assessment of student knowledge, attitudes, and behaviors associated with these activities, particularly about climate change, was measured. Pre- and post-course surveys provided student perspectives about the courses and their learning about remote sensing and climate change concepts. Student performance on the tutorials and course projects evaluated students' ability to learn and apply their knowledge about climate change and skills with remote sensing to assigned problems or proposed projects of their choice. Survey and performance data illustrated that the exercises were successful in meeting their intended learning objectives as well as opportunities for further refinement and expansion.
Evaluating models of climate and forest vegetation
NASA Technical Reports Server (NTRS)
Clark, James S.
1992-01-01
Understanding how the biosphere may respond to increasing trace gas concentrations in the atmosphere requires models that contain vegetation responses to regional climate. Most of the processes ecologists study in forests, including trophic interactions, nutrient cycling, and disturbance regimes, and vital components of the world economy, such as forest products and agriculture, will be influenced in potentially unexpected ways by changing climate. These vegetation changes affect climate in the following ways: changing C, N, and S pools; trace gases; albedo; and water balance. The complexity of the indirect interactions among variables that depend on climate, together with the range of different space/time scales that best describe these processes, make the problems of modeling and prediction enormously difficult. These problems of predicting vegetation response to climate warming and potential ways of testing model predictions are the subjects of this chapter.
Climate change and human health: the role of nurses in confronting the issue.
Sayre, Lucia; Rhazi, Nadia; Carpenter, Holly; Hughes, Nancy L
2010-01-01
Climate change will impact human health in various ways as the ecology of our planet changes. Environmental changes such as increased heat waves, sea-level rise, and increased drought around the globe will aggravate already-existing health problems, increase the onset of new health problems, and, in some cases, cause premature death. Catastrophic events associated with these environmental changes, such as floods, and increases in hospital and routine clinic visits will have nurses on the front lines tending to those in need. Climate change needs to be reframed as a public health issue, and the importance of nurses to be educated and engaged cannot be overstated. Nurses can be instrumental in communications with patients and families, working with their hospitals and health systems to reduce emissions and influencing the adoption of strategies to better prepare our health care facilities and our communities for the health impacts of climate change.
NASA Astrophysics Data System (ADS)
Trexler, M.
2017-12-01
Policy-makers today have almost infinite climate-relevant scientific and other information available to them. The problem for climate change decision-making isn't missing science or inadequate knowledge of climate risks; the problem is that the "right" climate change actionable knowledge isn't getting to the right decision-maker, or is getting there too early or too late to effectively influence her decision-making. Actionable knowledge is not one-size-fit-all, and for a given decision-maker might involve scientific, economic, or risk-based information. Simply producing more and more information as we are today is not the solution, and actually makes it harder for individual decision-makers to access "their" actionable knowledge. The Climatographers began building the Climate Web five years ago to test the hypothesis that a knowledge management system could help navigate the gap between infinite information and individual actionable knowledge. Today the Climate Web's more than 1,500 index terms allow instant access to almost any climate change topic. It is a curated public-access knowledgebase of more than 1,000 books, 2,000 videos, 15,000 reports and articles, 25,000 news stories, and 3,000 websites. But it is also much more, linking together tens of thousands of individually extracted ideas and graphics, and providing Deep Dives into more than 100 key topics from changing probability distributions of extreme events to climate communications best practices to cognitive dissonance in climate change decision-making. The public-access Climate Web is uniquely able to support cross-silo learning, collaboration, and actionable knowledge dissemination. The presentation will use the Climate Web to demonstrate why knowledge management should be seen as a critical component of science and policy-making collaborations.
Understanding the science of climate change: Talking points - Impacts to the Great Lakes
Amanda Schramm; Rachel Loehman
2010-01-01
Climate change presents significant risks to our nationâs natural and cultural resources. Although climate change was once believed to be a future problem, there is now unequivocal scientific evidence that our planetâs climate system is warming (IPCC 2007a). While many people understand that human emissions of greenhouse gases have significantly contributed to recent...
Wang, Ming-Te; Dishion, Thomas J.
2012-01-01
This longitudinal study examined trajectories of change in adolescents’ perceptions of four dimensions of school climate (academic support, behavior management, teacher social support, peer social support) and the effects of such trajectories on adolescent problem behaviors. We also tested whether school climate moderated the associations between deviant peer affiliation and adolescent problem behaviors. The 1,030 participating adolescents from 8 schools were followed from 6th through 8th grades (54% female; 76% European American). Findings indicated that all the dimensions of school climate declined and behavioral problems and deviant peer affiliation increased. Declines in each of the dimensions were associated with increases in behavioral problems. The prediction of problem behavior from peer affiliation was moderated by adolescents’ perceptions of school climate. PMID:22822296
Bringing air pollution into the climate change equation.
Pettersen, Marit Viktoria; Fleck, Fiona
2014-08-01
As countries gear up for a major round of international climate talks next year in Paris, the growing problem of air pollution is fast becoming a vital part of the climate change and health debate. Fiona Fleck talks to Marit Viktoria Pettersen.
Activist engineering: changing engineering practice by deploying praxis.
Karwat, Darshan M A; Eagle, Walter E; Wooldridge, Margaret S; Princen, Thomas E
2015-02-01
In this paper, we reflect on current notions of engineering practice by examining some of the motives for engineered solutions to the problem of climate change. We draw on fields such as science and technology studies, the philosophy of technology, and environmental ethics to highlight how dominant notions of apoliticism and ahistoricity are ingrained in contemporary engineering practice. We argue that a solely technological response to climate change does not question the social, political, and cultural tenet of infinite material growth, one of the root causes of climate change. In response to the contemporary engineering practice, we define an activist engineer as someone who not only can provide specific engineered solutions, but who also steps back from their work and tackles the question, What is the real problem and does this problem "require" an engineering intervention? Solving complex problems like climate change requires radical cultural change, and a significant obstacle is educating engineers about how to conceive of and create "authentic alternatives," that is, solutions that differ from the paradigm of "technologically improving" our way out of problems. As a means to realize radically new solutions, we investigate how engineers might (re)deploy the concept of praxis, which raises awareness in engineers of the inherent politics of technological design. Praxis empowers engineers with a more comprehensive understanding of problems, and thus transforms technologies, when appropriate, into more socially just and ecologically sensitive interventions. Most importantly, praxis also raises a radical alternative rarely considered-not "engineering a solution." Activist engineering offers a contrasting method to contemporary engineering practice and leads toward social justice and ecological protection through problem solving by asking not, How will we technologize our way out of the problems we face? but instead, What really needs to be done?
A new framework for climate sensitivity and prediction: a modelling perspective
NASA Astrophysics Data System (ADS)
Ragone, Francesco; Lucarini, Valerio; Lunkeit, Frank
2016-03-01
The sensitivity of climate models to increasing CO2 concentration and the climate response at decadal time-scales are still major factors of uncertainty for the assessment of the long and short term effects of anthropogenic climate change. While the relative slow progress on these issues is partly due to the inherent inaccuracies of numerical climate models, this also hints at the need for stronger theoretical foundations to the problem of studying climate sensitivity and performing climate change predictions with numerical models. Here we demonstrate that it is possible to use Ruelle's response theory to predict the impact of an arbitrary CO2 forcing scenario on the global surface temperature of a general circulation model. Response theory puts the concept of climate sensitivity on firm theoretical grounds, and addresses rigorously the problem of predictability at different time-scales. Conceptually, these results show that performing climate change experiments with general circulation models is a well defined problem from a physical and mathematical point of view. Practically, these results show that considering one single CO2 forcing scenario is enough to construct operators able to predict the response of climatic observables to any other CO2 forcing scenario, without the need to perform additional numerical simulations. We also introduce a general relationship between climate sensitivity and climate response at different time scales, thus providing an explicit definition of the inertia of the system at different time scales. This technique allows also for studying systematically, for a large variety of forcing scenarios, the time horizon at which the climate change signal (in an ensemble sense) becomes statistically significant. While what we report here refers to the linear response, the general theory allows for treating nonlinear effects as well. These results pave the way for redesigning and interpreting climate change experiments from a radically new perspective.
GLOBAL CLIMATE CHANGE AND ITS IMPACT ON DISEASE IMBEDDED IN ECOLOGICAL COMMUNITIES
We present the techniques of qualitative analysis of complex communities and discuss the impact of climate change as a press perturbation. In particular, we focus on the difficult problem of disease and parasites embedded in animal communities, notably zoonotic diseases. Climate ...
NASA Astrophysics Data System (ADS)
Dannenberg, Astrid
2014-12-01
Climate change perhaps is the greatest collective action problem mankind has ever faced and the international community is still at a loss for how to get the ever rising greenhouse gas emissions under control. Does the risk of crossing a "dangerous" climate threshold improve the prospects of collective action?
Jaspal, Rusi; Nerlich, Brigitte
2014-02-01
Climate change has become a pressing environmental concern for scientists, social commentators and politicians. Previous social science research has explored media representations of climate change in various temporal and geographical contexts. Through the lens of Social Representations Theory, this article provides a detailed qualitative thematic analysis of media representations of climate change in the 1988 British broadsheet press, given that this year constitutes an important juncture in this transition of climate change from the domain of science to that of the socio-political sphere. The following themes are outlined: (i) "Climate change: a multi-faceted threat"; (ii) "Collectivisation of threat"; (iii) "Climate change and the attribution of blame"; and (iv) "Speculative solutions to a complex socio-environmental problem." The article provides detailed empirical insights into the "starting-point" for present-day disputes concerning climate change and lays the theoretical foundations for tracking the continuities and discontinuities characterising social representations of climate change in the future.
ERIC Educational Resources Information Center
Boateng, C. A.
2015-01-01
Global problems such as climate change, which have deeper implications for survival of mankind on this planet, needs to be given wider attention in the quest for knowledge. It is expected that, improved knowledge derived from curriculum coverage may promote greater public awareness of such important global issue. This research aims at examining…
Bioethics and the Framing of Climate Change's Health Risks.
Valles, Sean A
2015-06-01
Cheryl Cox Macpherson recently argued, in an article for this journal, that 'Climate Change is a Bioethics Problem'. This article elaborates on that position, particularly highlighting bioethicists' potential ability to help reframe the current climate change discourse to give more attention to its health risks. This reframing process is especially important because of the looming problem of climate change skepticism. Recent empirical evidence from science framing experiments indicates that the public reacts especially positively to climate change messages framed in public health terms, and bioethicists are particularly well positioned to contribute their expertise to the process of carefully developing and communicating such messages. Additionally, as climate framing research and practice continue, it will be important for bioethicists to contribute to the creation of that project's nascent ethical standards. The discourse surrounding antibiotic resistance is posited as an example that can lend insight into how communicating a public health-framed message, including the participation of bioethicists, can help to override public skepticism about the findings of politically contentious scientific fields. © 2014 John Wiley & Sons Ltd.
Climate change effects on rangelands and rangeland management: Affirming the need for monitoring
Daniel W. Mccollum; John A. Tanaka; Jack A. Morgan; John E. Mitchell; William E. Fox; Kristie A. Maczko; Lori Hidinger; Clifford S. Duke; Urs P. Kreuter
2017-01-01
Uncertainty as to the extent and magnitude of changes in conditions that might occur due to climate change poses a problem for land and resource managers as they seek to adapt to changes and mitigate effects of climate variability. We illustrate using scenarios of projected future conditions on rangelands in the Northern Great Plains and Desert Southwest of the United...
Global climate change and international security.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karas, Thomas H.
2003-11-01
This report originates in a workshop held at Sandia National Laboratories, bringing together a variety of external experts with Sandia personnel to discuss 'The Implications of Global Climate Change for International Security.' Whatever the future of the current global warming trend, paleoclimatic history shows that climate change happens, sometimes abruptly. These changes can severely impact human water supplies, agriculture, migration patterns, infrastructure, financial flows, disease prevalence, and economic activity. Those impacts, in turn, can lead to national or international security problems stemming from aggravation of internal conflicts, increased poverty and inequality, exacerbation of existing international conflicts, diversion of national andmore » international resources from international security programs (military or non-military), contribution to global economic decline or collapse, or international realignments based on climate change mitigation policies. After reviewing these potential problems, the report concludes with a brief listing of some research, technology, and policy measures that might mitigate them.« less
ERIC Educational Resources Information Center
Wang, Ming-Te; Dishion, Thomas J.
2012-01-01
This longitudinal study examined trajectories of change in adolescents' perceptions of four dimensions of school climate (academic support, behavior management, teacher social support, and peer social support) and the effects of such trajectories on adolescent problem behaviors. We also tested whether school climate moderated the associations…
Public health impacts of climate change in Nepal.
Joshi, H D; Dhimal, B; Dhimal, M; Bhusal, C L
2011-04-01
Climate change is a global issue in this century which has challenged the survival of living creatures affecting the life supporting systems of the earth: atmosphere, hydrosphere and lithosphere. Scientists have reached in a consensus that climate change is happening. The anthropogenic emission of greenhouse gases is responsible for global warming and therefore climate change. Climate change may directly or indirectly affect human health through a range of pathways related to temperature and precipitation. The aim of this article is to share knowledge on how climate change can affect public health in Nepal based on scientific evidence from global studies and experience gained locally. In this review attempt has been made to critically analyze the scientific studies as well as policy documents of Nepalese Government and shed light on public health impact of climate change in the context of Nepal. Detailed scientific study is recommended to discern impact of climate change on public health problems in Nepal.
[Research advances in vulnerability assessment of natural ecosystem response to climate change].
Zhao, Hui-xia; Wu, Shao-hong; Jiang, Lu-guang
2007-02-01
Climate change with global warming as the sign has been caught great attention by the governments, international organizations, and scientists in the world. Human society and natural ecosystem are both exposed to climate change, and more and more people are waked up by its increasing harm. Vulnerability analysis and assessment are the key and basis for adapting and mitigating climate change, being the highlight in the research fields of climate change and ecology in recent years. The vulnerability assessment of climate change is being carried out in various research fields and on different scales, and much progress has been made. This paper introduced the concept of vulnerability, and summarized the research progress in vulnerability assessment of climate change, with the focus on the frame and methodology of vulnerability assessment of natural ecosystem response to climate change. The existed problems and future prospects in this research area were also discussed.
An Inquiry-Based Science Activity Centred on the Effects of Climate Change on Ocean Ecosystems
ERIC Educational Resources Information Center
Boaventura, Diana; Guilherme, Elsa; Faria, Cláudia
2016-01-01
We propose an inquiry-based science activity centred on the effects of climate change on ocean ecosystems. This activity can be used to improve acquisition of knowledge on the effects of climate change and to promote inquiry skills, such as researching, reading and selecting relevant information, identifying a problem, focusing on a research…
Land use allocation model considering climate change impact
NASA Astrophysics Data System (ADS)
Lee, D. K.; Yoon, E. J.; Song, Y. I.
2017-12-01
In Korea, climate change adaptation plans are being developed for each administrative district based on impact assessments constructed in various fields. This climate change impact assessments are superimposed on the actual space, which causes problems in land use allocation because the spatial distribution of individual impacts may be different each other. This implies that trade-offs between climate change impacts can occur depending on the composition of land use. Moreover, the actual space is complexly intertwined with various factors such as required area, legal regulations, and socioeconomic values, so land use allocation in consideration of climate change can be very difficult problem to solve (Liu et al. 2012; Porta et al. 2013).Optimization techniques can generate a sufficiently good alternatives for land use allocation at the strategic level if only the fitness function of relationship between impact and land use composition are derived. It has also been noted that land use optimization model is more effective than the scenario-based prediction model in achieving the objectives for problem solving (Zhang et al. 2014). Therefore in this study, we developed a quantitative tool, MOGA (Multi Objective Genetic Algorithm), which can generate a comprehensive land use allocations considering various climate change impacts, and apply it to the Gangwon-do in Korea. Genetic Algorithms (GAs) are the most popular optimization technique to address multi-objective in land use allocation. Also, it allows for immediate feedback to stake holders because it can run a number of experiments with different parameter values. And it is expected that land use decision makers and planners can formulate a detailed spatial plan or perform additional analysis based on the result of optimization model. Acknowledgments: This work was supported by the Korea Ministry of Environment (MOE) as "Climate Change Correspondence Program (Project number: 2014001310006)"
Abrupt climate change: can society cope?
Hulme, Mike
2003-09-15
Consideration of abrupt climate change has generally been incorporated neither in analyses of climate-change impacts nor in the design of climate adaptation strategies. Yet the possibility of abrupt climate change triggered by human perturbation of the climate system is used to support the position of both those who urge stronger and earlier mitigative action than is currently being contemplated and those who argue that the unknowns in the Earth system are too large to justify such early action. This paper explores the question of abrupt climate change in terms of its potential implications for society, focusing on the UK and northwest Europe in particular. The nature of abrupt climate change and the different ways in which it has been defined and perceived are examined. Using the example of the collapse of the thermohaline circulation (THC), the suggested implications for society of abrupt climate change are reviewed; previous work has been largely speculative and has generally considered the implications only from economic and ecological perspectives. Some observations about the implications from a more social and behavioural science perspective are made. If abrupt climate change simply implies changes in the occurrence or intensity of extreme weather events, or an accelerated unidirectional change in climate, the design of adaptation to climate change can proceed within the existing paradigm, with appropriate adjustments. Limits to adaptation in some sectors or regions may be reached, and the costs of appropriate adaptive behaviour may be large, but strategy can develop on the basis of a predicted long-term unidirectional change in climate. It would be more challenging, however, if abrupt climate change implied a directional change in climate, as, for example, may well occur in northwest Europe following a collapse of the THC. There are two fundamental problems for society associated with such an outcome: first, the future changes in climate currently being anticipated and prepared for may reverse and, second, the probability of such a scenario occurring remains fundamentally unknown. The implications of both problems for climate policy and for decision making have not been researched. It is premature to argue therefore that abrupt climate change - in the sense referred to here - imposes unacceptable costs on society or the world economy, represents a catastrophic impact of climate change or constitutes a dangerous change in climate that should be avoided at all reasonable cost. We conclude by examining the implications of this contention for future research and policy formation.
Communicating Climate Change: the Problem of Knowing and Doing.
NASA Astrophysics Data System (ADS)
Wildcat, D.
2008-12-01
The challenge of global warming and climate change may illustrate better than any recent phenomenon that quite independent of the science associated with our assessment, modeling, mitigation strategies and adaptation to the multiple complex processes that characterize this phenomenon, our greatest challenge resides in creating systems where knowledge can be usefully communicated to the general public. Knowledge transfer will pose significant challenges when addressing a topic that often leaves the ill-informed and non-scientist overwhelmed with pieces of information and paralyzed with a sense that there is nothing to be done to address this global problem. This communication problem is very acute in North American indigenous communities where a first-hand, on-the-ground, experience of climate change is indisputable, but where the charts, graphs and sophisticated models presented by scientists are treated with suspicion and often not explained very well. This presentation will discuss the efforts of the American Indian and Alaska Native Climate Change Working Group to prepare future generations of AI/AN geoscience professionals, educators, and a geoscience literate AI/AN workforce, while insuring that our Indigenous tribal knowledges of land- and sea-scapes, and climates are valued, used and incorporated into our tribal exercise of geoscience education and research. The Working Group's efforts are already suggesting the communication problem for Indigenous communities will best be solved by 'growing' our own culturally competent Indigenous geoscience professionals.
Global Change: A View from Space
NASA Technical Reports Server (NTRS)
Lau, William K. M.
2003-01-01
In this talk, I will discuss the fundamental science and society problems associated with global change, with an emphasis on the view from space. I will provide an overview of the vision and activities of the World Climate Research Program in the next two decades. Then I will show regional climate changes and environmental problems in the East Asian region, such as biomass burning, urban pollutions, yellow sand, and their possible interaction with the Asian monsoon, particularly over Southern China.
A National Program for Analysis of the Climate System
NASA Technical Reports Server (NTRS)
Schubert, Siegfried; Arkin, Phil; Kalnay, Eugenia; Laver, James; Trenberth, Kevin
2002-01-01
Perhaps the single greatest roadblock to fundamental advances in our understanding of climate variability and climate change is the lack of robust and unbiased long-term global observations of the climate system. Such observations are critical for the identification and diagnosis of climate variations, and provide the constraints necessary for developing and validating climate models. The first generation of reanalysis efforts, by using fixed analysis systems, eliminated the artificial climate signals that occurred in analyses generated at the operational numerical weather prediction centers. These datasets are now widely used by the scientific community in a variety of applications including atmosphere-ocean interactions, seasonal prediction, climate monitoring, the hydrological cycle, and a host of regional and other diagnostic studies. These reanalyses, however, had problems that made them sub-optimal or even unusable for some applications. Perhaps the most serious problem for climate applications was that, while the assimilation system remained fixed, changes in the observing systems did produce spurious changes in the perceived climate. The first generation reanalysis products also exposed problems with physical consistency of the products and the accurate representation of physical processes in the climate system. Examples are bias in the estimates of ocean surface fluxes, and inadequate representation of polar hydrology. In this talk, I will describe some initial plans for a national program on reananlysis. The program is envisioned to be part of an on-going activity to maintain, improve, and reprocess our record of climate observations. I will discuss various issues affecting the quality of reanalyses, with a special focus on those relevant to the ocean.
Environmental Externalities in Electric Power Markets: Acid Rain, Urban Ozone, and Climate Change
1995-01-01
This article discusses the emissions resulting from the generation of electricity by utilities and their role in contributing to the environmental problems of acid rain, urban ozone, and climate change.
Psychology: Climate change hits home
NASA Astrophysics Data System (ADS)
Weber, Elke U.
2011-04-01
Engaging the public with climate change has proved difficult, in part because they see the problem as remote. New evidence suggests that direct experience of one anticipated impact -- flooding -- increases people's concern and willingness to save energy.
ERIC Educational Resources Information Center
National Academy of Sciences - National Research Council, Washington, DC.
The motivation for the organization of this symposium was the accumulation of evidence from many sources, both short- and long-term, that the global climate is in a state of change. Data which defy integrated explanation including temperature, ozone, methane, precipitation and other climate-related trends have presented troubling problems for…
Appropriate technology and climate change adaptation
NASA Astrophysics Data System (ADS)
Bandala, Erick R.; Patiño-Gomez, Carlos
2016-02-01
Climate change is emerging as the greatest significant environmental problem for the 21st Century and the most important global challenge faced by human kind. Based on evidence recognized by the international scientific community, climate change is already an unquestionable reality, whose first effects are beginning to be measured. Available climate projections and models can assist in anticipating potential far-reaching consequences for development processes. Climatic transformations will impact the environment, biodiversity and water resources, putting several productive processes at risk; and will represent a threat to public health and water availability in quantity and quality.
Climate profoundly shapes forests. Forest species composition, productivity, availability of goods and services, disturbance regimes, and location on the landscape are all regulated by climate. Much research attention has focused on the problem of predicting the response of fores...
U.S. Global Climate Change Impacts Report, Adaptation
NASA Astrophysics Data System (ADS)
Pulwarty, R.
2009-12-01
Adaptation measures improve our ability to cope with or avoid harmful climate impacts and take advantage of beneficial ones, now and as climate varies and changes. Adaptation and mitigation are necessary elements of an effective response to climate change. Adaptation options also have the potential to moderate harmful impacts of current and future climate variability and change. The Global Climate Change Impacts Report identifies examples of adaptation-related actions currently being pursued in various sectors and regions to address climate change, as well as other environmental problems that could be exacerbated by climate change such as urban air pollution and heat waves. Some adaptation options that are currently being pursued in various regions and sectors to deal with climate change and/or other environmental issues are identified in this report. A range of adaptation responses can be employed to reduce risks through redesign or relocation of infrastructure, sustainability of ecosystem services, increased redundancy of critical social services, and operational improvements. Adapting to climate change is an evolutionary process and requires both analytic and deliberative decision support. Many of the climate change impacts described in the report have economic consequences. A significant part of these consequences flow through public and private insurance markets, which essentially aggregate and distribute society's risk. However, in most cases, there is currently insufficient robust information to evaluate the practicality, efficiency, effectiveness, costs, or benefits of adaptation measures, highlighting a need for research. Adaptation planning efforts such as that being conducted in New York City and the Colorado River will be described. Climate will be continually changing, moving at a relatively rapid rate, outside the range to which society has adapted in the past. The precise amounts and timing of these changes will not be known with certainty. The disaster research and emergency management communities have shown over that early warnings of impending hazards need to be complemented by information on the risks actually posed by the hazards (including those resulting from low levels of preparedness), existing strategies on the ground, and likely pathways to mitigate the loss and damage in the particular context in which they arise. Effective adaptations require information for long-term infrastructural planning and as critically deliberative mechanisms to structure learning and redesign in the face of emergent problems. Adaptation tends to be reactive, unevenly distributed, and focused on coping rather than preventing problems. Reduction in vulnerability will require anticipatory deliberative processes focused on incorporating adaptation into long-term municipal and public service planning, including energy, water, and health services, in the face of changing climate-related risks combined with ongoing changes in population, land use and development patterns.
Exploring the Climate Change, Migration and Conflict Nexus.
Burrows, Kate; Kinney, Patrick L
2016-04-22
The potential link between climate change, migration, and conflict has been widely discussed and is increasingly viewed by policy makers as a security issue. However, considerable uncertainty remains regarding the role that climate variability and change play among the many drivers of migration and conflict. The overall objective of this paper is to explore the potential pathways linking climate change, migration and increased risk of conflict. We review the existing literature surrounding this issue and break the problem into two components: the links between climate change and migration, and those between migration and conflict. We found a large range of views regarding the importance of climate change as a driver for increasing rates of migration and subsequently of conflict. We argue that future research should focus not only on the climate-migration-conflict pathway but also work to understand the other pathways by which climate variability and change might exacerbate conflict. We conclude by proposing five questions to help guide future research on the link between climate change, migration, and conflict.
Exploring the Climate Change, Migration and Conflict Nexus
Burrows, Kate; Kinney, Patrick L.
2016-01-01
The potential link between climate change, migration, and conflict has been widely discussed and is increasingly viewed by policy makers as a security issue. However, considerable uncertainty remains regarding the role that climate variability and change play among the many drivers of migration and conflict. The overall objective of this paper is to explore the potential pathways linking climate change, migration and increased risk of conflict. We review the existing literature surrounding this issue and break the problem into two components: the links between climate change and migration, and those between migration and conflict. We found a large range of views regarding the importance of climate change as a driver for increasing rates of migration and subsequently of conflict. We argue that future research should focus not only on the climate-migration-conflict pathway but also work to understand the other pathways by which climate variability and change might exacerbate conflict. We conclude by proposing five questions to help guide future research on the link between climate change, migration, and conflict. PMID:27110806
Climate Change and Future Pollen Allergy in Europe.
Lake, Iain R; Jones, Natalia R; Agnew, Maureen; Goodess, Clare M; Giorgi, Filippo; Hamaoui-Laguel, Lynda; Semenov, Mikhail A; Solomon, Fabien; Storkey, Jonathan; Vautard, Robert; Epstein, Michelle M
2017-03-01
Globally, pollen allergy is a major public health problem, but a fundamental unknown is the likely impact of climate change. To our knowledge, this is the first study to quantify the consequences of climate change upon pollen allergy in humans. We produced quantitative estimates of the potential impact of climate change upon pollen allergy in humans, focusing upon common ragweed ( Ambrosia artemisiifolia ) in Europe. A process-based model estimated the change in ragweed's range under climate change. A second model simulated current and future ragweed pollen levels. These findings were translated into health burdens using a dose-response curve generated from a systematic review and from current and future population data. Models considered two different suites of regional climate/pollen models, two greenhouse gas emissions scenarios [Representative Concentration Pathways (RCPs) 4.5 and 8.5], and three different plant invasion scenarios. Our primary estimates indicated that sensitization to ragweed will more than double in Europe, from 33 to 77 million people, by 2041-2060. According to our projections, sensitization will increase in countries with an existing ragweed problem (e.g., Hungary, the Balkans), but the greatest proportional increases will occur where sensitization is uncommon (e.g., Germany, Poland, France). Higher pollen concentrations and a longer pollen season may also increase the severity of symptoms. Our model projections were driven predominantly by changes in climate (66%) but were also influenced by current trends in the spread of this invasive plant species. Assumptions about the rate at which ragweed spreads throughout Europe had a large influence upon the results. Our quantitative estimates indicate that ragweed pollen allergy will become a common health problem across Europe, expanding into areas where it is currently uncommon. Control of ragweed spread may be an important adaptation strategy in response to climate change. Citation: Lake IR, Jones NR, Agnew M, Goodess CM, Giorgi F, Hamaoui-Laguel L, Semenov MA, Solomon F, Storkey J, Vautard R, Epstein MM. 2017. Climate change and future pollen allergy in Europe. Environ Health Perspect 125:385-391; http://dx.doi.org/10.1289/EHP173.
Decision analysis of shoreline protection under climate change uncertainty
NASA Astrophysics Data System (ADS)
Chao, Philip T.; Hobbs, Benjamin F.
1997-04-01
If global warming occurs, it could significantly affect water resource distribution and availability. Yet it is unclear whether the prospect of such change is relevant to water resources management decisions being made today. We model a shoreline protection decision problem with a stochastic dynamic program (SDP) to determine whether consideration of the possibility of climate change would alter the decision. Three questions are addressed with the SDP: (l) How important is climate change compared to other uncertainties?, (2) What is the economic loss if climate change uncertainty is ignored?, and (3) How does belief in climate change affect the timing of the decision? In the case study, sensitivity analysis shows that uncertainty in real discount rates has a stronger effect upon the decision than belief in climate change. Nevertheless, a strong belief in climate change makes the shoreline protection project less attractive and often alters the decision to build it.
Climate change and game theory.
Wood, Peter John
2011-02-01
This paper examines the problem of achieving global cooperation to reduce greenhouse gas emissions. Contributions to this problem are reviewed from noncooperative game theory, cooperative game theory, and implementation theory. We examine the solutions to games where players have a continuous choice about how much to pollute, as well as games where players make decisions about treaty participation. The implications of linking cooperation on climate change with cooperation on other issues, such as trade, are also examined. Cooperative and noncooperative approaches to coalition formation are investigated in order to examine the behavior of coalitions cooperating on climate change. One way to achieve cooperation is to design a game, known as a mechanism, whose equilibrium corresponds to an optimal outcome. This paper examines some mechanisms that are based on conditional commitments, and their policy implications. These mechanisms could make cooperation on climate change mitigation more likely. © 2011 New York Academy of Sciences.
NASA Astrophysics Data System (ADS)
Milinski, Manfred
2014-12-01
Climate change is a global problem. Because of unlimited use of fossil energy and resulting greenhouse gas emissions the global temperature is rising causing floods, draughts and storms in all parts of the world with increasing frequency and strength. Dangerous climate change will occur with high probability after the global temperature has passed a certain threshold [1]. To avoid dangerous climate change global greenhouse gas emissions must be reduced to a level of 50% or less of the year-2000 emissions by 2050 [2-4]. All people on earth take part in this global target public goods game, "a game that we cannot afford to loose" [5]. Simulating this scenario in a nutshell a collective risk social dilemma game has shown that a small group of subjects can achieve a collective goal by sequential individual contributions but only when the risk of loosing their not invested money is high, e.g. 90% [6]. Cooperation in public goods games usually decreases with increasing group size [7]. Thus, does this mean that the global game will be lost?
ERIC Educational Resources Information Center
Jeong, Jinwoo; Kim, Hyoungbum; Chae, Dong-hyun; Kim, Eunjeong
2014-01-01
The purpose of this study is to investigate the effects of the case-based reasoning instructional model on learning about climate change unit. Results suggest that students showed interest because it allowed them to find the solution to the problem and solve the problem for themselves by analogy from other cases such as crossword puzzles in an…
Climate Change, Human Rights, and Social Justice.
Levy, Barry S; Patz, Jonathan A
2015-01-01
The environmental and health consequences of climate change, which disproportionately affect low-income countries and poor people in high-income countries, profoundly affect human rights and social justice. Environmental consequences include increased temperature, excess precipitation in some areas and droughts in others, extreme weather events, and increased sea level. These consequences adversely affect agricultural production, access to safe water, and worker productivity, and, by inundating land or making land uninhabitable and uncultivatable, will force many people to become environmental refugees. Adverse health effects caused by climate change include heat-related disorders, vector-borne diseases, foodborne and waterborne diseases, respiratory and allergic disorders, malnutrition, collective violence, and mental health problems. These environmental and health consequences threaten civil and political rights and economic, social, and cultural rights, including rights to life, access to safe food and water, health, security, shelter, and culture. On a national or local level, those people who are most vulnerable to the adverse environmental and health consequences of climate change include poor people, members of minority groups, women, children, older people, people with chronic diseases and disabilities, those residing in areas with a high prevalence of climate-related diseases, and workers exposed to extreme heat or increased weather variability. On a global level, there is much inequity, with low-income countries, which produce the least greenhouse gases (GHGs), being more adversely affected by climate change than high-income countries, which produce substantially higher amounts of GHGs yet are less immediately affected. In addition, low-income countries have far less capability to adapt to climate change than high-income countries. Adaptation and mitigation measures to address climate change needed to protect human society must also be planned to protect human rights, promote social justice, and avoid creating new problems or exacerbating existing problems for vulnerable populations. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Perkison, William B; Kearney, Gregory D; Saberi, Pouné; Guidotti, Tee; McCarthy, Ronda; Cook-Shimanek, Margaret; Pensa, Mellisa A; Nabeel, Ismail
2018-02-01
: Workers are uniquely susceptible to the health hazards imposed by environmental changes. Occupational and environmental medicine (OEM) providers are at the forefront of emerging health issues pertaining to working populations including climate change, and must be prepared to recognize, respond to, and mitigate climate change-related health effects in workers. This guidance document from the American College of Occupational and Environmental Medicine focuses on North American workers health effects that may occur as a result of climate change and describes the responsibilities of the OEM provider in responding to these health challenges.
Boeye, Jeroen; Travis, Justin M J; Stoks, Robby; Bonte, Dries
2013-02-01
Species can either adapt to new conditions induced by climate change or shift their range in an attempt to track optimal environmental conditions. During current range shifts, species are simultaneously confronted with a second major anthropogenic disturbance, landscape fragmentation. Using individual-based models with a shifting climate window, we examine the effect of different rates of climate change on the evolution of dispersal distances through changes in the genetically determined dispersal kernel. Our results demonstrate that the rate of climate change is positively correlated to the evolved dispersal distances although too fast climate change causes the population to crash. When faced with realistic rates of climate change, greater dispersal distances evolve than those required for the population to keep track of the climate, thereby maximizing population size. Importantly, the greater dispersal distances that evolve when climate change is more rapid, induce evolutionary rescue by facilitating the population in crossing large gaps in the landscape. This could ensure population persistence in case of range shifting in fragmented landscapes. Furthermore, we highlight problems in using invasion speed as a proxy for potential range shifting abilities under climate change.
Global Climate Change and Children's Health.
Ahdoot, Samantha; Pacheco, Susan E
2015-11-01
Rising global temperature is causing major physical, chemical, and ecological changes across the planet. There is wide consensus among scientific organizations and climatologists that these broad effects, known as climate change, are the result of contemporary human activity. Climate change poses threats to human health, safety, and security. Children are uniquely vulnerable to these threats. The effects of climate change on child health include physical and psychological sequelae of weather disasters, increased heat stress, decreased air quality, altered disease patterns of some climate-sensitive infections, and food, water, and nutrient insecurity in vulnerable regions. Prompt implementation of mitigation and adaptation strategies will protect children against worsening of the problem and its associated health effects. This technical report reviews the nature of climate change and its associated child health effects and supports the recommendations in the accompanying policy statement on climate change and children's health. Copyright © 2015 by the American Academy of Pediatrics.
The Psychological Effects of Climate Change on Children.
Burke, Susie E L; Sanson, Ann V; Van Hoorn, Judith
2018-04-11
We review recent evidence on the psychological effects of climate change on children, covering both direct and indirect impacts, and discuss children's psychological adaptation to climate change. Both the direct and flow-on effects of climate change place children at risk of mental health consequences including PTSD, depression, anxiety, phobias, sleep disorders, attachment disorders, and substance abuse. These in turn can lead to problems with emotion regulation, cognition, learning, behavior, language development, and academic performance. Together, these create predispositions to adverse adult mental health outcomes. Children also exhibit high levels of concern over climate change. Meaning-focused coping promotes well-being and environmental engagement. Both direct and indirect climate change impacts affect children's psychological well-being. Children in the developing world will suffer the worst impacts. Mental health professionals have important roles in helping mitigate climate change, and researching and implementing approaches to helping children cope with its impacts.
Climate change and adaptation of the health sector: The case of infectious diseases.
Confalonieri, Ulisses E C; Menezes, Júlia Alves; Margonari de Souza, Carina
2015-01-01
Infectious diseases form a group of health problems highly susceptible to the influences of climate. Adaptation to protect human population health from the changes in infectious disease epidemiology expected to occur as a consequence of climate change involve actions in the health systems as well as in other non-health sectors. In the health sector strategies such as enhanced and targeted epidemiological and entomological surveillance and the development of epidemic early warning systems informed by climate scenarios are needed. Measures in other sectors such as meteorology, civil defense and environmental sanitation will also contribute to a reduction in the risk of infection under climate change.
ERIC Educational Resources Information Center
Eheazu, Caroline L.; Ezeala, Joy I.
2017-01-01
The threats of climate change to human society and natural ecosystems have become a devastating environmental problem for crop production and fish farming in Nigeria. This is partly because farmers and fisher folk are known to adopt age-old methods that do not counter current global warming and climate change effects. The purpose of this study was…
Climate change and mental health: risks, impacts and priority actions.
Hayes, Katie; Blashki, G; Wiseman, J; Burke, S; Reifels, L
2018-01-01
This article provides an overview of the current and projected climate change risks and impacts to mental health and provides recommendations for priority actions to address the mental health consequences of climate change. The authors argue the following three points: firstly, while attribution of mental health outcomes to specific climate change risks remains challenging, there are a number of opportunities available to advance the field of mental health and climate change with more empirical research in this domain; secondly, the risks and impacts of climate change on mental health are already rapidly accelerating, resulting in a number of direct, indirect, and overarching effects that disproportionally affect those who are most marginalized; and, thirdly, interventions to address climate change and mental health need to be coordinated and rooted in active hope in order to tackle the problem in a holistic manner. This discussion paper concludes with recommendations for priority actions to address the mental health consequences of climate change.
The Climate Change--Social Change Relationship.
ERIC Educational Resources Information Center
Russell, David
1992-01-01
Argues that the scientific community cannot evoke the desired response from the general community concerning environmental problems, such as climate change, simply by warning the community of its dangers. Discusses the need for new meaning systems arising out of new ways of relating and communicating with each other about our ecology. (MDH)
The World Climate Exercise: Is (Simulated) Experience Our Best Teacher?
NASA Astrophysics Data System (ADS)
Rath, K.; Rooney-varga, J. N.; Jones, A.; Johnston, E.; Sterman, J.
2015-12-01
Meeting the challenge of climate change will clearly require 'deep learning' - learning that motivates a search for underlying meaning, a willingness to exert the sustained effort needed to understand complex problems, and innovative problem-solving. This type of learning is dependent on the level of the learner's engagement with the material, their intrinsic motivation to learn, intention to understand, and relevance of the material to the learner. Here, we present evidence for deep learning about climate change through a simulation-based role-playing exercise, World Climate. The exercise puts participants into the roles of delegates to the United Nations climate negotiations and asks them to create an international climate deal. They find out the implications of their decisions, according to the best available science, through the same decision-support computer simulation used to provide feedback for the real-world negotiations, C-ROADS. World Climate provides an opportunity for participants have an immersive, social experience in which they learn first-hand about both the social dynamics of climate change decision-making, through role-play, and the dynamics of the climate system, through an interactive computer simulation. Evaluation results so far have shown that the exercise is highly engaging and memorable and that it motivates large majorities of participants (>70%) to take action on climate change. In addition, we have found that it leads to substantial gains in understanding key systems thinking concepts (e.g., the stock-flow behavior of atmospheric CO2), as well as improvements in understanding of climate change causes and impacts. While research is still needed to better understand the impacts of simulation-based role-playing exercises like World Climate on behavior change, long-term understanding, transfer of systems thinking skills across topics, and the importance of social learning during the exercise, our results to date indicate that it is a powerful, active learning tool that has strong potential to foster deep learning about climate change.
Climate Literacy in the Classroom: Supporting Teachers in the Transition to NGSS
NASA Astrophysics Data System (ADS)
Rogers, M. J. B.; Merrill, J.; Harcourt, P.; Petrone, C.; Shea, N.; Mead, H.
2014-12-01
Meeting the challenge of climate change will clearly require 'deep learning' - learning that motivates a search for underlying meaning, a willingness to exert the sustained effort needed to understand complex problems, and innovative problem-solving. This type of learning is dependent on the level of the learner's engagement with the material, their intrinsic motivation to learn, intention to understand, and relevance of the material to the learner. Here, we present evidence for deep learning about climate change through a simulation-based role-playing exercise, World Climate. The exercise puts participants into the roles of delegates to the United Nations climate negotiations and asks them to create an international climate deal. They find out the implications of their decisions, according to the best available science, through the same decision-support computer simulation used to provide feedback for the real-world negotiations, C-ROADS. World Climate provides an opportunity for participants have an immersive, social experience in which they learn first-hand about both the social dynamics of climate change decision-making, through role-play, and the dynamics of the climate system, through an interactive computer simulation. Evaluation results so far have shown that the exercise is highly engaging and memorable and that it motivates large majorities of participants (>70%) to take action on climate change. In addition, we have found that it leads to substantial gains in understanding key systems thinking concepts (e.g., the stock-flow behavior of atmospheric CO2), as well as improvements in understanding of climate change causes and impacts. While research is still needed to better understand the impacts of simulation-based role-playing exercises like World Climate on behavior change, long-term understanding, transfer of systems thinking skills across topics, and the importance of social learning during the exercise, our results to date indicate that it is a powerful, active learning tool that has strong potential to foster deep learning about climate change.
Wicked problems and a 'wicked' solution.
Walls, Helen L
2018-04-13
'Wicked' is the term used to describe some of the most challenging and complex issues of our time, many of which threaten human health. Climate change, biodiversity loss, persisting poverty, the advancing obesity epidemic, and food insecurity are all examples of such wicked problems. However there is a strong body of evidence describing the solutions for addressing many of these problems. Given that much is known about how many of these problems could be addressed - and given the risks of not acting - what will it take to create the 'tipping point' needed for effective action? A recent (2015) court ruling in The Hague held that the Dutch government's stance on climate change was illegal, ordering them to cut greenhouse gas emissions by at least 25% within 5 years (by 2020), relative to 1990 levels. The case was filed on behalf of 886 Dutch citizens, suing the government for violating human rights and climate changes treaties by failing to take adequate action to prevent the harmful impacts of climate change. This judicial ruling has the potential to provide a way forward, inspiring other civil movements and creating a template from which to address other wicked problems. This judicial strategy to address the need to lower greenhouse gas emissions in the Netherlands is not a magic bullet, and requires a particular legal and institutional setting. However it has the potential to be a game-changer - providing an example of a strategy for achieving domestic regulatory change that is likely to be replicable in some countries elsewhere, and providing an example of a particularly 'wicked' (in the positive, street-slang sense of the word) strategy to address seemingly intractable and wicked problems.
Public Perception of Uncertainties Within Climate Change Science.
Visschers, Vivianne H M
2018-01-01
Climate change is a complex, multifaceted problem involving various interacting systems and actors. Therefore, the intensities, locations, and timeframes of the consequences of climate change are hard to predict and cause uncertainties. Relatively little is known about how the public perceives this scientific uncertainty and how this relates to their concern about climate change. In this article, an online survey among 306 Swiss people is reported that investigated whether people differentiate between different types of uncertainty in climate change research. Also examined was the way in which the perception of uncertainty is related to people's concern about climate change, their trust in science, their knowledge about climate change, and their political attitude. The results of a principal component analysis showed that respondents differentiated between perceived ambiguity in climate research, measurement uncertainty, and uncertainty about the future impact of climate change. Using structural equation modeling, it was found that only perceived ambiguity was directly related to concern about climate change, whereas measurement uncertainty and future uncertainty were not. Trust in climate science was strongly associated with each type of uncertainty perception and was indirectly associated with concern about climate change. Also, more knowledge about climate change was related to less strong perceptions of each type of climate science uncertainty. Hence, it is suggested that to increase public concern about climate change, it may be especially important to consider the perceived ambiguity about climate research. Efforts that foster trust in climate science also appear highly worthwhile. © 2017 Society for Risk Analysis.
ERIC Educational Resources Information Center
Kenis, Anneleen; Mathijs, Erik
2012-01-01
Individual behaviour change is fast becoming a kind of "holy grail" to tackle climate change, in environmental policy, the environmental movement and academic literature. This is contested by those who claim that social structures are the main problem and who advocate collective social action. The objective of the research presented in…
Impacts of climate variability and future climate change on harmful algal blooms and human health.
Moore, Stephanie K; Trainer, Vera L; Mantua, Nathan J; Parker, Micaela S; Laws, Edward A; Backer, Lorraine C; Fleming, Lora E
2008-11-07
Anthropogenically-derived increases in atmospheric greenhouse gas concentrations have been implicated in recent climate change, and are projected to substantially impact the climate on a global scale in the future. For marine and freshwater systems, increasing concentrations of greenhouse gases are expected to increase surface temperatures, lower pH, and cause changes to vertical mixing, upwelling, precipitation, and evaporation patterns. The potential consequences of these changes for harmful algal blooms (HABs) have received relatively little attention and are not well understood. Given the apparent increase in HABs around the world and the potential for greater problems as a result of climate change and ocean acidification, substantial research is needed to evaluate the direct and indirect associations between HABs, climate change, ocean acidification, and human health. This research will require a multidisciplinary approach utilizing expertise in climatology, oceanography, biology, epidemiology, and other disciplines. We review the interactions between selected patterns of large-scale climate variability and climate change, oceanic conditions, and harmful algae.
Impacts of climate variability and future climate change on harmful algal blooms and human health
Moore, Stephanie K; Trainer, Vera L; Mantua, Nathan J; Parker, Micaela S; Laws, Edward A; Backer, Lorraine C; Fleming, Lora E
2008-01-01
Anthropogenically-derived increases in atmospheric greenhouse gas concentrations have been implicated in recent climate change, and are projected to substantially impact the climate on a global scale in the future. For marine and freshwater systems, increasing concentrations of greenhouse gases are expected to increase surface temperatures, lower pH, and cause changes to vertical mixing, upwelling, precipitation, and evaporation patterns. The potential consequences of these changes for harmful algal blooms (HABs) have received relatively little attention and are not well understood. Given the apparent increase in HABs around the world and the potential for greater problems as a result of climate change and ocean acidification, substantial research is needed to evaluate the direct and indirect associations between HABs, climate change, ocean acidification, and human health. This research will require a multidisciplinary approach utilizing expertise in climatology, oceanography, biology, epidemiology, and other disciplines. We review the interactions between selected patterns of large-scale climate variability and climate change, oceanic conditions, and harmful algae. PMID:19025675
Climate Change Adaptation Practices in Various Countries
NASA Astrophysics Data System (ADS)
Tanik, A.; Tekten, D.
2017-08-01
The paper will be a review work on the recent strategies of EU in general, and will underline the inspected sectoral based adaptation practices and action plans of 7 countries; namely Germany, France, Spain, Italy, Denmark, USA and Kenya from Africa continent. Although every countries’ action plan have some similarities on sectoral analysis, each country in accordance with the specific nature of the problem seems to create its own sectoral analysis. Within this context, green and white documents of EU adaptation to climate change, EU strategy on climate change, EU targets of 2020 on climate change and EU adaptation support tools are investigated.
From Disinformation to Wishful Thinking
NASA Astrophysics Data System (ADS)
Oreskes, N.; Conway, E. M.
2014-12-01
In our book, Merchants of Doubt, we documented how deliberate disinformation campaigns served to confuse the American people about the reality and significance of climate change over more than two decades. We showed how a variety of strategies were used to persuade the public that the scientific "jury was still out" on climate change, including deliberate mispresentation of facts, cherry-picking of evidence, and personal attacks on scientists. And we documented the links, both conceptual and actual, between doubt-mongering about climate change and the rejection of scientific evidence of the harms of tobacco, acid rain, the ozone hole, nuclear winter, and DDT. These tactics are still in use today, but they are now reinforced by a new problem, the problem of wishful thinking. Increasingly, we see commentators who accept the reality of climate change assuring us that the problem can be solved by natural gas, or even by some as yet unknown and uninvented technological innovations. In this paper we argue that these forms of wishful thinking, while not malicious in the same way that previous doubt-mongering campaigns have been, contribute substantially to scientific illiteracy and misunderstanding both of the character of the challenges that we face and of the history of technological innovation.
Water access, water scarcity, and climate change.
Mukheibir, Pierre
2010-05-01
This article investigates the approaches of the various discourses operating in the water sector and how they address the issues of scarcity and equitable access under projected climate change impacts. Little synergy exists between the different approaches dealing with these issues. Whilst being a sustainable development and water resources management issue, a holistic view of access, scarcity and the projected impacts of climate change is not prevalent in these discourses. The climate change discourse too does not adequately bridge the gap between these issues. The projected impacts of climate change are likely to exacerbate the problems of scarcity and equitable access unless appropriate adaptation strategies are adopted and resilience is built. The successful delivery of accessible water services under projected climate change impacts therefore lies with an extension of the adaptive water management approach to include equitable access as a key driver.
Framing climate change and spatial planning: how risk communication can be improved.
de Boer, J
2007-01-01
Taking the role of frames into account may significantly add to the tools that have been developed for communication and learning on complex risks and benefits. As part of a larger multidisciplinary study into climate-related forms of sense-making this paper explores which frames are used by the citizens of Western European countries and, in particular, the Netherlands. Three recent multi-national public opinion surveys were analysed to examine beliefs about climate change in the context of beliefs about energy technology and concerns about other environmental issues, such as natural disasters. It appeared that many citizens had only vague ideas about the energy situation and that these do not constitute an unequivocal frame for climate issues. In contrast, the results suggest that the long-lasting rainfall and severe floods in Central Europe have had a significant impact. Climate change was often framed in a way that articulates its associations with rain- and river-based problems. This result is extremely important for risk communication, because especially in the Netherlands with its vulnerable coastal zones climate change may produce many more consequences than rain- and river-based problems only.
Citizenship for a Changing Global Climate: Learning from New Zealand and Norway
ERIC Educational Resources Information Center
Hayward, Bronwyn; Selboe, Elin; Plew, Elizabeth
2015-01-01
Young citizens under the age of 25?years make up just under half of the world's population. Globally, they face new, interrelated problems of dangerous environmental change, including increasing incidence of severe storms associated with a changing climate, and related new threats to human security. Addressing the complex challenge of climate…
Helping your woodland adapt to climate change
Tracey Saxby; Marcus Griswold; Caroline Wicks
2013-01-01
Your woods are always changing and adapting as they grow and mature, or regrow after agricultural abandonment, natural disturbances, or harvesting activities. Events like storms, droughts, insect and disease outbreaks, or other stressors can damage trees or slow their growth. A changing climate may make your woods more susceptible to the problems these events can cause...
Boeye, Jeroen; Travis, Justin M J; Stoks, Robby; Bonte, Dries
2013-01-01
Species can either adapt to new conditions induced by climate change or shift their range in an attempt to track optimal environmental conditions. During current range shifts, species are simultaneously confronted with a second major anthropogenic disturbance, landscape fragmentation. Using individual-based models with a shifting climate window, we examine the effect of different rates of climate change on the evolution of dispersal distances through changes in the genetically determined dispersal kernel. Our results demonstrate that the rate of climate change is positively correlated to the evolved dispersal distances although too fast climate change causes the population to crash. When faced with realistic rates of climate change, greater dispersal distances evolve than those required for the population to keep track of the climate, thereby maximizing population size. Importantly, the greater dispersal distances that evolve when climate change is more rapid, induce evolutionary rescue by facilitating the population in crossing large gaps in the landscape. This could ensure population persistence in case of range shifting in fragmented landscapes. Furthermore, we highlight problems in using invasion speed as a proxy for potential range shifting abilities under climate change. PMID:23467649
Can Knowledge Deficit Explain Societal Perception of Climate Change Risk?
NASA Astrophysics Data System (ADS)
Mitra, R.; McNeal, K.; Bondell, H.
2014-12-01
Climate change literacy efforts have had a rough journey in the past decade. Although scientists have become increasingly convinced about anthropological climate change, change in public opinion has been underwhelming. The unexplained gap between scientific consensus and public opinion has made this topic an important research area in the realm of public understanding of science. Recent research on climate change risk perception (CCRP) has advanced an intriguing hypothesis, namely, cultural cognition thesis (CCT), which posits that the public has adequate knowledge to understand climate change science but people tend to use this knowledge solely to promote their culturally motivated view-point of climate change. This talk provides evidence to demonstrate that despite culture playing a significant role in influencing CCRP, knowledge deficiency remains a persistent problem in our society and contributes to the aforementioned gap. However, such deficits can remain undiagnosed due to limitations of survey design.
NASA Astrophysics Data System (ADS)
Kassam, K. A.; Samimi, C.; Trabucco, A.
2017-12-01
Difference is essential to solving the most complex problems faced by humanity. Anthropogenic climate change is one such "wicked problem" that demands cognitive diversity. Biophysical and social scientists must collaborate with scholars from the humanities to address practical issues of concern to local communities, which are at the forefront of impacts of climatic variation. As such, communities of inquirers (e.g. biophysical and social sciences, humanities) must work in tandem with communities of practice (e.g. farmers, fishers, gatherers, herders, hunters). This leads to co-generated knowledge where an adaptation strategy to climatic variation is locally grounded in the biophysical and sociocultural context of the communities where the impacts of climatic variation are most felt. We will present an innovative and `real time' example participatory and transdisciplinary research from an international project where we are developing integrated biophysical and sociocultural calendars, in short, ecological calendars, which are ecologically and culturally grounded in the local context to develop anticipatory capacity to anthropogenic climate change.
NASA Astrophysics Data System (ADS)
Powers, S. E.; DeWaters, J.; Dhaniyala, S.
2015-12-01
Engineers must take a leading role in addressing the challenges of mitigating climate change and adapting to the inevitable changes that our world is facing. Yet climate change classes targeting engineering students are scarce. Technical education must focus on the problem formulation and solutions that consider multiple, complex interactions between engineered systems and the Earth's climate system and recognize that transformation raises societal challenges, including trade-offs among benefits, costs, and risks. Moreover, improving engineering students' climate science literacy will require strategies that also inspire students' motivation to work toward their solution. A climate science course for engineers has been taught 5 semesters as part of a NASA Innovations in Climate Education program grant (NNXlOAB57A). The basic premise of this project was that effective instruction must incorporate scientifically-based knowledge and observations and foster critical thinking, problem solving, and decision-making skills. Lecture, in-class cooperative and computer-based learning and a semester project provide the basis for engaging students in evaluating effective mitigation and adaptation solutions. Policy and social issues are integrated throughout many of the units. The objective of this presentation is to highlight the content and pedagogical approach used in this class that helped to contribute to significant gains in engineering students' climate literacy and critical thinking competencies. A total of 89 students fully participated in a pre/post climate literacy questionnaire. As a whole, students demonstrated significant gains in climate-related content knowledge (p<0.001), affect (p<0.001), and behavior (p=0.002). Mean post scores were above a 'passing' cutoff (70%) for all three subscales. Assessment of semester project reports with a critical thinking rubric showed that the students did an excellent job of formulating problem statements and solutions in a manner that incorporated a multidimensional systems perspective. These skills are sometimes foreign to technically focused, number crunching engineering students, but are critical for using their engineering skills and profession to address climate change mitigation and adaptation strategies.
Prowse, Terry D; Furgal, Chris; Chouinard, Rebecca; Melling, Humfrey; Milburn, David; Smith, Sharon L
2009-07-01
Northern Canada is projected to experience major changes to its climate, which will have major implications for northern economic development. Some of these, such as mining and oil and gas development, have experienced rapid expansion in recent years and are likely to expand further, partly as the result of indirect effects of changing climate. This article reviews how a changing climate will affect several economic sectors including the hydroelectric, oil and gas, and mining industries as well as infrastructure and transportation, both marine and freshwater. Of particular importance to all sectors are projected changes in the cryosphere, which will create both problems and opportunities. Potential adaptation strategies that could be used to minimize the negative impacts created by a climate change are also reviewed.
Reassessing emotion in climate change communication
NASA Astrophysics Data System (ADS)
Chapman, Daniel A.; Lickel, Brian; Markowitz, Ezra M.
2017-12-01
Debate over effective climate change communication must be grounded in rigorous affective science. Rather than treating emotions as simple levers to be pulled to promote desired outcomes, emotions should be viewed as one integral component of a cognitive feedback system guiding responses to challenging decision-making problems.
Lloyd C. Irland; Darius Adams; Ralph Alig; Carter J. Betz; Chi-Chung Chen; Mark Hutchins; Bruce A. McCarl; Ken Skog; Brent L. Sohngen
2001-01-01
In this paper we discuss the problems of projecting social and economic changes affecting forests and review recent efforts to assess the wood-market impacts of possible climate changes. To illustrate the range of conditions encountered in projecting socioeconomic change linked to forests, we consider two markedly different uses: forest products markets and forest...
NASA Astrophysics Data System (ADS)
Mueller, J. A.; Runci, P. J.
2009-12-01
The recent passage of the American Climate and Energy Security Act by the U.S. House of Representatives in June of this year was a landmark in U.S. efforts to move climate change legislation through Congress. Although an historic achievement, the bill (and surrounding debate) highlights many concerns about the processes by which lawmakers and the public inform themselves about scientifically relevant problems and, subsequently, by which policy responses are crafted in a context of complexity, uncertainty, and competition for resources and attention. In light of the ever-increasing specialization of expertise in the sciences and other technical fields, and the inherent complexity of scientifically relevant problems such as climate change, society faces significant hurdles in its efforts to integrate knowledge and develop sufficient understanding of these problems to which it must respond with legislation or other effective collective or individual action. The emergence of a new class of experts who act as science-policy brokers may not be sufficient to cross these hurdles. Herein, we explore how society and the scientific community in particular can work toward closing the ever-growing gap between technical knowledge and society’s ability to comprehend and use it. Both authors are currently legislative fellows working on energy and climate change issues in the U.S. Senate.
Gonzales, Gustavo F; Zevallos, Alisson; Gonzales-Castañeda, Cynthia; Nuñez, Denisse; Gastañaga, Carmen; Cabezas, César; Naeher, Luke; Levy, Karen; Steenland, Kyle
2014-01-01
This article is a review of the pollution of water, air and the effect of climate change on the health of the Peruvian population. A major air pollutant is particulate matter less than 2.5 μ (PM 2.5). In Lima, 2,300 premature deaths annually are attributable to this pollutant. Another problem is household air pollution by using stoves burning biomass fuels, where excessive indoor exposure to PM 2.5 inside the household is responsible for approximately 3,000 annual premature deaths among adults, with another unknown number of deaths among children due to respiratory infections. Water pollution is caused by sewage discharges into rivers, minerals (arsenic) from various sources, and failure of water treatment plants. In Peru, climate change may impact the frequency and severity of El Niño Southern Oscillation (ENSO), which has been associated with an increase in cases of diseases such as cholera, malaria and dengue. Climate change increases the temperature and can extend the areas affected by vector-borne diseases, have impact on the availability of water and contamination of the air. In conclusion, Peru is going through a transition of environmental risk factors, where traditional and modern risks coexist and infectious and chronic problems remain, some of which are associated with problems of pollution of water and air.
NASA Astrophysics Data System (ADS)
Garner, G. G.; Reed, P. M.; Keller, K.
2014-12-01
Integrated assessment models (IAMs) are often used with the intent to aid in climate change decisionmaking. Numerous studies have analyzed the effects of parametric and/or structural uncertainties in IAMs, but uncertainties regarding the problem formulation are often overlooked. Here we use the Dynamic Integrated model of Climate and the Economy (DICE) to analyze the effects of uncertainty surrounding the problem formulation. The standard DICE model adopts a single objective to maximize a weighted sum of utilities of per-capita consumption. Decisionmakers, however, may be concerned with a broader range of values and preferences that are not captured by this a priori definition of utility. We reformulate the problem by introducing three additional objectives that represent values such as (i) reliably limiting global average warming to two degrees Celsius and minimizing both (ii) the costs of abatement and (iii) the damages due to climate change. We derive a set of Pareto-optimal solutions over which decisionmakers can trade-off and assess performance criteria a posteriori. We illustrate the potential for myopia in the traditional problem formulation and discuss the capability of this multiobjective formulation to provide decision support.
Coupled Ethical-Epistemic Analysis of Climate Change
NASA Astrophysics Data System (ADS)
Vezer, M.
2015-12-01
Are there inherent limitations to what we can know about how the climate will change in the years ahead? How can we use what is known about the future climate in a way that promotes ethical decision-making? These questions call for urgent attention because important policy decisions need to be made in order to prepare for climate change in North America and around the world. While the science of climate change is central to this line of inquiry, the fields of epistemology, moral, political and environmental philosophy may provide insights on how these issues should be addressed. Detailing the relationship between evidential and ethical dimensions of climate change, this research aims to improve our understanding of the interconnections among several lines of inquiry and to develop solutions to problems of decision-making under conditions of scientific uncertainty.
An Integrated Systems Approach to Designing Climate Change Adaptation Policy in Water Resources
NASA Astrophysics Data System (ADS)
Ryu, D.; Malano, H. M.; Davidson, B.; George, B.
2014-12-01
Climate change projections are characterised by large uncertainties with rainfall variability being the key challenge in designing adaptation policies. Climate change adaptation in water resources shows all the typical characteristics of 'wicked' problems typified by cognitive uncertainty as new scientific knowledge becomes available, problem instability, knowledge imperfection and strategic uncertainty due to institutional changes that inevitably occur over time. Planning that is characterised by uncertainties and instability requires an approach that can accommodate flexibility and adaptive capacity for decision-making. An ability to take corrective measures in the event that scenarios and responses envisaged initially derive into forms at some future stage. We present an integrated-multidisciplinary and comprehensive framework designed to interface and inform science and decision making in the formulation of water resource management strategies to deal with climate change in the Musi Catchment of Andhra Pradesh, India. At the core of this framework is a dialogue between stakeholders, decision makers and scientists to define a set of plausible responses to an ensemble of climate change scenarios derived from global climate modelling. The modelling framework used to evaluate the resulting combination of climate scenarios and adaptation responses includes the surface and groundwater assessment models (SWAT & MODFLOW) and the water allocation modelling (REALM) to determine the water security of each adaptation strategy. Three climate scenarios extracted from downscaled climate models were selected for evaluation together with four agreed responses—changing cropping patterns, increasing watershed development, changing the volume of groundwater extraction and improving irrigation efficiency. Water security in this context is represented by the combination of level of water availability and its associated security of supply for three economic activities (agriculture, urban, industrial) on a spatially distributed basis. The resulting combinations of climate scenarios and adaptation responses were subjected to a combined hydro-economic assessment based on the degree of water security together with its cost-effectiveness against the Business-as-usual scenario.
One hundred years: A collective case study of climate change education in Georgia
NASA Astrophysics Data System (ADS)
Bloch, Leonard Mark
This collective case study examined how five K-12 science teachers taught about climate change during Fall 2013, and asked how the University of Georgia can support climate change education. The participants were all experienced teachers, and included: three high school teachers, a middle school teacher, and an elementary school teacher. 'Postcarbonism', an emerging theoretical framework, shaped the research and guided the analysis. The teachers varied in their teaching practices and in their conceptions of 'climate change', but they were united in: 1) their focus on mitigation over adaptation, and 2) presenting climate change as a remote problem with simple solutions. The teachers drew on varied resources, but in all cases, their most valuable resources were their own skills, knowledge and personality. The University of Georgia can support climate change education by developing locally relevant educational resources. Curriculum developers might consider building upon the work of outstanding teach.
A review of the consequences of global climate change on human health.
Kim, Ki-Hyun; Kabir, Ehsanul; Ara Jahan, Shamin
2014-01-01
The impact of climate change has been significant enough to endanger human health both directly and indirectly via heat stress, degraded air quality, rising sea levels, food and water security, extreme weather events (e.g., floods, droughts, earthquakes, volcano eruptions, tsunamis, hurricanes, etc.), vulnerable shelter, and population migration. The deterioration of environmental conditions may facilitate the transmission of diarrhea, vector-borne and infectious diseases, cardiovascular and respiratory illnesses, malnutrition, etc. Indirect effects of climate change such as mental health problems due to stress, loss of homes, economic instability, and forced migration are also unignorably important. Children, the elderly, and communities living in poverty are among the most vulnerable of the harmful effects due to climate change. In this article, we have reviewed the scientific evidence for the human health impact of climate change and analyzed the various diseases in association with changes in the atmospheric environment and climate conditions.
The legitimacy of leadership in international climate change negotiations.
Karlsson, Christer; Hjerpe, Mattias; Parker, Charles; Linner, Bjorn-Ola
2012-01-01
Leadeship is an essential ingredient in reaching international agreements and overcoming the collective action problems associated with responding to climate change. In this study, we aim at answering two questions that are crucial for understanding the legitimacy of leadership in international climate change negotiations. Based on the responses of the three consecutive surveys distributed at COPs 14-16, we seek first to chart which actors are actually recognized as leaders by climate change negotiation participants. Second, we aim to explain what motivates COP participants to support different actors as leaders. Both these questions are indeed crucial for understanding the role, importance, and legitimacy of leadership in the international climate change regime. Our results show that the leadership landscape in this issue area is fragmented, with no one clear-cut leader, and strongly suggest that it is imperative for any actor seeking recognition as climate change leader to be perceived as being devoted to promoting the common good.
Palaeoclimatic insights into future climate challenges.
Alley, Richard B
2003-09-15
Palaeoclimatic data document a sensitive climate system subject to large and perhaps difficult-to-predict abrupt changes. These data suggest that neither the sensitivity nor the variability of the climate are fully captured in some climate-change projections, such as the Intergovernmental Panel on Climate Change (IPCC) Summary for Policymakers. Because larger, faster and less-expected climate changes can cause more problems for economies and ecosystems, the palaeoclimatic data suggest the hypothesis that the future may be more challenging than anticipated in ongoing policy making. Large changes have occurred repeatedly with little net forcing. Increasing carbon dioxide concentration appears to have globalized deglacial warming, with climate sensitivity near the upper end of values from general circulation models (GCMs) used to project human-enhanced greenhouse warming; data from the warm Cretaceous period suggest a similarly high climate sensitivity to CO(2). Abrupt climate changes of the most recent glacial-interglacial cycle occurred during warm as well as cold times, linked especially to changing North Atlantic freshwater fluxes. GCMs typically project greenhouse-gas-induced North Atlantic freshening and circulation changes with notable but not extreme consequences; however, such models often underestimate the magnitude, speed or extent of past changes. Targeted research to assess model uncertainties would help to test these hypotheses.
Dodo, Mahamat K
2014-01-01
Climate Change like many global problems nowadays is recognized as a threat to the international security and cooperation. In theoretical terms, it is being securitized and included in the traditional security studies. Climate change and its accompanying environmental degradation are perceived to be a threat that can have incalculable consequences on the international community. The consequences are said to have more effects in small island developing nations and Africa where many States are fragile and overwhelmed with mounting challenges. In recent years, the security implications of the climate change are being addressed from national, regional and multilateral level. Against this backdrop, this paper intends to contribute to the debate on climate change and international security and present a broader perspective on the discussion. The paper will draw from the EU-Africa partnership on climate change and is structured as follows: the first part introduces the background of the international climate change policy and its securitization, the second part covers the EU-Africa relations and EU-Africa partnership on climate change, and the third part discusses the Congo Basin Forest Partnership as a concrete example of EU-Africa Partnership on Climate Change. Lastly, the paper concludes by drawing some conclusions and offers some policy perspectives and recommendations. Q54; 055; 052; 01;
Exploring Local Approaches to Communicating Global Climate Change Information
NASA Astrophysics Data System (ADS)
Stevermer, A. J.
2002-12-01
Expected future climate changes are often presented as a global problem, requiring a global solution. Although this statement is accurate, communicating climate change science and prospective solutions must begin at local levels, each with its own subset of complexities to be addressed. Scientific evaluation of local changes can be complicated by large variability occurring over small spatial scales; this variability hinders efforts both to analyze past local changes and to project future ones. The situation is further encumbered by challenges associated with scientific literacy in the U.S., as well as by pressing economic difficulties. For people facing real-life financial and other uncertainties, a projected ``1.4 to 5.8 degrees Celsius'' rise in global temperature is likely to remain only an abstract concept. Despite this lack of concreteness, recent surveys have found that most U.S. residents believe current global warming science, and an even greater number view the prospect of increased warming as at least a ``somewhat serious'' problem. People will often be able to speak of long-term climate changes in their area, whether observed changes in the amount of snow cover in winter, or in the duration of extreme heat periods in summer. This work will explore the benefits and difficulties of communicating climate change from a local, rather than global, perspective, and seek out possible strategies for making less abstract, more concrete, and most importantly, more understandable information available to the public.
Conveying the Science of Climate Change: Explaining Natural Variability
NASA Astrophysics Data System (ADS)
Chanton, J.
2011-12-01
One of the main problems in climate change education is reconciling the role of humans and natural variability. The climate is always changing, so how can humans have a role in causing change? How do we reconcile and differentiate the anthropogenic effect from natural variability? This talk will offer several approaches that have been successful for the author. First, the context of climate change during the Pleistocene must be addressed. Second, is the role of the industrial revolution in significantly altering Pleistocene cycles, and introduction of the concept of the Anthropocene. Finally the positive feedbacks between climatic nudging due to increased insolation and greenhouse gas forcing can be likened to a rock rolling down a hill, without a leading cause. This approach has proven successful in presentations to undergraduates to state agencies.
Global change and biodiversity loss: Some impediments to response
NASA Technical Reports Server (NTRS)
Borza, Karen; Jamieson, Dale
1991-01-01
Discussed here are the effects of anthropogenic global climate change on biodiversity. The focus is on human responses to the problem. Greenhouse warming-induced climate change may shift agricultural growing belts, reduce forests of the Northern Hemisphere and drive many species to extinction, among other effects. If these changes occur together with the mass extinctions already occurring, we may suffer a profound loss of biological diversity.
Strengthening Multidisciplinary Research on Climate and Environmental Change
NASA Astrophysics Data System (ADS)
Beer, Tom; Li, Jianping; Alverson, Keith
2014-08-01
The difficulty with multidisciplinary research is finding common ground for scientists, whose approach to a particular scientific problem can differ radically. For example, there is agreement between the geophysical community and the food science and technology community that food security is an important issue. However, the climate change community sees possible solutions coming from more detailed studies on the links between climate change and agriculture, whereas the food science community sees possible solutions emerging from studies of food logistics and supply chains.
Competencies Demonstrated by Municipal Employees during Adaptation to Climate Change: A Pilot Study
ERIC Educational Resources Information Center
Pruneau, Diane; Kerry, Jackie; Blain, Sylvie; Evichnevetski, Evgueni; Deguire, Paul; Barbier, Pierre-Yves; Freiman, Viktor; Therrien, Jimmy; Langis, Joanne; Lang, Mathieu
2013-01-01
Since coastal communities are already subjected to the impacts of climate change, adaptation has become a necessity. This article presents competencies demonstrated by Canadian municipal employees during an adaptation process to sea level rise. To adapt, the participants demonstrated the following competencies: problem solving (highlighting…
DOT National Transportation Integrated Search
2016-06-01
The information contained in this report is organized as three separate but related research studies. Collectively, these studies investigate the impact of climate change and sea level rise on transportation infrastructure within portions of the Hamp...
ERIC Educational Resources Information Center
McCright, Aaron M.
2012-01-01
Promoting sustainability and dealing with complex environmental problems like climate change demand a citizenry with considerable scientific and quantitative literacy. In particular, students in the STEM disciplines of (biophysical) science, technology, engineering, and mathematics need to develop interdisciplinary skills that help them understand…
Global Climate Change and Ocean Education
NASA Astrophysics Data System (ADS)
Spitzer, W.; Anderson, J.
2011-12-01
The New England Aquarium, collaborating with other aquariums across the country, is leading a national effort to enable aquariums and related informal science education institutions to effectively communicate the impacts of climate change and ocean acidification on marine animals, habitats and ecosystems. Our goal is to build on visitors' emotional connection with ocean animals, connect to their deeply held values, help them understand causes and effects of climate change and motivate them to embrace effective solutions. Our objectives are to: (1) Build a national coalition of aquariums and related informal education institutions collaborating on climate change education; (2) Develop an interpretive framework for climate change and the ocean that is scientifically sound, research-based, field tested and evaluated; and (3) Build capacity of aquariums to interpret climate change via training for interpreters, interactive exhibits and activities and communities of practice for ongoing support. Centers of informal learning have the potential to bring important environmental issues to the public by presenting the facts, explaining the science, connecting with existing values and interests, and motivating concern and action. Centers that work with live animals (including aquariums, zoos, nature centers, national parks, national marine sanctuaries, etc.) are unique in that they attract large numbers of people of all ages (over 140 million in the US), have strong connections to the natural, and engage many visitors who may not come with a primary interest in science. Recent research indicates that that the public expects and trusts aquariums, zoos, and museums to communicate solutions to environmental and ocean issues, and to advance ocean conservation, and that climate change is the environmental issue of most concern to the public; Ironically, however, most people do not associate climate change with ocean health, or understand the critical role that the ocean plays in the Earth's climate system. The problem is not simply that the public lacks information. In fact, the problem is often that there is too much information available with much of it complicated and even contradictory. The news media, both print and electronic, tend to exacerbate this by aiming for "balance" even when there is an overwhelming scientific or policy consensus. An additional problem is "reinforcement bias," which tends to lead people to focus on information that supports what they already believe or think they know. Instead, we need an approach that facilitates "meaning-making." A "framing" approach to communication (Frameworks Institute, 2010) supports meaning-making by appealing to strongly held values, providing metaphoric language and models, and illustrating specific applications to real world problems. This approach translates complex science in a way that allows people to examine evidence, make well-informed decisions, and embrace science-based solutions. However, interpreters need specialized training, resources, up-to-date information, and ongoing support to help understand a complex topic such as climate change, its connections to the ocean, and how to relate it to the live animals, habitats and exhibits they interpret.
Civil-Military Collaboration to Address Adaptation to Climate Change in South America
2011-03-01
drought, water scarcity and soil degradation, intensify land use conflicts (especially in the Andean and Amazon Regions) and trigger environmentally...of the territories , climatic variability, and food scarcity are common problems for many of the countries of the region, which are in dire need to...resource conflicts. Because climate change can further affect such environmental issues as water, forests , soil fertility, hunger, disease, health, and
The dragons of inaction: psychological barriers that limit climate change mitigation and adaptation.
Gifford, Robert
2011-01-01
Most people think climate change and sustainability are important problems, but too few global citizens engaged in high-greenhouse-gas-emitting behavior are engaged in enough mitigating behavior to stem the increasing flow of greenhouse gases and other environmental problems. Why is that? Structural barriers such as a climate-averse infrastructure are part of the answer, but psychological barriers also impede behavioral choices that would facilitate mitigation, adaptation, and environmental sustainability. Although many individuals are engaged in some ameliorative action, most could do more, but they are hindered by seven categories of psychological barriers, or "dragons of inaction": limited cognition about the problem, ideological world views that tend to preclude pro-environmental attitudes and behavior, comparisons with key other people, sunk costs and behavioral momentum, discredence toward experts and authorities, perceived risks of change, and positive but inadequate behavior change. Structural barriers must be removed wherever possible, but this is unlikely to be sufficient. Psychologists must work with other scientists, technical experts, and policymakers to help citizens overcome these psychological barriers.
NASA Astrophysics Data System (ADS)
Kirilenko, A.; Dronin, N.
2010-12-01
Water is the major factor, limiting agriculture of the five Former Soviet Union (FSU) of Central Asia. Elevated topography prevents moist and warm air from the Atlantic and Indian Oceans from entering the region.With exception of Kazakhstan, agriculture is generally restricted to oases and irrigated lands along the major rivers and canals. Availability of water for irrigation is the major factor constraining agriculture in the region, and conflicts over water are not infrequent. The current water crisis in the region is largely due to human activity; however the region is also strongly impacted by the climate. In multiple locations, planned and autonomous adaptations to climate change have already resulted in changes in agriculture, such as a dramatic increase in irrigation, or shift in crops towards the ones better suited for warmer and dryer climate; however, it is hard to differentiate between the effects of overall management improvement and the avoidance of climate-related losses. Climate change will contribute to water problems, escalating irrigation demand during the drought period, and increasing water loss with evaporation. The future of the countries of the Aral Sea basin then depends on both the regional scenario of water management policy and a global scenario of climate change, and is integrated with global socioeconomic scenarios. We formulate a set of regional policy scenarios (“Business as Usual”, “Falling Behind” and “Closing the Gap”) and demonstrate how each of them corresponds to IPCC SRES scenarios, the latter used as an input to the General Circulation Models (GCMs). Then we discuss the relative effectiveness of the introduced scenarios for mitigating water problems in the region, taking into account the adaptation through changing water demand for agriculture. Finally, we introduce the results of multimodel analysis of GCM climate projections, especially in relation to the change in precipitation and frequency of droughts, and discuss the impact of climate change on future development of the region.
Ecological response to global climatic change
Malanson, G.P.; Butler, D.R.; Walsh, S. J.; Janelle, Donald G.; Warf, Barney; Hansen, Kathy
2004-01-01
Climate change and ecological change go hand in hand. Because we value our ecological environment, any change has the potential to be a problem. Geographers have been drawn to this challenge, and have been successful in addressing it, because the primary ecological response to climate changes in the past — the waxing and waning of the great ice sheets over the past 2 million years – was the changing geographic range of the biota. Plants and animals changed their location. Geographers have been deeply involved in documenting the changing biota of the past, and today we are called upon to help assess the possible responses to ongoing and future climatic change and, thus, their impacts. Assessing the potential responses is important for policy makers to judge the outcomes of action or inaction and also sets the stage for preparation for and mitigation of change.
Global climate change, war, and population decline in recent human history
Zhang, David D.; Brecke, Peter; Lee, Harry F.; He, Yuan-Qing; Zhang, Jane
2007-01-01
Although scientists have warned of possible social perils resulting from climate change, the impacts of long-term climate change on social unrest and population collapse have not been quantitatively investigated. In this study, high-resolution paleo-climatic data have been used to explore at a macroscale the effects of climate change on the outbreak of war and population decline in the preindustrial era. We show that long-term fluctuations of war frequency and population changes followed the cycles of temperature change. Further analyses show that cooling impeded agricultural production, which brought about a series of serious social problems, including price inflation, then successively war outbreak, famine, and population decline successively. The findings suggest that worldwide and synchronistic war–peace, population, and price cycles in recent centuries have been driven mainly by long-term climate change. The findings also imply that social mechanisms that might mitigate the impact of climate change were not significantly effective during the study period. Climate change may thus have played a more important role and imposed a wider ranging effect on human civilization than has so far been suggested. Findings of this research may lend an additional dimension to the classic concepts of Malthusianism and Darwinism. PMID:18048343
Global climate change, war, and population decline in recent human history.
Zhang, David D; Brecke, Peter; Lee, Harry F; He, Yuan-Qing; Zhang, Jane
2007-12-04
Although scientists have warned of possible social perils resulting from climate change, the impacts of long-term climate change on social unrest and population collapse have not been quantitatively investigated. In this study, high-resolution paleo-climatic data have been used to explore at a macroscale the effects of climate change on the outbreak of war and population decline in the preindustrial era. We show that long-term fluctuations of war frequency and population changes followed the cycles of temperature change. Further analyses show that cooling impeded agricultural production, which brought about a series of serious social problems, including price inflation, then successively war outbreak, famine, and population decline successively. The findings suggest that worldwide and synchronistic war-peace, population, and price cycles in recent centuries have been driven mainly by long-term climate change. The findings also imply that social mechanisms that might mitigate the impact of climate change were not significantly effective during the study period. Climate change may thus have played a more important role and imposed a wider ranging effect on human civilization than has so far been suggested. Findings of this research may lend an additional dimension to the classic concepts of Malthusianism and Darwinism.
NASA Astrophysics Data System (ADS)
Roman, Carolina
2010-05-01
Climate change is gaining attention as a significant strategic issue for localities that rely on their business sectors for economic viability. For businesses in the tourism sector, considerable research effort has sought to characterise the vulnerability to the likely impacts of future climate change through scenarios or ‘end-point' approaches (Kelly & Adger, 2000). Whilst useful, there are few demonstrable case studies that complement such work with a ‘start-point' approach that seeks to explore contextual vulnerability (O'Brien et al., 2007). This broader approach is inclusive of climate change as a process operating within a biophysical system and allows recognition of the complex interactions that occur in the coupled human-environmental system. A problem-oriented and interdisciplinary approach was employed at Alpine Shire, in northeast Victoria Australia, to explore the concept of contextual vulnerability and adaptability to stressors that include, but are not limited to climatic change. Using a policy sciences approach, the objective was to identify factors that influence existing vulnerabilities and that might consequently act as barriers to effective adaptation for the Shire's business community involved in the tourism sector. Analyses of results suggest that many threats, including the effects climate change, compete for the resources, strategy and direction of local tourism management bodies. Further analysis of conditioning factors revealed that many complex and interacting factors define the vulnerability and adaptive capacity of the Shire's tourism sector to the challenges of global change, which collectively have more immediate implications for policy and planning than long-term future climate change scenarios. An approximation of the common interest, i.e. enhancing capacity in business acumen amongst tourism operators, would facilitate adaptability and sustainability through the enhancement of social capital in this business community. Kelly, P. M., & Adger, W. N. (2000). Theory and practice in assessing vulnerability to climatic change and facilitating adaptation. Climatic Change, 47, 325-352. O'Brien, K., Eriksen, S., Nygaard, L. P., & Schjolden, A. (2007). Why different interpretations of vulnerability matter in climate change discourses. Climate Policy, 7, 73-88.
[Research progress in water use efficiency of plants under global climate change].
Wang, Qing-wei; Yu, Da-pao; Dai, Li-min; Zhou, Li; Zhou, Wang-ming; Qi, Guang; Qi, Lin; Ye, Yu-jing
2010-12-01
Global climate change is one of the most concerned environmental problems in the world since the 1980s, giving significant effects on the plant productivity and the water transport and use patterns. These effects would be reflected in the water use efficiency (WUE) of individual plants, communities, and ecosystems, and ultimately, in the vegetation distribution pattern, species composition, and ecosystem structure. To study the WUE of plants would help to the understanding and forecasting of the responses of terrestrial vegetation to global climate change, and to the adoption of adaptive strategies. This paper introduced the concept of plant WUE and the corresponding measurement techniques at the scales of leaf, individual plant, community, and ecosystem, and reviewed the research progress in the effects of important climatic factors such as elevated atmospheric CO2 concentration, precipitation pattern, nitrogen deposition, and their combination on the plant WUE, as well as the variation characteristics of plant WUE and the adaptive survival strategies of plants under different site conditions. Some problems related to plant WUE research were pointed out, and the future research directions in the context of global climate change were prospected.
Climate Change Adopted Building Envelope as A Protector of Human Health in the Urban Environment
NASA Astrophysics Data System (ADS)
Januszkiewicz, Krystyna
2017-10-01
Recently, an expanded understanding of building performance acknowledges that all forces acting on buildings (climate, energies, information, and human agents) are not static and fixed, but rather mutable and transient. With the use of parametric and multi-criteria optimization digital tools, buildings’ envelopes can be designed to respond to various requirements. This paper explores the possibilities of architectural design to benefit human conditions, which encompasses mental well-being, environmental quality of life during the Climate Change era. The first part of the paper defines the main factors (such as: lack of green nature and sunlight, noise and pollution) which are influencing the formation of psychological disorder in big cities. The negative impact of these factors is constantly increasing in the time of Climate Change progressing. The second part presents results of the research program undertaken at West Pomeranian University of Technology in Szczecin by author. The program goes on to attempt to solve the problem through architectural design. This study highlights a social problem, such as mental well-being, resulting from urbanization or effects of the climate change, and serves as a useful background for further research on the possibilities of redefining sustainable and human friendly design.
Chowdhury, Abhiroop; Maiti, Subodh Kumar; Bhattacharyya, Santanu
2016-01-01
Global consciousness on climate change problems and adaptation revolves around the disparity of information sharing and communication gap between theoretical scientific knowledge at academic end and practical implications of these at the vulnerable populations' end. Coastal communities facing socio-economic stress, like densely populated Sundarbans, are the most affected part of the world, exposed to climate change problems and uncertainties. This article explores the successes of a socio-environmental project implemented at Indian Sundarbans targeted towards economic improvement and aims at communicating environmental conservation through organized community participation. Participatory rural appraisal (PRA) and the wealth rank tool (WRT) were used to form a "group based organization" with 2100 vulnerable families to give them knowledge about capacity building, disaster management, resource conservation and sustainable agriculture practices. Training was conducted with the selected group members on resource conservation, institution building, alternative income generation activities (AIGA) like, Poultry, Small business, Tricycle van, Organic farming and disaster management in a participatory mode. The climate change 'problems-solutions' were communicated to this socio-economically marginalized and ostracized community through participatory educational theater (PET). WRT revealed that 45 % of the population was under economic stress. Out of 2100 beneficiaries', 1015 beneficiaries' started organic farming, 133 beneficiaries' adopted poultry instead of resource exploitive livelihood and 71 beneficiaries' engaged themselves with small business, which was the success stories of this project. To mitigate disaster, 10-committees were formed and the endemic knowledge about climate change was recorded by participatory method validated through survey by structured questionnaire. As a part of this project 87 ha of naked deforested mudflat was reclaimed with endangered mangroves involving target community members aimed to sequester CO2, control soil erosion and act as a barrier during natural disasters. This case study concluded that participatory method of communication, aiming not only to communicate theoretical knowledge, but also to devise adaptation strategies through conservation of endemic knowledge, popularizing sustainability through Micro Finance Institutions and promoting AIGA along with motivating vulnerable community to restore degraded forest lands, could be a effective solution to practically combat climate change problems.
Inadvertent Weather Modification in Urban Areas: Lessons for Global Climate Change.
NASA Astrophysics Data System (ADS)
Changnon, Stanley A.
1992-05-01
Large metropolitan areas in North America, home to 65% of the nation's population, have created major changes in their climates over the past 150 years. The rate and amount of the urban climate change approximate those being predicted globally using climate models. Knowledge of urban weather and climate modification holds lessons for the global climate change issue. First, adjustments to urban climate changes can provide guidance for adjusting to global change. A second lesson relates to the difficulty but underscores the necessity of providing scientifically credible proof of change within the noise of natural climatic variability. The evolution of understanding about how urban conditions influence weather reveals several unexpected outcomes, particularly relating to precipitation changes. These suggest that similar future surprises can be expected in a changed global climate, a third lesson. In-depth studies of how urban climate changes affected the hydrologic cycle, the regional economy, and human activities were difficult because of data problems, lack of impact methodology, and necessity for multi disciplinary investigations. Similar impact studies for global climate change will require diverse scientific talents and funding commitments adequate to measure the complexity of impacts and human adjustments. Understanding the processes whereby urban areas and other human activities have altered the atmosphere and changed clouds and precipitation regionally appears highly relevant to the global climate-change issue. Scientific and governmental policy development needs to recognize an old axiom that became evident in the studies of inadvertent urban and regional climate change and their behavioral implications: Think globally but act locally. Global climate change is an international issue, and the atmosphere must be treated globally. But the impacts and the will to act and adjust will occur regionally.
VALUE - A Framework to Validate Downscaling Approaches for Climate Change Studies
NASA Astrophysics Data System (ADS)
Maraun, Douglas; Widmann, Martin; Gutiérrez, José M.; Kotlarski, Sven; Chandler, Richard E.; Hertig, Elke; Wibig, Joanna; Huth, Radan; Wilke, Renate A. I.
2015-04-01
VALUE is an open European network to validate and compare downscaling methods for climate change research. VALUE aims to foster collaboration and knowledge exchange between climatologists, impact modellers, statisticians, and stakeholders to establish an interdisciplinary downscaling community. A key deliverable of VALUE is the development of a systematic validation framework to enable the assessment and comparison of both dynamical and statistical downscaling methods. Here, we present the key ingredients of this framework. VALUE's main approach to validation is user-focused: starting from a specific user problem, a validation tree guides the selection of relevant validation indices and performance measures. Several experiments have been designed to isolate specific points in the downscaling procedure where problems may occur: what is the isolated downscaling skill? How do statistical and dynamical methods compare? How do methods perform at different spatial scales? Do methods fail in representing regional climate change? How is the overall representation of regional climate, including errors inherited from global climate models? The framework will be the basis for a comprehensive community-open downscaling intercomparison study, but is intended also to provide general guidance for other validation studies.
VALUE: A framework to validate downscaling approaches for climate change studies
NASA Astrophysics Data System (ADS)
Maraun, Douglas; Widmann, Martin; Gutiérrez, José M.; Kotlarski, Sven; Chandler, Richard E.; Hertig, Elke; Wibig, Joanna; Huth, Radan; Wilcke, Renate A. I.
2015-01-01
VALUE is an open European network to validate and compare downscaling methods for climate change research. VALUE aims to foster collaboration and knowledge exchange between climatologists, impact modellers, statisticians, and stakeholders to establish an interdisciplinary downscaling community. A key deliverable of VALUE is the development of a systematic validation framework to enable the assessment and comparison of both dynamical and statistical downscaling methods. In this paper, we present the key ingredients of this framework. VALUE's main approach to validation is user- focused: starting from a specific user problem, a validation tree guides the selection of relevant validation indices and performance measures. Several experiments have been designed to isolate specific points in the downscaling procedure where problems may occur: what is the isolated downscaling skill? How do statistical and dynamical methods compare? How do methods perform at different spatial scales? Do methods fail in representing regional climate change? How is the overall representation of regional climate, including errors inherited from global climate models? The framework will be the basis for a comprehensive community-open downscaling intercomparison study, but is intended also to provide general guidance for other validation studies.
Climate Change Education: Student Media Production to Educate and Engage
NASA Astrophysics Data System (ADS)
Rooney-Varga, J. N.; Brisk, A. A.; Ledley, T. S.; Shuldman, M.
2011-12-01
Climate change education offers many challenges, including the complexity of the natural and human systems involved, a need for a multi-disciplinary perspective, and the psychological barriers to learning that result from a problem that frequently elicits a sense of being overwhelmed and powerless. The implications of climate change impacts and/or solutions can be especially overwhelming for today's students, who are likely to be confronted with many projected changes within their lifetimes. We are developing approaches to incorporate video production by students at both the high school and university levels in order to overcome many of the challenges unique to climate change education. Through media production, students are asked to convey complex topics using clear, simple language and metaphor, so their content knowledge must be deep enough to educate others. Video production is a team effort (director, camera person, editor, etc.) and inherently creates an opportunity for learning in a social context, which has been shown to lead to better learning outcomes in climate change education. Video production also promotes the basic tenets of engagement theory, in which a small group of students is in constant contact with the content and, ideally, creates a product that can be disseminated broadly. Lastly, putting students behind the camera can give them a voice and a sense of empowerment, fostering active participation in the learning process. While video is a medium that is readily disseminated to a broad audience, our focus is on the process (i.e., learning outcomes of students directly involved in media production), not the product. However, we have found that providing students with a means to add their voices to the broader public's discussion of climate change has a positive impact on student engagement with climate change science and on public awareness this problem beyond the classroom. While student-produced media pieces are not intended to provide in-depth scientific information to the broader public, we have found that they can be successful in conveying some of the key, basic concepts needed to understand anthropogenic climate change. Some of these concepts include the causal relationships between fossil fuel-based energy systems, atmospheric carbon dioxide concentrations, and climate change; the distinction between natural and anthropogenic processes in the carbon cycle; impacts of climate change on ecosystem services; and transitioning to renewable energy systems that do not emit carbon dioxide is necessary to avert 'dangerous' climate change.
NASA Astrophysics Data System (ADS)
Shulgina, T. M.; Gordova, Y. E.; Martynova, Y. V.
2014-12-01
A problem of making education relevant to the workplace tasks is a key problem of higher education in the professional field of environmental sciences. To answer this challenge several new courses for students of "Climatology" and "Meteorology" specialties were developed and implemented at the Tomsk State University, which comprises theoretical knowledge from up-to-date environmental sciences with computational tasks. To organize the educational process we use an open-source course management system Moodle (www.moodle.org). It gave us an opportunity to combine text and multimedia in a theoretical part of educational courses. The hands-on approach is realized through development of innovative trainings which are performed within the information-computational web GIS platform "Climate" (http://climate.scert.ru/). The platform has a set of tools and data bases allowing a researcher to perform climate changes analysis on the selected territory. The tools are also used for students' trainings, which contain practical tasks on climate modeling and climate changes assessment and analysis. Laboratory exercises are covering three topics: "Analysis of regional climate changes"; "Analysis of climate extreme indices on the regional scale"; and "Analysis of future climate". They designed to consolidate students' knowledge of discipline, to instill in them the skills to work independently with large amounts of geophysical data using modern processing and analysis tools of web-GIS platform "Climate" and to train them to present results obtained on laboratory work as reports with the statement of the problem, the results of calculations and logically justified conclusion. Thus, students are engaged in n the use of modern tools of the geophysical data analysis and it cultivates dynamic of their professional learning. The approach can help us to fill in this gap because it is the only approach that offers experience, increases students involvement, advance the use of modern information and communication tools. Financial support for this research from the RFBR (13-05-12034, 14-05-00502), SB RAS project VIII.80.2.1 and grant of the President of RF (№ 181) is acknowledged.
Motivated recall in the service of the economic system: The case of anthropogenic climate change.
Hennes, Erin P; Ruisch, Benjamin C; Feygina, Irina; Monteiro, Christopher A; Jost, John T
2016-06-01
The contemporary political landscape is characterized by numerous divisive issues. Unlike many other issues, however, much of the disagreement about climate change centers not on how best to take action to address the problem, but on whether the problem exists at all. Psychological studies indicate that, to the extent that sustainability initiatives are seen as threatening to the socioeconomic system, individuals may downplay environmental problems in order to defend and protect the status quo. In the current research, participants were presented with scientific information about climate change and later asked to recall details of what they had learned. Individuals who were experimentally induced (Study 1) or dispositionally inclined (Studies 2 and 3) to justify the economic system misremembered the evidence to be less serious, and this was associated with increased skepticism. However, when high system justifiers were led to believe that the economy was in a recovery, they recalled climate change information to be more serious than did those assigned to a control condition. When low system justifiers were led to believe that the economy was in recession, they recalled the information to be less serious (Study 3). These findings suggest that because system justification can impact information processing, simply providing the public with scientific evidence may be insufficient to inspire action to mitigate climate change. However, linking environmental information to statements about the strength of the economic system may satiate system justification needs and break the psychological link between proenvironmental initiatives and economic risk. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Global Climate Change and Society: Scientific, Policy, and Philosophic Themes
NASA Astrophysics Data System (ADS)
Frodeman, R.; Bullock, M. A.
2001-12-01
The summer of 2001 saw the inauguration of the Global Climate Change and Society Program (GCCS), an eight week, NSF-funded experiment in undergraduate pedagogy held at the University of Colorado and the National Center for Atmospheric Research. Acknowledging from the start that climate change is more than a scientific problem, GCCS began with the simultaneous study of basic atmospheric physics, classical and environmental philosophy, and public policy. In addition to lectures and discussions on these subjects, our twelve undergraduates (majoring in the physical sciences, social sciences, and humanities) also participated in internships with scholars and researchers at NCAR, University of Colorado's Center of the American West, and the Colorado School of Mines, on specific issues in atmospheric science, science policy, and ethics and values. This talk will discuss the outcomes of GCCS: specifically, new insights into interdisciplinary pedagogy and the student creation of an extraordinary "deliverable," a group summary assessment of the global climate change debate. The student assessment called for an integrated discussion of both the science of climate change and the human values related to how we inhabit the world. The problems facing society today cannot be addressed through the single-minded adherence to science and technology; instead, society must develop new means of integrating the humanities and science in a meaningful dialogue about our common future.
Novel approaches to reducing uncertainty in regional climate predictions (Invited)
NASA Astrophysics Data System (ADS)
Ammann, C. M.
2009-12-01
Regional planning in preparation for future climate changes is rapidly gaining importance. However, compared to the global mean projections, correctly anticipating regional climate is often much more difficult, particularly with regard to hydrologic changes. The reason for the high, inherent uncertainty in location specific forecasts arises on one hand from the superposition of large internal variability in the atmosphere-ocean system on the more gradual changes. On the other hand, this problem is confounded by the fact that regional climate records are often short and therefore offer little guidance as to how an underlying trend can be identified within the noise. The use of indirect climate information (proxy records) from a host of natural archives has made significant progress recently. Based on an extended record, process studies can help reveal the regional response to changes in large scale climate that likely have to be expected. But in order to come up with robust, season and parameter specific (temperature versus moisture) climate reconstructions, comprehensive data compilations are needed that integrate proxy records of different characteristics, temporal representations, and different systematic and sampling uncertainties. Based on understanding of physical processes, and making explicit use of that knowledge, new dynamical and statistical techniques in paleoclimatology are being developed and explored. In addition to improved estimates of the past climate, the cascade of uncertainties is directly taken into account so that errors can more comprehensively be assessed. A brief overview of the problems and its potential implications for regional planning is followed by an application that demonstrates how collaboration between paleoclimatologists, climate modelers and statisticians can advance our understanding of the climate system and how agencies, businesses and individuals might be able to make better informed decisions in preparation for future climate.
Risk to a Changing Climate in the Mexico City Metropolitan Area
NASA Astrophysics Data System (ADS)
Vargas, N. D.
2016-12-01
The issue of climate change has dominated the atmospheric sciences agenda in recent decades. The concern about an increase in climate related disasters, mainly in large population centers, has led to ask whether they are mainly due to changes in climate or in vulnerability.The Mexico City Metropolitan Area (MCMA) is an example of megalopolis under high climate risk, where floods, landslides, health problems, high air pollution events, socioeconomic droughts are becoming important environmental and social problems. As urbanization spreads and population increases exposure to natural hazards increases, and so the magnitude of risk to a changing climate and the negative impacts. Since the late nineteenth century, in the MCMA an average maximum temperature could be around 22°C, whereas today it is about 24.5ºC. That is, the increase in the average temperature in Mexico City is around 3°C in a hundred years. But there are areas where an increase in the average temperature is similar in only thirty years. The heating rate of the city can vary depending on the change in land use. Areas that conserve forested regions in the process of urbanization tend to warm less than areas where the transformation into concrete and cement is almost complete. Thus, the climate of the MCMA shows important changes mainly in relation to land use changes. Global warming and natural climate variability were also analyzed as possible forcing factors of the observed warming by comparing low frequency variations in local temperature and indices for natural forcing. The hydrological cycle of the MCMA has also changed with urbanization. The "bubble of hot air" over the urban area has more capacity to hold moisture now than before the UHI. However, the increased risk to floods, heat or drought appears to be related not only to more frequent intense climatic hazards induced by the urbanization effect. This process also induces increased vulnerability to a changing climate. The establishment of areas with trees, water parks or green infrastructure can recover some ecosystem services and therefore, reduce climate risk in cities, with co-benefits that costly infrastructure does not always provide. Contemplating the services of urban ecosystems in the management of cities would lead to lower impacts of climate change for residents of cities.
Hellmann, Jessica J.; Grundel, Ralph; Hoving, Chris; Schuurman, Gregor W.
2016-01-01
As climate change moves insect systems into uncharted territory, more knowledge about insect dynamics and the factors that drive them could enable us to better manage and conserve insect communities. Climate change may also require us revisit insect management goals and strategies and lead to a new kind of scientific engagement in management decision-making. Here we make five key points about the role of insect science in aiding and crafting management decisions, and we illustrate those points with the monarch butterfly and the Karner blue butterfly, two species undergoing considerable change and facing new management dilemmas. Insect biology has a strong history of engagement in applied problems, and as the impacts of climate change increase, a reimagined ethic of entomology in service of broader society may emerge. We hope to motivate insect biologists to contribute time and effort toward solving the challenges of climate change.
Global Warning: Project-Based Science Inspired by the Intergovernmental Panel on Climate Change
ERIC Educational Resources Information Center
Colaianne, Blake
2015-01-01
Misconceptions about climate change are common, which suggests a need to effectively address the subject in the classroom. This article describes a project-based science activity in which students report on the physical basis, adaptations, and mitigation of this global problem, adapting the framework of the United Nations' Intergovernmental Panel…
SimilarityExplorer: A visual inter-comparison tool for multifaceted climate data
J. Poco; A. Dasgupta; Y. Wei; W. Hargrove; C. Schwalm; R. Cook; E. Bertini; C. Silva
2014-01-01
Inter-comparison and similarity analysis to gauge consensus among multiple simulation models is a critical visualization problem for understanding climate change patterns. Climate models, specifically, Terrestrial Biosphere Models (TBM) represent time and space variable ecosystem processes, for example, simulations of photosynthesis and respiration, using algorithms...
NASA Astrophysics Data System (ADS)
Drewes, Andrea; Henderson, Joseph; Mouza, Chrystalla
2018-01-01
Climate change is one of the most pressing challenges facing society, and climate change educational models are emerging in response. This study investigates the implementation and enactment of a climate change professional development (PD) model for science educators and its impact on student learning. Using an intrinsic case study methodology, we focused analytic attention on how one teacher made particular pedagogical and content decisions, and the implications for student's conceptual learning. Using anthropological theories of conceptual travel, we traced salient ideas through instructional delivery and into student reasoning. Analysis showed that students gained an increased understanding of the enhanced greenhouse effect and the implications of human activity on this enhanced effect at statistically significant levels and with moderate effect sizes. However, students demonstrated a limited, though non-significant gain on the likely effects of climate change. Student reasoning on the tangible actions to deal with these problems also remained underdeveloped, reflecting omissions in both PD and teacher enactment. We discuss implications for the emerging field of climate change education.
Farmers' perceptions of climate change and agricultural adaptation strategies in rural Sahel.
Mertz, Ole; Mbow, Cheikh; Reenberg, Anette; Diouf, Awa
2009-05-01
Farmers in the Sahel have always been facing climatic variability at intra- and inter-annual and decadal time scales. While coping and adaptation strategies have traditionally included crop diversification, mobility, livelihood diversification, and migration, singling out climate as a direct driver of changes is not so simple. Using focus group interviews and a household survey, this study analyzes the perceptions of climate change and the strategies for coping and adaptation by sedentary farmers in the savanna zone of central Senegal. Households are aware of climate variability and identify wind and occasional excess rainfall as the most destructive climate factors. Households attribute poor livestock health, reduced crop yields and a range of other problems to climate factors, especially wind. However, when questions on land use and livelihood change are not asked directly in a climate context, households and groups assign economic, political, and social rather than climate factors as the main reasons for change. It is concluded that the communities studied have a high awareness of climate issues, but climatic narratives are likely to influence responses when questions mention climate. Change in land use and livelihood strategies is driven by adaptation to a range of factors of which climate appears not to be the most important. Implications for policy-making on agricultural and economic development will be to focus on providing flexible options rather than specific solutions to uncertain climate.
Assessing the Role of Climate Change in Malaria Transmission in Africa.
Ngarakana-Gwasira, E T; Bhunu, C P; Masocha, M; Mashonjowa, E
2016-01-01
The sensitivity of vector borne diseases like malaria to climate continues to raise considerable concern over the implications of climate change on future disease dynamics. The problem of malaria vectors shifting from their traditional locations to invade new zones is of important concern. A mathematical model incorporating rainfall and temperature is constructed to study the transmission dynamics of malaria. The reproduction number obtained is applied to gridded temperature and rainfall datasets for baseline climate and future climate with aid of GIS. As a result of climate change, malaria burden is likely to increase in the tropics, the highland regions, and East Africa and along the northern limit of falciparum malaria. Falciparum malaria will spread into the African highlands; however it is likely to die out at the southern limit of the disease.
Sensitivity of water resources in the Delaware River basin to climate variability and change
Ayers, Mark A.; Wolock, David M.; McCabe, Gregory J.; Hay, Lauren E.; Tasker, Gary D.
1994-01-01
Because of the greenhouse effect, projected increases in atmospheric carbon dioxide levels might cause global warming, which in turn could result in changes in precipitation patterns and evapotranspiration and in increases in sea level. This report describes the greenhouse effect; discusses the problems and uncertainties associated with the detection, prediction, and effects of climate change; and presents the results of sensitivity analyses of how climate change might affect water resources in the Delaware River basin. Sensitivity analyses suggest that potentially serious shortfalls of certain water resources in the basin could result if some scenarios for climate change come true . The results of model simulations of the basin streamflow demonstrate the difficulty in distinguishing the effects that climate change versus natural climate variability have on streamflow and water supply . The future direction of basin changes in most water resources, furthermore, cannot be precisely determined because of uncertainty in current projections of regional temperature and precipitation . This large uncertainty indicates that, for resource planning, information defining the sensitivities of water resources to a range of climate change is most relevant . The sensitivity analyses could be useful in developing contingency plans for evaluating and responding to changes, should they occur.
Studying Weather and Climate Extremes in a Non-stationary Framework
NASA Astrophysics Data System (ADS)
Wu, Z.
2010-12-01
The study of weather and climate extremes often uses the theory of extreme values. Such a detection method has a major problem: to obtain the probability distribution of extremes, one has to implicitly assume the Earth’s climate is stationary over a long period within which the climatology is defined. While such detection makes some sense in a purely statistical view of stationary processes, it can lead to misleading statistical properties of weather and climate extremes caused by long term climate variability and change, and may also cause enormous difficulty in attributing and predicting these extremes. To alleviate this problem, here we report a novel non-stationary framework for studying weather and climate extremes in a non-stationary framework. In this new framework, the weather and climate extremes will be defined as timescale-dependent quantities derived from the anomalies with respect to non-stationary climatologies of different timescales. With this non-stationary framework, the non-stationary and nonlinear nature of climate system will be taken into account; and the attribution and the prediction of weather and climate extremes can then be separated into 1) the change of the statistical properties of the weather and climate extremes themselves and 2) the background climate variability and change. The new non-stationary framework will use the ensemble empirical mode decomposition (EEMD) method, which is a recent major improvement of the Hilbert-Huang Transform for time-frequency analysis. Using this tool, we will adaptively decompose various weather and climate data from observation and climate models in terms of the components of the various natural timescales contained in the data. With such decompositions, the non-stationary statistical properties (both spatial and temporal) of weather and climate anomalies and of their corresponding climatologies will be analyzed and documented.
Floods in a changing climate: a review.
Hunt, J C R
2002-07-15
This paper begins with an analysis of flooding as a natural disaster for which the solutions to the environmental, social and economic problems are essentially those of identifying and overcoming hazards and vulnerability, reducing risk and damaging consequences. Long-term solutions to flooding problems, especially in a changing climate, should be sought in the wider context of developing more sustainable social organization, economics and technology. Then, developments are described of how scientific understanding, supported by practical modelling, is leading to predictions of how human-induced changes to climatic and geological conditions are likely to influence flooding over at least the next 300 years, through their influences on evaporation, precipitation, run-off, wind storm and sea-level rise. Some of the outstanding scientific questions raised by these problems are highlighted, such as the statistical and deterministic prediction of extreme events, the understanding and modelling of mechanisms that operate on varying length- and time-scales, and the complex interactions between biological, ecological and physical problems. Some options for reducing the impact of flooding by new technology include both improved prediction and monitoring with computer models, and remote sensing, flexible and focused warning systems, and permanent and temporary flood-reduction systems.
Climate Change and Public Health.
Ciesielski, Timothy
2017-05-01
It is clear that the public health community is concerned about the human health impacts of climate change, but are we inadvertently underestimating the scope of the problem and obfuscating potentially useful interventions by using a narrow intellectual frame in our discussions with policy makers? If we take a more holistic approach, we see that the public health impacts of climate change are only one subset of the enormous public health impacts of fossil fuel burning. This broader perspective can provide a more accurate and comprehensive assessment that is more useful for decision making in public policy settings.
Climate Change, Climate Justice, and Environmental Health: Implications for the Nursing Profession.
Nicholas, Patrice K; Breakey, Suellen
2017-11-01
Climate change is an emerging challenge linked to negative outcomes for the environment and human health. Since the 1960s, there has been a growing recognition of the need to address climate change and the impact of greenhouse gas emissions implicated in the warming of our planet. There are also deleterious health outcomes linked to complex climate changes that are emerging in the 21st century. This article addresses the social justice issues associated with climate change and human health and discussion of climate justice. Discussion paper. A literature search of electronic databases was conducted for articles, texts, and documents related to climate change, climate justice, and human health. The literature suggests that those who contribute least to global warming are those who will disproportionately be affected by the negative health outcomes of climate change. The concept of climate justice and the role of the Mary Robinson Foundation-Climate Justice are discussed within a framework of nursing's professional responsibility and the importance of social justice for the world's people. The nursing profession must take a leadership role in engaging in policy and advocacy discussions in addressing the looming problems associated with climate change. Nursing organizations have adopted resolutions and engaged in leadership roles to address climate change at the local, regional, national, and global level. It is essential that nurses embrace concepts related to social justice and engage in the policy debate regarding the deleterious effects on human health related to global warming and climate change. Nursing's commitment to social justice offers an opportunity to offer significant global leadership in addressing the health implications related to climate change. Recognizing the negative impacts of climate change on well-being and the underlying socioeconomic reasons for their disproportionate and inequitable distribution can expand and optimize the profession's role in education, practice, research, and policy-making efforts to address climate change. © 2017 Sigma Theta Tau International.
Media coverage of climate change in Russia: governmental bias and climate silence.
Poberezhskaya, Marianna
2015-01-01
This paper explores which actors and factors influence media coverage of climate change in Russia. It does this by analysing the coverage of three events by five Russian national newspapers (Komsomol'skaya pravda, Rossiyskaya gazeta, Izvestiya, Kommersant and Sovetskaya Rossiya). The three events are the Kyoto Conference in 1997, the Copenhagen Conference in 2009 and the Russian heat-wave of 2010. This paper concludes that regardless of the ownership structure of the newspapers or their dependence on advertising, there is little difference in quantity and quality of overall coverage on climate change. With most newspapers relying on Russian officials as information sources, almost none criticise or question Russian climate policy. Furthermore, the article concludes that, in Russia, the omission of climate change issues from discussion in national newspapers becomes a greater problem than biased coverage, as the lack of commentary decidedly prevents these issues from entering the public debate. © The Author(s) 2014.
Aerni, Philipp
2013-05-25
Despite its potential to address climate change problems, the role of biotechnology is hardly ever touched upon in the global sustainability debate. We wanted to know why. For that purpose, we conducted a global online stakeholder survey on biotechnology and climate change. The relevant stakeholders and their representatives were selected by means of key informants that were familiar with either of the two debates. A self-assessment showed that a majority of respondents felt more familiar with the climate change than the biotechnology debate. Even though the survey results reveal that most respondents consider the potential of modern biotechnology to address climate change to be substantial, the policy network analysis revealed that one stakeholder who is not just considered to be relevant in both debates but also crucial in the formation of global public opinion, strongly rejects the view that biotechnology is a climate-friendly and therefore clean technology. This influential opposition seems to ensure that the biotechnology and the climate change debates do not mix. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Giuliani, Matteo; Mainardi, Matteo; Castelletti, Andrea; Gandolfi, Claudio
2013-04-01
Agriculture is the main land use in the world and represents also the sector characterised by the highest water demand. To meet projected growth in human population and per-capita food demand, agricultural production will have to significantly increase in the next decades. Moreover, water availability is nowadays a limiting factor for agricultural production, and is expected to decrease over the next century due to climate change impacts. To effectively face a changing climate, agricultural systems have therefore to adapt their strategies (e.g., changing crops, shifting sowing and harvesting dates, adopting high efficiency irrigation techniques). Yet, farmer adaptation is only one part of the equation because changes in water supply management strategies, as a response to climate change, might impact on farmers' decisions as well. Despite the strong connections between water demand and supply, being the former dependent on agricultural practices, which are affected by the water available that depends on the water supply strategies designed according to a forecasted demand, an analysis of their reciprocal feedbacks is still missing. Most of the recent studies has indeed considered the two problems separately, either analysing the impact of climate change on farmers' decisions for a given water supply scenario or optimising water supply for different water demand scenarios. In this work, we explicitly connect the two systems (demand and supply) by activating an information loop between farmers and water managers, to integrate the two problems and study the co-evolution and co-adaptation of water demand and water supply systems under climate change. The proposed approach is tested on a real-world case study, namely the Lake Como serving the Muzza-Bassa Lodigiana irrigation district (Italy). In particular, given an expectation of water availability, the farmers are able to solve a yearly planning problem to decide the most profitable crop to plant. Knowing the farmers decisions, the operation of the upstream reservoir (Como Lake) is optimised with respect to the real irrigation demand of the crops. Then, the farmers can re-adapt their decisions according with the new optimal operating strategy, thus activating a loop between the two systems that exchange expected supply and irrigation demand. Results show that the proposed interaction between farmers and water managers is able to enhance the efficiency of water management practices, foster crop production and mitigate climate change impacts.
Teaching Science IBL, a shared experience between schools
NASA Astrophysics Data System (ADS)
Ruas, Fatima; Carneiro, Paula
2015-04-01
Key words: Problem based learning, Inquiry-based learning, digital resources, climate changes The inquiry-based learning approach is applied by watching a video about the last rigorous winter and its effects. The teacher starts by posing some questions related with the video news: Why only after a 20 or 30 years from now, how will it be possible to explain the occurrence of two storms in just a month's time? Is our climate effectively changing? What is the difference between weather and climate? The teacher helps students to think about where and how they can find information about the subject, providing/teaching them suitable tools to access and use information. The teacher plays the role of mentor/facilitator. Students should proceed to their research, presenting the results to their colleagues, discussing in groups, doing brainstorming and collaborate in the learning process. After the discussion the students must present their conclusions. The main goals are: explain the difference between weather and climate; understand whether or not climate change exists; identify the causes of climate change and extreme weather events; raising awareness among young people about environmental issues of preservation and sustainability of our planet. The results globally show that this educational approach motivates students' towards science, helping them to solve problems from daily life, as well as the collaborative working. The cognitive strand continues to be the most valued by pupils.
The velocity of climate change.
Loarie, Scott R; Duffy, Philip B; Hamilton, Healy; Asner, Gregory P; Field, Christopher B; Ackerly, David D
2009-12-24
The ranges of plants and animals are moving in response to recent changes in climate. As temperatures rise, ecosystems with 'nowhere to go', such as mountains, are considered to be more threatened. However, species survival may depend as much on keeping pace with moving climates as the climate's ultimate persistence. Here we present a new index of the velocity of temperature change (km yr(-1)), derived from spatial gradients ( degrees C km(-1)) and multimodel ensemble forecasts of rates of temperature increase ( degrees C yr(-1)) in the twenty-first century. This index represents the instantaneous local velocity along Earth's surface needed to maintain constant temperatures, and has a global mean of 0.42 km yr(-1) (A1B emission scenario). Owing to topographic effects, the velocity of temperature change is lowest in mountainous biomes such as tropical and subtropical coniferous forests (0.08 km yr(-1)), temperate coniferous forest, and montane grasslands. Velocities are highest in flooded grasslands (1.26 km yr(-1)), mangroves and deserts. High velocities suggest that the climates of only 8% of global protected areas have residence times exceeding 100 years. Small protected areas exacerbate the problem in Mediterranean-type and temperate coniferous forest biomes. Large protected areas may mitigate the problem in desert biomes. These results indicate management strategies for minimizing biodiversity loss from climate change. Montane landscapes may effectively shelter many species into the next century. Elsewhere, reduced emissions, a much expanded network of protected areas, or efforts to increase species movement may be necessary.
NASA Astrophysics Data System (ADS)
Hoffman, A.
2011-12-01
This paper analyzes the extent to which two institutional logics around climate change - the climate change "convinced" and climate change "skeptical" logics - are truly competing or talking past each other in a way that can be described as a logic schism. Drawing on the concept of framing from social movement theory, it uses qualitative field observations from the largest climate deniers conference in the U.S. and a dataset of almost 800 op/eds from major news outlets over a two year period to examine how convinced and skeptical logics employ frames and issue categories to make arguments about climate change. This paper finds that the two logics are engaging in different debates on similar issues with the former focusing on solutions while the latter debates the definition of the problem. It concludes that the debate appears to be reaching a level of polarization where one might begin to question whether meaningful dialogue and problem-solving has become unavailable to participants. The implications of such a logic schism is a shift from an integrative debate focused on addressing interests to a distributive battle over concessionary agreements with each side pursuing its goals by demonizing the other. Avoiding such an outcome requires the activation of, as yet, dormant "broker" frames (technology, religion and national security), the redefinition of existing ones (science, economics, risk, ideology) and the engagement of effective "brokers" to deliver them.
Kjellstrom, Tord; Briggs, David; Freyberg, Chris; Lemke, Bruno; Otto, Matthias; Hyatt, Olivia
2016-01-01
Ambient heat exposure is a well-known health hazard, which reduces human performance and work capacity at heat levels already common in tropical and subtropical areas. Various health problems have been reported. Increasing heat exposure during the hottest seasons of each year is a key feature of global climate change. Heat exhaustion and reduced human performance are often overlooked in climate change health impact analysis. Later this century, many among the four billion people who live in hot areas worldwide will experience significantly reduced work capacity owing to climate change. In some areas, 30-40% of annual daylight hours will become too hot for work to be carried out. The social and economic impacts will be considerable, with global gross domestic product (GDP) losses greater than 20% by 2100. The analysis to date is piecemeal. More analysis of climate change-related occupational health impact assessments is greatly needed.
Creationism & Climate Change (Invited)
NASA Astrophysics Data System (ADS)
Newton, S.
2009-12-01
Although creationists focus on the biological sciences, recently creationists have also expanded their attacks to include the earth sciences, especially on the topic of climate change. The creationist effort to deny climate change, in addition to evolution and radiometric dating, is part of a broader denial of the methodology and validity of science itself. Creationist misinformation can pose a serious problem for science educators, who are further hindered by the poor treatment of the earth sciences and climate change in state science standards. Recent changes to Texas’ science standards, for example, require that students learn “different views on the existence of global warming.” Because of Texas’ large influence on the national textbook market, textbooks presenting non-scientific “different views” about climate change—or simply omitting the subject entirely because of the alleged “controversy”—could become part of K-12 classrooms across the country.
NASA Astrophysics Data System (ADS)
Adiyoga, W.
2018-02-01
A survey was carried out in South Sulawesi, Indonesia interviewing 220 vegetable farmers. It was aimed at examining the vegetable farmers’ perception of climate change and assessing the consistency of farmers’ perception with available time series meteorological data. Results suggest that meteorological data analysis is in agreement with farmers’ perception regarding faster start, longer ending, and longer duration of rainy season. Further data analysis supports the claim of most farmers who perceive the occurrence of increasing air temperature, changing or shifting of the hottest and coldest month. Most respondents also suggest that climate change has affected vegetable farm yield and profitability. Other respondents even predict that climate change may affect the quality of life of their future descendants. Meanwhile, significant number of farmers is quite optimistic that they can cope with climate change problems through adaptation strategy. However, the attitude of farmers towards climate change is mostly negative as compared to positive or neutral feeling. Informative and educational campaign should be continuously carried out to encourage farmers in developing positive attitude or positive thinking towards climate change. Positive attitude may eventually lead to constructive behavior in selecting and implementing adaptation options.
Akerlof, Karen; Debono, Roberto; Berry, Peter; Leiserowitz, Anthony; Roser-Renouf, Connie; Clarke, Kaila-Lea; Rogaeva, Anastasia; Nisbet, Matthew C; Weathers, Melinda R; Maibach, Edward W
2010-06-01
We used data from nationally representative surveys conducted in the United States, Canada and Malta between 2008 and 2009 to answer three questions: Does the public believe that climate change poses human health risks, and if so, are they seen as current or future risks? Whose health does the public think will be harmed? In what specific ways does the public believe climate change will harm human health? When asked directly about the potential impacts of climate change on health and well-being, a majority of people in all three nations said that it poses significant risks; moreover, about one third of Americans, one half of Canadians, and two-thirds of Maltese said that people are already being harmed. About a third or more of people in the United States and Canada saw themselves (United States, 32%; Canada, 67%), their family (United States, 35%; Canada, 46%), and people in their community (United States, 39%; Canada, 76%) as being vulnerable to at least moderate harm from climate change. About one third of Maltese (31%) said they were most concerned about the risk to themselves and their families. Many Canadians said that the elderly (45%) and children (33%) are at heightened risk of harm, while Americans were more likely to see people in developing countries as being at risk than people in their own nation. When prompted, large numbers of Canadians and Maltese said that climate change can cause respiratory problems (78-91%), heat-related problems (75-84%), cancer (61-90%), and infectious diseases (49-62%). Canadians also named sunburn (79%) and injuries from extreme weather events (73%), and Maltese cited allergies (84%). However, climate change appears to lack salience as a health issue in all three countries: relatively few people answered open-ended questions in a manner that indicated clear top-of-mind associations between climate change and human health risks. We recommend mounting public health communication initiatives that increase the salience of the human health consequences associated with climate change.
Akerlof, Karen; DeBono, Roberto; Berry, Peter; Leiserowitz, Anthony; Roser-Renouf, Connie; Clarke, Kaila-Lea; Rogaeva, Anastasia; Nisbet, Matthew C.; Weathers, Melinda R.; Maibach, Edward W.
2010-01-01
We used data from nationally representative surveys conducted in the United States, Canada and Malta between 2008 and 2009 to answer three questions: Does the public believe that climate change poses human health risks, and if so, are they seen as current or future risks? Whose health does the public think will be harmed? In what specific ways does the public believe climate change will harm human health? When asked directly about the potential impacts of climate change on health and well-being, a majority of people in all three nations said that it poses significant risks; moreover, about one third of Americans, one half of Canadians, and two-thirds of Maltese said that people are already being harmed. About a third or more of people in the United States and Canada saw themselves (United States, 32%; Canada, 67%), their family (United States, 35%; Canada, 46%), and people in their community (United States, 39%; Canada, 76%) as being vulnerable to at least moderate harm from climate change. About one third of Maltese (31%) said they were most concerned about the risk to themselves and their families. Many Canadians said that the elderly (45%) and children (33%) are at heightened risk of harm, while Americans were more likely to see people in developing countries as being at risk than people in their own nation. When prompted, large numbers of Canadians and Maltese said that climate change can cause respiratory problems (78–91%), heat-related problems (75–84%), cancer (61–90%), and infectious diseases (49–62%). Canadians also named sunburn (79%) and injuries from extreme weather events (73%), and Maltese cited allergies (84%). However, climate change appears to lack salience as a health issue in all three countries: relatively few people answered open-ended questions in a manner that indicated clear top-of-mind associations between climate change and human health risks. We recommend mounting public health communication initiatives that increase the salience of the human health consequences associated with climate change. PMID:20644690
Modeling the influence of climate change on watershed systems: Adaptation through targeted practices
NASA Astrophysics Data System (ADS)
Dudula, John; Randhir, Timothy O.
2016-10-01
Climate change may influence hydrologic processes of watersheds (IPCC, 2013) and increased runoff may cause flooding, eroded stream banks, widening of stream channels, increased pollutant loading, and consequently impairment of aquatic life. The goal of this study was to quantify the potential impacts of climate change on watershed hydrologic processes and to evaluate scale and effectiveness of management practices for adaptation. We simulate baseline watershed conditions using the Hydrological Simulation Program Fortran (HSPF) simulation model to examine the possible effects of changing climate on watershed processes. We also simulate the effects of adaptation and mitigation through specific best management strategies for various climatic scenarios. With continuing low-flow conditions and vulnerability to climate change, the Ipswich watershed is the focus of this study. We quantify fluxes in runoff, evapotranspiration, infiltration, sediment load, and nutrient concentrations under baseline and climate change scenarios (near and far future). We model adaptation options for mitigating climate effects on watershed processes using bioretention/raingarden Best Management Practices (BMPs). It was observed that climate change has a significant impact on watershed runoff and carefully designed and maintained BMPs at subwatershed scale can be effective in mitigating some of the problems related to stormwater runoff. Policy options include implementation of BMPs through education and incentives for scale-dependent and site specific bioretention units/raingardens to increase the resilience of the watershed system to current and future climate change.
Climate change and children's health.
Bernstein, Aaron S; Myers, Samuel S
2011-04-01
To present the latest data that demonstrate how climate change affects children's health and to identify the principal ways in which climate change puts children's health at risk. Data continue to emerge that further implicate climate change as contributing to health burdens in children. Climate models have become even more sophisticated and consistently forecast that greenhouse gas emissions will lead to higher mean temperatures that promote more intense storms and droughts, both of which have profound implications for child health. Recent climate models shed light upon the spread of vector-borne disease, including Lyme disease in North America and malaria in Africa. Modeling studies have found that conditions conducive to forest fires, which generate harmful air pollutants and damage agriculture, are likely to become more prevalent in this century due to the effects of greenhouse gases added to earth's atmosphere. Through many pathways, and in particular via placing additional stress upon the availability of food, clean air, and clean water and by potentially expanding the burden of disease from certain vector-borne diseases, climate change represents a major threat to child health. Pediatricians have already seen and will increasingly see the adverse health effects of climate change in their practices. Because of this, and many other reasons, pediatricians have a unique capacity to help resolve the climate change problem.
ERIC Educational Resources Information Center
Papadimitriou, Vasiliki
2004-01-01
Climate change is one of the most serious global environmental problems and for that reason there has been lately a great interest in educating pupils, the future citizens, about it. Previous research has shown that pupils of all ages and teachers hold many misconceptions and misunderstandings concerning this issue. This paper reports on research…
Observational Constraints on Cloud Feedbacks: The Role of Active Satellite Sensors
NASA Astrophysics Data System (ADS)
Winker, David; Chepfer, Helene; Noel, Vincent; Cai, Xia
2017-11-01
Cloud profiling from active lidar and radar in the A-train satellite constellation has significantly advanced our understanding of clouds and their role in the climate system. Nevertheless, the response of clouds to a warming climate remains one of the largest uncertainties in predicting climate change and for the development of adaptions to change. Both observation of long-term changes and observational constraints on the processes responsible for those changes are necessary. We review recent progress in our understanding of the cloud feedback problem. Capabilities and advantages of active sensors for observing clouds are discussed, along with the importance of active sensors for deriving constraints on cloud feedbacks as an essential component of a global climate observing system.
NASA Astrophysics Data System (ADS)
Horodyskyj, L.; Lennon, T.; Mead, C.; Anbar, A. D.
2017-12-01
Climate change is a problem that involves science, economics, and politics. Particularly in the United States, political resistance to addressing climate change has been exacerbated by a concerted misinformation campaign against the basic science, a negative response to how the proposed solutions to climate change intersect with values. Scientists often propose more climate science education as a solution to the problem, but preliminary studies indicate that more science education does not necessarily reduce polarization on the topic (Kahan et al. 2012). Is there a way that we can better engage non-science students in topics related to climate change that improve their comprehension of the problem and its implications, overcoming polarization? In an existing political science course, "Do You Want to Build a Nation?", we are testing a new digital world-building model based on resource development and consequent environmental and societal impacts. Students spend half the class building their nations based on their assigned ideology (i.e., socialist, absolute monarchy, libertarian) and the second half of the class negotiating with other nations to resolve global issues while remaining true to their ideologies. The course instructor, co-author Lennon, and ASU's Center for Education Through eXploration have collaborated to design a digital world model based on resources linked to an adaptive decision-making environment that translates student policies into modifications to the digital world. The model tracks students' exploration and justification of their nation's policy choices. In the Fall 2017 offering of the course, we will investigate how this digital world model and scenarios built around it affect student learning outcomes. Specifically, we anticipate improved understanding of the policy trade-offs related to energy development, better understanding of the ways that different ideologies approach solutions to climate change, and that both will result in more realistic diplomatic negotiations in the latter half of the course. We will report on the technical details of how the digital world model and scenarios are constructed as well as how students responded to the scenario.
NASA Astrophysics Data System (ADS)
Llasat, Maria-Carmen; Queralt, Arnau
2013-04-01
The evidence of the impact of the anthropogenic activity over the climate change, as well as the consequent impacts in temperature, snow cover and sea level has been widely demonstrated (IPCC, 2007). However, the impact of climate change on natural risks is still not clear, and the degree of uncertainty is high. The main problem lays in the complexity of the factors involved in the production of natural disasters, mainly those related with the vulnerability (in the more holistic sense of the expression), that is continuously being modified. In terms of the impact of climate change on hazards, the analysis is still complicated, and this difficulty increases when meteorological hazards that combine meteorological factors with other ones (human and/or natural) are considered (i.e. floods, wet landslides, forest fires, etc.). The Advisory Council for the Sustainable Development of Catalonia (CADS) is an advisory body which gives strategic advice to the Catalan Government in the field of sustainable development. This contribution shows the main results of a recent report elaborated by the CADS that analyses the present and potential evolution of natural risks in Catalonia (NE of Iberian Peninsula) and the influence of climate change in it. The analysis is made from the point of view of sustainable development, having in mind the international approach (IPCC, 2007, 2011; UNISDR, 2009; Molin, 2009; Brauch, 2010) and with special incidence in potential problems related with security and civil protection. Conclusions identify as main problems those that will affect health (as a consequence of the increase of heat waves and temperature extremes) and water scarcity.
Urban climate and energy demand interaction in Northern Eurasia
NASA Astrophysics Data System (ADS)
Kasilova, E. V.; Ginzburg, A. S.; Demchenko, P. F.
2017-11-01
The regional and urban climate change in Northern Eurasia is one of the main challenges for sustainable development of human habitats situated in boreal and temperate areas. The half of primary energy is spent for space heating even under quite a mild European climate. Implementation of the district heating in urban areas is currently seen as one of the key conditions of sustainable development. The clear understanding of main problems of the urban climateenergy demand interaction is crucial for both small towns and megacities. The specific features of the urban energy systems in Finland, Russia and China under the changing climate conditions were studied. Regional manifestations of the climate change were examined. The climate projections were established for urban regions of the Northern Eurasia. It was shown that the climate warming is likely to continue intensively there. History and actual development trends were discussed for the urban district heating systems in Russia, China and Finland. Common challenges linked with the climate change have been identified for the considered areas. Adaptation possibilities were discussed taking into account climate-energy interactions.
Scaling the Problem: How Commercial Interests Have Influenced the U.S. Dialogue on Climate Change
NASA Astrophysics Data System (ADS)
Goldman, G. T.; Rogerson, P.
2012-12-01
In recent years, corporations and their affiliates have played an increasing role in the national conversation on climate change, with companies weighing in not only on policy debates but also participating in discussions around climate science. A few of these companies in particular have been tremendously influential in dictating how the public understands, or misunderstands, climate science and how the national discourse on climate policy has progressed, or not progressed. To better understand this corporate involvement, we explored the roles that major corporate actors have played during a key time period in 2009 and 2010 when several important climate change policy proposals were being actively debated in the United States. Analyzing multiple venues in which companies engaged in discussion of climate change with different audiences—including the government, shareholders, and the public—we assess the degree to which commercial interests have helped or hindered a science-based public discourse on climate policy in the past decade. Discussion will focus especially on corporations' use of third party organizations, including industry trade groups, think tanks, and others, to exert influence on climate-related policy without accountability.
Nielsen, Uffe N; Wall, Diana H
2013-03-01
The polar regions are experiencing rapid climate change with implications for terrestrial ecosystems. Here, despite limited knowledge, we make some early predictions on soil invertebrate community responses to predicted twenty-first century climate change. Geographic and environmental differences suggest that climate change responses will differ between the Arctic and Antarctic. We predict significant, but different, belowground community changes in both regions. This change will be driven mainly by vegetation type changes in the Arctic, while communities in Antarctica will respond to climate amelioration directly and indirectly through changes in microbial community composition and activity, and the development of, and/or changes in, plant communities. Climate amelioration is likely to allow a greater influx of non-native species into both the Arctic and Antarctic promoting landscape scale biodiversity change. Non-native competitive species could, however, have negative effects on local biodiversity particularly in the Arctic where the communities are already species rich. Species ranges will shift in both areas as the climate changes potentially posing a problem for endemic species in the Arctic where options for northward migration are limited. Greater soil biotic activity may move the Arctic towards a trajectory of being a substantial carbon source, while Antarctica could become a carbon sink. © 2013 Blackwell Publishing Ltd/CNRS.
How Many Disciplines Does It Take to Tackle Climate Change?
NASA Astrophysics Data System (ADS)
Campbell, S.; Calderazzo, J.
2015-12-01
Through my involvement in two multidisciplinary climate change education and outreach projects, the website 100 Views of Climate Change and Changing Climates @ Colorado State, I have come to understand that just as this problem is everybody's business, almost everybody has something to contribute to understanding and dealing with it. This is certainly true of the academic disciplines represented on college campuses, where faculty from nearly every department have relevant things to teach their students: speakers in a climate-change lecture series we organized came from 27 departments in 8 colleges, plus numerous other campus and local entities, and more could have been included. As one convener of this AGU session, I have worked to include a good sample of these varied and complementary disciplinary perspectives. Inevitably, though, this sample leaves significant gaps in what would constitute a robust cross-campus climate literacy, and I will talk about some of these missing disciplinary perspectives and why they are important.
Climate change and animal health in Africa.
Van den Bossche, P; Coetzer, J A W
2008-08-01
Climate change is expected to have direct and indirect impacts on African livestock. Direct impacts include increased ambient temperature, floods and droughts. Indirect impacts are the result of reduced availability of water and forage and changes in the environment that promote the spread of contagious diseases through increased contact between animals, or increased survival or availability of the agent or its intermediate host. The distribution and prevalence of vector-borne diseases may be the most significant effect of climate change. The potential vulnerability of the livestock industry will depend on its ability to adapt to such changes. Enhancing this adaptive capacity presents a practical way of coping with climate change. Adaptive capacity could be increased by enabling the African livestock owner to cope better with animal health problems through appropriate policy measures and institutional support. Developing an effective and sustainable animal health service, associated surveillance and emergency preparedness systems and sustainable disease control and prevention programmes is perhaps the most important strategy for dealing with climate change in many African countries.
Climate change and mental health: a causal pathways framework.
Berry, Helen Louise; Bowen, Kathryn; Kjellstrom, Tord
2010-04-01
Climate change will bring more frequent, long lasting and severe adverse weather events and these changes will affect mental health. We propose an explanatory framework to enhance consideration of how these effects may operate and to encourage debate about this important aspect of the health impacts of climate change. Literature review. Climate change may affect mental health directly by exposing people to trauma. It may also affect mental health indirectly, by affecting (1) physical health (for example, extreme heat exposure causes heat exhaustion in vulnerable people, and associated mental health consequences) and (2) community wellbeing. Within community, wellbeing is a sub-process in which climate change erodes physical environments which, in turn, damage social environments. Vulnerable people and places, especially in low-income countries, will be particularly badly affected. Different aspects of climate change may affect mental health through direct and indirect pathways, leading to serious mental health problems, possibly including increased suicide mortality. We propose that it is helpful to integrate these pathways in an explanatory framework, which may assist in developing public health policy, practice and research.
Kim, Jinsoo; Choi, Jisun; Choi, Chuluong; Park, Soyoung
2013-05-01
This study examined the separate and combined impacts of future changes in climate and land use/land cover (LULC) on streamflow in the Hoeya River Basin, South Korea, using the representative concentration pathway (RCP) 4.5 and 8.5 scenarios of the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC). First, a LULC change model was developed using RCP 4.5 and RCP 8.5 storylines and logistic regression. Three scenarios (climate change only, LULC change only, and climate and LULC change combined) were established, and the streamflow in future periods under these scenarios was simulated by the Soil and Water Assessment Tool (SWAT) model. Each scenario showed distinct seasonal variations in streamflow. Under climate change only, streamflow increased in spring and winter but decreased in summer and autumn, whereas LULC change increased high flow during wet periods but decreased low flow in dry periods. Although the LULC change had less effect than climate change on the changes in streamflow, the effect of LULC change on streamflow was significant. The result for the combined scenario was similar to that of the climate change only scenario, but with larger seasonal changes in streamflow. Although the effects of LULC change were smaller than those caused by climate change, LULC changes may heighten the problems of increased seasonal variability in streamflow caused by climate change. The results obtained in this study provide further insight into the availability of future streamflow and can aid in water resource management planning in the study area. Copyright © 2013 Elsevier B.V. All rights reserved.
B. W. Geils
2008-01-01
This is a preliminary, draft outline for organizing information on the relation of climate to western forest diseases. The question is how to assess the threat of these diseases under a regime of climate change. Although forest diseases are often important, assessment of disease-climate relations is a challenging problem due to the multiple values at risk and the...
Determination of suitable climate space for Armillaria ostoyae in the Oregon East Cascades
John W. Hanna; Mee-Sook Kim; Ned B. Klopfenstein; Aaron L. Smith; Helen M. Maffei
2008-01-01
This is a preliminary, draft outline for organizing information on the relation of climate to western forest diseases. The question is how to assess the threat of these diseases under a regime of climate change. Although forest diseases are often important, assessment of disease-climate relations is a challenging problem due to the multiple values at risk and the...
Gerald E. Rehfeldt; Nicholas L. Crookston; Cuauhtemoc Saenz-Romero; Elizabeth M. Campbell
2012-01-01
Data points intensively sampling 46 North American biomes were used to predict the geographic distribution of biomes from climate variables using the Random Forests classification tree. Techniques were incorporated to accommodate a large number of classes and to predict the future occurrence of climates beyond the contemporary climatic range of the biomes. Errors of...
Otto, Christiane; Haller, Anne-Catherine; Klasen, Fionna; Hölling, Heike; Bullinger, Monika; Ravens-Sieberer, Ulrike
2017-01-01
Cross-sectional studies demonstrated associations of several sociodemographic and psychosocial factors with generic health-related quality of life (HRQoL) in children and adolescents. However, little is known about factors affecting the change in child and adolescent HRQoL over time. This study investigates potential psychosocial risk and protective factors of child and adolescent HRQoL based on longitudinal data of a German population-based study. Data from the BELLA study gathered at three measurement points (baseline, 1-year and 2-year follow-ups) were investigated in n = 1,554 children and adolescents aged 11 to 17 years at baseline. Self-reported HRQoL was assessed by the KIDSCREEN-10 Index. We examined effects of sociodemographic factors, mental health problems, parental mental health problems, as well as potential personal, familial, and social protective factors on child and adolescent HRQoL at baseline as well as over time using longitudinal growth modeling. At baseline, girls reported lower HRQoL than boys, especially in older participants; low socioeconomic status and migration background were both associated with low HRQoL. Mental health problems as well as parental mental health problems were negatively, self-efficacy, family climate, and social support were positively associated with initial HRQoL. Longitudinal analyses revealed less increase of HRQoL in girls than boys, especially in younger participants. Changes in mental health problems were negatively, changes in self-efficacy and social support were positively associated with the change in HRQoL over time. No effects were found for changes in parental mental health problems or in family climate on changes in HRQoL. Moderating effects for self-efficacy, family climate or social support on the relationships between the investigated risk factors and HRQoL were not found. The risk factor mental health problems negatively and the resource factors self-efficacy and social support positively affect the development of HRQoL in young people, and should be considered in prevention programs.
Ice-sheet mass balance and climate change.
Hanna, Edward; Navarro, Francisco J; Pattyn, Frank; Domingues, Catia M; Fettweis, Xavier; Ivins, Erik R; Nicholls, Robert J; Ritz, Catherine; Smith, Ben; Tulaczyk, Slawek; Whitehouse, Pippa L; Zwally, H Jay
2013-06-06
Since the 2007 Intergovernmental Panel on Climate Change Fourth Assessment Report, new observations of ice-sheet mass balance and improved computer simulations of ice-sheet response to continuing climate change have been published. Whereas Greenland is losing ice mass at an increasing pace, current Antarctic ice loss is likely to be less than some recently published estimates. It remains unclear whether East Antarctica has been gaining or losing ice mass over the past 20 years, and uncertainties in ice-mass change for West Antarctica and the Antarctic Peninsula remain large. We discuss the past six years of progress and examine the key problems that remain.
NASA Astrophysics Data System (ADS)
Zhang, G. J.; Song, X.
2017-12-01
The double ITCZ bias has been a long-standing problem in coupled atmosphere-ocean models. A previous study indicates that uncertainty in the projection of global warming due to doubling of CO2 is closely related to the double ITCZ biases in global climate models. Thus, reducing the double ITCZ biases is not only important to getting the current climate features right, but also important to narrowing the uncertainty in future climate projection. In this work, we will first review the possible factors contributing to the ITCZ problem. Then, we will focus on atmospheric convection, presenting recent progress in alleviating the double ITCZ problem and its sensitivity to details of convective parameterization, including trigger conditions for convection onset, convective memory, entrainment rate, updraft model and closure in the NCAR CESM1. These changes together can result in dramatic improvements in the simulation of ITCZ. Results based on both atmospheric only and coupled simulations with incremental changes of convection scheme will be shown to demonstrate the roles of convection parameterization and coupled interaction between convection, atmospheric circulation and ocean circulation in the simulation of ITCZ.
Sensitivity of water resources in the Delaware River basin to climate variability and change
Ayers, Mark A.; Wolock, David M.; McCabe, Gregory J.; Hay, Lauren E.; Tasker, Gary D.
1993-01-01
Because of the "greenhouse effect," projected increases in atmospheric carbon dioxide levels might cause global warming, which in turn could result in changes in precipitation patterns and evapotranspiration and in increases in sea level. This report describes the greenhouse effect; discusses the problems and uncertainties associated with the detection, prediction, and effects of climatic change, and presents the results of sensitivity-analysis studies of the potential effects of climate change on water resources in the Delaware River basin. On the basis of sensitivity analyses, potentially serious shortfalls of certain water resources in the basin could result if some climatic-change scenarios become true. The results of basin streamflow-model simulations in this study demonstrate the difficulty in distinguishing effects of climatic change on streamflow and water supply from effects of natural variability in current climate. The future direction of basin changes in most water resources, furthermore, cannot be determined precisely because of uncertainty in current projections of regional temperature and precipitation. This large uncertainty indicates that, for resource planning, information defining the sensitivities of water resources to a range of climate change is most relevant. The sensitivity analyses could be useful in developing contingency plans on how to evaluate and respond to changes, should they occur.
Global Climate Change in Geography Curricula for Ethiopian Secondary and Preparatory Schools
ERIC Educational Resources Information Center
Dalelo, Aklilu
2011-01-01
Given the magnitude and severity of the problem of climate change, it is not surprising that a marked emphasis had been put on the issue over the last two decades, resulting in a series of proposals containing mitigation and adaptation measures. Education is often considered as one of such measures. This study was aimed at assessing the extent to…
ERIC Educational Resources Information Center
Pharo, E. J.; Davison, A.; Warr, K.; Nursey-Bray, M.; Beswick, K.; Wapstra, E.; Jones, C.
2012-01-01
A teacher network was formed at an Australian university in order to better promote interdisciplinary student learning on the complex social-environmental problem of climate change. Rather than leaving it to students to piece together disciplinary responses, eight teaching academics collaborated on the task of exposing students to different types…
Avoiding an uncertain catastrophe: Climate change mitigation under risk and wealth heterogeneity
Thomas C. Brown; Stephan Kroll
2017-01-01
For environmental problems such as climate change, uncertainty about future conditions makes it difficult to know what the goal of mitigation efforts should be, and inequality among the affected parties makes it hard for them to know how much they each should do toward reaching the goal. We examine the effects of scientific uncertainty and wealth inequality in...
Climate change: do we know enough for policy action?
Schneider, Stephen H
2006-10-01
The climate change problem must be thought of in terms of risk, not certainty. There are many well-established elements of the problem that carry considerable confidence whereas some aspects are speculative. Therefore, the climate problem emerges not simply as a normal science research issue, but as a risk management policy debate as well. Descriptive science entails using empirical and theoretical methods to quantify the two factors that go into risk assessment: "What can happen?" and "What are the odds?" (Probability x Consequences). Policymakers should, in turn, take that information and use it to make value judgments about what is safe, what is dangerous, what is fair. To make these judgments, policymakers need to know the probabilities that experts assign to various possible outcomes in order to make risk management decisions to hedge against unsafe, dangerous and unfair outcomes. The climate debate needs to be reframed away from absolute costs--or benefits--into relative delay times to achieve specific caps or to avoid crossing specific agreed 'dangerous' climate change thresholds. Even in most optimistic scenarios, CO2 will stabilize at a much higher concentration than it has reached today, and temperature will rise accordingly. It will take even longer for sea level rise from thermal expansion and the melting of polar ice to occur, but what is most problematic is that how we handle our emissions now and in the next five decades preconditions the sustainability of the next millennium.
Impact of climate change on human infectious diseases: Empirical evidence and human adaptation.
Wu, Xiaoxu; Lu, Yongmei; Zhou, Sen; Chen, Lifan; Xu, Bing
2016-01-01
Climate change refers to long-term shifts in weather conditions and patterns of extreme weather events. It may lead to changes in health threat to human beings, multiplying existing health problems. This review examines the scientific evidences on the impact of climate change on human infectious diseases. It identifies research progress and gaps on how human society may respond to, adapt to, and prepare for the related changes. Based on a survey of related publications between 1990 and 2015, the terms used for literature selection reflect three aspects--the components of infectious diseases, climate variables, and selected infectious diseases. Humans' vulnerability to the potential health impacts by climate change is evident in literature. As an active agent, human beings may control the related health effects that may be effectively controlled through adopting proactive measures, including better understanding of the climate change patterns and of the compound disease-specific health effects, and effective allocation of technologies and resources to promote healthy lifestyles and public awareness. The following adaptation measures are recommended: 1) to go beyond empirical observations of the association between climate change and infectious diseases and develop more scientific explanations, 2) to improve the prediction of spatial-temporal process of climate change and the associated shifts in infectious diseases at various spatial and temporal scales, and 3) to establish locally effective early warning systems for the health effects of predicated climate change. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Herders' perceptions of and responses to climate change in northern Pakistan.
Joshi, S; Jasra, W A; Ismail, M; Shrestha, R M; Yi, S L; Wu, N
2013-09-01
Migratory pastoralism is an adaptation to a harsh and unstable environment, and pastoral herders have traditionally adapted to environmental and climatic change by building on their in-depth knowledge of this environment. In the Hindu Kush Himalayan region, and particularly in the arid and semiarid areas of northern Pakistan, pastoralism, the main livelihood, is vulnerable to climate change. Little detailed information is available about climate trends and impacts in remote mountain regions; herders' perceptions of climate change can provide the information needed by policy makers to address problems and make decisions on adaptive strategies in high pastoral areas. A survey was conducted in Gilgit-Baltistan province of Pakistan to assess herders' perceptions of, and adaptation strategies to climate change. Herders' perceptions were gathered in individual interviews and focus group discussions. The herders perceived a change in climate over the past 10-15 years with longer and more intense droughts in summer, more frequent and heavier snowfall in winter, and prolonged summers and relatively shorter winters. These perceptions were validated by published scientific evidence. The herders considered that the change in climate had directly impacted pastures and then livestock by changing vegetation composition and reducing forage yield. They had adopted some adaptive strategies in response to the change such as altering the migration pattern and diversifying livelihoods. The findings show that the herder communities have practical lessons and indigenous knowledge related to rangeland management and adaptation to climate change that should be shared with the scientific community and integrated into development planning.
Al-Amin, Abul Quasem; Wiesböck, Laura; Mugabe, Paschal; Aparicio-Effen, Marilyn; Fudjumdjum, Hubert; Chiappetta Jabbour, Charbel Jose
2018-01-01
There are various climate risks that are caused or influenced by climate change. They are known to have a wide range of physical, economic, environmental and social impacts. Apart from damages to the physical environment, many climate risks (climate variability, extreme events and climate-related hazards) are associated with a variety of impacts on human well-being, health, and life-supporting systems. These vary from boosting the proliferation of vectors of diseases (e.g., mosquitos), to mental problems triggered by damage to properties and infrastructure. There is a great variety of literature about the strong links between climate change and health, while there is relatively less literature that specifically examines the health impacts of climate risks and extreme events. This paper is an attempt to address this knowledge gap, by compiling eight examples from a set of industrialised and developing countries, where such interactions are described. The policy implications of these phenomena and the lessons learned from the examples provided are summarised. Some suggestions as to how to avert the potential and real health impacts of climate risks are made, hence assisting efforts to adapt to a problem whose impacts affect millions of people around the world. All the examples studied show some degree of vulnerability to climate risks regardless of their socioeconomic status and need to increase resilience against extreme events. PMID:29438345
Filho, Walter Leal; Al-Amin, Abul Quasem; Nagy, Gustavo J; Azeiteiro, Ulisses M; Wiesböck, Laura; Ayal, Desalegn Y; Morgan, Edward A; Mugabe, Paschal; Aparicio-Effen, Marilyn; Fudjumdjum, Hubert; Chiappetta Jabbour, Charbel Jose
2018-02-13
There are various climate risks that are caused or influenced by climate change. They are known to have a wide range of physical, economic, environmental and social impacts. Apart from damages to the physical environment, many climate risks (climate variability, extreme events and climate-related hazards) are associated with a variety of impacts on human well-being, health, and life-supporting systems. These vary from boosting the proliferation of vectors of diseases (e.g., mosquitos), to mental problems triggered by damage to properties and infrastructure. There is a great variety of literature about the strong links between climate change and health, while there is relatively less literature that specifically examines the health impacts of climate risks and extreme events. This paper is an attempt to address this knowledge gap, by compiling eight examples from a set of industrialised and developing countries, where such interactions are described. The policy implications of these phenomena and the lessons learned from the examples provided are summarised. Some suggestions as to how to avert the potential and real health impacts of climate risks are made, hence assisting efforts to adapt to a problem whose impacts affect millions of people around the world. All the examples studied show some degree of vulnerability to climate risks regardless of their socioeconomic status and need to increase resilience against extreme events.
Clean Energy Technologies Ready for Climate Change Challenge
environmental problems is well founded, the director of the National Renewable Energy Laboratory said today renewable energy and energy efficiency technologies in solving environmental problems is clear, Truly said
Adapting agriculture to climate change.
Howden, S Mark; Soussana, Jean-François; Tubiello, Francesco N; Chhetri, Netra; Dunlop, Michael; Meinke, Holger
2007-12-11
The strong trends in climate change already evident, the likelihood of further changes occurring, and the increasing scale of potential climate impacts give urgency to addressing agricultural adaptation more coherently. There are many potential adaptation options available for marginal change of existing agricultural systems, often variations of existing climate risk management. We show that implementation of these options is likely to have substantial benefits under moderate climate change for some cropping systems. However, there are limits to their effectiveness under more severe climate changes. Hence, more systemic changes in resource allocation need to be considered, such as targeted diversification of production systems and livelihoods. We argue that achieving increased adaptation action will necessitate integration of climate change-related issues with other risk factors, such as climate variability and market risk, and with other policy domains, such as sustainable development. Dealing with the many barriers to effective adaptation will require a comprehensive and dynamic policy approach covering a range of scales and issues, for example, from the understanding by farmers of change in risk profiles to the establishment of efficient markets that facilitate response strategies. Science, too, has to adapt. Multidisciplinary problems require multidisciplinary solutions, i.e., a focus on integrated rather than disciplinary science and a strengthening of the interface with decision makers. A crucial component of this approach is the implementation of adaptation assessment frameworks that are relevant, robust, and easily operated by all stakeholders, practitioners, policymakers, and scientists.
Can We Consume Our Way Out of Climate Change? A Call for Analysis
Grant, Lyle K
2011-01-01
The problem of climate change is analyzed as a manifestation of economic growth, and the steady-state economy of ecological economics is proposed as a system-wide solution. Four classes of more specific solutions are described. In the absence of analysis, cultural inertia will bias solutions in favor of green consumption as a generalized solution strategy. By itself, green consumption is a flawed solution to climate change because it perpetuates or even accelerates economic growth that is incompatible with a sustainable culture. Addressing climate change requires an integration of regulatory, energy efficiency, skill-based, and dissemination solutions. Behavioral scientists are encouraged to work with others in ecological economics and other social sciences who recognize cultural reinvention as a means of achieving sustainability. PMID:22532747
Emergence, reductionism and landscape response to climate change
NASA Astrophysics Data System (ADS)
Harrison, Stephan; Mighall, Tim
2010-05-01
Predicting landscape response to external forcing is hampered by the non-linear, stochastic and contingent (ie dominated by historical accidents) forcings inherent in landscape evolution. Using examples from research carried out in southwest Ireland we suggest that non-linearity in landform evolution is likely to be a strong control making regional predictions of landscape response to climate change very difficult. While uncertainties in GCM projections have been widely explored in climate science much less attention has been directed by geomorphologists to the uncertainties in landform evolution under conditions of climate change and this problem may be viewed within the context of philosophical approaches to reductionsim and emergence. Understanding the present and future trajectory of landform change may also guide us to provide an enhanced appreciation of how landforms evolved in the past.
Assessing ExxonMobil's Climate Change Communications (1977-2014)
NASA Astrophysics Data System (ADS)
Supran, G.; Oreskes, N.
2017-12-01
Coal, oil, and gas companies have operated - and continue to operate - across myriad facets of the climate problem: scientific, political, and public. Efforts to engage the fossil fuel industry in addressing climate change should therefore be informed by this broad historical context. In this paper, we present an empirical document-by-document textual content analysis and comparison of 187 diverse climate change communications from ExxonMobil spanning 1977 to 2014, including peer-reviewed and non-peer-reviewed publications, internal company documents, and paid, editorial-style advertisements ("advertorials") in The New York Times. We examine whether these communications sent consistent messages about the state of climate science and its implications - specifically, we compare their positions on climate change as real, human-caused, serious, and solvable. In all four cases, we find that as documents become more publicly accessible, they increasingly communicate doubt. That is, ExxonMobil contributed to advancing climate science - by way of its scientists' academic publications - but promoted doubt about it in advertorials. Our findings shed light on one oil and gas company's multivalent strategic responses to climate change. They offer a cautionary tale against myopic engagement with the fossil fuel industry, demonstrating the importance of evaluating the full spectrum of a company's claims and activities.
NASA Astrophysics Data System (ADS)
Kirchhoff, C.; Dilling, L.
2011-12-01
Water managers have long experienced the challenges of managing water resources in a variable climate. However, climate change has the potential to reshape the experiential landscape by, for example, increasing the intensity and duration of droughts, shifting precipitation timing and amounts, and changing sea levels. Given the uncertainty in evaluating potential climate risks as well as future water availability and water demands, scholars suggest water managers employ more flexible and adaptive science-based management to manage uncertainty (NRC 2009). While such an approach is appropriate, for adaptive science-based management to be effective both governance and information must be concordant across three measures: fit, interplay and scale (Young 2002)(Note 1). Our research relies on interviews of state water managers and related experts (n=50) and documentary analysis in five U.S. states to understand the drivers and constraints to improving water resource planning and decision-making in a changing climate using an assessment of fit, interplay and scale as an evaluative framework. We apply this framework to assess and compare how water managers plan and respond to current or anticipated water resource challenges within each state. We hypothesize that better alignment between the data and management framework and the water resource problem improves water managers' facility to understand (via available, relevant, timely information) and respond appropriately (through institutional response mechanisms). In addition, better alignment between governance mechanisms (between the scope of the problem and identified appropriate responses) improves water management. Moreover, because many of the management challenges analyzed in this study concern present day issues with scarcity brought on by a combination of growth and drought, better alignment of fit, interplay, and scale today will enable and prepare water managers to be more successful in adapting to climate change impacts in the long-term. Note 1: For the purposes of this research, the problem of fit deals with the level of concordance between the natural and human systems while interplay involves how institutional arrangements interact both horizontally and vertically. Lastly, scale considers both spatial and temporal alignment of the physical systems and management structure. For example, to manage water resources effectively in a changing climate suggests having information that informs short-term and long-term changes and having institutional arrangements that seek understanding across temporal scales and facilitate responses based on information available (Young 2002).
The Aerosol-Monsoon Climate System of Asia
NASA Technical Reports Server (NTRS)
Lau, William K. M.; Kyu-Myong, Kim
2012-01-01
In Asian monsoon countries such as China and India, human health and safety problems caused by air-pollution are worsening due to the increased loading of atmospheric pollutants stemming from rising energy demand associated with the rapid pace of industrialization and modernization. Meanwhile, uneven distribution of monsoon rain associated with flash flood or prolonged drought, has caused major loss of human lives, and damages in crop and properties with devastating societal impacts on Asian countries. Historically, air-pollution and monsoon research are treated as separate problems. However a growing number of recent studies have suggested that the two problems may be intrinsically intertwined and need to be studied jointly. Because of complexity of the dynamics of the monsoon systems, aerosol impacts on monsoons and vice versa must be studied and understood in the context of aerosol forcing in relationship to changes in fundamental driving forces of the monsoon climate system (e.g. sea surface temperature, land-sea contrast etc.) on time scales from intraseasonal variability (weeks) to climate change ( multi-decades). Indeed, because of the large contributions of aerosols to the global and regional energy balance of the atmosphere and earth surface, and possible effects of the microphysics of clouds and precipitation, a better understanding of the response to climate change in Asian monsoon regions requires that aerosols be considered as an integral component of a fully coupled aerosol-monsoon system on all time scales. In this paper, using observations and results from climate modeling, we will discuss the coherent variability of the coupled aerosol-monsoon climate system in South Asia and East Asia, including aerosol distribution and types, with respect to rainfall, moisture, winds, land-sea thermal contrast, heat sources and sink distributions in the atmosphere in seasonal, interannual to climate change time scales. We will show examples of how elevated absorbing aerosols (dust and black carbon) may interact with monsoon dynamics to produce feedback effects on the atmospheric water cycle, leading to in accelerated melting of snowpacks over the Himalayas and Tibetan Plateau, and subsequent changes in evolution of the pre-monsoon and peak monsoon rainfall, moisture and wind distributions in South Asia and East Asia.
Ebi, Kristie L; Balbus, John; Kinney, Patrick L; Lipp, Erin; Mills, David; O'Neill, Marie S; Wilson, Mark L
2009-06-01
The need to identify and try to prevent adverse health impacts of climate change has risen to the forefront of climate change policy debates and become a top priority of the public health community. Given the observed and projected changes in climate and weather patterns, their current and anticipated health impacts, and the significant degree of regulatory discussion underway in the U.S. government, it is reasonable to determine the extent of federal investment in research to understand, avoid, prepare for, and respond to the human health impacts of climate change in the United States. In this commentary we summarize the health risks of climate change in the United States and examine the extent of federal funding devoted to understanding, avoiding, preparing for, and responding to the human health risks of climate change. Future climate change is projected to exacerbate various current health problems, including heat-related mortality, diarrheal diseases, and diseases associated with exposure to ozone and aeroallergens. Demographic trends and geophysical and socioeconomic factors could increase overall vulnerability. Despite these risks, extramural federal funding of climate change and health research is estimated to be < $3 million per year. Given the real risks that climate change poses for U.S. populations, the National Institutes of Health, Centers for Disease Control and Prevention, U.S. Environmental Protection Agency, and other agencies need to have robust intramural and extramural programs, with funding of > $200 million annually. Oversight of the size and priorities of these programs could be provided by a standing committee within the National Academy of Sciences.
Risk communication, public engagement, and climate change: a role for emotions.
Roeser, Sabine
2012-06-01
This article discusses the potential role that emotions might play in enticing a lifestyle that diminishes climate change. Climate change is an important challenge for society. There is a growing consensus that climate change is due to our behavior, but few people are willing to significantly adapt their lifestyle. Empirical studies show that people lack a sense of urgency: they experience climate change as a problem that affects people in distant places and in a far future. Several scholars have claimed that emotions might be a necessary tool in communication about climate change. This article sketches a theoretical framework that supports this hypothesis, drawing on insights from the ethics of risk and the philosophy of emotions. It has been shown by various scholars that emotions are important determinants in risk perception. However, emotions are generally considered to be irrational states and are hence excluded from communication and political decision making about risky technologies and climate change, or they are used instrumentally to create support for a position. However, the literature on the ethics of risk shows that the dominant, technocratic approach to risk misses the normative-ethical dimension that is inherent to decisions about acceptable risk. Emotion research shows that emotions are necessary for practical and moral decision making. These insights can be applied to communication about climate change. Emotions are necessary for understanding the moral impact of the risks of climate change, and they also paradigmatically provide for motivation. Emotions might be the missing link in effective communication about climate change. © 2012 Society for Risk Analysis.
Dickinson, Janis L.; McLeod, Poppy; Bloomfield, Robert; Allred, Shorna
2016-01-01
Jonathan Haidt’s Moral Foundations Theory identifies five moral axes that can influence human motivation to take action on vital problems like climate change. The theory focuses on five moral foundations, including compassion, fairness, purity, authority, and ingroup loyalty; these have been found to differ between liberals and conservatives as well as Democrats and Republicans. Here we show, based on the Cornell National Social Survey (USA), that valuations of compassion and fairness were strong, positive predictors of willingness to act on climate change, whereas purity had a non-significant tendency in the positive direction (p = 0.07). Ingroup loyalty and authority were not supported as important predictor variables using model selection (ΔAICc__). Compassion and fairness were more highly valued by liberals, whereas purity, authority, and in-group loyalty were more highly valued by conservatives. As in previous studies, participants who were younger, more liberal, and reported greater belief in climate change, also showed increased willingness to act on climate change. Our research supports the potential importance of moral foundations as drivers of intentions with respect to climate change action, and suggests that compassion, fairness, and to a lesser extent, purity, are potential moral pathways for personal action on climate change in the USA. PMID:27760207
Asymmetries in Climate Change Feedbacks: Why the Future may be Hotter Than you Think
NASA Astrophysics Data System (ADS)
Torn, M. S.; Harte, J.
2006-12-01
Feedbacks in the climate system are major sources of uncertainty, and climate predictions do not yet include one key set of feedbacks, namely biospheric greenhouse gas (GhG) feedbacks. Historical evidence shows that atmospheric GhG concentrations increase during periods of warming, implying a positive feedback to future climate change. We quantify this feedback for carbon dioxide (CO2) and methane (CH4) by combining the mathematics of feedback with both empirical ice-core information and general circulation model climate sensitivity. We find that a warming of 1.7-5.8°C predicted for the year 2100 is amplified to a warming commitment of 1.9-7.7°C, with the range deriving from different GCM simulations and paleo temperature records. Thus, anthropogenic emissions result in higher final GhG concentrations, and therefore more warming, than would be predicted in the absence of this feedback. Uncertainty in climate change predictions have been used as a rationale for inaction against the threat of global warming, based on a prevailing view that the uncertainties are symmetric, giving equal support to climate "optimists" (who think it will be a small problem) and "pessimists," (it will be a big problem). Our results show that even a symmetrical uncertainty in any component of feedback, whether positive or negative, produces an asymmetrical distribution of expected temperatures skewed towards higher temperature. For both reasons, the omission of key positive feedbacks and asymmetrical uncertainty from feedbacks, it is likely that the future will be hotter than we think, which implies more severe climate change impacts. Thus, these results suggest that a conservative policy approach would employ lower emission targets and tighter stabilization time horizons than would otherwise be required.
Changes in the Perceived Risk of Climate Change: Evidence from Sudden Climatic Events
NASA Astrophysics Data System (ADS)
Anttila-Hughes, J. K.
2009-12-01
In the course of the past two decades the threat of anthropogenic climate change has moved from a scientific concern of relative obscurity to become one of the largest environmental and public goods problems in history. During this period public understanding of the risk of climate change has shifted from negligible to quite large. In this paper I propose a means of quantifying this change by examining how sudden events supporting the theory of anthropogenic climate change have affected carbon intensive companies' stock prices. Using CAPM event study methodology for companies in several carbon-intensive industries, I find strong evidence that markets have been reacting to changes in the scientific evidence for climate change for some time. Specifically, the change in magnitude of response over time seems to indicate that investors believed climate change was a potentially serious risk to corporate profits as early as the mid 1990s. Moreover, market reaction dependence on event type indicates that investors are differentiating between different advances in the scientific knowledge. Announcements by NASA GISS that the previous year was a “record hot year” for the globe are associated with negative excess returns, while news of ice shelf collapses are associated with strong positive excess returns. These results imply that investors are aware of how different aspects of climate change will affect carbon intensive companies, specifically in terms of the link between warming in general and polar ice cover. This implies that policy choices based on observable public opinion have lagged actual private concern over climate change's potential threat.
NASA Astrophysics Data System (ADS)
Drewes, A.; Henderson, J.; Mouza, C.
2017-12-01
Climate change is one of the most pressing challenges facing society, and climate change educational models are emerging in response. This study investigates the implementation and enactment of a climate change professional development model for science educators and its impact on student learning. Using an intrinsic case study methodology, we focused analytic attention on how one teacher made specific curricular, pedagogical, and content decisions, and the implications of those decisions for student's conceptual learning.The research presented here reports on the instructional design, pedagogical enactment, and subsequent effects on student learning of a climate change professional development (PD) model in the United States. Using anthropological theories of conceptual travel, we traced salient ideas from the PD through instructional delivery and into the evidence of student reasoning. We sought to address the following research questions: 1) How did a middle school teacher integrate climate change concepts into her science curriculum following PD participation? and 2) How did climate change instruction influence student understanding of key climate change constructs?From observation of the classroom instruction, we determined that the teacher effectively integrated new climate change information into her pre-existing schema. Additionally, through retrospective analysis of the PD, we found the design of the PD foregrounded the causes, mechanisms and likely effects of anthropogenic climate change at the expense of mitigation and adaptation strategies, and this differentially shaped how climate change was taught in the teacher's classroom. Analysis of student reasoning evidence showed that students gained an increased understanding of the enhanced greenhouse effect and the implications of human activity on this enhanced effect at statistically significant levels and with moderate effect sizes. However, students demonstrated a limited, though non-significant gain on the likely effects of climate change. Student reasoning on the tangible actions to deal with these problems also remained underdeveloped, reflecting omissions in both professional development and teacher enactment. We discuss implications and considerations for the emerging field of climate change education.
Essays on the Economics of Climate Change, Biofuel and Food Prices
NASA Astrophysics Data System (ADS)
Seguin, Charles
Climate change is likely to be the most important global pollution problem that humanity has had to face so far. In this dissertation, I tackle issues directly and indirectly related to climate change, bringing my modest contribution to the body of human creativity trying to deal with climate change. First, I look at the impact of non-convex feedbacks on the optimal climate policy. Second, I try to derive the optimal biofuel policy acknowledging the potential negative impacts that biofuel production might have on food supply. Finally, I test empirically for the presence of loss aversion in food purchases, which might play a role in the consumer response to food price changes brought about by biofuel production. Non-convexities in feedback processes are increasingly found to be important in the climate system. To evaluate their impact on the optimal greenhouse gas (GHG) abate- ment policy, I introduce non-convex feedbacks in a stochastic pollution control model. I numerically calibrate the model to represent the mitigation of greenhouse gas (GHG) emissions contributing to global climate change. This approach makes two contributions to the literature. First, it develops a framework to tackle stochastic non-convex pollu- tion management problems. Second, it applies this framework to the problem of climate change. This approach is in contrast to most of the economic literature on climate change that focuses either on linear feedbacks or environmental thresholds. I find that non-convex feedbacks lead to a decision threshold in the optimal mitigation policy, and I characterize how this threshold depends on feedback parameters and stochasticity. There is great hope that biofuel can help reduce greenhouse gas emissions from fossil fuel. However, there are some concerns that biofuel would increase food prices. In an optimal control model, a co-author and I look at the optimal biofuel production when it competes for land with food production. In addition oil is not exhaustible and output is subject to climate change induced damages. We find that the competitive outcome does not necessarily yield an underproduction of biofuels, but when it does, second best policies like subsidies and mandates can improve welfare. In marketing, there has been extensive empirical research to ascertain whether there is evidence of loss aversion as predicted by several reference price preference theories. Most of that literature finds that there is indeed evidence of loss aversion for many different goods. I argue that it is possible that some of that evidence seemingly supporting loss aversion arises because price endogeneity is not properly taken into account. Using scanner data I study four product categories: bread, chicken, corn and tortilla chips, and pasta. Taking prices as exogenous, I find evidence of loss aversion for bread and corn and tortilla chips. However, when instrumenting prices, the "loss aversion evidence" disappears.
Changes in the Perceived Risk of Climate Change: Evidence from Sudden Climatic Events
NASA Astrophysics Data System (ADS)
Anttila-Hughes, J. K.
2009-12-01
In the course of the past two decades the threat of anthropogenic climate change has moved from a scientific concern of relative obscurity to become one of the largest environmental and public goods problems in history. During this period public understanding of the risk of climate change has shifted from negligible to quite large. In this paper I propose a means of quantifying this change by examining how sudden events supporting the theory of anthropogenic climate change have affected carbon intensive companies' stock prices. Using CAPM event study methodology for companies in several carbon-intensive industries, I find strong evidence that markets have been reacting to changes in the scientific evidence for climate change for some time. Specifically, the change in magnitude of response over time seems to indicate that investors believed climate change was a potentially serious risk to corporate profits as early as the mid 1990s. Moreover, market reaction dependence on event type indicates that investors are differentiating between different advances in the scientific knowledge. Announcements by NASA GISS that the previous year was a “record hot year” for the globe are associated with negative excess returns, while news of ice shelf collapses are associated with strong positive excess returns. These results imply that investors are aware of how different aspects of climate change will affect carbon intensive companies, specifically in terms of the link between warming in general and polar ice cover.
Global climate change and children's health.
Shea, Katherine M
2007-11-01
There is broad scientific consensus that Earth's climate is warming rapidly and at an accelerating rate. Human activities, primarily the burning of fossil fuels, are very likely (>90% probability) to be the main cause of this warming. Climate-sensitive changes in ecosystems are already being observed, and fundamental, potentially irreversible, ecological changes may occur in the coming decades. Conservative environmental estimates of the impact of climate changes that are already in process indicate that they will result in numerous health effects to children. The nature and extent of these changes will be greatly affected by actions taken or not taken now at the global level. Physicians have written on the projected effects of climate change on public health, but little has been written specifically on anticipated effects of climate change on children's health. Children represent a particularly vulnerable group that is likely to suffer disproportionately from both direct and indirect adverse health effects of climate change. Pediatric health care professionals should understand these threats, anticipate their effects on children's health, and participate as children's advocates for strong mitigation and adaptation strategies now. Any solutions that address climate change must be developed within the context of overall sustainability (the use of resources by the current generation to meet current needs while ensuring that future generations will be able to meet their needs). Pediatric health care professionals can be leaders in a move away from a traditional focus on disease prevention to a broad, integrated focus on sustainability as synonymous with health. This policy statement is supported by a technical report that examines in some depth the nature of the problem of climate change, likely effects on children's health as a result of climate change, and the critical importance of responding promptly and aggressively to reduce activities that are contributing to this change.
Stephen M. Ogle; Grant Domke; Werner A. Kurz; Marcelo T. Rocha; Ted Huffman; Amy Swan; James E. Smith; Christopher Woodall; Thelma Krug
2018-01-01
Land use and management activities have a substantial impact on carbon stocks and associated greenhouse gas emissions and removals. However, it is challenging to discriminate between anthropogenic and non-anthropogenic sources and sinks from land. To address this problem, the Intergovernmental Panel on Climate Change developed a managed land proxy to determine which...
Climate change, water, and agriculture: a study of two contrasting regions
NASA Astrophysics Data System (ADS)
Kirilenko, A.; Dronin, N.; Zhang, X.
2009-12-01
We present a study of potential impacts of climate change on water resources and agriculture in two contrasting regions, the Aral Sea basin in Central Asia and the Northern Great Plains in the United States. The Aral Sea basin is one of the most anthropogenically modified areas of the world; it is also a zone of a water-related ecological crisis. We concentrate on studying water security of five countries in the region, which inherit their water regulation from the planned economy of USSR. Water management was targeted at maximizing agricultural output through diverting the river flow into an extensive and largely ineffective network of irrigation canals. The current water crisis is largely due to human activity; however the region is also strongly impacted by the climate. Climate change will contribute to water problems, escalating irrigation demand during the drought period, and increasing water loss with evaporation. The future of the countries of the Aral Sea basin then depends on both the regional scenario of water management policy and a global scenario of climate change, and is integrated with global socioeconomic scenarios. We formulate a set of regional policy scenarios (“Business as Usual”, “Falling Behind” and “Closing the Gap”) and demonstrate how each of them corresponds to IPCC SRES scenarios, the latter used as an input to the General Circulation Models (GCMs). Then we discuss the relative effectiveness of the introduced scenarios for mitigating water problems in the region, taking into account the adaptation through changing water demand for agriculture. Finally, we introduce the results of multimodel analysis of GCM climate projections, especially in relation to the change in precipitation and frequency of droughts, and discuss the impact of climate change on future development of the region. In the same way as the Aral Sea basin, the Northern Great Plains is expected to be a region heavily impacted by climate change. We concentrate on studying climate change impact on water resources of the region, and on the impacts of these changes on agriculture. The additional focus of our interest is Devils Lake watershed in North Dakota. Similar to Aral Sea, Devils Lake is an endorheic lake, which is heavily impacted by both the changes in climate and land conversion to agriculture. However, contrasting the dynamics of the Aral Sea, Devils Lake area has been increased dramatically in the past 70 years. We present regional projections of climate change, based on an analysis of a multimodel ensemble of GCM results, and the projections of consequent changes in performance of agriculture. We also discuss the differences in how the scenarios of socio-economic development affect the results of our modeling.
Dirikx, Astrid; Gelders, Dave
2010-11-01
This study examines the way Dutch and French newspapers frame climate change during the annual United Nations Conferences of the Parties. The methods used in previous studies on the framing of climate change do not allow for general cross-national comparisons. We conduct a quantitative deductive framing analysis on 257 quality Dutch and French newspaper articles between 2001 and 2007. Both countries' newspapers seem to frame climate change through mainly the same lens. The majority of the articles make reference to the consequences of the (non-)pursuit of a certain course of action and of possible losses and gains (consequences frame). Additionally, many articles mention the need for urgent actions, refer to possible solutions and suggest that governments are responsible for and/or capable of alleviating climate change problems (responsibility frame). Finally, the conflict frame was found to be used less often than the aforementioned frames, but more regularly than the human interest frame.
Review of Climate Change and Health in Ethiopia: Status and Gap Analysis.
Simane, Belay; Beyene, Hunachew; Deressa, Wakgari; Kumie, Abera; Berhane, Kiros; Samet, Jonathan
2016-01-01
This review assessed Ethiopia's existing situation on issues related to the environment, climate change and health, and identifies gaps and needs that can be addressed through research, training, and capacity building. The research was conducted through a comprehensive review of available secondary data and interviewing key informants in various national organizations involved in climate change adaptation and mitigation activities. Climate change-related health problems, such as mortality and morbidity due to floods and heat waves, vector-borne diseases, water-borne diseases, meningitis, and air pollution-related respiratory diseases are increasing in Ethiopia. Sensitive systems such as agriculture, health, and water have been affected, and the effects of climate change will continue to magnify without the right adaptation and mitigation measures. Currently, research on climate change and health is not adequately developed in Ethiopia. Research and other activities appear to be fragmented and uncoordinated. As a result, very few spatially detailed and methodologically consistent studies have been made to assess the impact of climate in the country. There has often been a lack of sufficient collaboration among organizations on the planning and execution of climate change and health activities, and the lack of trained professionals who can perform climate change and health-related research activities at various levels. Firstly, there is a lack of organized structure in the various organizations. Secondly, there is inadequate level of inter-sectoral collaboration and poor coordination and communication among different stakeholders. Thirdly, there are no reliable policy guidelines and programs among organizations, agencies and offices that target climate change and health. Fourth, the existing policies fail to consider the gender and community-related dimensions of climate change. Fifth, the monitoring and evaluation efforts exerted on climate change and health activities are not strong enough to address the climate change and health issues in the country.
Review of Climate Change and Health in Ethiopia: Status and Gap Analysis
Simane, Belay; Beyene, Hunachew; Deressa, Wakgari; Kumie, Abera; Berhane, Kiros; Samet, Jonathan
2017-01-01
Background This review assessed Ethiopia’s existing situation on issues related to the environment, climate change and health, and identifies gaps and needs that can be addressed through research, training, and capacity building. Methods The research was conducted through a comprehensive review of available secondary data and interviewing key informants in various national organizations involved in climate change adaptation and mitigation activities. Results Climate change-related health problems, such as mortality and morbidity due to floods and heat waves, vector-borne diseases, water-borne diseases, meningitis, and air pollution-related respiratory diseases are increasing in Ethiopia. Sensitive systems such as agriculture, health, and water have been affected, and the effects of climate change will continue to magnify without the right adaptation and mitigation measures. Currently, research on climate change and health is not adequately developed in Ethiopia. Research and other activities appear to be fragmented and uncoordinated. As a result, very few spatially detailed and methodologically consistent studies have been made to assess the impact of climate in the country. There has often been a lack of sufficient collaboration among organizations on the planning and execution of climate change and health activities, and the lack of trained professionals who can perform climate change and health-related research activities at various levels. Conclusion Firstly, there is a lack of organized structure in the various organizations. Secondly, there is inadequate level of inter-sectoral collaboration and poor coordination and communication among different stakeholders. Thirdly, there are no reliable policy guidelines and programs among organizations, agencies and offices that target climate change and health. Fourth, the existing policies fail to consider the gender and community-related dimensions of climate change. Fifth, the monitoring and evaluation efforts exerted on climate change and health activities are not strong enough to address the climate change and health issues in the country. PMID:28867919
USDA-ARS?s Scientific Manuscript database
The continuity of soil moisture time series data is crucial for climatic research. Yet, a common problem for continuous data series is the changing of sensors, not only as replacements are necessary, but as technologies evolve. The Illinois Climate Network has one of the longest data records of soi...
Educational process in modern climatology within the web-GIS platform "Climate"
NASA Astrophysics Data System (ADS)
Gordova, Yulia; Gorbatenko, Valentina; Gordov, Evgeny; Martynova, Yulia; Okladnikov, Igor; Titov, Alexander; Shulgina, Tamara
2013-04-01
These days, common to all scientific fields the problem of training of scientists in the environmental sciences is exacerbated by the need to develop new computational and information technology skills in distributed multi-disciplinary teams. To address this and other pressing problems of Earth system sciences, software infrastructure for information support of integrated research in the geosciences was created based on modern information and computational technologies and a software and hardware platform "Climate» (http://climate.scert.ru/) was developed. In addition to the direct analysis of geophysical data archives, the platform is aimed at teaching the basics of the study of changes in regional climate. The educational component of the platform includes a series of lectures on climate, environmental and meteorological modeling and laboratory work cycles on the basics of analysis of current and potential future regional climate change using Siberia territory as an example. The educational process within the Platform is implemented using the distance learning system Moodle (www.moodle.org). This work is partially supported by the Ministry of education and science of the Russian Federation (contract #8345), SB RAS project VIII.80.2.1, RFBR grant #11-05-01190a, and integrated project SB RAS #131.
Conroy, M.J.; Runge, M.C.; Nichols, J.D.; Stodola, K.W.; Cooper, R.J.
2011-01-01
The broad physical and biological principles behind climate change and its potential large scale ecological impacts on biota are fairly well understood, although likely responses of biotic communities at fine spatio-temporal scales are not, limiting the ability of conservation programs to respond effectively to climate change outside the range of human experience. Much of the climate debate has focused on attempts to resolve key uncertainties in a hypothesis-testing framework. However, conservation decisions cannot await resolution of these scientific issues and instead must proceed in the face of uncertainty. We suggest that conservation should precede in an adaptive management framework, in which decisions are guided by predictions under multiple, plausible hypotheses about climate impacts. Under this plan, monitoring is used to evaluate the response of the system to climate drivers, and management actions (perhaps experimental) are used to confront testable predictions with data, in turn providing feedback for future decision making. We illustrate these principles with the problem of mitigating the effects of climate change on terrestrial bird communities in the southern Appalachian Mountains, USA. ?? 2010 Elsevier Ltd.
Now what do people know about global climate change? Survey studies of educated laypeople.
Reynolds, Travis William; Bostrom, Ann; Read, Daniel; Morgan, M Granger
2010-10-01
In 1992, a mental-models-based survey in Pittsburgh, Pennsylvania, revealed that educated laypeople often conflated global climate change and stratospheric ozone depletion, and appeared relatively unaware of the role of anthropogenic carbon dioxide emissions in global warming. This study compares those survey results with 2009 data from a sample of similarly well-educated laypeople responding to the same survey instrument. Not surprisingly, following a decade of explosive attention to climate change in politics and in the mainstream media, survey respondents in 2009 showed higher awareness and comprehension of some climate change causes. Most notably, unlike those in 1992, 2009 respondents rarely mentioned ozone depletion as a cause of global warming. They were also far more likely to correctly volunteer energy use as a major cause of climate change; many in 2009 also cited natural processes and historical climatic cycles as key causes. When asked how to address the problem of climate change, while respondents in 1992 were unable to differentiate between general "good environmental practices" and actions specific to addressing climate change, respondents in 2009 have begun to appreciate the differences. Despite this, many individuals in 2009 still had incorrect beliefs about climate change, and still did not appear to fully appreciate key facts such as that global warming is primarily due to increased concentrations of carbon dioxide in the atmosphere, and the single most important source of this carbon dioxide is the combustion of fossil fuels. © 2010 Society for Risk Analysis.
Assessment of the Effect of Climate Change on Grain Yields in China
NASA Astrophysics Data System (ADS)
Chou, J.
2006-12-01
The paper elaborates the social background and research background; makes clear what the key scientific issues need to be resolved and where the difficulties are. In the research area of parasailing the grain yield change caused by climate change, massive works have been done both in the domestic and in the foreign. It is our upcoming work to evaluate how our countrywide climate change information provided by this pattern influence our economic and social development; and how to make related policies and countermeasures. the main idea in this paper is that the grain yield change is by no means the linear composition of social economy function effect and the climatic change function effect. This paper identifies the economic evaluation object, proposes one new concept - climate change output. The grain yields change affected by the social factors and the climatic change working together. Climate change influences the grain yields by the non ¨C linear function from both climate change and social factor changes, not only by climate change itself. Therefore, in my paper, the appraisal object is defined as: The social factors change based on actual social changing situations; under the two kinds of climate change situation, the invariable climate change situation and variable climate change situation; the difference of grain yield outputs is called " climate change output ", In order to solve this problem, we propose a method to analyze and imitate on the historical materials. Giving the condition that the climate is invariable, the social economic factor changes cause the grain yield change. However, this grain yield change is a tentative quantity index, not an actual quantity number. So we use the existing historical materials to exam the climate change output, based on the characteristic that social factor changes greater in year than in age, but the climate factor changes greater in age than in year. The paper proposes and establishes one economy - climate model (C-D-C model) to appraise the grain yield change caused by the climatic change. Also the preliminary test on this model has been done. In selection of the appraisal methods, we take the C-D production function model, which has been proved more mature in the economic research, as our fundamental model. Then, we introduce climate index (arid index) to the C-D model to develop one new model. This new model utilizes the climatic change factor in the economical model to appraise how the climatic change influence the grain yield change. The new way of appraise should have the better application prospect. The economy - climate model (The C-D-C model) has been applied on the eight Chinese regions that we divide; it has been proved satisfactory in its feasibility, rationality and the application prospect. So we can provide the theoretical fundamentals for policy-making under the more complex and uncertain climate change. Therefore, we open a new possible channel for the global climate change research moving toward the actual social, economic life.
Green cities, smart people and climate change
NASA Astrophysics Data System (ADS)
Mansouri Kouhestani, F.; Byrne, J. M.; Hazendonk, P.; Brown, M. B.; Harrison, T.
2014-12-01
Climate change will require substantial changes to urban environments. Cities are huge sources of greenhouse gases. Further, cities will suffer tremendously under climate change due to heat stresses, urban flooding, energy and water supply and demand changes, transportation problems, resource supply and demand and a host of other trials and tribulations. Cities that evolve most quickly and efficiently to deal with climate change will likely take advantage of the changes to create enjoyable, healthy and safer living spaces for families and communities. Technology will provide much of the capability to both mitigate and adapt our cities BUT education and coordination of citizen and community lifestyle likely offers equal opportunities to make our cities more sustainable and more enjoyable places to live. This work is the first phase of a major project evaluating urban mitigation and adaptation policies, programs and technologies. All options are considered, from changes in engineering, planning and management; and including a range of citizen and population-based lifestyle practices.
Communicating climate science to a suspicious public: How best to explain what we know?
NASA Astrophysics Data System (ADS)
Conway, E. M.; Jackson, R.
2014-12-01
In 2007, the Jet Propulsion Laboratory decided to establish a climate science website aimed at explaining what scientists know about climate science, and what they don't, to the English-speaking public. Because of my prior work in the history of atmospheric and climate sciences, I was asked to help choose the data that would be displayed on the site and to write the basic text. Our site went "live" in 2008, and quickly attracted both widespread media attention and sponsorship from NASA, which funded us to expand it into the NASA Climate Change website, climate.nasa.gov. It's now generally the 3rd or 4th ranked climate change website in Google rankings. A perusal of the NASA Climate Change website will reveal that the word "uncertainty" does not appear in its explanatory essays. "Uncertainty," in science, is a calculated quantity. To calculate it, one must know quite a bit about the phenomenon in question. In vernacular use, "uncertainty" means something like "stuff we don't know." These are radically different meanings, and yet scientists and their institutions routinely use both meanings without clarification. Even without the deliberate disinformation campaigns that Oreskes and Conway have documented in Merchants of Doubt, scientists' own misuse of this one word would produce public confusion. We chose to use other words to overcome this one communications problem. But other aspects of the climate communications problem cannot be so easily overcome in a context of Federal agency communications. In this paper, we'll review recent research on ways to improve public understanding of science, and set it against the restrictions that exist on Federal agency communications—avoidance of political statements and interpretation, focusing on fact over storytelling, narrowness of context—to help illuminate the difficulty of improving public understanding of complex, policy-relevant phenomenon like climate change.
Future respiratory hospital admissions from wildfire smoke under climate change in the Western US
NASA Astrophysics Data System (ADS)
Coco Liu, Jia; Mickley, Loretta J.; Sulprizio, Melissa P.; Yue, Xu; Peng, Roger D.; Dominici, Francesca; Bell, Michelle L.
2016-12-01
Background. Wildfires are anticipated to be more frequent and intense under climate change. As a result, wildfires may emit more air pollutants that can harm health in communities in the future. The health impacts of wildfire smoke under climate change are largely unknown. Methods. We linked projections of future levels of fine particulate matter (PM2.5) specifically from wildfire smoke under the A1B climate change scenario using the GEOS-Chem model for 2046-2051, present-day estimates of hospital admission impacts from wildfire smoke, and future population projections to estimate the change in respiratory hospital admissions for persons ≥65 years by county (n = 561) from wildfire PM2.5 under climate change in the Western US. Results. The increase in intense wildfire smoke days from climate change would result in an estimated 178 (95% confidence interval: 6.2, 361) additional respiratory hospital admissions in the Western US, accounting for estimated future increase in the elderly population. Climate change is estimated to impose an additional 4990 high-pollution smoke days. Central Colorado, Washington and southern California are estimated to experience the highest percentage increase in respiratory admissions from wildfire smoke under climate change. Conclusion. Although the increase in number of respiratory admissions from wildfire smoke seems modest, these results provide important scientific evidence of an often-ignored aspect of wildfire impact, and information on their anticipated spatial distribution. Wildfires can cause serious social burdens such as property damage and suppression cost, but can also raise health problems. The results provide information that can be incorporated into development of environmental and health policies in response to climate change. Climate change adaptation policies could incorporate scientific evidence on health risks from natural disasters such as wildfires.
In Brief: Refugee numbers could increase due to climate change
NASA Astrophysics Data System (ADS)
Zielinski, Sarah
2007-05-01
Climate change could push the number of refugees globally to more than one billion by 2050, according to a new report from the British charity Christian Aid. Currently, there are about 155 million `internally displaced persons' worldwide, driven from their homes due to conflict, ethnic persecution, or natural disasters. The addition of climate change and growing population numbers could exacerbate these ongoing problems. In the report, Mali is presented as a case study where ongoing climate change is forcing farmers to find other ways to feed their families; one result is an increased number of people attempting to migrate to Europe. The report calls on rich nations to devote US$100 billion each year to help poor people adapt to changing weather patterns. The report, ``Human tide: the real migration crisis,'' is available at http://www.christian-aid.org.uk/indepth/705caweekreport/
The Intersection of National Security and Climate Change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hund, Gretchen; Fankhauser, Jana G.; Kurzrok, Andrew J.
On June 4, 2014, the Henry M. Jackson Foundation and the Pacific Northwest National Laboratory hosted a groundbreaking symposium in Seattle, Washington, that brought together 36 leaders from federal agencies, state and local governments, NGOs, business, and academia. The participants examined approaches and tools to help decision makers make informed choices about the climate and security risks they face. The following executive summary is based on the day’s discussions and examines the problem of climate change and its impact on national security, the responses to date, and future considerations.
Bennett, Joel B.; Patterson, Camille R.; Reynolds, G. Shawn; Wiitala, Wyndy L.; Lehman, Wayne E. K.
2011-01-01
Purpose (1) To determine the effectiveness of classroom health promotion/prevention training designed to improve work climate and alcohol outcomes; (2) to assess whether such training contributes to improvements in problem drinking beyond standard workplace alcohol policies. Design A cross-sectional survey assessed employee problem drinking across three time periods. This was followed by a prevention intervention study; work groups were randomly assigned to an 8-hour training course in workplace social health promotion (Team Awareness), a 4-hour informational training course, or a control group. Surveys were administered 2 to 4 weeks before and after training and 6 months after posttest. Setting and Subjects Employees were surveyed from work departments in a large municipality of 3000 workers at three points in time (year, sample, and response rates are shown): (1) 1992, n = 1081, 95%; (2) 1995, n = 856, 97%; and (3) 1999, n = 587, 73%. Employees in the 1999 survey were recruited from safety-sensitive departments and were randomly assigned to receive the psychosocial (n = 201), informational (n = 192), or control (n = 194) condition. Intervention The psychosocial program (Team Awareness) provided skills training in peer referral, team building, and stress management. Informational training used a didactic review of policy, employee assistance, and drug testing. Measures Self-reports measured alcohol use (frequency, drunkenness, hangovers, and problems) and work drinking climate (enabling, responsiveness, drinking norms, stigma, and drink with coworkers). Results Employees receiving Team Awareness reduced problem drinking from 20% to 11% and working with or missing work because of a hangover from 16% to 6%. Information-trained workers also reduced problem drinking from 18% to 10%. These rates of change contrast with changes in problem drinking seen from 1992 (24%) to 1999 (17%). Team Awareness improvements differed significantly from control subjects, which showed no change at 13%. Employees receiving Team Awareness also showed significant improvements in drinking climate. For example, scores on the measure of coworker enabling decreased from pretest (mean = 2.19) to posttest (mean = 2.05) and follow up (mean = 1.94). Posttest measures of drinking climate also predicted alcohol outcomes at 6 months. Conclusion Employers should consider the use of prevention programming as an enhancement to standard drug-free workplace efforts. Team Awareness training targets work group social health, aligns with employee assistance efforts, and contributes to reductions in problem drinking. PMID:15559710
Bennett, Joel B; Patterson, Camille R; Reynolds, G Shawn; Wiitala, Wyndy L; Lehman, Wayne E K
2004-01-01
(1) To determine the effectiveness of classroom health promotion/prevention training designed to improve work climate and alcohol outcomes; (2) to assess whether such training contributes to improvements in problem drinking beyond standard workplace alcohol policies. A cross-sectional survey assessed employee problem drinking across three time periods. This was followed by a prevention intervention study; work groups were randomly assigned to an 8-hour training course in workplace social health promotion (Team Awareness), a 4-hour informational training course, or a control group. Surveys were administered 2 to 4 weeks before and after training and 6 months after posttest. Employees were surveyed from work departments in a large municipality of 3000 workers at three points in time (year, sample, and response rates are shown): (1) 1992, n = 1081, 95%; (2) 1995, n = 856, 97%; and (3) 1999, n = 587, 73%. Employees in the 1999 survey were recruited from safety-sensitive departments and were randomly assigned to receive the psychosocial (n = 201), informational (n = 192), or control (n = 194) condition. The psychosocial program (Team Awareness) provided skills training in peer referral, team building, and stress management. Informational training used a didactic review of policy, employee assistance, and drug testing. Self-reports measured alcohol use (frequency, drunkenness, hangovers, and problems) and work drinking climate (enabling, responsiveness, drinking norms, stigma, and drink with co-workers). Employees receiving Team Awareness reduced problem drinking from 20% to 11% and working with or missing work because of a hangover from 16% to 6%. Information-trained workers also reduced problem drinking from 18% to 10%. These rates of change contrast with changes in problem drinking seen from 1992 (24%) to 1999 (17%). Team Awareness improvements differed significantly from control subjects, which showed no change at 13%. Employees receiving Team Awareness also showed significant improvements in drinking climate. For example, scores on the measure of coworker enabling decreased from pretest (mean = 2.19) to posttest (mean = 2.05) and follow up (mean = 1.94). Posttest measures of drinking climate also predicted alcohol outcomes at 6 months. Employers should consider the use of prevention programming as an enhancement to standard drug-free workplace efforts. Team Awareness training targets work group social health, aligns with employee assistance efforts, and contributes to reductions in problem drinking.
Valuing Climate Change Impacts on Human Health: Empirical Evidence from the Literature
Markandya, Anil; Chiabai, Aline
2009-01-01
There is a broad consensus that climate change will increase the costs arising from diseases such as malaria and diarrhea and, furthermore, that the largest increases will be in developing countries. One of the problems is the lack of studies measuring these costs systematically and in detail. This paper critically reviews a number of studies about the costs of planned adaptation in the health context, and compares current health expenditures with MDGs which are felt to be inadequate when considering climate change impacts. The analysis serves also as a critical investigation of the methodologies used and aims at identifying research weaknesses and gaps. PMID:19440414
Climatically-mediated landcover change: impacts on Brazilian territory.
Zanin, Marina; Tessarolo, Geiziane; Machado, Nathália; Albernaz, Ana Luisa M
2017-01-01
In the face of climate change threats, governments are drawing attention to policies for mitigating its effects on biodiversity. However, the lack of distribution data makes predictions at species level a difficult task, mainly in regions of higher biodiversity. To overcome this problem, we use native landcover as a surrogate biodiversity, because it can represent specialized habitat for species, and investigate the effects of future climate change on Brazilian biomes. We characterize the climatic niches of native landcover and use ecological niche modeling to predict the potential distribution under current and future climate scenarios. Our results highlight expansion of the distribution of open vegetation and the contraction of closed forests. Drier Brazilian biomes, like Caatinga and Cerrado, are predicted to expand their distributions, being the most resistant to climate change impacts. However, these would also be affected by losses of their closed forest enclaves and their habitat-specific or endemic species. Replacement by open vegetation and overall reductions are a considerable risk for closed forest, threatening Amazon and Atlantic forest biomes. Here, we evidence the impacts of climate change on Brazilian biomes, and draw attention to the necessity for management and attenuation plans to guarantee the future of Brazilian biodiversity.
Patz, Jonathan; Campbell-Lendrum, Diarmid; Gibbs, Holly; Woodruff, Rosalie
2008-01-01
Climate change is projected to have adverse impacts on public health. Cobenefits may be possible from more upstream mitigation of greenhouse gases causing climate change. To help measure such cobenefits alongside averted disease-specific risks, a health impact assessment (HIA) framework can more comprehensively serve as a decision support tool. HIA also considers health equity, clearly part of the climate change problem. New choices for energy must be made carefully considering such effects as additional pressure on the world's forests through large-scale expansion of soybean and oil palm plantations, leading to forest clearing, biodiversity loss and disease emergence, expulsion of subsistence farmers, and potential increases in food prices and emissions of carbon dioxide to the atmosphere. Investigators must consider the full range of policy options, supported by more comprehensive, flexible, and transparent assessment methods.
The Impacts of Climate Change Mitigation Strategies on Animal Welfare
Shields, Sara; Orme-Evans, Geoffrey
2015-01-01
Simple Summary Climate change is probably the most important environmental issue of our time. Raising animals for food contributes to the production of greenhouse gases implicated in the global warming that is causing climate change. To combat this ecological disaster, a number of mitigation strategies involving changes to agricultural practices have been proposed. However, some of these changes will impact the welfare of farmed animals. This paper reviews selected climate change mitigation strategies and explains how different approaches could have negative or positive effects. Abstract The objective of this review is to point out that the global dialog on reducing greenhouse gas emissions in animal agriculture has, thus far, not adequately considered animal welfare in proposed climate change mitigation strategies. Many suggested approaches for reducing emissions, most of which could generally be described as calls for the intensification of production, can have substantial effects on the animals. Given the growing world-wide awareness and concern for animal welfare, many of these approaches are not socially sustainable. This review identifies the main emission abatement strategies in the climate change literature that would negatively affect animal welfare and details the associated problems. Alternative strategies are also identified as possible solutions for animal welfare and climate change, and it is suggested that more attention be focused on these types of options when allocating resources, researching mitigation strategies, and making policy decisions on reducing emissions from animal agriculture. PMID:26479240
Sustainable oceans in a 'civilized' world requires a sustainable human civilization. (Invited)
NASA Astrophysics Data System (ADS)
Caldeira, K.; Ricke, K.; Maclaren, J. K.
2013-12-01
The sustainability of the ocean ecosystems is, in many areas, threatened by local and regional activities, including the discharge of pollutants, loss of wetlands, and overfishing. However, some threats to ocean ecosystems, notably ocean acidification and climate change, are a consequence decisions that cannot be substantively addressed only through action that is proximal to the affected ecosystem. The only practical way to reduce risks to the ocean posed by ocean acidification and climate change is to transform our energy system into one that does not use the atmosphere and the ocean as waste dumps for unwanted byproducts of modern civilization. The required revolution in our systems of energy production and consumption is a key component of the transition to a sustainable human civilization. It would be much easier to maintain a sustainable ocean if doing so did not require creating a sustainable human civilization; but unfortunately the ocean does not get to choose the problems it faces. Damage to the ocean is additive, or perhaps multiplicative. Thus, the response of an ecosystem exposed to coastal pollutants, loss of wetlands, overfishing, ocean acidification, and climate change will likely be more dramatic than the response of an ecosystem exposed to ocean acidification and climate change alone. Thus, there is merit in reducing coastal pollution, preserving and restoring wetlands, and reducing excess fishing, even if the ocean acidification and climate problems are not solved. Furthermore, damage from ocean acidification and climate change is not a yes or no question. Each CO2 emission causes a little more acidification and a little more climate change and thus a little more damage to existing ocean ecosystems. Hence, each CO2 emission that can be avoided helps avoid a little bit of damage to ocean ecosystems the world over. While the overall problem of sustainability of the ocean is very difficult to solve, there is no shortage of things to do that would be helpful. To illustrate the impact of global CO2 emissions on one class of marine ecosystems, we will present results from a recent modeling study on ocean acidification and coral reefs, and discuss recent related observational work we have been conducting in the Great Barrier Reef.
Clouds and ocean-atmosphere interactions. Final report, September 15, 1992--September 14, 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randall, D.A.; Jensen, T.G.
1995-10-01
Predictions of global change based on climate models are influencing both national and international policies on energy and the environment. Existing climate models show some skill in simulating the present climate, but suffer from many widely acknowledged deficiencies. Among the most serious problems is the need to apply ``flux corrections`` to prevent the models from drifting away from the observed climate in control runs that do not include external perturbing influences such as increased carbon dioxide (CO{sub 2}) concentrations. The flux corrections required to prevent climate drift are typically comparable in magnitude to the observed fluxes themselves. Although there canmore » be many contributing reasons for the climate drift problem, clouds and their effects on the surface energy budget are among the prime suspects. The authors have conducted a research program designed to investigate global air-sea interaction as it relates to the global warming problem, with special emphasis on the role of clouds. Their research includes model development efforts; application of models to simulation of present and future climates, with comparison to observations wherever possible; and vigorous participation in ongoing efforts to intercompare the present generation of atmospheric general circulation models.« less
2013-01-01
Background Among the many challenges faced by the people of Bangladesh, the effects of climate change are discernibly threatening, impacting on human settlement, agricultural production, economic development, and human health. Bangladesh is a low-income country with limited resources; its vulnerability to climate change has influenced individuals to seek out health coping strategies. The objectives of the study were to explore the different strategies/measures people employ to cope with climate sensitive diseases and sickness. Methods A cross-sectional study was conducted among 450 households from Rajshahi and Khulna districts of Bangladesh selected through multi-stage sampling techniques, using a semi-structured questionnaire supplemented by 12 focus group discussions and 15 key informant interviews. Results Respondents applied 22 types of primary health coping strategies to prevent climate related diseases and sickness. To cope with health problems, 80.8% used personal treatment experiences and 99.3% sought any treatments available at village level. The percentage of respondents that visited unqualified health providers to cope with climate induced health problems was quite high, namely 92.7% visited village doctors, 75.9% drug stores, and 67.3% self-medicated. Ninety per cent of the respondents took treatment from unqualified providers as their first choice. Public health facilities were the first choice of treatment for only 11.0% of respondents. On average, every household spent Bangladesh Currency Taka 9,323 per year for the treatment of climate sensitive diseases and sickness. Only 46% of health expenditure was managed from their savings. The rest, 54% expenditure, was supported by using 24 different sources, such as social capital and the selling of family assets. The rate of out-of-pocket payment was almost 100%. Conclusion People are concerned about climate induced diseases and sickness and sought preventive as well as curative measures to cope with health problems. The most common and widely used climate health coping strategies among the respondents included self-medicating and seeking the health service of unqualified private health care providers. Per family spending to cope with such health problems is expensive and completely based on out of pocket payment. There is no fund pooling, community funding or health insurance program in rural areas to support the health coping of the people. Policies are needed to reduce out-of-pocket payment, to improve the quality of the unqualified providers and to extend public health services at rural areas and support climate related health coping. Collection of such knowledge on climate related health coping strategies can allow researchers to study any specific issue on health coping, and policy makers to initiate effective climate related health coping strategies for climate vulnerable people. PMID:23759111
Some coolness concerning global warming
NASA Technical Reports Server (NTRS)
Lindzen, Richard S.
1990-01-01
The greenhouse effect hypothesis is discussed. The effects of increasing CO2 levels in the atmosphere on global temperature changes are analyzed. The problems with models currently used to predict climatic changes are examined.
NASA Astrophysics Data System (ADS)
Yakunin, A. G.; Hussein, H. M.
2018-01-01
The article shows how the known statistical methods, which are widely used in solving financial problems and a number of other fields of science and technology, can be effectively applied after minor modification for solving such problems in climate and environment monitoring systems, as the detection of anomalies in the form of abrupt changes in signal levels, the occurrence of positive and negative outliers and the violation of the cycle form in periodic processes.
Hydrofutures and Hydromorphology
NASA Astrophysics Data System (ADS)
Lall, U.
2006-12-01
Hydromorphology refers to the science of hydrologic evolution. It represents a synthesis of planetary and social sciences that collectively determine the spatial and temporal evolution of planetary water. At present human actions directly or indirectly play a major role in determining hydrofutures. Man's role in changing water trajectories is now clear at both local and planetary scales. Changing climate leads to changing ecology and changing water patterns. Changing water conditions may in turn regulate (limit anthropogenic climate change) or adversely impact (e.g., runaway greenhouse) climate, as well as human habitation and water use patterns. This talk will address the problem of the prediction of future hydrologic conditions in the different media and reservoirs of the planet, from the integrated perspective indicated above. Key examples of the mechanisms of hydrologic change, that relate to climate and ecological dyanmics, and to human activity are identified as well. A theoretical framework for researching this multi-attribute dynamical system from a water centric perspective is advocated as a critical need for planetary science and human welfare.
Historical instrumental climate data for Australia - quality and utility for palaeoclimatic studies
NASA Astrophysics Data System (ADS)
Nicholls, Neville; Collins, Dean; Trewin, Blair; Hope, Pandora
2006-10-01
The quality and availability of climate data suitable for palaeoclimatic calibration and verification for the Australian region are discussed and documented. Details of the various datasets, including problems with the data, are presented. High-quality datasets, where such problems are reduced or even eliminated, are discussed. Many climate datasets are now analysed onto grids, facilitating the preparation of regional-average time series. Work is under way to produce such high-quality, gridded datasets for a variety of hitherto unavailable climate data, including surface humidity, pan evaporation, wind, and cloud. An experiment suggests that only a relatively small number of palaeoclimatic time series could provide a useful estimate of long-term changes in Australian annual average temperature. Copyright
Towards process-informed bias correction of climate change simulations
NASA Astrophysics Data System (ADS)
Maraun, Douglas; Shepherd, Theodore G.; Widmann, Martin; Zappa, Giuseppe; Walton, Daniel; Gutiérrez, José M.; Hagemann, Stefan; Richter, Ingo; Soares, Pedro M. M.; Hall, Alex; Mearns, Linda O.
2017-11-01
Biases in climate model simulations introduce biases in subsequent impact simulations. Therefore, bias correction methods are operationally used to post-process regional climate projections. However, many problems have been identified, and some researchers question the very basis of the approach. Here we demonstrate that a typical cross-validation is unable to identify improper use of bias correction. Several examples show the limited ability of bias correction to correct and to downscale variability, and demonstrate that bias correction can cause implausible climate change signals. Bias correction cannot overcome major model errors, and naive application might result in ill-informed adaptation decisions. We conclude with a list of recommendations and suggestions for future research to reduce, post-process, and cope with climate model biases.
Coastline degradation as an indicator of global change
Nicholls, Robert J.; Woodroffe, Colin D.; Burkett, Virginia; Letcher, Trevor M.
2009-01-01
Finding a climate change signal on coasts is more problematic than often assumed. Coasts undergo natural dynamics at many scales, with erosion and recovery in response to climate variability such as El Niño, or extreme events such as storms and infrequent tsunamis. Additionally, humans have had enormous impacts on most coasts, overshadowing most changes that one can presently attribute directly to climate change. Each area of coast is experiencing its own pattern of relative sea-level change and climate change, making discrimination of the component of degradation that results from climate change problems. The best examples of a climate influence are related to temperature rise at low and high latitudes, as seen by the impacts on coral reefs and polar coasts, respectively. Observations through the twentieth century demonstrate the importance of understanding the impacts of sea-level rise and climate change in the context of multiple drivers of change; this will remain a challenge under a more rapidly changing climate. Nevertheless, there are emerging signs that climate change provides a global threat—sea ice is retreating, permafrost in coastal areas is widely melting. Reefs are bleaching more often, and the sea is rising—amplifying widespread trends of subsidence and threatening low-lying areas. To enhance the sustainability of coastal systems, management strategies will also need to address this challenge, focusing on the drivers that are dominant at each section of coast. Global warming through the twentieth century has caused a series of changes with important implications for coastal areas. These include rising temperatures, rising sea level, increasing CO2 concentrations with an associated reduction in seawater pH, and more intense precipitation on average.
Turner, Lyle R.; Alderman, Katarzyna; Connell, Des; Tong, Shilu
2013-01-01
Climate change presents risks to health that must be addressed by both decision-makers and public health researchers. Within the application of Environmental Health Impact Assessment (EHIA), there have been few attempts to incorporate climate change-related health risks as an input to the framework. This study used a focus group design to examine the perceptions of government, industry and academic specialists about the suitability of assessing the health consequences of climate change within an EHIA framework. Practitioners expressed concern over a number of factors relating to the current EHIA methodology and the inclusion of climate change-related health risks. These concerns related to the broad scope of issues that would need to be considered, problems with identifying appropriate health indicators, the lack of relevant qualitative information that is currently incorporated in assessment and persistent issues surrounding stakeholder participation. It was suggested that improvements are needed in data collection processes, particularly in terms of adequate communication between environmental and health practitioners. Concerns were raised surrounding data privacy and usage, and how these could impact on the assessment process. These findings may provide guidance for government and industry bodies to improve the assessment of climate change-related health risks. PMID:23525029
Turner, Lyle R; Alderman, Katarzyna; Connell, Des; Tong, Shilu
2013-03-22
Climate change presents risks to health that must be addressed by both decision-makers and public health researchers. Within the application of Environmental Health Impact Assessment (EHIA), there have been few attempts to incorporate climate change-related health risks as an input to the framework. This study used a focus group design to examine the perceptions of government, industry and academic specialists about the suitability of assessing the health consequences of climate change within an EHIA framework. Practitioners expressed concern over a number of factors relating to the current EHIA methodology and the inclusion of climate change-related health risks. These concerns related to the broad scope of issues that would need to be considered, problems with identifying appropriate health indicators, the lack of relevant qualitative information that is currently incorporated in assessment and persistent issues surrounding stakeholder participation. It was suggested that improvements are needed in data collection processes, particularly in terms of adequate communication between environmental and health practitioners. Concerns were raised surrounding data privacy and usage, and how these could impact on the assessment process. These findings may provide guidance for government and industry bodies to improve the assessment of climate change-related health risks.
Coffee and chocolate in danger.
Gross, Michael
2014-06-02
As a rapidly growing global consumer base appreciates the pleasures of coffee and chocolate and health warnings are being replaced by more encouraging sounds from medical experts, their supply is under threat from climate change, pests and financial problems. Coffee farmers in Central America, in particular, are highly vulnerable to the impact of climate change, made worse by financial insecurity. Michael Gross reports. Copyright © 2014. Published by Elsevier Inc. All rights reserved.
Future Climate Impacts on Harmful Algal Blooms in an Agriculturally Dominated Ecosystem
NASA Astrophysics Data System (ADS)
Aloysius, N. R.; Martin, J.; Ludsin, S.; Stumpf, R. P.
2015-12-01
Cyanobacteria blooms have become a major problem worldwide in aquatic ecosystems that receive excessive runoff of limiting nutrients from terrestrial drainage. Such blooms often are considered harmful because they degrade ecosystem services, threaten public health, and burden local economies. Owing to changing agricultural land-use practices, Lake Erie, the most biologically productive of the North American Great Lakes, has begun to undergo a re-eutrophication in which the frequency and extent of harmful algal blooms (HABs) has increased. Continued climate change has been hypothesized to magnify the HAB problem in Lake Erie in the absence of new agricultural management practices, although this hypothesis has yet to be formally tested empirically. Herein, we tested this hypothesis by predicting how the frequency and extent of potentially harmful cyanobacteria blooms will change in Lake Erie during the 21st century under the Intergovernmental Panel on Climate Change Fifth Assessment climate projections in the region. To do so, we used 80 ensembles of climate projections from 20 Global Climate Models (GCMs) and two greenhouse gas emission scenarios (moderate reduction, RCP4.5; business-as-usual, RCP8.5) to drive a spatiotemporally explicit watershed-hydrology model that was linked to several statistical predictive models of annual cyanobacteria blooms in Lake Erie. Owing to anticipated increases in precipitation during spring and warmer temperatures during summer, our ensemble of predictions revealed that, if current land-management practices continue, the frequency of severe HABs in Lake Erie will increase during the 21st century. These findings identify a real need to consider future climate projections when developing nutrient reduction strategies in the short term, with adaptation also needing to be encouraged under both greenhouse gas emissions scenarios in the absence of effective nutrient mitigation strategies.
Stahl, Ralph G; Stauber, Jennifer L; Clements, William H
2017-08-01
Environmental toxicologists and chemists have been crucial to evaluating the chemical fate and toxicological effects of environmental contaminants, including chlorinated pesticides, before and after Rachel Carson's publication of Silent Spring in 1962. Like chlorinated pesticides previously, global climate change is widely considered to be one of the most important environmental challenges of our time. Over the past 30 yr, climate scientists and modelers have shown that greenhouse gases such as CO 2 and CH 4 cause radiative forcing (climate forcing) and lead to increased global temperatures. Despite significant climate change research efforts worldwide, the climate science community has overlooked potential problems associated with chemical contaminants, in particular how climate change could magnify the ecological consequences of their use and disposal. It is conceivable that the impacts of legacy or new chemical contaminants on wildlife and humans may be exacerbated when climate changes, especially if global temperatures rise as predicted. This lack of attention to chemical contaminants represents an opportunity for environmental toxicologists and chemists to become part of the global research program, and our objective is to highlight the importance of and ways for that to occur. Environ Toxicol Chem 2017;36:1971-1977. © 2017 SETAC. © 2017 SETAC.
Middleton, Beth
2010-01-01
Old data are a gold standard in climate change research, and much more use should be made of these data sets to document changes in wetlands in recent decades. Key data sets for the study of climate or land use change effects on wetlands may include historical field studies. Old data sets such as those from Iowa State University in the 1980s have immense value for assessing long term vegetation change over time. These data sets include classic studies of biomass production, decomposition, vegetation composition, water level tolerances, and seed bank structure.
Assessing and managing stressors in a changing marine environment.
Chapman, Peter M
2017-11-30
We are facing a dynamic future in the face of multiple stressors acting individually and in combination: climate change; habitat change/loss; overfishing; invasive species; harmful algal blooms/eutrophication; and, chemical contaminants. Historic assessment and management approaches will be inadequate for addressing risks from climate change and other stressors. Wicked problems (non-linear, complex, competing risks and benefits, not easily solvable), will become increasingly common. We are facing irreversible changes to our planetary living conditions. Agreed protection goals and considering both the negatives (risks) and the positives (benefits) of all any and all actions are required, as is judicious and appropriate use of the Precautionary Principle. Researchers and managers need to focus on: determining tipping points (alternative stable points); maintaining ecosystem services; and, managing competing ecosystem services. Marine (and other) scientists are urged to focus their research on wicked problems to allow for informed decision-making on a planetary basis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Weather on Steroids: The Art of Climate Change Science.
NASA Astrophysics Data System (ADS)
Boudrias, M. A.; Gershunov, A.; Sizonenko, T.; Wiese, A.; Fox, H.
2017-12-01
There have been many different kinds of efforts to improve climate change literacy of diverse audiences in the past several years. The challenge has been to balance science content with audience-specific messaging that engages them in both rational and affective ways. In the San Diego Region, Climate Education Partners (CEP) has been working with business leaders, elected officials, tribal leaders, and other community leaders to develop a suite of programs and activities to enhance the channels of communication outside traditional settings. CEP has partnered with the La Jolla Historical Society and the Scripps Institution of Oceanography in a unique exhibition of art inspired by climate science, a project blending science and art to communicate the science of climate change in a new way and engage audiences more effectively. Weather on Steroids: the Art of Climate Change Science explores the question of consequences, challenges, and opportunities that arise from the changing climate on our planet. The exhibition merges the artistic and scientific to create a visual dialogue about the vexing problem of climate change, explores how weather variability affects the day-to-day life of local communities, and investigates Southern California vulnerability to climate change. Science serves as the inspiration for the creative responses from visual artists, who merge subjective images with empirical observation to reveal how climate variations upset the planet's balance with extreme weather impacts. Both the scientists and artists created didactic pages to explain their perspectives and each pair worked closely to incorporate the information into the creative piece so that the connection of each of 11 art installations to the science that inspired them is clear. By illuminating the reality of climate change, Weather on Steroids aspires to proactively stimulate public dialogue about one of the most important issues of our time.
Satellites as Sentinels for Climate and Health
NASA Technical Reports Server (NTRS)
Maynard, Nancy G.
2003-01-01
Remotely-sensed data and observations are providing powerful new tools for addressing climate and environment-related human health problems through increased capabilities for monitoring, risk mapping, and surveillance of parameters useful to such problems as vector- borne and infectious diseases, air and water quality,. harmful algal blooms, W radiation, contaminant and pathogen transport in air and water, and thermal stress. Remote sensing, geographic information systems (GIs), global positioning systems (GPS), improved computation capabilities, and interdisciplinary research between the Earth and health science communities, together with local knowledge, are being combined in rich collaborative efforts resulting in more rapid problem-solving, early warning, and prevention in global climate and health issues. These collaborative efforts are enabling increased understanding of the relationships among changes in temperature, rainfall, wind, soil moisture, solar radiation, vegetation, and the patterns of extreme weather events and health issues. This increased understanding and improved information and data sharing, in turn, empowers local health and environmental decision-makers to better predict climate-related health problems, decrease vulnerability, take preventive measures, and improve response actions. This paper provides a number of recent examples of how satellites - from their unique vantage point in space - can serve as sentinels for climate and health.
Individual-scale inference to anticipate climate-change vulnerability of biodiversity.
Clark, James S; Bell, David M; Kwit, Matthew; Stine, Anne; Vierra, Ben; Zhu, Kai
2012-01-19
Anticipating how biodiversity will respond to climate change is challenged by the fact that climate variables affect individuals in competition with others, but interest lies at the scale of species and landscapes. By omitting the individual scale, models cannot accommodate the processes that determine future biodiversity. We demonstrate how individual-scale inference can be applied to the problem of anticipating vulnerability of species to climate. The approach places climate vulnerability in the context of competition for light and soil moisture. Sensitivities to climate and competition interactions aggregated from the individual tree scale provide estimates of which species are vulnerable to which variables in different habitats. Vulnerability is explored in terms of specific demographic responses (growth, fecundity and survival) and in terms of the synthetic response (the combination of demographic rates), termed climate tracking. These indices quantify risks for individuals in the context of their competitive environments. However, by aggregating in specific ways (over individuals, years, and other input variables), we provide ways to summarize and rank species in terms of their risks from climate change.
NASA Technical Reports Server (NTRS)
Njoto, Sukrisno; Howe, Charles W.
1991-01-01
Study results indicate the likelihood of significant net damages from climate change, in particular damages from sea-level rise and higher temperatures that seem unlikely to be offset by favorable shifts in precipitation and carbon dioxide. Also indicated was the importance of better climate models, in particular models that can calculate climate change on a regional scale appropriate to policy-making. In spite of this potential for damage, there seems to be a low level of awareness and concern, probably caused by the higher priority given to economic growth and reinforced by the great uncertainty in the forecasts. The common property nature of global environment systems also leads to a feeling of helplessness on the part of country governments.
The impact of climate change on transportation in the gulf coast
Savonis, M.J.; Burkett, V.R.; Potter, J.R.; Kafalenos, R.; Hyman, R.; Leonard, K.
2009-01-01
Climate affects the design, construction, safety, operations, and maintenance of transportation infrastructure and systems. The prospect of a changing climate raises critical questions regarding how alterations in temperature, precipitation, storm events, and other aspects of the climate could affect the nation's transportation system. This regional assessment of climate change and its potential impacts on transportation systems addresses these questions for the central Gulf Coast between Houston and Mobile. Warming temperatures are likely to increase the costs of transportation construction, maintenance, and operations. More frequent extreme precipitation events will likely disrupt transportation networks with flooding and visibility problems. Relative sea level rise will make much of the existing infrastructure more prone to frequent or permanent inundation. Increased storm intensity may lead to increased service disruption and damage. Consideration of these factors in today's transportation decisions should lead to a more robust, resilient, and cost-effective transportation network in the coming decades. ?? 2009 ASCE.
Using Web GIS "Climate" for Adaptation to Climate Change
NASA Astrophysics Data System (ADS)
Gordova, Yulia; Martynova, Yulia; Shulgina, Tamara
2015-04-01
A work is devoted to the application of an information-computational Web GIS "Climate" developed by joint team of the Institute of Monitoring of Climatic and Ecological Systems SB RAS and Tomsk State University to raise awareness about current and future climate change as a basis for further adaptation. Web-GIS "Climate» (http://climate.scert.ru/) based on modern concepts of Web 2.0 provides opportunities to study regional climate change and its consequences by providing access to climate and weather models, a large set of geophysical data and means of processing and visualization. Also, the system is used for the joint development of software applications by distributed research teams, research based on these applications and undergraduate and graduate students training. In addition, the system capabilities allow creating information resources to raise public awareness about climate change, its causes and consequences, which is a necessary step for the subsequent adaptation to these changes. Basic information course on climate change is placed in the public domain and is aimed at local population. Basic concepts and problems of modern climate change and its possible consequences are set out and illustrated in accessible language. Particular attention is paid to regional climate changes. In addition to the information part, the course also includes a selection of links to popular science network resources on current issues in Earth Sciences and a number of practical tasks to consolidate the material. These tasks are performed for a particular territory. Within the tasks users need to analyze the prepared within the "Climate" map layers and answer questions of direct interest to the public: "How did the minimum value of winter temperatures change in your area?", "What are the dynamics of maximum summer temperatures?", etc. Carrying out the analysis of the dynamics of climate change contributes to a better understanding of climate processes and further adaptation. Passing this course raises awareness of the general public, as well as prepares the user for subsequent registration in the system and work with its tools in conducting independent research. This work is partially supported by SB RAS project VIII.80.2.1, RFBR grants 13-05-12034 and 14-05-00502.
Enhancing and expanding intersectional research for climate change adaptation in agrarian settings.
Thompson-Hall, Mary; Carr, Edward R; Pascual, Unai
2016-12-01
Most current approaches focused on vulnerability, resilience, and adaptation to climate change frame gender and its influence in a manner out-of-step with contemporary academic and international development research. The tendency to rely on analyses of the sex-disaggregated gender categories of 'men' and 'women' as sole or principal divisions explaining the abilities of different people within a group to adapt to climate change, illustrates this problem. This framing of gender persists in spite of established bodies of knowledge that show how roles and responsibilities that influence a person´s ability to deal with climate-induced and other stressors emerge at the intersection of diverse identity categories, including but not limited to gender, age, seniority, ethnicity, marital status, and livelihoods. Here, we provide a review of relevant literature on this topic and argue that approaching vulnerability to climate change through intersectional understandings of identity can help improve adaptation programming, project design, implementation, and outcomes.
Disease emergence from global climate and land use change.
Patz, Jonathan A; Olson, Sarah H; Uejio, Christopher K; Gibbs, Holly K
2008-11-01
Climate change and land use change can affect multiple infectious diseases of humans, acting either independently or synergistically. Expanded efforts in empiric and future scenario-based risk assessment are required to anticipate problems. Moreover, the many health impacts of climate and land use change must be examined in the context of the myriad other environmental and behavioral determinants of disease. To optimize prevention capabilities, upstream environmental approaches must be part of any intervention, rather than assaults on single agents of disease. Clinicians must develop stronger ties, not only to public health officials and scientists, but also to earth and environmental scientists and policy makers. Without such efforts, we will inevitably benefit our current generation at the cost of generations to come.
Warming will alter water resources
NASA Astrophysics Data System (ADS)
Maggs, William Ward
Drastic changes in water resources in all regions of the United States will be the most severe effect of global warming, according to a study reported January 16 at the meeting of the American Association for the Advancement of Science in San Francisco. However, said the scientists on the AAAS panel on climate and U.S. water resources, strong governmental involvement can greatly reduce the water supply problems climate change will bring.The natural variability of present and future climate was the starting point for the AAAS study. The panel pointed out that it is difficult to identify the direction of potential change for many of the possible consequences of the greenhouse effect, partly because recent history provides little evidence of strong responses to such changes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
SA Edgerton; LR Roeder
The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. The 2007 assessment (AR4) by the Intergovernmental Panel on Climate Change (IPCC) reports a substantial range among GCMs in climate sensitivity to greenhousemore » gas emissions. The largest contributor to this range lies in how different models handle changes in the way clouds absorb or reflect radiative energy in a changing climate (Solomon et al. 2007). In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program within the Office of Biological and Environmental Research (BER) to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To address this problem, BER has adopted a unique two-pronged approach: * The ARM Climate Research Facility (ACRF), a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes. * The ARM Science Program, focused on the analysis of ACRF data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report describes accomplishments of the BER ARM Program toward addressing the primary uncertainties related to climate change prediction as identified by the IPCC.« less
Don't shoot the messenger: re-framing climate policy to respond to evolving science (Invited)
NASA Astrophysics Data System (ADS)
Allen, M. R.; Otto, F. E.; Otto, A.; Rayner, S.
2013-12-01
Lack of progress in mitigation policy, as atmospheric CO2 concentrations climb apparently inexorably past 400ppm, is often blamed on a failure to 'communicate the climate change message' effectively. A small but increasing number of commentators is arguing that the problem is not communication, but the way in which climate policy choices are framed. In particular, the overt politicization of climate science, with so-called 'belief in climate change' being invoked as automatically implying support for a global carbon price or cap-and-trade regime, or even as an argument for voting for specific parties, makes it increasingly difficult to discuss policy options in the light of evolving science. At the heart of the problem is the interpretation of the 'precautionary principle', which is widely invoked in climate policy as a response to scientific uncertainty: policies, it is argued, should be designed to be robust to the range of possible future climates, or to deliver the ';best' possible probability-weighted outcome. The problem with this approach is that it very often makes policy contingent on worst-case scenarios - such as the risk of high climate sensitivity or rapid non-linear climate change - which are often the most uncertain aspects of climate science and hence subject to frequent revision. To be relevant to policies that are based on mitigating worst-case risks, the scientific community is also required to focus on establishing what these risks are, leaving it open, unjustly but understandably, to the accusation of alarmism. Focusing on worst-case scenarios can also give the impression that the mitigation problem is unachievable, and the only option is short-term adaptation followed by geo-engineering. One way of reducing the politicization of climate science is to make policy explicitly contingent on the climate response, such that a high (or low) rate of anthropogenic warming over the coming decades is automatically met with an aggressive (or moderate) mitigation effort. In the short term, such 'adaptive' policy responses take two forms: either investing in technologies to ensure they are available if and when aggressive mitigation is necessary; or devising policies that respond explicitly to climate change, such as a carbon tax linked to global temperature. Neither of these approaches has gained much traction in the mitigation debate because they are both seen as 'kicking the can down the road', or placing the burden of tough mitigation decisions on future politicians. We will propose that a climate policy that is explicitly contingent on the climate response should otherwise be as inflexible as possible. Ideally, the only unpredictable element of the policy should be the rate of warming attributable to rising greenhouse gas concentrations over the coming decades. Those affected by the policy should be able take a clean position on what that rate is likely to be, unaffected by speculation on what future politicians are likely to do. On this measure, relying on a carbon price or subsidizing technology development are both too flexible, however attractive they might be assuming perfectly rational implementation, because their impact depends as much or more on future decisions on taxes and subsidies as it does on future climate. We will describe a possible alternative, upstream mandatory sequestration (or 'SAFE carbon') explicitly linked to attributable warming, and discuss how it might be implemented.
Water problems in the present trend towards greater aridity
Leopold, Luna Bergere; Craig, Harmon
1957-01-01
In the past few days we have heard a number of scientists, gathered here at Scripps Institution of Oceanography, discuss research work which, in one manner or another, bears on problems related to water resources. They have been discussing, particularly, problems in the field of climatology, and have speculated on the meaning of the results of this research. One of the problems under discussion was the nature, and possible cause, of the climatic fluctuation which we have experienced in recent decades, and its relation to climatic changes in recent geologic time since the last glaciation. These discussions have given me the courage, or perhaps the recklessness, to indulge in some speculation relative to various aspects of water resource problems in the United States.
Discussing Climate Change with the Public: Presenting the Science is Necessary but Insufficient
NASA Astrophysics Data System (ADS)
Vincelli, P.; Humble, J.
2012-12-01
Social science literature shows that the topic of climate change is imbued with cultural meaning for most Americans, such that sound scientific information alone is likely to be unpersuasive to people already doubtful about climate change. A current educational program on climate change emphasizes the following: *Less reliance on geophysical data *Positive messages as frequently as possible *Making the subject personal and concrete *Focusing on scientific aspects of climate change while refraining from promotion of particular policy solutions *Seeking ways to speak to core identities of diverse audiences *Assuring that communication efforts on this highly divisive topic are based on sensitivity to, and respect for, the diversity of worldviews present in citizens *To the extent possible, emphasizing optimism as well as our personal and collective capability to solve the problem of climate change. While this may seem self-evident, we also remind ourselves of the importance of avoiding criticism, blame, demonization, or arrogance in building a more inclusive community of public leaders on climate literacy.; Citing the recognition of climate-change science by trusted organizations is probably more convincing than showing reams of geophysical data. In particular, citing the Department of Defense may speak to the values of many who remain skeptical. ; This image is intended to speak to people that deeply value passing on a way of life to their descendants. Although nationalism can be carried to an extreme, this imagery can convey the notion that protecting our world from climate change is actually patriotic, something few Americans may realize.
Applications of AMS {sup 14}C on Climate and Archaeology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomes, P. R. S.
2007-10-26
We describe the Accelerator Mass Spectrometry (AMS) technique and two distinct applications of its use with {sup 14}C to study environmental problems in Brazil, such as forest fires and climate changes in the Amazon region and archaeological studies on the early settlements in the Southeast Brazilian coast.
Impact of Climate Change Effects on Contamination of Cereal Grains with Deoxynivalenol
Van der Fels-Klerx, H. J.; van Asselt, Esther D.; Madsen, Marianne S.; Olesen, Jørgen E.
2013-01-01
Climate change is expected to aggravate feed and food safety problems of crops; however, quantitative estimates are scarce. This study aimed to estimate impacts of climate change effects on deoxynivalenol contamination of wheat and maize grown in the Netherlands by 2040. Quantitative modelling was applied, considering both direct effects of changing climate on toxin contamination and indirect effects via shifts in crop phenology. Climate change projections for the IPCC A1B emission scenario were used for the scenario period 2031-2050 relative to the baseline period of 1975-1994. Climatic data from two different global and regional climate model combinations were used. A weather generator was applied for downscaling climate data to local conditions. Crop phenology models and prediction models for DON contamination used, each for winter wheat and grain maize. Results showed that flowering and full maturity of both wheat and maize will advance with future climate. Flowering advanced on average 5 and 11 days for wheat, and 7 and 14 days for maize (two climate model combinations). Full maturity was on average 10 and 17 days earlier for wheat, and 19 and 36 days earlier for maize. On the country level, contamination of wheat with deoxynivalenol decreased slightly, but not significantly. Variability between regions was large, and individual regions showed a significant increase in deoxynivalenol concentrations. For maize, an overall decrease in deoxynivalenol contamination was projected, which was significant for one climate model combination, but not significant for the other one. In general, results disagree with previous reported expectations of increased feed and food safety hazards under climate change. This study illustrated the relevance of using quantitative models to estimate the impacts of climate change effects on food safety, and of considering both direct and indirect effects when assessing climate change impacts on crops and related food safety hazards. PMID:24066059
System Dynamics to Climate-Driven Water Budget Analysis in the Eastern Snake Plains Aquifer
NASA Astrophysics Data System (ADS)
Ryu, J.; Contor, B.; Wylie, A.; Johnson, G.; Allen, R. G.
2010-12-01
Climate variability, weather extremes and climate change continue to threaten the sustainability of water resources in the western United States. Given current climate change projections, increasing temperature is likely to modify the timing, form, and intensity of precipitation events, which consequently affect regional and local hydrologic cycles. As a result, drought, water shortage, and subsequent water conflicts may become an increasing threat in monotone hydrologic systems in arid lands, such as the Eastern Snake Plain Aquifer (ESPA). The ESPA, in particular, is a critical asset in the state of Idaho. It is known as the economic lifeblood for more than half of Idaho’s population so that water resources availability and aquifer management due to climate change is of great interest, especially over the next few decades. In this study, we apply system dynamics as a methodology with which to address dynamically complex problems in ESPA’s water resources management. Aquifer recharge and discharge dynamics are coded in STELLA modeling system as input and output, respectively to identify long-term behavior of aquifer responses to climate-driven hydrological changes.
The Impacts of Climate Change Mitigation Strategies on Animal Welfare.
Shields, Sara; Orme-Evans, Geoffrey
2015-05-21
The objective of this review is to point out that the global dialog on reducing greenhouse gas emissions in animal agriculture has, thus far, not adequately considered animal welfare in proposed climate change mitigation strategies. Many suggested approaches for reducing emissions, most of which could generally be described as calls for the intensification of production, can have substantial effects on the animals. Given the growing world-wide awareness and concern for animal welfare, many of these approaches are not socially sustainable. This review identifies the main emission abatement strategies in the climate change literature that would negatively affect animal welfare and details the associated problems. Alternative strategies are also identified as possible solutions for animal welfare and climate change, and it is suggested that more attention be focused on these types of options when allocating resources, researching mitigation strategies, and making policy decisions on reducing emissions from animal agriculture.
The U.S. climate change action plan: Challenges and prospects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darmstadter, J.
1995-07-01
In 1992, the United States and 154 other countries signed the United Nations Framework Convention on Climate Change, an international accord outlining measures for dealing with the threat of global warming. The following year, the Clinton administration released its Climate Change Action Plan for meeting the convention`s goal of stabilizing emissions of carbon dioxide and other greenhouse gases at 1990 levels by the year 2000. Evaluation of the plan`s prospects for success must necessarily be speculative at this point, but already several of the assumptions on which the plan is predicated appear questionable. Moreover, even if the emissions stabilization goalmore » is met, the problem of global warming will persist. Therefore, the greatest contribution of the plan might be to raise consciousness about the need for sustained measures to address climate change and its attendant socioeconomic consequences.« less
Climate change and health vulnerability in informal urban settlements in the Ethiopian Rift Valley
NASA Astrophysics Data System (ADS)
Bambrick, Hilary; Moncada, Stefano; Briguglio, Marie
2015-05-01
Climate change in Ethiopia is occurring against a backdrop of rapid population growth and urbanization, entrenched poverty and a heavy burden of disease, and there is little information on specific health risks with which to approach adaptation planning and strengthen adaptive capacity. Using detailed household surveys (400 households, 1660 individuals, 100% participation) and focus groups in two informal urban communities in the Southern city of Shashemene, we identified locally relevant hazards and found that climate change is likely to intensify existing problems associated with poverty. We also showed that despite their proximity (situated only 1 km apart) the two communities differ in key characteristics that may affect climate change vulnerability and require nuanced approaches to adaptation. Detailed, community-level research is therefore necessary, especially where other sources of data are lacking, to ensure that adaptation activities in the world’s poorest communities address relevant risks.
NASA Astrophysics Data System (ADS)
Grifo, F.
2012-12-01
Inappropriate corporate influence in science-based policy has been a persistent problem in the United States across multiple issue areas and through many administrations. Interference in climate change policy has been especially pervasive in recent years, with tremendous levels of corporate resources being utilized to spread misinformation on climate science and reduce and postpone regulatory action. Much of the influence exerted by these forces is concealed from public view. Better corporate disclosure laws would reveal who is influencing climate policy to policy makers, investors, and the public. Greater transparency in the political activity of corporate actors is needed to shed light on who is responsible for the misinformation campaigns clouding the discussion around climate change in the United States. Such transparency will empower diverse stakeholders to hold corporations accountable. Specific federal policy reforms can be made in order to guide the nation down a path of greater corporate accountability in climate change policy efforts.
Sink or Swim: Adapting to the Hydrologic Impacts of Climate Change
NASA Astrophysics Data System (ADS)
Gleick, P. H.
2014-12-01
Climate changes lead to a wide range of societal and environmental impacts; indeed, strong evidence has accrued that such impacts are already occurring, as summarized by the newest National Climate Assessment and other analyses. Among the most important will be alterations in the hydrologic cycle, changes in water supply and demand, and impacts on existing water-related infrastructure. Because of the complexity of our water systems, adaptation responses will be equally complex. This problem has made it difficult for water managers and planners to develop and implement adaptation strategies. This talk will address three ways to think about water-related adaptation approaches to climate change: (1) strategies that are already being implemented to address population and economic changes without climate change; (2) whether these first-line strategies are appropriate for additional impacts that might result from climatic changes; and (3) new approaches that might be necessary for new, non-linear, or threshold impacts. An effort will also be made to differentiate between adaptation strategies that influence the hydrologic cycle directly (e.g., cloud seeding), those that influence supply management (e.g., construction of additional reservoirs or water-distribution systems), and those that affect water demand (e.g., removal of outdoor landscaping, installation of efficient irrigation systems).
For Me It Was When I Saw a Simple Chart: Former Climate Contrarians Recount What Changed Their Minds
NASA Astrophysics Data System (ADS)
Kirk, K. B.
2017-12-01
Efforts to advance climate policy in the US have been hindered by a sector of the public that is reluctant to accept the science of anthropogenic climate change. Climate educators, advocates, and policymakers seek to resolve this roadblock through educational efforts and strategic messaging, while social science research strives to understand the causes of resistance on climate change. A discussion on the social media platform, AskReddit, offered a surprising source of insight when a tantalizing question was posed, "Former climate deniers, what changed your mind?" Responses to the query offered a rare glimpse into the process of how people switched camps, outgrew their parents' values, had transformative experiences, or were worn down by mounting scientific evidence. The posts contained 66 examples of people who were initially uncertain or dismissive of climate change, but came to accept the mainstream science. The commenters provided insightful narratives describing the origins of their skeptical beliefs, the rationales for their changing opinions, and the events that caused them to reverse course. Analysis of the comments revealed the primary reasons that influenced people to change their minds. Those were: science and evidence (cited as a factor in 47% of the comments); stewardship for the Earth and concerns about pollution (29%); unusual weather events (21%); and the untrustworthiness of the messengers who claim that climate change is false (17%). Note that several commenters pointed to more than one factor that contributed to their evolving views. While neither the setting nor the sample size allow a robust scientific analysis, these anecdotal accounts offer useful insights on a vexing problem. Learning about the circumstances that lead people to update their thinking can help us improve efforts to communicate the science and policy around climate change. This work is the topic of an article at Yale Climate Connections, https://www.yaleclimateconnections.org/2017/04/changing-minds-on-a-changing-climate/.
Has solar variability caused climate change that affected human culture?
NASA Astrophysics Data System (ADS)
Feynman, Joan
If solar variability affects human culture it most likely does so by changing the climate in which the culture operates. Variations in the solar radiative input to the Earth's atmosphere have often been suggested as a cause of such climate change on time scales from decades to tens of millennia. In the last 20 years there has been enormous progress in our knowledge of the many fields of research that impinge on this problem; the history of the solar output, the effect of solar variability on the Earth's mean climate and its regional patterns, the history of the Earth's climate and the history of mankind and human culture. This new knowledge encourages revisiting the question asked in the title of this talk. Several important historical events have been reliably related to climate change including the Little Ice Age in northern Europe and the collapse of the Classical Mayan civilization in the 9th century AD. In the first section of this paper we discus these historical events and review the evidence that they were caused by changes in the solar output. Perhaps the most important event in the history of mankind was the development of agricultural societies. This began to occur almost 12,000 years ago when the climate changed from the Pleistocene to the modern climate of the Holocene. In the second section of the paper we will discuss the suggestion ( Feynman and Ruzmaikin, 2007) that climate variability was the reason agriculture developed when it did and not before.
A regime shift in the Sun-Climate connection with the end of the Medieval Climate Anomaly.
Smirnov, D A; Breitenbach, S F M; Feulner, G; Lechleitner, F A; Prufer, K M; Baldini, J U L; Marwan, N; Kurths, J
2017-09-11
Understanding the influence of changes in solar activity on Earth's climate and distinguishing it from other forcings, such as volcanic activity, remains a major challenge for palaeoclimatology. This problem is best approached by investigating how these variables influenced past climate conditions as recorded in high precision paleoclimate archives. In particular, determining if the climate system response to these forcings changes through time is critical. Here we use the Wiener-Granger causality approach along with well-established cross-correlation analysis to investigate the causal relationship between solar activity, volcanic forcing, and climate as reflected in well-established Intertropical Convergence Zone (ITCZ) rainfall proxy records from Yok Balum Cave, southern Belize. Our analysis reveals a consistent influence of volcanic activity on regional Central American climate over the last two millennia. However, the coupling between solar variability and local climate varied with time, with a regime shift around 1000-1300 CE after which the solar-climate coupling weakened considerably.
Managing the Risks of Climate Change and Terrorism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosa, Eugene; Dietz, Tom; Moss, Richard H.
2012-04-07
Society has difficult decisions to make about how best to allocate its resources to ensure future sustainability. Risk assessment can be a valuable tool: it has long been used to support decisions to address environmental problems. But in a time when the risks to sustainability range from climate change to terrorism, applying risk assessment to sustainability will require careful rethinking. For new threats, we will need a new approach to risk assessment.
ERIC Educational Resources Information Center
Feierabend, Timo; Eilks, Ingo
2010-01-01
This paper describes the development of different lesson plans dealing with authentic and controversial socio-scientific issues in the framework of climate change. These lesson plans orient themselves along the socio-critical, problem-oriented approach to science teaching. They deal with the use of bioethanol as an alternative fuel and with the…
NASA Astrophysics Data System (ADS)
Merrill, J.
2017-12-01
Multidisciplinary undergraduate climate change education is critical for students entering any sector of the workforce. The University of Delaware has developed a new interdisciplinary affinity program—UD Climate Program for Undergraduates (CPUG)—open to undergraduate students of all majors to provide a comprehensive educational experience designed to educate skilled climate change problem-solvers for a wide range of professional careers. The program is designed to fulfill all General Education requirements, and includes a residential community commitment and experiential learning in community outreach and problem solving. Seminars will introduce current popular press and research materials and provide practice in confirming source credibility, communications training, and psychological support, as well as team building. As undergraduates, members of the UD CPUG team will define, describe, and develop a solution or solutions for a pressing local climate challenge that has the potential for global impact. The choice of a challenge and approach to addressing it will be guided by the student's advisor. Students are expected to develop a practical, multidisciplinary solution to address the challenge as defined, using their educational and experiential training. Solutions will be presented to the UD community during the spring semester of their senior year, as a collaborative team solution, with enhancement through individual portfolios from each team member. The logic model, structure, curricular and co-curricular supports for the CPUG will be provided. Mechanisms of support available through University administration will also be discussed.
NASA Technical Reports Server (NTRS)
Saltzman, Barry
1992-01-01
The development of a theory of the evolution of the climate of the earth over millions of years can be subdivided into three fundamental, nested, problems: (1) to establish by equilibrium climate models (e.g., general circulation models) the diagnostic relations, valid at any time, between the fast-response climate variables (i.e., the 'weather statistics') and both the prescribed external radiative forcing and the prescribed distribution of the slow response variables (e.g., the ice sheets and shelves, the deep ocean state, and the atmospheric CO2 concentration); (2) to construct, by an essentially inductive process, a model of the time-dependent evolution of the slow-response climatic variables over time scales longer than the damping times of these variables but shorter than the time scale of tectonic changes in the boundary conditions (e.g., altered geography and elevation of the continents, slow outgassing, and weathering) and ultra-slow astronomical changes such as in the solar radiative output; and (3) to determine the nature of these ultra-slow processes and their effects on the evolution of the equilibrium state of the climatic system about which the above time-dependent variations occur. All three problems are discussed in the context of the theory of the Quaternary climate, which will be incomplete unless it is embedded in a more general theory for the fuller Cenozoic that can accommodate the onset of the ice-age fluctuations. We construct a simple mathematical model for the Late Cenozoic climatic changes based on the hypothesis that forced and free variations of the concentration of atmospheric greenhouse gases (notably CO2), coupled with changes in the deep ocean state and ice mass, under the additional 'pacemaking' influence of earth-orbital forcing, are primary determinants of the climate state over this period. Our goal is to illustrate how a single model governing both very long term variations and higher frequency oscillatory variations in the Pleistocene can be formulated with relatively few adjustable parameters.
Global situational awareness and early warning of high-consequence climate change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backus, George A.; Carr, Martin J.; Boslough, Mark Bruce Elrick
2009-08-01
Global monitoring systems that have high spatial and temporal resolution, with long observational baselines, are needed to provide situational awareness of the Earth's climate system. Continuous monitoring is required for early warning of high-consequence climate change and to help anticipate and minimize the threat. Global climate has changed abruptly in the past and will almost certainly do so again, even in the absence of anthropogenic interference. It is possible that the Earth's climate could change dramatically and suddenly within a few years. An unexpected loss of climate stability would be equivalent to the failure of an engineered system on amore » grand scale, and would affect billions of people by causing agricultural, economic, and environmental collapses that would cascade throughout the world. The probability of such an abrupt change happening in the near future may be small, but it is nonzero. Because the consequences would be catastrophic, we argue that the problem should be treated with science-informed engineering conservatism, which focuses on various ways a system can fail and emphasizes inspection and early detection. Such an approach will require high-fidelity continuous global monitoring, informed by scientific modeling.« less
A Sustainable Early Warning System for Climate Change Impacts on Water Quality Management
NASA Astrophysics Data System (ADS)
Lee, T.; Tung, C.; Chung, N.
2007-12-01
In this era of rapid social and technological change leading to interesting life complexity and environmental displacement, both positive and negative effects among ecosystems call for a balance in which there are impacts by climate changes. Early warning systems for climate change impacts are necessary in order to allow society as a whole to properly and usefully assimilate the masses of new information and knowledge. Therefore, our research addresses to build up a sustainable early warning mechanism. The main goal is to mitigate the cumulative impacts on the environment of climate change and enhance adaptive capacities. An effective early warning system has been proven for protection. However, there is a problem that estimate future climate changes would be faced with high uncertainty. In general, take estimations for climate change impacts would use the data from General Circulation Models and take the analysis as the Intergovernmental Panel on Climate Change declared. We follow the course of the method for analyzing climate change impacts and attempt to accomplish the sustainable early warning system for water quality management. Climate changes impact not only on individual situation but on short-term variation and long-term gradually changes. This kind characteristic should adopt the suitable warning system for long-term formulation and short- term operation. To continue the on-going research of the long-term early warning system for climate change impacts on water quality management, the short-term early warning system is established by using local observation data for reappraising the warning issue. The combination of long-term and short-term system can provide more circumstantial details. In Taiwan, a number of studies have revealed that climate change impacts on water quality, especially in arid period, the concentration of biological oxygen demand may turn into worse. Rapid population growth would also inflict injury on its assimilative capacity to degenerate. To concern about those items, the sustainable early warning system is established and the initiative fall into the following categories: considering the implications for policies, applying adaptive strategies and informing the new climate changes. By setting up the framework of early warning system expectantly can defend stream area from impacts damaging and in sure the sustainable development.
Climate change and the origins of agriculture: A global perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byrne, R.
1995-12-31
Most students of the agricultural origins problem have rejected the thesis that climate change was in important causal variable. For example, it is often emphasized that agriculture began at different times in different areas, and that climate change could not therefore have been a significant factor. It is also suggested that climate change at the end of the last glacial could not have been important, because similar changes in climate occurred at the end of the penultimate glaciation without any cultural response. The primary purpose of this paper is to demonstrate that these objections are invalid, and are based onmore » a misunderstanding of: (1) the nature of late-Pleistocene/early-Holocene climate changes; and (2) the ecological context of early agriculture. Alternatively, it is proposed that the more or less synchronous development of agricultural in several widely separated areas of the globe is best seen as an indirect response to changes in climate during the Pleistocene/Holocene transitions. Three common denominators characterize the early centers of agricultural and collectively point to climate changes as a primary factor: (1) all are located in areas that today are characterized by strongly seasonal rainfall regimes; (2) the initial domestication of plants occurred independently at within a very short period of time during and immediately following the Pleistocene/Holocene transition; and (3) the early plant domesticates were either annuals or geophytes, autecologically adapted to seasonality of moisture supply. The implication is that increased seasonality during the Pleistocene/Holocene transition brought about changes in wild plant and animal populations that in turn led to domestication and agriculture.« less
Criteria for selecting a CO/sub 2//climate change region of study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edmonds, J.; Cushman, R.; Easterling, W.
One of the most important research issues active today is the greenhouse issue. Progress has been made in exploring the relationship between human activities and the accumulation of CO/sub 2/ and other radiatively important gases in the atmosphere. While significant research remains in refining our understanding of the timing of possible CO/sub 2//climate change, the examination of the nature and magnitude of consequences of CO/sub 2//climate change remains in a relatively early stage of development. While the accumulation of greenhouse gases in the atmosphere may be a global problem, the consequences of CO/sub 2//climate change will be experienced regionally. Itmore » is therefore critical that methods be developed to address the regional examination of CO/sub 2//climate change. An analytical framework is described and a ''cookie cutter'' technique is utilized to deal with multiple resource sectors in selecting a Region of Study. The result leads to the selection of the four midwestern states of Kansas, Nebraska, Iowa, and Missouri. The role of information systems, uncertainty analysis, and knowledge transfer is discussed. 19 refs., 2 figs.« less
NASA Astrophysics Data System (ADS)
MacDonald, G. M.; Ambrose, R. F.; Thorne, K.; Takekawa, J.; Brown, L. N.; Fejtek, S.; Gold, M.; Rosencranz, J.
2015-12-01
Frustrations regarding the provision of actionable science extend to both producers and consumers. Scientists decry the lack of application of their research in shaping policy and practices while decision makers bemoan the lack of applicability of scientific research to the specific problems at hand or its narrow focus relative to the plethora of engineering, economic and social considerations that they must also consider. Incorporating climate change adds additional complexity due to uncertainties in estimating many facets of future climate, the inherent variability of climate and the decadal scales over which significant changes will develop. Recently a set of guidelines for successful science-policy interaction was derived from the analysis of transboundary water management. These are; 1 recognizing that science is a crucial but bounded input into the decision-making processes, 2 early establishment of conditions for collaboration and shared commitment among participants, 3 understanding that science-policy interactions are enhanced through greater collaboration and social or group-learning processes, 4 accepting that the collaborative production of knowledge is essential to build legitimate decision-making processes, and 5 engaging boundary organizations and informal networks as well as formal stakeholders. Here we present as a case study research on California coastal marshes, climate change and sea-level that is being conducted by university and USGS scientists under the auspices of the Southwest Climate Science Center. We also present research needs identified by a seperate analysis of best practices for coastal marsh restoration in the face of climate change that was conducted in extensive consultation with planners and managers. The initial communication, scientific research and outreach-dissemination of the marsh scientfic study are outlined and compared to best practices needs identified by planners and the science-policy guidelines outlined above. Matches, mismatches, early-stage evidence of applicability and potential improvements of program development and design are considered.
A New High Resolution Climate Dataset for Climate Change Impacts Assessments in New England
NASA Astrophysics Data System (ADS)
Komurcu, M.; Huber, M.
2016-12-01
Assessing regional impacts of climate change (such as changes in extreme events, land surface hydrology, water resources, energy, ecosystems and economy) requires much higher resolution climate variables than those available from global model projections. While it is possible to run global models in higher resolution, the high computational cost associated with these simulations prevent their use in such manner. To alleviate this problem, dynamical downscaling offers a method to deliver higher resolution climate variables. As part of an NSF EPSCoR funded interdisciplinary effort to assess climate change impacts on New Hampshire ecosystems, hydrology and economy (the New Hampshire Ecosystems and Society project), we create a unique high-resolution climate dataset for New England. We dynamically downscale global model projections under a high impact emissions scenario using the Weather Research and Forecasting model (WRF) with three nested grids of 27, 9 and 3 km horizontal resolution with the highest resolution innermost grid focusing over New England. We prefer dynamical downscaling over other methods such as statistical downscaling because it employs physical equations to progressively simulate climate variables as atmospheric processes interact with surface processes, emissions, radiation, clouds, precipitation and other model components, hence eliminates fix relationships between variables. In addition to simulating mean changes in regional climate, dynamical downscaling also allows for the simulation of climate extremes that significantly alter climate change impacts. We simulate three time slices: 2006-2015, 2040-2060 and 2080-2100. This new high-resolution climate dataset (with more than 200 variables saved in hourly (six hourly) intervals for the highest resolution domain (outer two domains)) along with model input and restart files used in our WRF simulations will be publicly available for use to the broader scientific community to support in-depth climate change impacts assessments for New England. We present results focusing on future changes in New England extreme events.
NASA Astrophysics Data System (ADS)
Niepold, F.; Karsten, J. L.; Wei, M.; Jadin, J.
2010-12-01
In the 2010 National Research Council’s America’s Climate Choices’ report on Informing Effective Decisions and Actions Related to Climate Change concluded; “Education and communication are among the most powerful tools the nation has to bring hidden hazards to public attention, understanding, and action.” They conclude that the “current and future students, the broader public, and policymakers need to understand the causes, consequences, and potential solutions to climate change, develop scientific thinking and problem-solving skills, and improve their ability to make informed decisions.” The U.S. Global Change Research Program (USGCRP) works to integrate the climate related activities of these different agencies, with oversight from the Office of Science and Technology Policy and other White House offices. USGCRP’s focus is now on evaluating optimal strategies for addressing climate change risks, improving coordination among the Federal agencies, engaging stakeholders (including national policy leaders and local resource managers) on the research results to all and improving public understanding and decision-making related to global change. Implicit to these activities is the need to educate the public about the science of climate change and its consequences, as well as coordinate Federal investments related to climate change education. In a broader sense, the implementation of the proposed Interagency Taskforce on Climate Change Communication and Education will serve the evolving USGCRP mandates around cross-cutting, thematic elements, as recommended by the National Research Council (NRC, 2009) and the U.S. Climate Change Science Program Revised Research Plan: An update to the 2003 Strategic Plan (USGCRP, 2008), to help the Federal government “capitalize on its investments and aid in the development of increased climate literacy for the Nation.” This session will update the participants on the work to date and the near term coordinated plans of the proposed Interagency Taskforce on Climate Change Communication and Education.
NASA Astrophysics Data System (ADS)
Vicuna, S.; Melo, O.; Meza, F. J.; Medellin-Azuara, J.; Herman, J. D.; Sandoval Solis, S.
2017-12-01
California and Chile share similarities in terms of climate, ecosystems, topography and water use. In both regions, the hydro-climatologic system is characterized by a typical Mediterranean climate, rainy winters and dry summers, highly variable annual precipitation, and snowmelt-dependent water supply systems. Water use in both regions has also key similarities, with the highest share devoted to high-value irrigated crops, followed by urban water use and a significant hydropower-driven power supply system. Snowmelt-driven basins in semiarid regions are highly sensitive to climate change for two reasons, temperature effects on snowmelt timing and water resources scarcity in these regions subject to ever-increasing demands. Research in both regions also coincide in terms of the potential climate change impacts. Expected impacts on California and Chile water resources have been well-documented in terms of changes in water supply and water demand, though significant uncertainties remain. Both regions have recently experienced prolonged droughts, providing an opportunity to understand the future challenges and potential adaptive responses under climate change. This study connects researchers from Chile and California with the goal of understanding the problem of how to adapt to climate change impacts on water resources and agriculture at the various spatial and temporal scales. The project takes advantage of the complementary contexts between Chile and California in terms of similar climate and hydrologic conditions, water management institutions, patterns of water consumption and, importantly, a similar challenge facing recent drought scenarios to understand the challenges faced by a changing climate.
Algorithm of dynamic regulation of a system of duct, for a high accuracy climatic system
NASA Astrophysics Data System (ADS)
Arbatskiy, A. A.; Afonina, G. N.; Glazov, V. S.
2017-11-01
Currently, major part of climatic system, are stationary in projected mode only. At the same time, many modern industrial sites, require constant or periodical changes in technological process. That is 80% of the time, the industrial site is not require ventilation system in projected mode and high precision of climatic parameters must maintain. While that not constantly is in use for climatic systems, which use in parallel for different rooms, we will be have a problem for balance of duct system. For this problem, was created the algorithm for quantity regulation, with minimal changes. Dynamic duct system: Developed of parallel control system of air balance, with high precision of climatic parameters. The Algorithm provide a permanent pressure in main duct, in different a flow of air. Therefore, the ending devises air flow have only one parameter for regulation - flaps open area. Precision of regulation increase and the climatic system provide high precision for temperature and humidity (0,5C for temperature, 5% for relative humidity). Result: The research has been made in CFD-system - PHOENICS. Results for velocity of air in duct, for pressure of air in duct for different operation mode, has been obtained. Equation for air valves positions, with different parameters for climate in room’s, has been obtained. Energy saving potential for dynamic duct system, for different types of a rooms, has been calculated.
NASA Astrophysics Data System (ADS)
Sari, Indah Kurniasih Wahyu; Hadi, Sudharto P.
2018-02-01
Climate change is no longer a debate about its existence but already a problem shared between communities, between agencies, between countries even global for handling serious because so many aspects of life and the environment is affected, especially for communities in coastal environments This climate change is a threat to the Earth, because it can affect all aspects of life and will damage the balance of life of Earth Climate change happens slowly in a fairly long period of time and it is a change that is hard to avoid. These Phenomena will give effect to the various facets of life. Semarang as areas located to Java and bordering the Java Sea are at high risk exposed to the impacts of climate change Also not a few residents of the city of Semarang who settled in the northern part of the city of Semarang and also have a livelihood as farmers/peasants and fishermen Many industrial centers or attractions that are prone to impacted by climate change. Thus, the anticipation of climate change on resources support neighborhood of fishermen in the coastal area of Tanjungmas Semarang interesting for further review. This study aims to find out more the influence of climate change on the environment of fishing identify potential danger due to the impacts of climate change on coastal areas of Tanjungmas Semarang The research was conducted through surveys, interviews and field observation without a list of questions to obtain primary and secondary data As for the analysis undertaken, namely the analysis of climate change on the coastal environment, the analysis of productivity of fishermen as well as the analysis of the likelihood of disaster risk at the coast due to climate change. From the results of the study the occurrence of sea rise as one of the indicators of climate change in the coastal City of Semarang to reach 0.8 mm/year and average soil degradation that ranged between 5 - 12 cm/year cause most coastal communities as well as the social life of the agricultural areas of its economy relies on the resources becoming increasingly erratic.
Development of regional climate scenarios in the Netherlands - involvement of users
NASA Astrophysics Data System (ADS)
Bessembinder, Janette; Overbeek, Bernadet
2013-04-01
Climate scenarios are consistent and plausible pictures of possible future climates. They are intended for use in studies exploring the impacts of climate change, and to formulate possible adaptation strategies. To ensure that the developed climate scenarios are relevant to the intended users, interaction with the users is needed. As part of the research programmes "Climate changes Spatial Planning" and "Knowledge for Climate" several projects on climate services, tailoring of climate information and communication were conducted. Some of the important lessons learned about user interaction are: *) To be able to deliver relevant climate information in the right format, proper knowledge is required on who will be using the climate information and data, how it will be used and why they use it; *) Users' requirements can be very diverse and requirements may change over time. Therefore, sustained (personal) contact with users is required; *) Organising meetings with climate researchers and users of climate information together, and working together in projects results in mutual understanding on the requirements of users and the limitations to deliver certain types of climate information, which facilitates the communication and results in more widely accepted products; *) Information and communication should be adapted to the type of users (e.g. impact researchers or policy makers) and to the type of problem (unstructured problems require much more contact with the users). In 2001 KNMI developed climate scenarios for the National Commission on Water management in the 21st century (WB21 scenarios). In 2006 these were replaced by a the KNMI'06 scenarios, intended for a broader group of users. The above lessons are now taken into account during the development of the next generation of climate scenarios for the Netherlands, expected at the end of 2013, after the publication of the IPCC WG1 report: *) users' requirements are taken into account explicitly in the whole process of the development of the climate scenarios; *) users are involved already in the early phases of the development of new scenarios, among others in the following way: **) workshops on users' requirements to check whether they have changed and to get more information; **) feedback group of users to get more detailed feedback on the modes of communication; **) newsletter with information on the progress and procedures to be followed and separate workshops for researchers and policy makers with different levels of detail; **) projects together with impact researchers: tailoring of data and in order to be able to present impact information consistent with the climate scenarios much earlier. During the presentation more detailed information will be given on the interaction with users.
Limitations of carbon footprint as indicator of environmental sustainability.
Laurent, Alexis; Olsen, Stig I; Hauschild, Michael Z
2012-04-03
Greenhouse gas accountings, commonly referred to with the popular term carbon footprints (CFP), are a widely used metric of climate change impacts and the main focus of many sustainability policies among companies and authorities. However, environmental sustainability concerns not just climate change but also other environmental problems, like chemical pollution or depletion of natural resources, and the focus on CFP brings the risk of problem shifting when reductions in CFP are obtained at the expense of increase in other environmental impacts. But how real is this risk? Here, we model and analyze the life cycle impacts from about 4000 different products, technologies, and services taken from several sectors, including energy generation, transportation, material production, infrastructure, and waste management. By investigating the correlations between the CFP and 13 other impact scores, we show that some environmental impacts, notably those related to emissions of toxic substances, often do not covary with climate change impacts. In such situations, carbon footprint is a poor representative of the environmental burden of products, and environmental management focused exclusively on CFP runs the risk of inadvertently shifting the problem to other environmental impacts when products are optimized to become more "green". These findings call for the use of more broadly encompassing tools to assess and manage environmental sustainability.
Climate change and Norman Daniels' theory of just health: an essay on basic needs.
Lacey, Joseph
2012-02-01
Norman Daniels, in applying Rawls' theory of justice to the issue of human health, ideally presupposes that society exists in a state of moderate scarcity. However, faced with problems like climate change, many societies find that their state of moderate scarcity is increasingly under threat. The first part of this essay aims to determine the consequences for Daniels' theory of just health when we incorporate into Rawls' understanding of justice the idea that the condition of moderate scarcity can fail. Most significantly, I argue for a generation-neutral principle of basic needs that is lexically prior to Rawls' familiar principles of justice. The second part of this paper aims to demonstrate how my reformulated version of Daniels' conception of just health can help to justify action on climate change and guide climate policy within liberal-egalitarian societies.
Climate change and environmental concentrations of POPs: A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nadal, Martí, E-mail: marti.nadal@urv.cat; Marquès, Montse; Mari, Montse
In recent years, the climate change impact on the concentrations of persistent organic pollutants (POPs) has become a topic of notable concern. Changes in environmental conditions such as the increase of the average temperature, or the UV-B radiation, are likely to influence the fate and behavior of POPs, ultimately affecting human exposure. The state of the art of the impact of climate change on environmental concentrations of POPs, as well as on human health risks, is here reviewed. Research gaps are also identified, while future studies are suggested. Climate change and POPs are a hot issue, for which wide attentionmore » should be paid not only by scientists, but also and mainly by policy makers. Most studies reported in the scientific literature are focused on legacy POPs, mainly polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs) and pesticides. However, the number of investigations aimed at estimating the impact of climate change on the environmental levels of polycyclic aromatic hydrocarbons (PAHs) is scarce, despite of the fact that exposure to PAHs and photodegradation byproducts may result in adverse health effects. Furthermore, no data on emerging POPs are currently available in the scientific literature. In consequence, an intensification of studies to identify and mitigate the indirect effects of the climate change on POP fate is needed to minimize the human health impact. Furthermore, being this a global problem, interactions between climate change and POPs must be addressed from an international perspective.« less
Climate change and environmental concentrations of POPs: A review.
Nadal, Martí; Marquès, Montse; Mari, Montse; Domingo, José L
2015-11-01
In recent years, the climate change impact on the concentrations of persistent organic pollutants (POPs) has become a topic of notable concern. Changes in environmental conditions such as the increase of the average temperature, or the UV-B radiation, are likely to influence the fate and behavior of POPs, ultimately affecting human exposure. The state of the art of the impact of climate change on environmental concentrations of POPs, as well as on human health risks, is here reviewed. Research gaps are also identified, while future studies are suggested. Climate change and POPs are a hot issue, for which wide attention should be paid not only by scientists, but also and mainly by policy makers. Most studies reported in the scientific literature are focused on legacy POPs, mainly polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs) and pesticides. However, the number of investigations aimed at estimating the impact of climate change on the environmental levels of polycyclic aromatic hydrocarbons (PAHs) is scarce, despite of the fact that exposure to PAHs and photodegradation byproducts may result in adverse health effects. Furthermore, no data on emerging POPs are currently available in the scientific literature. In consequence, an intensification of studies to identify and mitigate the indirect effects of the climate change on POP fate is needed to minimize the human health impact. Furthermore, being this a global problem, interactions between climate change and POPs must be addressed from an international perspective. Copyright © 2015 Elsevier Inc. All rights reserved.
Rylander, Charlotta; Odland, Jon Øyvind; Sandanger, Torkjel Manning
2013-03-11
In 2007, the Intergovernmental Panel on Climate Change (IPCC) presented a large amount of evidence about global warming and the impact of human activities on global climate change. The Lancet Commission have identified a number of ways in which climate change can influence human health: lack of food and safe drinking water, poor sanitation, population migration, changing disease patterns and morbidity, more frequent extreme weather events, and lack of shelter. Pregnant women, the developing fetus, and young children are considered the most vulnerable members of our species and are already marginalized in many countries. Therefore, they may have increased sensitivity to the effects of climate change. Published literature in the fields of climate change, human health, tropical diseases, and direct heat exposure were assessed through the regular search engines. This article demonstrates that climate change will increase the risk of infant and maternal mortality, birth complications, and poorer reproductive health, especially in tropical, developing countries. Thus, climate change will have a substantial impact on the health and survival of the next generation among already challenged populations. There is limited knowledge regarding which regions will be most heavily affected. Research efforts are therefore required to identify the most vulnerable populations, fill knowledge gaps, and coordinate efforts to reduce negative health consequences. The effects of malnutrition, infectious diseases, environmental problems, and direct heat exposure on maternal health outcomes will lead to severe health risks for mothers and children. Increased focus on antenatal care is recommended to prevent worsening maternal health and perinatal mortality and morbidity. Interventions to reduce the negative health impacts caused by climate change are also crucial. Every effort should be made to develop and maintain good antenatal care during extreme life conditions as a result of climate change.
Rylander, Charlotta; Odland, Jon Øyvind; Sandanger, Torkjel Manning
2013-01-01
In 2007, the Intergovernmental Panel on Climate Change (IPCC) presented a large amount of evidence about global warming and the impact of human activities on global climate change. The Lancet Commission have identified a number of ways in which climate change can influence human health: lack of food and safe drinking water, poor sanitation, population migration, changing disease patterns and morbidity, more frequent extreme weather events, and lack of shelter. Pregnant women, the developing fetus, and young children are considered the most vulnerable members of our species and are already marginalized in many countries. Therefore, they may have increased sensitivity to the effects of climate change. Published literature in the fields of climate change, human health, tropical diseases, and direct heat exposure were assessed through the regular search engines. This article demonstrates that climate change will increase the risk of infant and maternal mortality, birth complications, and poorer reproductive health, especially in tropical, developing countries. Thus, climate change will have a substantial impact on the health and survival of the next generation among already challenged populations. There is limited knowledge regarding which regions will be most heavily affected. Research efforts are therefore required to identify the most vulnerable populations, fill knowledge gaps, and coordinate efforts to reduce negative health consequences. The effects of malnutrition, infectious diseases, environmental problems, and direct heat exposure on maternal health outcomes will lead to severe health risks for mothers and children. Increased focus on antenatal care is recommended to prevent worsening maternal health and perinatal mortality and morbidity. Interventions to reduce the negative health impacts caused by climate change are also crucial. Every effort should be made to develop and maintain good antenatal care during extreme life conditions as a result of climate change. PMID:23481091
Using social network analysis to evaluate health-related adaptation decision-making in Cambodia.
Bowen, Kathryn J; Alexander, Damon; Miller, Fiona; Dany, Va
2014-01-30
Climate change adaptation in the health sector requires decisions across sectors, levels of government, and organisations. The networks that link these different institutions, and the relationships among people within these networks, are therefore critical influences on the nature of adaptive responses to climate change in the health sector. This study uses social network research to identify key organisational players engaged in developing health-related adaptation activities in Cambodia. It finds that strong partnerships are reported as developing across sectors and different types of organisations in relation to the health risks from climate change. Government ministries are influential organisations, whereas donors, development banks and non-government organisations do not appear to be as influential in the development of adaptation policy in the health sector. Finally, the study highlights the importance of informal partnerships (or 'shadow networks') in the context of climate change adaptation policy and activities. The health governance 'map' in relation to health and climate change adaptation that is developed in this paper is a novel way of identifying organisations that are perceived as key agents in the decision-making process, and it holds substantial benefits for both understanding and intervening in a broad range of climate change-related policy problems where collaboration is paramount for successful outcomes.
Tielbörger, Katja; Fleischer, Aliza; Menzel, Lucas; Metz, Johannes; Sternberg, Marcelo
2010-11-28
The eastern Mediterranean faces a severe water crisis: water supply decreases due to climate change, while demand increases due to rapid population growth. The GLOWA Jordan River project generates science-based management strategies for maximizing water productivity under global climate change. We use a novel definition of water productivity as the full range of services provided by landscapes per unit blue (surface) and green (in plants and soil) water. Our combined results from climatological, ecological, economic and hydrological studies suggest that, in Israel, certain landscapes provide high returns as ecosystem services for little input of additional blue water. Specifically, cultural services such as recreation may by far exceed that of food production. Interestingly, some highly valued landscapes (e.g. rangeland) appear resistant to climate change, making them an ideal candidate for adaptive land management. Vice versa, expanding irrigated agriculture is unlikely to be sustainable under global climate change. We advocate the inclusion of a large range of ecosystem services into integrated land and water resources management. The focus on cultural services and integration of irrigation demand will lead to entirely different but productive water and land allocation schemes that may be suitable for withstanding the problems caused by climate change.
Using Social Network Analysis to Evaluate Health-Related Adaptation Decision-Making in Cambodia
Bowen, Kathryn J.; Alexander, Damon; Miller, Fiona; Dany, Va
2014-01-01
Climate change adaptation in the health sector requires decisions across sectors, levels of government, and organisations. The networks that link these different institutions, and the relationships among people within these networks, are therefore critical influences on the nature of adaptive responses to climate change in the health sector. This study uses social network research to identify key organisational players engaged in developing health-related adaptation activities in Cambodia. It finds that strong partnerships are reported as developing across sectors and different types of organisations in relation to the health risks from climate change. Government ministries are influential organisations, whereas donors, development banks and non-government organisations do not appear to be as influential in the development of adaptation policy in the health sector. Finally, the study highlights the importance of informal partnerships (or ‘shadow networks’) in the context of climate change adaptation policy and activities. The health governance ‘map’ in relation to health and climate change adaptation that is developed in this paper is a novel way of identifying organisations that are perceived as key agents in the decision-making process, and it holds substantial benefits for both understanding and intervening in a broad range of climate change-related policy problems where collaboration is paramount for successful outcomes. PMID:24487452
Climate change adaptation and Integrated Water Resource Management in the water sector
NASA Astrophysics Data System (ADS)
Ludwig, Fulco; van Slobbe, Erik; Cofino, Wim
2014-10-01
Integrated Water Resources Management (IWRM) was introduced in 1980s to better optimise water uses between different water demanding sectors. However, since it was introduced water systems have become more complicated due to changes in the global water cycle as a result of climate change. The realization that climate change will have a significant impact on water availability and flood risks has driven research and policy making on adaptation. This paper discusses the main similarities and differences between climate change adaptation and IWRM. The main difference between the two is the focus on current and historic issues of IWRM compared to the (long-term) future focus of adaptation. One of the main problems of implementing climate change adaptation is the large uncertainties in future projections. Two completely different approaches to adaptation have been developed in response to these large uncertainties. A top-down approach based on large scale biophysical impacts analyses focussing on quantifying and minimizing uncertainty by using a large range of scenarios and different climate and impact models. The main problem with this approach is the propagation of uncertainties within the modelling chain. The opposite is the bottom up approach which basically ignores uncertainty. It focusses on reducing vulnerabilities, often at local scale, by developing resilient water systems. Both these approaches however are unsuitable for integrating into water management. The bottom up approach focuses too much on socio-economic vulnerability and too little on developing (technical) solutions. The top-down approach often results in an “explosion” of uncertainty and therefore complicates decision making. A more promising direction of adaptation would be a risk based approach. Future research should further develop and test an approach which starts with developing adaptation strategies based on current and future risks. These strategies should then be evaluated using a range of future scenarios in order to develop robust adaptation measures and strategies.
Comprehensive methods for earlier detection and monitoring of forest decline
Jennifer Pontius; Richard Hallett
2014-01-01
Forested ecosystems are threatened by invasive pests, pathogens, and unusual climatic events brought about by climate change. Earlier detection of incipient forest health problems and a quantitatively rigorous assessment method is increasingly important. Here, we describe a method that is adaptable across tree species and stress agents and practical for use in the...
The acidity problem -- an outline of concepts
Svante Od& #233; n; Svante n
1976-01-01
The changing acidity of air and precipitation over most of Europe and part of U. S. is only part of a larger problem--changes of the chemical climate caused by a variety of emissions into the atmosphere (13, 36). These emissions may create a local, a regional or a global situation depending only on the life-time of the pollutants in the atmosphere. The atmospheric...
NASA Astrophysics Data System (ADS)
Halvorsen, K. E.; Kossak, D. J.; Mayer, A. S.; Vivoni, E. R.; Robles-Morua, A.; Gamez Molina, V.; Dana, K.; Mirchi, A.
2013-12-01
Climate change-related impacts on water resources are expected to be particularly severe in the arid developing world. As a result, we conducted a series of participatory modeling workshops on hydrologic and water resources systems modeling in the face of climate change in Sonora, Mexico. Pre-surveys were administered to participants on Day 1 of a series of four workshops spaced out over three months in 2013. Post-surveys repeated many pre-survey questions and included questions assessing the quality of the workshops and models. We report on significant changes in participant perceptions of water resource models and problems and their assessment of the workshops. These findings will be of great value to future participatory modeling efforts, particularly within the developing world.
NASA Astrophysics Data System (ADS)
Papadavid, G.; Neocleous, D.; Stylianou, A.; Markou, M.; Kountios, G.; Hadjimitsis, D.
2016-08-01
Water allocation to crops, and especially to the most water intensive ones, has always been of great importance in agricultural process. Deficit or excess water irrigation quantities could create either crop health related problems or water over-consumption situation which lead to stored water reduction and toxic material depletion to deeper ground layers, respectively. In this context, and under the current conditions, where Cyprus is facing effects of climate changes, purpose of this study is basically to estimate the needed crop water requirements of the past (1995-2004) and the corresponding ones of the present (2005-2015) in order to test if there were any significant changes regarding the crop water requirements of the most water intensive trees in Cyprus. Mediterranean region has been identified as the region that will suffer the most from climate change. Thus the paper refers to effects of climate changes on crop evapotranspiration (ETc) using remotely sensed data from Landsat TM/ ETM+ / OLI employing a sound methodology used worldwide, the Surface Energy Balance Algorithm for Land (SEBAL). Though the general feeling is that of changes on climate will consequently affect ETc, the results have indicated that there is no significant effect of climate change on crop evapotranspiration, despite the fact that some climatic factors have changed. Applying Student's T-test, the mean values for the most water intensive trees in Cyprus of the 1994-2004 decade have shown no statistical difference from the mean values of 2005-2015 decade's for all the cases, concluding that the climate change taking place the last decades in Cyprus have either not affected the crop evapotranspiration or the crops have manage to adapt into the new environmental conditions through time.
NASA Astrophysics Data System (ADS)
Pfirman, S. L.; Brunacini, J.; Orlove, B. S.; Bachrach, E.; Hamilton, L.
2017-12-01
Informal learners have many different backgrounds, experiences, and perspectives. How can informal educators effectively reach such diverse audiences, meeting people where they are with regard to climate change? The Polar Learning and Responding: PoLAR Climate Change Education Partnership, supported by NSF, employs surveys, resource development, and research to develop innovative, evidence-based approaches that engage lifelong learners. General-public surveys on climate change yield insights on the knowledge and perceptions that informal learners bring to the table. That helps guide the creation of new tools for effective communication. For example, many people are unsure what causes sea level to rise. The Polar Explorer: Sea Level app uses a data and question-based approach guiding people through interactive maps to learn about melting land ice. In addition, people also tend to believe that climate impacts will happen in the future. Polar Voices podcasts feature Arctic Indigenous communities sharing first-hand experiences with climate change. Prior knowledge can be harnessed to enhance learning. Arctic SMARTIC engages people in role-playing negotiations with others to create a marine management plan. Climate game jams provide collaborative, creative spaces where participants learn as they interact with others. In each case participants, with all their knowledge and experience, are brought into group problem-solving. Understanding whom people trust for climate-change information offers insights that help them become climate communicators. Even those who are concerned about climate often do not discuss it with family and friends (Maibach et al. 2016), yet our research shows that family and friends are second only to scientists as trusted sources of climate information (Hamilton 2016). Fun and novel educational tools such as the EcoChains card game and the EcoKoin social networking app serve as conversation starters.
Climate change and health: Why should India be concerned?
Majra, J P; Gur, A
2009-04-01
Overwhelming evidence shows that climate change presents growing threats to public health security - from extreme weather-related disasters to wider spread of such vector-borne diseases as malaria and dengue. The impacts of climate on human health will not be evenly distributed around the world. The Third Assessment Report (Intergovernmental Panel on Climate Change-2001) concluded that vulnerability to climate change is a function of exposure, sensitivity, and adaptive capacity. Developing country populations, particularly in small island states, arid and high mountain zones, and in densely populated coastal areas are considered to be particularly vulnerable. India is a large developing country, with the Great Himalayas, the world's third largest ice mass in the north, 7500 km long, and densely populated coast line in the south. Nearly 700 million of her over one billion population living in rural areas directly depends on climate-sensitive sectors (agriculture, forests, and fisheries) and natural resources (such as water, biodiversity, mangroves, coastal zones, grasslands) for their subsistence and livelihoods. Heat wave, floods (land and coastal), and draughts occur commonly. Malaria, malnutrition, and diarrhea are major public health problems. Any further increase, as projected in weather-related disasters and related health effects, may cripple the already inadequate public health infrastructure in the country. Hence, there is an urgent need to respond to the situation. Response options to protect health from effects of climate change include mitigation as well as adaptation. Both can complement each other and together can significantly reduce the risks of climate change.
NASA's Global Climate Change Education (GCCE) Program: New modules
NASA Astrophysics Data System (ADS)
Witiw, M. R.; Myers, R. J.; Schwerin, T. G.
2010-12-01
In existence for over 10 years, the Earth System Science Educational Alliance (ESSEA) through the Institute of Global Environmental Strategies (IGES) has developed a series of modules on Earth system science topics. To date, over 80 educational modules have been developed. The primary purpose of these modules is to provide graduate courses for teacher education. A typical course designed for teachers typically consists of from three to five content modules and a primer on problem-based learning. Each module is designed to take three weeks in a normal university semester. Course delivery methods vary. Some courses are completed totally online. Others are presented in the classroom. Still others are delivered using a hybrid method which combines classroom meetings with online delivery of content. Although originally designed for teachers and education students, recent changes, provide a format for general education students to use these module. In 2009, under NASA’s Global Climate Change Education (GCCE) initiative, IGES was tasked to develop 16 new modules addressing the topic of climate change. Two of the modules recently developed under this program address the topics of sunspots and thermal islands. Sunspots is a problem-based learning module where students are provided resources and sample investigations related to sunspots. The history of sunspot observations, the structure of sunspots and the possible role sunspots may have in Earth’s climate are explored. Students are then asked to determine what effects a continued minimum in sunspot activity may have on the climate system. In Thermal Islands, the topic of urban heat islands is addressed. How heat islands are produced and the role of urban heat islands in exacerbating heat waves are two of the topics covered in the resources. In this problem-based learning module, students are asked to think of mitigating strategies for these thermal islands as Earth’s urban population grows over the next 50 years. These modules were successfully piloted with undergraduate students at Seattle Pacific University.
Perils in the adaptation of fire management to a changing world
Armando González-Cabán; M.M. Fernández-Ramiro; Claudio Conese; Francesco Bosello; Jorge Núñez; Victor Otrachshenko; B.J. Orr
2014-01-01
Increased fire load and costs are anticipated under future scenarios of climate and other global changes. This requires increased efficiency in investments in wildfire management operations, and resolving the disconnect problem between science, policy and management.
The statistical analysis of global climate change studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardin, J.W.
1992-01-01
The focus of this work is to contribute to the enhancement of the relationship between climatologists and statisticians. The analysis of global change data has been underway for many years by atmospheric scientists. Much of this analysis includes a heavy reliance on statistics and statistical inference. Some specific climatological analyses are presented and the dependence on statistics is documented before the analysis is undertaken. The first problem presented involves the fluctuation-dissipation theorem and its application to global climate models. This problem has a sound theoretical niche in the literature of both climate modeling and physics, but a statistical analysis inmore » which the data is obtained from the model to show graphically the relationship has not been undertaken. It is under this motivation that the author presents this problem. A second problem concerning the standard errors in estimating global temperatures is purely statistical in nature although very little materials exists for sampling on such a frame. This problem not only has climatological and statistical ramifications, but political ones as well. It is planned to use these results in a further analysis of global warming using actual data collected on the earth. In order to simplify the analysis of these problems, the development of a computer program, MISHA, is presented. This interactive program contains many of the routines, functions, graphics, and map projections needed by the climatologist in order to effectively enter the arena of data visualization.« less
Strategic decision making under climate change: a case study on Lake Maggiore water system
NASA Astrophysics Data System (ADS)
Micotti, M.; Soncini Sessa, R.; Weber, E.
2014-09-01
Water resources planning processes involve different kinds of decisions that are generally evaluated under a stationary climate scenario assumption. In general, the possible combinations of interventions are mutually compared as single alternatives. However, the ongoing climate change requires us to reconsider this approach. Indeed, what have to be compared are not individual alternatives, but families of alternatives, characterized by the same structural decisions, i.e. by actions that have long-term effects and entail irrevocable changes in the system. The rationale is that the structural actions, once they have been implemented, cannot be easily modified, while the management decisions can be adapted to the evolving conditions. This paper considers this methodological problem in a real case study, in which a strategic decision has to be taken: a new barrage was proposed to regulate Lake Maggiore outflow, but, alternatively, either the present barrage can be maintained with its present regulation norms or with a new one. The problem was dealt with by multi-criteria decision analysis involving many stakeholders and two decision-makers. An exhaustive set of indicators was defined in the participatory process, conducted under the integrated water resource management paradigm, and many efficient (in Pareto sense) regulation policies were identified. The paper explores different formulations of a global index to evaluate and compare the effectiveness of the classes of alternatives under both stationary and changing hydrological scenarios in order to assess their adaptability to the ongoing climate change.
The Practitioner's Dilemma: How to Assess the Credibility of Downscaled Climate Projections
NASA Technical Reports Server (NTRS)
Barsugli, Joseph J.; Guentchev, Galina; Horton, Radley M.; Wood, Andrew; Mearns, Lindo O.; Liang, Xin-Zhong; Winkler, Julia A.; Dixon, Keith; Hayhoe, Katharine; Rood, Richard B.;
2013-01-01
Suppose you are a city planner, regional water manager, or wildlife conservation specialist who is asked to include the potential impacts of climate variability and change in your risk management and planning efforts. What climate information would you use? The choice is often regional or local climate projections downscaled from global climate models (GCMs; also known as general circulation models) to include detail at spatial and temporal scales that align with those of the decision problem. A few years ago this information was hard to come by. Now there is Web-based access to a proliferation of high-resolution climate projections derived with differing downscaling methods.
Polar process and world climate /A brief overview/
NASA Technical Reports Server (NTRS)
Goody, R.
1980-01-01
A review is presented of events relating polar regions to the world climate, the mechanisms of sea ice and polar ice sheets, and of two theories of the Pleistocene Ice Ages. The sea ice which varies over time scales of one or two years and the polar ice sheets with time changes measured in tens or hundreds of thousands of years introduce two distinct time constants into global time changes; the yearly Arctic sea ice variations affect northern Europe and have some effect over the entire Northern Hemisphere; the ice-albedo coupling in the polar ice sheets is involved in major climatic events such as the Pleistocene ice ages. It is concluded that climate problems require a global approach including the atmosphere, the oceans, and the cryosphere.
Effects of climate change on landslide hazard in Europe (Invited)
NASA Astrophysics Data System (ADS)
Nadim, F.; Solheim, A.
2009-12-01
Landslides represent a major threat to human life, property and constructed facilities, infrastructure and natural environment in most mountainous and hilly regions of the world. As a consequence of climatic changes and potential global warming, an increase of landslide activity is expected in some parts of the world in the future. This will be due to increased extreme rainfall events, changes of hydrological cycles, meteorological events followed by sea storms causing coastal erosion and melting of snow and of frozen soils in the high mountains. During the past century, Europe experienced many fatalities and significant economic losses due to landslides. Since in many parts of Europe landslides are the most serious natural hazard, several recent European research projects are looking into the effects of climate change on the risk associated with landslides. Examples are the recently initiated SafeLand project, which looks into this problem across the continent, and GeoExtreme, which focused on Norway. The ongoing project SafeLand (www.safeland-fp7.eu) is a large, integrating project financed by the European Commission. It involves close to 30 organizations from 13 countries in Europe, and it looks into the effects of global change (mainly changes in demography and climate change) on the pattern of landslide risk in Europe. The SafeLand objectives are to (1) provide policy-makers, public administrators, researchers, scientists, educators and other stakeholders with improved harmonized framework and methodology for the assessment and quantification of landslide risk in Europe's regions; (2) evaluate the changes in risk pattern caused by climate change, human activity and policy changes; and (3) provide guidelines for choosing the most appropriate risk management strategies, including risk mitigation and prevention measures. To assess the changes in the landslide risk pattern in Norway over the next 50 years, the four-year integrated research project GeoExtreme (www.geoextreme.no) was executed. Different modules of the project established the database of landslide and avalanche events in Norway, investigated the coupling between climatic parameters and the occurrence of avalanches and landslides, developed regional, down-scaled climate scenarios for the next 50 years, and simulated a picture of possible future geohazards risk in Norway. The socioeconomic implications of geohazards in Norway, both in the past, and under the predicted future climate scenarios were also studied in the project. The latter study considered the costs related to damage by natural disasters and mitigation measures, ability to learn by experience, changes in preparedness, and impact of policy decisions. The main conclusion of the GeoExtreme project was that in a country with large climatic variation like Norway, the effects of climate change on the geohazard situation will vary significantly from location to location. Over a short time interval of 50 years, the largest increase in the direct socio-economic costs will most likely be in the transport sector. However, better adaptation to the present climate and geohazard problems would also require large investments, and this would in fact be the most important step in preparing for the expected changes during the next 50 years.
NASA Astrophysics Data System (ADS)
Hidayati, D.; Delinom, R. M.; Abdurachim, A. Y.; Dalimunthe, S.; Haba, J.; Pawitan, H.
2014-12-01
This paper discusses water-food issues in relation to how livelihoods of the poor community in Jakarta Bayarein high risk ofrapid urbanization and climate changes. As a part of the capital city of Indonesia, this area has experienced rapid increase in populationand extensive developments causing significant increase in the built up area. This city is unable to keep with demand on sewers, water and solid waste management, leading to settlement with concentrated slum pockets areas and widespread of flooding. The community is mostly poor people of productive group, live with urban pressure in fragile home and livelihoods.The situation becomes much worse due to the impact of climate change with flooding as the greatest climate and disaster risk. With lack of basic services, coastal water inundation (BanjirRob)commonly occursand floods the community housing areaswithout patternanymore. The community has lack of fresh and clean water sources and facedeconomic problem, particularly significant reduction of fishing activities. Coastal reclamation and water pollution from nearby industries are blamed as the main reason for these problems. Strategies therefore have to be developed, especially increasing community awareness and preparedness, and poverty alleviation, to sustain their livelihoods in this high risk urban area.
[Confronting the Health-Related Challenges of Climate Change: Nursing Education for the Future].
Wu, Pei-Chih; Lee, Chi-Chen
2016-08-01
Climate change is the greatest threat to public health in the 21st century. The increasing health impact of heat waves, the increasing magnitudes and spatial expansions of vector and water-borne diseases epidemics, and the increasing medical burdens of biological allergic illnesses, worsening local air pollution, and other related issues are expected to continue to increase in severity in the near future. All of these issues are global problems that must be faced. Adaptation strategies and action plans related to climate change are needed and emerging. Moreover, integrating the basic concepts, scientific evidences, and new technology into public and professional education systems is already recognized as a priority in the national adaptation program. Nurses stand on the frontlines of medical care and health communication. The integration of climate change and adaptation to climate change into nursing education and training is become increasingly important. This article reviews both the expected health impacts of climate change and the mitigation and adaptation strategies that have been proposed / adopted by medical care facilities around the world. Further, we outline the current, priority needs for action in medical care facilities in Taiwan in order to mitigate and adapt to climate-change-related healthcare issues. Additionally, we present an integrated strategic plan for educating healthcare professionals, including nurse, in the future. We hope that the ideas that are presented in this paper encourage multidisciplinary cooperation and help bridge the gap between technology development and practical application in Taiwan's medical care system.
The sociological imagination in a time of climate change
NASA Astrophysics Data System (ADS)
Norgaard, Kari Marie
2018-04-01
Despite rising calls for social science knowledge in the face of climate change, too few sociologists have been engaged in the conversations about how we have arrived at such perilous climatic circumstances, or how society can change course. With its attention to the interactive dimensions of social order between individuals, social norms, cultural systems and political economy, the discipline of sociology is uniquely positioned to be an important leader in this conversation. In this paper I suggest that in order to understand and respond to climate change we need two kinds of imagination: 1) to see the relationships between human actions and their impacts on earth's biophysical system (ecological imagination) and 2) to see the relationships within society that make up this environmentally damaging social structure (sociological imagination). The scientific community has made good progress in developing our ecological imagination but still need to develop a sociological imagination. The application of a sociological imagination allows for a powerfully reframing of four key problems in the current interdisciplinary conversation on climate change: why climate change is happening, how we are being impacted, why we have failed to successfully respond so far, and how we might be able to effectively do so. I visit each of these four questions describing the current understanding and show the importance of the sociological imagination and other insights from the field of sociology. I close with reflections on current limitations in sociology's potential to engage climate change and the Anthropocene.
Urban Climate Change Resilience as a Teaching Tool for a STEM Summer Bridge Program
NASA Astrophysics Data System (ADS)
Rosenzweig, B.; Vorosmarty, C. J.; Socha, A.; Corsi, F.
2015-12-01
Community colleges have been identified as important gateways for the United States' scientific workforce development. However, students who begin their higher education at community colleges often face barriers to developing the skills needed for higher-level STEM careers, including basic training in mathematics, programming, analytical problem solving, and cross-disciplinary communication. As part of the Business Higher Education Forum's Undergraduate STEM Interventions in Industry (USI2) Consortium, we are developing a summer bridge program for students in STEM fields transferring from community college to senior (4-year) colleges at the City University of New York. Our scientific research on New York City climate change resilience will serve as the foundation for the bridge program curriculum. Students will be introduced to systems thinking and improve their analytical skills through guided problem-solving exercises using the New York City Climate Change Resilience Indicators Database currently being developed by the CUNY Environmental Crossroads Initiative. Students will also be supported in conducting an introductory, independent research project using the database. The interdisciplinary nature of climate change resilience assessment will allow students to explore topics related to their STEM field of interest (i.e. engineering, chemistry, and health science), while working collaboratively across disciplines with their peers. We hope that students that participate in the bridge program will continue with their research projects through their tenure at senior colleges, further enhancing their academic training, while actively contributing to the study of urban climate change resilience. The effectiveness of this approach will be independently evaluated by NORC at the University of Chicago, as well as through internal surveying and long-term tracking of participating student cohorts.
[Climatic change and public health: scenarios after the coming into force of the Kyoto Protocol].
Ballester, Ferran; Díaz, Julio; Moreno, José Manuel
2006-03-01
According to the reports of the intergovernmental panel for climatic change (IPCC) human beings of the present and near future are going to experiment, in fact we are already experimenting, important changes in the world climate. Conscious of the magnitude of the problem, international organizations have taken a series of initiatives headed to stop the climatic change and to reduce its impact. This willingness has been shaped into the agreements established in the Kyoto protocol, where countries commit to reduce greenhouse-effect gas emissions. Kyoto protocol has come into force on February 16th 2005 with the support of 141 signing countries. Among the major worries are the effects which climatic change may have upon health, such as: 1) changes in the morbidity- mortality related to temperature; 2) Effects on health related with extreme meteorological events (tornados, storms, hurricanes and extreme raining); 3) Air pollution and increase of associated health effects; d) Diseases transmitted by food and water and 4) Infectious diseases transmitted by vectors and by rodents. Even if all the countries in the world committed to the Kyoto Protocol, some consequences of the climatic change will be inevitable; among them some will have a negative impact on health. It would be necessary to adapt a key response strategy to minimize the impacts of climatic change and to reduce, at minimum cost, its adverse effects on health. From the Public Health position, a relevant role can and must be played concerning the understanding of the risks for health of such climatic changes, the design of surveillance systems to evaluate possible impacts, and the establishment of systems to prevent or reduce damages as well as the identification and development of investigation needs.
Climate change--the greatest public health threat of our time: seeing the wood, not just the trees.
McFarlane, Gary J
2010-01-01
If asked to describe the key public health challenges of our time many practitioners might well cite issues such as health inequalities, obesity, smoking and poverty. However, with the greatest of respect to those agendas, they are not, in my view, the greatest priority at present. If we cannot learn to live within sustainable limits and damage beyond repair the essential life support systems that we depend on, they will fail catastrophically with horrific consequences for humanity. All credible, reliable scientific evidence suggests that without profound and significant change that is exactly where we are headed. However, there is time, albeit short, to avoid the very worst consequences of runaway climate change. But to do so requires collective and urgent action now! Public health practitioners have potentially so much to offer towards this effort. We have many of the skills and experience so critically needed to advocate for change--both political and behavioural; we have the ability to design creative, effective, and dynamic interventions to assist and facilitate communities and individuals make the journey; and equally importantly we have huge opportunities to do so. However to do so effectively means that we need to look at the problem through a different lens and make climate change a top public health priority. We need to see beyond many of the institutional and cultural barriers that exist, albeit not through deliberate design, within our organisations which can cause us to be focused on very specific agendas and see the whole wood, rather than individual trees within it. Climate change is not just an "environmental" problem and a priority therefore specifically for that sector. It is already costing lives and is life threatening on a scale that far surpasses current public health concerns and priorities. Equally critically, tackling climate change would and will significantly contribute towards addressing health inequalities. To use two well worn public health cliché's, climate change is everyone's business. And it must be a case of prevention because there will be, in this instance, no cure!
Cluster analysis of Southeastern U.S. climate stations
NASA Astrophysics Data System (ADS)
Stooksbury, D. E.; Michaels, P. J.
1991-09-01
A two-step cluster analysis of 449 Southeastern climate stations is used to objectively determine general climate clusters (groups of climate stations) for eight southeastern states. The purpose is objectively to define regions of climatic homogeneity that should perform more robustly in subsequent climatic impact models. This type of analysis has been successfully used in many related climate research problems including the determination of corn/climate districts in Iowa (Ortiz-Valdez, 1985) and the classification of synoptic climate types (Davis, 1988). These general climate clusters may be more appropriate for climate research than the standard climate divisions (CD) groupings of climate stations, which are modifications of the agro-economic United States Department of Agriculture crop reporting districts. Unlike the CD's, these objectively determined climate clusters are not restricted by state borders and thus have reduced multicollinearity which makes them more appropriate for the study of the impact of climate and climatic change.
NASA Astrophysics Data System (ADS)
Niepold, F., III; Johnston, E.; Rooney-varga, J. N.; Qusba, L.; Staveloz, W.; Poppleton, K.; Cloyd, E. T.; Kretser, J.; Bozuwa, J.; Edkins, M. T.
2016-12-01
Today's youth are the first generation to come of age amid rapid climate change, and they have the most at stake in how society responds to it. Climate change will bring economic and environmental challenges as well as opportunities, and citizens who understand the issues at stake will be better prepared to respond. Climate education is a necessary foundation for them to understand and help tackle the complex issue of climate change. Many will become leaders with the skills, knowledge, and passion to push for and develop innovative solutions. As such, this topic requires interdisciplinary and transdisciplinary approaches from a professionally diverse group of experts to effectively build the solid foundation for a low carbon and sustainable economy. Educators from all disciplines need to be enlisted to contribute their talents in building students knowledge and skills to limit human-induced climate change while being prepared for the projected impacts that will continue, and it will accelerate significantly if global emissions of heat-trapping gases continue to increase. This presentation will discuss the new youth and educator engagement partnerships that developed to achieve ways of addressing the problems and opportunities resulting from climate change. We will describe how the partnerships are helping lift up and raise the profile of effective programs that enable transdisciplinary solutions to societal issues. The #Youth4Climate and #Teach4Climate social media campaigns were organized by a flotilla of federal and non-federal partners to inspire young people around the world to take actions on climate change and inspire teachers to prepare students to be part of the solutions to climate change. The largest one, the #Youth4Climate campaign for COP21 youth engagement had over 33 million impressions and opened a discussion for all to join with youth for climate actions at COP21. Each of these three social media campaigns had a simple ask, give young people a voice and prepare them to succeed in doing something about climate change. We are excited to have new partners join forces and support young people, giving them a voice and an opportunity to lead in Paris and beyond. We know the solutions are here, and are committed to working together to build a climate-friendly world. Join us with #Youth4Climate and #Teach4Climate.
Rosales, Jon
2008-12-01
Economic growth-the increase in production and consumption of goods and services-must be considered within its biophysical context. Economic growth is fueled by biophysical inputs and its outputs degrade ecological processes, such as the global climate system. Economic growth is currently the principal cause of increased climate change, and climate change is a primary mechanism of biodiversity loss. Therefore, economic growth is a prime catalyst of biodiversity loss. Because people desire economic growth for dissimilar reasons-some for the increased accumulation of wealth, others for basic needs-how we limit economic growth becomes an ethical problem. Principles of distributive justice can help construct an international climate-change regime based on principles of equity. An equity-based framework that caps economic growth in the most polluting economies will lessen human impact on biodiversity. When coupled with a cap-and-trade mechanism, the framework can also provide a powerful tool for redistribution of wealth. Such an equity-based framework promises to be more inclusive and therefore more effective because it accounts for the disparate developmental conditions of the global north and south.
Projected continent-wide declines of the emperor penguin under climate change
NASA Astrophysics Data System (ADS)
Jenouvrier, Stéphanie; Holland, Marika; Stroeve, Julienne; Serreze, Mark; Barbraud, Christophe; Weimerskirch, Henri; Caswell, Hal
2014-08-01
Climate change has been projected to affect species distribution and future trends of local populations, but projections of global population trends are rare. We analyse global population trends of the emperor penguin (Aptenodytes forsteri), an iconic Antarctic top predator, under the influence of sea ice conditions projected by coupled climate models assessed in the Intergovernmental Panel on Climate Change (IPCC) effort. We project the dynamics of all 45 known emperor penguin colonies by forcing a sea-ice-dependent demographic model with local, colony-specific, sea ice conditions projected through to the end of the twenty-first century. Dynamics differ among colonies, but by 2100 all populations are projected to be declining. At least two-thirds are projected to have declined by >50% from their current size. The global population is projected to have declined by at least 19%. Because criteria to classify species by their extinction risk are based on the global population dynamics, global analyses are critical for conservation. We discuss uncertainties arising in such global projections and the problems of defining conservation criteria for species endangered by future climate change.
Heilmann, Conrad
2017-10-01
Controversies about time discounting loom large in decisions about climate change. Prominently, a particularly controversial debate about time discounting in climate change decision-making has been conducted within climate economics, between the authors of Stern et al. (Stern review on the economics of climate change, 2006) and their critics (most prominently Dasgupta in Comments on the Stern review's economics of climate change, 2006; Tol in Energy Environ 17(6):977-981, 2006; Weitzman in J Econ Lit XLV:703-724, 2007; Nordhaus in J Econ Lit XLV:686-702, 2007). The article examines the role of values in this debate. Firstly, it is shown that time discounting is a case in which values are key because it is at heart an ethical problem. Secondly, it is argued that time discounting in climate economics is a case of economists making frequent and routine references to ethical values and indeed conduct ethical debates with each other. Thirdly, it is argued that there is evidence for deep and pervasive entanglement between facts and values in the prevalent methodologies for time discounting. Finally, it is argued that this means that economists have given up the 'value-free ideal' concerning time discounting, and discussed how the current methodology of time discounting in economics can be improved.
Optimal Sampling to Provide User-Specific Climate Information.
NASA Astrophysics Data System (ADS)
Panturat, Suwanna
The types of weather-related world problems which are of socio-economic importance selected in this study as representative of three different levels of user groups include: (i) a regional problem concerned with air pollution plumes which lead to acid rain in the north eastern United States, (ii) a state-level problem in the form of winter wheat production in Oklahoma, and (iii) an individual-level problem involving reservoir management given errors in rainfall estimation at Lake Ellsworth, upstream from Lawton, Oklahoma. The study is aimed at designing optimal sampling networks which are based on customer value systems and also abstracting from data sets that information which is most cost-effective in reducing the climate-sensitive aspects of a given user problem. Three process models being used in this study to interpret climate variability in terms of the variables of importance to the user comprise: (i) the HEFFTER-SAMSON diffusion model as the climate transfer function for acid rain, (ii) the CERES-MAIZE plant process model for winter wheat production and (iii) the AGEHYD streamflow model selected as "a black box" for reservoir management. A state-of-the-art Non Linear Program (NLP) algorithm for minimizing an objective function is employed to determine the optimal number and location of various sensors. Statistical quantities considered in determining sensor locations including Bayes Risk, the chi-squared value, the probability of the Type I error (alpha) and the probability of the Type II error (beta) and the noncentrality parameter delta^2. Moreover, the number of years required to detect a climate change resulting in a given bushel per acre change in mean wheat production is determined; the number of seasons of observations required to reduce the standard deviation of the error variance of the ambient sulfur dioxide to less than a certain percent of the mean is found; and finally the policy of maintaining pre-storm flood pools at selected levels is examined given information from the optimal sampling network as defined by the study.
Climate change is affecting altitudinal migrants and hibernating species.
Inouye, D W; Barr, B; Armitage, K B; Inouye, B D
2000-02-15
Calendar date of the beginning of the growing season at high altitude in the Colorado Rocky Mountains is variable but has not changed significantly over the past 25 years. This result differs from growing evidence from low altitudes that climate change is resulting in a longer growing season, earlier migrations, and earlier reproduction in a variety of taxa. At our study site, the beginning of the growing season is controlled by melting of the previous winter's snowpack. Despite a trend for warmer spring temperatures the average date of snowmelt has not changed, perhaps because of the trend for increased winter precipitation. This disjunction between phenology at low and high altitudes may create problems for species, such as many birds, that migrate over altitudinal gradients. We present data indicating that this already may be true for American robins, which are arriving 14 days earlier than they did in 1981; the interval between arrival date and the first date of bare ground has grown by 18 days. We also report evidence for an effect of climate change on hibernation behavior; yellow-bellied marmots are emerging 38 days earlier than 23 years ago, apparently in response to warmer spring air temperatures. Migrants and hibernators may experience problems as a consequence of these changes in phenology, which may be exacerbated if climate models are correct in their predictions of increased winter snowfall in our study area. The trends we report for earlier formation of permanent snowpack and for a longer period of snow cover also have implications for hibernating species.
Climate change is affecting altitudinal migrants and hibernating species
Inouye, David W.; Barr, Billy; Armitage, Kenneth B.; Inouye, Brian D.
2000-01-01
Calendar date of the beginning of the growing season at high altitude in the Colorado Rocky Mountains is variable but has not changed significantly over the past 25 years. This result differs from growing evidence from low altitudes that climate change is resulting in a longer growing season, earlier migrations, and earlier reproduction in a variety of taxa. At our study site, the beginning of the growing season is controlled by melting of the previous winter's snowpack. Despite a trend for warmer spring temperatures the average date of snowmelt has not changed, perhaps because of the trend for increased winter precipitation. This disjunction between phenology at low and high altitudes may create problems for species, such as many birds, that migrate over altitudinal gradients. We present data indicating that this already may be true for American robins, which are arriving 14 days earlier than they did in 1981; the interval between arrival date and the first date of bare ground has grown by 18 days. We also report evidence for an effect of climate change on hibernation behavior; yellow-bellied marmots are emerging 38 days earlier than 23 years ago, apparently in response to warmer spring air temperatures. Migrants and hibernators may experience problems as a consequence of these changes in phenology, which may be exacerbated if climate models are correct in their predictions of increased winter snowfall in our study area. The trends we report for earlier formation of permanent snowpack and for a longer period of snow cover also have implications for hibernating species. PMID:10677510
Mysiak, Jaroslav; Torresan, Silvia; Bosello, Francesco; Mistry, Malcolm; Amadio, Mattia; Marzi, Sepehr; Furlan, Elisa; Sperotto, Anna
2018-06-13
We describe a climate risk index that has been developed to inform national climate adaptation planning in Italy and that is further elaborated in this paper. The index supports national authorities in designing adaptation policies and plans, guides the initial problem formulation phase, and identifies administrative areas with higher propensity to being adversely affected by climate change. The index combines (i) climate change-amplified hazards; (ii) high-resolution indicators of exposure of chosen economic, social, natural and built- or manufactured capital (MC) assets and (iii) vulnerability, which comprises both present sensitivity to climate-induced hazards and adaptive capacity. We use standardized anomalies of selected extreme climate indices derived from high-resolution regional climate model simulations of the EURO-CORDEX initiative as proxies of climate change-altered weather and climate-related hazards. The exposure and sensitivity assessment is based on indicators of manufactured, natural, social and economic capital assets exposed to and adversely affected by climate-related hazards. The MC refers to material goods or fixed assets which support the production process (e.g. industrial machines and buildings); Natural Capital comprises natural resources and processes (renewable and non-renewable) producing goods and services for well-being; Social Capital (SC) addressed factors at the individual (people's health, knowledge, skills) and collective (institutional) level (e.g. families, communities, organizations and schools); and Economic Capital (EC) includes owned and traded goods and services. The results of the climate risk analysis are used to rank the subnational administrative and statistical units according to the climate risk challenges, and possibly for financial resource allocation for climate adaptation.This article is part of the theme issue 'Advances in risk assessment for climate change adaptation policy'. © 2018 The Authors.
NASA Astrophysics Data System (ADS)
Mysiak, Jaroslav; Torresan, Silvia; Bosello, Francesco; Mistry, Malcolm; Amadio, Mattia; Marzi, Sepehr; Furlan, Elisa; Sperotto, Anna
2018-06-01
We describe a climate risk index that has been developed to inform national climate adaptation planning in Italy and that is further elaborated in this paper. The index supports national authorities in designing adaptation policies and plans, guides the initial problem formulation phase, and identifies administrative areas with higher propensity to being adversely affected by climate change. The index combines (i) climate change-amplified hazards; (ii) high-resolution indicators of exposure of chosen economic, social, natural and built- or manufactured capital (MC) assets and (iii) vulnerability, which comprises both present sensitivity to climate-induced hazards and adaptive capacity. We use standardized anomalies of selected extreme climate indices derived from high-resolution regional climate model simulations of the EURO-CORDEX initiative as proxies of climate change-altered weather and climate-related hazards. The exposure and sensitivity assessment is based on indicators of manufactured, natural, social and economic capital assets exposed to and adversely affected by climate-related hazards. The MC refers to material goods or fixed assets which support the production process (e.g. industrial machines and buildings); Natural Capital comprises natural resources and processes (renewable and non-renewable) producing goods and services for well-being; Social Capital (SC) addressed factors at the individual (people's health, knowledge, skills) and collective (institutional) level (e.g. families, communities, organizations and schools); and Economic Capital (EC) includes owned and traded goods and services. The results of the climate risk analysis are used to rank the subnational administrative and statistical units according to the climate risk challenges, and possibly for financial resource allocation for climate adaptation. This article is part of the theme issue `Advances in risk assessment for climate change adaptation policy'.
Torresan, Silvia; Bosello, Francesco; Mistry, Malcolm; Amadio, Mattia; Marzi, Sepehr; Furlan, Elisa; Sperotto, Anna
2018-01-01
We describe a climate risk index that has been developed to inform national climate adaptation planning in Italy and that is further elaborated in this paper. The index supports national authorities in designing adaptation policies and plans, guides the initial problem formulation phase, and identifies administrative areas with higher propensity to being adversely affected by climate change. The index combines (i) climate change-amplified hazards; (ii) high-resolution indicators of exposure of chosen economic, social, natural and built- or manufactured capital (MC) assets and (iii) vulnerability, which comprises both present sensitivity to climate-induced hazards and adaptive capacity. We use standardized anomalies of selected extreme climate indices derived from high-resolution regional climate model simulations of the EURO-CORDEX initiative as proxies of climate change-altered weather and climate-related hazards. The exposure and sensitivity assessment is based on indicators of manufactured, natural, social and economic capital assets exposed to and adversely affected by climate-related hazards. The MC refers to material goods or fixed assets which support the production process (e.g. industrial machines and buildings); Natural Capital comprises natural resources and processes (renewable and non-renewable) producing goods and services for well-being; Social Capital (SC) addressed factors at the individual (people's health, knowledge, skills) and collective (institutional) level (e.g. families, communities, organizations and schools); and Economic Capital (EC) includes owned and traded goods and services. The results of the climate risk analysis are used to rank the subnational administrative and statistical units according to the climate risk challenges, and possibly for financial resource allocation for climate adaptation. This article is part of the theme issue ‘Advances in risk assessment for climate change adaptation policy’. PMID:29712797
Science & Technology Review June 2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poyneer, L A
2012-04-20
This month's issue has the following articles: (1) A New Era in Climate System Analysis - Commentary by William H. Goldstein; (2) Seeking Clues to Climate Change - By comparing past climate records with results from computer simulations, Livermore scientists can better understand why Earth's climate has changed and how it might change in the future; (3) Finding and Fixing a Supercomputer's Faults - Livermore experts have developed innovative methods to detect hardware faults in supercomputers and help applications recover from errors that do occur; (4) Targeting Ignition - Enhancements to the cryogenic targets for National Ignition Facility experiments aremore » furthering work to achieve fusion ignition with energy gain; (5) Neural Implants Come of Age - A new generation of fully implantable, biocompatible neural prosthetics offers hope to patients with neurological impairment; and (6) Incubator Busy Growing Energy Technologies - Six collaborations with industrial partners are using the Laboratory's high-performance computing resources to find solutions to urgent energy-related problems.« less
NASA Technical Reports Server (NTRS)
North, G. R.; Crowley, T. J.
1984-01-01
Mathematical climate modelling has matured as a discipline to the point that it is useful in paleoclimatology. As an example a new two dimensional energy balance model is described and applied to several problems of current interest. The model includes the seasonal cycle and the detailed land-sea geographical distribution. By examining the changes in the seasonal cycle when external perturbations are forced upon the climate system it is possible to construct hypotheses about the origin of midlatitude ice sheets and polar ice caps. In particular the model predicts a rather sudden potential for glaciation over large areas when the Earth's orbital elements are only slightly altered. Similarly, the drift of continents or the change of atmospheric carbon dioxide over geological time induces radical changes in continental ice cover. With the advance of computer technology and improved understanding of the individual components of the climate system, these ideas will be tested in far more realistic models in the near future.
An Interdisciplinary Module on Regulating Carbon Emissions to Mitigate Climate Change
NASA Astrophysics Data System (ADS)
Penny, S.; Sethi, G.; Smyth, R.; Leibensperger, E. M.; Gervich, C.; Batur, P.
2016-12-01
The dynamics of the unfolding carbon regulatory process presents a unique and timely opportunity to teach students about the grand challenge brought by climate change and the importance of systems thinking and interdisciplinary problem solving. In this poster, we summarize our recently developed 4-week activity-based class module "Regulating Carbon Emissions to Mitigate Climate Change," which we have developed as part of the InTeGrate ("Interdisciplinary Teaching about Earth for a Sustainable Future") program. These materials are suitable for introductory non-majors, environmental sciences majors, and political science majors, and we have formally piloted in each of these settings. This module is truly interdisciplinary and spans topics such as the Supreme Court ruling in Massachusetts v. EPA, costs and benefits of carbon abatement, and climate sensitivity. We discuss the unique challenges (and rewards!) that we experienced teaching materials entirely outside one's expertise.
Highwood, Eleanor J; Kinnersley, Robert P
2006-05-01
With both climate change and air quality on political and social agendas from local to global scale, the links between these hitherto separate fields are becoming more apparent. Black carbon, largely from combustion processes, scatters and absorbs incoming solar radiation, contributes to poor air quality and induces respiratory and cardiovascular problems. Uncertainties in the amount, location, size and shape of atmospheric black carbon cause large uncertainty in both climate change estimates and toxicology studies alike. Increased research has led to new effects and areas of uncertainty being uncovered. Here we draw together recent results and explore the increasing opportunities for synergistic research that will lead to improved confidence in the impact of black carbon on climate change, air quality and human health. Topics of mutual interest include better information on spatial distribution, size, mixing state and measuring and monitoring.
Climate Games in the Classroom - Engaging Problem-Solving
NASA Astrophysics Data System (ADS)
Pfirman, S. L.; Schlosser, P.; Lee, J.; Steiner, R. V.; Sparrow, E. B.; Carr, M.
2012-12-01
The Polar Learning And Responding (PoLAR) Climate Change Education Partnership, funded under the National Science Foundation's Climate Change Education Partnership Phase II (CCEP) program is using fascination with the changing polar regions and novel educational approaches to engage adult learners and inform public understanding and response to climate change. In Phase I we developed a suite of resources that range from low-tech games to social networking, to be used in venues from classrooms to the internet, and targeting audiences from the general public to Alaskan community leaders. This presentation synthesizes experience integrating game-like approaches in formal educational environments with the goal of inspiring change in educational practices and policies. Adults, be they community leaders, the general public, pre- and in-service teachers, or college students, are today's decision-makers. Informed decisions are more likely if individuals are aware of the scientific evidence of climate change and potential economic and social consequences. Learning research and our PoLAR Phase I demonstration projects show that games and game-like approaches motivate exploration and learning of complex material. Evaluation indicates that such approaches are effective in deepening adult learner awareness and understanding of climate change and informing responses to climate change impacts through engaged problem-solving. For example, an undergraduate student playing a climate change card game commented "I certainly felt an adrenaline rush as I kept the possibility of a major disaster impacting my web at the forefront of my mind to strategize the best possible food web combination." Two others playing a board game noted "I think that interactive activities like the one done in class really help students to learn because it tests our ability to analyze and interpret previous readings and discussions in a different context. Anyone can read a paper and summarize, but it takes genuine understanding to engage in an activity like this." "I am hopeful … that with our generation having more discussions like the ones we had in class, we will be better-equipped in the coming years to effectively work out solutions that can benefit all stakeholders." Our experience and analysis of the literature indicates that games can transform the classroom experience - both by engaging a more diverse student population and by building capacity in novel ways. Incorporating students in customizing games/activities, allocating time for post game debriefing/reflection, then re-running the game, and using concept maps to assess learning gains are a few of the best practices that will be discussed that help make the experience successful for both the teacher and the student.
We Are All Related: Indigenous People Combine Traditional Knowledge, Geo-Science to Save Planet
ERIC Educational Resources Information Center
Wildcat, Daniel
2008-01-01
Through a new working group, tribal colleges and universities (TCUs) are playing a critical leadership role in addressing some of the most difficult climate-related problems now facing the planet. Because of their unique cultural character, TCUs have an important voice. The American Indian and Alaska Native Climate Change Working Group was formed…
Climate change and highland malaria: fresh air for a hot debate.
Chaves, Luis Fernando; Koenraadt, Constantianus J M
2010-03-01
In recent decades, malaria has become established in zones at the margin of its previous distribution, especially in the highlands of East Africa. Studies in this region have sparked a heated debate over the importance of climate change in the territorial expansion of malaria, where positions range from its neglect to the reification of correlations as causes. Here, we review studies supporting and rebutting the role of climatic change as a driving force for highland invasion by malaria. We assessed the conclusions from both sides of the argument and found that evidence for the role of climate in these dynamics is robust. However, we also argue that over-emphasizing the importance of climate is misleading for setting a research agenda, even one which attempts to understand climate change impacts on emerging malaria patterns. We review alternative drivers for the emergence of this disease and highlight the problems still calling for research if the multidimensional nature of malaria is to be adequately tackled. We also contextualize highland malaria as an ongoing evolutionary process. Finally, we present Schmalhausen's law, which explains the lack of resilience in stressed systems, as a biological principle that unifies the importance of climatic and other environmental factors in driving malaria patterns across different spatio-temporal scales.
Combining Statistics and Physics to Improve Climate Downscaling
NASA Astrophysics Data System (ADS)
Gutmann, E. D.; Eidhammer, T.; Arnold, J.; Nowak, K.; Clark, M. P.
2017-12-01
Getting useful information from climate models is an ongoing problem that has plagued climate science and hydrologic prediction for decades. While it is possible to develop statistical corrections for climate models that mimic current climate almost perfectly, this does not necessarily guarantee that future changes are portrayed correctly. In contrast, convection permitting regional climate models (RCMs) have begun to provide an excellent representation of the regional climate system purely from first principles, providing greater confidence in their change signal. However, the computational cost of such RCMs prohibits the generation of ensembles of simulations or long time periods, thus limiting their applicability for hydrologic applications. Here we discuss a new approach combining statistical corrections with physical relationships for a modest computational cost. We have developed the Intermediate Complexity Atmospheric Research model (ICAR) to provide a climate and weather downscaling option that is based primarily on physics for a fraction of the computational requirements of a traditional regional climate model. ICAR also enables the incorporation of statistical adjustments directly within the model. We demonstrate that applying even simple corrections to precipitation while the model is running can improve the simulation of land atmosphere feedbacks in ICAR. For example, by incorporating statistical corrections earlier in the modeling chain, we permit the model physics to better represent the effect of mountain snowpack on air temperature changes.
NASA Astrophysics Data System (ADS)
Cook, B. R.; Overpeck, J. T.
2014-12-01
Scientific knowledge production is based on recognizing and filling knowledge deficits or 'gaps' in understanding, but for climate adaptation and mitigation, the applicability of this approach is questionable. The Intergovernmental Panel on Climate Change (IPCC) mandate is an example of this type of 'gap filling,' in which the elimination of uncertainties is presumed to enable rational decision making for individuals and rational governance for societies. Presumed knowledge deficits, though, are unsuited to controversial problems with social, cultural, and economic dimensions; likewise, communication to educate is an ineffective means of inciting behavioural change. An alternative is needed, particularly given the economic, social, and political scale that action on climate change requires. We review the 'deficit-education framing' and show how it maintains a wedge between those affected and those whose knowledge is required. We then review co-production to show how natural and social scientists, as well as the IPCC, might more effectively proceed.
A global food demand model for the assessment of complex human-earth systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
EDMONDS, JAMES A.; LINK, ROBERT; WALDHOFF, STEPHANIE T.
Demand for agricultural products is an important problem in climate change economics. Food consumption will shape and shaped by climate change and emissions mitigation policies through interactions with bioenergy and afforestation, two critical issues in meeting international climate goals such as two-degrees. We develop a model of food demand for staple and nonstaple commodities that evolves with changing incomes and prices. The model addresses a long-standing issue in estimating food demands, the evolution of demand relationships across large changes in income and prices. We discuss the model, some of its properties and limitations. We estimate parameter values using pooled cross-sectional-time-seriesmore » observations and the Metropolis Monte Carlo method and cross-validate the model by estimating parameters using a subset of the observations and test its ability to project into the unused observations. Finally, we apply bias correction techniques borrowed from the climate-modeling community and report results.« less
Urban Flood Management with Integrated Inland-River System in Seoul
NASA Astrophysics Data System (ADS)
Moon, Y. I.; Kim, J. S.; Yuk, J. M.
2015-12-01
Global warming and climate change have caused significant damage and loss of life worldwide. The pattern of natural disasters has gradually diversified and their frequency is increasing. The impact of climate change on flood risk in urban rivers is of particular interest because these areas are typically densely populated. The occurrence of urban river flooding due to climate change not only causes significant loss of life and property but also causes health and social problems. It is therefore necessary to develop a scientific urban flood management system to cope with and reduce the impacts of climate change, including flood damage. In this study, we are going to introduce Integrated Inland-River Flood Analysis System in Seoul to conduct predictions on flash rain or short-term rainfall by using radar and satellite information and perform prompt and accurate prediction on the inland flooded areas. In addition, this urban flood management system can be used as a tool for decision making of systematic disaster prevention through real-time monitoring.
Climate Change Impacts and Vulnerability Assessment in Industrial Complexes
NASA Astrophysics Data System (ADS)
Lee, H. J.; Lee, D. K.
2016-12-01
Climate change has recently caused frequent natural disasters, such as floods, droughts, and heat waves. Such disasters have also increased industrial damages. We must establish climate change adaptation policies to reduce the industrial damages. It is important to make accurate vulnerability assessment to establish climate change adaptation policies. Thus, this study aims at establishing a new index to assess vulnerability level in industrial complexes. Most vulnerability indices have been developed with subjective approaches, such as the Delphi survey and the Analytic Hierarchy Process(AHP). The subjective approaches rely on the knowledge of a few experts, which provokes the lack of the reliability of the indices. To alleviate the problem, we have designed a vulnerability index incorporating objective approaches. We have investigated 42 industrial complex sites in Republic of Korea (ROK). To calculate weights of variables, we used entropy method as an objective method integrating the Delphi survey as a subjective method. Finally, we found our method integrating both subjective method and objective method could generate result. The integration of the entropy method enables us to assess the vulnerability objectively. Our method will be useful to establish climate change adaptation policies by reducing the uncertainties of the methods based on the subjective approaches.
Lowe, Melanie
2014-02-01
To provide an overview of the shared structural causes of obesity and climate change, and analyse policies that could be implemented in Australia to both equitably reduce obesity rates and contribute to mitigating climate change. Informed by the political economy of health theoretical framework, a review was conducted of the literature on the shared causes of, and solutions to, obesity and climate change. Policies with potential co-benefits for climate change and obesity were then analysed based upon their feasibility and capacity to reduce greenhouse gas emissions and equitably reduce obesity rates in Australia. Policies with potential co-benefits fit within three broad categories: those to replace car use with low-emissions, active modes of transport; those to improve diets and reduce emissions from the food system; and macro-level economic policies to reduce the over-consumption of food and fossil fuel energy. Given the complex causes of both problems, it is argued that a full spectrum of complementary strategies across different sectors should be utilised. Such an approach would have significant public health, social and environmental benefits. © 2014 The Authors. ANZJPH © 2014 Public Health Association of Australia.
Crabbe, M J C
2009-12-01
Climate change will have serious effects on the planet and on its ecosystems. Currently, mitigation efforts are proving ineffectual in reducing anthropogenic CO2 emissions. Coral reefs are the most sensitive ecosystems on the planet to climate change, and here we review modelling a number of geoengineering options, and their potential influence on coral reefs. There are two categories of geoengineering, shortwave solar radiation management and longwave carbon dioxide removal. The first set of techniques only reduce some, but not all, effects of climate change, while possibly creating other problems. They also do not affect CO2 levels and therefore fail to address the wider effects of rising CO2, including ocean acidification, important for coral reefs. Solar radiation is important to coral growth and survival, and solar radiation management is not in general appropriate for this ecosystem. Longwave carbon dioxide removal techniques address the root cause of climate change, rising CO2 concentrations, they have relatively low uncertainties and risks. They are worthy of further research and potential implementation, particularly carbon capture and storage, biochar, and afforestation methods, alongside increased mitigation of atmospheric CO2 concentrations.
Assessment of bias correction under transient climate change
NASA Astrophysics Data System (ADS)
Van Schaeybroeck, Bert; Vannitsem, Stéphane
2015-04-01
Calibration of climate simulations is necessary since large systematic discrepancies are generally found between the model climate and the observed climate. Recent studies have cast doubt upon the common assumption of the bias being stationary when the climate changes. This led to the development of new methods, mostly based on linear sensitivity of the biases as a function of time or forcing (Kharin et al. 2012). However, recent studies uncovered more fundamental problems using both low-order systems (Vannitsem 2011) and climate models, showing that the biases may display complicated non-linear variations under climate change. This last analysis focused on biases derived from the equilibrium climate sensitivity, thereby ignoring the effect of the transient climate sensitivity. Based on the linear response theory, a general method of bias correction is therefore proposed that can be applied on any climate forcing scenario. The validity of the method is addressed using twin experiments with a climate model of intermediate complexity LOVECLIM (Goosse et al., 2010). We evaluate to what extent the bias change is sensitive to the structure (frequency) of the applied forcing (here greenhouse gases) and whether the linear response theory is valid for global and/or local variables. To answer these question we perform large-ensemble simulations using different 300-year scenarios of forced carbon-dioxide concentrations. Reality and simulations are assumed to differ by a model error emulated as a parametric error in the wind drag or in the radiative scheme. References [1] H. Goosse et al., 2010: Description of the Earth system model of intermediate complexity LOVECLIM version 1.2, Geosci. Model Dev., 3, 603-633. [2] S. Vannitsem, 2011: Bias correction and post-processing under climate change, Nonlin. Processes Geophys., 18, 911-924. [3] V.V. Kharin, G. J. Boer, W. J. Merryfield, J. F. Scinocca, and W.-S. Lee, 2012: Statistical adjustment of decadal predictions in a changing climate, Geophys. Res. Lett., 39, L19705.
Empowering Youth to Think and Act Critically About Complex Climate Issues
NASA Astrophysics Data System (ADS)
Harden, L.; Michelson, M.; Schufreider, M.; Babcock, E.; Klotz-Chamberlin, R.; Bagley, E.; Cassidy, E. S.; Levedahl, K.; Perez, N.; Vanderbilt, C.; Hammond, K.; Brutus, D.; Arrowsmith, T.
2016-12-01
The world is facing complex environmental challenges and a changing climate is one of the most pressing. These challenges require innovative solutions, which can only be achieved by first developing a more science and environmentally literate public through high-quality education. We know a lot about how to frame climate change messages to be most effective for adults (1). However, we know much less about how youth respond to these same messages. It is important to engage adolescents in these conversations, as this is the age when kids begin to think more critically and abstractly about complex problems, but also when peer and social influences increase in importance (2). Thus, middle school is a critical point in young students' lives when they might either lose interest in science or gain a strong science identity. To keep them interested and invested in science and environmental issues, we need relevant and transformative climate change materials for use in the classroom—materials that are video-based, compelling, and presented by other youth. The California Academy of Sciences has developed a video-based series with lessons supporting the NGSS called Flipside Science that challenges youth to think critically about complex environmental issues. Exploring Energy: Designing a Brighter Future is a unit within this series that engages youth in thinking about how we can make changes to our current energy uses and behaviors to combat climate change. The videos in the unit are hosted by diverse teens who bring an optimistic and relevant voice to these issues, and the associated lessons engage students in honing their design thinking and problem-solving skills. Although intended for use inside the classroom, these resources inspire action among youth outside of the classroom and in their communities. Initial evaluations of two other Flipside Science units on water and food issues indicate that the youth-powered nature of the videos and the real-world challenges posed in the lessons are meaningful to students and useful for teachers. They also point the way to reimagining how environmental issues are taught by presenting them in a youth voice and injecting youth perspective on these pressing problems.1 ecoAmerica et al. (2015). Let's Talk Climate: Messages to Motivate Americans. 2 Keating, D P (1990). Adolescent thinking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Bruce T.
2015-12-11
Problem: The overall goal of this proposal is to detect observed seasonal-mean precipitation variations and extreme event occurrences over the United States. Detection, e.g. the process of demonstrating that an observed change in climate is unusual, first requires some means of estimating the range of internal variability absent any external drivers. Ideally, the internal variability would be derived from the observations themselves, however generally the observed variability is a confluence of both internal variability and variability in response to external drivers. Further, numerical climate models—the standard tool for detection studies—have their own estimates of intrinsic variability, which may differ substantiallymore » from that found in the observed system as well as other model systems. These problems are further compounded for weather and climate extremes, which as singular events are particularly ill-suited for detection studies because of their infrequent occurrence, limited spatial range, and underestimation within global and even regional numerical models. Rationale: As a basis for this research we will show how stochastic daily-precipitation models—models in which the simulated interannual-to-multidecadal precipitation variance is purely the result of the random evolution of daily precipitation events within a given time period—can be used to address many of these issues simultaneously. Through the novel application of these well-established models, we can first estimate the changes/trends in various means and extremes that can occur even with fixed daily-precipitation characteristics, e.g. that can occur simply as a result of the stochastic evolution of daily weather events within a given climate. Detection of a change in the observed climate—either naturally or anthropogenically forced—can then be defined as any change relative to this stochastic variability, e.g. as changes/trends in the means and extremes that could only have occurred through a change in the underlying climate. As such, this method is capable of detecting “hot spot” regions—as well as “flare ups” within the hot spot regions—that have experienced interannual to multi-decadal scale variations and trends in seasonal-mean precipitation and extreme events. Further by applying the same methods to numerical climate models we can discern the fidelity of the current-generation climate models in representing detectability within the observed climate system. In this way, we can objectively determine the utility of these model systems for performing detection studies of historical and future climate change.« less
Vulnerability Assessment, Climate Change Impacts and Adaptation Measures in Slovenia
NASA Astrophysics Data System (ADS)
Cegnar, T.
2010-09-01
In relation to the priority tasks of the climate change measures, the Republic of Slovenia estimates that special attention needs to be devoted to the following sectors in general: - sectors that currently indicate a strong vulnerability for the current climate variability (for instance, agriculture), - sectors where the vulnerability for climate change is increased by current trends (for instance, urban development, use of space), - sectors where the adaptation time is the longest and the subsequent development changes are connected with the highest costs (for instance, use of space, infrastructural objects, forestry, urban development, building stock). Considering the views of Slovenia to the climate change problem in Europe and Slovenia, priority measures and emphasis on future adaptation to climate change, the Republic of Slovenia has especially exposed the following action areas: - sustainable and integrated management of water sources for water power production, prevention of floods, provision of water for the enrichment of low flow rates, and preservation of environmental function as well as provision of water for other needs; - sustainable management of forest ecosystems, adjusted to changes, for the provision of their environmental function as well as being a source of biomass, wood for products for the conservation of carbon, and carbon sinks; - spatial planning as one of the important preventive instruments for the adaptation to climate change through the processes of integral planning of spatial and urban development; - sustainable use and preservation of natural wealth and the preservation of biodiversity as well as ecosystem services with measures and policies that enable an enhanced resistance of ecosystems to climate change, and the role of biological diversity in integral adaptation measures; - informing and awareness on the consequences of climate change and adaptation possibilities. For years, the most endangered sectors have been agriculture and forestry; therefore, they are also the only sectors for which a national adaptation strategy was adopted.
Sustainable Schools through Science Across the World
ERIC Educational Resources Information Center
Cutler, Marianne
2007-01-01
Children need new skills if they are to become part of the solution to challenges such as climate change rather than part of the problem. So states the UK's National Framework for Sustainable Schools. Skills include expressing points of view, weighing up evidence, cooperating, thinking critically, tackling real problems, participating in…
Joyce, Anthony S; Ogrodniczuk, John S; Kealy, David
2017-01-01
Entrenched interpersonal difficulties are a defining feature of those with personality dysfunction. Evening treatment-a comprehensive and intensive group-oriented outpatient therapy program-offers a unique approach to delivering mental health services to patients with chronic personality dysfunction. This study assessed change in interpersonal problems as a key outcome, the relevance of such change to future social functioning, and the influence of early group processes on this change. Consecutively admitted patients (N = 75) to a group-oriented evening treatment program were recruited; the majority were diagnosed with personality disorder. Therapy outcome was represented by scores on the Inventory of Interpersonal Problems. Follow-up outcome was represented by the global score of the Social Adjustment Scale. Group climate, group cohesion, and the therapeutic alliance were examined as process variables. Patients experienced substantial reduction in distress associated with interpersonal problems; early process factors that reflected a cohesive and engaged group climate and stronger therapeutic alliance were predictive of this outcome. Improvement in interpersonal distress was predictive of global social functioning six months later. The therapeutic alliance most strongly accounted for change in interpersonal problems at posttreatment and social functioning at follow-up. A comprehensive and integrated outpatient group therapy program, offered in the evening to accommodate patients' real-life demands, can facilitate considerable improvement in interpersonal problems, which in turn influences later social functioning. The intensity and intimacy of peer interactions in the therapy groups, and a strong alliance with the program therapists, are likely interacting factors that are particularly important to facilitate such change.
Antarctica and global change research
NASA Astrophysics Data System (ADS)
Weller, Gunter; Lange, Manfred
1992-03-01
The Antarctic, including the continent and Southern Ocean with the subantarctic islands, is a critical area in the global change studies under the International Geosphere-Biosphere Program (IGBP) and the World Climate Research Program (WCRP). Major scientific problems include the impacts of climate warming, the ozone hole, and sea level changes. Large-scale interactions between the atmosphere, ice, ocean, and biota in the Antarctic affect the entire global system through feedbacks, biogeochemical cycles, deep-ocean circulation, atmospheric transport of heat, moisture, and pollutants, and changes in ice mass balances. Antarctica is also a rich repository of paleoenvironmental information in its ice sheet and its ocean and land sediments.
Precipitation Indices as a Tool for Climate-Resilient Development in the Peruvian Andes
NASA Astrophysics Data System (ADS)
Chisolm, R. E.; McKinney, D. C.
2016-12-01
The local people living in the mountains of the Ancash Department in Peru have noticed changes in their water supply as climate change has altered precipitation patterns. They are seeking adaptation solutions to help guarantee the reliability of their water supply, but there has been very little analysis of historical data to evaluate and justify these adaptation solutions. In addition, Peru's Ministry of Economy and Finance now requires that climate change be part of the vulnerability assessment for all public investment project proposals, but there are currently no tools or methods of data analysis for including climate change in vulnerability assessments. Compounding the difficulties of considering climate change in the sustainability of development projects is the scarcity of climate data in the region and the difficulty of accessing existing data. To counteract this problem, the Peruvian government recommends using local people's perceptions of change as a proxy for gauged climate data. This work focuses on precipitation data analysis in the mountains of Ancash, Peru. The objectives of this analysis were to determine the accuracy of the local population's perceptions of climate change and to investigate how changes in precipitation patterns might impact public investment projects. The precipitation data analysis was compared to a local study of perceptions of change to determine whether or not these perceptions might be used in lieu of gauged climate data. It appears that people's perceptions of precipitation trends do not accurately reflect the trends observed in the gauged data. The methods of analysis were designed so that the results may be useful for public investment projects with a particular emphasis on agricultural projects. The data were analyzed for trends, seasonal patterns and variability. Dry spells were examined, and the results indicate that droughts during the rainy season have become more frequent and of longer duration. This could have significant impact on agricultural projects. It is likely that the current practice of relying exclusively on wet season rainfall to meet crop water requirements may not be sustainable in the future. Further analysis of climate data is needed to generate a regional climatic characterization that can be used for climate-resilient development projects.
NASA Astrophysics Data System (ADS)
Belz, Lukas; Schüller, Irka; Wehrmann, Achim; Wilkes, Heinz
2015-04-01
The climate system of southern Africa is strongly influenced by large scale atmospheric and marine circulation processes and, therefore, very sensitive to global climate change. Recent publications provided evidence for strong spatial and temporal climate variability in southern Africa over the Holocene. It is of major importance to understand the mechanisms driving the southern African climate system in order to estimate regional implications of current global change. However, proxy datasets from continental geoarchives especially of the semi-arid western Kalahari region are still scarce. A main problem is the absence of conventional continental climatic archives, due to the lack of lacustrine systems. In this study we are exploring the utility of sediments from western Kalahari salt pans, i.e. local depressions which are flooded temporarily during rainfall events. Besides the analyses of basic geochemical bulk parameters including TOC, δ13Corg, TIC, δ13Ccarb, δ18Ocarb, TN, δ15N, the paleo-climatic approach focuses on reconstruction of local vegetation assemblages to identify changes in the ecosystem. This is pursued using plant biomarkers, particularly leaf wax n-alkanes and n-alcohols and their stable carbon and hydrogen isotopic signatures. Preliminary results show prominent shifts in n-alkane distribution and δ13C values of the C33 homologue during late Pleistocene and early Holocene. These shifts correlate to changes of the TOC content. Our data indicate changes in carbon sources which possibly reflect major environmental changes.
Climate change impacts on forest fires: the stakeholders' perspective
NASA Astrophysics Data System (ADS)
Giannakopoulos, C.; Roussos, A.; Karali, A.; Hatzaki, M.; Xanthopoulos, G.; Chatzinikos, E.; Fyllas, N.; Georgiades, N.; Karetsos, G.; Maheras, G.; Nikolaou, I.; Proutsos, N.; Sbarounis, T.; Tsaggari, K.; Tzamtzis, I.; Goodess, C.
2012-04-01
In this work, we present a synthesis of the presentations and discussions which arose during a workshop on 'Impacts of climate change on forest fires' held in September 2011 at the National Observatory of Athens, Greece in the framework of EU project CLIMRUN. At first, a general presentation about climate change and extremes in the Greek territory provided the necessary background to the audience and highlighted the need for data and information exchange between scientists and stakeholders through climate services within CLIMRUN. Discussions and presentations that followed linked climate with forest science through the use of a meteorological index for fire risk and future projections of fire danger using regional climate models. The current situation on Greek forests was also presented, as well as future steps that should be taken to ameliorate the situation under a climate change world. A time series analysis of changes in forest fires using available historical data on forest ecosystems in Greece was given in this session. This led to the topic of forest fire risk assessment and fire prevention, stating all actions towards sustainable management of forests and effective mechanisms to control fires under climate change. Options for a smooth adaptation of forests to climate change were discussed together with the lessons learned on practical level on prevention, repression and rehabilitation of forest fires. In between there were useful interventions on sustainable hunting and biodiversity protection and on climate change impacts on forest ecosystems dynamics. The importance of developing an educational program for primary/secondary school students on forest fire management was also highlighted. The perspective of forest stakeholders on climate change and how this change can affect their current or future activities was addressed through a questionnaire they were asked to complete. Results showed that the majority of the participants consider climate variability to be important or very important and to influence their activities. Extreme climate events, desertification and drought were regarded as the most important environmental problems along with loss of biodiversity. Most of the participants answered that they use historical data for research, and would welcome climate data and services targeted to their sector if offered. Acknowledgement: This work was supported by the EU project CLIMRUN under contract FP7-ENV-2010- 265192.
NASA Astrophysics Data System (ADS)
Eggert, Sabina; Nitsch, Anne; Boone, William J.; Nückles, Matthias; Bögeholz, Susanne
2017-02-01
Climate change is one of the most challenging problems facing today's global society (e.g., IPCC 2013). While climate change is a widely covered topic in the media, and abundant information is made available through the internet, the causes and consequences of climate change in its full complexity are difficult for individuals, especially non-scientists, to grasp. Science education is a field which can play a crucial role in fostering meaningful education of students to become climate literate citizens (e.g., NOAA 2009; Schreiner et al., 41, 3-50, 2005). If students are, at some point, to participate in societal discussions about the sustainable development of our planet, their learning with respect to such issues needs to be supported. This includes the ability to think critically, to cope with complex scientific evidence, which is often subject to ongoing inquiry, and to reach informed decisions on the basis of factual information as well as values-based considerations. The study presented in this paper focused on efforts to advance students in (1) their conceptual understanding about climate change and (2) their socioscientific reasoning and decision making regarding socioscientific issues in general. Although there is evidence that "knowledge" does not guarantee pro-environmental behavior (e.g. Schreiner et al., 41, 3-50, 2005; Skamp et al., 97(2), 191-217, 2013), conceptual, interdisciplinary understanding of climate change is an important prerequisite to change individuals' attitudes towards climate change and thus to eventually foster climate literate citizens (e.g., Clark et al. 2013). In order to foster conceptual understanding and socioscientific reasoning, a computer-based learning environment with an embedded concept mapping tool was utilized to support senior high school students' learning about climate change and possible solution strategies. The evaluation of the effect of different concept mapping scaffolds focused on the quality of student-generated concept maps, as well as on students' test performance with respect to conceptual knowledge as well as socioscientific reasoning and socioscientific decision making.
Final Scientific/Technical Report: National Institute for Climatic Change Research Coastal Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tornqvist, Torbjorn; Chambers, Jeffrey
It is widely recognized that coastal environments are under particular threat due to changes associated with climate change. Accelerated sea-level rise, in some regions augmented by land subsidence, plus the possibility of a changing storm climate, renders low-lying coastal landscapes and their ecosystems vulnerable to future change. This is a pressing problem, because these ecosystems commonly rank as some of the most valuable on the planet. The objective of the NICCR Coastal Center was to support basic research that aims at reducing uncertainty about ecosystem changes during the next century, carried out along the U.S. coastlines. The NICCR Coastal Centermore » has funded 20 projects nationwide (carried out at 27 institutions) that addressed numerous aspects of the problems outlined above. The research has led to a variety of new insights, a significant number of which published in elite scientific journals. It is anticipated that the dissemination of this work in the scientific literature will continue for several more years, given that a number of projects have only recently reached their end date. In addition, NICCR funds have been used to support research at Tulane University. The lion’s share of these funds has been invested in the development of unique facilities for experimental research in coastal ecosystems. This aspect of the work could have a lasting impact in the future.« less
Health Impacts of Air Pollution Under a Changing Climate
NASA Astrophysics Data System (ADS)
Kinney, P. L.; Knowlton, K.; Rosenthal, J.; Hogrefe, C.; Rosenzweig, C.; Solecki, W.
2003-12-01
Outdoor air pollution remains a serious public health problem in cities throughout the world. In the US, despite considerable progress in reducing emissions over the past 30 years, as many as 50,000 premature deaths each year have been attributed to airborne particulate matter alone. Tropospheric ozone has been associated with increased daily mortality and hospitalization rates, and with a variety of related respiratory problems. Weather plays an important role in the transport and transformation of air pollution. In particular, a warming climate is likely to promote the atmospheric reactions that are responsible for ozone and secondary aerosol production, as well as increasing emissions of many of their volatile precursors. Increasingly, efforts to address urban air pollution problems throughout the world will be complicated by trends and variability in climate. The New York Climate and Health Project (NYCHP) is developing and applying tools for integrated assessment of health impacts from air pollution and heat associated with climate and land-use changes in the New York City metropolitan region. Global climate change is modeled over the 21st century based on the Intergovernmental Panel on Climate Change (IPCC) A2 greenhouse gas emissions scenario using the Goddard Institute for Space Studies (GISS) Global Atmosphere-Ocean Model (GCM). Meteorological fields are downscaled to a 36 km grid over the eastern US using the Penn State/NCAR MM5 mesoscale meteorological model. MM5 results are then used as input to the Community Multiscale Air Quality (CMAQ) model for simulating air quality, with emissions based on the Sparse Matrix Operator Kernel Emissions Modeling System (SMOKE). To date, simulations have been performed for five summer seasons each during the 1990s and the 2050s. An evaluation of the present-day climate and air quality predictions indicates that the modeling system largely captures the observed climate-ozone system. Analysis of future-year predictions shows an increase in temperature and humidity as well as mean and extreme ozone concentrations under the IPCC A2 emission scenario. To address public health impacts, a risk assessment framework is used to estimate ozone-related mortality in the region, with a focus on comparing health impact estimates for the 1990s versus the 2050s. This endpoint represents a potentially appreciable public health impact resulting from climate change-induced alterations in regional air quality profiles. Concentration-response functions from the epidemiological literature describing ozone-mortality relationships are used to estimate numbers of regional deaths in a typical 1990s summer and a typical 2050s summer. Preliminary analysis of future-year ozone-related mortality suggests a subtle increase in the number of summer ozone-related deaths in the New York region in the 2050s as compared to the 1990s. A parallel evaluation of heat-related mortality in a typical summer of the 2050s suggests a greater relative increase as compared to the 1990s, with a doubling to tripling of regional summer heat deaths possible by the 2050s.
NASA Astrophysics Data System (ADS)
Schneider, S.
2006-12-01
Scientific assessments show a broad range of possible outcomes, but media coverage of the many aspects of the climate change debate often dichotomize into two camps: e.g. ignore the problem vs. stop it. This is exacerbated by an advocacy philosophy in which proponents take information out of context that supports their ideological positions and/or their clients' interests. Such courtroom epistemology feeds the media's pre- existing tendency to engage in balanced reporting: polarizing an issue despite a broad range of possible positions making each side equally credible, e.g., pitting a 200 author peer reviewed report against a lone PhD funded by special interests. This creates a false dichotomy: global warming is good for the Earth and too expensive to fix anyway, or it is the world's most serious problem, but relatively cheap to solve with renewable energy. I think these two are the lowest probability outliers as are: mitigating climate changes will bankrupt the US a frequent remark from some industries and the White House or technology will solve climate change at no cost, an overstatement by some deep green groups. Often neither side offers probabilities of outcomes or identifies the winners and losers from hypothesized climate impacts or policies to ameliorate them and when they do, it is rarely reported. To address the problem, scientists must take proactive roles in the public debate. We can help journalists by participating in the public climate change debate using clear metaphors and ordinary language without the pretense that we are above it since media is a time-constrained exercise and we insist all caveats must be reported. We must make it a priority to write review papers and present talks stressing well-established principles first, followed by cutting-edge science with its typical contention. Scientists, policy makers, the general citizenry, and journalists should enter the public debate, or the popularization of potential probabilities and consequences of climate change will occur without their input and will likely be more inaccurate, if not spun to ideological positions. It is impossible to obtain frequency data for events occurring in the future, so it is necessary to use subjective probabilities built on projections/models that compile all the relevant information we can bring to the problem, including, but not limited to, direct measurements and statistics. Scientists should provide subjective probabilistic assessments of climate change impacts for policy makers, with a special obligation to make any value judgments explicit. We must attempt to keep our value judgments out of the scientific assessment process, but if we choose to express a policy advocacy position as a citizen, it is imperative we make our personal values and prejudices explicit. A scientist-popularizer should publicly report community assessments and personal values clearly and explicitly. An effective scientist-popularizer must balance being heard good sound bites and simple metaphors with the responsibility to be honest all the caveats. Being both effective and honest is essential metaphors that convey both urgency and uncertainty work well, though it is a tough tradeoff when one has 20 seconds or 20 words to do it in! I believe a hierarchy of back up products op eds, Scientific American-type articles, and full length popular books to add all the nuances can help navigate sound-bite conundrums. Popularizers must answer 3 environmental literacy questions: What can happen? What are the odds of it happening? How are such estimates made? Plus non-scientists must attain a basic level of environmental, political, and scientific literacy so as to distinguish climate change science from spin and make critical value judgments and policy decisions.
Carbon trading, climate change, environmental sustainability and saving planet Earth
NASA Astrophysics Data System (ADS)
Yim, W. W.
2009-12-01
Carbon trading namely the reduction of future carbon dioxide levels has been widely touted as a solution needed to counter the problem of climate change. However, there are enormous risks involved as the measure tackles only one of the causes of climate change and may prove to be ineffective. This presentation highlights ten points relevant to the discussion on carbon trading, climate change, environmental sustainability and saving planet Earth for increasing public awareness. They include: (1) Climate has changed throughout Earth’s history. (2) The present level of about 388 parts per million level of carbon dioxide in the atmosphere has already exceeded the maximum level of the past 800,000 years. This value is obtained from air bubbles trapped within the ice in Antarctica but the consequence of further increases remains uncertain. (3) Earth scientists do not have an overwhelming consensus on whether carbon trading alone is an effective measure in mitigating climate change. (4) The present state of the Earth’s demise is largely the result of human actions including population growth and the mismanagement of the Earth. (5) The latest evidence on sea-level changes in the South China Sea a far-field region unaffected by glacial isostatic readjustment is not in support of a ‘rapid’ rate of future sea-level rise through global warming. (6) Volcanic eruptions have an important role in driving the Earth’s climate. Examples of temperature lowering as well as abnormally wet and dry years can both be found in the instrumental record. (7) Humans have drastically modified the ‘natural’ water cycle. This is however not a well recognized cause of climate change compared to the emission of greenhouse gases through fossil fuel consumption. (8) The bulk (~75%) of the rise in mean annual temperature of about 1oC observed at the Hong Kong Observatory Station since record began in 1884 is best explained by the thermal heat island effect. (9) No evidence has been found for an increase in frequency of typhoons in the northwestern Pacific since the end of the Second World War. The potential for disasters has nevertheless increased due to population growth in the coastal regions. (10) The present global economy is geared towards ‘short-term’ sustainable economic development rather than ‘long-term’ environmental sustainability. In conclusion numerous challenging problems will also have to be tackled in addition to carbon dioxide emissions in order to prolong human survival on planet Earth.
NASA Astrophysics Data System (ADS)
Cronin, T.; Tziperman, E.; Li, H.
2015-12-01
High latitude continents have warmed much more rapidly in recent decades than the rest of the globe, especially in winter, and the maintenance of warm, frost-free conditions in continental interiors in winter has been a long-standing problem of past equable climates. It has also been found that the high-latitude lapse rate feedback plays an important role in Arctic amplification of climate change in climate model simulations, but we have little understanding of why lapse rates at high latitudes change so strongly with warming. To better understand these problems, we study Arctic air formation - the process by which a high-latitude maritime air mass is advected over a continent during polar night, cooled at the surface by radiation, and transformed into a much colder continental polar air mass - and its sensitivity to climate warming. We use a single-column version of the WRF model to conduct two-week simulations of the cooling process across a wide range of initial temperature profiles and microphysics schemes, and find that a low cloud feedback suppresses Arctic air formation in warmer climates. This cloud feedback consists of an increase in low cloud amount with warming, which shields the surface from radiative cooling, and increases the continental surface air temperature by roughly two degrees for each degree increase of the initial maritime surface air temperature. The time it takes for the surface air temperature to drop below freezing increases nonlinearly to ~10 days for initial maritime surface air temperatures of 20 oC. Given that this is about the time it takes an air mass starting over the Pacific to traverse the north American continent, this suggests that optically thick stratus cloud decks could help to maintain frost-free winter continental interiors in equable climates. We find that CMIP5 climate model runs show large increases in cloud water path and surface cloud longwave forcing in warmer climates, consistent with the proposed low-cloud feedback. The suppression of Arctic air formation with warming may act as a significant amplifier of climate change at high latitudes, and offers a mechanistic perspective on the high-latitude "lapse rate feedback" diagnosed in climate models.
Changes in U.S. Regional-Scale Air Quality at 2030 Simulated Using RCP 6.0
NASA Astrophysics Data System (ADS)
Nolte, C. G.; Otte, T.; Pinder, R. W.; Faluvegi, G.; Shindell, D. T.
2012-12-01
Recent improvements in air quality in the United States have been due to significant reductions in emissions of ozone and particulate matter (PM) precursors, and these downward emissions trends are expected to continue in the next few decades. To ensure that planned air quality regulations are robust under a range of possible future climates and to consider possible policy actions to mitigate climate change, it is important to characterize and understand the effects of climate change on air quality. Recent work by several research groups using global and regional models has demonstrated that there is a "climate penalty," in which climate change leads to increases in surface ozone levels in polluted continental regions. One approach to simulating future air quality at the regional scale is via dynamical downscaling, in which fields from a global climate model are used as input for a regional climate model, and these regional climate data are subsequently used for chemical transport modeling. However, recent studies using this approach have encountered problems with the downscaled regional climate fields, including unrealistic surface temperatures and misrepresentation of synoptic pressure patterns such as the Bermuda High. We developed a downscaling methodology and showed that it now reasonably simulates regional climate by evaluating it against historical data. In this work, regional climate simulations created by downscaling the NASA/GISS Model E2 global climate model are used as input for the Community Multiscale Air Quality (CMAQ) model. CMAQ simulations over the continental United States are conducted for two 11-year time slices, one representing current climate (1995-2005) and one following Representative Concentration Pathway 6.0 from 2025-2035. Anthropogenic emissions of ozone and PM precursors are held constant at year 2006 levels for both the current and future periods. In our presentation, we will examine the changes in ozone and PM concentrations, with particular focus on exceedances of the current U.S. air quality standards, and attempt to relate the changes in air quality to the projected changes in regional climate.
Uncertainty in Climate Change Research: An Integrated Approach
NASA Astrophysics Data System (ADS)
Mearns, L.
2017-12-01
Uncertainty has been a major theme in research regarding climate change from virtually the very beginning. And appropriately characterizing and quantifying uncertainty has been an important aspect of this work. Initially, uncertainties were explored regarding the climate system and how it would react to future forcing. A concomitant area of concern was viewed in the future emissions and concentrations of important forcing agents such as greenhouse gases and aerosols. But, of course we know there are important uncertainties in all aspects of climate change research, not just that of the climate system and emissions. And as climate change research has become more important and of pragmatic concern as possible solutions to the climate change problem are addressed, exploring all the relevant uncertainties has become more relevant and urgent. More recently, over the past five years or so, uncertainties in impacts models, such as agricultural and hydrological models, have received much more attention, through programs such as AgMIP, and some research in this arena has indicated that the uncertainty in the impacts models can be as great or greater than that in the climate system. Still there remains other areas of uncertainty that remain underexplored and/or undervalued. This includes uncertainty in vulnerability and governance. Without more thoroughly exploring these last uncertainties, we likely will underestimate important uncertainties particularly regarding how different systems can successfully adapt to climate change . In this talk I will discuss these different uncertainties and how to combine them to give a complete picture of the total uncertainty individual systems are facing. And as part of this, I will discuss how the uncertainty can be successfully managed even if it is fairly large and deep. Part of my argument will be that large uncertainty is not the enemy, but rather false certainty is the true danger.
NASA Astrophysics Data System (ADS)
Nakagawa, T.
2014-12-01
High-resolution pollen-derived climate records from Lake Suigetsu varved sediment core were compared with climate archives from other regions and revealed a particular spatio-temporal structure of the monsoon climate change during so-called D-O events. Leads and lags of the climate change between different regions hold the key to understand the climate system. However, robust assessment of the relative timing of the climate change is often very challenging because correlation of the climatic archives from different regions often has inevitable uncertainties. Greenland and Cariaco basin, for example, provide two of the most frequently sited palaeoclimatic proxy data representative of the high- and low-latitudinal Atlantic regions. However, robust correlation of the records from those regions is difficult because of the uncertainties in layer countings, lack of the radiocarbon age control from ice cores, marine reservoir age of the Cariaco sediments, and the absence of the tephra layers shared by both cites. Similarly, Speleothem and ice core records are not robustly correlated to each other, either for the dead carbon fraction in the speleothems and lack of reliable correlation markers. The generally accepted hypothesis of synchronous climate change between China and the Greenland is, therefore, essentially hypothetical. Lake Suigetsu provides solution to this problem. The lake Suigetsu chronology is supposed to be coherent to the speleothems' U-Th age scale. Suigetsu's semi-continuous radiocarbon dataset, which constitutes major component of the IntCal13 radiocarbon calibration model, also provides opportunity to correlate lake Suigetsu and the Greenland and Antarctic ice cores using cosmogenic isotopes as the correlation key. Results of the correlation and timing comparison, which cast new lights to the mechanism of the monsoon change, will be presented.
NASA Astrophysics Data System (ADS)
Gardiner, L. S.; Hatheway, B.; Taylor, J.; Chambers, L. H.; Stanitski, D.
2016-12-01
To address the dearth of climate education resources at the elementary level, we have developed a new module of Elementary GLOBE to showcase the science of climate change for young learners. Elementary GLOBE builds K-4 student understanding of the science concepts and the practices of science research. At the heart of each Elementary GLOBE module is a fiction storybook, describing how three kids investigate a science question. Accompanying classroom activities allow students to explore the science concepts in the book in more depth and in a context appropriate for young learners. The book for the Elementary GLOBE climate module, "What in the World Is Happening to Our Climate?," is the account of an adventure to explore climate change, how it is affecting melting glacial ice and sea level rise, and how climate change is a problem that can be solved. Three hands-on activities, which will be presented at this session, allow students to explore the topics in greater depth including differences between weather and climate, how sea level rise affects coastal areas, and how they can shrink their carbon footprint to help address recent climate change. Each activity includes instructions for teachers, background information, and activity sheets for students, and is aligned to the Next Generation Science Standards and Common Core Math and Language Arts Standards. The storybook and activities were field tested in classrooms and reviewed by climate and Earth system scientists as well as elementary education and climate education specialists and educators to ensure scientific accuracy and clear explanations, and that the resources are age appropriate and reflect the needs of the climate education community. Other Elementary GLOBE modules include the science of seasonal change, water, soil, clouds, aerosols, and Earth as a system. All Elementary GLOBE educational resources are freely available online (www.globe.gov/elementaryglobe).
[Climate change and hygienic assessment of weather conditions in Omsk and the Omsk Region].
Gudinova, Zh V; Akimova, I S; Klochikhina, A V
2010-01-01
The paper deals with trends in climate change in the Omsk Region: the increases in average annual air temperatures and rainfall, which are attended by the higher number of abnormal weather events, as shown by the data of the Omsk Regional Board, Russian Federal Service for Hydrometeorology and Environmental Monitoring. There is information on weather severity in 2008: there was mild weather in spring and severe weather in winter, in January in particular. A survey of physicians has revealed that medical workers are concerned about climate problems and global warming and ascertained weather events mostly affecting the population's health. People worry most frequently about a drastic temperature drop or rise (as high as 71%), atmospheric pressure change (53%), and "when it is too hot in summer (47%).
USDA-ARS?s Scientific Manuscript database
Classic rainfall-runoff models usually use historical data to estimate model parameters and mean values of parameters are considered for predictions. However, due to climate changes and human effects, the parameters of model change temporally. To overcome this problem, Normalized Difference Vegetati...
NASA Astrophysics Data System (ADS)
Adams, P. E.; Heinrichs, J. F.
2010-12-01
One of the greatest challenges facing the world is climate change. Coupled with this challenge is an under-informed population that has not received a rigorous education about climate change other than what is available through the media. Fort Hays State University is in a second year of piloting a course on climate change targeted to students early in their academic careers. The course is modeled after our past work (NSF DUE-0088818) of integrating content knowledge instruction and student-driven research where there was a positive correlation between student research engagement and student knowledge gains. The second pilot offering utilizes a mix of inquiry-based instruction, problem-based learning, and student-driven research to educate and engage the students in understanding climate change. The course was collaboratively developed by a geoscientist and science educator both of whom are active in citizen science programs. The course model is unique in that 50% of the course is dedicated to developing core knowledge and technical skills (e.g. global climate change, critical analysis, writing, data acquisition, data representation, and research design), and 50% to conducting a research project using available data sets from federal agencies and research groups. A key element of the course is a focus on data sets to make climate change relevant to the students. The research serves as a means of civic engagement by the students as they are tasked to understand their role in communicating their research findings to the community and coping with the local and regional changes they find through their research. The impacts of course changes from the first offering to the second offering of the course will be reported, as well as the structure of the course.
Ecosystem and Food Security in a Changing Climate
NASA Astrophysics Data System (ADS)
Field, C. B.
2011-12-01
Observed and projected impacts of climate change for ecosystem and food security tend to appear as changes in the risk of both desirable and undesirable outcomes. As a consequence, it is useful to frame the challenge of adaptation to a changing climate as a problem in risk management. For some kinds of impacts, the risks are relatively well characterized. For others, they are poorly known. Especially for the cases where the risks are poorly known, effective adaptation will need to consider approaches that build dynamic portfolios of options, based on learning from experience. Effective adaptation approaches also need to consider the risks of threshold-type responses, where opportunities for gradual adaptation based on learning may be limited. Finally, effective adaptation should build on the understanding that negative impacts on ecosystems and food security often result from extreme events, where a link to climate change may be unclear now and far into the future. Ecosystem and food security impacts that potentially require adaptation to a changing climate vary from region to region and interact strongly with actions not related to climate. In many ecosystems, climate change shifts the risk profile to increase risks of wildfire and biological invasions. Higher order risks from factors like pests and pathogens remain difficult to quantify. For food security, observational evidence highlights threshold-like behavior to high temperature in yields of a number of crops. But the risks to food security may be much broader, encompassing risks to availability of irrigation, degradation of topsoil, and challenges of storage and distribution. A risk management approach facilitates consideration of all these challenges with a unified framework.
USDA-ARS?s Scientific Manuscript database
Warming climatic conditions can pose potential problems for crop production, but detailed effects at the molecular level on potentially affected crop plants are lacking. Popcorn is a valuable snack food worldwide, and is difficult to improve by breeding due to multigenic influences on popping. It ha...
Afforestation, restoration and regeneration -- Not all trees are created equal
Shaneka Lawson; Charles H. Michler
2014-01-01
Undulations in weather patterns have caused climate shifts of increased frequency and duration around the world. The need for additional research and model data on this pressing problem has resulted in a plethora of research groups examining a particular tree species or biome for negative effects of climate change. This review aims to (1) collect and merge recent...
iSeeChange: Crowdsourced Climate Change Reporting
NASA Astrophysics Data System (ADS)
Drapkin, J. K.
2012-12-01
Directly engaging local communities about their climate change experiences has never been more important. As weather and climate become more unpredictable, these experiences provide a baseline for community decisions, developing adaptation strategies, and planning for the future. Typically, climate change is documented in a top-down fashion: a scientist has a question, makes observations, and publishes a study; in the best case scenario, a journalist reports on the results; if there's time, a local anecdote is sought to put the results in a familiar context. iSeeChange, a public media project funded by the Corporation for Public Broadcasting, reports local environmental change in reverse and turns community questions and conversations with scientists into reported stories that promote opportunities to learn about climate change's affects on the environment and daily life. iSeeChange engages residents of the North Fork Valley region of western Colorado in a multiplatform conversation with scientists about how they perceive their environment is changing through the course of a year - season to season. By bringing together public radio, a mobile reporting and cellular engagement strategy, and a custom crowdsourcing multimedia platform, iSeeChange provides a central access point to collect observations (texts, photographs, voice recordings, and video), organize conversations and interviews with scientists, and report stories online and on air. In this way, iSeeChange is building a dynamic crowdsourced reservoir of information that can increase awareness of environmental problems and potentially disseminate useful information about climate change and successful adaptation strategies. Ultimately, by understanding the community's information needs in a localized question-driven context, the iSeeChange platform presents opportunities for the science community to better understand the value of information and develop better ways to tailor information for communities to use in the future.t;
NASA Astrophysics Data System (ADS)
Skogen, Morten D.; Eilola, Kari; Hansen, Jørgen L. S.; Meier, H. E. Markus; Molchanov, Mikhail S.; Ryabchenko, Vladimir A.
2014-04-01
A method to combine observations and an ensemble of ecological models has been used to assess eutrophication. Using downscaled forcing from two GCMs under the A1B emission scenario, an assessment of the eutrophication status was made for a control (1970-2000) and a future climate (2070-2100) period. By using validation results from a hindcast to compute individual weights between the models, an assessment of eutrophication is done using a set of threshold values. The final classification distinguishes between three categories: problem area, potential problem area, and non-problem area, in accordance with current management practice as suggested by the Oslo and Paris Commissions (OSPAR) and the Helsinki Commission (HELCOM). For the control run the assessment indicates that the Kattegat, the Danish Straits, the Gulf of Finland, the Gotland Basin as well as main parts of the Arkona Basin, the Bornholm Basin, and the Baltic proper may be classified as problem areas. The main part of the North Sea and also the Skagerrak are non-problem areas while the main parts of the Gulf of Bothnia, Gulf of Riga and the entire southeastern continental coast of the North Sea may be classified as potential problem areas. In the future climate scenarios most of the previous potential problem areas in the Baltic Sea have become problem areas, except for the Bothnian Bay where the situation remain fairly unchanged. In the North Sea there seems to be no obvious changes in eutrophication status in the projected future climate.
Water management to cope with and adapt to climate variability and change.
NASA Astrophysics Data System (ADS)
Hamdy, A.; Trisorio-Liuzzi, G.
2009-04-01
In many parts of the world, variability in climatic conditions is already resulting in major impacts. These impacts are wide ranging and the link to water management problems is obvious and profound. The know-how and the available information undoubtedly indicate that climate change will lead to an intensification of the global hydrological cycle and can have major impacts on regional water resources, affecting both ground and surface water supply for sectorial water uses and, in particular, the irrigation field imposing notable negative effects on food security and poverty alleviation programs in most arid and semi-arid developing countries. At the United Nations Millennium Summit, in September 2000, world leaders adopted the Millennium Development Declaration. From this declaration, the IWRM was recognised as the key concept the water sector should be using for water related development and measures and, hence, for achieving the water related MDG's. However, the potential impacts of climate change and increasing climate variability are not sufficiently addressed in the IWRM plans. Indeed, only a very limited IWRM national plans have been prepared, coping with climate variability and changes. This is mainly due to the lack of operational instruments to deal with climate change and climate variability issues. This is particularly true in developing countries where the financial, human and ecological impacts are potentially greatest and where water resources may be already highly stressed, but the capacity to cope and adapt is weakest. Climate change has now brought realities including mainly rising temperatures and increasing frequency of floods and droughts that present new challenges to be addressed by the IWRM practice. There are already several regional and international initiatives underway that focus on various aspects of water resources management those to be linked with climate changes and vulnerability issues. This is the way where the water resources management and climate scientist communities are engaged in a process for building confidence and understanding, identifying options and defining the water resources management strategies which to cope with impacts of climate variability and change.
NASA Astrophysics Data System (ADS)
Gordova, Yulia; Okladnikov, Igor; Titov, Alexander; Gordov, Evgeny
2016-04-01
While there is a strong demand for innovation in digital learning, available training programs in the environmental sciences have no time to adapt to rapid changes in the domain content. A joint group of scientists and university teachers develops and implements an educational environment for new learning experiences in basics of climatic science and its applications. This so-called virtual learning laboratory "Climate" contains educational materials and interactive training courses developed to provide undergraduate and graduate students with profound understanding of changes in regional climate and environment. The main feature of this Laboratory is that students perform their computational tasks on climate modeling and evaluation and assessment of climate change using the typical tools of the "Climate" information-computational system, which are usually used by real-life practitioners performing such kind of research. Students have an opportunity to perform computational laboratory works using information-computational tools of the system and improve skills of their usage simultaneously with mastering the subject. We did not create an artificial learning environment to pass the trainings. On the contrary, the main purpose of association of the educational block and computational information system was to familiarize students with the real existing technologies for monitoring and analysis of data on the state of the climate. Trainings are based on technologies and procedures which are typical for Earth system sciences. Educational courses are designed to permit students to conduct their own investigations of ongoing and future climate changes in a manner that is essentially identical to the techniques used by national and international climate research organizations. All trainings are supported by lectures, devoted to the basic aspects of modern climatology, including analysis of current climate change and its possible impacts ensuring effective links between theory and practice. Along with its usage in graduate and postgraduate education, "Climate" is used as a framework for a developed basic information course on climate change for common public. In this course basic concepts and problems of modern climate change and its possible consequences are described for non-specialists. The course will also include links to relevant information resources on topical issues of Earth Sciences and a number of case studies, which are carried out for a selected region to consolidate the received knowledge.
Adelaine, Sabrina A; Sato, Mizuki; Jin, Yufang; Godwin, Hilary
2017-10-01
Introduction Although many studies have delineated the variety and magnitude of impacts that climate change is likely to have on health, very little is known about how well hospitals are poised to respond to these impacts. Hypothesis/Problem The hypothesis is that most modern hospitals in urban areas in the United States need to augment their current disaster planning to include climate-related impacts. Using Los Angeles County (California USA) as a case study, historical data for emergency department (ED) visits and projections for extreme-heat events were used to determine how much climate change is likely to increase ED visits by mid-century for each hospital. In addition, historical data about the location of wildfires in Los Angeles County and projections for increased frequency of both wildfires and flooding related to sea-level rise were used to identify which area hospitals will have an increased risk of climate-related wildfires or flooding at mid-century. Only a small fraction of the total number of predicted ED visits at mid-century would likely to be due to climate change. By contrast, a significant portion of hospitals in Los Angeles County are in close proximity to very high fire hazard severity zones (VHFHSZs) and would be at greater risk to wildfire impacts as a result of climate change by mid-century. One hospital in Los Angeles County was anticipated to be at greater risk due to flooding by mid-century as a result of climate-related sea-level rise. This analysis suggests that several Los Angeles County hospitals should focus their climate-change-related planning on building resiliency to wildfires. Adelaine SA , Sato M , Jin Y , Godwin H . An assessment of climate change impacts on Los Angeles (California USA) hospitals, wildfires highest priority. Prehosp Disaster Med. 2017;32(5):556-562.
Topics in geophysical fluid dynamics: Atmospheric dynamics, dynamo theory, and climate dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghil, M.; Childress, S.
1987-01-01
This text is the first study to apply systematically the successive bifurcations approach to complex time-dependent processes in large scale atmospheric dynamics, geomagnetism, and theoretical climate dynamics. The presentation of recent results on planetary-scale phenomena in the earth's atmosphere, ocean, cryosphere, mantle and core provides an integral account of mathematical theory and methods together with physical phenomena and processes. The authors address a number of problems in rapidly developing areas of geophysics, bringing into closer contact the modern tools of nonlinear mathematics and the novel problems of global change in the environment.
The Pedagogical Support for Preschool Children with Deviant Behavior
ERIC Educational Resources Information Center
Kostyunina, Nadezhda Y.; Kazaeva, Evgenia A.; Karimova, Raushan B.
2016-01-01
The relevance of the research problems of pedagogical support of preschool children with behavioral problems is explained by changes due and of taking place in modern Russia in various spheres of life: ecological and economic disadvantage, social instability, the growing influence of pseudo-culture, unfavorable climate in family, too busy parents,…
Battling Ecophobia: Instilling Activism in Nonscience Majors when Teaching Environmental Issues
ERIC Educational Resources Information Center
Bloom, Mark A.; Holden, Molly
2011-01-01
When learning about large-scale environmental problems such as climate change, species extinctions, overpopulation, and habitat destruction, students can become hopelessly dismayed and experience ecophobia--a state of mind in which the student is fearful of the looming environmental problems but senses that there is nothing that can be done to…
Heitzig, Jobst; Lessmann, Kai; Zou, Yong
2011-01-01
As the Copenhagen Accord indicates, most of the international community agrees that global mean temperature should not be allowed to rise more than two degrees Celsius above preindustrial levels to avoid unacceptable damages from climate change. The scientific evidence distilled in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change and recent reports by the US National Academies shows that this can only be achieved by vast reductions of greenhouse gas emissions. Still, international cooperation on greenhouse gas emissions reductions suffers from incentives to free-ride and to renegotiate agreements in case of noncompliance, and the same is true for other so-called “public good games.” Using game theory, we show how one might overcome these problems with a simple dynamic strategy of linear compensation when the parameters of the problem fulfill some general conditions and players can be considered to be sufficiently rational. The proposed strategy redistributes liabilities according to past compliance levels in a proportionate and timely way. It can be used to implement any given allocation of target contributions, and we prove that it has several strong stability properties. PMID:21903930
Evaluating Decoupling Process in OECD Countries: Case Study of Turkey
NASA Astrophysics Data System (ADS)
An, Nazan; Şengün Ucal, Meltem; Kurnaz, M. Levent
2017-04-01
Climate change is at the top of the present and future problems facing humanity. Climate change is now largely attributed to human activities and economic activities are the source of human activities that cause climate change by creating pressure on the environment. Providing the sustainability of resources for the future seems possible by reducing the pressure of these economic activities on the environment. Given the increasing population pressure and growth-focused economies, it is possible to say that achieving decoupling is not so easy on a global basis. It is known that there are some problems in developing countries especially in terms of accessing reliable data in transition and implementation process of decoupling. Developed countries' decoupling practices and proper calculation methods can also be a guide for developing countries. In this study, we tried to calculate the comparative decoupling index for OECD countries and Turkey in terms of data suitability, and we showed the differences between them. We tried to indicate the level of decoupling (weak, stable, strong) for each country. We think that the comparison of Turkey can be an example in terms of developing countries. Acknowledgement: This research has been supported by Bogazici University Research Fund Grant Number 12220.
The water supply-water environment nexus in salt Intrusion area under the climate change
NASA Astrophysics Data System (ADS)
Liu, D.
2017-12-01
Water resources are critical problems in in salt Intrusion area for the increasing water supply and water quality deterioration. And the climate change exacerbates these problems. In order to balance the relationship between water supply and water environment requirements, the water supply-water environment nexus should be understood well. Based on the de Saint-Venant system of equations and the convection diffusion equation, which can be used to reflect the laws of water quality, the water supply- water environment nexus equation has be determined. And the nexus is dynamic with the climate change factors. The methods of determined the nexus have then been applied to a case study of the water supply-water environment nexus for the Pearl River Delta in China. The results indicate that the water supply-water environment nexus is trade off each other and are mainly affected by the fresh water flow from the upstream, salt water intrusion will reduce the resilience of the water supply system in this area. Our methods provides a useful framework to quantify the nexus according to the mechanisms of the water quantity and water quality, which will useful freshwater allocation and management in this saltwater intrusion area.
Buse, Chris
2013-12-01
Intersectoral action (ISA) has been at the forefront of public health policy discussions since the 1970s. ISA incorporates a broader perspective of public health issues and coordinates efforts to address the social, political, economic and environmental contexts from which health determinants operate and are created. Despite being forwarded as a useful way to address and treat complex or 'wicked' problems, such policy issues are still often addressed within, rather than across, disciplinary silos and ISA has been documented to fail more often than it succeeds. This paper contributes to an understanding of ISA by outlining and applying critical systems heuristics (CSH) theory and methods. CSH theory and methods are described and discussed before applying them to the example of addressing climate change and health equity through public health practice. CSH thinking provides useful tools to engage stakeholders, question relations of power that may exist between collaborating partners, and move beyond power inequalities that guide ISA initiatives. CSH is a compelling framing that can improve an understanding of the collaborative relationships that are a prerequisite for engaging in ISA to address complex or 'wicked' policy problems such as climate change. © 2013 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Yakovleva, M.; Lyaskovskiy, S. I.
2011-12-01
Forest and forest-steppe zones of European Russia have a great potential for recreation, including its active form, tourism. Soft peaceful landscapes and moderate summer climate provide pleasant conditions for family vacations. Numerous lakes and rivers provide places for swimming, boating, and fishing. These pleasant environmental conditions are complemented with abundant recreational choices such as historical places, old cities, towns, and monasteries filled with museums that deliver detailed information about the millennium-long Russian history. There are the vibrant cities, Moscow and St. Petersburg; cities along the Volga River; and the oldest cities in northwestern Russia, Novgorod and Pskov provide numerous options for cultural and entertaining programs for the most demanding travelers. The country has a broad range of private tour operators that cater to national and international travelers. Still there are problems which should be taken into account by travelers who chose to spend their precious vacation time in Russia. Infrastructure problems include a deficit of three-star hotels that are the mainstream of contemporary tourist business. Their number is growing exponentially in the past decade and at present remains insufficient, but the capacity building is progressing favorably. Climatic and environmental changes became a new and unexpected factor affecting the tourist industry in European Russia. Stable and strongly sustainable climate has been interrupted by extreme events that may cause additional discomfort for some people. Tour operators and hotel hosts both need to invest more to confront incremental weather (first of all investments in air conditioning are needed) and/or have substitute travel variants that are of equivalent quality. One of the unresolved issues remains the air quality problem in Moscow due to intense traffic and the possibility of peat fires in the neighboring Shatura region southeast of the city. This increases risks that must be ameliorated by other choices including a possible change of venue.
The Effect of Land Use (Deforestation) on Global Changing and its consequences in Turkey
NASA Astrophysics Data System (ADS)
Onursal Denli, G.; Denli, H. H.
2015-12-01
Land use has generally been considered as a local environmental issue, but it is becoming a force of global importance. Global changes to forests, farmlands, waterways, and air are being driven by the need to provide food, water and shelter to more than six billion people. Global croplands, pastures, plantations and urban areas have expanded in recent decades, accompanied by large increases in energy, water and fertilizer consumption, along with considerable losses of biodiversity. Especially the forests influence climate through physical, chemical and biological processes that affect planetary energetics, the hydrologic cycle, and atmospheric composition. Such changes in land use have enabled humans to appropriate an increasing share of the planet's resources, but they also potentially undermine the capacity of ecosystems to sustain food production, maintain freshwater and forest resources, regulate climate and air quality. Global Warming and Climate Change are the two main fundamental problems facing Turkey as well as the World. The expedition and size of this change is becoming noticeably conspicuous now. According to the International Union for Conservation of Nature (IUCN), the global temperature has been increased of about 0.74 degree Celsius since the Industrial Revolution. Interdisciplinary science that integrates knowledge of the many interacting climate services of forests with the impacts of global change is necessary to identify and understand as yet unexplored feedbacks in the Earth system and the potential of forests to mitigate climate change. The general scientific opinions on the climate change states that in the past 50 years, global warming has effected the human life resulting with very obvious influences. High rates of deforestation within a country are most commonly linked to population growth and poverty. In Turkey, the forests are destroyed for various reasons resulting to a change in the climate. This study examines the causes of deforestation and its consequences on the climate change in Turkey. Suggestions on preventing negative effects are also given.
Global farm animal production and global warming: impacting and mitigating climate change.
Koneswaran, Gowri; Nierenberg, Danielle
2008-05-01
The farm animal sector is the single largest anthropogenic user of land, contributing to many environmental problems, including global warming and climate change. The aim of this study was to synthesize and expand upon existing data on the contribution of farm animal production to climate change. We analyzed the scientific literature on farm animal production and documented greenhouse gas (GHG) emissions, as well as various mitigation strategies. An analysis of meat, egg, and milk production encompasses not only the direct rearing and slaughtering of animals, but also grain and fertilizer production for animal feed, waste storage and disposal, water use, and energy expenditures on farms and in transporting feed and finished animal products, among other key impacts of the production process as a whole. Immediate and far-reaching changes in current animal agriculture practices and consumption patterns are both critical and timely if GHGs from the farm animal sector are to be mitigated.
Building Systems from Scratch: an Exploratory Study of Students Learning About Climate Change
NASA Astrophysics Data System (ADS)
Puttick, Gillian; Tucker-Raymond, Eli
2018-01-01
Science and computational practices such as modeling and abstraction are critical to understanding the complex systems that are integral to climate science. Given the demonstrated affordances of game design in supporting such practices, we implemented a free 4-day intensive workshop for middle school girls that focused on using the visual programming environment, Scratch, to design games to teach others about climate change. The experience was carefully constructed so that girls of widely differing levels of experience were able to engage in a cycle of game design. This qualitative study aimed to explore the representational choices the girls made as they took up aspects of climate change systems and modeled them in their games. Evidence points to the ways in which designing games about climate science fostered emergent systems thinking and engagement in modeling practices as learners chose what to represent in their games, grappled with the realism of their respective representations, and modeled interactions among systems components. Given the girls' levels of programming skill, parts of systems were more tractable to create than others. The educational purpose of the games was important to the girls' overall design experience, since it influenced their choice of topic, and challenged their emergent understanding of climate change as a systems problem.
Hartl, Amy C; Seiffge-Krenke, Inge; Laursen, Brett
2015-12-01
Glycemic control declines during adolescence, as youth with diabetes struggle with pubertal changes and a changing social world. The present study tests whether body image mediates longitudinal links between family climate and changes in adolescent glycemic control. Mediation was hypothesized for nondating adolescents but not for dating adolescents, because the former are thought to remain more family oriented than the latter. Participants were German adolescents with Type 1 diabetes (51 girls, 58 boys; M = 15.84 years, SD = 1.44). Participants reported body image and family climate. Physicians assayed blood HbA1c levels (M = 8.22%, SD = 1.80%) to measure glycemic control. For nondating adolescents, body image mediated associations between family climate and longitudinal changes in glycemic control. Poorer family climate was associated with poorer body image, which predicted deteriorating glycemic control. For dating adolescents, family climate was unassociated with changes in glycemic control. Nondating adolescents may look to parents for feedback on body image, which affects how they manage the challenges of diabetes. Parents and practitioners alike should be alert to the fact that family climate continues to be an important determinant of adolescent adjustment, particularly for those who have not moved into romantic relationships. We know that body image matters to adolescents, but for some youth, body image may be the difference between health and serious physical problems. (PsycINFO Database Record (c) 2015 APA, all rights reserved).
Impacts of climate change on public health in India: future research directions.
Bush, Kathleen F; Luber, George; Kotha, S Rani; Dhaliwal, R S; Kapil, Vikas; Pascual, Mercedes; Brown, Daniel G; Frumkin, Howard; Dhiman, R C; Hess, Jeremy; Wilson, Mark L; Balakrishnan, Kalpana; Eisenberg, Joseph; Kaur, Tanvir; Rood, Richard; Batterman, Stuart; Joseph, Aley; Gronlund, Carina J; Agrawal, Arun; Hu, Howard
2011-06-01
Climate change and associated increases in climate variability will likely further exacerbate global health disparities. More research is needed, particularly in developing countries, to accurately predict the anticipated impacts and inform effective interventions. Building on the information presented at the 2009 Joint Indo-U.S. Workshop on Climate Change and Health in Goa, India, we reviewed relevant literature and data, addressed gaps in knowledge, and identified priorities and strategies for future research in India. The scope of the problem in India is enormous, based on the potential for climate change and variability to exacerbate endemic malaria, dengue, yellow fever, cholera, and chikungunya, as well as chronic diseases, particularly among the millions of people who already experience poor sanitation, pollution, malnutrition, and a shortage of drinking water. Ongoing efforts to study these risks were discussed but remain scant. A universal theme of the recommendations developed was the importance of improving the surveillance, monitoring, and integration of meteorological, environmental, geospatial, and health data while working in parallel to implement adaptation strategies. It will be critical for India to invest in improvements in information infrastructure that are innovative and that promote interdisciplinary collaborations while embarking on adaptation strategies. This will require unprecedented levels of collaboration across diverse institutions in India and abroad. The data can be used in research on the likely impacts of climate change on health that reflect India's diverse climates and populations. Local human and technical capacities for risk communication and promoting adaptive behavior must also be enhanced.
Accessible ecology: Synthesis of the long, deep, and broad
USDA-ARS?s Scientific Manuscript database
Dramatic changes in climate, land cover, and habitat availability have occurred over the past several centuries to influence every ecosystem on Earth. Large amounts of data have been collected to document changes. Solutions to these environmental problems have been more elusive, in large part becaus...
Time series change detection: Algorithms for land cover change
NASA Astrophysics Data System (ADS)
Boriah, Shyam
The climate and earth sciences have recently undergone a rapid transformation from a data-poor to a data-rich environment. In particular, climate and ecosystem related observations from remote sensors on satellites, as well as outputs of climate or earth system models from large-scale computational platforms, provide terabytes of temporal, spatial and spatio-temporal data. These massive and information-rich datasets offer huge potential for advancing the science of land cover change, climate change and anthropogenic impacts. One important area where remote sensing data can play a key role is in the study of land cover change. Specifically, the conversion of natural land cover into humandominated cover types continues to be a change of global proportions with many unknown environmental consequences. In addition, being able to assess the carbon risk of changes in forest cover is of critical importance for both economic and scientific reasons. In fact, changes in forests account for as much as 20% of the greenhouse gas emissions in the atmosphere, an amount second only to fossil fuel emissions. Thus, there is a need in the earth science domain to systematically study land cover change in order to understand its impact on local climate, radiation balance, biogeochemistry, hydrology, and the diversity and abundance of terrestrial species. Land cover conversions include tree harvests in forested regions, urbanization, and agricultural intensification in former woodland and natural grassland areas. These types of conversions also have significant public policy implications due to issues such as water supply management and atmospheric CO2 output. In spite of the importance of this problem and the considerable advances made over the last few years in high-resolution satellite data, data mining, and online mapping tools and services, end users still lack practical tools to help them manage and transform this data into actionable knowledge of changes in forest ecosystems that can be used for decision making and policy planning purposes. In particular, previous change detection studies have primarily relied on examining differences between two or more satellite images acquired on different dates. Thus, a technological solution that detects global land cover change using high temporal resolution time series data will represent a paradigm-shift in the field of land cover change studies. To realize these ambitious goals, a number of computational challenges in spatio-temporal data mining need to be addressed. Specifically, analysis and discovery approaches need to be cognizant of climate and ecosystem data characteristics such as seasonality, non-stationarity/inter-region variability, multi-scale nature, spatio-temporal autocorrelation, high-dimensionality and massive data size. This dissertation, a step in that direction, translates earth science challenges to computer science problems, and provides computational solutions to address these problems. In particular, three key technical capabilities are developed: (1) Algorithms for time series change detection that are effective and can scale up to handle the large size of earth science data; (2) Change detection algorithms that can handle large numbers of missing and noisy values present in satellite data sets; and (3) Spatio-temporal analysis techniques to identify the scale and scope of disturbance events.
NASA Technical Reports Server (NTRS)
Ohring, G.; Wielicki, B.; Spencer, R.; Emery, B.; Datla, R.
2004-01-01
Measuring the small changes associated with long-term global climate change from space is a daunting task. To address these problems and recommend directions for improvements in satellite instrument calibration some 75 scientists, including researchers who develop and analyze long-term data sets from satellites, experts in the field of satellite instrument calibration, and physicists working on state of the art calibration sources and standards met November 12 - 14, 2002 and discussed the issues. The workshop defined the absolute accuracies and long-term stabilities of global climate data sets that are needed to detect expected trends, translated these data set accuracies and stabilities to required satellite instrument accuracies and stabilities, and evaluated the ability of current observing systems to meet these requirements. The workshop's recommendations include a set of basic axioms or overarching principles that must guide high quality climate observations in general, and a roadmap for improving satellite instrument characterization, calibration, inter-calibration, and associated activities to meet the challenge of measuring global climate change. It is also recommended that a follow-up workshop be conducted to discuss implementation of the roadmap developed at this workshop.
Global dilemmas and the plausibility of whole-system change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harman, W.W.
1995-05-01
Approaching the global dilemmas of our time with whole-system thinking implies that the much-talked-about problems of environmental degradation, deforestation, desertification, man-made climate change, chronic hunger and poverty, etc. are not so much problems as symptoms of a deeper-level condition that must be dealt with. This has to do with the basic incompatibility between widely proclaimed goals and underlying system assumptions. Pressures toward whole-system change are increasing in intensity. The critical issue is whether that change can be smooth and nondisruptive, or whether it will involve some disintegration of present structures. Constructive interventions are discussed. 1 tab.
Potential reciprocal effect between land use / land cover change and climate change
NASA Astrophysics Data System (ADS)
Daham, Afrah; Han, Dawei; Rico-Ramirez, Miguel
2016-04-01
Land use/land cover (LULC) activity influences climate change and one way to explore climate change is to analyse the change in LULC patterns. Modelling the Spatio-temporal pattern of LULC change requires the use of satellite remote sensing data and aerial photographs with different pre-processing steps. The aim of this research is to analyse the reciprocal effects of LUCC (Land Use and Cover Change) and the climate change on each other in the study area which covers part of Bristol, South Gloucestershire, Bath and Somerset in England for the period (1975-2015). LUCC is assessed using remote sensing data. Three sets of remotely sensed data, LanSAT-1 Multispectral Scanner (MSS) data obtained in (1975 and 1976), LanSAT-5 Thematic Mapper (TM) data obtained in (1984 and 1997), and LandSAT-7 Enhanced Thematic Mapper Plus (ETM+) acquired in (2003 and 2015), with a time span of forty years were used in the study. One of the most common problems in the satellite images is the presence of cloud covers. In this study, the cloud cover problem is handled using a novel algorithm, which is capable of reducing the cloud coverage in the classified images significantly. This study also examines a suite of possible photogrammetry techniques applicable to detect the change in LULC. At the moment photogrammertic techniques are used to derive the ground truth for supervised classification from the high resolution aerial photos which were provided by Ordnance Survey (contract number: 240215) and global mapper for the years in (2001 and 2014). After obtaining the classified images almost free of clouds, accuracy assessment is implemented with the derived classified images using confusion matrix at some ground truth points. Eight classes (Improved grassland, Built up areas and gardens, Arable and horticulture, Broad-leaved / mixed woodland, Coniferous woodland, Oceanic seas, Standing open water and reservoir, and Mountain; heath; bog) have been classified in the chosen study area. Also, CORINE Land Cover (CLC) maps are used to study the environmental changes and to validate the obtained maps from remote sensing and photogrammetry data. On climate change, different sources of climate data were used in this research. Three rainfall datasets from the Global Precipitation Climatology Centre (GPCC), the Climate Research Unit (CRU) and Gridded Estimates of daily Areal Rainfall (CEH-GEAR) in the study area were compared at a resolution of 0.5 degrees. The dataset were available for the operational period 1975-2015. The historically observed rainfall datasets for the study area were obtained from the Met Office Integrated Data Archive System (MIDAS) Land and Marine downloaded through the British Atmospheric Data Centre (BADC) website, which includes the rainfall and the temperature, are collected from all the weather stations in the UK in the last 40 years. Only four gauging stations were available to represent the spatial variability of rainfall within and around the study area. The monthly rainfall time series were evaluated against a dataset based on four rain gauges. These data are processed and analysed statistically to find the changes in climate of the study area in the last 40 years. The potential reciprocal effect between the LULC change and the climate change is done by finding the correlation between LUCC and the variables Rainfall and Temperature. In addition, The Soil and Water Assessment Tool (SWAT) model is used to study the impact of LULC change on the water system and climate.
Energy and technology lessons since Rio
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edmonds, James A.; Calvin, Katherine V.; Clarke, Leon E.
2012-11-01
The 1992 Framework Convention on Climate Change created the basic international architecture for addressing climate change. That treaty was negotiated at a time when the research literature examining emissions mitigation and the role of energy technology was relatively limited. In the two subsequent decades a great deal has been learned. The problem of stabilizing the concentration of greenhouse gases in the atmosphere has proved far more difficult than envisioned in 1992 and the role of technology appears even more important when emissions mitigation strategies are co-developed in the context of multiple competing ends.
Interior Secretary Highlights Key Trends, Including Climate Change and Fiscal Constraint
NASA Astrophysics Data System (ADS)
Showstack, Randy
2014-06-01
Climate change is "the defining issue of our time," Department of the Interior (DOI) Secretary Sally Jewell said during her 18 June keynote addess at the AGU Science Policy Conference in Washington, D. C. The United States has to "lead by example. We can't be the largest economy in the world and the second largest producer of carbon in the world"—after China—"and not take care of our own problems first to demonstrate to the world what needs to be done," she said.
Climate change adaptation strategies and mitigation policies
NASA Astrophysics Data System (ADS)
García Fernández, Cristina
2015-04-01
The pace of climate change and the consequent warming of the Earth's surface is increasing vulnerability and decreasing adaptive capacity. Achieving a successful adaptation depends on the development of technology, institutional organization, financing availability and the exchange of information. Populations living in arid and semi-arid zones, low-lying coastal areas, land with water shortages or at risk of overflow or small islands are particularly vulnerable to climate change. Due to increasing population density in sensitive areas, some regions have become more vulnerable to events such as storms, floods and droughts, like the river basins and coastal plains. Human activities have fragmented and increased the vulnerability of ecosystems, which limit both, their natural adaptation and the effectiveness of the measures adopted. Adaptation means to carry out the necessary modifications for society to adapt to new climatic conditions in order to reduce their vulnerability to climate change. Adaptive capacity is the ability of a system to adjust to climate change (including climate variability and extremes) and to moderate potential damages, to take advantage of opportunities or face the consequences. Adaptation reduces the adverse impacts of climate change and enhance beneficial impacts, but will not prevent substantial cost that are produced by all damages. The performances require adaptation actions. These are defined and implemented at national, regional or local levels since many of the impacts and vulnerabilities depend on the particular economic, geographic and social circumstances of each country or region. We will present some adaptation strategies at national and local level and revise some cases of its implementation in several vulnerable areas. However, adaptation to climate change must be closely related to mitigation policies because the degree of change planned in different climatic variables is a function of the concentration levels that are achieved by greenhouse gases in the atmosphere. Mitigation and adaptation are therefore complementary actions. In the long term, climate change without mitigation measures will likely exceed the adaptive capacity of natural, managed and human systems. Early adoption of mitigation measures would break the dependence on carbon-intensive infrastructures and reduce adaptation needs to climate change. It also can save on adaptation cost. Therefore mitigation is the key objective of the global warming problem but little is being done in this field. We will present some proposals of "preventive economically efficient" policies at a global and regional level which will constitute the complement to the adaptation aspect.
High-resolution dynamic downscaling of CMIP5 output over the Tropical Andes
NASA Astrophysics Data System (ADS)
Reichler, Thomas; Andrade, Marcos; Ohara, Noriaki
2015-04-01
Our project is targeted towards making robust predictions of future changes in climate over the tropical part of the South American Andes. This goal is challenging, since tropical lowlands, steep mountains, and snow covered subarctic surfaces meet over relatively short distances, leading to distinct climate regimes within the same domain and pronounced spatial gradients in virtually every climate quantity. We use an innovative approach to solve this problem, including several quadruple nested versions of WRF, a systematic validation strategy to find the version of WRF that best fits our study region, spatial resolutions at the kilometer scale, 20-year-long simulation periods, and bias-corrected output from various CMIP5 simulations that also include the multi-model mean of all CMIP5 models. We show that the simulated changes in climate are consistent with the results from the global climate models and also consistent with two different versions of WRF. We also discuss the expected changes in snow and ice, derived from off-line coupling the regional simulations to a carefully calibrated snow and ice model.
NASA Astrophysics Data System (ADS)
Graumlich, L. J.; Cross, M. S.; Hilty, J.; Berger, J.
2007-12-01
With the recent publication of the 2007 Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), little doubt remains among scientists that the global climate system is changing due to human influence and that climate change will have far-reaching and fundamental impacts on ecosystems and biodiversity. Arguably the best-documented evidence linking 20th Century warming trends to changes in physical and biological systems comes from the mountains of western North America (e.g., Figure SPM1 in Summary of Working Group 11 Report). In the West, ecosystem impacts include changes in the distribution of species as well as changing functional linkages between species such as the synchrony between flower emergence and pollinating insects. These climate impacts, when combined with other environmental stressors (e.g., altered disturbance regimes, land-use change and habitat fragmentation) portend an amplification of species extinction rates. One of the great challenges in adapting to climate change is developing and implementing policies that enhance ecological resilience in the face of these change. Clearly, the current system of nature reserves in Western North America is a fundamental asset for maintaining biodiversity and ecosystem services. However, the fixed- boundary nature of these protected areas presents a problem as species' ranges shift with future climate change. The loss of species whose ranges move outside of fixed park boundaries and the arrival of other species that move into protected areas could lead to significant turnover of species diversity, new species assemblages, and altered functionality. In short, reserves that were designed to protect particular species or communities may no longer serve their intended purpose under a changing climate. In this talk, we use case studies from the Greater Yellowstone Ecosystem and the Sonoran Desert Ecosystem to define strategies for enhancing ecological resilience to climate change at regional scales, taking into account the need for creating ecological connectivity between protected areas. We are particularly interested in defining opportunities in which traditional "working landscapes", such as large ranches in western North America, play a functional role in enhancing connectivity in the near-term as well as into the future. Based on our own work and that of others, we define the scientific roadmap for identifying and selecting corridors that are robust to climate change and other stressors and that are politically and socially viable as an adaptation strategy.
Past, present, and future design of urban drainage systems with focus on Danish experiences.
Arnbjerg-Nielsen, K
2011-01-01
Climate change will influence the water cycle substantially, and extreme precipitation will become more frequent in many regions in the years to come. How should this fact be incorporated into design of urban drainage systems, if at all? And how important is climate change compared to other changes over time? Based on an analysis of the underlying key drivers of changes that are expected to affect urban drainage systems the current problems and their predicted development over time are presented. One key issue is management of risk and uncertainties and therefore a framework for design and analysis of urban structures in light of present and future uncertainties is presented.
Chadee, Dave D; Martinez, Raymond
2016-04-01
Within Latin America and the Caribbean region the impact of climate change has been associated with the effects of rainfall and temperature on seasonal outbreaks of dengue but few studies have been conducted on the impacts of climate on the behaviour and ecology of Aedes aegypti mosquitoes.This study was conducted to examine the adaptive behaviours currently being employed by A. aegypti mosquitoes exposed to the force of climate change in LAC countries. The literature on the association between climate and dengue incidence is small and sometimes speculative. Few laboratory and field studies have identified research gaps. Laboratory and field experiments were designed and conducted to better understand the container preferences, climate-associated-adaptive behaviour, ecology and the effects of different temperatures and light regimens on the life history of A. aegypti mosquitoes. A. aegypti adaptive behaviours and changes in container preferences demonstrate how complex dengue transmission dynamics is, in different ecosystems. The use of underground drains and septic tanks represents a major behaviour change identified and compounds an already difficult task to control A. aegypti populations. A business as usual approach will exacerbate the problem and lead to more frequent outbreaks of dengue and chikungunya in LAC countries unless both area-wide and targeted vector control approaches are adopted. The current evidence and the results from proposed transdisciplinary research on dengue within different ecosystems will help guide the development of new vector control strategies and foster a better understanding of climate change impacts on vector-borne disease transmission. Copyright © 2016 Elsevier B.V. All rights reserved.
Will current probabilistic climate change information, as such, improve adaptation?
NASA Astrophysics Data System (ADS)
Lopez, A.; Smith, L. A.
2012-04-01
Probabilistic climate scenarios are currently being provided to end users, to employ as probabilities in adaptation decision making, with the explicit suggestion that they quantify the impacts of climate change relevant to a variety of sectors. These "probabilities" are, however, rather sensitive to the assumptions in, and the structure of the modelling approaches used to generate them. It is often argued that stakeholders require probabilistic climate change information to adequately evaluate and plan adaptation pathways. On the other hand, some circumstantial evidence suggests that on the ground decision making rarely uses well defined probability distributions of climate change as inputs. Nevertheless it is within this context of probability distributions of climate change that we discuss possible drawbacks of supplying information that, while presented as robust and decision relevant, , is in fact unlikely to be so due to known flaws both in the underlying models and in the methodology used to "account for" those known flaws. How might one use a probability forecast that is expected to change in the future, not due to a refinement in our information but due to fundamental flaws in its construction? What then are the alternatives? While the answer will depend on the context of the problem at hand, a good approach will be strongly informed by the timescale of the given planning decision, and the consideration of all the non-climatic factors that have to be taken into account in the corresponding risk assessment. Using a water resources system as an example, we illustrate an alternative approach to deal with these challenges and make robust adaptation decisions today.
Common Ground on Climate Change: Pairing Opposing Viewpoints for Conversations about Climate Change
NASA Astrophysics Data System (ADS)
Kirk, K. B.; Duggan-Haas, D.; Hayhoe, K.
2017-12-01
In American public discourse, people tend to strongly identify with the viewpoints held by their cultural and political tribes. However, entrenched positions do little to advance understanding, or work toward solving problems constructively. Worse yet, it has become commonplace to dismiss or demonize those coming from a different point of view - leading to the vitriolic stalemate that often characterizes social media and comment threads when it comes to climate change. One way to break this pattern is to invite people with opposing opinions to actually talk to one another. This presentation describes the lessons learned during the Common Ground on Climate Change project, in which people with contrasting views about climate change engage in a moderated interview with each other. Prior to the interview, participants complete a set of values-based questions. The goal is to reveal areas of common ground between apparent opposites, such as a sense of stewardship for Earth's resources, or an opinion that solutions to climate change will be more beneficial than harmful. The structure of the interviews is based on the hypothesis that if a conversation begins with an appreciation of common values, it becomes easier to broach areas of disagreement. Participants are matched up in one-on-one moderated interviews where they are encouraged to share their concerns, ideas, and priorities about the validity of climate science, the need for urgent action, and the types of solutions they find most tenable. Emerging themes from this series of interviews include the value of a diversity of outlooks, and the ability for moderated conversations to find surprising areas of agreement. Articles about the interviews also appear on the Yale Climate Connections website, https://www.yaleclimateconnections.org/author/karin/.
Teleconnections in the Presence of Climate Change: A Case Study of the Annular Modes
NASA Astrophysics Data System (ADS)
Gerber, Edwin; Baldwin, Mark
2010-05-01
Long model integrations of future and past climates present a problem for defining teleconnection patterns through Empirical Orthogonal Function (EOF) or correlation analysis when trends in the underlying climate begin to dominate the covariance structure. Similar issues may soon appear in observations as the record becomes longer, especially if climate trends accelerate. The Northern and Southern Annular Modes provide a prime example, because the poleward shift of the jet streams strongly projects onto these patterns, particularly in the Southern Hemisphere. Climate forecasts of the 21st century by chemistry climate models provide a case study. Computation of the annular modes in these long data sets with secular trends requires refinement of the standard definition of the annular mode, and a more robust procedure that allows for slowly varying trends is established and verified. The new procedure involves two key changes. First, the global mean geopotential height is removed at each time step before computing anomalies. This is particularly important high in the atmosphere, where seasonal variations in geopotential height become significant, and filters out trends due to changes in the temperature structure of the atmosphere. Pattern definition can be very sensitive near the tropopause, as regions of the atmosphere that used to be more of stratospheric character begin to take on tropospheric characteristics as the tropopause rises. The second change is to define anomalies relative to a slowly evolving seasonal climatology, so that the covariance structure reflects internal variability. Once these changes are accounted for, it is found that the zonal mean variability of the atmosphere stays remarkably constant, despite significant changes in the baseline climate forecast for the rest of the century. This stability of the internal variability makes it possible to relate trends in climate to teleconnections.
NASA Astrophysics Data System (ADS)
Heyn, K.; Campbell, E.
2016-12-01
The Portland Water Bureau has been studying the anticipated effects of climate change on its primary surface water source, the Bull Run Watershed, since the early 2000's. Early efforts by the bureau were almost exclusively reliant on outside expertise from climate modelers and researchers, particularly those at the Climate Impacts Group (CIG) at the University of Washington. Early work products from CIG formed the basis of the bureau's understanding of the most likely and consequential impacts to the watershed from continued GHG-caused warming. However, by mid-decade, as key supply and demand conditions for the bureau changed, it found it lacked the technical capacity and tools to conduct more refined and updated research to build on the outside analysis it had obtained. Beginning in 2010 through its participation in the Pilot Utility Modeling Applications (PUMA) project, the bureau identified and began working to address the holes in its technical and institutional capacity by embarking on a process to assess and select a hydrologic model while obtaining downscaled climate change data to utilize within it. Parallel to the development of these technical elements, the bureau made investments in qualified staff to lead the model selection, development and utilization, while working to establish productive, collegial and collaborative relationships with key climate research staff at the Oregon Climate Change Research Institute (OCCRI), the University of Washington and the University of Idaho. This presentation describes the learning process of a major metropolitan area drinking water utility as its approach to addressing the complex problem of climate change evolves, matures, and begins to influence broader aspects of the organization's planning efforts.
Climate-chemical interactions and effects of changing atmospheric trace gases
NASA Technical Reports Server (NTRS)
Ramanathan, V.; Callis, L.; Cess, R.; Hansen, J.; Isaksen, I.
1987-01-01
The paper considers trace gas-climate effects including the greenhouse effect of polyatomic trace gases, the nature of the radiative-chemical interactions, and radiative-dynamical interactions in the stratosphere, and the role of these effects in governing stratospheric climate change. Special consideration is given to recent developments in the investigations of the role of oceans in governing the transient climate responses, and a time-dependent estimate of the potential trace gas warming from the preindustrial era to the early 21st century. The importance of interacting modeling and observational efforts is emphasized. One of the problems remaining on the observational front is the lack of certainty in current estimates of the rate of growth of CO, O3, and NOx; the primary challenge is the design of a strategy that will minimize the sampling errors.
Culley, Marci R; Angelique, Holly
2010-06-01
Community narratives are increasingly important as people move towards an ecologically sustainable society. Global climate change is a multi-faceted problem with multiple stakeholders. The voices of affected communities must be heard as we make decisions of global significance. We document the narratives of long-term anti-nuclear activists near the Three Mile Island (TMI) nuclear power plant who speak out in the dawn of a nuclear renaissance/relapse. While nuclear power is marketed as a "green" solution to global warming, their narratives reveal three areas for consideration; (1) significant problems with nuclear technology, (2) lessons "not" learned from the TMI disaster, and (3) hopes for a sustainable future. Nuclear waste, untrustworthy officials and economic issues were among the problems cited. Deceptive shaping of public opinion, nuclear illiteracy, and an aging anti-nuclear movement were reasons cited for the lessons not learned. However, many remain optimistic and envision increased participation to create an ecologically-balanced world.
NASA Astrophysics Data System (ADS)
Ledley, T. S.; Niepold, F.
2013-12-01
Climate change will have impacts on all aspects of life. As such it is a topic that is interdisciplinary and transdisciplinary and thus requires input from a professionally diverse group of experts to be addressed effectively. This represents the next step in an evolution of how geoscientists see their work and their responsibility communicate and collaborate with other professionals to enable their findings and understanding of the Earth system to benefit society. In the late 1970's geoscience research extended beyond the traditional disciplinary perspectives to investigate the interactions of the components of the Earth system and the impacts of those interactions. Geoscience research became interdisciplinary. In the last 10 years as the reality of climate change has become more apparent,it is clear that the conversation needs to extend well beyond the geosciences to include for example agriculture, economics, psychology, architecture, urban planning, engineering and the social sciences. Climate change education and communication needs to become both interdisciplinary and transdisciplinary. This presentation will discuss the obstacles that need to be overcome to achieve interdisciplinary and transdiciplinary ways of addressing the problems and opportunities resulting from climate change, the efforts that are underway to help develop a common language and shared understanding to enable transdisciplinary solutions to societal issues in the future.
NASA Astrophysics Data System (ADS)
Cheng, Chad Shouquan; Li, Qian; Li, Guilong
2010-05-01
The synoptic weather typing approach has become popular in evaluating the impacts of climate change on a variety of environmental problems. One of the reasons is its ability to categorize a complex set of meteorological variables as a coherent index, which can facilitate analyses of local climate change impacts. The weather typing method has been applied in Environment Canada to analyze climatic change impacts on various meteorological/hydrological risks, such as freezing rain, heavy rainfall, high-/low-flow events, air pollution, and human health. These studies comprise of three major parts: (1) historical simulation modeling to verify the hazardous events, (2) statistical downscaling to provide station-scale future climate information, and (3) estimates of changes in frequency and magnitude of future hazardous meteorological/hydrological events in this century. To achieve these goals, in addition to synoptic weather typing, the modeling conceptualizations in meteorology and hydrology and various linear/nonlinear regression techniques were applied. Furthermore, a formal model result verification process has been built into the entire modeling exercise. The results of the verification, based on historical observations of the outcome variables predicted by the models, showed very good agreement. This paper will briefly summarize these research projects, focusing on the modeling exercise and results.
Development and application of earth system models.
Prinn, Ronald G
2013-02-26
The global environment is a complex and dynamic system. Earth system modeling is needed to help understand changes in interacting subsystems, elucidate the influence of human activities, and explore possible future changes. Integrated assessment of environment and human development is arguably the most difficult and most important "systems" problem faced. To illustrate this approach, we present results from the integrated global system model (IGSM), which consists of coupled submodels addressing economic development, atmospheric chemistry, climate dynamics, and ecosystem processes. An uncertainty analysis implies that without mitigation policies, the global average surface temperature may rise between 3.5 °C and 7.4 °C from 1981-2000 to 2091-2100 (90% confidence limits). Polar temperatures, absent policy, are projected to rise from about 6.4 °C to 14 °C (90% confidence limits). Similar analysis of four increasingly stringent climate mitigation policy cases involving stabilization of greenhouse gases at various levels indicates that the greatest effect of these policies is to lower the probability of extreme changes. The IGSM is also used to elucidate potential unintended environmental consequences of renewable energy at large scales. There are significant reasons for attention to climate adaptation in addition to climate mitigation that earth system models can help inform. These models can also be applied to evaluate whether "climate engineering" is a viable option or a dangerous diversion. We must prepare young people to address this issue: The problem of preserving a habitable planet will engage present and future generations. Scientists must improve communication if research is to inform the public and policy makers better.
Development and application of earth system models
Prinn, Ronald G.
2013-01-01
The global environment is a complex and dynamic system. Earth system modeling is needed to help understand changes in interacting subsystems, elucidate the influence of human activities, and explore possible future changes. Integrated assessment of environment and human development is arguably the most difficult and most important “systems” problem faced. To illustrate this approach, we present results from the integrated global system model (IGSM), which consists of coupled submodels addressing economic development, atmospheric chemistry, climate dynamics, and ecosystem processes. An uncertainty analysis implies that without mitigation policies, the global average surface temperature may rise between 3.5 °C and 7.4 °C from 1981–2000 to 2091–2100 (90% confidence limits). Polar temperatures, absent policy, are projected to rise from about 6.4 °C to 14 °C (90% confidence limits). Similar analysis of four increasingly stringent climate mitigation policy cases involving stabilization of greenhouse gases at various levels indicates that the greatest effect of these policies is to lower the probability of extreme changes. The IGSM is also used to elucidate potential unintended environmental consequences of renewable energy at large scales. There are significant reasons for attention to climate adaptation in addition to climate mitigation that earth system models can help inform. These models can also be applied to evaluate whether “climate engineering” is a viable option or a dangerous diversion. We must prepare young people to address this issue: The problem of preserving a habitable planet will engage present and future generations. Scientists must improve communication if research is to inform the public and policy makers better. PMID:22706645
Sagoo, Navjit; Valdes, Paul; Flecker, Rachel; Gregoire, Lauren J
2013-10-28
Geological data for the Early Eocene (56-47.8 Ma) indicate extensive global warming, with very warm temperatures at both poles. However, despite numerous attempts to simulate this warmth, there are remarkable data-model differences in the prediction of these polar surface temperatures, resulting in the so-called 'equable climate problem'. In this paper, for the first time an ensemble with a perturbed climate-sensitive model parameters approach has been applied to modelling the Early Eocene climate. We performed more than 100 simulations with perturbed physics parameters, and identified two simulations that have an optimal fit with the proxy data. We have simulated the warmth of the Early Eocene at 560 ppmv CO2, which is a much lower CO2 level than many other models. We investigate the changes in atmospheric circulation, cloud properties and ocean circulation that are common to these simulations and how they differ from the remaining simulations in order to understand what mechanisms contribute to the polar warming. The parameter set from one of the optimal Early Eocene simulations also produces a favourable fit for the last glacial maximum boundary climate and outperforms the control parameter set for the present day. Although this does not 'prove' that this model is correct, it is very encouraging that there is a parameter set that creates a climate model able to simulate well very different palaeoclimates and the present-day climate. Interestingly, to achieve the great warmth of the Early Eocene this version of the model does not have a strong future climate change Charney climate sensitivity. It produces a Charney climate sensitivity of 2.7(°)C, whereas the mean value of the 18 models in the IPCC Fourth Assessment Report (AR4) is 3.26(°)C±0.69(°)C. Thus, this value is within the range and below the mean of the models included in the AR4.
Nonlinear dynamics and predictability in the atmospheric sciences
NASA Technical Reports Server (NTRS)
Ghil, M.; Kimoto, M.; Neelin, J. D.
1991-01-01
Systematic applications of nonlinear dynamics to studies of the atmosphere and climate are reviewed for the period 1987-1990. Problems discussed include paleoclimatic applications, low-frequency atmospheric variability, and interannual variability of the ocean-atmosphere system. Emphasis is placed on applications of the successive bifurcation approach and the ergodic theory of dynamical systems to understanding and prediction of intraseasonal, interannual, and Quaternary climate changes.
Transportation, Air Pollution, and Climate Change
Learn how emissions reductions, advancements in fuels and fuel economy, and working with industry to find solutions to air pollution problems benefit human and environmental health, create consumer savings and are cost effective.
How will I be remembered? Conserving the environment for the sake of one's legacy.
Zaval, Lisa; Markowitz, Ezra M; Weber, Elke U
2015-02-01
Long time horizons and social distance are viewed as key psychological barriers to proenvironmental action, particularly regarding climate change. We suggest that these challenges can be turned into opportunities by making salient long-term goals and motives, thus shifting preferences between the present self and future others. We tested whether individuals' motivation to leave a positive legacy can be leveraged to increase engagement with climate change and other environmental problems. In a pilot study, we found that individual differences in legacy motivation were positively associated with proenvironmental behaviors and intentions. In a subsequent experiment, we demonstrated that priming legacy motives increased donations to an environmental charity, proenvironmental intentions, and climate-change beliefs. Domain-general legacy motives represent a previously understudied and powerful mechanism for promoting proenvironmental behavior. © The Author(s) 2015.
Synthetic and Biomass Alternate Fueling in Aviation
NASA Technical Reports Server (NTRS)
Hendricks, R.C.; Bushnell, D.M.
2009-01-01
Worldwide, aviation alone uses 85 to 95 billion gallons of nonrenewable fossil fuel per year (2008). General transportation fueling can accommodate several different fuels; however, aviation fuels have very specific requirements. Biofuels have been flight demonstrated, are considered renewable, have the capacity to become "drop-in" replacements for Jet-A fuel, and solve the CO2 climate change problem. The major issue is cost; current biomass biofuels are not economically competitive. Biofuel feedstock sources being researched are halophytes, algae, cyanobacteria, weeds-to-crops, wastes with contingent restraints on use of crop land, freshwater, and climate change. There are five major renewable energy sources: solar thermal, solar photovoltaic, wind, drilled geothermal and biomass, each of which have an order of magnitude greater capacity to meet all energy needs. All five address aspects of climate change; biomass has massive potential as an energy fuel feedstock.
Climate and mortality changes due to reductions in household cooking emissions
NASA Astrophysics Data System (ADS)
Bergman, Tommi; Mielonen, Tero; Arola, Antti; Kokkola, Harri
2016-04-01
Household cooking is a significant cause for health and environmental problems in the developing countries. There are more than 3 billion people who use biomass for fuel in cooking stoves in their daily life. These cooking stoves use inadequate ventilation and expose especially women and children to indoor smoke. To reduce problems of the biomass burning, India launched an initiative to provide affordable and clean energy solutions for the poorest households by providing clean next-generation cooking stoves. The improved cooking stoves are expected to improve outdoor air quality and to reduce the climate-active pollutants, thus simultaneously slowing the climate change. Previous research has shown that the emissions of black carbon can be decreased substantially, as much as 90 % by applying better technology in cooking stoves. We have implemented reasonable (50% decrease) and best case (90% decrease) scenarios of the reductions in black and organic carbon due to improved cooking stoves in India into ECHAM-HAMMOZ aerosol-climate model. The global simulations of the scenarios will be used to study how the reductions of emissions in India affect the pollutant concentrations and radiation. The simulated reductions in particulate concentrations will also be used to estimate the decrease in mortality rates. Furthermore, we will study how the emission reductions would affect the global climate and mortality if a similar initiative would be applied in other developing countries.
ERIC Educational Resources Information Center
Sagnak, Mesut; Kuruoz, Mehmet; Polat, Betül; Soylu, Ayse
2015-01-01
Problem Statement: The most important characteristic of today's organizations is too much change. The demand of organizations to fulfill objectives within dynamic environmental aspects has required strong leadership. Organizations' accommodation to changes, generating new ideas, adapting these ideas to organizations, and also the individual and…
ERIC Educational Resources Information Center
Neuhauser, Linda; Richardson, Dawn; Mackenzie, Sonja; Minkler, Meredith
2007-01-01
Finding solutions to complex health problems, such as obesity, violence, and climate change, will require radical changes in cross-disciplinary education, research, and practice. The fundamental determinants of health include many interrelated factors such as poverty, culture, education, environment, and government policies. However, traditional…
NASA Astrophysics Data System (ADS)
Schmale, J.; von Schneidemesser, E.; Chabay, I.; Maas, A.; Lawrence, M. G.
2013-12-01
Climate change and air pollution both have impacts across a wide range of sectors. While it is fundamental to communicate scientific findings as basis for decision making to a variety of stakeholders, it is difficult to establish long-lasting, multi-way communication and mutual learning between all parties to ensure success. There are many reasons for this difficulty, one of them being the subtle nature of climate change impacts (excluding extreme events). The decadal timescales over which changes occur make it difficult to communicate the urgent need for action, as evidence is difficult to perceive directly in the present or over the short timescales on which people are normally most accustomed to thinking. Here, we analyze experiences from the ClimPol project, designed to identify research needs and pathways to policy implementation for an integrated and sustainable policy approach to mitigate air pollution and climate change simultaneously. These two challenges are inextricably linked with regard to their causes, effects and mitigation options. Due to their linkages, action in one sector will often affect the other sector. This can have positive effects, co-benefits, e.g. by replacing coal-fired power plants through wind power, because overall emissions will be reduced. But adverse effects are also possible, trade-offs, e.g. by increasingly using wood for domestic heating, which reduces the overall CO2 emissions, but increases the emissions of particulate matter and other air pollutants. The ClimPol project uses short-lived climate-forcing air pollutants (SLCPs) as an entry point to exploring joint mitigation approaches. Due to their short atmospheric lifetimes and various adverse qualities, SLCPs exert immediate, local and direct effects across sectors like public health and food security (air quality issues), while also driving climate change. SLCP and CO2 mitigation can be complementary for reducing climate change and improving air quality. Using this linkage to present-day problems in contrast to only focusing on the long-term time scales of CO2-driven climate change, the ClimPol project goes beyond the academic realm and collaborates with a variety of stakeholders across scales from local to international to investigate potential options for joint and sustainable policies. The underlying assumption is that each stakeholder community possesses their own knowledge system which contributes an important piece to the puzzle which is necessary to assemble for creating solutions. We call this approach co-designing usable knowledge. This new type of knowledge can serve as a basis for decision making. This inclusive approach encourages all parties to take ownership in the process and solutions, thereby causing them to be more likely to act on the problem, both at the systemic, policy-driven level, and at the individual level by cooperatively supporting the associated structural and lifestyle developments. For the presentation of the results, we will focus on experiences from joint projects with non-governmental organizations on city authorities.
Green technologies for reducing slope erosion.
DOT National Transportation Integrated Search
2010-01-01
As climate change alters precipitation patterns, departments of transportation will increasingly face the problem of : slope failures, which already cost California millions of dollars in repair work annually. Caltrans hopes to prevent : these failur...
Remote sensing applications of wildland fire and air quality in China
John J. Qu; Xianjun Hao; Yongqiang Liu; Allen R. Riebau; Haoruo Yi; Xianlin Qin
2009-01-01
As one of the most populous and geographically largest countries, China faces many problems including industrial growth, economic sustainability, food security, climate change, and air pollution. Interwoven with these challenges,...
Overexploitation of karst spring as a measure against water scarcity.
Dimkić, Dejan; Dimkić, Milan; Soro, Andjelko; Pavlović, Dusan; Jevtić, Goran; Lukić, Vladimir; Svrkota, Dragan
2017-09-01
Water scarcity, especially in the hydrologically critical part of the year, is a problem often present in many cities and regions, particularly in arid and sub-arid areas. Climate change and human water demand compound the problem. This paper discusses a climate change adaptation measure-the possibility of karst spring overexploitation, where there is a siphon-shaped cavity inside the mountain. The pilot area is near the city of Niš, where a decreasing precipitation trend has already been observed and is expected to continue in the future. The paper also presents some basic information related to the pilot area and undertaken investigations. The project, successfully implemented in 2004, has provided the city of Niš with an additional amount of 200 l/s of spring water during the most critical part of the year.
NASA Astrophysics Data System (ADS)
Hunziker, Stefan; Gubler, Stefanie; Calle, Juan; Moreno, Isabel; Andrade, Marcos; Velarde, Fernando; Ticona, Laura; Carrasco, Gualberto; Castellón, Yaruska; Oria Rojas, Clara; Brönnimann, Stefan; Croci-Maspoli, Mischa; Konzelmann, Thomas; Rohrer, Mario
2016-04-01
Assessing climatological trends and extreme events requires high-quality data. However, for many regions of the world, observational data of the desired quality is not available. In order to eliminate errors in the data, quality control (QC) should be applied before data analysis. If the data still contains undetected errors and quality problems after QC, a consequence may be misleading and erroneous results. A region which is seriously affected by observational data quality problems is the Central Andes. At the same time, climatological information on ongoing climate change and climate risks are of utmost importance in this area due to its vulnerability to meteorological extreme events and climatic changes. Beside data quality issues, the lack of metadata and the low station network density complicate quality control and assessment, and hence, appropriate application of the data. Errors and data problems may occur at any point of the data generation chain, e.g. due to unsuitable station configuration or siting, poor station maintenance, erroneous instrument reading, or inaccurate data digitalization and post processing. Different measurement conditions in the predominantly conventional station networks in Bolivia and Peru compared to the mostly automated networks e.g. in Europe or Northern America may cause different types of errors. Hence, applying QC methods used on state of the art networks to Bolivian and Peruvian climate observations may not be suitable or sufficient. A comprehensive amount of Bolivian and Peruvian maximum and minimum temperature and precipitation in-situ measurements were analyzed to detect and describe common data quality problems. Furthermore, station visits and reviews of the original documents were done. Some of the errors could be attributed to a specific source. Such information is of great importance for data users, since it allows them to decide for what applications the data still can be used. In ideal cases, it may even allow to correct the error. Strategies on how to deal with data from the Central Andes will be suggested. However, the approach may be applicable to networks from other countries where conditions of climate observations are comparable.
Lessons for climate policy from The Great Stink of London
NASA Astrophysics Data System (ADS)
Skuce, A.
2012-12-01
A rapidly growing population and the introduction of the flush toilet in nineteenth-century London caused a crisis with sewage pollution in the River Thames (Halliday, 1999). There were decades of delays in implementing solutions owing to: inadequate governance institutions; political inertia; difficulties with financing; opposition from vested interests; scientific uncertainties; and technological challenges. Effective counter-measures were started only once the problem arose, quite literally, under the noses of parliamentarians. There are parallels, some of them pointed out earlier by Alley et al (2010), between the sewage crisis in Victorian London and the current problem with climate change. Both involve the unsustainable use of a common resource (a river, the atmosphere) for the unconstrained disposal of human waste products. Alley (2011) estimated that the costs of providing clean water and sanitation are comparable to the expected costs of reducing greenhouse gas emissions. Despite the similarities, the climate change issue is actually much more difficult because of: a) the unequal and uncertain global distribution of cause and effect; b) its long, intergenerational time lines; c) the insufficiency of adequate institutions, conventions or the tools— political, moral or economic—for tackling the climate crisis. This analysis is consistent with the model proposed by Gardiner (2011) in his book A Perfect Moral Storm. The three "storms" he identifies, the global, intergenerational and theoretical storms, combine in a powerful synergy to create a challenge of unprecedented intractability, providing opportunities for what Gardiner calls moral corruption: the obscuring of the buck-passing and procrastination that characterizes climate policy today. In Victorian London, the crucial steps to solve the sewage crises were not taken until the stench from the River Thames during the hot summer of 1858 rendered the House of Commons uninhabitable. A greater stink of a different kind may have to be raised in the world's capitals before effective action begins on the much more challenging problem of climate change. References Alley, R. B., Haines-Stiles, G., Akuginow, E., 2010. Toilets and the Smart Grid: A role for history and art in communicating assessed science for Earth—The Operators' Manual. AGU, Fall Meeting 2010, abstract #ED41D-05. Alley, R.B., 2011. EARTH: The Operators' Manual. W.W. Norton & Company. ISBN 978-0-393-08109-1 Gardiner, S.H., 2011. A Perfect Moral Storm: The Ethical Tragedy of Climate Change. Oxford University Press. ISBN13: 9780195379440 Halliday, S. 1999. The Great Stink of London: Sir Joseph Bazalgette and the Cleansing of the Victorian Capital. Sutton Publishing Limited. ISBN 0-7509-1975-2
Teaching Climate Change Through Music
NASA Astrophysics Data System (ADS)
Weiss, P. S.
2007-12-01
During 2006, Peter Weiss aka "The Singing Scientist" performed many music assemblies for elementary schools (K-5) in Santa Cruz County, California, USA. These assemblies were an opportunity for him to mix a discussion of climate change with rock n' roll. In one song called "Greenhouse Glasses", Peter and his band the "Earth Rangers" wear over-sized clown glasses with "molecules" hanging off them (made with Styrofoam balls and pipe cleaners). Each molecule is the real molecular structure of a greenhouse gas, and the song explains how when the wearer of these glasses looks up in the sky, he/she can see the "greenhouse gases floating by." "I've seen more of them this year than the last / 'Cuz fossil fuels are burning fast / I wish everyone could see through these frames / Then maybe we could prevent climate change" Students sing, dance and get a visual picture of something that is invisible, yet is part of a very real problem. This performance description is used as an example of an educational style that can reach a wide audience and provide a framework for the audience as learners to assimilate future information on climate change. The hypothesis is that complex socio-environmental issues like climate change that must be taught in order to achieve sustainability are best done so through alternative mediums like music. Students develop awareness which leads to knowledge about chemistry, physics, and biology. These kinds of experiences which connect science learning to fun activities and community building are seriously lacking in primary and secondary schools and are a big reason why science illiteracy is a current social problem. Science education is also paired with community awareness (including the local plant/animal community) and cooperation. The Singing Scientist attempts to create a culture where it is cool to care about the environment. Students end up gardening in school gardens together and think about their "ecological footprint".
NASA Astrophysics Data System (ADS)
Carpenter, Steven Michael
This research investigates the existence of and potential challenges to the development of a transdisciplinary approach to the climate change mitigation technology research focusing on carbon dioxide capture, utilization, and storage (CCUS) in North America. The unprecedented challenge of global climate change is one that invites a transdisciplinary approach. The challenge of climate change mitigation requires an understanding of multiple disciplines, as well as the role that complexity, post-normal or post-modern science, and uncertainty play in combining these various disciplines. This research followed the general discourse of transdisciplinarity as described by Klein (2014) and Augsburg (2016) which describe it as using transcendence, problem solving, and transgression to address wicked, complex societal problems, and as taught by California School of Transdisciplinarity, where the research focuses on sustainability in the age of post-normal science (Funtowicz & Ravetz, 1993). Through the use of electronic surveys and semi-structured interviews, members of the North American climate change mitigation research community shared their views and understanding of transdisciplinarity (Kvale & Brinkmann, 2009). The data indicate that much of the research currently being conducted by members of the North American CCUS research community is in fact transdisciplinary. What is most intriguing is the manner in which researchers arrived at their current understanding of transdisciplinarity, which is in many cases without any foreknowledge or use of the term transdisciplinary. The data reveals that in many cases the researchers now understand that this transdisciplinary approach is borne out of personal beliefs or emotion, social or societal aspects, their educational process, the way in which they communicate, and in most cases, the CCUS research itself, that require this transdisciplinary approach, but had never thought about giving it a name or understanding its origin or dimensions. Much of this new knowledge has come from the analysis and understanding of the Tier 1, Tier 2 and Emergent traits of the transdisciplinarian.
ERIC Educational Resources Information Center
Kazdin, Alan E.
2009-01-01
Climate change and degradation of the environment are global problems associated with many other challenges (e.g., population increases, reduction of glaciers, and loss of critical habitats). Psychological science can play a critical role in addressing these problems by fostering a sustainable environment. Multiple strategies for fostering a…
ERIC Educational Resources Information Center
Banerjee, Priyanka
2014-01-01
Educational organizations are facing severe problems in terms of competition, quality degradation and deteriorating standards. There is a need to identify, define, develop strategy, initiate action and solve the problem. The present research holds significance in the rapidity of changing environment that affects our educational organizations…
Aiming Talent Development toward Creative Eminence in the 21st Century
ERIC Educational Resources Information Center
Olszewski-Kubilius, Paula; Subotnik, Rena F.; Worrell, Frank C.
2016-01-01
Much has been written about the social and scientific problems that face the world in the 21st century, including climate change and economic inequality. In this context, the development of talented individuals who can tackle these problems is most important. In this article, the authors discuss the implications of 21st-century challenges for the…
Reservoir adaptive operating rules based on both of historical streamflow and future projections
NASA Astrophysics Data System (ADS)
Zhang, Wei; Liu, Pan; Wang, Hao; Chen, Jie; Lei, Xiaohui; Feng, Maoyuan
2017-10-01
Climate change is affecting hydrological variables and consequently is impacting water resources management. Historical strategies are no longer applicable under climate change. Therefore, adaptive management, especially adaptive operating rules for reservoirs, has been developed to mitigate the possible adverse effects of climate change. However, to date, adaptive operating rules are generally based on future projections involving uncertainties under climate change, yet ignoring historical information. To address this, we propose an approach for deriving adaptive operating rules considering both historical information and future projections, namely historical and future operating rules (HAFOR). A robustness index was developed by comparing benefits from HAFOR with benefits from conventional operating rules (COR). For both historical and future streamflow series, maximizations of both average benefits and the robustness index were employed as objectives, and four trade-offs were implemented to solve the multi-objective problem. Based on the integrated objective, the simulation-based optimization method was used to optimize the parameters of HAFOR. Using the Dongwushi Reservoir in China as a case study, HAFOR was demonstrated to be an effective and robust method for developing adaptive operating rules under the uncertain changing environment. Compared with historical or projected future operating rules (HOR or FPOR), HAFOR can reduce the uncertainty and increase the robustness for future projections, especially regarding results of reservoir releases and volumes. HAFOR, therefore, facilitates adaptive management in the context that climate change is difficult to predict accurately.
European Master-Doctorate Course on "Vulnerability of Cultural Heritage to Climate Change"
NASA Astrophysics Data System (ADS)
Lefèvre, R.-A.
2009-04-01
« Vulnerability of Cultural Heritage to Climate Change », European Master-Doctorate Course, Council of Europe, Strasbourg 7-11 September 2009 The character of Cultural Heritage is closely related to the climate, and the urban landscape and the built heritage have been designed with the local climate in mind. The stability of Cultural Heritage is, therefore, closely tied to its interactions with the ground and the atmosphere. Climate Change is thus expected to have either catastrophic or subtle effects on Cultural Heritage materials and Cultural Landscapes. The major aim of the 2009 Strasbourg Course is to ensure that young European students are informed on these important problems and will be able in the future to undertake rigorous ongoing scientific monitoring of changes in conditions of Cultural Heritage. The Programme of the Course will cover the following topics: • Heritage Climatology • Principles of Mitigation and Adaptation of Cultural Heritage to Climate Change • Impact of Climate Change on building structures • Dose-Response and Damage Functions for materials in a Changing Climate • Modelling sea salts transport and deposition • Modelling wetting and drying of historic buildings • Impact of Climate Change on building materials: stone, mortar, modern glass, stained glass windows • Impact of Climate Change on organic materials • Biological impact of Climate Change on Cultural Heritage • Sea level rise models and possible application to Cultural Heritage • Past, present and future for Venice • The policies and action plans of International Organisations (Council of Europe, UNESCO, ICCROM) The Course is addressed to young people with scientific background: physicists, chemists, geologists, biologists, engineers, because of the high scientific level of the background required to follow the lectures. Teaching will be delivered in English without any simultaneous translation. The teachers belong to European Universities, National Research Centres and International Organisations. There are no registration fees. Travel to Strasbourg and accommodation will be taken in charge by the Council of Europe after the selection of applications. Deadline for application: 15 June 2009. Information and application forms: • European University Centre for Cultural Heritage, Villa Rufolo, I-84010-Ravello, Italy, http://www.univeur.org univeur@univeur.org or Council of Europe, EUR-OPA, DG IV, F-67075-Strasbourg Cedex, http://www.coe.int/europarisks europa.risk@coe.int
Atmospheric River Frequency and Intensity Changes in CMIP5 Climate Model Projections
NASA Astrophysics Data System (ADS)
Warner, M.; Mass, C.; Salathe, E. P., Jr.
2012-12-01
Most extreme precipitation events that occur along the North American west coast are associated with narrow plumes of above-average water vapor concentration that stretch from the tropics or subtropics to the West Coast. These events generally occur during the wet season (October-March) and are referred to as atmospheric rivers (AR). ARs can cause major river management problems, damage from flooding or landslides, and loss of life. It is currently unclear how these events will change in frequency and intensity as a result of climate change in the coming century. While climate model global mean precipitation match observations reasonably well in historical runs, precipitation frequency and intensity is generally poorly represented at local scales; however, synoptic-scale features are more realistically simulated by climate models, and AR events can be identified by extremely high values of integrated water vapor flux at points near the West Coast. There have been many recent studies indicating changes in synoptic-scale features under climate change that could have meaningful impacts on the frequency and intensity of ARs. In this study, a suite of CMIP5 models are used to analyze predicted changes in frequency and intensity of AR events impacting the West Coast from the contemporary period (1970-1999) to the end of this century (2070-2099). Generally, integrated water vapor is predicted to increase in these models (both the mean and extremes) while low-level wind decreases and upper-level wind increases. This study aims to determine the influence of these changes on precipitation intensity in AR events in future climate simulations.
Urbanism, climate change and health: systems approaches to governance.
Capon, Anthony G; Synnott, Emma S; Holliday, Sue
2009-01-01
Effective action on climate change health impacts and vulnerability will require systems approaches and integrated policy and planning responses from a range of government agencies. Similar responses are needed to address other complex problems, such as the obesity epidemic. Local government, with its focus on the governance of place, will have a key role in responding to these convergent agendas. Industry can also be part of the solution - indeed it must be, because it has a lead role in relevant sectors. Understanding the co-benefits for health of climate mitigation actions will strengthen the case for early action. There is a need for improved decision support tools to inform urban governance. These tools should be based on a systems approach and should incorporate a spatial perspective.
Recent improvement and projected worsening of weather in the United States.
Egan, Patrick J; Mullin, Megan
2016-04-21
As climate change unfolds, weather systems in the United States have been shifting in patterns that vary across regions and seasons. Climate science research typically assesses these changes by examining individual weather indicators, such as temperature or precipitation, in isolation, and averaging their values across the spatial surface. As a result, little is known about population exposure to changes in weather and how people experience and evaluate these changes considered together. Here we show that in the United States from 1974 to 2013, the weather conditions experienced by the vast majority of the population improved. Using previous research on how weather affects local population growth to develop an index of people’s weather preferences, we find that 80% of Americans live in counties that are experiencing more pleasant weather than they did four decades ago. Virtually all Americans are now experiencing the much milder winters that they typically prefer, and these mild winters have not been offset by markedly more uncomfortable summers or other negative changes. Climate change models predict that this trend is temporary, however, because US summers will eventually warm more than winters. Under a scenario in which greenhouse gas emissions proceed at an unabated rate (Representative Concentration Pathway 8.5), we estimate that 88% of the US public will experience weather at the end of the century that is less preferable than weather in the recent past. Our results have implications for the public’s understanding of the climate change problem, which is shaped in part by experiences with local weather. Whereas weather patterns in recent decades have served as a poor source of motivation for Americans to demand a policy response to climate change, public concern may rise once people’s everyday experiences of climate change effects start to become less pleasant.
NASA Astrophysics Data System (ADS)
North, L. A.; Polk, J.; Strenecky, B.
2014-12-01
The implications of the climate change phenomenon are far-reaching, and will impact every person on Earth. These problems will be complex, and will require leaders well-versed in interdisciplinary learning and international understanding. To employ a multi-disciplinary approach to studying the impact climate change is having in the world in which we live, a team of 57 Western Kentucky University (WKU) faculty, staff, and students participated in a study abroad program to seven ports in the North Sea and North Atlantic, including three ports in Iceland, onboard the Semester at Sea ship, MV Explorer. This program combined interdisciplinary learning, service learning, and international understanding toward the goal of preparing the leaders of tomorrow with the skills to address climate change challenges. Together, the group learned how climate change affects the world from varied academic perspectives, and how more often than not these perspectives are closely interrelated. Courses taught during the experience related to climate change science and communication, economics, future trends, and K-12 education. Each student also participated in a The $100 Solution™ service-learning course. While in port, each class engaged in a discipline-specific activities related to the climate change topic, while at sea students participated in class lectures, engaged in shipboard lectures by international experts in their respective fields, and participated in conversations with lifelong learners onboard the ship. A culminating point of the study abroad experience was a presentation by the WKU students to over 100 persons from the University of Akureyri in Akureyri, Iceland, representatives of neighboring Icelandic communities, environmental agencies, and tourism bureaus about what they had learned about climate change during their travels. By forging this relationship, students were able to share their knowledge, which in turn gave them a deeper understanding of the issues they were learning throughout the voyage.
Impact of climate change on water resources in South Sikkim, India
NASA Astrophysics Data System (ADS)
Vishwakarma, C. A.; Pant, M.; Asthana, H.; Singh, P.; Rena, V.; Mukherjee, S.
2016-12-01
The Intergovernmental Panel on Climate Change (IPCC) estimates that the global mean temperature has increased by 0.6 ± 0.2°C since 1861 and predicts an increase of 2 to 4° C over the next 100 years. The direct effect of climate change on groundwater resources depends on the variation in the volume and distribution of groundwater and its recharge. Ingty and Bawa (2012) have summarized the detailed observation of climate change and its impact on biodiversity and natural resources in the Lachen valley, Sikkim using weather-based indicator of climate change like lesser snowfall, shifts in seasonal timing, uneven rainfall, accelerated glacial melt, and drying of water sources. South Sikkim is the most drought-prone area of the state and this is worst hit district by climate change. In Sikkim, more than three-fourths people feel that the water resources are drying up and out of them 60.2% believe that there is less snow at present time rather than the past. The subsurface aquifers are mainly recharged by precipitation or through the interaction of surface water bodies like lakes, glaciers, streams and rivers. But due to the effect of climate change the rate of precipitation and snow cover melting, the water scarcity problem had started. According to Indian Meteorological Department (Namthang AWS, South Sikkim), the annual precipitation has decreased from 2533 mm to 1503 mm. Spring is the main source of water in South Sikkim and most of the spring have become seasonal or dried. The average spring discharge data in the year 2000 was 100.18 l/m and after ten years it decreased by 26.12 l/m. With the decrease in precipitation and spring discharge, the agriculture productivity also get affected and it affect the socio-economic condition of South district. This study looks into various factors impacting the discharge at springs highlighting the effect of climate change induced precipitation pattern and land cover dynamics using SLURP (Semi-distributed Land Use based Runoff Processes).
2018-01-01
Toxic planktonic cyanobacterial blooms are a pressing environmental and human health problem. Blooms are expanding globally and threatening sustainability of our aquatic resources. Anthropogenic nutrient enrichment and hydrological modifications, including water diversions and reservoir construction, are major drivers of bloom expansion. Climatic change, i.e., warming, more extreme rainfall events, and droughts, act synergistically with human drivers to exacerbate the problem. Bloom mitigation steps, which are the focus of this review, must consider these dynamic interactive factors in order to be successful in the short- and long-term. Furthermore, these steps must be applicable along the freshwater to marine continuum connecting streams, lakes, rivers, estuarine, and coastal waters. There is an array of physical, chemical, and biological approaches, including flushing, mixing, dredging, application of algaecides, precipitating phosphorus, and selective grazing, that may arrest and reduce bloom intensities in the short-term. However, to ensure long term, sustainable success, targeting reductions of both nitrogen and phosphorus inputs should accompany these approaches along the continuum. Lastly, these strategies should accommodate climatic variability and change, which will likely modulate and alter nutrient-bloom thresholds. PMID:29419777
Kjellstrom, Tord; McMichael, Anthony J.
2013-01-01
Background The observational evidence of the impacts of climate conditions on human health is accumulating. A variety of direct, indirect, and systemically mediated health effects have been identified. Excessive daily heat exposures create direct effects, such as heat stroke (and possibly death), reduce work productivity, and interfere with daily household activities. Extreme weather events, including storms, floods, and droughts, create direct injury risks and follow-on outbreaks of infectious diseases, lack of nutrition, and mental stress. Climate change will increase these direct health effects. Indirect effects include malnutrition and under-nutrition due to failing local agriculture, spread of vector-borne diseases and other infectious diseases, and mental health and other problems caused by forced migration from affected homes and workplaces. Examples of systemically mediated impacts on population health include famine, conflicts, and the consequences of large-scale adverse economic effects due to reduced human and environmental productivity. This article highlights links between climate change and non-communicable health problems, a major concern for global health beyond 2015. Discussion Detailed regional analysis of climate conditions clearly shows increasing temperatures in many parts of the world. Climate modelling indicates that by the year 2100 the global average temperature may have increased by 3-4°C unless fundamental reductions in current global trends for greenhouse gas emissions are achieved. Given other unforeseeable environmental, social, demographic, and geopolitical changes that may occur in a plus-4-degree world, that scenario may comprise a largely uninhabitable world for millions of people and great social and military tensions. Conclusion It is imperative that we identify actions and strategies that are effective in reducing these increasingly likely threats to health and well-being. The fundamental preventive strategy is, of course, climate change mitigation by significantly reducing global greenhouse gas emissions, especially long-acting carbon dioxide (CO2), and by increasing the uptake of CO2 at the earth's surface. This involves urgent shifts in energy production from fossil fuels to renewable energy sources, energy conservation in building design and urban planning, and reduced waste of energy for transport, building heating/cooling, and agriculture. It would also involve shifts in agricultural production and food systems to reduce energy and water use particularly in meat production. There is also potential for prevention via mitigation, adaptation, or resilience building actions, but for the large populations in tropical countries, mitigation of climate change is required to achieve health protection solutions that will last. PMID:23561024
Kjellstrom, Tord; McMichael, Anthony J
2013-04-03
The observational evidence of the impacts of climate conditions on human health is accumulating. A variety of direct, indirect, and systemically mediated health effects have been identified. Excessive daily heat exposures create direct effects, such as heat stroke (and possibly death), reduce work productivity, and interfere with daily household activities. Extreme weather events, including storms, floods, and droughts, create direct injury risks and follow-on outbreaks of infectious diseases, lack of nutrition, and mental stress. Climate change will increase these direct health effects. Indirect effects include malnutrition and under-nutrition due to failing local agriculture, spread of vector-borne diseases and other infectious diseases, and mental health and other problems caused by forced migration from affected homes and workplaces. Examples of systemically mediated impacts on population health include famine, conflicts, and the consequences of large-scale adverse economic effects due to reduced human and environmental productivity. This article highlights links between climate change and non-communicable health problems, a major concern for global health beyond 2015. Detailed regional analysis of climate conditions clearly shows increasing temperatures in many parts of the world. Climate modelling indicates that by the year 2100 the global average temperature may have increased by 34°C unless fundamental reductions in current global trends for greenhouse gas emissions are achieved. Given other unforeseeable environmental, social, demographic, and geopolitical changes that may occur in a plus-4-degree world, that scenario may comprise a largely uninhabitable world for millions of people and great social and military tensions. It is imperative that we identify actions and strategies that are effective in reducing these increasingly likely threats to health and well-being. The fundamental preventive strategy is, of course, climate change mitigation by significantly reducing global greenhouse gas emissions, especially long-acting carbon dioxide (CO(2)), and by increasing the uptake of CO(2) at the earth's surface. This involves urgent shifts in energy production from fossil fuels to renewable energy sources, energy conservation in building design and urban planning, and reduced waste of energy for transport, building heating/cooling, and agriculture. It would also involve shifts in agricultural production and food systems to reduce energy and water use particularly in meat production. There is also potential for prevention via mitigation, adaptation, or resilience building actions, but for the large populations in tropical countries, mitigation of climate change is required to achieve health protection solutions that will last.
NASA Astrophysics Data System (ADS)
Samuels, Rana
Water issues are a source of tension between Israelis and Palestinians. In the and region of the Middle East, water supply is not just scarce but also uncertain: It is not uncommon for annual rainfall to be as little as 60% or as much as 125% of the multiannual average. This combination of scarcity and uncertainty exacerbates the already strained economy and the already tensed political situation. The uncertainty could be alleviated if it were possible to better forecast water availability. Such forecasting is key not only for water planning and management, but also for economic policy and for political decision making. Water forecasts at multiple time scales are necessary for crop choice, aquifer operation and investments in desalination infrastructure. The unequivocal warming of the climate system adds another level of uncertainty as global and regional water cycles change. This makes the prediction of water availability an even greater challenge. Understanding the impact of climate change on precipitation can provide the information necessary for appropriate risk assessment and water planning. Unfortunately, current global circulation models (GCMs) are only able to predict long term climatic evolution at large scales but not local rainfall. The statistics of local precipitation are traditionally predicted using historical rainfall data. Obviously these data cannot anticipate changes that result from climate change. It is therefore clear that integration of the global information about climate evolution and local historical data is needed to provide the much needed predictions of regional water availability. Currently, there is no theoretical or computational framework that enables such integration for this region. In this dissertation both a conceptual framework and a computational platform for such integration are introduced. In particular, suite of models that link forecasts of climatic evolution under different CO2 emissions scenarios to observed rainfall data from local stations are developed. These are used to develop scenarios for local rainfall statistics such as average annual amounts, dry spells, wet spells and drought persistence. This suite of models can provide information that is not attainable from existing tools in terms of its spatial and temporal resolution. Specifically, the goal is to project the impact of established global climate change scenarios in this region and, how much of the change might be mitigated by proposed CO2 reduction strategies. A major problem in this enterprise is to find the best way to integrate global climatic information with local rainfall data. From the climatologic perspective the problem is to find the right teleconnections. That is, non local or global measurable phenomena that influence local rainfall in a way that could be characterized and quantified statistically. From the computational perspective the challenge is to model these subtle, nonlinear relationships and to downscale the global effects into local predictions. Climate simulations to the year 2100 under selected climate change scenarios are used. Overall, the suite of models developed and presented can be applied to answer most questions from the different water users and planners. Farmers and the irrigation community can ask "What is the probability of rain over the next week?" Policy makers can ask "How much desalination capacity will I need to meet demand 90% of the time in the climate change scenario over the next 20 years?" Aquifer managers can ask "What is the expected recharge rate of the aquifers over the next decade?" The use of climate driven answers to these questions will help the region better prepare and adapt to future shifts in water resources and availability.
Climate Change and Agriculture in the U.S.: Effects and Adaptation (Invited)
NASA Astrophysics Data System (ADS)
Walsh, M. K.; Rippey, B.; Walthall, C. L.; Hatfield, J.; Backlund, P. W.; Lengnick, L.; Marshall, E.
2013-12-01
Agriculture in the United States has followed a path of continual adaptation to a wide range of factors throughout its history. However, observational evidence, supported by an understanding of the physical climate system, shows that human-induced climate change is underway in the U.S. and even now causing changes for which there is no historical reference for producers. Temperatures have increased and precipitation patterns have changed; the incidence, frequency, and extent of pest infestations have been altered, as well as the natural resource base (water, air, and soils) upon which production depends. Each factor challenges agricultural management as atmospheric concentrations of greenhouse gases rise. These trends are likely to continue over the next century. Importantly, a gap exists between U.S. agricultural producers and managers' needs related to climate-driven problems and the information that research currently offers them. In the past, agricultural research into climate change effects has largely focused on mean values of precipitation and temperature. Today's management requirements, however, often demand immediate response on shorter time scales to address abrupt, often novel needs. Further complicating this reality, future decisions will likely require even greater emphasis on managing under increasing levels of uncertainty, and planning for and adjusting to the extremes. Research is moving to better address these emerging issues for the relevant timescales and parameters in order to allow the formulation of improved and resilient management strategies that apply to a future in which past experience has become less applicable. A climate-ready U.S. agricultural system requires easy access to useable climate knowledge and technical resources, improved climate risk management strategies, new processes to support effective adaptive actions, and the development of sustainable production systems resilient to climate effects. Mainstreaming climate knowledge improves adaptive capacity of the agricultural system by ensuring that land managers, technical advisors, researchers, private businesspeople, government program managers, and policymakers are aware of current and projected climate impacts and can access best management practices to reduce risks and capture opportunities.
NASA Astrophysics Data System (ADS)
Bostrom, A.; Lashof, D.
2004-12-01
For almost two decades both national polls and in-depth studies of global warming perceptions have shown that people commonly conflate weather and global climate change. Not only are current weather events such as anecdotal heat waves, droughts or cold spells treated as evidence for or against global warming, but weather changes such as warmer weather and increased storm intensity and frequency are the consequences most likely to come to mind. Distinguishing weather from climate remains a challenge for many. This weather 'framing' of global warming may inhibit behavioral and policy change in several ways. Weather is understood as natural, on an immense scale that makes controlling it difficult to conceive. Further, these attributes contribute to perceptions that global warming, like weather, is uncontrollable. This talk presents an analysis of data from public opinion polls, focus groups, and cognitive studies regarding people's mental models of and 'frames' for global warming and climate change, and the role weather plays in these. This research suggests that priming people with a model of global warming as being caused by a "thickening blanket of carbon dioxide" that "traps heat" in the atmosphere solves some of these communications problems and makes it more likely that people will support policies to address global warming.
NASA Astrophysics Data System (ADS)
Mujumdar, Pradeep P.
2014-05-01
Climate change results in regional hydrologic change. The three prominent signals of global climate change, viz., increase in global average temperatures, rise in sea levels and change in precipitation patterns convert into signals of regional hydrologic change in terms of modifications in water availability, evaporative water demand, hydrologic extremes of floods and droughts, water quality, salinity intrusion in coastal aquifers, groundwater recharge and other related phenomena. A major research focus in hydrologic sciences in recent years has been assessment of impacts of climate change at regional scales. An important research issue addressed in this context deals with responses of water fluxes on a catchment scale to the global climatic change. A commonly adopted methodology for assessing the regional hydrologic impacts of climate change is to use the climate projections provided by the General Circulation Models (GCMs) for specified emission scenarios in conjunction with the process-based hydrologic models to generate the corresponding hydrologic projections. The scaling problem arising because of the large spatial scales at which the GCMs operate compared to those required in distributed hydrologic models, and their inability to satisfactorily simulate the variables of interest to hydrology are addressed by downscaling the GCM simulations to hydrologic scales. Projections obtained with this procedure are burdened with a large uncertainty introduced by the choice of GCMs and emission scenarios, small samples of historical data against which the models are calibrated, downscaling methods used and other sources. Development of methodologies to quantify and reduce such uncertainties is a current area of research in hydrology. In this presentation, an overview of recent research carried out by the author's group on assessment of hydrologic impacts of climate change addressing scale issues and quantification of uncertainties is provided. Methodologies developed with conditional random fields, Dempster-Shafer theory, possibility theory, imprecise probabilities and non-stationary extreme value theory are discussed. Specific applications on uncertainty quantification in impacts on streamflows, evaporative water demands, river water quality and urban flooding are presented. A brief discussion on detection and attribution of hydrologic change at river basin scales, contribution of landuse change and likely alterations in return levels of hydrologic extremes is also provided.
Exploring Climate Science with WV Educators: A Regional Model for Teacher Professional Development
NASA Astrophysics Data System (ADS)
Ruberg, L. F.; Calinger, M.
2014-12-01
The National Research Council Framework for K-12 Science Literacy reports that children reared in rural agricultural communities, who experience regular interactions with plants and animals, develop more sophisticated understanding of ecology and biological systems than do urban and suburban children of the same age. West Virginia (WV) is a rural state. The majority of its residents live in communities of fewer than 2,500 people. Based on the features of the population being served and their unique strengths, this presentation focuses on a regional model for teacher professional development that addresses agricultural and energy vulnerabilities and adaptations to climate change in WV. The professional development model outlined shows how to guide teachers to use a problem-based learning approach to introduce climate data and analysis techniques within a scenario context that is locally meaningful. This strategy engages student interest by focusing on regional and community concerns. Climate science standards are emphasized in the Next Generation Science Standards, but WV has not provided its teachers with appropriate instructional resources to meet those standards. The authors addressed this need by offering a series of climate science education workshops followed by online webinars offered to WV science educators free of charge with funding by the West Virginia Space Grant Consortium. The authors report on findings from this series of professional development workshops conducted in partnership with the West Virginia Science Teachers Association. The goal was to enhance grades 5-12 teaching and learning about climate change through problem-based learning. Prior to offering the climate workshops, all WV science educators were asked to complete a short questionnaire. As Figure 1 shows, over 40% of the teacher respondents reported being confident in teaching climate science content. For comparison post workshops surveys measure teacher confidence in climate science instruction after the professional development sessions. In summary, this report describes how this professional approach can serve as a regional model to address the need for climate science literacy throughout Appalachia.
GAIA - A New Approach To Decision Making on Climate Disruption Issues
NASA Astrophysics Data System (ADS)
Paxton, L. J.; Weiss, M.; Schaefer, R. K.; Swartz, W. H.; Nix, M.; Strong, S. B.; Fountain, G. H.; Babin, S. M.; Pikas, C. K.; Parker, C. L.; Global Assimilation of InformationAction
2011-12-01
GAIA - the Global Assimilation of Information for Action program - provides a broadly extensible framework for enabling the development of a deeper understanding of the issues associated with climate disruption. The key notion of GAIA is that the global climate problem is so complex that a "system engineering" approach is needed in order to make it understandable. The key tenet of system engineering is to focus on requirements and to develop a cost-effective process for satisfying those requirements. To demonstrate this approach we focused first on the impact of climate disruption on public health. GAIA is described in some detail on our website (http://gaia.jhuapl.edu). Climate disruption is not just a scientific problem; one of the key issues that our community has is that of translating scientific results into knowledge that can be used to make informed decisions. In order to support decision makers we have to understand their issues and how to communicate with them. In this talk, we describe how we have built a community of interest that combines subject matter experts from diverse communities (public health, climate change, government, public policy, industry, etc) with policy makers and representatives from industry to develop, on a "level playing field", an understanding of each other's points of view and issues. The first application of this technology was the development of a workshop on Climate, Climate Change and Public Health held April 12-14, 2011. This paper describes our approach to going beyond the workshop environment to continue to engage the decision maker's community in a variety of ways that translate abstract scientific data into actionable information. Key ideas we will discuss include the development of social media, simulations of global/national/local environments affected by climate disruption, and visualizations of the monetary and health impacts of choosing not to address mitigation or adaptation to climate disruption.
climwin: An R Toolbox for Climate Window Analysis.
Bailey, Liam D; van de Pol, Martijn
2016-01-01
When studying the impacts of climate change, there is a tendency to select climate data from a small set of arbitrary time periods or climate windows (e.g., spring temperature). However, these arbitrary windows may not encompass the strongest periods of climatic sensitivity and may lead to erroneous biological interpretations. Therefore, there is a need to consider a wider range of climate windows to better predict the impacts of future climate change. We introduce the R package climwin that provides a number of methods to test the effect of different climate windows on a chosen response variable and compare these windows to identify potential climate signals. climwin extracts the relevant data for each possible climate window and uses this data to fit a statistical model, the structure of which is chosen by the user. Models are then compared using an information criteria approach. This allows users to determine how well each window explains variation in the response variable and compare model support between windows. climwin also contains methods to detect type I and II errors, which are often a problem with this type of exploratory analysis. This article presents the statistical framework and technical details behind the climwin package and demonstrates the applicability of the method with a number of worked examples.
Using management to address vegetation stress related to land-use and climate change
Middleton, Beth A.; Boudell, Jere; Fisichelli, Nicholas
2017-01-01
While disturbances such as fire, cutting, and grazing can be an important part of the conservation of natural lands, some adjustments to management designed to mimic natural disturbance may be necessary with ongoing and projected climate change. Stressed vegetation that is incapable of regeneration will be difficult to maintain if adults are experiencing mortality, and/or if their early life-history stages depend on disturbance. A variety of active management strategies employing disturbance are suggested, including resisting, accommodating, or directing vegetation change by manipulating management intensity and frequency. Particularly if land-use change is the main cause of vegetation stress, amelioration of these problems using management may help vegetation resist change (e.g. strategic timing of water release if a water control structure is available). Managers could direct succession by using management to push vegetation toward a new state. Despite the historical effects of management, some vegetation change will not be controllable as climates shift, and managers may have to accept some of these changes. Nevertheless, proactive measures may help managers achieve important conservation goals in the future.
Paper 8542 - Climate Change across Campus--ALL of Campus
NASA Astrophysics Data System (ADS)
Campbell, S.; Calderazzo, J.
2014-12-01
Climate change is an "all-hands-on-deck" challenge: it will affect everyone, everyone can find something to offer, and we will need people from all walks of life to face it adequately. Thus a curriculum on this problem needs to be thoroughly multidisciplinary: not just for students in the Earth, natural, and social sciences, though of course they are important, but for all interested students. It should create well-informed generalists who grasp the overall picture and the range of available expertise and can ask intelligently for help from specialists. This presentation will offer some relevant lessons learned through the work of Changing Climates @ Colorado State, a multidisciplinary climate change education and outreach initiative. A climate change curriculum needs at least one truly multidisciplinary course, and such a course needs many instructors, most practically in the form of visiting speakers, who need to be well coached in advance. It needs a curious and flexible supervising instructor and readings that students can actually understand—and that will engage their minds, imaginations, even feelings. These readings need to cover the globe but should probably focus on North America, since local information is the most effective, and their writers need to be diverse in gender, race, and ethnicity. Speakers and readings need to provide both a realistic picture and authentic grounds for optimism; to leave students feeling not hopeless but energized, they must offer a wide choice of actions personal to professional, daily to lifelong. Throughout such a course and curriculum, simplification and translation are critical. Because disciplines differ in their questions, their language, the evidence they consider, their methods, and the conclusions they value, experts do not readily understand each other. Very often, a discipline's most basic elements are the most important to communicate: how greenhouse gases operate and why scientists know we have a climate problem; what is meant by "discounting the future" or "fixing" carbon or "fairness" or "vulnerability" or "cultural work"; how we are very often moved by values and emotions rather than pure reason.
Mix, A.C.; Morey, A.E.; Pisias, N.G.; Hostetler, S.W.
1999-01-01
The sensitivity of the tropics to climate change, particularly the amplitude of glacial-to-interglacial changes in sea surface temperature (SST), is one of the great controversies in paleoclimatology. Here we reassess faunal estimates of ice age SSTs, focusing on the problem of no-analog planktonic foraminiferal assemblages in the equatorial oceans that confounds both classical transfer function and modern analog methods. A new calibration strategy developed here, which uses past variability of species to define robust faunal assemblages, solves the no-analog problem and reveals ice age cooling of 5??to 6??C in the equatorial current systems of the Atlantic and eastern Pacific Oceans. Classical transfer functions underestimated temperature changes in some areas of the tropical oceans because core-top assemblages misrepresented the ice age faunal assemblages. Our finding is consistent with some geochemical estimates and model predictions of greater ice age cooling in the tropics than was inferred by Climate: Long-Range Investigation, Mapping, and Prediction (CLIMAP) [1981] and thus may help to resolve a long-standing controversy. Our new foraminiferal transfer function suggests that such cooling was limited to the equatorial current systems, however, and supports CLIMAP's inference of stability of the subtropical gyre centers.
Overwintering of herbaceous plants in a changing climate. Still more questions than answers.
Rapacz, Marcin; Ergon, Ashild; Höglind, Mats; Jørgensen, Marit; Jurczyk, Barbara; Ostrem, Liv; Rognli, Odd Arne; Tronsmo, Anne Marte
2014-08-01
The increase in surface temperature of the Earth indicates a lower risk of exposure for temperate grassland and crop to extremely low temperatures. However, the risk of low winter survival rate, especially in higher latitudes may not be smaller, due to complex interactions among different environmental factors. For example, the frequency, degree and length of extreme winter warming events, leading to snowmelt during winter increased, affecting the risks of anoxia, ice encasement and freezing of plants not covered with snow. Future climate projections suggest that cold acclimation will occur later in autumn, under shorter photoperiod and lower light intensity, which may affect the energy partitioning between the elongation growth, accumulation of organic reserves and cold acclimation. Rising CO2 levels may also disturb the cold acclimation process. Predicting problems with winter pathogens is also very complex, because climate change may greatly influence the pathogen population and because the plant resistance to these pathogens is increased by cold acclimation. All these factors, often with contradictory effects on winter survival, make plant overwintering viability under future climates an open question. Close cooperation between climatologists, ecologists, plant physiologists, geneticists and plant breeders is strongly required to predict and prevent possible problems. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Impacts of Climate Change on Public Health in India: Future Research Directions
Bush, Kathleen F.; Luber, George; Kotha, S. Rani; Dhaliwal, R.S.; Kapil, Vikas; Pascual, Mercedes; Brown, Daniel G.; Frumkin, Howard; Dhiman, R.C.; Hess, Jeremy; Wilson, Mark L.; Balakrishnan, Kalpana; Eisenberg, Joseph; Kaur, Tanvir; Rood, Richard; Batterman, Stuart; Joseph, Aley; Gronlund, Carina J.; Agrawal, Arun; Hu, Howard
2011-01-01
Background Climate change and associated increases in climate variability will likely further exacerbate global health disparities. More research is needed, particularly in developing countries, to accurately predict the anticipated impacts and inform effective interventions. Objectives Building on the information presented at the 2009 Joint Indo–U.S. Workshop on Climate Change and Health in Goa, India, we reviewed relevant literature and data, addressed gaps in knowledge, and identified priorities and strategies for future research in India. Discussion The scope of the problem in India is enormous, based on the potential for climate change and variability to exacerbate endemic malaria, dengue, yellow fever, cholera, and chikungunya, as well as chronic diseases, particularly among the millions of people who already experience poor sanitation, pollution, malnutrition, and a shortage of drinking water. Ongoing efforts to study these risks were discussed but remain scant. A universal theme of the recommendations developed was the importance of improving the surveillance, monitoring, and integration of meteorological, environmental, geospatial, and health data while working in parallel to implement adaptation strategies. Conclusions It will be critical for India to invest in improvements in information infrastructure that are innovative and that promote interdisciplinary collaborations while embarking on adaptation strategies. This will require unprecedented levels of collaboration across diverse institutions in India and abroad. The data can be used in research on the likely impacts of climate change on health that reflect India’s diverse climates and populations. Local human and technical capacities for risk communication and promoting adaptive behavior must also be enhanced. PMID:21273162
The toxicology of climate change: environmental contaminants in a warming world.
Noyes, Pamela D; McElwee, Matthew K; Miller, Hilary D; Clark, Bryan W; Van Tiem, Lindsey A; Walcott, Kia C; Erwin, Kyle N; Levin, Edward D
2009-08-01
Climate change induced by anthropogenic warming of the earth's atmosphere is a daunting problem. This review examines one of the consequences of climate change that has only recently attracted attention: namely, the effects of climate change on the environmental distribution and toxicity of chemical pollutants. A review was undertaken of the scientific literature (original research articles, reviews, government and intergovernmental reports) focusing on the interactions of toxicants with the environmental parameters, temperature, precipitation, and salinity, as altered by climate change. Three broad classes of chemical toxicants of global significance were the focus: air pollutants, persistent organic pollutants (POPs), including some organochlorine pesticides, and other classes of pesticides. Generally, increases in temperature will enhance the toxicity of contaminants and increase concentrations of tropospheric ozone regionally, but will also likely increase rates of chemical degradation. While further research is needed, climate change coupled with air pollutant exposures may have potentially serious adverse consequences for human health in urban and polluted regions. Climate change producing alterations in: food webs, lipid dynamics, ice and snow melt, and organic carbon cycling could result in increased POP levels in water, soil, and biota. There is also compelling evidence that increasing temperatures could be deleterious to pollutant-exposed wildlife. For example, elevated water temperatures may alter the biotransformation of contaminants to more bioactive metabolites and impair homeostasis. The complex interactions between climate change and pollutants may be particularly problematic for species living at the edge of their physiological tolerance range where acclimation capacity may be limited. In addition to temperature increases, regional precipitation patterns are projected to be altered with climate change. Regions subject to decreases in precipitation may experience enhanced volatilization of POPs and pesticides to the atmosphere. Reduced precipitation will also increase air pollution in urbanized regions resulting in negative health effects, which may be exacerbated by temperature increases. Regions subject to increased precipitation will have lower levels of air pollution, but will likely experience enhanced surface deposition of airborne POPs and increased run-off of pesticides. Moreover, increases in the intensity and frequency of storm events linked to climate change could lead to more severe episodes of chemical contamination of water bodies and surrounding watersheds. Changes in salinity may affect aquatic organisms as an independent stressor as well as by altering the bioavailability and in some instances increasing the toxicity of chemicals. A paramount issue will be to identify species and populations especially vulnerable to climate-pollutant interactions, in the context of the many other physical, chemical, and biological stressors that will be altered with climate change. Moreover, it will be important to predict tipping points that might trigger or accelerate synergistic interactions between climate change and contaminant exposures.
Modelling recent and future climatic suitability for fasciolosis in Europe.
Caminade, Cyril; van Dijk, Jan; Baylis, Matthew; Williams, Diana
2015-03-19
Fasciola hepatica is a parasitic worm responsible for fasciolosis in grazed ruminants in Europe. The free-living stages of this parasite are sensitive to temperature and soil moisture, as are the intermediate snail hosts the parasite depends on for its life-cycle. We used a climate-driven disease model in order to assess the impact of recent and potential future climate changes on the incidence of fasciolosis and to estimate the related uncertainties at the scale of the European landmass. The current climate appears to be highly suitable for fasciolosis throughout the European Union with the exception of some parts of the Mediterranean region. Simulated climatic suitability for fasciolosis significantly increased during the 2000s in central and northwestern Europe, which is consistent with an observed increased in ruminant infections. The simulation showed that recent trends are likely to continue in the future with the estimated pattern of climate change for northern Europe, possibly extending the season suitable for development of the parasite in the environment by up to four months. For southern Europe, the simulated burden of disease may be lower, but the projected climate change will increase the risk during the winter months, since the simulated changes in temperature and moisture support the development of the free-living and intra-molluscan stages between November and March. In the event of predicted climate change, F. hepatica will present a serious risk to the health, welfare and productivity of all ruminant livestock. Improved, bespoke control programmes, both at farm and region levels, will then become imperative if problems, such as resistance of the parasite associated with increased drug use, are to be mitigated.
Kjellstrom, Tord
2016-03-01
One feature of climate change is the increasing heat exposure in many workplaces where efficient cooling systems cannot be applied. Excessive heat exposure is a particular problem for working people because of the internal heat production when muscle work is carried out. The physiological basis for severe heat stroke, other clinical effects, and heat exhaustion is well known. One feature of this health effect of excessive workplace heat exposure is reduced work capacity, and new research has started to quantify this effect in the context of climate change. Current climate conditions in tropical and subtropical parts of the world are already so hot during the hot seasons that occupational health effects occur and work capacity for many working people is affected. The Hothaps-Soft database and software andClimateCHIP.orgwebsite make it possible to rapidly produce estimates of local heat conditions and trends. The results can be mapped to depict the spatial distribution of workplace heat stress. In South-East Asia as much as 15% to 20% of annual work hours may already be lost in heat-exposed jobs, and this may double by 2050 as global climate change progresses. By combining heat exposure data and estimates of the economic consequences, the vulnerability of many low- and middle-income countries is evident. The annual cost of reduced labor productivity at country level already in 2030 can be several percent of GDP, which means billions of US dollars even for medium-size countries. The results provide new arguments for effective climate change adaptation and mitigation policies and preventive actions in all countries. © 2015 APJPH.
Tonnang, Henri E Z; Kangalawe, Richard Y M; Yanda, Pius Z
2010-04-23
Malaria is rampant in Africa and causes untold mortality and morbidity. Vector-borne diseases are climate sensitive and this has raised considerable concern over the implications of climate change on future disease risk. The problem of malaria vectors (Anopheles mosquitoes) shifting from their traditional locations to invade new zones is an important concern. The vision of this study was to exploit the sets of information previously generated by entomologists, e.g. on geographical range of vectors and malaria distribution, to build models that will enable prediction and mapping the potential redistribution of Anopheles mosquitoes in Africa. The development of the modelling tool was carried out through calibration of CLIMEX parameters. The model helped estimate the potential geographical distribution and seasonal abundance of the species in relation to climatic factors. These included temperature, rainfall and relative humidity, which characterized the living environment for Anopheles mosquitoes. The same parameters were used in determining the ecoclimatic index (EI). The EI values were exported to a GIS package for special analysis and proper mapping of the potential future distribution of Anopheles gambiae and Anophles arabiensis within the African continent under three climate change scenarios. These results have shown that shifts in these species boundaries southward and eastward of Africa may occur rather than jumps into quite different climatic environments. In the absence of adequate control, these predictions are crucial in understanding the possible future geographical range of the vectors and the disease, which could facilitate planning for various adaptation options. Thus, the outputs from this study will be helpful at various levels of decision making, for example, in setting up of an early warning and sustainable strategies for climate change and climate change adaptation for malaria vectors control programmes in Africa.
[The climate debate: the facts].
van den Broeke, Michiel R
2009-01-01
The first report by the Intergovernmental Panel on Climate Change (IPCC) appeared almost 20 years ago. Environmental contamination has a negative effect on the environment in which we live. However, the public at large is confused about the ins and outs of climate change. Managers, politicians, various kinds of advisors, scientists, so-called experts, sceptics and journalists have all taken it upon themselves to lead the debate. Whose task is it to ensure a sound discussion? Surely it is the IPCC's task. However, most politicians and many journalists, and even many scientists, do not take the trouble to read the entire IPCC report or parts of it. As a consequence, much nonsense is published and broadcast. An effective procedure to deal with the climate problem starts with a fair discussion of the scientific evidence. My advice is: just read the free IPCC report: http://www.ipcc.ch/ and click on 'WG I The Physical Science Basis'.
NASA Technical Reports Server (NTRS)
Wobus, Cameron; Reynolds, Lara; Jones, Russell; Horton, Radley; Smith, Joel; Fries, J. Stephen; Tryby, Michael; Spero, Tanya; Nolte, Chris
2015-01-01
Many of the storms that generate damaging floods are caused by locally intense, sub-daily precipitation, yet the spatial and temporal resolution of the most widely available climate model outputs are both too coarse to simulate these events. Thus there is often a disconnect between the nature of the events that cause damaging floods and the models used to project how climate change might influence their magnitude. This could be a particular problem when developing scenarios to inform future storm water management options under future climate scenarios. In this study we sought to close this gap, using sub-daily outputs from the Weather Research and Forecasting model (WRF) from each of the nine climate regions in the United States. Specifically, we asked 1) whether WRF outputs projected consistent patterns of change for sub-daily and daily precipitation extremes; and 2) whether this dynamically downscaled model projected different magnitudes of change for 3-hourly vs 24-hourly extreme events. We extracted annual maximum values for 3-hour through 24-hour precipitation totals from an 11-year time series of hindcast (1995-2005) and mid-century (2045-2055) climate, and calculated the direction and magnitude of change for 3-hour and 24-hour extreme events over this timeframe. The model results project that the magnitude of both 3-hour and 24-hour events will increase over most regions of the United States, but there was no clear or consistent difference in the relative magnitudes of change for sub-daily vs daily events.
NASA Astrophysics Data System (ADS)
Rockström, Johan; Brasseur, Guy; Hoskins, Brian; Lucht, Wolfgang; Schellnhuber, John; Kabat, Pavel; Nakicenovic, Nebojsa; Gong, Peng; Schlosser, Peter; Máñez Costa, Maria; Humble, April; Eyre, Nick; Gleick, Peter; James, Rachel; Lucena, Andre; Masera, Omar; Moench, Marcus; Schaeffer, Roberto; Seitzinger, Sybil; van der Leeuw, Sander; Ward, Bob; Stern, Nicholas; Hurrell, James; Srivastava, Leena; Morgan, Jennifer; Nobre, Carlos; Sokona, Youba; Cremades, Roger; Roth, Ellinor; Liverman, Diana; Arnott, James
2014-12-01
The development of human civilisations has occurred at a time of stable climate. This climate stability is now threatened by human activity. The rising global climate risk occurs at a decisive moment for world development. World nations are currently discussing a global development agenda consequent to the Millennium Development Goals (MDGs), which ends in 2015. It is increasingly possible to envisage a world where absolute poverty is largely eradicated within one generation and where ambitious goals on universal access and equal opportunities for dignified lives are adopted. These grand aspirations for a world population approaching or even exceeding nine billion in 2050 is threatened by substantial global environmental risks and by rising inequality. Research shows that development gains, in both rich and poor nations, can be undermined by social, economic and ecological problems caused by human-induced global environmental change. Climate risks, and associated changes in marine and terrestrial ecosystems that regulate the resilience of the climate system, are at the forefront of these global risks. We, as citizens with a strong engagement in Earth system science and socio-ecological dynamics, share the vision of a more equitable and prosperous future for the world, yet we also see threats to this future from shifts in climate and environmental processes. Without collaborative action now, our shared Earth system may not be able to sustainably support a large proportion of humanity in the decades ahead.
The Impact of Project-Based Climate Change Learning Experiences on Students' Broad Climate Literacy
NASA Astrophysics Data System (ADS)
DeWaters, J.; Powers, S. E.; Dhaniyala, S.
2014-12-01
Evidence-based pedagogical approaches such as project- and inquiry-based techniques have been shown to promote effective learning in science and engineering. The impact of project-based learning experiences on middle school (MS), high school (HS), and undergraduate (UG) students' climate literacy was investigated as part of a NASA Innovations in Climate Education (NICE) project. Project-based modules were developed and taught by MS and HS teachers who participated in climate change education workshops. UG students enrolled in a climate science course completed independent research projects that provided the basis for several of the HS/MS modules. All modules required students to acquire and analyze historical temperature data and future climate predictions, and apply their analysis to the solution of a societal or environmental problem related to our changing climate. Three versions of a quantitative survey were developed and used in a pre-test/post-test research design to help evaluate the project's impact on MS, HS, and UG students' climate literacy, which includes broad climate knowledge as well as affective and behavioral aspects. Content objectives were guided primarily by the 2009 document, Climate Literacy: The Essential Principles of Climate Sciences. All three groups of students made modest but statistically significant cognitive (p<<0.001) and affective (p<0.01) gains; UG students also showed an increase in behavior scores (p=0.001). Results of an ANCOVA showed significant differences in students' cognitive (p<0.001), behavioral (p=0.005) and self-efficacy (p=0.012) outcomes among the 9 participating MS and HS classrooms, where both teacher and module content varied. The presentation will include a description of some key aspects of the project-based curricula developed and used in this research, the development and content of the climate literacy survey, and the interpretation of specific pre/post changes in participating students relative to the content of and approach used in the project-based modules.
NASA Astrophysics Data System (ADS)
Corwin, D. L.; Scudiero, E.
2016-12-01
Changes in climatic patterns have had dramatic influence on agricultural areas worldwide, particularly in irrigated arid-zone agricultural areas subjected to recurring drought, such as California's San Joaquin Valley. Climate change has impacted water availability, which subsequently has impacted soil salinity levels in the root zone, especially on the west side of the San Joaquin Valley (WSJV). Inventorying and monitoring the extent of climate change on soil salinity is crucial to evaluate the extent of the problem, to recognize trends, and to formulate state-wide and field-scale irrigation management strategies that will sustain the agricultural productivity of the WSJV. Over the past 3 decades, Corwin and colleagues at the U.S. Salinity Laboratory have developed proximal sensor (i.e., electrical resistivity and electromagnetic induction) and remote imagery (i.e., MODIS and Landsat 7) methodologies for assessing soil salinity at multiple scales: field (0.5 ha to 3 km2), landscape (3 to 10 km2), and regional (10 to 105 km2) scales. The purpose of this presentation is to provide an overview of these scale-dependent salinity assessment technologies. Case studies for the WSJV are presented to demonstrate at multiple scales the utility of these approaches in assessing soil salinity changes due to management-induced changes and to changes in climate patterns, and in providing site-specific irrigation management information for salinity control. Land resource managers, producers, agriculture consultants, extension specialists, and Natural Resource Conservation Service field staff are the beneficiaries of this information.
Simulated impacts of climate change on phosphorus loading to Lake Michigan
Robertson, Dale M.; Saad, David A.; Christiansen, Daniel E.; Lorenz, David J
2016-01-01
Phosphorus (P) loading to the Great Lakes has caused various types of eutrophication problems. Future climatic changes may modify this loading because climatic models project changes in future meteorological conditions, especially for the key hydrologic driver — precipitation. Therefore, the goal of this study is to project how P loading may change from the range of projected climatic changes. To project the future response in P loading, the HydroSPARROW approach was developed that links results from two spatially explicit models, the SPAtially Referenced Regression on Watershed attributes (SPARROW) transport and fate watershed model and the water-quantity Precipitation Runoff Modeling System (PRMS). PRMS was used to project changes in streamflow throughout the Lake Michigan Basin using downscaled meteorological data from eight General Circulation Models (GCMs) subjected to three greenhouse gas emission scenarios. Downscaled GCMs project a + 2.1 to + 4.0 °C change in average-annual air temperature (+ 2.6 °C average) and a − 5.1% to + 16.7% change in total annual precipitation (+ 5.1% average) for this geographic area by the middle of this century (2045–2065) and larger changes by the end of the century. The climatic changes by mid-century are projected to result in a − 21.2% to + 8.9% change in total annual streamflow (− 1.8% average) and a − 29.6% to + 17.2% change in total annual P loading (− 3.1% average). Although the average projected changes in streamflow and P loading are relatively small for the entire basin, considerable variability exists spatially and among GCMs because of their variability in projected future precipitation.
USDA-ARS?s Scientific Manuscript database
In this research editorial we make four points relative to solving water resource issues: (1) they are complex problems and difficult to solve, (2) some progress has been made on solving these issues, (3) external non-stationary drivers such as land use changes, climate change and variability, and s...
Ozone, Climate, and Global Atmospheric Change
NASA Technical Reports Server (NTRS)
Levine, Joel S.
1992-01-01
The delicate balance of the gases that make up our atmosphere allows life to exist on Earth. Ozone depletion and global warming are related to changes in the concentrations of these gases. To solve global atmospheric problems, we need to understand the composition and chemistry of the Earth's atmosphere and the impact of human activities on them.
Environmental Education for Behaviour Change: Which Actions Should Be Targeted?
ERIC Educational Resources Information Center
Boyes, Edward; Stanisstreet, Martin
2012-01-01
One aim of environmental education is to enable people to make informed decisions about their environmental behaviour; this is particularly significant with environmental problems that are believed to be both major and imminent, such as climate change resulting from global warming. Previous research suggests no strong link between a person's…
The Problems Public Schools Face: High School Misbehaviour in 1990 and 2002
ERIC Educational Resources Information Center
Fish, Reva M.; Finn, Kristin V.; Finn, Jeremy D.
2011-01-01
Misbehaviour in high school impacts learning and instruction in the classroom as well as the educational climate of the institution. In this report, changes in administrators', teachers', and students' reports of misbehaviour between 1990 and 2002 were examined using two national US databases. There was little change in administrators'…
Analyses of phase change materials’ efficiency in warm-summer humid continental climate conditions
NASA Astrophysics Data System (ADS)
Ratnieks, J.; Gendelis, S.; Jakovics, A.; Bajare, D.
2017-10-01
The usage of phase change materials (PCMs) is a way to store excess energy produced during the hot time of the day and release it during the night thereby reducing the overheating problem. While, in Latvian climate conditions overheating is not a big issue in traditional buildings since it happens only a couple of weeks per year air conditioners must still be installed to maintain thermal comfort. The need for cooling in recently built office buildings with large window area can increase significantly. It is therefore of great interest if the thermal comfort conditions can be maintained by PCMs alone or with reduced maximum power of installed cooling systems. Our initial studies show that if the test building is well-insulated (necessary to reduce heat loss in winter), phase change material is not able to solidify fast enough during the relatively short night time. To further investigate the problem various experimental setups with two different phase change materials were installed in test buildings. Experimental results are compared with numerical modelling made in software COMSOL Multiphysics. The effectiveness of PCM using different situations is widely analysed.
NASA Astrophysics Data System (ADS)
Matiella Novak, M.; Paxton, L. J.
2012-12-01
In this talk we will discuss our approach to translating an abstract, difficult to internalize idea ("climate change") into knowledge that speaks to people directly in terms of their own lives. Recent research suggests that communicating climate change in the context of public health impacts, and even national security risks, is a more effective method of reaching communities that are currently disengaged or nonresponsive to climate change science than the approaches currently being used. Understanding that these new perspectives might reach a broader audience, the Global Assimilation of Information for Action (GAIA) project has proposed implementing a suite of education activities that focus on the public health consequences that will arise and/or becoming exacerbated by climate change. Reaching the disparate communities that must be brought together to create a workable approach is challenging. GAIA has developed a novel framework for sharing information and developing communities of interest that cross boundaries in what is otherwise a highly disciplinary approach to climate change studies. Members of the GAIA community include climate change, environmental and public health experts, as well as relevant stakeholders, policy makers and decision makers. By leveraging the existing expertise within the GAIA community, an opportunity exists to present climate change education (CCE) in a way that emphasizes how climate change will affect public health, and utilizes an approach that has been shown to engage a broader and more diverse audience. Focusing CCE on public health effects is a new and potentially transformative method since it makes the results more tangible and less "random". When CCE is focused on what will happen to the Earth's climate and associated meteorological hazards one might be tempted to view this as something that can be coped with thus enabling the individualist entrepreneur point of view. Weather disasters always seem to happen to someone else - someone not like you. On the other hand, public health impacts are felt by millions and lead to very high costs and those impacts are something with which most people have direct experiences. We will discuss, for example, how climate change can be framed as a cost/benefit problem by looking at the long term costs of increase in disease and illness such as the startling trends in childhood asthma. Changes in water availability, and water and air quality, will result from a warming climate, with measureable consequences for public health: disease spread, food and water security, respiratory health, etc. By integrating this information with education efforts, society, educators and decision makers will have a better understanding of how climate change affects the human system, and what decisions can be made at the individual and community levels to mitigate and adapt to climate change. We will show how this can be achieved.
NASA Astrophysics Data System (ADS)
Maibach, E.; Cullen, H. M.; Witte, J.
2013-12-01
Climate change is influencing every region of the nation through weather and climatic events including heat waves, droughts, extreme precipitation and floods, more intense hurricanes, and forest fires, yet most Americans continue to perceive climate change as a problem distant in time (with impacts a generation or more away), and in space (that will primarily affect other countries, not the United States). This may be caused, in part, due to the fact that climate change is often described in global, abstract, and analytical terms that are hard for people to connect to their own lives. The impacts of climate change, however, can be personally experienced at the local level, including through unusual weather events; cognitive science has shown that the human brain is more adept at learning through personal experience than through analytical reasoning. In this paper we will describe our efforts to enable America's TV weathercasters to embrace the role of climate educator. Weathercasters are a relatively small cohort of highly skilled communication professionals who are optimally positioned to reach a large majority of the American public, and help move their viewers beyond an abstract (distant) notion of global climate change and toward an understanding of climate change that is both local and concrete. Approximately 70% of American adults watch local TV news, and their primary reason for doing so is to learn about the weather. Our research has shown that TV weathercasters are second only to scientists and government science agencies as trusted sources of information about climate change. Our surveys have also shown that - in every region of the country - many TV weathercasters are willing to embrace the role of climate educator, if certain barriers can be overcome. Our experimental pilot-test - in Columbia, South Carolina - of a model developed to help overcome those barriers demonstrated that: when TV weathercasters make an effort to educate their viewers about the local ramifications of climate change, their viewers learn. Our current attempts to scale-up the model on a limited basis - in one state as a field experiment, and elsewhere around the nation on an uncontrolled basis - are showing promise in terms of attracting an increasing numbers of participating weathercasters. Lastly, professional associations that represent TV weathercasters (AMS and NWA), and government agencies that produce climate and weather data for meteorologists (NOAA and NASA), are committed to help scale up this model so that all interested TV weathercasters have easy access to localized information through which to educate their viewers about local weather and related implications of climate change. In sum, by engaging and empowering TV weathercasters as climate educators, we seek to increase public understanding of the relationships among climate, climate variability, climate change, weather extremes and community vulnerability, and we believe this model has considerable potential.
Chemical ecology of animal and human pathogen vectors in a changing global climate.
Pickett, John A; Birkett, Michael A; Dewhirst, Sarah Y; Logan, James G; Omolo, Maurice O; Torto, Baldwyn; Pelletier, Julien; Syed, Zainulabeuddin; Leal, Walter S
2010-01-01
Infectious diseases affecting livestock and human health that involve vector-borne pathogens are a global problem, unrestricted by borders or boundaries, which may be exacerbated by changing global climate. Thus, the availability of effective tools for control of pathogen vectors is of the utmost importance. The aim of this article is to review, selectively, current knowledge of the chemical ecology of pathogen vectors that affect livestock and human health in the developed and developing world, based on key note lectures presented in a symposium on "The Chemical Ecology of Disease Vectors" at the 25th Annual ISCE meeting in Neuchatel, Switzerland. The focus is on the deployment of semiochemicals for monitoring and control strategies, and discusses briefly future directions that such research should proceed along, bearing in mind the environmental challenges associated with climate change that we will face during the 21st century.
Shi, X M
2017-03-10
Air pollution and climate change have become key environmental and public health problems around the world, which poses serious threat to human health. How to assess and mitigate the health risks and increase the adaptation of the public have become an urgent topic of research in this area. The six papers in this issue will provide important and rich information on design, analysis method, indicator selection and setting about acute health risk assessment and adaptation study of air pollution and climate change in China, reflecting the advanced conceptions of multi-center and area-specific study and multi-pollutant causing acute effect study. However, the number and type of the cities included in these studies were still limited. In future, researchers should further expand detailed multi-center and multi-area study coverage, conduct area specific predicting and early warning study and strengthen adaptation study.
NASA Astrophysics Data System (ADS)
Busch, K. C.
2014-12-01
Not only will young adults bear the brunt of climate change's effects, they are also the ones who will be required to take action - to mitigate and to adapt. The Next Generation Science Standards include climate change, ensuring the topic will be covered in U.S. science classrooms in the near future. Additionally, school is a primary source of information about climate change for young adults. The larger question, though, is how can the teaching of climate change be done in such a way as to ascribe agency - a willingness to act - to students? Framing - as both a theory and an analytic method - has been used to understand how language in the media can affect the audience's intention to act. Frames function as a two-way filter, affecting both the message sent and the message received. This study adapted both the theory and the analytic methods of framing, applying them to teachers in the classroom to answer the research question: How do teachers frame climate change in the classroom? To answer this question, twenty-five lessons from seven teachers were analyzed using semiotic discourse analysis methods. It was found that the teachers' frames overlapped to form two distinct discourses: a Science Discourse and a Social Discourse. The Science Discourse, which was dominant, can be summarized as: Climate change is a current scientific problem that will have profound global effects on the Earth's physical systems. The Social Discourse, used much less often, can be summarized as: Climate change is a future social issue because it will have negative impacts at the local level on people. While it may not be surprising that the Science Discourse was most often heard in these science classrooms, it is possibly problematic if it were the only discourse used. The research literature on framing indicates that the frames found in the Science Discourse - global scale, scientific statistics and facts, and impact on the Earth's systems - are not likely to inspire action-taking. This study indicates that framing may be a useful theory for investigating how climate change is taught and learned in classrooms. In addition, suggestions are made for how to develop effective professional development for teachers to improve their communication of climate change.
NASA Astrophysics Data System (ADS)
Dentoni, Marta; Deidda, Roberto; Paniconi, Claudio; Marrocu, Marino; Lecca, Giuditta
2014-05-01
Seawater intrusion (SWI) has become a major threat to coastal freshwater resources, particularly in the Mediterranean basin, where this problem is exacerbated by the lack of appropriate groundwater resources management and with serious potential impacts from projected climate changes. A proper analysis and risk assessment that includes climate scenarios is essential for the design of water management measures to mitigate the environmental and socio-economic impacts of SWI. In this study a methodology for SWI risk analysis in coastal aquifers is developed and applied to the Gaza Strip coastal aquifer in Palestine. The method is based on the origin-pathway-target model, evaluating the final value of SWI risk by applying the overlay principle to the hazard map (representing the origin of SWI), the vulnerability map (representing the pathway of groundwater flow) and the elements map (representing the target of SWI). Results indicate the important role of groundwater simulation in SWI risk assessment and illustrate how mitigation measures can be developed according to predefined criteria to arrive at quantifiable expected benefits. Keywords: Climate change, coastal aquifer, seawater intrusion, risk analysis, simulation/optimization model. Acknowledgements. The study is partially funded by the project "Climate Induced Changes on the Hydrology of Mediterranean Basins (CLIMB)", FP7-ENV-2009-1, GA 244151.
Hydrology: The interdisciplinary science of water
NASA Astrophysics Data System (ADS)
Vogel, Richard M.; Lall, Upmanu; Cai, Ximing; Rajagopalan, Balaji; Weiskel, Peter K.; Hooper, Richard P.; Matalas, Nicholas C.
2015-06-01
We live in a world where biophysical and social processes are tightly coupled. Hydrologic systems change in response to a variety of natural and human forces such as climate variability and change, water use and water infrastructure, and land cover change. In turn, changes in hydrologic systems impact socioeconomic, ecological, and climate systems at a number of scales, leading to a coevolution of these interlinked systems. The Harvard Water Program, Hydrosociology, Integrated Water Resources Management, Ecohydrology, Hydromorphology, and Sociohydrology were all introduced to provide distinct, interdisciplinary perspectives on water problems to address the contemporary dynamics of human interaction with the hydrosphere and the evolution of the Earth's hydrologic systems. Each of them addresses scientific, social, and engineering challenges related to how humans influence water systems and vice versa. There are now numerous examples in the literature of how holistic approaches can provide a structure and vision of the future of hydrology. We review selected examples, which taken together, describe the type of theoretical and applied integrated hydrologic analyses and associated curricular content required to address the societal issue of water resources sustainability. We describe a modern interdisciplinary science of hydrology needed to develop an in-depth understanding of the dynamics of the connectedness between human and natural systems and to determine effective solutions to resolve the complex water problems that the world faces today. Nearly, every theoretical hydrologic model introduced previously is in need of revision to accommodate how climate, land, vegetation, and socioeconomic factors interact, change, and evolve over time.
Hydrology: The interdisciplinary science of water
Vogel, Richard M.; Lall, Upmanu; Cai, Ximing; Rajagopalan, Balaji; Weiskel, Peter K.; Hooper, Richard P.; Matalas, Nicholas C.
2015-01-01
We live in a world where biophysical and social processes are tightly coupled. Hydrologic systems change in response to a variety of natural and human forces such as climate variability and change, water use and water infrastructure, and land cover change. In turn, changes in hydrologic systems impact socioeconomic, ecological, and climate systems at a number of scales, leading to a coevolution of these interlinked systems. The Harvard Water Program, Hydrosociology, Integrated Water Resources Management, Ecohydrology, Hydromorphology, and Sociohydrology were all introduced to provide distinct, interdisciplinary perspectives on water problems to address the contemporary dynamics of human interaction with the hydrosphere and the evolution of the Earth’s hydrologic systems. Each of them addresses scientific, social, and engineering challenges related to how humans influence water systems and vice versa. There are now numerous examples in the literature of how holistic approaches can provide a structure and vision of the future of hydrology. We review selected examples, which taken together, describe the type of theoretical and applied integrated hydrologic analyses and associated curricular content required to address the societal issue of water resources sustainability. We describe a modern interdisciplinary science of hydrology needed to develop an in-depth understanding of the dynamics of the connectedness between human and natural systems and to determine effective solutions to resolve the complex water problems that the world faces today. Nearly, every theoretical hydrologic model introduced previously is in need of revision to accommodate how climate, land, vegetation, and socioeconomic factors interact, change, and evolve over time.
Many-objective robust decision making for water allocation under climate change.
Yan, Dan; Ludwig, Fulco; Huang, He Qing; Werners, Saskia E
2017-12-31
Water allocation is facing profound challenges due to climate change uncertainties. To identify adaptive water allocation strategies that are robust to climate change uncertainties, a model framework combining many-objective robust decision making and biophysical modeling is developed for large rivers. The framework was applied to the Pearl River basin (PRB), China where sufficient flow to the delta is required to reduce saltwater intrusion in the dry season. Before identifying and assessing robust water allocation plans for the future, the performance of ten state-of-the-art MOEAs (multi-objective evolutionary algorithms) is evaluated for the water allocation problem in the PRB. The Borg multi-objective evolutionary algorithm (Borg MOEA), which is a self-adaptive optimization algorithm, has the best performance during the historical periods. Therefore it is selected to generate new water allocation plans for the future (2079-2099). This study shows that robust decision making using carefully selected MOEAs can help limit saltwater intrusion in the Pearl River Delta. However, the framework could perform poorly due to larger than expected climate change impacts on water availability. Results also show that subjective design choices from the researchers and/or water managers could potentially affect the ability of the model framework, and cause the most robust water allocation plans to fail under future climate change. Developing robust allocation plans in a river basin suffering from increasing water shortage requires the researchers and water managers to well characterize future climate change of the study regions and vulnerabilities of their tools. Copyright © 2017 Elsevier B.V. All rights reserved.
Climate Change and Professional Responsibility: A Declaration of Helsinki for Engineers.
Lawlor, Rob; Morley, Helen
2017-10-01
In this paper, we argue that the professional engineering institutions ought to develop a Declaration of Climate Action. Climate change is a serious global problem, and the majority of greenhouse gas emissions come from industries that are enabled by engineers and represented by the engineering professional institutions. If the professional institutions take seriously the claim that a profession should be self-regulating, with codes of ethics that go beyond mere obedience to the law, and if they take their own ethical codes seriously, recognising their responsibility to the public and to future generations (and also recognising a duty of "responsible leadership"), the professional institutions ought to develop a declaration for engineers, addressing climate change. Our argument here is largely inspired by the history of the Declaration of Helsinki. The Declaration of Helsinki was created by the medical profession for the profession, and it held physicians to a higher standard of ethical conduct than was found in the legal framework of individual countries. Although it was not originally a legal document, the influence of the Declaration can be seen in the fact that it is now enshrined in law in a number of different countries. Thus, we argue that the engineering profession could, and should, play a significant role in the abatement of climate change by making changes within the profession. If the engineering profession sets strict standards for professional engineers, with sanctions for those who refuse to comply, this could have a significant impact in relation to our efforts to develop a coordinated response to climate change.
A Web-Based Modelling Platform for Interactive Exploration of Regional Responses to Global Change
NASA Astrophysics Data System (ADS)
Holman, I.
2014-12-01
Climate change adaptation is a complex human-environmental problem that is framed by the uncertainty in impacts and the adaptation choices available, but is also bounded by real-world constraints such as future resource availability and environmental and institutional capacities. Educating the next generation of informed decision-makers that will be able to make knowledgeable responses to global climate change impacts requires them to have access to information that is credible, accurate, easy to understand, and appropriate. However, available resources are too often produced by inaccessible models for scenario simulations chosen by researchers hindering exploration and enquiry. This paper describes the interactive exploratory web-based CLIMSAVE Integrated Assessment (IA) Platform (www.climsave.eu/iap) that aims to democratise climate change impacts, adaptation and vulnerability modelling. The regional version of the Platform contain linked simulation models (of the urban, agriculture, forestry, water and biodiversity sectors), probabilistic climate scenarios and socio-economic scenarios, that enable users to select their inputs (climate and socioeconomic), rapidly run the models using their input variable settings and view their chosen outputs. The interface of the CLIMSAVE IA Platform is designed to facilitate a two-way iterative process of dialogue and exploration of "what if's" to enable a wide range of users to improve their understanding surrounding impacts, adaptation responses and vulnerability of natural resources and ecosystem services under uncertain futures. This paper will describe the evolution of the Platform and demonstrate how using its holistic framework (multi sector / ecosystem service; cross-sectoral, climate and socio-economic change) will help to assist learning around the challenging concepts of responding to global change.
Lake Tahoe Ca-Nv USA to Climate Change
NASA Astrophysics Data System (ADS)
Sahoo, G. B.; Schladow, S. G.; Reuter, J. E.; Coats, R. N.
2011-12-01
Observational studies indicate that climate at Lake Tahoe (CA-NV) basin is changing at faster rate. The impact of climate change on the lake was investigated using a suite of models and bias-corrected downscaled climate dataset generated from global circulation models. Our results indicate an increase of air temperature, a shift of snow to rainfall, a decrease of wind speed, and an onset of earlier snowmelt during the 21st Century. Combined, these changes could affect lake dynamics, ecosystems, water supply, and the winter recreational sport industry. The lake may fail to mix completely by the middle of this Century due to lake warming. Under this condition bottom dissolved oxygen would not be replenished leading to the significant release of bio-stimulatory ammonium-nitrogen and soluble phosphorus from the sediment. Both these nutrients are known to cause increased algal growth in the lake and would likely result in major changes to the lake's water quality and food web. Lake warming also increases water loss through evaporation, resulting in less available water for downstream domestic supply, agriculture, and recreation. Population growth and increased human demand for water will compound severity of problems in water quantity and quality. Thus, watershed planning and management should assess vulnerability to climatic variations through the application of basin-wide hydro-climatology, watershed soils, and lake response models to (1) improve drought, flood, and forest-fire forecasting, (2) assess hydrological trends, (3) estimate the potential effects of climate change on surface runoff and pollutant loads, and (4) evaluate response from various adaptation strategies.
ERIC Educational Resources Information Center
Wüstenberg, Sascha; Greiff, Samuel; Vainikainen, Mari-Pauliina; Murphy, Kevin
2016-01-01
Changes in the demands posed by increasingly complex workplaces in the 21st century have raised the importance of nonroutine skills such as complex problem solving (CPS). However, little is known about the antecedents and outcomes of CPS, especially with regard to malleable external factors such as classroom climate. To investigate the relations…
Marquès, Montse; Bangash, Rubab Fatima; Kumar, Vikas; Sharp, Richard; Schuhmacher, Marta
2013-12-15
Mediterranean basin is considered one of the most vulnerable regions of the world to climate change and with high probability to face acute water scarcity problem in the coming years. Francolí River basin (NE Spain), located in this vulnerable region is selected as a case study to evaluate the impact of climate change on the delivery of water considering the IPCC scenarios A2 and B1 for the time spans 2011-2040, 2041-2070 and 2071-2100. InVEST model is applied in a low flow river as a new case study, which reported successful results after its model validation. The studied hydrological ecosystem services will be highly impacted by climate change at Francolí River basin. Water yield is expected to be reduced between 11.5 and 44% while total drinking water provisioning will decrease between 13 and 50% having adverse consequences on the water quality of the river. Focusing at regional scale, Prades Mountains and Brugent Tributary provide most of the provision of water and also considered highly vulnerable areas to climate change. However, the most vulnerable part is the northern area which has the lowest provision of water. Francolí River basin is likely to experience desertification at this area drying Anguera and Vallverd tributaries. Copyright © 2013 Elsevier B.V. All rights reserved.
Geoengineering, Climate Harm, and Business as Usual
NASA Astrophysics Data System (ADS)
Jankunis, F. J.; Peacock, K.
2014-12-01
We define geoengineering (GE) as the intentional use of technology to change the planet's climate. Many people believe GE is different in kind rather than degree from any other organized activity in human history. In fact, humans caused changes in the planet's climate long before the industrial age, and all organisms engineer their environments directly or indirectly. The relevant difference between this cumulative and generally inadvertent activity and GE is the presence of intention. Now that science has revealed the extent to which humans can change the climate, however, even the continuance of Business as Usual (BAU) is, in effect, a form of intentional GE, albeit one that will cause significant climate harm, defined as effects such as sea level rise that will impact human well-being. But as with all forms of engineering, the devil is in the details: what forms of GE should be tried first? Some methods, such as large-scale afforestation, are low risk but have long-term payoffs; others, such as aerosol injection into the stratosphere, could help buy time in a warming crisis but have unknown side-effects and little long-term future. Climate change is a world-wide, inter-generational tragedy of the commons. Rational choice theory, the spatial and temporal extension of the problem, poorly fitted moral frameworks, and political maneuvering are all factors that inhibit solutions to the climate tragedy of the commons. The longer that such factors are allowed to dominate decision-making (or the lack thereof) the more likely it is that humanity will be forced to resort to riskier and more drastic forms of GE. We argue that this fact brings an additional measure of urgency to the search for ways to engineer the climate differently so as to avoid climate harm in the most lasting and least risky way.
NASA Astrophysics Data System (ADS)
Kuleshov, Y.; Jones, D.; Spillman, C. M.
2012-04-01
Climate change and climate extremes have a major impact on Australia and Pacific Island countries. Of particular concern are tropical cyclones and extreme ocean temperatures, the first being the most destructive events for terrestrial systems, while the latter has the potential to devastate ocean ecosystems through coral bleaching. As a practical response to climate change, under the Pacific-Australia Climate Change Science and Adaptation Planning program (PACCSAP), we are developing enhanced web-based information tools for providing seasonal forecasts for climatic extremes in the Western Pacific. Tropical cyclones are the most destructive weather systems that impact on coastal areas. Interannual variability in the intensity and distribution of tropical cyclones is large, and presently greater than any trends that are ascribable to climate change. In the warming environment, predicting tropical cyclone occurrence based on historical relationships, with predictors such as sea surface temperatures (SSTs) now frequently lying outside of the range of past variability meaning that it is not possible to find historical analogues for the seasonal conditions often faced by Pacific countries. Elevated SSTs are the primary trigger for mass coral bleaching events, which can lead to widespread damage and mortality on reef systems. Degraded coral reefs present many problems, including long-term loss of tourism and potential loss or degradation of fisheries. The monitoring and prediction of thermal stress events enables the support of a range of adaptive and management activities that could improve reef resilience to extreme conditions. Using the climate model POAMA (Predictive Ocean-Atmosphere Model for Australia), we aim to improve accuracy of seasonal forecasts of tropical cyclone activity and extreme SSTs for the regions of Western Pacific. Improved knowledge of extreme climatic events, with the assistance of tailored forecast tools, will help enhance the resilience and adaptive capacity of Australia and Pacific Island Countries under climate change. Acknowledgement The research discussed in this paper was conducted with the support of the PACCSAP supported by the AusAID and Department of Climate Change and Energy Efficiency and delivered by the Bureau of Meteorology and CSIRO.
NASA Astrophysics Data System (ADS)
Kirchhoff, C.; Vang Rasmussen, L.; Lemos, M. C.
2016-12-01
While there has been considerable focus on understanding how factors related to the creation of climate knowledge affect its uptake and use, less attention has been paid to the actors, decisions, and processes through which climate information supports, or fails to support, action. This is particularly the case concerning how different scales of decision-making influence information uptake. In this study, we seek to understand how water and resource managers' decision space influences climate information use in two Great Lakes watersheds. We find that despite the availability of tailored climate information, actual use of information in decision making remains low. Reasons include: a) lack of willingness to place climate on agendas because local managers perceive climate change as politically risky and a difficult and intangible problem; b) lack of formal mandate or authority at the city and county scale to translate climate information into on-the-ground action, c) problems with the information itself, and d) perceived lack of demand for climate information by those managers who have the mandate and authority (e.g. at the state level) to use (or help others use) climate information. Our findings suggest that 1) climate scientists and information brokers should produce information that meets a range of decision needs and reserve intensive tailoring efforts for decision makers who have authority and willingness to employ climate information, 2) without support from higher levels of decision-making (e.g. state) it is unlikely that climate information use for adaptation decisions will accelerate significantly in the next few years, and 3) the trend towards adopting more sustainability and resilience practices over climate-specific actions should be supported as an important component of the climate adaptation repertoire.
Innovative contracting strategies for combating climate change : research summary.
DOT National Transportation Integrated Search
2011-11-01
Problem: : Under the States Smart, Green & Growing initiative, SHA is committed to reducing : greenhouse gas (GHG) emissions from on- and off-road vehicles and equipment. To : meet the commitment and address associated challenges, the agency...
Big Data Challenges in Climate Science: Improving the Next-Generation Cyberinfrastructure
NASA Technical Reports Server (NTRS)
Schnase, John L.; Lee, Tsengdar J.; Mattmann, Chris A.; Lynnes, Christopher S.; Cinquini, Luca; Ramirez, Paul M.; Hart, Andre F.; Williams, Dean N.; Waliser, Duane; Rinsland, Pamela;
2016-01-01
The knowledge we gain from research in climate science depends on the generation, dissemination, and analysis of high-quality data. This work comprises technical practice as well as social practice, both of which are distinguished by their massive scale and global reach. As a result, the amount of data involved in climate research is growing at an unprecedented rate. Climate model intercomparison (CMIP) experiments, the integration of observational data and climate reanalysis data with climate model outputs, as seen in the Obs4MIPs, Ana4MIPs, and CREATE-IP activities, and the collaborative work of the Intergovernmental Panel on Climate Change (IPCC) provide examples of the types of activities that increasingly require an improved cyberinfrastructure for dealing with large amounts of critical scientific data. This paper provides an overview of some of climate science's big data problems and the technical solutions being developed to advance data publication, climate analytics as a service, and interoperability within the Earth System Grid Federation (ESGF), the primary cyberinfrastructure currently supporting global climate research activities.
Cherry, Catherine; Hopfe, Christina; MacGillivray, Brian; Pidgeon, Nick
2015-04-01
Decarbonising housing is a key UK government policy to mitigate climate change. Using discourse analysis, we assess how low carbon housing is portrayed within British broadsheet media. Three distinct storylines were identified. Dominating the discourse, Zero carbon housing promotes new-build, low carbon houses as offering high technology solutions to the climate problem. Retrofitting homes emphasises the need to reduce emissions within existing housing, tackling both climate change and rising fuel prices. A more marginal discourse, Sustainable living, frames low carbon houses as related to individual identities and 'off-grid' or greener lifestyles. Our analysis demonstrates that technical and economic paradigms dominate media discourse on low carbon housing, marginalising social and behavioural aspects. © The Author(s) 2013.
NASA Astrophysics Data System (ADS)
Adams, P. E.; Heinrichs, J. F.
2009-12-01
One of the greatest challenges facing the world is climate change. Coupled with this challenge is an under-informed population that has not received a rigorous education about climate change other than what is available through the media. Fort Hays State University is piloting a course on climate change targeted to students early in their academic careers. The course is modeled after our past work (NSF DUE-0088818) of integrating content knowledge instruction and student-driven research where there was a positive correlation between student research engagement and student knowledge gains. The current course, based on prior findings, utilizes a mix of inquiry-based instruction, problem-based learning, and student-driven research to educate and engage the students in understanding climate change. The course was collaboratively developed by a geoscientist and science educator both of whom are active in citizen science programs. The emphasis on civic engagement by students is reflected in the course structure. The course model is unique in that 50% of the course is dedicated to developing core knowledge and technical skills (e.g. critical analysis, writing, data acquisition, data representation, and research design), and 50% to conducting a research project using available data sets from federal agencies and research groups. A key element of the course is a focus on local and regional data sets to make climate change relevant to the students. The research serves as a means of civic engagement by the students as they are tasked to understand their role in communicating their research findings to the community and coping with the local and regional changes they find through their research.
NASA Astrophysics Data System (ADS)
Fløjgaard, Camilla; Morueta-Holme, Naia; Skov, Flemming; Madsen, Aksel Bo; Svenning, Jens-Christian
2009-11-01
The moderate temperature increase of 0.74 °C in the 20th century has caused latitudinal and altitudinal range shifts in many species including mammals. Therefore, given the more dramatic temperature increase predicted for the 21st century, we can therefore expect even stronger range shifts as well. However, European mammals are already faced with other anthropogenic pressures, notably habitat loss, pollution, overexploitation, and invasive species, and will have to face the combined challenge posed by climate change in a landscape highly influenced by human activities. As an example of the possible consequences of land use, invasive species, and climate change for the regional-scale mammal species composition, we here focus on the potential 21st century changes to the mammal fauna of Denmark. Supported by species distribution modelling, we present a discussion of the possible changes to the Danish mammal fauna: Which species are likely to become locally extinct? Which new species are most likely to immigrate? And, what is the potential threat from invasive species? We find that future climate change is likely to cause a general enrichment of the Danish mammal fauna by the potential immigration of seventeen new species. Only the northern birch mouse (Sicista betulina) is at risk of extinction from climate change predicted. The European native mammals are not anticipated to contribute to the invasive-species problem as they coexist with most Danish species in other parts of Europe. However, non-European invasive species are also likely to enter the Danish fauna and may negatively impact the native species.
NASA Astrophysics Data System (ADS)
Lipiec, E.; Ruggiero, P.; Serafin, K.; Bolte, J.; Mills, A.; Corcoran, P.; Stevenson, J.; Lach, D.
2014-12-01
Local decision-makers often lack both the information and tools to reduce their community's overall vulnerability to current and future climate change impacts. Managers are restricted in their actions by the scale of the problem, inherent scientific uncertainty, limits of information exchange, and the global nature of available data, rendering place-based strategies difficult to generate. Several U.S. Pacific Northwest coastal communities are already experiencing chronic erosion and flooding, hazards only to be exacerbated by sea level rise and changing patterns of storminess associated with climate change. To address these issues, a knowledge to action network (KTAN) consisting of local Tillamook County stakeholders and Oregon State University researchers, was formed to project future flooding and erosion impacts and determine possible adaptation policies to reduce vulnerability. Via an iterative scenario planning process, the KTAN has developed four distinct adaptation policy scenarios, including 'Status Quo', 'Hold The Line', 'ReAlign', and 'Laissez-Faire'. These policy scenarios are being integrated with a range of climate change scenarios within the modeling framework Envision, a multi-agent GIS-based tool, which allows for the combination of physical processes data, probabilistic climate change information, coastal flood and erosion models, and stakeholder driven adaptation strategies into distinct plausible future scenarios. Because exact physical and social responses to climate change are impossible to ascertain, information about the differences between possible future scenarios can provide valuable information to decision-makers and the community at large. For example, the fewest projected coastal flood and erosion impacts to buildings occur under the 'ReAlign' policy scenario (i.e., adaptation strategies that move dwellings away from the coast) under both low and high climate change scenarios, especially in comparison to the 'Status Quo' or 'Hold The Line' scenarios. Statistical analysis of the scenario-based variations in impacts to private and public resources can help guide future adaptation policy implementation and support Oregon's coastal communities for years to come.
Climate impacts on palm oil yields in the Nigerian Niger Delta
NASA Astrophysics Data System (ADS)
Okoro, Stanley U.; Schickhoff, Udo; Boehner, Juergen; Schneider, Uwe A.; Huth, Neil
2016-04-01
Palm oil production has increased in recent decades and is estimated to increase further. The optimal role of palm oil production, however, is controversial because of resource conflicts with alternative land uses. Local conditions and climate change affect resource competition and the desirability of palm oil production. Based on this, crop yield simulations using different climate model output under different climate scenarios could be important tool in addressing the problem of uncertainty quantification among different climate model outputs. Previous studies on this region have focused mostly on single experimental fields, not considering variations in Agro-Ecological Zones, climatic conditions, varieties and management practices and, in most cases not extending to various IPCC climate scenarios and were mostly based on single climate model output. Furthermore, the uncertainty quantification of the climate- impact model has rarely been investigated on this region. To this end we use the biophysical simulation model APSIM (Agricultural Production Systems Simulator) to simulate the regional climate impact on oil palm yield over the Nigerian Niger Delta. We also examine whether the use of crop yield model output ensemble reduces the uncertainty rather than the use of climate model output ensemble. The results could serve as a baseline for policy makers in this region in understanding the interaction between potentials of energy crop production of the region as well as its food security and other negative feedbacks that could be associated with bioenergy from oil palm. Keywords: Climate Change, Climate impacts, Land use and Crop yields.
NASA Astrophysics Data System (ADS)
Gutierrez, Kristie Susan
In a recent nationwide survey, 63% of American adults believe that there is global warming, yet 52% received a 'grade' of 'F' on climate change knowledge and beliefs. Climate change is a politically-charged topic in the 21st century. Even for those who support the 97% of scientists who assert that climate change is occurring, many are still uncertain about the role that humans play in this complex process. This mixed-methods study examined the climate change beliefs, content knowledge, worldviews, and behaviors of rural middle school students and their families in four rural, high poverty school districts in the Southeastern United States (US). The students, who ranged from 5-8th grades, were part of an after school STEM Career Club program that met for two hours, six times per semester. STEM Club students (N = 243) and selected students' families (n = 15) interacted with climate change activities and materials in the student clubs and in an at-home intervention. Quantitative pre- and post-intervention surveys were used to measure any changes in climate change content knowledge and beliefs as well as participants' worldviews. Qualitative audio data gathered from at-home intervention activities with students and their family members, as well as during family dyad interviews, was coded using the Determinants of Behavior framework that reflected climate change awareness, during and post-intervention. This embedded mixed-methods design with climate change education was designed to reflect place-based examples in these rural, southeastern US communities, and to empower families to see the relevance of this global issue, consider their role, learn more about climate science, and take actions locally. Initially, a large percentage of students believed that global warming is occurring (69.5%) and is occurring at least in some part due to human influence (69.3%). Students had learned significantly more total climate change knowledge, post-intervention. Analyses of variance (ANOVA) found a significant main effect for gender; males improved significantly more than females on the content knowledge test. Significant gains in content knowledge could be traced to engagement in specific club activities. The vast majority (73.3%) of students held egalitarian worldviews, while students were almost equivalent on the individualism (48.8%) /communitarian (47.7%) worldview scale. Student worldviews correlated to responses on the affective items of the survey, but did not predict students' climate change content knowledge. Findings from this study suggest that significant gains in climate change content knowledge can be attained through short-term out-of-school interventions, but not climate change beliefs. For rural, low income families, knowledge talk was most common (26.6%), followed by discussion of behaviors (11.5%), and talk regarding the seriousness of the problem (10.6%). Seventy-two percent of the participants (n = 18; 9 students, 9 adults) were coded as individualistic egalitarian. Changes in climate change content knowledge from pre- to post-intervention were greatest in the students and parents who were highly engaged in the at-home family intervention, indicating that parents and students can benefit from climate change interventions in their own homes.
NASA Astrophysics Data System (ADS)
Lee, M.; Jeongho, L.; Changsub, S.; SeongWoo, J.
2011-12-01
: Global climate change is disturbing the water circulation balance by changing rates of precipitation, recharge and discharge, and evapotranspiration. Groundwater, which occupies a considerable portion of the world's water resources, is related to climate change via surface water such as rivers, lakes, and marshes. In this study, the authors selected a relevant climate change scenario, A1B from the Special Report on Emission Scenario (SRES) which is distributed at Korea Meteorological Administration. By using data on temperature, rainfall, soil, and land use, the groundwater recharge rate for the research area was estimated by periodically and embodied as geographic information system (GIS). In order to calculate the groundwater recharge quantity, Visual HELP3 was used as main model, and the physical properties of weather, temperature, and soil layers were used as main input data. General changes to water circulation due to climate change have already been predicted. In order to systematically solve problems of ground circulation system, it may be urgent to recalculate the groundwater recharge quantity and consequent change under future climate change. The space-time calculation of changes of the groundwater recharge quantity in the study area may serve as a foundation to present additional measures to improve domestic groundwater resource management. Results showed that 26.19% of total precipitation was recharged from 1971 to 2000, 27.37% will be recharged from 2001 to 2030, 27.43% will be recharged from 2031 to 2050, and 26.06% will be recharged from 2051 to 2070, 27.88% will be recharged from 2051 to 2100. The groundwater recharge rate in this research showed susceptibility to changes in precipitation. The recharge rate was relatively little affected by the changes in Curve Number (CN), but it was rapidly reduced, as it approached the impermeable layers. Accordingly, the findings herein provide a basis for establishment of national plans on water resources management, use of groundwater in local areas for the purpose of settlement, and estimation of groundwater recharge quantities in areas where the groundwater hydrology is not measured. KEY WORDS: Groundwater recharge; Climate change; Curve Number; Special Report on Emissions Scenarios; Intergovernmental Panel on Climate Change
Designing Dynamic Adaptive Policy Pathways using Many-Objective Robust Decision Making
NASA Astrophysics Data System (ADS)
Kwakkel, Jan; Haasnoot, Marjolijn
2017-04-01
Dealing with climate risks in water management requires confronting a wide variety of deeply uncertain factors, while navigating a many dimensional space of trade-offs amongst objectives. There is an emerging body of literature on supporting this type of decision problem, under the label of decision making under deep uncertainty. Two approaches within this literature are Many-Objective Robust Decision Making, and Dynamic Adaptive Policy Pathways. In recent work, these approaches have been compared. One of the main conclusions of this comparison was that they are highly complementary. Many-Objective Robust Decision Making is a model based decision support approach, while Dynamic Adaptive Policy Pathways is primarily a conceptual framework for the design of flexible strategies that can be adapted over time in response to how the future is actually unfolding. In this research we explore this complementarity in more detail. Specifically, we demonstrate how Many-Objective Robust Decision Making can be used to design adaptation pathways. We demonstrate this combined approach using a water management problem, in the Netherlands. The water level of Lake IJselmeer, the main fresh water resource of the Netherlands, is currently managed through discharge by gravity. Due to climate change, this won't be possible in the future, unless water levels are changed. Changing the water level has undesirable flood risk and spatial planning consequences. The challenge is to find promising adaptation pathways that balance objectives related to fresh water supply, flood risk, and spatial issues, while accounting for uncertain climatic and land use change. We conclude that the combination of Many-Objective Robust Decision Making and Dynamic Adaptive Policy Pathways is particularly suited for dealing with deeply uncertain climate risks.
The Psychohistory of Climate Change: A Clear and Present Danger.
Adams, Kenneth Alan
2016-01-01
The inability of contemporary society to transition from fossil fuels to green energy was engineered by the oil industry, which has worked for decades to stifle the emergence of ecological awareness. Climate change presents a clear and present danger to our society. The present dilemma is the result of the psychopathic corporate system, that pillages the earth for profit (extractivism), evades the real costs of production (externalizing costs), and pursues only self-interest (the best interests of the corporation). The well-being of the environment is thereby sacrificed for profit and our collective future is jeopardized. The corporate practice of creative destruction has gained such Thanatos-like momentum that it threatens the earth in its obsession with profit. Conservatives, under the sway of the unreality principle, dismiss climate change and block efforts to solve climate issues. For them, science is wish fulfillment based on denial. Their willingness to endanger the world results from their authoritarian upbringing. The corporal punishment they endured as children left a residue of rage—the impulse to destroy life—that underlies corporate rationality’s assault on the environment. Fearing death, they inflict death in a perverse ritual to feel alive. Compensating for the narcissistic wounds of childhood through the formation of a grandiose self, they are identified with the omnipotent parent, and alternate between suicidal impulse and escape via godlike technology. Conservative attacks on women highlight the residual wounds of relatedness to their dragon mothers, just as their relatedness to the environment involves a restaging of their encounters with their breast and toilet mothers. Solving environmental problems, however, will require more than overcoming conservative intransigence. The concept of ecological debt accentuates the importance of consumer choice for the environment. The United Nations Human Development Report 2015 regarding CO2 emissions demonstrates the massive environmental debt of Northern Hemisphere societies and suggests the magnitude of the transformation necessary to resolve the problem of climate change.
Growing sensitivity of maize to water scarcity under climate change.
Meng, Qingfeng; Chen, Xinping; Lobell, David B; Cui, Zhenling; Zhang, Yi; Yang, Haishun; Zhang, Fusuo
2016-01-25
Climate change can reduce crop yields and thereby threaten food security. The current measures used to adapt to climate change involve avoiding crops yield decrease, however, the limitations of such measures due to water and other resources scarcity have not been well understood. Here, we quantify how the sensitivity of maize to water availability has increased because of the shift toward longer-maturing varieties during last three decades in the Chinese Maize Belt (CMB). We report that modern, longer-maturing varieties have extended the growing period by an average of 8 days and have significantly offset the negative impacts of climate change on yield. However, the sensitivity of maize production to water has increased: maize yield across the CMB was 5% lower with rainfed than with irrigated maize in the 1980s and was 10% lower (and even >20% lower in some areas) in the 2000s because of both warming and the increased requirement for water by the longer-maturing varieties. Of the maize area in China, 40% now fails to receive the precipitation required to attain the full yield potential. Opportunities for water saving in maize systems exist, but water scarcity in China remains a serious problem.
Problems encountered when defining Arctic amplification as a ratio
Hind, Alistair; Zhang, Qiong; Brattström, Gudrun
2016-01-01
In climate change science the term ‘Arctic amplification’ has become synonymous with an estimation of the ratio of a change in Arctic temperatures compared with a broader reference change under the same period, usually in global temperatures. Here, it is shown that this definition of Arctic amplification comes with a suite of difficulties related to the statistical properties of the ratio estimator itself. Most problematic is the complexity of categorizing uncertainty in Arctic amplification when the global, or reference, change in temperature is close to 0 over a period of interest, in which case it may be impossible to set bounds on this uncertainty. An important conceptual distinction is made between the ‘Ratio of Means’ and ‘Mean Ratio’ approaches to defining a ratio estimate of Arctic amplification, as they do not only possess different uncertainty properties regarding the amplification factor, but are also demonstrated to ask different scientific questions. Uncertainty in the estimated range of the Arctic amplification factor using the latest global climate models and climate forcing scenarios is expanded upon and shown to be greater than previously demonstrated for future climate projections, particularly using forcing scenarios with lower concentrations of greenhouse gases. PMID:27461918
Problems encountered when defining Arctic amplification as a ratio.
Hind, Alistair; Zhang, Qiong; Brattström, Gudrun
2016-07-27
In climate change science the term 'Arctic amplification' has become synonymous with an estimation of the ratio of a change in Arctic temperatures compared with a broader reference change under the same period, usually in global temperatures. Here, it is shown that this definition of Arctic amplification comes with a suite of difficulties related to the statistical properties of the ratio estimator itself. Most problematic is the complexity of categorizing uncertainty in Arctic amplification when the global, or reference, change in temperature is close to 0 over a period of interest, in which case it may be impossible to set bounds on this uncertainty. An important conceptual distinction is made between the 'Ratio of Means' and 'Mean Ratio' approaches to defining a ratio estimate of Arctic amplification, as they do not only possess different uncertainty properties regarding the amplification factor, but are also demonstrated to ask different scientific questions. Uncertainty in the estimated range of the Arctic amplification factor using the latest global climate models and climate forcing scenarios is expanded upon and shown to be greater than previously demonstrated for future climate projections, particularly using forcing scenarios with lower concentrations of greenhouse gases.
Sensitivity and Response of Bhutanese Glaciers to Atmospheric Warming
NASA Technical Reports Server (NTRS)
Rupper, Summer; Schaefer, Joerg M.; Burgener, Landon K.; Koenig, Lora S.; Tsering, Karma; Cook, Edward
2013-01-01
Glacierized change in the Himalayas affects river-discharge, hydro-energy and agricultural production, and Glacial Lake Outburst Flood potential, but its quantification and extent of impacts remains highly uncertain. Here we present conservative, comprehensive and quantitative predictions for glacier area and meltwater flux changes in Bhutan, monsoonal Himalayas. In particular, we quantify the uncertainties associated with the glacier area and meltwater flux changes due to uncertainty in climate data, a critical problem for much of High Asia. Based on a suite of gridded climate data and a robust glacier melt model, our results show that glacier area and meltwater change projections can vary by an order of magnitude for different climate datasets. However, the most conservative results indicate that, even if climate were to remain at the present-day mean values, almost 10% of Bhutan s glacierized area would vanish and the meltwater flux would drop by as much as 30%. Under the conservative scenario of an additional 1 C regional warming, glacier retreat is going to continue until about 25% of Bhutan s glacierized area will have disappeared and the annual meltwater flux, after an initial spike, would drop by as much as 65%. Citation
Understanding climate: A strategy for climate modeling and predictability research, 1985-1995
NASA Technical Reports Server (NTRS)
Thiele, O. (Editor); Schiffer, R. A. (Editor)
1985-01-01
The emphasis of the NASA strategy for climate modeling and predictability research is on the utilization of space technology to understand the processes which control the Earth's climate system and it's sensitivity to natural and man-induced changes and to assess the possibilities for climate prediction on time scales of from about two weeks to several decades. Because the climate is a complex multi-phenomena system, which interacts on a wide range of space and time scales, the diversity of scientific problems addressed requires a hierarchy of models along with the application of modern empirical and statistical techniques which exploit the extensive current and potential future global data sets afforded by space observations. Observing system simulation experiments, exploiting these models and data, will also provide the foundation for the future climate space observing system, e.g., Earth observing system (EOS), 1985; Tropical Rainfall Measuring Mission (TRMM) North, et al. NASA, 1984.
Using a Global Climate Model in an On-line Climate Change Course
NASA Astrophysics Data System (ADS)
Randle, D. E.; Chandler, M. A.; Sohl, L. E.
2012-12-01
Seminars on Science: Climate Change is an on-line, graduate-level teacher professional development course offered by the American Museum of Natural History. It is an intensive 6-week course covering a broad range of global climate topics, from the fundamentals of the climate system, to the causes of climate change, the role of paleoclimate investigations, and a discussion of potential consequences and risks. The instructional method blends essays, videos, textbooks, and linked websites, with required participation in electronic discussion forums that are moderated by an experienced educator and a course scientist. Most weeks include additional assignments. Three of these assignments employ computer models, including two weeks spent working with a full-fledged 3D global climate model (GCM). The global climate modeling environment is supplied through a partnership with Columbia University's Educational Global Climate Modeling Project (EdGCM). The objective is to have participants gain hands-on experience with one of the most important, yet misunderstood, aspects of climate change research. Participants in the course are supplied with a USB drive that includes installers for the software and sample data. The EdGCM software includes a version of NASA's global climate model fitted with a graphical user interface and pre-loaded with several climate change simulations. Step-by-step assignments and video tutorials help walk people through these challenging exercises and the course incorporates a special assignment discussion forum to help with technical problems and questions about the NASA GCM. There are several takeaways from our first year and a half of offering this course, which has become one of the most popular out of the twelve courses offered by the Museum. Participants report a high level of satisfaction in using EdGCM. Some report frustration at the initial steps, but overwhelmingly claim that the assignments are worth the effort. Many of the difficulties that arise are due to a lack of computer literacy amongst participants and we have found, through iterative improvements in the materials, that breaking assignments into discrete, well-supported tasks has been key to the success.
Vegetation zones in changing climate
NASA Astrophysics Data System (ADS)
Belda, Michal; Holtanova, Eva; Halenka, Tomas; Kalvova, Jaroslava
2017-04-01
Climate patterns analysis can be performed for individual climate variables separately or the data can be aggregated using e.g. some kind of climate classification. These classifications usually correspond to vegetation distribution in the sense that each climate type is dominated by one vegetation zone or eco-region. Thus, the Köppen-Trewartha classification provides integrated assessment of temperature and precipitation together with their annual cycle as well. This way climate classifications also can be used as a convenient tool for the assessment and validation of climate models and for the analysis of simulated future climate changes. The Köppen-Trewartha classification is applied on full CMIP5 family of more than 40 GCM simulations and CRU dataset for comparison. This evaluation provides insight on the GCM performance and errors for simulations of the 20th century climate. Common regions are identified, such as Australia or Amazonia, where many state-of-the-art models perform inadequately. Moreover, the analysis of the CMIP5 ensemble for future under RCP 4.5 and RCP 8.5 is performed to assess the climate change for future. There are significant changes for some types in most models e.g. increase of savanna and decrease of tundra for the future climate. For some types significant shifts in latitude can be seen when studying their geographical location in selected continental areas, e.g. toward higher latitudes for boreal climate. Quite significant uncertainty can be seen for some types. For Europe, EuroCORDEX results for both 0.11 and 0.44 degree resolution are validated using Köppen-Trewartha types in comparison to E-OBS based classification. ERA-Interim driven simulations are compared to both present conditions of CMIP5 models as well as their downscaling by EuroCORDEX RCMs. Finally, the climate change signal assessment is provided using the individual climate types. In addition to the changes assessed similarly as for GCMs analysis in terms of the area of individual types, in the continental scale some shifts of boundaries between the selected types can be studied as well providing the information on climate change signal. The shift of the boundary between the boreal zone and continental temperate zone to the north is clearly seen in most simulations as well as eastern move of the boundary of the maritime and continental type of temperate zone. However, there can be quite clear problem with model biases in climate types association. When analysing climate types in Europe and their shifts under climate change using Köppen-Trewartha classification (KTC), for the temperate climate type there are subtypes defined following the continentality patterns, and we can see their generally meridionally located divide across Europe shifted to the east. There is a question whether this is realistic or rather due to the simplistic condition in KTC following the winter minimum temperature, while other continentality indices consider rather the amplitude of temperature during the year. This leads us to connect our analysis of climate change effects using climate classification to the more detailed analysis of continentality patterns development in Europe to provide better insight on the climate regimes and to verify the continentality conditions, their definitions and climate change effects on them. The comparison of several selected continentality indices is shown.
Black Carbon and Precipitation: An Energetics Perspective
NASA Astrophysics Data System (ADS)
Sand, M.; Samset, B. H.; Stjern, C.; Tsigaridis, K.; Myhre, G.
2017-12-01
Airborne Black Carbon (BC) can affect precipitation rates, both globally and regionally, through a number of mechanisms. Many studies have investigated the impact of the direct radiative effect, indirect modification of cloud properties and rapid adjustments (the semidirect effect), individually or in combination, but the net climate impacts of anthropogenic and natural BC are still highly uncertain. A particular problem is the complex behavior of BC-climate interactions with altitude. Since the atmospheric residence time, ageing and removal processes for BC are also poorly known, differences in vertical BC concentration profiles between models and intercomparison experiments greatly complicate the picture. Recently, precipitation changes predicted by climate models have been studied in the framework of changes to the global and regional energy balance. Here, we employ such an energetics perspective to simulations of BC inserted at isolated altitudes, in two major climate models (NCAR CESM1, NASA GISS). We show the resulting regional and global changes to precipitation, and analyze it in both in terms of individual components of radiative forcing, and the atmospheric energy balance. The results are presented in the context of recent literature.
Climate change studies and the human sciences
NASA Astrophysics Data System (ADS)
Holm, Poul; Winiwarter, Verena
2017-09-01
Policy makers have made repeated calls for integration of human and natural sciences in the field of climate change. Serious multidisciplinary attempts began already in the 1950s. Progress has certainly been made in understanding the role of humans in the planetary system. New perspectives have clarified policy advice, and three insights are singled out in the paper: the critique of historicism, the distinction between benign and wicked problems, and the cultural critique of the 'myths of nature'. Nevertheless, analysis of the IPCC Assessment Reports indicates that integration is skewed towards a particular dimension of human sciences (economics) and major insights from cultural theory and historical analysis have not made it into climate science. A number of relevant disciplines are almost absent in the composition of authorship. Nevertheless, selective assumptions and arguments are made about e.g. historical findings in key documents. In conclusion, we suggest to seek remedies for the lack of historical scholarship in the IPCC reports. More effort at science-policy exchange is needed, and an Integrated Platform to channel humanities and social science expertise for climate change research might be one promising way.
Interdisciplinarity, Climate, and Change
NASA Astrophysics Data System (ADS)
Pulwarty, R. S.
2016-12-01
Interdisciplinarity has become synonymous with all things progressive about research and education. This is so not simply because of a philosophical belief in the heterogeneity of knowledge but because of the scientific and social complexities of problems of major concern. The increased demand for improved climate knowledge and information has increased pressure to support planning under changing rates of extremes event occurrence, is well-documented. The application of useful climate data, information and knowledge requires multiple networks and information services infrastructure that support planning and implementation. As widely quoted, Pasteur's quadrant is a label given to a class of scientific research methodologies that seeks fundamental understanding of scientific problems and, simultaneously, to benefit society-what Stokes called "use-inspired research". Innovation, in this context, has been defined as "the process by which individuals and organizations generate new ideas and put them into practice". A growing number of research institutes and programs have begun developing a cadre of professionals focused on integrating basic and applied research in areas such as climate risk assessment and adaptation. There are now several examples of where researchers and teams have crafted examples that include affected communities. In this presentation we will outline the lessons from several efforts including the PACE program, the RISAs, NIDIS, the Climate Services Information System and other interdisciplinary service-oriented efforts in which the author has been involved. Some early lessons include the need to: Recognize that key concerns of social innovation go beyond the projections of climate and other global changes to embrace multiple methods Continue to train scientists of all stripes of disciplinary norms, but higher education should also prepare students who plan to seek careers outside of academia by increasing flexibility in graduate training programs Develop and support boundary institutions that span research, monitoring, prototype development and practice but recognize both the benefits and the limits of co-production Design more comprehensive metrics for evaluation to combat perceptions that interdisciplinary work is only a sideline to a traditional academic career.
NASA Astrophysics Data System (ADS)
Emori, Seita; Takahashi, Kiyoshi; Yamagata, Yoshiki; Oki, Taikan; Mori, Shunsuke; Fujigaki, Yuko
2013-04-01
With the aim of proposing strategies of global climate risk management, we have launched a five-year research project called ICA-RUS (Integrated Climate Assessment - Risks, Uncertainties and Society). In this project with the phrase "risk management" in its title, we aspire for a comprehensive assessment of climate change risks, explicit consideration of uncertainties, utilization of best available information, and consideration of every possible conditions and options. We also regard the problem as one of decision-making at the human level, which involves social value judgments and adapts to future changes in circumstances. The ICA-RUS project consists of the following five themes: 1) Synthesis of global climate risk management strategies, 2) Optimization of land, water and ecosystem uses for climate risk management, 3) Identification and analysis of critical climate risks, 4) Evaluation of climate risk management options under technological, social and economic uncertainties and 5) Interactions between scientific and social rationalities in climate risk management (see also: http://www.nies.go.jp/ica-rus/en/). For the integration of quantitative knowledge of climate change risks and responses, we apply a tool named AIM/Impact [Policy], which consists of an energy-economic model, a simplified climate model and impact projection modules. At the same time, in order to make use of qualitative knowledge as well, we hold monthly project meetings for the discussion of risk management strategies and publish annual reports based on the quantitative and qualitative information. To enhance the comprehensiveness of the analyses, we maintain an inventory of risks and risk management options. The inventory is revised iteratively through interactive meetings with stakeholders such as policymakers, government officials and industrial representatives.
Ortiz, Paulo L; Rivero, Alina; Linares, Yzenia; Pérez, Alina; Vázquez, Juan R
2015-04-01
Climate variability, the primary expression of climate change, is one of the most important environmental problems affecting human health, particularly vector-borne diseases. Despite research efforts worldwide, there are few studies addressing the use of information on climate variability for prevention and early warning of vector-borne infectious diseases. Show the utility of climate information for vector surveillance by developing spatial models using an entomological indicator and information on predicted climate variability in Cuba to provide early warning of danger of increased risk of dengue transmission. An ecological study was carried out using retrospective and prospective analyses of time series combined with spatial statistics. Several entomological and climatic indicators were considered using complex Bultó indices -1 and -2. Moran's I spatial autocorrelation coefficient specified for a matrix of neighbors with a radius of 20 km, was used to identify the spatial structure. Spatial structure simulation was based on simultaneous autoregressive and conditional autoregressive models; agreement between predicted and observed values for number of Aedes aegypti foci was determined by the concordance index Di and skill factor Bi. Spatial and temporal distributions of populations of Aedes aegypti were obtained. Models for describing, simulating and predicting spatial patterns of Aedes aegypti populations associated with climate variability patterns were put forward. The ranges of climate variability affecting Aedes aegypti populations were identified. Forecast maps were generated for the municipal level. Using the Bultó indices of climate variability, it is possible to construct spatial models for predicting increased Aedes aegypti populations in Cuba. At 20 x 20 km resolution, the models are able to provide warning of potential changes in vector populations in rainy and dry seasons and by month, thus demonstrating the usefulness of climate information for epidemiological surveillance.
Understanding change: Wildfire in Boulder County, Colorado
Hannah Brenkert-Smith; Patricia A. Champ; Amy L. Telligman
2013-01-01
Wildfire activity continues to plague communities in the American West. Three causes are often identified as key contributors to the wildfire problem: accumulated fuels on public lands due to a history of suppressing wildfires; climate change; and an influx of residents into fire prone areas referred to as the wildland-urban interface (WUI). The latter of these...
Understanding change: Wildfire in Larimer County, Colorado
Hannah Brenkert-Smith; Patricia A. Champ
2013-01-01
Wildfire activity continues to plague communities in the American West. Three causes are often identified as key contributors to the wildfire problem: accumulated fuels on public lands due to a history of suppressing wildfires; climate change; and an influx of residents into fire prone areas referred to as the wildland-urban interface (WUI). The latter of these...
School Leaders Facing Real Change: Shifting Geography, Uncertain Paths
ERIC Educational Resources Information Center
Louis, Karen Seashore
2003-01-01
A central problem for school leadership in the United States is to create settings in which success for students motivates teachers. Meeting this objective is becoming more difficult as teachers, except the most brilliant, struggle to cope with the diversity of students in a changing socio-economic climate and a context in which there is a…
Education in Austerity: Options for Planners. Fundamentals for Planning 36.
ERIC Educational Resources Information Center
Lewin, Keith M.
This book explores the issues raised by the changing climate within which educational planning will take place in the final years of the 20th century. The volume focuses on the problems faced by countries hardest hit by economic recession and the need for adjustment to a changing economic environment. Organized into six chapters, the book…
Analysis of the deforestation problem in tropical Latin America
Jorge Malleux
2012-01-01
The driving forces of land use changes have been analyzed and discussed for a long time with different solutions proposed and implemented. Unfortunately the reduction of natural forest cover continues in the same direction, generating an increasing alarm all around the world among scientist and politicians, related to the climate change awareness and strategies for its...
Lessons for the anthropocene from the recent past: Tobacco use, HIV/AIDS, and social transformation
NASA Astrophysics Data System (ADS)
Travis, Charles; Holm, Poul
2017-09-01
In light of the dilemma of global climate change that we have presented ourselves with in the twenty-first century and beyond, many researchers express despair at the ability of humans and societies to change behavior. The paper identifies how global humanity at individual, institutional, and governmental levels have addressed life-threatening dangers in the recent past and begun processes of long-term corrective action. The paper thus discusses global social transformations from the recent past in regards to tobacco use and HIV/AIDS, to think about how Hannah Arendt's concept of the Polis detailed in The Human Condition (1958) may be engaged to address the human dimensions of climate change. As an output of the Andrew W. Mellon European Observatory of the New Human Condition, this paper's focus is commensurate with the thrust of this special issue of Global and Planetary Change which considers climate change to be more of a crisis in the human condition than an environmental problem. Arendt's concept of the Polis provides a framework for a better understanding of change in behavior, preference and motivation. We argue that her perspectives are central to developing multi and inter-disciplinary humanities, social science, science and business perspectives to mobilize collective human action towards adapting to and mitigating the social and environmental threats of global climate change.
Challenges of Tsunami Disaster and Extreme climate Events Along Coastal Region in Asia-Pacific
NASA Astrophysics Data System (ADS)
Chaudhari, S.
2017-12-01
South Asia is more vulnerable to Geo disasters and impacts of climate changes in recent years. On 26 December 2004 massive waves triggered by an earthquake surged into coastal communities in Asia and East Africa with devastating force. Hitting Indonesia, Sri Lanka , Thailand and India hardest, the deadly waves swept more than 200 000 people to their deaths. Also in an another extreme climate change phenomenon during 2005 - 2006,causing heavy rains and flooding situation in the South Asia - Europe and Pacific region ,more than 100 million population in these regions are witnessing the social- economical and ecological risks and impacts due to climate changes and Geohazards. For mitigating geo-disasters, marine hazards and rehabilitation during post tsunami period, scientific knowledge is needed, requiring experienced research communities who can train the local population during tsunami rehabilitation. Several civil society institutions jointly started the initiatives on the problem identifications in management of risks in geo-disasters, tsunami rehabilitation ,Vulnerability and risk assessments for Geohazards etc., to investigate problems related to social-economic and ecological risks and management issues resulting from the December tsunami and Geo- disaster, to aid mitigation planning in affected areas and to educate scientists and local populations to form a basis for sustainable and economic solutions. The poster aims to assess the potential risk and hazard , technical issues, problems and damage arising from Tsunami in the Asia-pacific region in coastal geology, coastal ecosystems and coastal environmental systems . This poster deals with the status and issues of interactions between Human and Ocean Systems, Geo-risks, marine risks along coastal region of Asia- Pacific and also human influence on the earth system . The poster presentation focuses on capacity building of the local population, scientists and researchers for integration of human and ocean systems through Geohazards Studies on vulnerability and risk assessments along coastal regions. The poster presentation also focuses on building natural -social science research community for sustainable solutions adoptions and mitigations of impacts of extreme climate events on environment and ecosystems along coastal region.
Are abrupt climate changes predictable?
NASA Astrophysics Data System (ADS)
Ditlevsen, Peter
2013-04-01
It is taken for granted that the limited predictability in the initial value problem, the weather prediction, and the predictability of the statistics are two distinct problems. Lorenz (1975) dubbed this predictability of the first and the second kind respectively. Predictability of the first kind in a chaotic dynamical system is limited due to the well-known critical dependence on initial conditions. Predictability of the second kind is possible in an ergodic system, where either the dynamics is known and the phase space attractor can be characterized by simulation or the system can be observed for such long times that the statistics can be obtained from temporal averaging, assuming that the attractor does not change in time. For the climate system the distinction between predictability of the first and the second kind is fuzzy. This difficulty in distinction between predictability of the first and of the second kind is related to the lack of scale separation between fast and slow components of the climate system. The non-linear nature of the problem furthermore opens the possibility of multiple attractors, or multiple quasi-steady states. As the ice-core records show, the climate has been jumping between different quasi-stationary climates, stadials and interstadials through the Dansgaard-Oechger events. Such a jump happens very fast when a critical tipping point has been reached. The question is: Can such a tipping point be predicted? This is a new kind of predictability: the third kind. If the tipping point is reached through a bifurcation, where the stability of the system is governed by some control parameter, changing in a predictable way to a critical value, the tipping is predictable. If the sudden jump occurs because internal chaotic fluctuations, noise, push the system across a barrier, the tipping is as unpredictable as the triggering noise. In order to hint at an answer to this question, a careful analysis of the high temporal resolution NGRIP isotope record is presented. The result of the analysis points to a fundamental limitation in predictability of the third kind. Reference: P. D. Ditlevsen and S. Johnsen, "Tipping points: Early warning and wishful thinking", Geophys. Res. Lett., 37, 2010