Observations from old forests underestimate climate change effects on tree mortality.
Luo, Yong; Chen, Han Y H
2013-01-01
Understanding climate change-associated tree mortality is central to linking climate change impacts and forest structure and function. However, whether temporal increases in tree mortality are attributed to climate change or stand developmental processes remains uncertain. Furthermore, interpreting the climate change-associated tree mortality estimated from old forests for regional forests rests on an un-tested assumption that the effects of climate change are the same for young and old forests. Here we disentangle the effects of climate change and stand developmental processes on tree mortality. We show that both climate change and forest development processes influence temporal mortality increases, climate change-associated increases are significantly higher in young than old forests, and higher increases in younger forests are a result of their higher sensitivity to regional warming and drought. We anticipate our analysis to be a starting point for more comprehensive examinations of how forest ecosystems might respond to climate change.
A plant’s perspective of extremes: Terrestrial plant responses to changing climatic variability
Reyer, C.; Leuzinger, S.; Rammig, A.; Wolf, A.; Bartholomeus, R. P.; Bonfante, A.; de Lorenzi, F.; Dury, M.; Gloning, P.; Abou Jaoudé, R.; Klein, T.; Kuster, T. M.; Martins, M.; Niedrist, G.; Riccardi, M.; Wohlfahrt, G.; de Angelis, P.; de Dato, G.; François, L.; Menzel, A.; Pereira, M.
2013-01-01
We review observational, experimental and model results on how plants respond to extreme climatic conditions induced by changing climatic variability. Distinguishing between impacts of changing mean climatic conditions and changing climatic variability on terrestrial ecosystems is generally underrated in current studies. The goals of our review are thus (1) to identify plant processes that are vulnerable to changes in the variability of climatic variables rather than to changes in their mean, and (2) to depict/evaluate available study designs to quantify responses of plants to changing climatic variability. We find that phenology is largely affected by changing mean climate but also that impacts of climatic variability are much less studied but potentially damaging. We note that plant water relations seem to be very vulnerable to extremes driven by changes in temperature and precipitation and that heatwaves and flooding have stronger impacts on physiological processes than changing mean climate. Moreover, interacting phenological and physiological processes are likely to further complicate plant responses to changing climatic variability. Phenological and physiological processes and their interactions culminate in even more sophisticated responses to changing mean climate and climatic variability at the species and community level. Generally, observational studies are well suited to study plant responses to changing mean climate, but less suitable to gain a mechanistic understanding of plant responses to climatic variability. Experiments seem best suited to simulate extreme events. In models, temporal resolution and model structure are crucial to capture plant responses to changing climatic variability. We highlight that a combination of experimental, observational and /or modeling studies have the potential to overcome important caveats of the respective individual approaches. PMID:23504722
Eye tracking and climate change: How is climate literacy information processed?
NASA Astrophysics Data System (ADS)
Williams, C. C.; McNeal, K. S.
2011-12-01
The population of the Southeastern United States is perceived to be resistant to information regarding global climate change. The Climate Literacy Partnership in the Southeast (CLiPSE) project was formed to provide a resource for climate science information. As part of this project, we are evaluating the way that education materials influence the interpretation of climate change related information. At Mississippi State University, a study is being conducted examining how individuals from the Southeastern United States process climate change information and whether or not the interaction with such information impacts the interpretation of subsequent climate change related information. By observing the patterns both before and after an educational intervention, we are able to evaluate the effectiveness of the climate change information on an individual's interpretation of related information. Participants in this study view figures describing various types of climate change related information (CO2 emissions, sea levels, etc.) while their eye movements are tracked to determine a baseline for the way that they process this type of graphical data. Specifically, we are examining time spent viewing and number of fixations on critical portions of the figures prior to exposure to an educational document on climate change. Following the baseline period, we provide participants with portions of a computerized version of Climate Literacy: The Essential Principles of Climate Sciences that the participants read at their own pace while their eye movements are monitored. Participants are told that they will be given a test on the material after reading the resource. After reading the excerpt, participants are presented with a new set of climate change related figures to interpret (with eye tracking) along with a series of questions regarding information contained in the resource. We plan to evaluate changes that occur in the way that climate change related information is processed based on reading a commonly provided climate change resource. The expectation is that participants will process the figures differently following reading the pamphlet. In addition, we will evaluate which aspects of the resource tend to best correlate with the changes in figure processing.
Adapting to climate change at Olympic National Forest and Olympic National Park
Halofsky, Jessica E.; Peterson, David L.; O'Halloran, Kathy A.; Hoffman, Catherine H.
2011-01-01
Climate change presents a major challenge to natural resource managers both because of the magnitude of potential effects of climate change on ecosystem structure, processes, and function, and because of the uncertainty associated with those potential ecological effects. Concrete ways to adapt to climate change are needed to help natural resource managers take the first steps to incorporate climate change into management and take advantage of opportunities to counteract the negative effects of climate change. We began a climate change adaptation case study at Olympic National Forest (ONF) in partnership with Olympic National Park (ONP) to determine how to adapt management of federal lands on the Olympic Peninsula, Washington, to climate change. The case study began in the summer of 2008 and continued for 1½ years. The case study process involved science-based sensitivity assessments, review of management activities and constraints, and adaptation workshops in each of four focus areas (hydrology and roads, fish, vegetation, and wildlife). The process produced adaptation options for ONF and ONP, and illustrated the utility of place-based vulnerability assessment and science-management workshops in adapting to climate change. The case study process provides an example for other national forests, national parks, and natural resource agencies of how federal land management units can collaborate in the initial stages of climate change adaptation. Many of the ideas generated through this process can potentially be applied in other locations and in other agencies
Hydrologic refugia, plants, and climate change.
McLaughlin, Blair C; Ackerly, David D; Klos, P Zion; Natali, Jennifer; Dawson, Todd E; Thompson, Sally E
2017-08-01
Climate, physical landscapes, and biota interact to generate heterogeneous hydrologic conditions in space and over time, which are reflected in spatial patterns of species distributions. As these species distributions respond to rapid climate change, microrefugia may support local species persistence in the face of deteriorating climatic suitability. Recent focus on temperature as a determinant of microrefugia insufficiently accounts for the importance of hydrologic processes and changing water availability with changing climate. Where water scarcity is a major limitation now or under future climates, hydrologic microrefugia are likely to prove essential for species persistence, particularly for sessile species and plants. Zones of high relative water availability - mesic microenvironments - are generated by a wide array of hydrologic processes, and may be loosely coupled to climatic processes and therefore buffered from climate change. Here, we review the mechanisms that generate mesic microenvironments and their likely robustness in the face of climate change. We argue that mesic microenvironments will act as species-specific refugia only if the nature and space/time variability in water availability are compatible with the ecological requirements of a target species. We illustrate this argument with case studies drawn from California oak woodland ecosystems. We posit that identification of hydrologic refugia could form a cornerstone of climate-cognizant conservation strategies, but that this would require improved understanding of climate change effects on key hydrologic processes, including frequently cryptic processes such as groundwater flow. © 2017 John Wiley & Sons Ltd.
Experimentation with a Socio-Constructivist Process for Climate Change Education
ERIC Educational Resources Information Center
Pruneau, Diane; Gravel, Helene; Bourque, Wendy; Langis, Joanne
2003-01-01
A socio-constructivist and experiential process for climate change education was experimented within two coastal communities of Eastern Canada with 39 students 13 and 14 years of age. The pedagogical process, based on local observation of climate change, Duit's conceptual change theory (1999) and experiential learning, aimed for the improvement of…
Comprehension of climate change and environmental attitudes across the lifespan.
Degen, C; Kettner, S E; Fischer, H; Lohse, J; Funke, J; Schwieren, C; Goeschl, T; Schröder, J
2014-08-01
Given the coincidence of the demographic change and climate change in the upcoming decades the aging voter gains increasing importance in climate change mitigation and adaptation processes. It is generally assumed that information status and comprehension of complex processes underlying climate change are prerequisites for adopting pro-environmental attitudes and taking pro-environmental actions. In a cross-sectional study, we investigated in how far (1) environmental knowledge and comprehension of feedback processes underlying climate change and (2) pro-environmental attitudes change as a function of age. Our sample consisted of 92 participants aged 25-75 years (mean age 49.4 years, SD 17.0). Age was negatively related to comprehension of system structures inherent to climate change, but positively associated with level of fear of consequences and anxiousness towards climate change. No significant relations were found between environmental knowledge and pro-environmental attitude. These results indicate that, albeit understanding of relevant structures of the climate system is less present in older age, age is not a limiting factor for being engaged in the complex dilemma of climate change. Results bear implications for the communication of climate change and pro-environmental actions in aging societies.
Social Climate Science: A New Vista for Psychological Science.
Pearson, Adam R; Schuldt, Jonathon P; Romero-Canyas, Rainer
2016-09-01
The recent Paris Agreement to limit greenhouse gas emissions, adopted by 195 nations at the 2015 United Nations Climate Change Conference, signaled unprecedented commitment by world leaders to address the human social aspects of climate change. Indeed, climate change increasingly is recognized by scientists and policymakers as a social issue requiring social solutions. However, whereas psychological research on intrapersonal and some group-level processes (e.g., political polarization of climate beliefs) has flourished, research into other social processes-such as an understanding of how nonpartisan social identities, cultural ideologies, and group hierarchies shape public engagement on climate change-has received substantially less attention. In this article, we take stock of current psychological approaches to the study of climate change to explore what is "social" about climate change from the perspective of psychology. Drawing from current interdisciplinary perspectives and emerging empirical findings within psychology, we identify four distinct features of climate change and three sets of psychological processes evoked by these features that are fundamentally social and shape both individual and group responses to climate change. Finally, we consider how a more nuanced understanding of the social underpinnings of climate change can stimulate new questions and advance theory within psychology. © The Author(s) 2016.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernst, Kathleen M; Van Riemsdijk, Dr. Micheline
This article studies the participation of stakeholders in climate change decision-making in Alaska s National Parks. We place stakeholder participation within literatures on environmental and climate change decision-making. We conducted participant observation and interviews in two planning workshops to investigate the decision-making process, and our findings are three-fold. First, the inclusion of diverse stakeholders expanded climate change decision-making beyond National Park Service (NPS) institutional constraints. Second, workshops of the Climate Change Scenario Planning Project (CCSPP) enhanced institutional understandings of participants attitudes towards climate change and climate change decision-making. Third, the geographical context of climate change influences the decisionmaking process. Asmore » the first regional approach to climate change decision-making within the NPS, the CCSPP serves as a model for future climate change planning in public land agencies. This study shows how the participation of stakeholders can contribute to robust decisions, may move climate change decision-making beyond institutional barriers, and can provide information about attitudes towards climate change decision-making.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernst, Kathleen M; Van Riemsdijk, Dr. Micheline
This article studies the participation of stakeholders in climate change decision-making in Alaska s National Parks. We place stakeholder participation within literatures on environmental and climate change decision-making. We conducted participant observation and interviews in two planning workshops to investigate the decision-making process, and our findings are three-fold. First, the inclusion of diverse stakeholders expanded climate change decision-making beyond National Park Service (NPS) institutional constraints. Second, workshops of the Climate Change Scenario Planning Project (CCSPP) enhanced institutional understandings of participants attitudes towards climate change and climate change decision-making. Third, the geographical context of climate change influences the decision-making process. Asmore » the first regional approach to climate change decision-making within the NPS, the CCSPP serves as a model for future climate change planning in public land agencies. This study shows how the participation of stakeholders can contribute to robust decisions, may move climate change decision-making beyond institutional barriers, and can provide information about attitudes towards climate change decision-making.« less
Forest ecosystems, disturbance, and climate change in Washington State, USA
Jeremy S. Littell; Elaine E. Oneil; Donald McKenzie; Jeffrey A. Hicke; James A. Lutz; Robert A. Norheim; Marketa M. Elsner
2010-01-01
Climatic change is likely to affect Pacific Northwest (PNW) forests in several important ways. In this paper, we address the role of climate in four forest ecosystem processes and project the effects of future climatic change on these processes across Washington State. First, we relate Douglas-fir growth to climatic limitation and suggest that where Douglas-fir is...
Adapting to and coping with the threat and impacts of climate change.
Reser, Joseph P; Swim, Janet K
2011-01-01
This article addresses the nature and challenge of adaptation in the context of global climate change. The complexity of "climate change" as threat, environmental stressor, risk domain, and impacting process with dramatic environmental and human consequences requires a synthesis of perspectives and models from diverse areas of psychology to adequately communicate and explain how a more psychological framing of the human dimensions of global environmental change can greatly inform and enhance effective and collaborative climate change adaptation and mitigation policies and research. An integrative framework is provided that identifies and considers important mediating and moderating parameters and processes relating to climate change adaptation, with particular emphasis given to environmental stress and stress and coping perspectives. This psychological perspective on climate change adaptation highlights crucial aspects of adaptation that have been neglected in the arena of climate change science. Of particular importance are intra-individual and social "psychological adaptation" processes that powerfully mediate public risk perceptions and understandings, effective coping responses and resilience, overt behavioral adjustment and change, and psychological and social impacts. This psychological window on climate change adaptation is arguably indispensable to genuinely multidisciplinary and interdisciplinary research and policy initiatives addressing the impacts of climate change.
Some guidelines for helping natural resources adapt to climate change
Baron, Jill S.; Julius, Susan Herrod; West, Jordan M.; Joyce, Linda A.; Blate, Geoffrey; Peterson, Charles H.; Palmer, Margaret; Keller, Brian D.; Kareiva, Peter; Scott, J. Michael; Griffith, Brad
2008-01-01
The changes occurring in mountain regions are an epitome of climate change. The dramatic shrinkage of major glaciers over the past century – and especially in the last 30 years – is one of several iconic images that have come to symbolize climate change. Climate creates the context for ecosystems, and climate variables strongly influence the structure, composition, and processes that characterize distinct ecosystems. Climate change, therefore, is having direct and indirect effects on species attributes, ecological interactions, and ecosystem processes. Because changes in the climate system will continue regardless of emissions mitigation, management strategies to enhance the resilience of ecosystems will become increasingly important. It is essential that management responses to climate change proceed using the best available science despite uncertainties associated with the future path of climate change, the response of ecosystems to climate effects, and the effects of management. Given these uncertainties, management adaptation will require flexibility to reflect our growing understanding of climate change impacts and management effectiveness.
Modeling the influence of climate change on watershed systems: Adaptation through targeted practices
NASA Astrophysics Data System (ADS)
Dudula, John; Randhir, Timothy O.
2016-10-01
Climate change may influence hydrologic processes of watersheds (IPCC, 2013) and increased runoff may cause flooding, eroded stream banks, widening of stream channels, increased pollutant loading, and consequently impairment of aquatic life. The goal of this study was to quantify the potential impacts of climate change on watershed hydrologic processes and to evaluate scale and effectiveness of management practices for adaptation. We simulate baseline watershed conditions using the Hydrological Simulation Program Fortran (HSPF) simulation model to examine the possible effects of changing climate on watershed processes. We also simulate the effects of adaptation and mitigation through specific best management strategies for various climatic scenarios. With continuing low-flow conditions and vulnerability to climate change, the Ipswich watershed is the focus of this study. We quantify fluxes in runoff, evapotranspiration, infiltration, sediment load, and nutrient concentrations under baseline and climate change scenarios (near and far future). We model adaptation options for mitigating climate effects on watershed processes using bioretention/raingarden Best Management Practices (BMPs). It was observed that climate change has a significant impact on watershed runoff and carefully designed and maintained BMPs at subwatershed scale can be effective in mitigating some of the problems related to stormwater runoff. Policy options include implementation of BMPs through education and incentives for scale-dependent and site specific bioretention units/raingardens to increase the resilience of the watershed system to current and future climate change.
Climate change effects on the Baltic Sea borderland between land and sea.
Strandmark, Alma; Bring, Arvid; Cousins, Sara A O; Destouni, Georgia; Kautsky, Hans; Kolb, Gundula; de la Torre-Castro, Maricela; Hambäck, Peter A
2015-01-01
Coastal habitats are situated on the border between land and sea, and ecosystem structure and functioning is influenced by both marine and terrestrial processes. Despite this, most scientific studies and monitoring are conducted either with a terrestrial or an aquatic focus. To address issues concerning climate change impacts in coastal areas, a cross-ecosystem approach is necessary. Since habitats along the Baltic coastlines vary in hydrology, natural geography, and ecology, climate change projections for Baltic shore ecosystems are bound to be highly speculative. Societal responses to climate change in the Baltic coastal ecosystems should have an ecosystem approach and match the biophysical realities of the Baltic Sea area. Knowledge about ecosystem processes and their responses to a changing climate should be integrated within the decision process, both locally and nationally, in order to increase the awareness of, and to prepare for climate change impacts in coastal areas of the Baltic Sea.
Incorporating Student Activities into Climate Change Education
NASA Astrophysics Data System (ADS)
Steele, H.; Kelly, K.; Klein, D.; Cadavid, A. C.
2013-12-01
Under a NASA grant, Mathematical and Geospatial Pathways to Climate Change Education, students at California State University, Northridge integrated Geographic Information Systems (GIS), remote sensing, satellite data technologies, and climate modelling into the study of global climate change under a Pathway for studying the Mathematics of Climate Change (PMCC). The PMCC, which is an interdisciplinary option within the BS in Applied Mathematical Sciences, consists of courses offered by the departments of Mathematics, Physics, and Geography and is designed to prepare students for careers and Ph.D. programs in technical fields relevant to global climate change. Under this option students are exposed to the science, mathematics, and applications of climate change science through a variety of methods including hands-on experience with computer modeling and image processing software. In the Geography component of the program, ESRI's ArcGIS and ERDAS Imagine mapping, spatial analysis and image processing software were used to explore NASA satellite data to examine the earth's atmosphere, hydrosphere and biosphere in areas that are affected by climate change or affect climate. These technology tools were incorporated into climate change and remote sensing courses to enhance students' knowledge and understanding of climate change through hands-on application of image processing techniques to NASA data. Several sets of exercises were developed with specific learning objectives in mind. These were (1) to increase student understanding of climate change and climate change processes; (2) to develop student skills in understanding, downloading and processing satellite data; (3) to teach remote sensing technology and GIS through applications to climate change; (4) to expose students to climate data and methods they can apply to solve real world problems and incorporate in future research projects. In the Math and Physics components of the course, students learned about atmospheric circulation with applications of the Lorenz model, explored the land-sea breeze problem with the Dynamics and Thermodynamics Circulation Model (DTDM), and developed simple radiative transfer models. Class projects explored the effects of varying the content of CO2 and CH4 in the atmosphere, as well as the properties of paleoclimates in atmospheric simulations using EdGCM. Initial assessment of student knowledge, attitudes, and behaviors associated with these activities, particularly about climate change, was measured. Pre- and post-course surveys provided student perspectives about the courses and their learning about remote sensing and climate change concepts. Student performance on the tutorials and course projects evaluated students' ability to learn and apply their knowledge about climate change and skills with remote sensing to assigned problems or proposed projects of their choice. Survey and performance data illustrated that the exercises were successful in meeting their intended learning objectives as well as opportunities for further refinement and expansion.
Atmospheric Composition Change: Climate-Chemistry Interactions
NASA Technical Reports Server (NTRS)
Isaksen, I.S.A.; Granier, C.; Myhre, G.; Bernsten, T. K.; Dalsoren, S. B.; Gauss, S.; Klimont, Z.; Benestad, R.; Bousquet, P.; Collins, W.;
2011-01-01
Chemically active climate compounds are either primary compounds such as methane (CH4), removed by oxidation in the atmosphere, or secondary compounds such as ozone (O3), sulfate and organic aerosols, formed and removed in the atmosphere. Man-induced climate-chemistry interaction is a two-way process: Emissions of pollutants change the atmospheric composition contributing to climate change through the aforementioned climate components, and climate change, through changes in temperature, dynamics, the hydrological cycle, atmospheric stability, and biosphere-atmosphere interactions, affects the atmospheric composition and oxidation processes in the troposphere. Here we present progress in our understanding of processes of importance for climate-chemistry interactions, and their contributions to changes in atmospheric composition and climate forcing. A key factor is the oxidation potential involving compounds such as O3 and the hydroxyl radical (OH). Reported studies represent both current and future changes. Reported results include new estimates of radiative forcing based on extensive model studies of chemically active climate compounds such as O3, and of particles inducing both direct and indirect effects. Through EU projects such as ACCENT, QUANTIFY, and the AEROCOM project, extensive studies on regional and sector-wise differences in the impact on atmospheric distribution are performed. Studies have shown that land-based emissions have a different effect on climate than ship and aircraft emissions, and different measures are needed to reduce the climate impact. Several areas where climate change can affect the tropospheric oxidation process and the chemical composition are identified. This can take place through enhanced stratospheric-tropospheric exchange of ozone, more frequent periods with stable conditions favouring pollution build up over industrial areas, enhanced temperature-induced biogenic emissions, methane releases from permafrost thawing, and enhanced concentration through reduced biospheric uptake. During the last 510 years, new observational data have been made available and used for model validation and the study of atmospheric processes. Although there are significant uncertainties in the modelling of composition changes, access to new observational data has improved modelling capability. Emission scenarios for the coming decades have a large uncertainty range, in particular with respect to regional trends, leading to a significant uncertainty range in estimated regional composition changes and climate impact.
NASA Astrophysics Data System (ADS)
Zebisch, Marc; Schneiderbauer, Stefan; Petitta, Marcello
2015-04-01
In the last decade the scope of climate change science has broadened significantly. 15 years ago the focus was mainly on understanding climate change, providing climate change scenarios and giving ideas about potential climate change impacts. Today, adaptation to climate change has become an increasingly important field of politics and one role of science is to inform and consult this process. Therefore, climate change science is not anymore focusing on data driven approaches only (such as climate or climate impact models) but is progressively applying and relying on qualitative approaches including opinion and expertise acquired through interactive processes with local stakeholders and decision maker. Furthermore, climate change science is facing the challenge of normative questions, such us 'how important is a decrease of yield in a developed country where agriculture only represents 3% of the GDP and the supply with agricultural products is strongly linked to global markets and less depending on local production?'. In this talk we will present examples from various applied research and consultancy projects on climate change vulnerabilities including data driven methods (e.g. remote sensing and modelling) to semi-quantitative and qualitative assessment approaches. Furthermore, we will discuss bottlenecks, pitfalls and opportunities in transferring climate change science to policy and decision maker oriented climate services.
NASA Technical Reports Server (NTRS)
Taylor, Patrick C.; Baker, Noel C.
2015-01-01
Earth's climate is changing and will continue to change into the foreseeable future. Expected changes in the climatological distribution of precipitation, surface temperature, and surface solar radiation will significantly impact agriculture. Adaptation strategies are, therefore, required to reduce the agricultural impacts of climate change. Climate change projections of precipitation, surface temperature, and surface solar radiation distributions are necessary input for adaption planning studies. These projections are conventionally constructed from an ensemble of climate model simulations (e.g., the Coupled Model Intercomparison Project 5 (CMIP5)) as an equal weighted average, one model one vote. Each climate model, however, represents the array of climate-relevant physical processes with varying degrees of fidelity influencing the projection of individual climate variables differently. Presented here is a new approach, termed the "Intelligent Ensemble, that constructs climate variable projections by weighting each model according to its ability to represent key physical processes, e.g., precipitation probability distribution. This approach provides added value over the equal weighted average method. Physical process metrics applied in the "Intelligent Ensemble" method are created using a combination of NASA and NOAA satellite and surface-based cloud, radiation, temperature, and precipitation data sets. The "Intelligent Ensemble" method is applied to the RCP4.5 and RCP8.5 anthropogenic climate forcing simulations within the CMIP5 archive to develop a set of climate change scenarios for precipitation, temperature, and surface solar radiation in each USDA Farm Resource Region for use in climate change adaptation studies.
Seidl, Rupert; Aggestam, Filip; Rammer, Werner; Blennow, Kristina; Wolfslehner, Bernhard
2016-05-01
Climate vulnerability of managed forest ecosystems is not only determined by ecological processes but also influenced by the adaptive capacity of forest managers. To better understand adaptive behaviour, we conducted a questionnaire study among current and future forest managers (i.e. active managers and forestry students) in Austria. We found widespread belief in climate change (94.7 % of respondents), and no significant difference between current and future managers. Based on intended responses to climate-induced ecosystem changes, we distinguished four groups: highly sensitive managers (27.7 %), those mainly sensitive to changes in growth and regeneration processes (46.7 %), managers primarily sensitive to regeneration changes (11.2 %), and insensitive managers (14.4 %). Experiences and beliefs with regard to disturbance-related tree mortality were found to particularly influence a manager's sensitivity to climate change. Our findings underline the importance of the social dimension of climate change adaptation, and suggest potentially strong adaptive feedbacks between ecosystems and their managers.
ERIC Educational Resources Information Center
Dal, Burçkin; Alper, Umut; Özdem-Yilmaz, Yasemin; Öztürk, Nilay; Sönmez, Duygu
2015-01-01
Public awareness of the negative effects of climate change is vital since it leads to collective action for prevention and adaptation. However, investigations on to what extent people are aware of the climate change issue are rare in the literature. The present study reported the adaptation process of awareness to climate change questionnaire into…
Climate change effects on watershed hydrological and biogeochemical processes
Projected changes in climate are widely expected to alter watershed processes. However, the extent of these changes is difficult to predict because complex interactions among affected hydrological and biogeochemical processes will likely play out over many decades and spatial sc...
We are pursuing the ambitious goal of understanding how complex terrain influences the responses of carbon and water cycle processes to climate variability and climate change. Our studies take place in H.J. Andrews Experimental Forest, an LTER (Long Term Ecological Research) site...
NASA Astrophysics Data System (ADS)
Jørstad, Hanne; Webersik, Christian
2016-12-01
In recent years, research on climate change and human security has received much attention among policy makers and academia alike. Communities in the Global South that rely on an intact resource base and struggle with poverty, existing inequalities and historical injustices will especially be affected by predicted changes in temperature and precipitation. The objective of this article is to better understand under what conditions local communities can adapt to anticipated impacts of climate change. The empirical part of the paper answers the question as to what extent local women engaged in fish processing in the Chilwa Basin in Malawi have experienced climate change and how they are affected by it. The article assesses an adaptation project designed to make those women more resilient to a warmer and more variable climate. The research results show that marketing and improving fish processing as strategies to adapt to climate change have their limitations. The study concludes that livelihood diversification can be a more effective strategy for Malawian women to adapt to a more variable and unpredictable climate rather than exclusively relying on a resource base that is threatened by climate change.
Forests and climate change: forcings, feedbacks, and the climate benefits of forests.
Bonan, Gordon B
2008-06-13
The world's forests influence climate through physical, chemical, and biological processes that affect planetary energetics, the hydrologic cycle, and atmospheric composition. These complex and nonlinear forest-atmosphere interactions can dampen or amplify anthropogenic climate change. Tropical, temperate, and boreal reforestation and afforestation attenuate global warming through carbon sequestration. Biogeophysical feedbacks can enhance or diminish this negative climate forcing. Tropical forests mitigate warming through evaporative cooling, but the low albedo of boreal forests is a positive climate forcing. The evaporative effect of temperate forests is unclear. The net climate forcing from these and other processes is not known. Forests are under tremendous pressure from global change. Interdisciplinary science that integrates knowledge of the many interacting climate services of forests with the impacts of global change is necessary to identify and understand as yet unexplored feedbacks in the Earth system and the potential of forests to mitigate climate change.
NASA Astrophysics Data System (ADS)
Rangwala, I.; Rondeau, R.; Wyborn, C.; Clifford, K. R.; Travis, W.
2015-12-01
Locally relevant projections of climate change provide critical insights for natural resource managers seeking to adapt their management activities to climate change in the context of uncertainty. To provide such information, we developed climate scenarios, in form of narratives and quantitative information, of future climate change and its impacts in southwestern Colorado. This information was intended to provide detailed insights into the range of changes that natural resource managers may face in the future. The scenarios were developed in an iterative process through interactions among the ecologists, social and climate scientists. In our scenario development process, climate uncertainty is acknowledged by having multiple scenarios, where each scenario is regarded as a storyline with equal likelihood as another scenario. We quantified changes in several decision relevant climate and ecological responses based on our best available understanding and provided a tight storyline for each scenario to facilitate (a) a more augmented use of scientific information in a decision-making process, (b) differential responses from stakeholders across the different scenarios, and (c) identification of strategies that could work across these multiple scenarios. Here, we discuss the process of selecting the scenarios, quantifying climate and ecological responses, and the criteria for building the narrative for each scenario. We also discuss the process by which these scenarios get used, and provide an assessment of their effectiveness and users' feedbacks that could inform the future development of these tools and processes. This research involvement and collaboration occurred, in part, as a result of the PACE Fellowship Program that is associated with NOAA Climate Program Office and the U.S. CLIVAR community.
Development of risk-based air quality management strategies under impacts of climate change.
Liao, Kuo-Jen; Amar, Praveen; Tagaris, Efthimios; Russell, Armistead G
2012-05-01
Climate change is forecast to adversely affect air quality through perturbations in meteorological conditions, photochemical reactions, and precursor emissions. To protect the environment and human health from air pollution, there is an increasing recognition of the necessity of developing effective air quality management strategies under the impacts of climate change. This paper presents a framework for developing risk-based air quality management strategies that can help policy makers improve their decision-making processes in response to current and future climate change about 30-50 years from now. Development of air quality management strategies under the impacts of climate change is fundamentally a risk assessment and risk management process involving four steps: (1) assessment of the impacts of climate change and associated uncertainties; (2) determination of air quality targets; (3) selections of potential air quality management options; and (4) identification of preferred air quality management strategies that minimize control costs, maximize benefits, or limit the adverse effects of climate change on air quality when considering the scarcity of resources. The main challenge relates to the level of uncertainties associated with climate change forecasts and advancements in future control measures, since they will significantly affect the risk assessment results and development of effective air quality management plans. The concept presented in this paper can help decision makers make appropriate responses to climate change, since it provides an integrated approach for climate risk assessment and management when developing air quality management strategies. Development of climate-responsive air quality management strategies is fundamentally a risk assessment and risk management process. The risk assessment process includes quantification of climate change impacts on air quality and associated uncertainties. Risk management for air quality under the impacts of climate change includes determination of air quality targets, selections of potential management options, and identification of effective air quality management strategies through decision-making models. The risk-based decision-making framework can also be applied to develop climate-responsive management strategies for the other environmental dimensions and assess costs and benefits of future environmental management policies.
Elise Pendall; Lindsey Rustad; Josh Schimel
2008-01-01
Belowground processes, including root production and exudation, microbial activity and community dynamics, and biogeochemical cycling interact to help regulate climate change. Feedbacks associated with these processes, such as warming-enhanced decomposition rates, give rise to major uncertainties in predictions of future climate. Uncertainties associated with these...
Managing Climate Change Refugia for Climate Adaptation ...
The concept of refugia has long been studied from theoretical and paleontological perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, locations that may be unusually buffered from climate change effects so as to increase persistence of valued resources. Here we distinguish between paleoecological and contemporary viewpoints, characterize physical and ecological processes that create and maintain climate change refugia, summarize the process of identifying and mapping them, and delineate how refugia can fit into the existing framework of natural resource management. We also suggest three primary courses of action at these sites: prioritization, protection, and propagation. Although not a panacea, managing climate change refugia can be an important adaptation option for conserving valuable resources in the face of ongoing and future climate change. “In a nutshell” (100 words) • Climate change refugia are defined as areas relatively buffered from contemporary climate change, enabling persistence of valued physical, ecological, and cultural resources. • Refugia can be incorporated as key components of a climate adaptation strategy because their prioritization by management may enable their associated resources to persist locally and eventually spread to future suitable habitat. • Steps for
Amy K. Snover,; Nathan J. Mantua,; Littell, Jeremy; Michael A. Alexander,; Michelle M. McClure,; Janet Nye,
2013-01-01
Increased concern over climate change is demonstrated by the many efforts to assess climate effects and develop adaptation strategies. Scientists, resource managers, and decision makers are increasingly expected to use climate information, but they struggle with its uncertainty. With the current proliferation of climate simulations and downscaling methods, scientifically credible strategies for selecting a subset for analysis and decision making are needed. Drawing on a rich literature in climate science and impact assessment and on experience working with natural resource scientists and decision makers, we devised guidelines for choosing climate-change scenarios for ecological impact assessment that recognize irreducible uncertainty in climate projections and address common misconceptions about this uncertainty. This approach involves identifying primary local climate drivers by climate sensitivity of the biological system of interest; determining appropriate sources of information for future changes in those drivers; considering how well processes controlling local climate are spatially resolved; and selecting scenarios based on considering observed emission trends, relative importance of natural climate variability, and risk tolerance and time horizon of the associated decision. The most appropriate scenarios for a particular analysis will not necessarily be the most appropriate for another due to differences in local climate drivers, biophysical linkages to climate, decision characteristics, and how well a model simulates the climate parameters and processes of interest. Given these complexities, we recommend interaction among climate scientists, natural and physical scientists, and decision makers throughout the process of choosing and using climate-change scenarios for ecological impact assessment.
Rachel A. Loehman; Robert E. Keane; Lisa M. Holsinger; Zhiwei Wu
2017-01-01
Context: Interactions among disturbances, climate, and vegetation influence landscape patterns and ecosystem processes. Climate changes, exotic invasions, beetle outbreaks, altered fire regimes, and human activities may interact to produce landscapes that appear and function beyond historical analogs. Objectives We used the mechanistic...
Forest ecosystems: Vegetation, disturbance, and economics: Chapter 5
Littell, Jeremy S.; Hicke, Jeffrey A.; Shafer, Sarah L.; Capalbo, Susan M.; Houston, Laurie L.; Glick, Patty
2013-01-01
Forests cover about 47% of the Northwest (NW–Washington, Oregon, and Idaho) (Smith et al. 2009, fig. 5.1, table 5.1). The impacts of current and future climate change on NW forest ecosystems are a product of the sensitivities of ecosystem processes to climate and the degree to which humans depend on and interact with those systems. Forest ecosystem structure and function, particularly in relatively unmanaged forests where timber harvest and other land use have smaller effects, is sensitive to climate change because climate has a strong influence on ecosystem processes. Climate can affect forest structure directly through its control of plan physiology and life history (establishment, individual growth, productivity, and morality) or indirectly through its control of disturbance (fire, insects, disease). As climate changes, many forest processes will be affected, altering ecosystem services such as timber production and recreation. These changes have socioeconomic implications (e.g. for timber economies) and will require changes to current management of forests. Climate and management will interact to determine the forests of the future, and the scientific basis for adaptation to climate change in forests thus depends significantly on how forests will be affected.
Wibeck, Victoria
2014-02-01
This paper explores social representations of climate change, investigating how climate change is discussed by Swedish laypeople interacting in focus group interviews. The analysis focuses on prototypical examples and metaphors, which were key devices for objectifying climate change representations. The paper analyzes how the interaction of focus group participants with other speakers, ideas, arguments, and broader social representations shaped their representations of climate change. Climate change was understood as a global but distant issue with severe consequences. There was a dynamic tension between representations of climate change as a gradual vs. unpredictable process. Implications for climate change communication are discussed.
Climate Change Vulnerability of Agro-Ecosystems: Does socio-economic factors matters?
NASA Astrophysics Data System (ADS)
Surendran Nair, S.; Preston, B. L.; King, A. W.; Mei, R.; Post, W. M.
2013-12-01
Climate variability and change has direct impacts on agriculture. Despite continual adaptation to climate as well as gains in technology innovation and adoption, agriculture is still vulnerable to changes in temperature and precipitation expected in coming decades. Generally, researchers use two major methodologies to understand the vulnerability of agro-ecosystems to climate change: process-based crop models and empirical models. However, these models are not yet designed to capture the influence of socioeconomic systems on agro-ecosystem processes and outcomes.. However, socioeconomic processes are an important factor driving agro-ecological responses to biophysical processes (climate, topography and soil), because of the role of human agency in mediating the response of agro-ecosystems to climate. We have developed a framework that integrates socioeconomic and biophysical characteristics of agro-ecosystems using cluster analysis and GIS tools. This framework has been applied to the U.S. Southeast to define unique socio-ecological domains for agriculture. The results demonstrate that socioeconomic characteristics are an important factor influencing agriculture production. These results suggest that the lack of attention to socioeconomic conditions and human agency in agro-ecological modeling creates a potential bias with respect to the representation of climate change impacts.
Appropriate technology and climate change adaptation
NASA Astrophysics Data System (ADS)
Bandala, Erick R.; Patiño-Gomez, Carlos
2016-02-01
Climate change is emerging as the greatest significant environmental problem for the 21st Century and the most important global challenge faced by human kind. Based on evidence recognized by the international scientific community, climate change is already an unquestionable reality, whose first effects are beginning to be measured. Available climate projections and models can assist in anticipating potential far-reaching consequences for development processes. Climatic transformations will impact the environment, biodiversity and water resources, putting several productive processes at risk; and will represent a threat to public health and water availability in quantity and quality.
The next generation of scenarios for climate change research and assessment.
Moss, Richard H; Edmonds, Jae A; Hibbard, Kathy A; Manning, Martin R; Rose, Steven K; van Vuuren, Detlef P; Carter, Timothy R; Emori, Seita; Kainuma, Mikiko; Kram, Tom; Meehl, Gerald A; Mitchell, John F B; Nakicenovic, Nebojsa; Riahi, Keywan; Smith, Steven J; Stouffer, Ronald J; Thomson, Allison M; Weyant, John P; Wilbanks, Thomas J
2010-02-11
Advances in the science and observation of climate change are providing a clearer understanding of the inherent variability of Earth's climate system and its likely response to human and natural influences. The implications of climate change for the environment and society will depend not only on the response of the Earth system to changes in radiative forcings, but also on how humankind responds through changes in technology, economies, lifestyle and policy. Extensive uncertainties exist in future forcings of and responses to climate change, necessitating the use of scenarios of the future to explore the potential consequences of different response options. To date, such scenarios have not adequately examined crucial possibilities, such as climate change mitigation and adaptation, and have relied on research processes that slowed the exchange of information among physical, biological and social scientists. Here we describe a new process for creating plausible scenarios to investigate some of the most challenging and important questions about climate change confronting the global community.
Monitoring and Modeling the Tibetan Plateau's climate system and its impact on East Asia.
Ma, Yaoming; Ma, Weiqiang; Zhong, Lei; Hu, Zeyong; Li, Maoshan; Zhu, Zhikun; Han, Cunbo; Wang, Binbin; Liu, Xin
2017-03-13
The Tibetan Plateau is an important water source in Asia. As the "Third Pole" of the Earth, the Tibetan Plateau has significant dynamic and thermal effects on East Asian climate patterns, the Asian monsoon process and atmospheric circulation in the Northern Hemisphere. However, little systematic knowledge is available regarding the changing climate system of the Tibetan Plateau and the mechanisms underlying its impact on East Asia. This study was based on "water-cryosphere-atmosphere-biology" multi-sphere interactions, primarily considering global climate change in relation to the Tibetan Plateau -East Asia climate system and its mechanisms. This study also analyzed the Tibetan Plateau to clarify global climate change by considering multi-sphere energy and water processes. Additionally, the impacts of climate change in East Asia and the associated impact mechanisms were revealed, and changes in water cycle processes and water conversion mechanisms were studied. The changes in surface thermal anomalies, vegetation, local circulation and the atmospheric heat source on the Tibetan Plateau were studied, specifically, their effects on the East Asian monsoon and energy balance mechanisms. Additionally, the relationships between heating mechanisms and monsoon changes were explored.
Monitoring and Modeling the Tibetan Plateau’s climate system and its impact on East Asia
Ma, Yaoming; Ma, Weiqiang; Zhong, Lei; Hu, Zeyong; Li, Maoshan; Zhu, Zhikun; Han, Cunbo; Wang, Binbin; Liu, Xin
2017-01-01
The Tibetan Plateau is an important water source in Asia. As the “Third Pole” of the Earth, the Tibetan Plateau has significant dynamic and thermal effects on East Asian climate patterns, the Asian monsoon process and atmospheric circulation in the Northern Hemisphere. However, little systematic knowledge is available regarding the changing climate system of the Tibetan Plateau and the mechanisms underlying its impact on East Asia. This study was based on “water-cryosphere-atmosphere-biology” multi-sphere interactions, primarily considering global climate change in relation to the Tibetan Plateau -East Asia climate system and its mechanisms. This study also analyzed the Tibetan Plateau to clarify global climate change by considering multi-sphere energy and water processes. Additionally, the impacts of climate change in East Asia and the associated impact mechanisms were revealed, and changes in water cycle processes and water conversion mechanisms were studied. The changes in surface thermal anomalies, vegetation, local circulation and the atmospheric heat source on the Tibetan Plateau were studied, specifically, their effects on the East Asian monsoon and energy balance mechanisms. Additionally, the relationships between heating mechanisms and monsoon changes were explored. PMID:28287648
Exploring the implication of climate process uncertainties within the Earth System Framework
NASA Astrophysics Data System (ADS)
Booth, B.; Lambert, F. H.; McNeal, D.; Harris, G.; Sexton, D.; Boulton, C.; Murphy, J.
2011-12-01
Uncertainties in the magnitude of future climate change have been a focus of a great deal of research. Much of the work with General Circulation Models has focused on the atmospheric response to changes in atmospheric composition, while other processes remain outside these frameworks. Here we introduce an ensemble of new simulations, based on an Earth System configuration of HadCM3C, designed to explored uncertainties in both physical (atmospheric, oceanic and aerosol physics) and carbon cycle processes, using perturbed parameter approaches previously used to explore atmospheric uncertainty. Framed in the context of the climate response to future changes in emissions, the resultant future projections represent significantly broader uncertainty than existing concentration driven GCM assessments. The systematic nature of the ensemble design enables interactions between components to be explored. For example, we show how metrics of physical processes (such as climate sensitivity) are also influenced carbon cycle parameters. The suggestion from this work is that carbon cycle processes represent a comparable contribution to uncertainty in future climate projections as contributions from atmospheric feedbacks more conventionally explored. The broad range of climate responses explored within these ensembles, rather than representing a reason for inaction, provide information on lower likelihood but high impact changes. For example while the majority of these simulations suggest that future Amazon forest extent is resilient to the projected climate changes, a small number simulate dramatic forest dieback. This ensemble represents a framework to examine these risks, breaking them down into physical processes (such as ocean temperature drivers of rainfall change) and vegetation processes (where uncertainties point towards requirements for new observational constraints).
NASA Technical Reports Server (NTRS)
Nolte, Christopher; Otte, Tanya; Pinder, Robert; Bowden, J.; Herwehe, J.; Faluvegi, Gregory; Shindell, Drew
2013-01-01
Projecting climate change scenarios to local scales is important for understanding, mitigating, and adapting to the effects of climate change on society and the environment. Many of the global climate models (GCMs) that are participating in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) do not fully resolve regional-scale processes and therefore cannot capture regional-scale changes in temperatures and precipitation. We use a regional climate model (RCM) to dynamically downscale the GCM's large-scale signal to investigate the changes in regional and local extremes of temperature and precipitation that may result from a changing climate. In this paper, we show preliminary results from downscaling the NASA/GISS ModelE IPCC AR5 Representative Concentration Pathway (RCP) 6.0 scenario. We use the Weather Research and Forecasting (WRF) model as the RCM to downscale decadal time slices (1995-2005 and 2025-2035) and illustrate potential changes in regional climate for the continental U.S. that are projected by ModelE and WRF under RCP6.0. The regional climate change scenario is further processed using the Community Multiscale Air Quality modeling system to explore influences of regional climate change on air quality.
The effects of climate-change-induced drought and freshwater wetlands
Middleton, B.A.; Kleinebecker, Till; Middleton, B.A.
2012-01-01
Drought cycles in wetlands may become more frequent and severe in the future, with consequences for wetland distribution and function. According to the Intergovernmental Panel on Climate Change (Intergovernmental Panel on Climate Change [IPCC], Managing the risks of extreme events and disasters to advance climate change adaptation, 2012. Online: http://ipcc-wg2.gov/SREX/images/uploads/SREX-All_FINAL.pdf, climate-change is likely to affect precipitation and evapotranspiration patterns so that the world’s wetlands may have more frequent episodes of extreme flooding and drought. This chapter contributes to a worldwide view of how wetland processes may be affected by these predicted changes in climate. Specifically, the occurrence of drought may increase, and that increase may affect the critical processes that sustain biodiversity in wetlands. We include specific examples that explore the effects of drought and other climate-change factors on wetland function in various parts of the world. In a concluding section we discuss management strategies for climate-change in wetlands. The synthesis of information in this chapter will contribute to a better understanding of how climate-change-induced drought may affect the function and distribution of wetlands in the future.
NASA Technical Reports Server (NTRS)
Johnson, Donald R.
2001-01-01
This research was directed to the development and application of global isentropic modeling and analysis capabilities to describe hydrologic processes and energy exchange in the climate system, and discern regional climate change. An additional objective was to investigate the accuracy and theoretical limits of global climate predictability which are imposed by the inherent limitations of simulating trace constituent transport and the hydrologic processes of condensation, precipitation and cloud life cycles.
Integrated approaches to climate-crop modelling: needs and challenges.
Betts, Richard A
2005-11-29
This paper discusses the need for a more integrated approach to modelling changes in climate and crops, and some of the challenges posed by this. While changes in atmospheric composition are expected to exert an increasing radiative forcing of climate change leading to further warming of global mean temperatures and shifts in precipitation patterns, these are not the only climatic processes which may influence crop production. Changes in the physical characteristics of the land cover may also affect climate; these may arise directly from land use activities and may also result from the large-scale responses of crops to seasonal, interannual and decadal changes in the atmospheric state. Climate models used to drive crop models may, therefore, need to consider changes in the land surface, either as imposed boundary conditions or as feedbacks from an interactive climate-vegetation model. Crops may also respond directly to changes in atmospheric composition, such as the concentrations of carbon dioxide (CO2), ozone (03) and compounds of sulphur and nitrogen, so crop models should consider these processes as well as climate change. Changes in these, and the responses of the crops, may be intimately linked with meteorological processes so crop and climate models should consider synergies between climate and atmospheric chemistry. Some crop responses may occur at scales too small to significantly influence meteorology, so may not need to be included as feedbacks within climate models. However, the volume of data required to drive the appropriate crop models may be very large, especially if short-time-scale variability is important. Implementation of crop models within climate models would minimize the need to transfer large quantities of data between separate modelling systems. It should also be noted that crop responses to climate change may interact with other impacts of climate change, such as hydrological changes. For example, the availability of water for irrigation may be affected by changes in runoff as a direct consequence of climate change, and may also be affected by climate-related changes in demand for water for other uses. It is, therefore, necessary to consider the interactions between the responses of several impacts sectors to climate change. Overall, there is a strong case for a much closer coupling between models of climate, crops and hydrology, but this in itself poses challenges arising from issues of scale and errors in the models. A strategy is proposed whereby the pursuit of a fully coupled climate-chemistry-crop-hydrology model is paralleled by continued use of separate climate and land surface models but with a focus on consistency between the models.
Women's role in adapting to climate change and variability
NASA Astrophysics Data System (ADS)
Carvajal-Escobar, Y.; Quintero-Angel, M.; García-Vargas, M.
2008-04-01
Given that women are engaged in more climate-related change activities than what is recognized and valued in the community, this article highlights their important role in the adaptation and search for safer communities, which leads them to understand better the causes and consequences of changes in climatic conditions. It is concluded that women have important knowledge and skills for orienting the adaptation processes, a product of their roles in society (productive, reproductive and community); and the importance of gender equity in these processes is recognized. The relationship among climate change, climate variability and the accomplishment of the Millennium Development Goals is considered.
Beyond Reduction: Climate Change Adaptation Planning for Universities and Colleges
ERIC Educational Resources Information Center
Owen, Rochelle; Fisher, Erica; McKenzie, Kyle
2013-01-01
Purpose: The purpose of this paper is to outline a unique six-step process for the inclusion of climate change adaption goals and strategies in a University Climate Change Plan. Design/methodology/approach: A mixed-method approach was used to gather data on campus climate change vulnerabilities and adaption strategies. A literature review…
NASA Technical Reports Server (NTRS)
Cess, R. D.; Potter, G. L.; Blanchet, J. P.; Boer, G. J.; Del Genio, A. D.
1990-01-01
The present study provides an intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. This intercomparison uses sea surface temperature change as a surrogate for climate change. The interpretation of cloud-climate interactions is given special attention. A roughly threefold variation in one measure of global climate sensitivity is found among the 19 models. The important conclusion is that most of this variation is attributable to differences in the models' depiction of cloud feedback, a result that emphasizes the need for improvements in the treatment of clouds in these models if they are ultimately to be used as reliable climate predictors. It is further emphazied that cloud feedback is the consequence of all interacting physical and dynamical processes in a general circulation model. The result of these processes is to produce changes in temperature, moisture distribution, and clouds which are integrated into the radiative response termed cloud feedback.
Climate change health assessment: a novel approach for Alaska Native communities.
Brubaker, Michael Y; Bell, Jacob N; Berner, James E; Warren, John A
2011-06-01
Develop a process for assessing climate change impacts on public health that identifies climate-health vulnerabilities and mechanisms and encourages adaptation. Multi-stakeholder, participatory, qualitative research. A Climate Change Health Assessment (CCHA) was developed that involved 4 steps: (1) scoping to describe local conditions and engage stakeholders; (2) surveying to collect descriptive and quantitative data; (3) analysis to evaluate the data; and (4) planning to communicate findings and explore appropriate actions with community members. The health effects related to extreme weather, thinning ice, erosion, flooding, thawing permafrost and changing conditions of water and food resources were considered. The CCHA process was developed and performed in north-west Arctic villages. Refinement of the process took place in Point Hope, a coastal Inupiat village that practices whaling and a variety of other traditional subsistence harvest practices. Local observers identified climate change impacts that resulted in damaged health infrastructure, compromised food and water security and increased risk of injury. Priority health issues included thawing traditional ice cellars, diminished quality of the community water source and increased safety issues related to sea ice change. The CCHA increased awareness about health vulnerability and encouraged informed planning and decision-making. A community-scale assessment process guided by observation-based data can identify climate health impacts, raise awareness and encourage adaptive actions, thereby improving the response capacity of communities vulnerable to climate change.
Sensitivity of Alpine Snow and Streamflow Regimes to Climate Changes
NASA Astrophysics Data System (ADS)
Rasouli, K.; Pomeroy, J. W.; Marks, D. G.; Bernhardt, M.
2014-12-01
Understanding the sensitivity of hydrological processes to climate change in alpine areas with snow dominated regimes is of paramount importance as alpine basins show both high runoff efficiency associated with the melt of the seasonal snowpack and great sensitivity of snow processes to temperature change. In this study, meteorological data measured in a selection of alpine headwaters basins including Reynolds Mountain East, Idaho, USA, Wolf Creek, Yukon in Canada, and Zugspitze Mountain, Germany with climates ranging from arctic to continental temperate were used to study the snow and streamflow sensitivity to climate change. All research sites have detailed multi-decadal meteorological and snow measurements. The Cold Regions Hydrological Modelling platform (CRHM) was used to create a model representing a typical alpine headwater basin discretized into hydrological response units with physically based representations of snow redistribution by wind, complex terrain snowmelt energetics and runoff processes in alpine tundra. The sensitivity of snow hydrology to climate change was investigated by changing air temperature and precipitation using weather generating methods based on the change factors obtained from different climate model projections for future and current periods. The basin mean and spatial variability of peak snow water equivalent, sublimation loss, duration of snow season, snowmelt rates, streamflow peak, and basin discharge were assessed under varying climate scenarios and the most sensitive hydrological mechanisms to the changes in the different alpine climates were detected. The results show that snow hydrology in colder alpine climates is more resilient to warming than that in warmer climates, but that compensatory factors to warming such as reduced blowing snow sublimation loss and reduced melt rate should also be assessed when considering climate change impacts on alpine hydrology.
An Interface between Law and Science: The Climate Change Regime
NASA Astrophysics Data System (ADS)
Kuleshov, Y.; Grandbois, M.; Kaniaha, S.
2012-04-01
Law and Science are jointly building the international climate change regime. Up to date, international law and climate science have been unable to take into consideration both regional law and Pacific climate science in this process. Under the International Climate Change Adaptation Initiative (the Australian Government Initiative to assist with high priority climate adaptation needs in vulnerable countries in the Asia-Pacific region) significant efforts were dedicated to improve understanding of climate in the Pacific through the Pacific Climate Change Science Program (PCCSP) and through the Pacific Adaptation Strategy Assistance Program (PASAP). The first comprehensive PCCSP scientific report on the South Pacific climate has been published in 2011. Under the PASAP, web-based information tools for seasonal climate prediction have been developed and now outputs from dynamical climate model are used in 15 countries of the North-West and South Pacific for enhanced prediction of rainfall, air and sea surface temperatures which reduces countries' vulnerability to climate variability in the context of a changing climate. On a regional scale, the Meteorological and Geohazards Department of Vanuatu is preparing a full report on Climate change impacts on the country. These scientific reports and tools could lead to a better understanding of climate change in the South Pacific and to a better understanding of climate change science, for lawyers and policy-makers. The International climate change regime develops itself according to science findings, and at the pace of the four scientific reports issued by the Intergovernmental Panel on Climate Change (IPCC). In return, Law is a contributing factor to climate change, a structural data in the development and perception of environmental issues and it exerts an influence on Science. Because of the dependency of law on science, the PCCSP and PASAP outcomes will also stimulate and orientate developments in law of the Pacific Island countries, as well as it could increase countries' contributions to the future of international environmental law. Vanuatu is pioneering this process in the Pacific and could make a leading contribution to the development of Nationally appropriate mitigation actions by developing country Parties, according to the Bali action Plan and to participate actively in the negotiations of a successor agreement to the Kyoto Protocol. In studying and transposing the national climate change report, Vanuatu would also sensibly improve its own environmental laws in response to climate change. By building a bridge between law and science in the Pacific, we are training scientists to climate change law, and training lawyers and policy-makers to climate change science; increasing the collaborative process and the cooperation between scientists and lawyers, in drafting national environmental laws and in negotiating international climate change agreements; and enhancing the contribution of small vulnerable islands to the development of the international climate change regime, as it regards to law and to science. Training for climate scientists and for lawyers and policy-makers on climate change science and law will be provided through the USP Course on climate change international law and climate change science - the first course on this type in the Pacific.
Adapting to climate change at Olympic National Forest and Olympic National Park
Jessica E. Halofsky; David L. Peterson; Kathy A. O’Halloran; Catherine Hawkins Hoffman
2011-01-01
Climate change presents a major challenge to natural resource managers both because of the magnitude of potential effects of climate change on ecosystem structure, processes, and function, and because of the uncertainty associated with those potential ecological effects. Concrete ways to adapt to climate change are needed to help natural resource managers take the...
Climate and dengue transmission: evidence and implications.
Morin, Cory W; Comrie, Andrew C; Ernst, Kacey
2013-01-01
Climate influences dengue ecology by affecting vector dynamics, agent development, and mosquito/human interactions. Although these relationships are known, the impact climate change will have on transmission is unclear. Climate-driven statistical and process-based models are being used to refine our knowledge of these relationships and predict the effects of projected climate change on dengue fever occurrence, but results have been inconsistent. We sought to identify major climatic influences on dengue virus ecology and to evaluate the ability of climate-based dengue models to describe associations between climate and dengue, simulate outbreaks, and project the impacts of climate change. We reviewed the evidence for direct and indirect relationships between climate and dengue generated from laboratory studies, field studies, and statistical analyses of associations between vectors, dengue fever incidence, and climate conditions. We assessed the potential contribution of climate-driven, process-based dengue models and provide suggestions to improve their performance. Relationships between climate variables and factors that influence dengue transmission are complex. A climate variable may increase dengue transmission potential through one aspect of the system while simultaneously decreasing transmission potential through another. This complexity may at least partly explain inconsistencies in statistical associations between dengue and climate. Process-based models can account for the complex dynamics but often omit important aspects of dengue ecology, notably virus development and host-species interactions. Synthesizing and applying current knowledge of climatic effects on all aspects of dengue virus ecology will help direct future research and enable better projections of climate change effects on dengue incidence.
NASA Astrophysics Data System (ADS)
Anderson, C. J.; Wildhaber, M. L.; Wikle, C. K.; Moran, E. H.; Franz, K. J.; Dey, R.
2012-12-01
Climate change operates over a broad range of spatial and temporal scales. Understanding the effects of change on ecosystems requires accounting for the propagation of information and uncertainty across these scales. For example, to understand potential climate change effects on fish populations in riverine ecosystems, climate conditions predicted by course-resolution atmosphere-ocean global climate models must first be translated to the regional climate scale. In turn, this regional information is used to force watershed models, which are used to force river condition models, which impact the population response. A critical challenge in such a multiscale modeling environment is to quantify sources of uncertainty given the highly nonlinear nature of interactions between climate variables and the individual organism. We use a hierarchical modeling approach for accommodating uncertainty in multiscale ecological impact studies. This framework allows for uncertainty due to system models, model parameter settings, and stochastic parameterizations. This approach is a hybrid between physical (deterministic) downscaling and statistical downscaling, recognizing that there is uncertainty in both. We use NARCCAP data to determine confidence the capability of climate models to simulate relevant processes and to quantify regional climate variability within the context of the hierarchical model of uncertainty quantification. By confidence, we mean the ability of the regional climate model to replicate observed mechanisms. We use the NCEP-driven simulations for this analysis. This provides a base from which regional change can be categorized as either a modification of previously observed mechanisms or emergence of new processes. The management implications for these categories of change are significantly different in that procedures to address impacts from existing processes may already be known and need adjustment; whereas, an emergent processes may require new management strategies. The results from hierarchical analysis of uncertainty are used to study the relative change in weights of the endangered Missouri River pallid sturgeon (Scaphirhynchus albus) under a 21st century climate scenario.
Climate change and the past, present, and future of biotic interactions.
Blois, Jessica L; Zarnetske, Phoebe L; Fitzpatrick, Matthew C; Finnegan, Seth
2013-08-02
Biotic interactions drive key ecological and evolutionary processes and mediate ecosystem responses to climate change. The direction, frequency, and intensity of biotic interactions can in turn be altered by climate change. Understanding the complex interplay between climate and biotic interactions is thus essential for fully anticipating how ecosystems will respond to the fast rates of current warming, which are unprecedented since the end of the last glacial period. We highlight episodes of climate change that have disrupted ecosystems and trophic interactions over time scales ranging from years to millennia by changing species' relative abundances and geographic ranges, causing extinctions, and creating transient and novel communities dominated by generalist species and interactions. These patterns emerge repeatedly across disparate temporal and spatial scales, suggesting the possibility of similar underlying processes. Based on these findings, we identify knowledge gaps and fruitful areas for research that will further our understanding of the effects of climate change on ecosystems.
Climate Change, Nutrition, and Bottom-Up and Top-Down Food Web Processes.
Rosenblatt, Adam E; Schmitz, Oswald J
2016-12-01
Climate change ecology has focused on climate effects on trophic interactions through the lenses of temperature effects on organismal physiology and phenological asynchronies. Trophic interactions are also affected by the nutrient content of resources, but this topic has received less attention. Using concepts from nutritional ecology, we propose a conceptual framework for understanding how climate affects food webs through top-down and bottom-up processes impacted by co-occurring environmental drivers. The framework integrates climate effects on consumer physiology and feeding behavior with effects on resource nutrient content. It illustrates how studying responses of simplified food webs to simplified climate change might produce erroneous predictions. We encourage greater integrative complexity of climate change research on trophic interactions to resolve patterns and enhance predictive capacities. Copyright © 2016 Elsevier Ltd. All rights reserved.
The climate change-infectious disease nexus: is it time for climate change syndemics?
Heffernan, Claire
2013-12-01
Conceptualizing climate as a distinct variable limits our understanding of the synergies and interactions between climate change and the range of abiotic and biotic factors, which influence animal health. Frameworks such as eco-epidemiology and the epi-systems approach, while more holistic, view climate and climate change as one of many discreet drivers of disease. Here, I argue for a new paradigmatic framework: climate-change syndemics. Climate-change syndemics begins from the assumption that climate change is one of many potential influences on infectious disease processes, but crucially is unlikely to act independently or in isolation; and as such, it is the inter-relationship between factors that take primacy in explorations of infectious disease and climate change. Equally importantly, as climate change will impact a wide range of diseases, the frame of analysis is at the collective rather than individual level (for both human and animal infectious disease) across populations.
Quantitative approaches in climate change ecology
Brown, Christopher J; Schoeman, David S; Sydeman, William J; Brander, Keith; Buckley, Lauren B; Burrows, Michael; Duarte, Carlos M; Moore, Pippa J; Pandolfi, John M; Poloczanska, Elvira; Venables, William; Richardson, Anthony J
2011-01-01
Contemporary impacts of anthropogenic climate change on ecosystems are increasingly being recognized. Documenting the extent of these impacts requires quantitative tools for analyses of ecological observations to distinguish climate impacts in noisy data and to understand interactions between climate variability and other drivers of change. To assist the development of reliable statistical approaches, we review the marine climate change literature and provide suggestions for quantitative approaches in climate change ecology. We compiled 267 peer-reviewed articles that examined relationships between climate change and marine ecological variables. Of the articles with time series data (n = 186), 75% used statistics to test for a dependency of ecological variables on climate variables. We identified several common weaknesses in statistical approaches, including marginalizing other important non-climate drivers of change, ignoring temporal and spatial autocorrelation, averaging across spatial patterns and not reporting key metrics. We provide a list of issues that need to be addressed to make inferences more defensible, including the consideration of (i) data limitations and the comparability of data sets; (ii) alternative mechanisms for change; (iii) appropriate response variables; (iv) a suitable model for the process under study; (v) temporal autocorrelation; (vi) spatial autocorrelation and patterns; and (vii) the reporting of rates of change. While the focus of our review was marine studies, these suggestions are equally applicable to terrestrial studies. Consideration of these suggestions will help advance global knowledge of climate impacts and understanding of the processes driving ecological change.
Managing climate change refugia for climate adaptation
Morelli, Toni L.; Jackson, Stephen T.
2016-01-01
Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change.
Managing Climate Change Refugia for Climate Adaptation.
Morelli, Toni Lyn; Daly, Christopher; Dobrowski, Solomon Z; Dulen, Deanna M; Ebersole, Joseph L; Jackson, Stephen T; Lundquist, Jessica D; Millar, Constance I; Maher, Sean P; Monahan, William B; Nydick, Koren R; Redmond, Kelly T; Sawyer, Sarah C; Stock, Sarah; Beissinger, Steven R
2016-01-01
Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change.
Managing Climate Change Refugia for Climate Adaptation
Daly, Christopher; Dobrowski, Solomon Z.; Dulen, Deanna M.; Ebersole, Joseph L.; Jackson, Stephen T.; Lundquist, Jessica D.; Millar, Constance I.; Maher, Sean P.; Monahan, William B.; Nydick, Koren R.; Redmond, Kelly T.; Sawyer, Sarah C.; Stock, Sarah; Beissinger, Steven R.
2016-01-01
Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change. PMID:27509088
Changing currents: a strategy for understanding and predicting the changing ocean circulation.
Bryden, Harry L; Robinson, Carol; Griffiths, Gwyn
2012-12-13
Within the context of UK marine science, we project a strategy for ocean circulation research over the next 20 years. We recommend a focus on three types of research: (i) sustained observations of the varying and evolving ocean circulation, (ii) careful analysis and interpretation of the observed climate changes for comparison with climate model projections, and (iii) the design and execution of focused field experiments to understand ocean processes that are not resolved in coupled climate models so as to be able to embed these processes realistically in the models. Within UK-sustained observations, we emphasize smart, cost-effective design of the observational network to extract maximum information from limited field resources. We encourage the incorporation of new sensors and new energy sources within the operational environment of UK-sustained observational programmes to bridge the gap that normally separates laboratory prototype from operational instrument. For interpreting the climate-change records obtained through a variety of national and international sustained observational programmes, creative and dedicated UK scientists should lead efforts to extract the meaningful signals and patterns of climate change and to interpret them so as to project future changes. For the process studies, individual scientists will need to work together in team environments to combine observational and process modelling results into effective improvements in the coupled climate models that will lead to more accurate climate predictions.
Integrated approaches to climate–crop modelling: needs and challenges
A. Betts, Richard
2005-01-01
This paper discusses the need for a more integrated approach to modelling changes in climate and crops, and some of the challenges posed by this. While changes in atmospheric composition are expected to exert an increasing radiative forcing of climate change leading to further warming of global mean temperatures and shifts in precipitation patterns, these are not the only climatic processes which may influence crop production. Changes in the physical characteristics of the land cover may also affect climate; these may arise directly from land use activities and may also result from the large-scale responses of crops to seasonal, interannual and decadal changes in the atmospheric state. Climate models used to drive crop models may, therefore, need to consider changes in the land surface, either as imposed boundary conditions or as feedbacks from an interactive climate–vegetation model. Crops may also respond directly to changes in atmospheric composition, such as the concentrations of carbon dioxide (CO2), ozone (O3) and compounds of sulphur and nitrogen, so crop models should consider these processes as well as climate change. Changes in these, and the responses of the crops, may be intimately linked with meteorological processes so crop and climate models should consider synergies between climate and atmospheric chemistry. Some crop responses may occur at scales too small to significantly influence meteorology, so may not need to be included as feedbacks within climate models. However, the volume of data required to drive the appropriate crop models may be very large, especially if short-time-scale variability is important. Implementation of crop models within climate models would minimize the need to transfer large quantities of data between separate modelling systems. It should also be noted that crop responses to climate change may interact with other impacts of climate change, such as hydrological changes. For example, the availability of water for irrigation may be affected by changes in runoff as a direct consequence of climate change, and may also be affected by climate-related changes in demand for water for other uses. It is, therefore, necessary to consider the interactions between the responses of several impacts sectors to climate change. Overall, there is a strong case for a much closer coupling between models of climate, crops and hydrology, but this in itself poses challenges arising from issues of scale and errors in the models. A strategy is proposed whereby the pursuit of a fully coupled climate–chemistry–crop–hydrology model is paralleled by continued use of separate climate and land surface models but with a focus on consistency between the models. PMID:16433093
Freshwater habitats provide fishable, swimmable and drinkable resources and are a nexus of geophysical and biological processes. These processes in turn influence the persistence and sustainability of populations, communities and ecosystems. Climate change and landuse change enco...
Snover, Amy K; Mantua, Nathan J; Littell, Jeremy S; Alexander, Michael A; McClure, Michelle M; Nye, Janet
2013-12-01
Increased concern over climate change is demonstrated by the many efforts to assess climate effects and develop adaptation strategies. Scientists, resource managers, and decision makers are increasingly expected to use climate information, but they struggle with its uncertainty. With the current proliferation of climate simulations and downscaling methods, scientifically credible strategies for selecting a subset for analysis and decision making are needed. Drawing on a rich literature in climate science and impact assessment and on experience working with natural resource scientists and decision makers, we devised guidelines for choosing climate-change scenarios for ecological impact assessment that recognize irreducible uncertainty in climate projections and address common misconceptions about this uncertainty. This approach involves identifying primary local climate drivers by climate sensitivity of the biological system of interest; determining appropriate sources of information for future changes in those drivers; considering how well processes controlling local climate are spatially resolved; and selecting scenarios based on considering observed emission trends, relative importance of natural climate variability, and risk tolerance and time horizon of the associated decision. The most appropriate scenarios for a particular analysis will not necessarily be the most appropriate for another due to differences in local climate drivers, biophysical linkages to climate, decision characteristics, and how well a model simulates the climate parameters and processes of interest. Given these complexities, we recommend interaction among climate scientists, natural and physical scientists, and decision makers throughout the process of choosing and using climate-change scenarios for ecological impact assessment. Selección y Uso de Escenarios de Cambio Climático para Estudios de Impacto Ecológico y Decisiones de Conservación. © 2013 Society for Conservation Biology.
A roadmap to effective urban climate change adaptation
NASA Astrophysics Data System (ADS)
Setiadi, R.
2018-03-01
This paper outlines a roadmap to effective urban climate change adaptation built from our practical understanding of the evidence and effects of climate change and the preparation of climate change adaptation strategies and plans. This roadmap aims to drive research in achieving fruitful knowledge and solution-based achievable recommendations in adapting to climate change in urban areas with effective and systematic manner. This paper underscores the importance of the interplay between local government initiatives and a national government for effective adaptation to climate change and takes into account the policy process and politics. This paper argues that effective urban climate change adaptation has a contribution to build urban resilience and helps the achievement of national government goals and targets in climate change adaptation.
Sensitivities of marine carbon fluxes to ocean change.
Riebesell, Ulf; Körtzinger, Arne; Oschlies, Andreas
2009-12-08
Throughout Earth's history, the oceans have played a dominant role in the climate system through the storage and transport of heat and the exchange of water and climate-relevant gases with the atmosphere. The ocean's heat capacity is approximately 1,000 times larger than that of the atmosphere, its content of reactive carbon more than 60 times larger. Through a variety of physical, chemical, and biological processes, the ocean acts as a driver of climate variability on time scales ranging from seasonal to interannual to decadal to glacial-interglacial. The same processes will also be involved in future responses of the ocean to global change. Here we assess the responses of the seawater carbonate system and of the ocean's physical and biological carbon pumps to (i) ocean warming and the associated changes in vertical mixing and overturning circulation, and (ii) ocean acidification and carbonation. Our analysis underscores that many of these responses have the potential for significant feedback to the climate system. Because several of the underlying processes are interlinked and nonlinear, the sign and magnitude of the ocean's carbon cycle feedback to climate change is yet unknown. Understanding these processes and their sensitivities to global change will be crucial to our ability to project future climate change.
Description of Changes in Climatic Indices in USA over 25 Years (1989 – 2013)
The spatial distribution of long-term changes in climatic factors and its relation with vegetation cover, human health, hydrology and many other ecosystem processes help to identify the consequences of climatic factors changes. In recent studies, the significant changes of select...
Untangling climatic and autogenic signals in peat records
NASA Astrophysics Data System (ADS)
Morris, Paul J.; Baird, Andrew J.; Young, Dylan M.; Swindles, Graeme T.
2016-04-01
Raised bogs contain potentially valuable information about Holocene climate change. However, autogenic processes may disconnect peatland hydrological behaviour from climate, and overwrite and degrade climatic signals in peat records. How can genuine climate signals be separated from autogenic changes? What level of detail of climatic information should we expect to be able to recover from peat-based reconstructions? We used an updated version of the DigiBog model to simulate peatland development and response to reconstructed Holocene rainfall and temperature reconstructions. The model represents key processes that are influential in peatland development and climate signal preservation, and includes a network of feedbacks between peat accumulation, decomposition, hydraulic structure and hydrological processes. It also incorporates the effects of temperature upon evapotranspiration, plant (litter) productivity and peat decomposition. Negative feedbacks in the model cause simulated water-table depths and peat humification records to exhibit homeostatic recovery from prescribed changes in rainfall, chiefly through changes in drainage. However, the simulated bogs show less resilience to changes in temperature, which cause lasting alterations to peatland structure and function and may therefore be more readily detectable in peat records. The network of feedbacks represented in DigiBog also provide both high- and low-pass filters for climatic information, meaning that the fidelity with which climate signals are preserved in simulated peatlands is determined by both the magnitude and the rate of climate change. Large-magnitude climatic events of an intermediate frequency (i.e., multi-decadal to centennial) are best preserved in the simulated bogs. We found that simulated humification records are further degraded by a phenomenon known as secondary decomposition. Decomposition signals are consistently offset from the climatic events that generate them, and decomposition records of dry-wet-dry climate sequences appear to be particularly vulnerable to overwriting. Our findings have direct implications not only for the interpretation of peat-based records of past climates, but also for understanding the likely vulnerability of peatland ecosystems and carbon stocks to future climate change.
USDA-ARS?s Scientific Manuscript database
Diffuse nutrient pollution from agricultural landscapes is a priority water quality concern and the cause of mitigation activities worldwide. Climate change and climate variability impact hydrology, nutrient cycling, and ultimately water quality, which can complicate mitigation measures. Climate cha...
Dybala, Kristen E.; Eadie, John M.; Gardali, Thomas; Seavy, Nathaniel E.; Herzog, Mark P.
2013-01-01
Few studies have quantitatively projected changes in demography in response to climate change, yet doing so can provide important insights into the processes that may lead to population declines and changes in species distributions. Using a long-term mark-recapture data set, we examined the influence of multiple direct and indirect effects of weather on adult and juvenile survival for a population of Song Sparrows (Melospiza melodia) in California. We found evidence for a positive, direct effect of winter temperature on adult survival, and a positive, indirect effect of prior rainy season precipitation on juvenile survival, which was consistent with an effect of precipitation on food availability during the breeding season. We used these relationships, and climate projections of significantly warmer and slightly drier winter weather by the year 2100, to project a significant increase in mean adult survival (12-17%) and a slight decrease in mean juvenile survival (4-6%) under the B1 and A2 climate change scenarios. Together with results from previous studies on seasonal fecundity and postfledging survival in this population, we integrated these results in a population model and projected increases in the population growth rate under both climate change scenarios. Our results underscore the importance of considering multiple, direct, and indirect effects of weather throughout the annual cycle, as well as differences in the responses of each life stage to climate change. Projecting demographic responses to climate change can identify not only how populations will be affected by climate change but also indicate the demographic process(es) and specific mechanisms that may be responsible. This information can, in turn, inform climate change adaptation plans, help prioritize future research, and identify where limited conservation resources will be most effectively and efficiently spent.
Implications of Climate Change for State Bioassessment ...
This draft report uses biological data collected by four states in wadeable rivers and streams to examine the components of state and tribal bioassessment and biomonitoring programs that may be vulnerable to climate change. The study investigates the potential to identify biological response signals to climate change within existing bioassessment data sets; analyzes how biological responses can be categorized and interpreted; and assesses how they may influence decision-making processes. The analyses suggest that several biological indicators may be used to detect climate change effects and such indicators can be used by state bioassessment programs to document changes at high-quality reference sites. The study investigates the potential to identify biological response signals to climate change within existing bioassessment data sets; analyzes how biological responses can be categorized and interpreted; and assesses how they may influence decision-making processes.
Kallenborn, Roland; Halsall, Crispin; Dellong, Maud; Carlsson, Pernilla
2012-11-01
The effect of climate change on the global distribution and fate of persistent organic pollutants (POPs) is of growing interest to both scientists and policy makers alike. The impact of warmer temperatures and the resulting changes to earth system processes on chemical fate are, however, unclear, although there are a growing number of studies that are beginning to examine these impacts and changes in a quantitative way. In this review, we examine broad areas where changes are occurring or are likely to occur with regard to the environmental cycling and fate of chemical contaminants. For this purpose we are examining scientific information from long-term monitoring data with particular emphasis on the Arctic, to show apparent changes in chemical patterns and behaviour. In addition, we examine evidence of changing chemical processes for a number of environmental compartments and indirect effects of climate change on contaminant emissions and behaviour. We also recommend areas of research to address knowledge gaps. In general, our findings indicate that the indirect consequences of climate change (i.e. shifts in agriculture, resource exploitation opportunities, etc.) will have a more marked impact on contaminants distribution and fate than direct climate change.
Quantifying the indirect impacts of climate on agriculture: an inter-method comparison
Calvin, Kate; Fisher-Vanden, Karen
2017-10-27
Climate change and increases in CO2 concentration affect the productivity of land, with implications for land use, land cover, and agricultural production. Much of the literature on the effect of climate on agriculture has focused on linking projections of changes in climate to process-based or statistical crop models. However, the changes in productivity have broader economic implications that cannot be quantified in crop models alone. How important are these socio-economic feedbacks to a comprehensive assessment of the impacts of climate change on agriculture? In this paper, we attempt to measure the importance of these interaction effects through an inter-method comparisonmore » between process models, statistical models, and integrated assessment model (IAMs). We find the impacts on crop yields vary widely between these three modeling approaches. Yield impacts generated by the IAMs are 20%-40% higher than the yield impacts generated by process-based or statistical crop models, with indirect climate effects adjusting yields by between - 12% and + 15% (e.g. input substitution and crop switching). The remaining effects are due to technological change.« less
Quantifying the indirect impacts of climate on agriculture: an inter-method comparison
NASA Astrophysics Data System (ADS)
Calvin, Kate; Fisher-Vanden, Karen
2017-11-01
Climate change and increases in CO2 concentration affect the productivity of land, with implications for land use, land cover, and agricultural production. Much of the literature on the effect of climate on agriculture has focused on linking projections of changes in climate to process-based or statistical crop models. However, the changes in productivity have broader economic implications that cannot be quantified in crop models alone. How important are these socio-economic feedbacks to a comprehensive assessment of the impacts of climate change on agriculture? In this paper, we attempt to measure the importance of these interaction effects through an inter-method comparison between process models, statistical models, and integrated assessment model (IAMs). We find the impacts on crop yields vary widely between these three modeling approaches. Yield impacts generated by the IAMs are 20%-40% higher than the yield impacts generated by process-based or statistical crop models, with indirect climate effects adjusting yields by between -12% and +15% (e.g. input substitution and crop switching). The remaining effects are due to technological change.
Quantifying the indirect impacts of climate on agriculture: an inter-method comparison
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calvin, Kate; Fisher-Vanden, Karen
Climate change and increases in CO2 concentration affect the productivity of land, with implications for land use, land cover, and agricultural production. Much of the literature on the effect of climate on agriculture has focused on linking projections of changes in climate to process-based or statistical crop models. However, the changes in productivity have broader economic implications that cannot be quantified in crop models alone. How important are these socio-economic feedbacks to a comprehensive assessment of the impacts of climate change on agriculture? In this paper, we attempt to measure the importance of these interaction effects through an inter-method comparisonmore » between process models, statistical models, and integrated assessment model (IAMs). We find the impacts on crop yields vary widely between these three modeling approaches. Yield impacts generated by the IAMs are 20%-40% higher than the yield impacts generated by process-based or statistical crop models, with indirect climate effects adjusting yields by between - 12% and + 15% (e.g. input substitution and crop switching). The remaining effects are due to technological change.« less
Thomas W. Bonnot; Frank R. Thompson; Joshua J. Millspaugh
2017-01-01
The increasing need to predict how climate change will impact wildlife species has exposed limitations in how well current approaches model important biological processes at scales at which those processes interact with climate. We used a comprehensive approach that combined recent advances in landscape and population modeling into dynamic-landscape metapopulation...
NASA Astrophysics Data System (ADS)
al Aamery, N. M. H.; Mahoney, D. T.; Fox, J.
2017-12-01
Future climate change projections suggest extreme impacts on watershed hydrologic systems for some regions of the world including pronounced increases in surface runoff and instream flows. Yet, there remains a lack of research focused on how future changes in hydrologic extremes, as well as relative hydrologic mean changes, impact sediment redistribution within a watershed and sediment flux from a watershed. The authors hypothesized that variations in mean and extreme changes in turn may impact sediments in depositional and erosional dominance in a manner that may not be obvious to the watershed manager. Therefore, the objectives of this study were to investigate the inner processes connecting the combined effect of extreme climate change projections on the vegetation, upland erosion, and instream processes to produce changes in sediment redistribution within watersheds. To do so, research methods were carried out by the authors including simulating sediment processes in forecast and hindcast periods for a lowland watershed system. Publically available climate realizations from several climate factors and the Soil Water Assessment Tool (SWAT) were used to predict hydrologic conditions for the South Elkhorn Watershed in central Kentucky, USA to 2050. The results of the simulated extreme and mean hydrological components were used in simulating upland erosion with the connectivity processes consideration and thereafter used in building and simulating the instream erosion and deposition of sediment processes with the consideration of surface fine grain lamina (SFGL) layer controlling the benthic ecosystem. Results are used to suggest the dominance of erosional and depositional redistribution of sediments under different scenarios associated with extreme and mean hydrologic forecasting. The results are discussed in reference to the benthic ecology of the stream system providing insight on how water managers might consider sediment redistribution in a changing climate.
Climate change can alter predator-prey dynamics and population viability of prey.
Bastille-Rousseau, Guillaume; Schaefer, James A; Peers, Michael J L; Ellington, E Hance; Mumma, Matthew A; Rayl, Nathaniel D; Mahoney, Shane P; Murray, Dennis L
2018-01-01
For many organisms, climate change can directly drive population declines, but it is less clear how such variation may influence populations indirectly through modified biotic interactions. For instance, how will climate change alter complex, multi-species relationships that are modulated by climatic variation and that underlie ecosystem-level processes? Caribou (Rangifer tarandus), a keystone species in Newfoundland, Canada, provides a useful model for unravelling potential and complex long-term implications of climate change on biotic interactions and population change. We measured cause-specific caribou calf predation (1990-2013) in Newfoundland relative to seasonal weather patterns. We show that black bear (Ursus americanus) predation is facilitated by time-lagged higher summer growing degree days, whereas coyote (Canis latrans) predation increases with current precipitation and winter temperature. Based on future climate forecasts for the region, we illustrate that, through time, coyote predation on caribou calves could become increasingly important, whereas the influence of black bear would remain unchanged. From these predictions, demographic projections for caribou suggest long-term population limitation specifically through indirect effects of climate change on calf predation rates by coyotes. While our work assumes limited impact of climate change on other processes, it illustrates the range of impact that climate change can have on predator-prey interactions. We conclude that future efforts to predict potential effects of climate change on populations and ecosystems should include assessment of both direct and indirect effects, including climate-predator interactions.
Milly, Paul C.D.; Dunne, Krista A.
2011-01-01
Hydrologic models often are applied to adjust projections of hydroclimatic change that come from climate models. Such adjustment includes climate-bias correction, spatial refinement ("downscaling"), and consideration of the roles of hydrologic processes that were neglected in the climate model. Described herein is a quantitative analysis of the effects of hydrologic adjustment on the projections of runoff change associated with projected twenty-first-century climate change. In a case study including three climate models and 10 river basins in the contiguous United States, the authors find that relative (i.e., fractional or percentage) runoff change computed with hydrologic adjustment more often than not was less positive (or, equivalently, more negative) than what was projected by the climate models. The dominant contributor to this decrease in runoff was a ubiquitous change in runoff (median -11%) caused by the hydrologic model’s apparent amplification of the climate-model-implied growth in potential evapotranspiration. Analysis suggests that the hydrologic model, on the basis of the empirical, temperature-based modified Jensen–Haise formula, calculates a change in potential evapotranspiration that is typically 3 times the change implied by the climate models, which explicitly track surface energy budgets. In comparison with the amplification of potential evapotranspiration, central tendencies of other contributions from hydrologic adjustment (spatial refinement, climate-bias adjustment, and process refinement) were relatively small. The authors’ findings highlight the need for caution when projecting changes in potential evapotranspiration for use in hydrologic models or drought indices to evaluate climate-change impacts on water.
DOT National Transportation Integrated Search
2015-04-01
The Central New Mexico Climate Change Scenario Planning Project, an Interagency Transportation, Land Use, and Climate Change Initiative, utilized a scenario planning process to develop a multiagency transportation- and land use-focused development st...
NASA Astrophysics Data System (ADS)
Ntegeka, Victor; Willems, Patrick; Baguis, Pierre; Roulin, Emmanuel
2015-04-01
It is advisable to account for a wide range of uncertainty by including the maximum possible number of climate models and scenarios for future impacts. As this is not always feasible, impact assessments are inevitably performed with a limited set of scenarios. The development of tailored scenarios is a challenge that needs more attention as the number of available climate change simulations grows. Whether these scenarios are representative enough for climate change impacts is a question that needs addressing. This study presents a methodology of constructing tailored scenarios for assessing runoff flows including extreme conditions (peak flows) from an ensemble of future climate change signals of precipitation and potential evapotranspiration (ETo) derived from the climate model simulations. The aim of the tailoring process is to formulate scenarios that can optimally represent the uncertainty spectrum of climate scenarios. These tailored scenarios have the advantage of being few in number as well as having a clear description of the seasonal variation of the climate signals, hence allowing easy interpretation of the implications of future changes. The tailoring process requires an analysis of the hydrological impacts from the likely future change signals from all available climate model simulations in a simplified (computationally less expensive) impact model. Historical precipitation and ETo time series are perturbed with the climate change signals based on a quantile perturbation technique that accounts for the changes in extremes. For precipitation, the change in wetday frequency is taken into account using a markov-chain approach. Resulting hydrological impacts from the perturbed time series are then subdivided into high, mean and low hydrological impacts using a quantile change analysis. From this classification, the corresponding precipitation and ETo change factors are back-tracked on a seasonal basis to determine precipitation-ETo covariation. The established precipitation-ETo covariations are used to inform the scenario construction process. Additionally, the back-tracking of extreme flows from driving scenarios allows for a diagnosis of the physical responses to climate change scenarios. The method is demonstrated through the application of scenarios from 10 Regional Climate Models,21 Global Climate Models and selected catchments in central Belgium. Reference Ntegeka, V., Baguis, P., Roulin, E., & Willems, P. (2014). Developing tailored climate change scenarios for hydrological impact assessments. Journal of Hydrology, 508, 307-321.
Fernandino, Gerson; Elliff, Carla I; Silva, Iracema R
2018-06-01
Climate change effects have the potential of affecting both ocean and atmospheric processes. These changes pose serious threats to the millions of people that live by the coast. Thus, the objective of the present review is to discuss how climate change is altering (and will continue to alter) atmospheric and oceanic processes, what are the main implications of these alterations along the coastline, and which are the ecosystem-based management (EBM) strategies that have been proposed and applied to address these issues. While ocean warming, ocean acidification and increasing sea level have been more extensively studied, investigations on the effects of climate change to wind and wave climates are less frequent. Coastal ecosystems and their respective natural resources will respond differently according to location, environmental drivers and coastal processes. EBM strategies have mostly concentrated on improving ecosystem services, which can be used to assist in mitigating climate change effects. The main challenge for developing nations regards gaps in information and scarcity of resources. Thus, for effective management and adaptive EBM strategies to be developed worldwide, information at a local level is greatly needed. Copyright © 2018 Elsevier Ltd. All rights reserved.
Assisted migration of forest populations for adapting trees to climate change
Cuauhtémoc Sáenz-Romero; Roberto A. Lindig-Cisneros; Dennis G. Joyce; Jean Beaulieu; J. Bradley St. Clair; Barry C. Jaquish
2016-01-01
We present evidence that climatic change is an ongoing process and that forest tree populations are genetically differentiated for quantitative traits because of adaptation to specific habitats. We discuss in detail indications that the shift of suitable climatic habitat for forest tree species and populations, as a result of rapid climatic change, is likely to cause...
Fordham, Damien A; Mellin, Camille; Russell, Bayden D; Akçakaya, Reşit H; Bradshaw, Corey J A; Aiello-Lammens, Matthew E; Caley, Julian M; Connell, Sean D; Mayfield, Stephen; Shepherd, Scoresby A; Brook, Barry W
2013-10-01
Evidence is accumulating that species' responses to climate changes are best predicted by modelling the interaction of physiological limits, biotic processes and the effects of dispersal-limitation. Using commercially harvested blacklip (Haliotis rubra) and greenlip abalone (Haliotis laevigata) as case studies, we determine the relative importance of accounting for interactions among physiology, metapopulation dynamics and exploitation in predictions of range (geographical occupancy) and abundance (spatially explicit density) under various climate change scenarios. Traditional correlative ecological niche models (ENM) predict that climate change will benefit the commercial exploitation of abalone by promoting increased abundances without any reduction in range size. However, models that account simultaneously for demographic processes and physiological responses to climate-related factors result in future (and present) estimates of area of occupancy (AOO) and abundance that differ from those generated by ENMs alone. Range expansion and population growth are unlikely for blacklip abalone because of important interactions between climate-dependent mortality and metapopulation processes; in contrast, greenlip abalone should increase in abundance despite a contraction in AOO. The strongly non-linear relationship between abalone population size and AOO has important ramifications for the use of ENM predictions that rely on metrics describing change in habitat area as proxies for extinction risk. These results show that predicting species' responses to climate change often require physiological information to understand climatic range determinants, and a metapopulation model that can make full use of this data to more realistically account for processes such as local extirpation, demographic rescue, source-sink dynamics and dispersal-limitation. © 2013 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Tuluri, F.
2013-12-01
The realization of long term changes in climate in research community has to go beyond the comfort zone through climate literacy in academics. Higher education on climate change is the platform to bring together the otherwise disconnected factors such as effective discovery, decision making, innovation, interdisciplinary collaboration, Climate change is a complex process that may be due to natural internal processes within the climate system, or to variations in natural or anthropogenic (human-driven) external forcing. Global climate change indicates a change in either the mean state of the climate or in its variability, persisting for several decades or longer. This includes changes in average weather conditions on Earth, such as a change in average global temperature, as well as changes in how frequently regions experience heat waves, droughts, floods, storms, and other extreme weather. It is important to examine the effects of climate variations on human health and disorders in order to take preventive measures. Similarly, the influence of climate changes on animal management practices, pests and pest management systems, and high value crops such as citrus and vegetables is also equally important for investigation. New genetic agricultural varieties must be explored, and pilot studies should examine biotechnology transfer. Recent climate model improvements have resulted in an enhanced ability to simulate many aspects of climate variability and extremes. However, they are still characterized by systematic errors and limitations in accurately simulating more precisely regional climate conditions. The present situations warrant developing climate literacy on the synergistic impacts of environmental change, and improve development, testing and validation of integrated stress impacts through computer modeling. In the present study we present a detailed study of the current status on the impacts of global/regional climate changes on environment and health with a view to highlighting the need for integrated research and education collaboration at national and global level.
NASA Astrophysics Data System (ADS)
Lohrenz, S. E.; Cai, W. J.; Tian, H.; He, R.; Fennel, K.
2017-12-01
Changing climate and land use practices have the potential to dramatically alter coupled hydrologic-biogeochemical processes and associated movement of water, carbon and nutrients through various terrestrial reservoirs into rivers, estuaries, and coastal ocean waters. Consequences of climate- and land use-related changes will be particularly evident in large river basins and their associated coastal outflow regions. Here, we describe a NASA Carbon Monitoring System project that employs an integrated suite of models in conjunction with remotely sensed as well as targeted in situ observations with the objectives of describing processes controlling fluxes on land and their coupling to riverine, estuarine and ocean ecosystems. The nature of our approach, coupling models of terrestrial and ocean ecosystem dynamics and associated carbon processes, allows for assessment of how societal and human-related land use, land use change and forestry and climate-related change affect terrestrial carbon transport as well as export of materials through watersheds to the coastal margins. Our objectives include the following: 1) Provide representation of carbon processes in the terrestrial ecosystem to understand how changes in land use and climatic conditions influence the export of materials to the coastal ocean, 2) Couple the terrestrial exports of carbon, nutrients and freshwater to a coastal biogeochemical model and examine how different climate and land use scenarios influence fluxes across the land-ocean interface, and 3) Project future changes under different scenarios of climate and human impact, and support user needs related to carbon management and other activities (e.g., water quality, hypoxia, ocean acidification). This research is providing information that will contribute to determining an overall carbon balance in North America as well as describing and predicting how human- and climate-related changes impact coastal water quality including possible effects of coastal eutrophication and hypoxia.
Wintertime urban heat island modified by global climate change over Japan
NASA Astrophysics Data System (ADS)
Hara, M.
2015-12-01
Urban thermal environment change, especially, surface air temperature (SAT) rise in metropolitan areas, is one of the major recent issues in urban areas. The urban thermal environmental change affects not only human health such as heat stroke, but also increasing infectious disease due to spreading out virus vectors habitat and increase of industry and house energy consumption. The SAT rise is mostly caused by global climate change and urban heat island (hereafter UHI) by urbanization. The population in Tokyo metropolitan area is over 30 millions and the Tokyo metropolitan area is one of the biggest megacities in the world. The temperature rise due to urbanization seems comparable to the global climate change in the major megacities. It is important to project how the urbanization and the global climate change affect to the future change of urban thermal environment to plan the adaptation and mitigation policy. To predict future SAT change in urban scale, we should estimate future UHI modified by the global climate change. This study investigates change in UHI intensity (UHII) of major metropolitan areas in Japan by effects of the global climate change. We performed a series of climate simulations. Present climate simulations with and without urban process are conducted for ten seasons using a high-resolution numerical climate model, the Weather Research and Forecasting (WRF) model. Future climate projections with and without urban process are also conducted. The future projections are performed using the pseudo global warming method, assuming 2050s' initial and boundary conditions estimated by a GCM under the RCP scenario. Simulation results indicated that UHII would be enhanced more than 30% in Tokyo during the night due to the global climate change. The enhancement of urban heat island is mostly caused by change of lower atmospheric stability.
Uncertainty in simulating wheat yields under climate change
USDA-ARS?s Scientific Manuscript database
Anticipating the impacts of climate change on crop yields is critical for assessing future food security. Process-based crop simulation models are the most commonly used tools in such assessments. Analysis of uncertainties in future greenhouse gas emissions and their impacts on future climate change...
Understanding impacts of climate change on hydrodynamic processes and ecosystem response within the Great Lakes is an important and challenging task. Variability in future climate conditions, uncertainty in rainfall-runoff model forecasts, the potential for land use change, and t...
Minigrants to Local Health Departments: An Opportunity to Promote Climate Change Preparedness.
Grossman, Elena; Hathaway, Michelle; Bush, Kathleen F; Cahillane, Matthew; English, Dorette Q; Holmes, Tisha; Moran, Colleen E; Uejio, Christopher K; York, Emily A; Dorevitch, Samuel
2018-06-20
Human health is threatened by climate change. While the public health workforce is concerned about climate change, local health department (LHD) administrators have reported insufficient knowledge and resources to address climate change. Minigrants from state to LHDs have been used to promote a variety of local public health initiatives. To describe the minigrant approach used by state health departments implementing the Centers for Disease Control and Prevention's (CDC's) Building Resilience Against Climate Effects (BRACE) framework, to highlight successes of this approach in promoting climate change preparedness at LHDs, and to describe challenges encountered. Cross-sectional survey and discussion. State-level recipients of CDC funding issued minigrants to local public health entities to promote climate change preparedness, adaptation, and resilience. The amount of funding, number of LHDs funded per state, goals, selection process, evaluation process, outcomes, successes, and challenges of the minigrant programs. Six state-level recipients of CDC funding for BRACE framework implementation awarded minigrants ranging from $7700 to $28 500 per year to 44 unique local jurisdictions. Common goals of the minigrants included capacity building, forging partnerships with entities outside of health departments, incorporating climate change information into existing programs, and developing adaptation plans. Recipients of minigrants reported increases in knowledge, engagement with diverse stakeholders, and the incorporation of climate change content into existing programs. Challenges included addressing climate change in regions where the topic is politically sensitive, as well as the uncertainty about the long-term sustainability of local projects beyond the term of minigrant support. Minigrants can increase local public health capacity to address climate change. Jurisdictions that wish to utilize minigrant mechanisms to promote climate change adaptation and preparedness at the local level may benefit from the experience of the 6 states and 44 local health programs described.
NASA Astrophysics Data System (ADS)
Bański, Jerzy
2013-01-01
The aim of this article is to evaluate the effect of contemporary transformations in the population of Central European countries on climate change, in addition to singling out the primary points of interaction between demographic processes and the climate. In analyzing the interactions between climate and demographics, we can formulate three basic hypotheses regarding the region in question: 1) as a result of current demographic trends in Central Europe, the influence of the region on its climate will probably diminish, 2) the importance of the "climatically displaced" in global migratory movements will increase, and some of those concerned will move to Central Europe, 3) the contribution of the region to global food security will increase. In the last decade most of what comprises the region of Central Europe has reported a decline in population growth and a negative migration balance. As a process, this loss of population may have a positive effect on the environment and the climate. We can expect ongoing climate change to intensify migration processes, particularly from countries outside Europe. Interactions between climate and demographic processes can also be viewed in the context of food security. The global warming most sources foresee for the coming decades is the process most likely to result in spatial polarization of food production in agriculture. Central Europe will then face the challenge of assuring and improving food security, albeit this time on a global scale.
Toward a U.S. National Phenological Assessment
NASA Astrophysics Data System (ADS)
Henebry, Geoffrey M.; Betancourt, Julio L.
2010-01-01
Third USA National Phenology Network (USA-NPN) and Research Coordination Network (RCN) Annual Meeting; Milwaukee, Wisconsin, 5-9 October 2009; Directional climate change will have profound and lasting effects throughout society that are best understood through fundamental physical and biological processes. One such process is phenology: how the timing of recurring biological events is affected by biotic and abiotic forces. Phenology is an early and integrative indicator of climate change readily understood by nonspecialists. Phenology affects the planting, maturation, and harvesting of food and fiber; pollination; timing and magnitude of allergies and disease; recreation and tourism; water quantity and quality; and ecosystem function and resilience. Thus, phenology is the gateway to climatic effects on both managed and unmanaged ecosystems. Adaptation to climatic variability and change will require integration of phenological data and models with climatic forecasts at seasonal to decadal time scales. Changes in phenologies have already manifested myriad effects of directional climate change. As these changes continue, it is critical to establish a comprehensive suite of benchmarks that can be tracked and mapped at local to continental scales with observations and climate models.
Micro-topographic hydrologic variability due to vegetation acclimation under climate change
NASA Astrophysics Data System (ADS)
Le, P. V.; Kumar, P.
2012-12-01
Land surface micro-topography and vegetation cover have fundamental effects on the land-atmosphere interactions. The altered temperature and precipitation variability associated with climate change will affect the water and energy processes both directly and that mediated through vegetation. Since climate change induces vegetation acclimation that leads to shifts in evapotranspiration and heat fluxes, it further modifies microclimate and near-surface hydrological processes. In this study, we investigate the impacts of vegetation acclimation to climate change on micro-topographic hydrologic variability. The ability to accurately predict these impacts requires the simultaneous considerations of biochemical, ecophysiological and hydrological processes. A multilayer canopy-root-soil system model coupled with a conjunctive surface-subsurface flow model is used to capture the acclimatory responses and analyze the changes in dynamics of structure and connectivity of micro-topographic storage and in magnitudes of runoff. The study is performed using Light Detection and Ranging (LiDAR) topographic data in the Birds Point-New Madrid floodway in Missouri, U.S.A. The result indicates that both climate change and its associated vegetation acclimation play critical roles in altering the micro-topographic hydrological responses.
Cultural impacts to tribes from climate change influences on forests
Garrit Voggesser; Kathy Lynn; John Daigle; Frank K. Lake; Darren Ranco
2013-01-01
Climate change related impacts, such as increased frequency and intensity of wildfires, higher temperatures, extreme changes to ecosystem processes, forest conversion and habitat degradation are threatening tribal access to valued resources. Climate change is and will affect the quantity and quality of resources tribes depend upon to perpetuate their cultures and...
Facing climate change in forests and fields
Amy Daniels; Nancy Shaw; Dave Peterson; Keith Nislow; Monica Tomosy; Mary Rowland
2014-01-01
As a growing body of science shows, climate change impacts on wildlife are already profound - from shifting species' ranges and altering the synchronicity of food sources to changing the availability of water. Such impacts are only expected to increase in the coming decades. As climate change shapes complex, interwoven ecological processes, novel conditions and...
Sterk, Ankie; Schijven, Jack; de Nijs, Ton; de Roda Husman, Ana Maria
2013-11-19
Climate change is likely to affect the infectious disease burden from exposure to pathogens in water used for drinking and recreation. Effective intervention measures require quantification of impacts of climate change on the distribution of pathogens in the environment and their potential effects on human health. Objectives of this systematic review were to summarize current knowledge available to estimate how climate change may directly and indirectly affect infection risks due to Campylobacter, Cryptosporidium, norovirus, and Vibrio. Secondary objectives were to prioritize natural processes and interactions that are susceptible to climate change and to identify knowledge gaps. Search strategies were determined based on a conceptual model and scenarios with the main emphasis on The Netherlands. The literature search resulted in a large quantity of publications on climate variables affecting pathogen input and behavior in aquatic environments. However, not all processes and pathogens are evenly covered by the literature, and in many cases, the direction of change is still unclear. To make useful predictions of climate change, it is necessary to combine both negative and positive effects. This review provides an overview of the most important effects of climate change on human health and shows the importance of QMRA to quantify the net effects.
Managing for climate change on protected areas: An adaptive management decision making framework.
Tanner-McAllister, Sherri L; Rhodes, Jonathan; Hockings, Marc
2017-12-15
Current protected area management is becoming more challenging with advancing climate change and current park management techniques may not be adequate to adapt for effective management into the future. The framework presented here provides an adaptive management decision making process to assist protected area managers with adapting on-park management to climate change. The framework sets out a 4 step process. One, a good understanding of the park's context within climate change. Secondly, a thorough understanding of the park management systems including governance, planning and management systems. Thirdly, a series of management options set out as an accept/prevent change style structure, including a systematic assessment of those options. The adaptive approaches are defined as acceptance of anthropogenic climate change impact and attempt to adapt to a new climatic environment or prevention of change and attempt to maintain current systems under new climatic variations. Last, implementation and monitoring of long term trends in response to ecological responses to management interventions and assessing management effectiveness. The framework addresses many issues currently with park management in dealing with climate change including the considerable amount of research focussing on 'off-reserve' strategies, and threats and stress focused in situ park management. Copyright © 2017 Elsevier Ltd. All rights reserved.
Braking effect of climate and topography on global change-induced upslope forest expansion.
Alatalo, Juha M; Ferrarini, Alessandro
2017-03-01
Forests are expected to expand into alpine areas due to global climate change. It has recently been shown that temperature alone cannot realistically explain this process and that upslope tree advance in a warmer scenario may depend on the availability of sites with adequate geomorphic/topographic characteristics. Here, we show that, besides topography (slope and aspect), climate itself can produce a braking effect on the upslope advance of subalpine forests and that tree limit is influenced by non-linear and non-monotonic contributions of the climate variables which act upon treeline upslope advance with varying relative strengths. Our results suggest that global climate change impact on the upslope advance of subalpine forests should be interpreted in a more complex way where climate can both speed up and slow down the process depending on complex patterns of contribution from each climate and non-climate variable.
Understanding scale dependency of climatic processes with diarrheal disease
NASA Astrophysics Data System (ADS)
Nasr Azadani, F.; Jutla, A.; Akanda, A. S. S.; Colwell, R. R.
2015-12-01
The issue of scales in linking climatic processes with diarrheal diseases is perhaps one of the most challenging aspect to develop any predictive algorithm for outbreaks and to understand impacts of changing climate. Majority of diarrheal diseases have shown to be strongly associated with climate modulated environmental processes where pathogens survive. Using cholera as an example of characteristic diarrheal diseases, this study will provide methodological insights on dominant scale variability in climatic processes that are linked with trigger and transmission of disease. Cholera based epidemiological models use human to human interaction as a main transmission mechanism, however, environmental conditions for creating seasonality in outbreaks is not explicitly modeled. For example, existing models cannot create seasonality, unless some of the model parameters are a-priori chosen to vary seasonally. A systems based feedback approach will be presented to understand role of climatic processes on trigger and transmission disease. In order to investigate effect of changing climate on cholera, a downscaling approach using support vector machine will be used. Our preliminary results using three climate models, ECHAM5, GFDL, and HADCM show that varying modalities in future cholera outbreaks.
Processes Understanding of Decadal Climate Variability
NASA Astrophysics Data System (ADS)
Prömmel, Kerstin; Cubasch, Ulrich
2016-04-01
The realistic representation of decadal climate variability in the models is essential for the quality of decadal climate predictions. Therefore, the understanding of those processes leading to decadal climate variability needs to be improved. Several of these processes are already included in climate models but their importance has not yet completely been clarified. The simulation of other processes requires sometimes a higher resolution of the model or an extension by additional subsystems. This is addressed within one module of the German research program "MiKlip II - Decadal Climate Predictions" (http://www.fona-miklip.de/en/) with a focus on the following processes. Stratospheric processes and their impact on the troposphere are analysed regarding the climate response to aerosol perturbations caused by volcanic eruptions and the stratospheric decadal variability due to solar forcing, climate change and ozone recovery. To account for the interaction between changing ozone concentrations and climate a computationally efficient ozone chemistry module is developed and implemented in the MiKlip prediction system. The ocean variability and air-sea interaction are analysed with a special focus on the reduction of the North Atlantic cold bias. In addition, the predictability of the oceanic carbon uptake with a special emphasis on the underlying mechanism is investigated. This addresses a combination of physical, biological and chemical processes.
Impact of Urban Surfaces on Precipitation Processes
NASA Technical Reports Server (NTRS)
Shepherd, J. M.
2004-01-01
The Intergovernmental Panel on Climate Change (IPCC) was established in 1988 by two United Nations organizations, the World Meteorological Organization (WMO) and the United Nations Environment Programme (UNEP) to assess the "risk of human-induced climate change". Such reports are used by decision-makers around the world to assess how our climate is changing. Its reports are widely respected and cited and have been highly influential in forming national and international responses to climate change. The Fourth Assessment report includes a section on the effects of surface processes on climate. This sub-chapter provides an overview of recent developments related to the impact of cities on rainfall. It highlights the possible mechanisms that buildings, urban heat islands, urban aerosols or pollution, and other human factors in cities that can affect rainfall.
Impacts of weighting climate models for hydro-meteorological climate change studies
NASA Astrophysics Data System (ADS)
Chen, Jie; Brissette, François P.; Lucas-Picher, Philippe; Caya, Daniel
2017-06-01
Weighting climate models is controversial in climate change impact studies using an ensemble of climate simulations from different climate models. In climate science, there is a general consensus that all climate models should be considered as having equal performance or in other words that all projections are equiprobable. On the other hand, in the impacts and adaptation community, many believe that climate models should be weighted based on their ability to better represent various metrics over a reference period. The debate appears to be partly philosophical in nature as few studies have investigated the impact of using weights in projecting future climate changes. The present study focuses on the impact of assigning weights to climate models for hydrological climate change studies. Five methods are used to determine weights on an ensemble of 28 global climate models (GCMs) adapted from the Coupled Model Intercomparison Project Phase 5 (CMIP5) database. Using a hydrological model, streamflows are computed over a reference (1961-1990) and future (2061-2090) periods, with and without post-processing climate model outputs. The impacts of using different weighting schemes for GCM simulations are then analyzed in terms of ensemble mean and uncertainty. The results show that weighting GCMs has a limited impact on both projected future climate in term of precipitation and temperature changes and hydrology in terms of nine different streamflow criteria. These results apply to both raw and post-processed GCM model outputs, thus supporting the view that climate models should be considered equiprobable.
Asplund, Therese
2016-07-01
While previous research into understandings of climate change has usually examined general public perceptions, this study offers an audience-specific departure point. This article analyses how Swedish farmers perceive climate change and how they jointly shape their understandings. The agricultural sector is of special interest because it both contributes to and is directly affected by climate change. Through focus group discussions with Swedish farmers, this study finds that (1) farmers relate to and understand climate change through their own experiences, (2) climate change is understood either as a natural process subject to little or no human influence or as anthropogenic and (3) various communication tools contribute to the formation of natural and anthropogenic climate change frames. The article ends by discussing frame resonance and frame clash in public understanding of climate change and by comparing potential similarities and differences in how various segments of the public make sense of climate change. © The Author(s) 2014.
NASA Astrophysics Data System (ADS)
Low, R.; Mandryk, C.; Gosselin, D. C.; Haney, C.
2013-12-01
Climate change engagement requires individuals to understand an abstract and complex topic and realize the profound implications of climate change for their families and local community. In recent years federal agencies have spent millions of dollars on climate change education to prepare a nation for a warming future. The majority of these education efforts are based on a knowledge deficit model. In this view 'educate' means 'provide information'. However cognitive and behavioral research and current action demonstrate that information alone is not enough; knowledge does not necessarily lead to action. Educators are speaking to deaf ears if we rely on passive and abstract information transfer and neglect more persuasive and affective approaches to communication. When climate change is presented abstractly as something that happens in the future to people, environments, animals somewhere else it is easy to discount. People employ two separate systems for information processing: analytical-rational and intuitive-experiential Authentic local research experiences that engage both analytical and experiential information processing systems not only help individuals understand the abstraction of climate change in a concrete and personally experienced manner, but are more likely to influence behavior. Two on-line, graduate-level courses offered within University of Nebraska's Masters of Applied Science program provide opportunities for participants to engage in authentic inquiry based studies climate change's local impacts, and work with K-12 learners in promoting the scientific awareness and behavioral changes that mitigate against the negative impacts of a changing climate. The courses are specifically designed to improve middle and high school (grades 6-12) teachers' content knowledge of climate processes and climate change science in the context of their own community. Both courses provide data-rich, investigative science experiences in a distributed digital environment and support teachers in the creation of lessons and units that promote both inquiry science and service learning in the community. Course participants connect the dots from their newly acquired theoretical science knowledge to concrete examples of change taking place locally, and see the value of promoting awareness as well as behavioral changes that contribute to adaptation and mitigation of local climate change impacts. We describe the assessments used and the research outcomes associated with NRES 832, Human Dimensions of Climate Change, where participants conduct archival research to create a climate change chronicle for their community, and NRES 830 Climate Research Applications, where teachers lead and evaluate the impacts of student-designed service learning activities as a capstone project for a unit on climate change. We also showcase community-based initiatives resulting from this work that seed the behavioral changes we need to live sustainably in our communities and on our planet.
Technology-Driven and Innovative Training for Sustainable Agriculture in The Face of Climate Change
NASA Astrophysics Data System (ADS)
Wishart, D. N.
2015-12-01
Innovative training in 'Sustainable Agriculture' for an increasingly STEM-dependent agricultural sector will require a combination of approaches and technologies for global agricultural production to increase while offsetting climate change. Climate change impacts the water resources of nations as normal global weather patterns are altered during El Nino events. Agricultural curricula must incorporate awareness of 'climate change' in order to find novel ways to (1) assure global food security; (2) improve soil productivity and conservation; (3) improve crop yields and irrigation; (4) inexpensively develop site specific principles of crop management based on variable soil and associated hydrological properties; and (5) improve precision farming. In February 2015, Central State University (CSU), Ohio became an 1890 Land-Grant institution vital to the sustainability of Ohio's agricultural sector. Besides agricultural extension, the agriculture curriculum at CSU integrates multidisciplinary courses in science, technology engineering, agriculture, and mathematics (STEAM). The agriculture program could benefit from a technology-driven, interdisciplinary soil science course that promotes climate change education and climate literacy while being offered in both a blended and collaborative learning environment. The course will focus on the dynamics of microscale to mesoscale processes occurring in farming systems, those of which impact climate change or could be impacted by climate change. Elements of this course will include: climate change webinars; soil-climate interactions; carbon cycling; the balance of carbon fluxes between soil storage and atmosphere; microorganisms and soil carbon storage; paleoclimate and soil forming processes; geophysical techniques used in the characterization of soil horizons; impact of climate change on soil fertility; experiments; and demonstrations.
Evidence and implications of recent climate change in northern Alaska and other arctic regions.
Larry D. Hinzman; Neil D. Bettez; W. Robert Bolton; F. Stuart Chapin; Mark B. Dyurgerov; Chris L. Fastie; Brad Griffith; Robert D. Hollister; Allen Hope; Henry P. Huntington; Anne M. Jensen; Gensuou J. Jia; Torre Jorgenson; Douglas L. Kane; David R. Klein; Gary Kofinas; Amanda H. Lynch; Andrea H. Lloyd; A. David McGuire; Frederick E. Nelson; Walter C. Oechel; Thomas E. Osterkamp; Charles H. Racine; Vladimir E. Romanovsky; Robert S. Stone; Douglas A. Stow; Matthew Sturm; Craig E. Tweedie; George L. Vourlitis; Marilyn D. Walker; Donald A. Walker; Patrick J. Webber; Jeffrey M. Welker; Kevin S. Winker; Kenji Yoshikawa
2005-01-01
The Arctic climate is changing. Permafrost is warming, hydrological processes are changing and biological and social systems are also evolving in response to these changing conditions. Knowing how the structure and function of arctic terrestrial ecosystems are responding to recent and persistent climate change is paramount to understanding the future state of the Earth...
NASA Astrophysics Data System (ADS)
Ferguson, D. B.; Guido, Z. S.; Buizer, J.; Roy, M.
2010-12-01
Bringing climate change issues into focus for decision makers is a growing challenge. Decision makers are often confronted with unique informational needs, a lack of useable information, and needs for customized climate change training, among other issues. Despite significant progress in improving climate literacy among certain stakeholders such as water managers, recent reports have highlighted the growing demand for climate-change information in regions and sectors across the US. In recent years many ventures have sprung up to address these gaps and have predominantly focused on K-12 education and resource management agencies such as the National Park Service and National Weather Service. However, two groups that are critical for integrating climate information into actions have received less attention: (1) policy makers and (2) outreach experts, such as Cooperative Extension agents. Climate Change Boot Camps (CCBC) is a joint effort between the Climate Assessment for the Southwest (CLIMAS)—a NOAA Regionally Integrated Sciences and Assessments (RISA) program—and researchers at Arizona State University to diagnose climate literacy and training gaps in Arizona and develop a process that converts these deficiencies into actionable knowledge among the two aforementioned groups. This presentation will highlight the initial phases of the CCBC process, which has as its outcomes the identification of effective strategies for reaching legislators, climate literacy and training needs for both policy makers and trainers, and effective metrics to evaluate the success of these efforts. Specific attention is given to evaluating the process from initial needs assessment to the effectiveness of the workshops. Web curriculum and training models made available on the internet will also be developed, drawing on extensive existing Web resources for other training efforts and converted to meet the needs of these two groups. CCBC will also leverage CLIMAS’ long history of engaging with stakeholders in the Southwest to facilitate to use of climate information in the decision process.
Singapore Students' Misconceptions of Climate Change
ERIC Educational Resources Information Center
Chang, Chew-Hung; Pascua, Liberty
2016-01-01
Climate change is an important theme in the investigation of human-environment interactions in geographic education. This study explored the nature of students' understanding of concepts and processes related to climate change. Through semi-structured interviews, data was collected from 27 Secondary 3 (Grade 9) students from Singapore. The data…
NASA Astrophysics Data System (ADS)
Kirilenko, A.; Stepchenkova, S.
2012-12-01
To date, multiple authors have examined media representations of and public attitudes towards climate change, as well as how these representations and attitudes differ from scientific knowledge on the issue of climate change. Content analysis of newspaper publications, TV news, and, recently, Internet blogs has allowed for identification of major discussion themes within the climate change domain (e.g., newspaper trends, comparison of climate change discourse in different countries, contrasting liberal vs. conservative press). The majority of these studies, however, have processed texts manually, limiting textual population size, restricting the analysis to a relatively small number of themes, and using time-expensive coding procedures. The use of computer-assisted text analysis (CATA) software is important because the difficulties with manual processing become more severe with an increased volume of data. We developed a CATA approach that allows a large body of text materials to be surveyed in a quantifiable, objective, transparent, and time-efficient manner. While staying within the quantitative tradition of content analysis, the approach allows for an interpretation of the public discourse closer to one of more qualitatively oriented methods. The methodology used in this study contains several steps: (1) sample selection; (2) data preparation for computer processing and obtaining a matrix of keyword frequencies; (3) identification of themes in the texts using Exploratory Factor Analysis (EFA); (4) combining identified themes into higher order themes using Confirmatory Factor Analysis (CFA); (5) interpretation of obtained public discourse themes using factor scores; and (6) tracking the development of the main themes of the climate change discourse through time. In the report, we concentrate on two examples of CATA applied to study public perception of climate change. First example is an analysis of temporal change in public discourse on climate change. Applying CATA to a conservatively selected sample of 4043 articles published on climate change in The New York Times from 1995, we found a considerable change in major topics of discussion. One of the most significant tendencies is a gradual decline in the volume of material within the "Science" topic and an expansion of themes classified under the "Politics" topic. The second example is the analysis of public ability to detect climate change, in which we used a database of over 1 million Twitter messages on climate change that we have collected. We compared the intensity of tweeting on climate change with the "common-sense climate index" by Hansen et al (1999) and found that the weather extremes experienced at a certain location is immediately reflected in the number of tweets discussing climate change originating from that location. Although the CATA approach certainly has its limitations, we are convinced that it has a number of advantages over manual processing: it is able to analyze large textual bodies, is more time efficient, has a higher level of detail, enhances the richness of interpretation, and is able to reliably track discourse development through time.
Brown, Helen; Spickett, Jeffery; Katscherian, Dianne
2014-01-01
This paper presents a detailed description of an approach designed to investigate the application of the Health Impact Assessment (HIA) framework to assess the potential health impacts of climate change. A HIA framework has been combined with key climate change terminology and concepts. The fundamental premise of this framework is an understanding of the interactions between people, the environment and climate. The diversity and complexity of these interactions can hinder much needed action on the critical health issue of climate change. The objectives of the framework are to improve the methodology for understanding and assessing the risks associated with potential health impacts of climate change, and to provide decision-makers with information that can facilitate the development of effective adaptation plans. While the process presented here provides guidance with respect to this task it is not intended to be prescriptive. As such, aspects of the process can be amended to suit the scope and available resources of each project. A series of working tables has been developed to assist in the collation of evidence throughout the process. The framework has been tested in a number of locations including Western Australia, Solomon Islands, Vanuatu and Nauru. PMID:25514146
Brown, Helen; Spickett, Jeffery; Katscherian, Dianne
2014-12-01
This paper presents a detailed description of an approach designed to investigate the application of the Health Impact Assessment (HIA) framework to assess the potential health impacts of climate change. A HIA framework has been combined with key climate change terminology and concepts. The fundamental premise of this framework is an understanding of the interactions between people, the environment and climate. The diversity and complexity of these interactions can hinder much needed action on the critical health issue of climate change. The objectives of the framework are to improve the methodology for understanding and assessing the risks associated with potential health impacts of climate change, and to provide decision-makers with information that can facilitate the development of effective adaptation plans. While the process presented here provides guidance with respect to this task it is not intended to be prescriptive. As such, aspects of the process can be amended to suit the scope and available resources of each project. A series of working tables has been developed to assist in the collation of evidence throughout the process. The framework has been tested in a number of locations including Western Australia, Solomon Islands, Vanuatu and Nauru.
NASA Technical Reports Server (NTRS)
Imhoff, Marc Lee; Kamiell, Arnon Menahem
2010-01-01
Land cover change driven by human activity is profoundly affecting Earth's natural systems with impacts ranging from a loss of biological diversity to changes in regional and global climate. This change has been so pervasive and progressed so rapidly, compared to natural processes, scientists refer to it as "the great transformation". Urbanization or the 'gray wave' of land transformation is being increasingly recognized as an important process in global climate change. A hallmark of our success as a species, large urban conglomerates do in fact alter the land surface so profoundly that both local climate and the basic ecology of the landscape are affected in ways that have consequences to human health and economic well-being. Fortunately we have incredible new tools for planning and developing urban places that are both enjoyable and sustainable. A suite of Earth observing satellites is making it possible to study the interactions between urbanization, biological processes, and weather and climate. Using these Earth Observatories we are learning how urban heat islands form and potentially ameliorate them, how urbanization can affect rainfall, pollution, and surface water recharge at the local level and climate and food security globally.
EPA announced the availability of the final report, An Assessment of Decision-Making Processes: Evaluation of Where Land Protection Planning Can Incorporate Climate Change Information. This report is a review of decision-making processes of selected land protection prog...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutowski, William J.
This project developed and applied a regional Arctic System model for enhanced decadal predictions. It built on successful research by four of the current PIs with support from the DOE Climate Change Prediction Program, which has resulted in the development of a fully coupled Regional Arctic Climate Model (RACM) consisting of atmosphere, land-hydrology, ocean and sea ice components. An expanded RACM, a Regional Arctic System Model (RASM), has been set up to include ice sheets, ice caps, mountain glaciers, and dynamic vegetation to allow investigation of coupled physical processes responsible for decadal-scale climate change and variability in the Arctic. RASMmore » can have high spatial resolution (~4-20 times higher than currently practical in global models) to advance modeling of critical processes and determine the need for their explicit representation in Global Earth System Models (GESMs). The pan-Arctic region is a key indicator of the state of global climate through polar amplification. However, a system-level understanding of critical arctic processes and feedbacks needs further development. Rapid climate change has occurred in a number of Arctic System components during the past few decades, including retreat of the perennial sea ice cover, increased surface melting of the Greenland ice sheet, acceleration and thinning of outlet glaciers, reduced snow cover, thawing permafrost, and shifts in vegetation. Such changes could have significant ramifications for global sea level, the ocean thermohaline circulation and heat budget, ecosystems, native communities, natural resource exploration, and commercial transportation. The overarching goal of the RASM project has been to advance understanding of past and present states of arctic climate and to improve seasonal to decadal predictions. To do this the project has focused on variability and long-term change of energy and freshwater flows through the arctic climate system. The three foci of this research are: - Changes in the freshwater flux between arctic climate system components resulting from decadal changes in land and sea ice, seasonal snow, vegetation, and ocean circulation. - Changing energetics due to decadal changes in ice mass, vegetation, and air-sea interactions. - The role of small-scale atmospheric and oceanic processes that influence decadal variability. This research has been addressing modes of natural climate variability as well as extreme and rapid climate change. RASM can facilitate studies of climate impacts (e.g., droughts and fires) and of ecosystem adaptations to these impacts.« less
Grimm, Nancy B.; Groffman, Peter M; Staudinger, Michelle D.; Tallis, Heather
2016-01-01
The third United States National Climate Assessment emphasized an evaluation of not just the impacts of climate change on species and ecosystems, but also the impacts of climate change on the benefits that people derive from nature, known as ecosystem services. The ecosystems, biodiversity, and ecosystem services component of the assessment largely drew upon the findings of a transdisciplinary workshop aimed at developing technical input for the assessment, involving participants from diverse sectors. A small author team distilled and synthesized this and hundreds of other technical input to develop the key findings of the assessment. The process of developing and ranking key findings hinged on identifying impacts that had particular, demonstrable effects on the U.S. public via changes in national ecosystem services. Findings showed that ecosystem services are threatened by the impacts of climate change on water supplies, species distributions and phenology, as well as multiple assaults on ecosystem integrity that, when compounded by climate change, reduce the capacity of ecosystems to buffer against extreme events. As ecosystems change, such benefits as water sustainability and protection from storms that are afforded by intact ecosystems are projected to decline across the continent due to climate change. An ongoing, sustained assessment that focuses on the co-production of actionable climate science will allow scientists from a range of disciplines to ascertain the capability of their forecasting models to project environmental and ecological change and link it to ecosystem services; additionally, an iterative process of evaluation, development of management strategies, monitoring, and reevaluation will increase the applicability and usability of the science by the U.S. public.
NASA Astrophysics Data System (ADS)
Xiao, Dengpan; Qi, Yongqing; Shen, Yanjun; Tao, Fulu; Moiwo, Juana P.; Liu, Jianfeng; Wang, Rede; Zhang, He; Liu, Fengshan
2016-05-01
As climate change could significantly influence crop phenology and subsequent crop yield, adaptation is a critical mitigation process of the vulnerability of crop growth and production to climate change. Thus, to ensure crop production and food security, there is the need for research on the natural (shifts in crop growth periods) and artificial (shifts in crop cultivars) modes of crop adaptation to climate change. In this study, field observations in 18 stations in North China Plain (NCP) are used in combination with Agricultural Production Systems Simulator (APSIM)-Maize model to analyze the trends in summer maize phenology in relation to climate change and cultivar shift in 1981-2008. Apparent warming in most of the investigated stations causes early flowering and maturity and consequently shortens reproductive growth stage. However, APSIM-Maize model run for four representative stations suggests that cultivar shift delays maturity and thereby prolongs reproductive growth (flowering to maturity) stage by 2.4-3.7 day per decade (d 10a-1). The study suggests a gradual adaptation of maize production process to ongoing climate change in NCP via shifts in high thermal cultivars and phenological processes. It is concluded that cultivation of maize cultivars with longer growth periods and higher thermal requirements could mitigate the negative effects of warming climate on crop production and food security in the NCP study area and beyond.
Changes in Intense Precipitation Events in West Africa and the central U.S. under Global Warming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Kerry H.; Vizy, Edward
The purpose of the proposed project is to improve our understanding of the physical processes and large-scale connectivity of changes in intense precipitation events (high rainfall rates) under global warming in West Africa and the central U.S., including relationships with low-frequency modes of variability. This is in response to the requested subject area #2 “simulation of climate extremes under a changing climate … to better quantify the frequency, duration, and intensity of extreme events under climate change and elucidate the role of low frequency climate variability in modulating extremes.” We will use a regional climate model and emphasize an understandingmore » of the physical processes that lead to an intensification of rainfall. The project objectives are as follows: 1. Understand the processes responsible for simulated changes in warm-season rainfall intensity and frequency over West Africa and the Central U.S. associated with greenhouse gas-induced global warming 2. Understand the relationship between changes in warm-season rainfall intensity and frequency, which generally occur on regional space scales, and the larger-scale global warming signal by considering modifications of low-frequency modes of variability. 3. Relate changes simulated on regional space scales to global-scale theories of how and why atmospheric moisture levels and rainfall should change as climate warms.« less
Cronin, Thomas M.
2016-01-01
Climate change (including climate variability) refers to regional or global changes in mean climate state or in patterns of climate variability over decades to millions of years often identified using statistical methods and sometimes referred to as changes in long-term weather conditions (IPCC, 2012). Climate is influenced by changes in continent-ocean configurations due to plate tectonic processes, variations in Earth’s orbit, axial tilt and precession, atmospheric greenhouse gas (GHG) concentrations, solar variability, volcanism, internal variability resulting from interactions between the atmosphere, oceans and ice (glaciers, small ice caps, ice sheets, and sea ice), and anthropogenic activities such as greenhouse gas emissions and land use and their effects on carbon cycling.
Climate Change and Water Resources Management: A Federal Perspective
Brekke, Levi D.; Kiang, Julie E.; Olsen, J. Rolf; Pulwarty, Roger S.; Raff, David A.; Turnipseed, D. Phil; Webb, Robert S.; White, Kathleen D.
2009-01-01
Many challenges, including climate change, face the Nation's water managers. The Intergovernmental Panel on Climate Change (IPCC) has provided estimates of how climate may change, but more understanding of the processes driving the changes, the sequences of the changes, and the manifestation of these global changes at different scales could be beneficial. Since the changes will likely affect fundamental drivers of the hydrological cycle, climate change may have a large impact on water resources and water resources managers. The purpose of this interagency report prepared by the U.S. Geological Survey (USGS), U.S. Army Corps of Engineers (USACE), Bureau of Reclamation (Reclamation), and National Oceanic and Atmospheric Administration (NOAA) is to explore strategies to improve water management by tracking, anticipating, and responding to climate change. This report describes the existing and still needed underpinning science crucial to addressing the many impacts of climate change on water resources management.
Climate Change Literacy across the Critical Zone Observatory Network
NASA Astrophysics Data System (ADS)
Moore, A.; Derry, L. A.; Zabel, I.; Duggan-Haas, D.; Ross, R. M.
2017-12-01
Earth's Critical Zone extends from the top of the tree canopy to the base of the groundwater lens. Thus the Critical Zone is examined as a suite of interconnected systems and study of the CZ is inherently interdisciplinary. Climate change is an important driver of CZ processes. The US Critical Zone Observatory Network comprises nine observatories and a coordinating National Office. Educational programs and materials developed at each CZO and the National Office have been collected, reviewed, and presented on-line at the CZONO (criticalzone.org/national/education-outreach/resources). Because the CZOs are designed to observe and measure a suite of common parameters on varying geological substrates and within different ecological contexts, educational resources reflect the diversity of processes represented across the network. As climate change has a network-wide impact, the fundamental building blocks of climate change literacy are key elements in many activities within the CZONO resource collection. Carbon-cycle and hydrologic cycle processes are well-represented, with emphasis on human interactions with these resources, as well as the impact of extreme events and the changing climate. Current work on the resource collection focuses on connecting individual resources to "Teach Climate Science" project and the Teacher-Friendly Guide to Climate Change (teachclimatescience.wordpress.com). The Teacher-Friendly Guide is a manual for K-12 teachers that presents both the fundamentals of climate science alongside resources for effective teaching of this controversial topic. Using the reach of the CZO network we hope to disseminate effective climate literacy resources and support to the K-12 community.
Readying health services for climate change: a policy framework for regional development.
Bell, Erica
2011-05-01
Climate change presents the biggest threat to human health in the 21st century. However, many public health leaders feel ill equipped to face the challenges of climate change and have been unable to make climate change a priority in service development. I explore how to achieve a regionally responsive whole-of-systems approach to climate change in the key operational areas of a health service: service governance and culture, service delivery, workforce development, asset management, and financing. The relative neglect of implementation science means that policymakers need to be proactive about sourcing and developing models and processes to make health services ready for climate change. Health research funding agencies should urgently prioritize applied, regionally responsive health services research for a future of climate change.
Readying Health Services for Climate Change: A Policy Framework for Regional Development
2011-01-01
Climate change presents the biggest threat to human health in the 21st century. However, many public health leaders feel ill equipped to face the challenges of climate change and have been unable to make climate change a priority in service development. I explore how to achieve a regionally responsive whole-of-systems approach to climate change in the key operational areas of a health service: service governance and culture, service delivery, workforce development, asset management, and financing. The relative neglect of implementation science means that policymakers need to be proactive about sourcing and developing models and processes to make health services ready for climate change. Health research funding agencies should urgently prioritize applied, regionally responsive health services research for a future of climate change. PMID:21421953
NASA Astrophysics Data System (ADS)
Muñoz-Rojas, Miriam; Pereira, Paulo; Brevik, Eric; Cerda, Artemi; Jordan, Antonio
2017-04-01
As agreed in Paris in December 2015, global average temperature is to be limited to "well below 2 °C above pre-industrial levels" and efforts will be made to "limit the temperature increase to 1.5 °C above pre-industrial levels. Thus, reducing greenhouse gas emissions (GHG) in all sectors becomes critical and appropriate sustainable land management practices need to be taken (Pereira et al., 2017). Mitigation strategies focus on reducing the rate and magnitude of climate change by reducing its causes. Complementary to mitigation, adaptation strategies aim to minimise impacts and maximize the benefits of new opportunities. The adoption of both practices will require developing system models to integrate and extrapolate anticipated climate changes such as global climate models (GCMs) and regional climate models (RCMs). Furthermore, integrating climate models driven by socio-economic scenarios in soil process models has allowed the investigation of potential changes and threats in soil characteristics and functions in future climate scenarios. One of the options with largest potential for climate change mitigation is sequestering carbon in soils. Therefore, the development of new methods and the use of existing tools for soil carbon monitoring and accounting have therefore become critical in a global change context. For example, soil C maps can help identify potential areas where management practices that promote C sequestration will be productive and guide the formulation of policies for climate change mitigation and adaptation strategies. Despite extensive efforts to compile soil information and map soil C, many uncertainties remain in the determination of soil C stocks, and the reliability of these estimates depends upon the quality and resolution of the spatial datasets used for its calculation. Thus, better estimates of soil C pools and dynamics are needed to advance understanding of the C balance and the potential of soils for climate change mitigation. Here, we discuss the most recent advances on the application of soil mapping and modeling to support climate change mitigation and adaptation strategies; and These strategies are a key component of the implementation of sustainable land management policies need to be integrated are critical to. The objective of this work is to present a review about the advantages of soil mapping and process modeling for sustainable land management. Muñoz-Rojas, M., Pereira, P., Brevic, E., Cerda, A., Jordan, A. (2017) Soil mapping and processes models for sustainable land management applied to modern challenges. In: Pereira, P., Brevik, E., Munoz-Rojas, M., Miller, B. (Eds.) Soil mapping and process modelling for sustainable land use management (Elsevier Publishing House) ISBN: 9780128052006
NASA Astrophysics Data System (ADS)
Bean, J. R.; Zoehfeld, K.; Mitchell, K.; Levine, J.; White, L. D.
2016-12-01
Understanding climate change and how to mitigate the causes and consequences of anthropogenic activities are essential components of the Next Generations Science Standards. To comprehend climate change today and why current rates and magnitudes of change are of concern, students must understand the various factors that drive Earth system processes and also how they interrelate. The Understanding Global Change web resource in development from the UC Museum of Paleontology will provide science educators with a conceptual framework, graphical models, lessons, and assessment templates for teaching NGSS aligned, interdisciplinary, climate change curricula. To facilitate students learning about the Earth as a dynamic, interacting system of ongoing processes, the Understanding Global Change site will provide explicit conceptual links for the causes of climate change (e.g., burning of fossil fuels, deforestation), Earth system processes (e.g., Earth's energy budget, water cycle), and the changes scientists measure in the Earth system (e.g., temperature, precipitation). The conceptual links among topics will be presented in a series of storyboards that visually represent relationships and feedbacks among components of the Earth system and will provide teachers with guides for implementing NGSS-aligned climate change instruction that addresses physical science, life sciences, Earth and space science, and engineering performance expectations. These visualization and instructional methods are used by teachers during professional development programs at UC Berkeley and the Smithsonian National Museum of Natural History and are being tested in San Francisco Bay Area classrooms.
NASA Astrophysics Data System (ADS)
Bhat, C.; Dix, B.; Choate, A.; Wong, A.; Asam, S.; Schultz, P. A.
2016-12-01
Policy makers can implement more effective climate change adaptation programs if they are provided with two tools: accessible information on the impacts that they need to prepare for, and clear guidance on how to integrate climate change considerations into their work. This presentation will highlight recent and ongoing efforts at the City of Philadelphia to integrate climate science into their decision-making. These efforts include developing a climate change information visualization tool, climate change risk assessments across the city, and processes to integrate climate change into routine planning and budgeting practices. The goal of these efforts is to make climate change science highly targeted to decision maker needs, non-political, easily accessible, and actionable. While sea level rise inundation maps have been available to communities for years, the maps do not effectively communicate how the design of a building or a piece of infrastructure would need to be modified to protect it. The Philadelphia Flood Risk Viewer is an interactive planning tool that allows Philadelphia to identify projected depths of flooding for any location within the City, for a variety of sea level rise and storm surge scenarios. Users can also determine whether a location is located in a FEMA floodplain. By having access to information on the projected depth of flooding at a given location, the City can determine what flood protection measures may be effective, or even inform the long-term viability of developing a particular area. With an understanding of climate vulnerabilities, cities have the opportunity to make smart, climate-resilient investments with their capital budgets that will yield multiple benefits for years to come. Few, however, have established protocols for doing so. Philadelphia, with support from ICF, developed a guidance document that identifies recommendations for integrating climate change considerations throughout the Capital Program and capital budgeting process. For each recommendation, the guidance also provides supplemental resources and information to make the recommendations actionable. Philadelphia is applying the guidance in their FY 2017 capital planning activities and taking advantage of opportunities to grow stronger in the face of climate change.
Learning and Risk Exposure in a Changing Climate
NASA Astrophysics Data System (ADS)
Moore, F.
2015-12-01
Climate change is a gradual process most apparent over long time-scales and large spatial scales, but it is experienced by those affected as changes in local weather. Climate change will gradually push the weather people experience outside the bounds of historic norms, resulting in unprecedented and extreme weather events. However, people do have the ability to learn about and respond to a changing climate. Therefore, connecting the weather people experience with their perceptions of climate change requires understanding how people infer the current state of the climate given their observations of weather. This learning process constitutes a first-order constraint on the rate of adaptation and is an important determinant of the dynamic adjustment costs associated with climate change. In this paper I explore two learning models that describe how local weather observations are translated into perceptions of climate change: an efficient Bayesian learning model and a simpler rolling-mean heuristic. Both have a period during which the learner's beliefs about the state of the climate are different from its true state, meaning the learner is exposed to a different range of extreme weather outcomes then they are prepared for. Using the example of surface temperature trends, I quantify this additional exposure to extreme heat events under both learning models and both RCP 8.5 and 2.6. Risk exposure increases for both learning models, but by substantially more for the rolling-mean learner. Moreover, there is an interaction between the learning model and the rate of climate change: the inefficient rolling-mean learner benefits much more from the slower rates of change under RCP 2.6 then the Bayesian. Finally, I present results from an experiment that suggests people are able to learn about a trending climate in a manner consistent with the Bayesian model.
Grand challenges in understanding the interplay of climate and land changes
Liu, Shuguang; Bond-Lamberty, Ben; Boysen, Lena R.; Ford, James D.; Fox, Andrew; Gallo, Kevin; Hatfield, Jerry L.; Henebry, Geoffrey M.; Huntington, Thomas G.; Liu, Zhihua; Loveland, Thomas R.; Norby, Richard J.; Sohl, Terry L.; Steiner, Allison L.; Yuan, Wenping; Zhang, Zhao; Zhao, Shuqing
2017-01-01
Half of Earth’s land surface has been altered by human activities, creating various consequences on the climate and weather systems at local to global scales, which in turn affect a myriad of land surface processes and the adaptation behaviors. This study reviews the status and major knowledge gaps in the interactions of land and atmospheric changes and present 11 grand challenge areas for the scientific research and adaptation community in the coming decade. These land-cover and land-use change (LCLUC)-related areas include 1) impacts on weather and climate, 2) carbon and other biogeochemical cycles, 3) biospheric emissions, 4) the water cycle, 5) agriculture, 6) urbanization, 7) acclimation of biogeochemical processes to climate change, 8) plant migration, 9) land-use projections, 10) model and data uncertainties, and, finally, 11) adaptation strategies. Numerous studies have demonstrated the effects of LCLUC on local to global climate and weather systems, but these putative effects vary greatly in magnitude and even sign across space, time, and scale and thus remain highly uncertain. At the same time, many challenges exist toward improved understanding of the consequences of atmospheric and climate change on land process dynamics and services. Future effort must improve the understanding of the scale-dependent, multifaceted perturbations and feedbacks between land and climate changes in both reality and models. To this end, one critical cross-disciplinary need is to systematically quantify and better understand measurement and model uncertainties. Finally, LCLUC mitigation and adaptation assessments must be strengthened to identify implementation barriers, evaluate and prioritize opportunities, and examine how decision-making processes work in specific contexts.
Segurado, Pedro; Branco, Paulo; Jauch, Eduardo; Neves, Ramiro; Ferreira, M Teresa
2016-08-15
Climate change will predictably change hydrological patterns and processes at the catchment scale, with impacts on habitat conditions for fish. The main goal of this study is to assess how shifts in fish habitat favourability under climate change scenarios are affected by hydrological stressors. The interplay between climate and hydrological stressors has important implications in river management under climate change because management actions to control hydrological parameters are more feasible than controlling climate. This study was carried out in the Tamega catchment of the Douro basin. A set of hydrological stressor variables were generated through a process-based modelling based on current climate data (2008-2014) and also considering a high-end future climate change scenario. The resulting parameters, along with climatic and site-descriptor variables were used as explanatory variables in empirical habitat models for nine fish species using boosted regression trees. Models were calibrated for the whole Douro basin using 254 fish sampling sites and predictions under future climate change scenarios were made for the Tamega catchment. Results show that models using climatic variables but not hydrological stressors produce more stringent predictions of future favourability, predicting more distribution contractions or stronger range shifts. The use of hydrological stressors strongly influences projections of habitat favourability shifts; the integration of these stressors in the models thinned shifts in range due to climate change. Hydrological stressors were retained in the models for most species and had a high importance, demonstrating that it is important to integrate hydrology in studies of impacts of climate change on freshwater fishes. This is a relevant result because it means that management actions to control hydrological parameters in rivers will have an impact on the effects of climate change and may potentially be helpful to mitigate its negative effects on fish populations and assemblages. Copyright © 2016 Elsevier B.V. All rights reserved.
Keleman Saxena, Alder; Cadima Fuentes, Ximena; Gonzales Herbas, Rhimer; Humphries, Debbie L
2016-01-01
Inhabitants of the high-mountain Andes have already begun to experience changes in the timing, severity, and patterning of annual weather cycles. These changes have important implications for agriculture, for human health, and for the conservation of biodiversity in the region. This paper examines the implications of climate-driven changes for native and traditional crops in the municipality of Colomi, Cochabamba, Bolivia. Data were collected between 2012 and 2014 via mixed methods, qualitative fieldwork, including participatory workshops with female farmers and food preparers, semi-structured interviews with local agronomists, and participant observation. Drawing from this data, the paper describes (a) the observed impacts of changing weather patterns on agricultural production in the municipality of Colomi, Bolivia and (b) the role of local environmental resources and conditions, including clean running water, temperature, and humidity, in the household processing techniques used to conserve and sometimes detoxify native crop and animal species, including potato (Solanum sp.), oca (Oxalis tuberosa), tarwi (Lupinus mutabilis), papalisa (Ullucus tuberosus), and charke (llama or sheep jerky). Analysis suggests that the effects of climatic changes on agriculture go beyond reductions in yield, also influencing how farmers make choices about the timing of planting, soil management, and the use and spatial distribution of particular crop varieties. Furthermore, household processing techniques to preserve and detoxify native foods rely on key environmental and climatic resources, which may be vulnerable to climatic shifts. Although these findings are drawn from a single case study, we suggest that Colomi agriculture characterizes larger patterns in what might be termed, "indigenous food systems." Such systems are underrepresented in aggregate models of the impacts of climate change on world agriculture and may be under different, more direct, and more immediate threat from climate change. As such, the health of the food production and processing environments in such systems merits immediate attention in research and practice.
Keleman Saxena, Alder; Cadima Fuentes, Ximena; Gonzales Herbas, Rhimer; Humphries, Debbie L.
2016-01-01
Inhabitants of the high-mountain Andes have already begun to experience changes in the timing, severity, and patterning of annual weather cycles. These changes have important implications for agriculture, for human health, and for the conservation of biodiversity in the region. This paper examines the implications of climate-driven changes for native and traditional crops in the municipality of Colomi, Cochabamba, Bolivia. Data were collected between 2012 and 2014 via mixed methods, qualitative fieldwork, including participatory workshops with female farmers and food preparers, semi-structured interviews with local agronomists, and participant observation. Drawing from this data, the paper describes (a) the observed impacts of changing weather patterns on agricultural production in the municipality of Colomi, Bolivia and (b) the role of local environmental resources and conditions, including clean running water, temperature, and humidity, in the household processing techniques used to conserve and sometimes detoxify native crop and animal species, including potato (Solanum sp.), oca (Oxalis tuberosa), tarwi (Lupinus mutabilis), papalisa (Ullucus tuberosus), and charke (llama or sheep jerky). Analysis suggests that the effects of climatic changes on agriculture go beyond reductions in yield, also influencing how farmers make choices about the timing of planting, soil management, and the use and spatial distribution of particular crop varieties. Furthermore, household processing techniques to preserve and detoxify native foods rely on key environmental and climatic resources, which may be vulnerable to climatic shifts. Although these findings are drawn from a single case study, we suggest that Colomi agriculture characterizes larger patterns in what might be termed, “indigenous food systems.” Such systems are underrepresented in aggregate models of the impacts of climate change on world agriculture and may be under different, more direct, and more immediate threat from climate change. As such, the health of the food production and processing environments in such systems merits immediate attention in research and practice. PMID:26973824
Enric Batllori; Marc-Andre Parisien; Sean A. Parks; Max A. Moritz; Carol Miller
2017-01-01
Ongoing climate change may undermine the effectiveness of protected area networks in preserving the set of biotic components and ecological processes they harbor, thereby jeopardizing their conservation capacity into the future. Metrics of climate change, particularly rates and spatial patterns of climatic alteration, can help assess potential threats. Here, we perform...
Montane ecosystem productivity responds more to global circulation patterns than climatic trends.
Desai, A R; Wohlfahrt, G; Zeeman, M J; Katata, G; Eugster, W; Montagnani, L; Gianelle, D; Mauder, M; Schmid, H-P
2016-02-01
Regional ecosystem productivity is highly sensitive to inter-annual climate variability, both within and outside the primary carbon uptake period. However, Earth system models lack sufficient spatial scales and ecosystem processes to resolve how these processes may change in a warming climate. Here, we show, how for the European Alps, mid-latitude Atlantic ocean winter circulation anomalies drive high-altitude summer forest and grassland productivity, through feedbacks among orographic wind circulation patterns, snowfall, winter and spring temperatures, and vegetation activity. Therefore, to understand future global climate change influence to regional ecosystem productivity, Earth systems models need to focus on improvements towards topographic downscaling of changes in regional atmospheric circulation patterns and to lagged responses in vegetation dynamics to non-growing season climate anomalies.
Montane ecosystem productivity responds more to global circulation patterns than climatic trends
NASA Astrophysics Data System (ADS)
Desai, A. R.; Wohlfahrt, G.; Zeeman, M. J.; Katata, G.; Eugster, W.; Montagnani, L.; Gianelle, D.; Mauder, M.; Schmid, H.-P.
2016-02-01
Regional ecosystem productivity is highly sensitive to inter-annual climate variability, both within and outside the primary carbon uptake period. However, Earth system models lack sufficient spatial scales and ecosystem processes to resolve how these processes may change in a warming climate. Here, we show, how for the European Alps, mid-latitude Atlantic ocean winter circulation anomalies drive high-altitude summer forest and grassland productivity, through feedbacks among orographic wind circulation patterns, snowfall, winter and spring temperatures, and vegetation activity. Therefore, to understand future global climate change influence to regional ecosystem productivity, Earth systems models need to focus on improvements towards topographic downscaling of changes in regional atmospheric circulation patterns and to lagged responses in vegetation dynamics to non-growing season climate anomalies.
FOREWORD: International Conference on Planetary Boundary Layer and Climate Change
NASA Astrophysics Data System (ADS)
Djolov, G.; Esau, I.
2010-05-01
One of the greatest achievements of climate science has been the establisment of the concept of climate change on a multitude of time scales. The Earth's complex climate system does not allow a straightforward interpretation of dependences between the external parameter perturbation, internal stochastic system dynamics and the long-term system response. The latter is usually referred to as climate change in a narrow sense (IPCC, 2007). The focused international conference "Planetary Boundary Layers and Climate Change" has addressed only time scales and dynamical aspects of climate change with possible links to the turbulent processes in the Planetary Boundary Layer (PBL). Although limited, the conference topic is by no means singular. One should clearly understand that the PBL is the layer where 99% of biosphere and human activity are concentrated. The PBL is the layer where the energy fluxes, which are followed by changes in cryosphere and other known feedbacks, are maximized. At the same time, the PBL processes are of a naturally small scale. What is the averaged long-term effect of the small-scale processes on the long-term climate dynamics? Can this effect be recognized in existing long-term paleo-climate data records? Can it be modeled? What is the current status of our theoretical understanding of this effect? What is the sensitivity of the climate model projections to the representation of small-scale processes? Are there significant indirect effects, e.g. through transport of chemical components, of the PBL processes on climate? These and other linked questions have been addressed during the conference. The Earth's climate has changed many times during the planet's history, with events ranging from ice ages to long periods of warmth. Historically, natural factors such as the amount of energy released from the Sun, volcanic eruptions and changes in the Earth's orbit have affected the Earth's climate. Beginning late in the 18th century, human activities associated with the Industrial Revolution such as the addition of greenhouse gases and aerosols has changed the composition of the atmosphere. These changes are likely to have influenced temperature, precipitation, storms and sea level (IPCC, 2007). However, these features of the climate also vary naturally, so determining what fraction of climate changes are due to natural variability versus human activities is challenging and not yet a solved problem. Africa is vulnerable to climate change as its ability to adaptat and mitigate is considerably dampened (IPCC, 2007). Climate change may impede a nations ability to achieve sustainable development and the Millennium Development Goals, and because of that Africa (particularly sub-tropical Africa) will experience increased levels of water stress and reduced agricultural yields of up to 50% by 2020. An example of the scale of the region's vulnerability was demonstrated during the last very dry year (1991/92) when 30% of the southern African population was put on food aid and more than one million people were displaced. Climate change in Africa is essentially dependent on our understanding of the PBL processes both due to the indispensible role of the atmospheric convection in the African climate and due to its tele-connections to other regions, e.g. the tropical Pacific and Indian monsoon regions. Although numerous publications attribute the observed changes to one or another modification of the convective patterns, further progress is impeded by imperfections of the small-scale process parameterizations in the models. The uncertainties include parameter uncertainties of known physical processes, which could be reduced through better observations/modelling, as well as uncertainties in our knowledge of physical processes themselves (or structural uncertainties), which could be reduced only through theoretical development and design of new, original observations/experiments (Oppenheimer et al., Science, 2007). Arguably, the structural uncertainties is hard to reduce and this could be one of the reasons determining slow progress in narrowing the climate model uncertainty range over the last 30 years (Knutti and Hagerl, Nature Geoscience, 2008). One of the most prominent structural uncertainties in the ongoing transient climate change is related to poor understanding and hence incorrect modelling of the turbulent physics and dynamics processes in the planetary boundary layer. Nevertheless, the climate models continue to rely on physically incorrect boundary layer parameterizations (Cuxart et al., BLM, 2006), whose erroneous dynamical response in the climate models may lead to significant abnormalities in simulated climate. At present, international efforts in theoretical understanding of the turbulent mixing have resulted in significant progress in turbulence simulation, measurements and parameterizations. However, this understanding has not yet found its way to the climate research community. Vice versa, climate research is not usually addressed by the boundary layer research community. The gap needs to be closed in order to crucially complete the scientific basis of climate change studies. The focus of the proposed forum could be formulated as follows: The planetary boundary layer determines several key parameters controlling the Earth's climate system but being a dynamic sub-system, just a layer of turbulent mixing in the atmosphere/ocean, it is also controlled by the climate system and its changes. Such a dynamic relationship causes a planetary boundary layer feedback (PBL-feedback) which could be defined as the response of the surface air temperature on changes in the vertical turbulent mixing. The forum participants have discussed both climatological and fluid dynamic aspects of this response, in order to quantify their role in the Earth's transient heat uptake and its representation in climate models. The choice of the forum location and dates are motivated by the role of tropical oceans and convection in the climate system and the prominent demonstration of the climate sensitivity to the ocean heat uptake observed off Cape Town. The international conference responded to the urgent need of advancing our understanding of the complex climate system and development of adequate measures for saving the planet from environmental disaster. It also fits well with the Republic of South African government's major political decision to include the responses to global change/climate change at the very top of science and technology policy. The conference participants are grateful to the Norway Research Council and the National Research Foundation (NRF) RSA who supported the Conference through the project "Analysis and Possibility for Control of Atmospheric Boundary Layer Processes to Facilitate Adaptation to Environmental Changes" realized in the framework of the Programme for Research and Co-operation Phase II between the two countries. Kirstenbosh Biodiversity Institute and Botanical Gardens, Cape Town contribution of securing one of the most beautiful Conference venues in the world and technical support is also highly appreciated. G. Djolov and I. Esau Editors Conference_Photo Conference Organising Comittee Djolov, G.South AfricaUniversity of Pretoria Esau, I.NorwayNansen Environmental and Remote Sensing Center Hewitson, B.South AfricaUniversity of Cape Town McGregor, J.AustraliaCSIRO Marine and Atmospheric Research Midgley, G.South AfricaSouth African National Botanical Institute Mphepya, J.South AfricaSouth African Weather Service Piketh, S.South AfricaUniversity of the Witwatersrand Pielke, R.USAUniversity of Colorado, Boulder Pienaar, K.South AfricaUniversity of the North West Rautenbach, H.South AfricaUniversity of Pretoria Zilitinkevich, S.FinlandUniversity of Helsinki The conference was organized by: University of Pretoria Nansen Environmental and Remote Sensing Center With support and sponsorship from: Norwegian Research Council (grant N 197649) Kirstenbosh Biodiversity Institute and Botanical Gardens
Future warming patterns linked to today’s climate variability
Dai, Aiguo
2016-01-11
The reliability of model projections of greenhouse gas (GHG)-induced future climate change is often assessed based on models’ ability to simulate the current climate, but there has been little evidence that connects the two. In fact, this practice has been questioned because the GHG-induced future climate change may involve additional physical processes that are not important for the current climate. Here I show that the spatial patterns of the GHG-induced future warming in the 21 st century is highly correlated with the patterns of the year-to-year variations of surface air temperature for today’s climate, with areas of larger variations duringmore » 1950–1979 having more GHG-induced warming in the 21 st century in all climate models. Such a relationship also exists in other climate fields such as atmospheric water vapor, and it is evident in observed temperatures from 1950–2010. The results suggest that many physical processes may work similarly in producing the year-to-year climate variations in the current climate and the GHG-induced long-term changes in the 21 st century in models and in the real world. Furthermore, they support the notion that models that simulate present-day climate variability better are likely to make more reliable predictions of future climate change.« less
Future warming patterns linked to today’s climate variability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Aiguo
The reliability of model projections of greenhouse gas (GHG)-induced future climate change is often assessed based on models’ ability to simulate the current climate, but there has been little evidence that connects the two. In fact, this practice has been questioned because the GHG-induced future climate change may involve additional physical processes that are not important for the current climate. Here I show that the spatial patterns of the GHG-induced future warming in the 21 st century is highly correlated with the patterns of the year-to-year variations of surface air temperature for today’s climate, with areas of larger variations duringmore » 1950–1979 having more GHG-induced warming in the 21 st century in all climate models. Such a relationship also exists in other climate fields such as atmospheric water vapor, and it is evident in observed temperatures from 1950–2010. The results suggest that many physical processes may work similarly in producing the year-to-year climate variations in the current climate and the GHG-induced long-term changes in the 21 st century in models and in the real world. Furthermore, they support the notion that models that simulate present-day climate variability better are likely to make more reliable predictions of future climate change.« less
Future Warming Patterns Linked to Today's Climate Variability.
Dai, Aiguo
2016-01-11
The reliability of model projections of greenhouse gas (GHG)-induced future climate change is often assessed based on models' ability to simulate the current climate, but there has been little evidence that connects the two. In fact, this practice has been questioned because the GHG-induced future climate change may involve additional physical processes that are not important for the current climate. Here I show that the spatial patterns of the GHG-induced future warming in the 21(st) century is highly correlated with the patterns of the year-to-year variations of surface air temperature for today's climate, with areas of larger variations during 1950-1979 having more GHG-induced warming in the 21(st) century in all climate models. Such a relationship also exists in other climate fields such as atmospheric water vapor, and it is evident in observed temperatures from 1950-2010. The results suggest that many physical processes may work similarly in producing the year-to-year climate variations in the current climate and the GHG-induced long-term changes in the 21(st) century in models and in the real world. They support the notion that models that simulate present-day climate variability better are likely to make more reliable predictions of future climate change.
NASA Astrophysics Data System (ADS)
Gyakum, J. R.; Austin, B. N.; Curtis, D. C.; Anderson, M.; Alpert, H.; Young, S.; Herson, A.; Schwarz, A.; Kavvas, M. L.; Langridge, R.; Lynn, E.; Anderson, J.; Redmond, K. T.; Dettinger, M. D.; Correa, M.; Franco, G.; Cayan, D.; Georgakakos, K.
2015-12-01
Diverse areas of expertise are needed to describe and assess a changing climate and provide guidance for the agency that runs the largest state-built, multi-purpose water project in the U.S. California's State Water Project provides: drinking water for more than 25 million people, flood control, power generation, recreation, fish and wildlife protection, and water quality improvements. Hydrologic impacts under a changing climate include rising seas, reduced ratio of snow to rain, earlier snowmelt and higher temperatures; all of which are being detected. To improve the scientific basis for decisions and enhance the consistency of climate change approaches, the California Department of Water Resources (DWR) empaneled a Climate Change Technical Advisory Group (CCTAG) for guidance on the scientific aspects of climate change, its impacts on water resources, the use and creation of planning approaches and analytical tools, and the development of adaptation responses. To carry out DWR's mission, incorporation of climate change into DWR's planning, projects, and other activities must be consistent, science-based, and continually improved through an iterative process. Hydrologists, academicians, modelers, planners, lawyers and practitioners convened regularly to tackle these complicated issues in water management policy, including climate change impacts on extreme events. Actions taken in response to the CCTAG recommendations will move California toward more sustainable management of water and related resources. DWR will release a technical report of CCTAG guidance and perspectives in 2015. The process to convene, collaborate and distribute the findings of this CCTAG will be the focus of this presentation. An academician and water resources practitioner will share their perspectives on the processes driving CCTAG's work.
Ad hoc committee on global climate issues: Annual report
Gerhard, L.C.; Hanson, B.M.B.
2000-01-01
The AAPG Ad Hoc Committee on Global Climate Issues has studied the supposition of human-induced climate change since the committee's inception in January 1998. This paper details the progress and findings of the committee through June 1999. At that time there had been essentially no geologic input into the global climate change debate. The following statements reflect the current state of climate knowledge from the geologic perspective as interpreted by the majority of the committee membership. The committee recognizes that new data could change its conclusions. The earth's climate is constantly changing owing to natural variability in earth processes. Natural climate variability over recent geological time is greater than reasonable estimates of potential human-induced greenhouse gas changes. Because no tool is available to test the supposition of human-induced climate change and the range of natural variability is so great, there is no discernible human influence on global climate at this time.
Modelling Impacts of Climate Change: Case Studies using the New Generation of Erosion Models
USDA-ARS?s Scientific Manuscript database
Climate change is expected to impact upon a number of soil erosion drivers and processes, which should be taken into account when designing a modelling strategy. The fourth assessment report of the Intergovernmental Panel for Climate Change (IPCC) (Parry et al., 2007; Solomon et al., 2007) reviews a...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-22
...: Evaluation of Where Land Protection Planning Can Incorporate Climate Change Information-- Release of Final... Protection Planning can Incorporate Climate Change Information, (EPA/600/R-09/142F). The document was... goal of this report is to evaluate where land protection planning can incorporate climate change...
Adapting to and Coping with the Threat and Impacts of Climate Change
ERIC Educational Resources Information Center
Reser, Joseph P.; Swim, Janet K.
2011-01-01
This article addresses the nature and challenge of adaptation in the context of global climate change. The complexity of "climate change" as threat, environmental stressor, risk domain, and impacting process with dramatic environmental and human consequences requires a synthesis of perspectives and models from diverse areas of psychology to…
Ayron M. Strauch; Christian P. Giardina; Richard A. MacKenzie; Chris Heider; Tom W. Giambelluca; Ed Salminen; Gregory L. Bruland
2017-01-01
Climate change is anticipated to affect freshwater resources, but baseline data on the functioning of tropical watersheds is lacking, limiting efforts that seek to predict how watershed processes, water supply, and streamflow respond to anticipated changes in climate and vegetation change, and to management. To address this data gap, we applied the distributed...
Madhusoodhanan, C G; Sreeja, K G; Eldho, T I
2016-10-01
Climate change is a major concern in the twenty-first century and its assessments are associated with multiple uncertainties, exacerbated and confounded in the regions where human interventions are prevalent. The present study explores the challenges for climate change impact assessment on the water resources of India, one of the world's largest human-modified systems. The extensive human interventions in the Energy-Land-Water-Climate (ELWC) nexus significantly impact the water resources of the country. The direct human interventions in the landscape may surpass/amplify/mask the impacts of climate change and in the process also affect climate change itself. Uncertainties in climate and resource assessments add to the challenge. Formulating coherent resource and climate change policies in India would therefore require an integrated approach that would assess the multiple interlinkages in the ELWC nexus and distinguish the impacts of global climate change from that of regional human interventions. Concerted research efforts are also needed to incorporate the prominent linkages in the ELWC nexus in climate/earth system modelling.
Towards process-informed bias correction of climate change simulations
NASA Astrophysics Data System (ADS)
Maraun, Douglas; Shepherd, Theodore G.; Widmann, Martin; Zappa, Giuseppe; Walton, Daniel; Gutiérrez, José M.; Hagemann, Stefan; Richter, Ingo; Soares, Pedro M. M.; Hall, Alex; Mearns, Linda O.
2017-11-01
Biases in climate model simulations introduce biases in subsequent impact simulations. Therefore, bias correction methods are operationally used to post-process regional climate projections. However, many problems have been identified, and some researchers question the very basis of the approach. Here we demonstrate that a typical cross-validation is unable to identify improper use of bias correction. Several examples show the limited ability of bias correction to correct and to downscale variability, and demonstrate that bias correction can cause implausible climate change signals. Bias correction cannot overcome major model errors, and naive application might result in ill-informed adaptation decisions. We conclude with a list of recommendations and suggestions for future research to reduce, post-process, and cope with climate model biases.
USDA-ARS?s Scientific Manuscript database
The impact of climate and land use changes on hydrologic processes at the watershed scale is needed by land managers and policy makers to properly assess potential adaptation strategies. While numerous studies have been conducted on hydrologic processes in the Midwest, only a few have analyzed the l...
Gray Wave of the Great Transformation: A Satellite View of Urbanization, Climate, and Food Security
NASA Technical Reports Server (NTRS)
Imhoff, Marc L.
2007-01-01
Land cover change driven by human activity is profoundly affecting Earth's natural systems with impacts ranging from a loss of biological productivity to changes in atmospheric chemistry and regional and global climate. This change has been so pervasive and progressed so rapidly, compared to natural processes, scientists refer to it as 'the great transformation'. Urbanization or the 'gray wave' of this transformation is being increasingly recognized as an important process in global climate change. A hallmark of our success as a species, large urban conglomerates do in fact alter their environments so profoundly that the local climate, atmospheric composition, and the basic ecology of the landscape are affected in ways that have consequences to human health and economic well-being. Fortunately we have incredible new tools to observe and understand these processes in ways that can be used to plan and develop enjoyable and sustainable urban places. A suite of Earth observing satellites is making it possible to study the interactions between urbanization, biological processes, and the atmosphere including weather and climate. Using these Earth Observatories we are learning how urban heat islands form and potentially ameliorate them, how urbanization can affect rainfall, pollution, surface water recharge at the local level, and climate and food security globally.
NASA Astrophysics Data System (ADS)
Albrecht, J.; Juta, K.; Nobis, A.
2009-04-01
In the past, identifying anthropogenic influences on climate change, scenario analyses and issues of climate change mitigation were predominant approaches in climate change research (IPCC 2007). Currently, for instance in Germany, climate impact research on regional level comes to the forefront of research and policy making. Climate change has become an important topic on the agenda of politicians, administration and planning. In order to counteract the (unavoidable) climate change and its impacts it is necessary to develop adaptation strategies. At present, such strategies and guidelines are formulated on international, supranational and national level. The initial point was the United Nations Framework Convention on Climate Change in 1992 where the contracting states obligated themselves to develop national (and regional) programmes for adaptation. In 2007 the European Commission published its Green Paper called Adaptation to Climate Change in Europe. The paper states that adaptation efforts have to be intensified at different (spatial) levels (local, regional, national, and so forth). Furthermore, coordinating these efforts is of high importance. With the recent agreement on the German Adaptation Strategy to Climate Change (DAS 2008) in December 2008, federal government tries to accomplish this task. The German strategy mainly focuses on two elements: decreasing vulnerability and increasing adaptability. While the above mentioned strategies have presented information and policies concerning climate change and adaptation on international, supranational and national level, such documents dońt yet exist on regional level. However, because of their close link to the local level the regions are of high importance for adaptation strategies. Therefore, the Leibniz-Institute of Ecological and Regional Development developed a transdisciplinary project to formulate and implement the so-called Integrated Regional Climate Adaptation Programme (IRCAP) for the Model Region of Dresden (project REGKLAM). The REGKLAM-project is based on regionalised scenarios of climate change and includes measures of climate change adaptation to change for instance, urban form, infrastructure assets (e.g., reservoirs) and land use. Various institutions from politics, administration, economy, and research as well as civil society are involved in the project (the city of Dresden, several ministries and authorities of Saxony, the Dresden Chamber of Industry and Commerce and the University of Dresden). The IRCAP is planned to be an informal, cross-sectoral instrument of adaptation to climate change. As a regional programme, the IRCAP is addressed to decision-makers of the region of Dresden (defined, for instance, as planning region). Its function is to complement and coordinate existing instruments and measures. These instruments also include instruments of environmental and spatial planning on the regional level. Spatial and environmental planning can rely on a wide range of formal and informal instruments on different spatial, administrative, and sectoral levels, e.g. land use and landscape plans. Our contribution to the EGU conference aims to clear the role and relevance of the existing formal and informal planning instruments in the region of Dresden for the process of developing the IRCAP. Firstly, a survey is conducted for the purpose of identifying all relevant planning instruments. The identification process is based on specific criteria, for example: reference to the region, contents relating to the topic of climate change respectively climate adaptation. Secondly, the presentation argues for a selection of those planning instruments which seem to be most relevant for the process of developing an IRCAP. This selection process is based on specific criteria which include, for instance, complexity of expected effects, reference to regional and sectoral vulnerability, opportunity for future change of the existing planning instruments (e.g., current process of updating), interests of project partners and stakeholders. Thirdly, as a result, an overview of relevant planning instruments in the region of Dresden is shown, including their current status and statements about their relevance for the topic of climate adaptation strategies. Finally it is derived that this procedure provides a basis for the following possibilities: Adapting existing planning instruments, integrate contents of existing planning instruments in the IRCAP process, or develop and define new strategies or measures on the way to an IRCAP.
Using conceptual maps to assess students' climate change understanding and misconceptions
NASA Astrophysics Data System (ADS)
Gautier, C.
2011-12-01
The complex and interdisciplinary nature of climate change science poses special challenges for educators in helping students understand the climate system, and how it is evolving under natural and anthropogenic forcing. Students and citizens alike have existing mental models that may limit their perception and processing of the multiple relationships between processes (e.g., feedback) that arise in global change science, and prevent adoption of complex scientific concepts. Their prior knowledge base serves as the scaffold for all future learning and grasping its range and limitations serves as an important basis upon which to anchor instruction. Different instructional strategies can be adopted to help students understand the inherently interdisciplinary topic of global climate change, its interwoven human and natural causes, and the connections it has with society through a complex range of political, social, technological and economic factors. One assessment method for students' understanding of global climate change with its many uncertainties, whether associated with the workings of the climate system or with respect to social, cultural and economic processes that mediate human responses to changes within the system, is through the use of conceptual maps. When well designed, they offer a representation of students' mental model prior and post instruction. We will present two conceptual mapping activities used in the classroom to assess students' knowledge and understanding about global climate change and uncover misconceptions. For the first one, concept maps will be used to demonstrate evidence of learning and conceptual change, while for the second we will show how conceptual maps can provide information about gaps in knowledge and misconceptions students have about the topic.
Integrating Climate Change into Habitat Conservation Plans Under the U.S. Endangered Species Act
NASA Astrophysics Data System (ADS)
Bernazzani, Paola; Bradley, Bethany A.; Opperman, Jeffrey J.
2012-06-01
Habitat Conservation Plans (HCPs) under the Endangered Species Act (ESA) are an important mechanism for the acquisition of land and the management of terrestrial and aquatic ecosystems. HCPs have become a vital means of protecting endangered and threatened species and their habitats throughout the United States, particularly on private land. The scientific consensus that climate is changing and that these changes will impact the viability of species has not been incorporated into the conservation strategies of recent HCPs, rendering plans vulnerable biologically. In this paper we review the regulatory context for incorporating climate change into HCPs and analyze the extent to which climate change is linked to management actions in a subset of large HCPs. We conclude that most current plans do not incorporate climate change into conservation actions, and so we provide recommendations for integrating climate change into the process of HCP development and implementation. These recommendations are distilled from the published literature as well as the practice of conservation planning and are structured to the specific needs of HCP development and implementation. We offer nine recommendations for integrating climate change into the HCP process: (1) identify species at-risk from climate change, (2) explore new strategies for reserve design, (3) increase emphasis on corridors, linkages, and connectivity, (4) develop anticipatory adaptation measures, (5) manage for diversity, (6) consider assisted migration, (7) include climate change in scenarios of water management, (8) develop future-oriented management actions, and (9) increase linkages between the conservation strategy and adaptive management/monitoring programs.
Integrating climate change into habitat conservation plans under the U.S. endangered species act.
Bernazzani, Paola; Bradley, Bethany A; Opperman, Jeffrey J
2012-06-01
Habitat Conservation Plans (HCPs) under the Endangered Species Act (ESA) are an important mechanism for the acquisition of land and the management of terrestrial and aquatic ecosystems. HCPs have become a vital means of protecting endangered and threatened species and their habitats throughout the United States, particularly on private land. The scientific consensus that climate is changing and that these changes will impact the viability of species has not been incorporated into the conservation strategies of recent HCPs, rendering plans vulnerable biologically. In this paper we review the regulatory context for incorporating climate change into HCPs and analyze the extent to which climate change is linked to management actions in a subset of large HCPs. We conclude that most current plans do not incorporate climate change into conservation actions, and so we provide recommendations for integrating climate change into the process of HCP development and implementation. These recommendations are distilled from the published literature as well as the practice of conservation planning and are structured to the specific needs of HCP development and implementation. We offer nine recommendations for integrating climate change into the HCP process: (1) identify species at-risk from climate change, (2) explore new strategies for reserve design, (3) increase emphasis on corridors, linkages, and connectivity, (4) develop anticipatory adaptation measures, (5) manage for diversity, (6) consider assisted migration, (7) include climate change in scenarios of water management, (8) develop future-oriented management actions, and (9) increase linkages between the conservation strategy and adaptive management/monitoring programs.
Evaluating models of climate and forest vegetation
NASA Technical Reports Server (NTRS)
Clark, James S.
1992-01-01
Understanding how the biosphere may respond to increasing trace gas concentrations in the atmosphere requires models that contain vegetation responses to regional climate. Most of the processes ecologists study in forests, including trophic interactions, nutrient cycling, and disturbance regimes, and vital components of the world economy, such as forest products and agriculture, will be influenced in potentially unexpected ways by changing climate. These vegetation changes affect climate in the following ways: changing C, N, and S pools; trace gases; albedo; and water balance. The complexity of the indirect interactions among variables that depend on climate, together with the range of different space/time scales that best describe these processes, make the problems of modeling and prediction enormously difficult. These problems of predicting vegetation response to climate warming and potential ways of testing model predictions are the subjects of this chapter.
Amin, M Z M; Shaaban, A J; Ercan, A; Ishida, K; Kavvas, M L; Chen, Z Q; Jang, S
2017-01-01
Impacts of climate change on the hydrologic processes under future climate change conditions were assessed over Muda and Dungun watersheds of Peninsular Malaysia by means of a coupled regional climate and physically-based hydrology model utilizing an ensemble of future climate change projections. An ensemble of 15 different future climate realizations from coarse resolution global climate models' (GCMs) projections for the 21st century was dynamically downscaled to 6km resolution over Peninsular Malaysia by a regional climate model, which was then coupled with the watershed hydrology model WEHY through the atmospheric boundary layer over Muda and Dungun watersheds. Hydrologic simulations were carried out at hourly increments and at hillslope-scale in order to assess the impacts of climate change on the water balances and flooding conditions in the 21st century. The coupled regional climate and hydrology model was simulated for a duration of 90years for each of the 15 realizations. It is demonstrated that the increase in mean monthly flows due to the impact of expected climate change during 2040-2100 is statistically significant from April to May and from July to October at Muda watershed. Also, the increase in mean monthly flows is shown to be significant in November during 2030-2070 and from November to December during 2070-2100 at Dungun watershed. In other words, the impact of the expected climate change will be significant during the northeast and southwest monsoon seasons at Muda watershed and during the northeast monsoon season at Dungun watershed. Furthermore, the flood frequency analyses for both watersheds indicated an overall increasing trend in the second half of the 21st century. Copyright © 2016 Elsevier B.V. All rights reserved.
Climate change and coastal environmental risk perceptions in Florida.
Carlton, Stuart J; Jacobson, Susan K
2013-11-30
Understanding public perceptions of climate change risks is a prerequisite for effective climate communication and adaptation. Many studies of climate risk perceptions have either analyzed a general operationalization of climate change risk or employed a case-study approach of specific adaptive processes. This study takes a different approach, examining attitudes toward 17 specific, climate-related coastal risks and cognitive, affective, and risk-specific predictors of risk perception. A survey of 558 undergraduates revealed that risks to the physical environment were a greater concern than economic or biological risks. Perceptions of greater physical environment risks were significantly associated with having more pro-environmental attitudes, being female, and being more Democratic-leaning. Perceptions of greater economic risks were significantly associated with having more negative environmental attitudes, being female, and being more Republican-leaning. Perceptions of greater biological risks were significantly associated with more positive environmental attitudes. The findings suggest that focusing on physical environment risks maybe more salient to this audience than communications about general climate change adaptation. The results demonstrate that climate change beliefs and risk perceptions are multifactorial and complex and are shaped by individuals' attitudes and basic beliefs. Climate risk communications need to apply this knowledge to better target cognitive and affective processes of specific audiences, rather than providing simple characterizations of risks. Copyright © 2013 Elsevier Ltd. All rights reserved.
Milly, P.C.D.; Dunne, K.A.
2011-01-01
Hydrologic models often are applied to adjust projections of hydroclimatic change that come from climate models. Such adjustment includes climate-bias correction, spatial refinement ("downscaling"), and consideration of the roles of hydrologic processes that were neglected in the climate model. Described herein is a quantitative analysis of the effects of hydrologic adjustment on the projections of runoff change associated with projected twenty-first-century climate change. In a case study including three climate models and 10 river basins in the contiguous United States, the authors find that relative (i.e., fractional or percentage) runoff change computed with hydrologic adjustment more often than not was less positive (or, equivalently, more negative) than what was projected by the climate models. The dominant contributor to this decrease in runoff was a ubiquitous change in runoff (median 211%) caused by the hydrologic model's apparent amplification of the climate-model-implied growth in potential evapotranspiration. Analysis suggests that the hydrologic model, on the basis of the empirical, temperature-based modified Jensen-Haise formula, calculates a change in potential evapotranspiration that is typically 3 times the change implied by the climate models, which explicitly track surface energy budgets. In comparison with the amplification of potential evapotranspiration, central tendencies of other contributions from hydrologic adjustment (spatial refinement, climate-bias adjustment, and process refinement) were relatively small. The authors' findings highlight the need for caution when projecting changes in potential evapotranspiration for use in hydrologic models or drought indices to evaluate climatechange impacts on water. Copyright ?? 2011, Paper 15-001; 35,952 words, 3 Figures, 0 Animations, 1 Tables.
Creating Effective Dialogue Around Climate Change
NASA Astrophysics Data System (ADS)
Kiehl, J. T.
2015-12-01
Communicating climate change to people from diverse sectors of society has proven to be difficult in the United States. It is widely recognized that difficulties arise from a number of sources, including: basic science understanding, the psychologically affect laden content surrounding climate change, and the diversity of value systems that exist in our society. I explore ways of working with the affect that arises around climate change and describe specific methods to work with the resistance often encountered when communicating this important issue. The techniques I describe are rooted in psychology and group process and provide means for creating more effective narratives to break through the barriers to communicating climate change science. Examples are given from personal experiences in presenting climate change to diverse groups.
Balato, N; Ayala, F; Megna, M; Balato, A; Patruno, C
2013-02-01
Global climate appears to be changing at an unprecedented rate. Climate change can be caused by several factors that include variations in solar radiation received by earth, oceanic processes (such as oceanic circulation), plate tectonics, and volcanic eruptions, as well as human-induced alterations of the natural world. Many human activities, such as the use of fossil fuel and the consequent accumulation of greenhouse gases in the atmosphere, land consumption, deforestation, industrial processes, as well as some agriculture practices are contributing to global climate change. Indeed, many authors have reported on the current trend towards global warming (average surface temperature has augmented by 0.6 °C over the past 100 years), decreased precipitation, atmospheric humidity changes, and global rise in extreme climatic events. The magnitude and cause of these changes and their impact on human activity have become important matters of debate worldwide, representing climate change as one of the greatest challenges of the modern age. Although many articles have been written based on observations and various predictive models of how climate change could affect social, economic and health systems, only few studies exist about the effects of this change on skin physiology and diseases. However, the skin is the most exposed organ to environment; therefore, cutaneous diseases are inclined to have a high sensitivity to climate. For example, global warming, deforestation and changes in precipitation have been linked to variations in the geographical distribution of vectors of some infectious diseases (leishmaniasis, lyme disease, etc) by changing their spread, whereas warm and humid environment can also encourage the colonization of the skin by bacteria and fungi. The present review focuses on the wide and complex relationship between climate change and dermatology, showing the numerous factors that are contributing to modify the incidence and the clinical pattern of many dermatoses.
A dynamic, climate-driven model of Rift Valley fever.
Leedale, Joseph; Jones, Anne E; Caminade, Cyril; Morse, Andrew P
2016-03-31
Outbreaks of Rift Valley fever (RVF) in eastern Africa have previously occurred following specific rainfall dynamics and flooding events that appear to support the emergence of large numbers of mosquito vectors. As such, transmission of the virus is considered to be sensitive to environmental conditions and therefore changes in climate can impact the spatiotemporal dynamics of epizootic vulnerability. Epidemiological information describing the methods and parameters of RVF transmission and its dependence on climatic factors are used to develop a new spatio-temporal mathematical model that simulates these dynamics and can predict the impact of changes in climate. The Liverpool RVF (LRVF) model is a new dynamic, process-based model driven by climate data that provides a predictive output of geographical changes in RVF outbreak susceptibility as a result of the climate and local livestock immunity. This description of the multi-disciplinary process of model development is accessible to mathematicians, epidemiological modellers and climate scientists, uniting dynamic mathematical modelling, empirical parameterisation and state-of-the-art climate information.
Using Web GIS "Climate" for Adaptation to Climate Change
NASA Astrophysics Data System (ADS)
Gordova, Yulia; Martynova, Yulia; Shulgina, Tamara
2015-04-01
A work is devoted to the application of an information-computational Web GIS "Climate" developed by joint team of the Institute of Monitoring of Climatic and Ecological Systems SB RAS and Tomsk State University to raise awareness about current and future climate change as a basis for further adaptation. Web-GIS "Climate» (http://climate.scert.ru/) based on modern concepts of Web 2.0 provides opportunities to study regional climate change and its consequences by providing access to climate and weather models, a large set of geophysical data and means of processing and visualization. Also, the system is used for the joint development of software applications by distributed research teams, research based on these applications and undergraduate and graduate students training. In addition, the system capabilities allow creating information resources to raise public awareness about climate change, its causes and consequences, which is a necessary step for the subsequent adaptation to these changes. Basic information course on climate change is placed in the public domain and is aimed at local population. Basic concepts and problems of modern climate change and its possible consequences are set out and illustrated in accessible language. Particular attention is paid to regional climate changes. In addition to the information part, the course also includes a selection of links to popular science network resources on current issues in Earth Sciences and a number of practical tasks to consolidate the material. These tasks are performed for a particular territory. Within the tasks users need to analyze the prepared within the "Climate" map layers and answer questions of direct interest to the public: "How did the minimum value of winter temperatures change in your area?", "What are the dynamics of maximum summer temperatures?", etc. Carrying out the analysis of the dynamics of climate change contributes to a better understanding of climate processes and further adaptation. Passing this course raises awareness of the general public, as well as prepares the user for subsequent registration in the system and work with its tools in conducting independent research. This work is partially supported by SB RAS project VIII.80.2.1, RFBR grants 13-05-12034 and 14-05-00502.
NASA Astrophysics Data System (ADS)
Arnold, J.; Gutmann, E. D.; Clark, M. P.; Nijssen, B.; Vano, J. A.; Addor, N.; Wood, A.; Newman, A. J.; Mizukami, N.; Brekke, L. D.; Rasmussen, R.; Mendoza, P. A.
2016-12-01
Climate change narratives for water-resource applications must represent the change signals contextualized by hydroclimatic process variability and uncertainty at multiple scales. Building narratives of plausible change includes assessing uncertainties across GCM structure, internal climate variability, climate downscaling methods, and hydrologic models. Work with this linked modeling chain has dealt mostly with GCM sampling directed separately to either model fidelity (does the model correctly reproduce the physical processes in the world?) or sensitivity (of different model responses to CO2 forcings) or diversity (of model type, structure, and complexity). This leaves unaddressed any interactions among those measures and with other components in the modeling chain used to identify water-resource vulnerabilities to specific climate threats. However, time-sensitive, real-world vulnerability studies typically cannot accommodate a full uncertainty ensemble across the whole modeling chain, so a gap has opened between current scientific knowledge and most routine applications for climate-changed hydrology. To close that gap, the US Army Corps of Engineers, the Bureau of Reclamation, and the National Center for Atmospheric Research are working on techniques to subsample uncertainties objectively across modeling chain components and to integrate results into quantitative hydrologic storylines of climate-changed futures. Importantly, these quantitative storylines are not drawn from a small sample of models or components. Rather, they stem from the more comprehensive characterization of the full uncertainty space for each component. Equally important from the perspective of water-resource practitioners, these quantitative hydrologic storylines are anchored in actual design and operations decisions potentially affected by climate change. This talk will describe part of our work characterizing variability and uncertainty across modeling chain components and their interactions using newly developed observational data, models and model outputs, and post-processing tools for making the resulting quantitative storylines most useful in practical hydrology applications.
Climate Change Education: Student Media Production to Educate and Engage
NASA Astrophysics Data System (ADS)
Rooney-Varga, J. N.; Brisk, A. A.; Ledley, T. S.; Shuldman, M.
2011-12-01
Climate change education offers many challenges, including the complexity of the natural and human systems involved, a need for a multi-disciplinary perspective, and the psychological barriers to learning that result from a problem that frequently elicits a sense of being overwhelmed and powerless. The implications of climate change impacts and/or solutions can be especially overwhelming for today's students, who are likely to be confronted with many projected changes within their lifetimes. We are developing approaches to incorporate video production by students at both the high school and university levels in order to overcome many of the challenges unique to climate change education. Through media production, students are asked to convey complex topics using clear, simple language and metaphor, so their content knowledge must be deep enough to educate others. Video production is a team effort (director, camera person, editor, etc.) and inherently creates an opportunity for learning in a social context, which has been shown to lead to better learning outcomes in climate change education. Video production also promotes the basic tenets of engagement theory, in which a small group of students is in constant contact with the content and, ideally, creates a product that can be disseminated broadly. Lastly, putting students behind the camera can give them a voice and a sense of empowerment, fostering active participation in the learning process. While video is a medium that is readily disseminated to a broad audience, our focus is on the process (i.e., learning outcomes of students directly involved in media production), not the product. However, we have found that providing students with a means to add their voices to the broader public's discussion of climate change has a positive impact on student engagement with climate change science and on public awareness this problem beyond the classroom. While student-produced media pieces are not intended to provide in-depth scientific information to the broader public, we have found that they can be successful in conveying some of the key, basic concepts needed to understand anthropogenic climate change. Some of these concepts include the causal relationships between fossil fuel-based energy systems, atmospheric carbon dioxide concentrations, and climate change; the distinction between natural and anthropogenic processes in the carbon cycle; impacts of climate change on ecosystem services; and transitioning to renewable energy systems that do not emit carbon dioxide is necessary to avert 'dangerous' climate change.
The GCRP Climate Health Assessment: From Scientific Literature to Climate Health Literacy
NASA Astrophysics Data System (ADS)
Crimmins, A. R.; Balbus, J. M.
2016-12-01
As noted by the new report from the US GCRP, the Impacts of Climate Change on Human Health in the United States: A Scientific Assessment, climate change is a significant threat to the health of the American people. Despite a growing awareness of the significance of climate change in general among Americans, however, recognition of the health significance of climate change is lacking. Not only are the general public and many climate scientists relatively uninformed about the myriad health implications of climate change; health professionals, including physicians and nurses, are in need of enhanced climate literacy. This presentation will provide an overview of the new GCRP Climate Health Assessment, introducing the audience to the systems thinking that underlies the assessment of health impacts, and reviewing frameworks that tie climate and earth systems phenomena to human vulnerability and health. The impacts on health through changes in temperature, precipitation, severity of weather extremes and climate variability, and alteration of ecosystems and phenology will be explored. The process of developing the assessment report will be discussed in the context of raising climate and health literacy within the federal government.
Bowen, Kathryn J; Ebi, Kristie; Friel, Sharon; McMichael, Anthony J
2013-09-10
Addressing climate change and its associated effects is a multi-dimensional and ongoing challenge. This includes recognizing that climate change will affect the health and wellbeing of all populations over short and longer terms, albeit in varied ways and intensities. That recognition has drawn attention to the need to take adaptive actions to lessen adverse impacts over the next few decades from unavoidable climate change, particularly in developing country settings. A range of sectors is responsible for appropriate adaptive policies and measures to address the health risks of climate change, including health services, water and sanitation, trade, agriculture, disaster management, and development. To broaden the framing of governance and decision-making processes by using innovative methods and assessments to illustrate the multi-sectoral nature of health-related adaptation to climate change. This is a shift from sector-specific to multi-level systems encompassing sectors and actors, across temporal and spatial scales. A review and synthesis of the current knowledge in the areas of health and climate change adaptation governance and decision-making processes. A novel framework is presented that incorporates social science insights into the formulation and implementation of adaptation activities and policies to lessen the health risks posed by climate change. Clarification of the roles that different sectors, organizations, and individuals occupy in relation to the development of health-related adaptation strategies will facilitate the inclusion of health and wellbeing within multi-sector adaptation policies, thereby strengthening the overall set of responses to minimize the adverse health effects of climate change.
Bowen, Kathryn J.; Ebi, Kristie; Friel, Sharon; McMichael, Anthony J.
2013-01-01
Background Addressing climate change and its associated effects is a multi-dimensional and ongoing challenge. This includes recognizing that climate change will affect the health and wellbeing of all populations over short and longer terms, albeit in varied ways and intensities. That recognition has drawn attention to the need to take adaptive actions to lessen adverse impacts over the next few decades from unavoidable climate change, particularly in developing country settings. A range of sectors is responsible for appropriate adaptive policies and measures to address the health risks of climate change, including health services, water and sanitation, trade, agriculture, disaster management, and development. Objectives To broaden the framing of governance and decision-making processes by using innovative methods and assessments to illustrate the multi-sectoral nature of health-related adaptation to climate change. This is a shift from sector-specific to multi-level systems encompassing sectors and actors, across temporal and spatial scales. Design A review and synthesis of the current knowledge in the areas of health and climate change adaptation governance and decision-making processes. Results A novel framework is presented that incorporates social science insights into the formulation and implementation of adaptation activities and policies to lessen the health risks posed by climate change. Conclusion Clarification of the roles that different sectors, organizations, and individuals occupy in relation to the development of health-related adaptation strategies will facilitate the inclusion of health and wellbeing within multi-sector adaptation policies, thereby strengthening the overall set of responses to minimize the adverse health effects of climate change. PMID:24028938
Zhu, Qiuan; Jiang, Hong; Peng, Changhui; Liu, Jinxun; Fang, Xiuqin; Wei, Xiaohua; Liu, Shirong; Zhou, Guomo
2012-01-01
Investigating the relationship between factors (climate change, atmospheric CO2 concentrations enrichment, and vegetation structure) and hydrological processes is important for understanding and predicting the interaction between the hydrosphere and biosphere. The Integrated Biosphere Simulator (IBIS) was used to evaluate the effects of climate change, rising CO2, and vegetation structure on hydrological processes in China at the end of the 21st century. Seven simulations were implemented using the assemblage of the IPCC climate and CO2 concentration scenarios, SRES A2 and SRES B1. Analysis results suggest that (1) climate change will have increasing effects on runoff, evapotranspiration (ET), transpiration (T), and transpiration ratio (transpiration/evapotranspiration, T/E) in most hydrological regions of China except in the southernmost regions; (2) elevated CO2 concentrations will have increasing effects on runoff at the national scale, but at the hydrological region scale, the physiology effects induced by elevated CO2 concentration will depend on the vegetation types, climate conditions, and geographical background information with noticeable decreasing effects shown in the arid Inland region of China; (3) leaf area index (LAI) compensation effect and stomatal closure effect are the dominant factors on runoff in the arid Inland region and southern moist hydrological regions, respectively; (4) the magnitudes of climate change (especially the changing precipitation pattern) effects on the water cycle are much larger than those of the elevated CO2 concentration effects; however, increasing CO2 concentration will be one of the most important modifiers to the water cycle; (5) the water resource condition will be improved in northern China but depressed in southernmost China under the IPCC climate change scenarios, SRES A2 and SRES B1.
Permafrost carbon-climate feedbacks accelerate global warming.
Koven, Charles D; Ringeval, Bruno; Friedlingstein, Pierre; Ciais, Philippe; Cadule, Patricia; Khvorostyanov, Dmitry; Krinner, Gerhard; Tarnocai, Charles
2011-09-06
Permafrost soils contain enormous amounts of organic carbon, which could act as a positive feedback to global climate change due to enhanced respiration rates with warming. We have used a terrestrial ecosystem model that includes permafrost carbon dynamics, inhibition of respiration in frozen soil layers, vertical mixing of soil carbon from surface to permafrost layers, and CH(4) emissions from flooded areas, and which better matches new circumpolar inventories of soil carbon stocks, to explore the potential for carbon-climate feedbacks at high latitudes. Contrary to model results for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4), when permafrost processes are included, terrestrial ecosystems north of 60°N could shift from being a sink to a source of CO(2) by the end of the 21st century when forced by a Special Report on Emissions Scenarios (SRES) A2 climate change scenario. Between 1860 and 2100, the model response to combined CO(2) fertilization and climate change changes from a sink of 68 Pg to a 27 + -7 Pg sink to 4 + -18 Pg source, depending on the processes and parameter values used. The integrated change in carbon due to climate change shifts from near zero, which is within the range of previous model estimates, to a climate-induced loss of carbon by ecosystems in the range of 25 + -3 to 85 + -16 Pg C, depending on processes included in the model, with a best estimate of a 62 + -7 Pg C loss. Methane emissions from high-latitude regions are calculated to increase from 34 Tg CH(4)/y to 41-70 Tg CH(4)/y, with increases due to CO(2) fertilization, permafrost thaw, and warming-induced increased CH(4) flux densities partially offset by a reduction in wetland extent.
Carroll, Matthew J; Heinemeyer, Andreas; Pearce-Higgins, James W; Dennis, Peter; West, Chris; Holden, Joseph; Wallage, Zoe E; Thomas, Chris D
2015-07-31
Climate change has the capacity to alter physical and biological ecosystem processes, jeopardizing the survival of associated species. This is a particular concern in cool, wet northern peatlands that could experience warmer, drier conditions. Here we show that climate, ecosystem processes and food chains combine to influence the population performance of species in British blanket bogs. Our peatland process model accurately predicts water-table depth, which predicts abundance of craneflies (keystone invertebrates), which in turn predicts observed abundances and population persistence of three ecosystem-specialist bird species that feed on craneflies during the breeding season. Climate change projections suggest that falling water tables could cause 56-81% declines in cranefly abundance and, hence, 15-51% reductions in the abundances of these birds by 2051-2080. We conclude that physical (precipitation, temperature and topography), biophysical (evapotranspiration and desiccation of invertebrates) and ecological (food chains) processes combine to determine the distributions and survival of ecosystem-specialist predators.
Carroll, Matthew J.; Heinemeyer, Andreas; Pearce-Higgins, James W.; Dennis, Peter; West, Chris; Holden, Joseph; Wallage, Zoe E.; Thomas, Chris D.
2015-01-01
Climate change has the capacity to alter physical and biological ecosystem processes, jeopardizing the survival of associated species. This is a particular concern in cool, wet northern peatlands that could experience warmer, drier conditions. Here we show that climate, ecosystem processes and food chains combine to influence the population performance of species in British blanket bogs. Our peatland process model accurately predicts water-table depth, which predicts abundance of craneflies (keystone invertebrates), which in turn predicts observed abundances and population persistence of three ecosystem-specialist bird species that feed on craneflies during the breeding season. Climate change projections suggest that falling water tables could cause 56–81% declines in cranefly abundance and, hence, 15–51% reductions in the abundances of these birds by 2051–2080. We conclude that physical (precipitation, temperature and topography), biophysical (evapotranspiration and desiccation of invertebrates) and ecological (food chains) processes combine to determine the distributions and survival of ecosystem-specialist predators. PMID:26227623
Implementing climate change adaptation in forested regions of the United States
Jessica E. Halofsky; David L. Peterson; Linda A. Joyce; Constance I. Millar; Janine M. Rice; Christopher W. Swanston
2014-01-01
Natural resource managers need concrete ways to adapt to the effects of climate change. Science-management partnerships have proven to be an effective means of facilitating climate change adaptation for natural resource management agencies. Here we describe the process and results of several science-management partnerships in different forested regions of the United...
Analysis of potential impacts of climate change on wildlife habitats in the U.S.
Linda A. Joyce; Curtis H. Flather; Marni Koopman
2008-01-01
Resource managers face many challenges in developing management recommendations for wildlife habitat under a changing climate. Our research results offer states a more consistent and holistic approach to analyzing potential threats of climate change to terrestrial wildlife habitat. This process integrates a review of the scientific literature, the State Wildlife Action...
Climate change may restrict dryland forest regeneration in the 21st century
M. D. Petrie; J. B. Bradford; R. M. Hubbard; W. K. Lauenroth; C. M. Andrews; D. R. Schlaepfer
2017-01-01
The persistence and geographic expansion of dryland forests in the 21st century will be influenced by how climate change supports the demographic processes associated with tree regeneration. Yet, the way that climate change may alter regeneration is unclear. We developed a quantitative framework that estimates forest regeneration potential (RP) as a function of key...
Nicholas A. Fisichelli; Scott R. Abella; Matthew Peters; Frank J. Krist
2014-01-01
The US National Park Service (NPS) manages over 8900 km2 of forest area in the eastern United States where climate change and nonnative species are altering forest structure, composition, and processes. Understanding potential forest change in response to climate, differences in habitat projections among models (uncertainty), and nonnative biotic...
NASA Technical Reports Server (NTRS)
Johnson, Donald R.
1998-01-01
The goal of this research is the continued development and application of global isentropic modeling and analysis capabilities to describe hydrologic processes and energy exchange in the climate system, and discern regional climate change. This work involves a combination of modeling and analysis efforts involving 4DDA datasets and simulations from the University of Wisconsin (UW) hybrid isentropic-sigma (theta-sigma) coordinate model and the GEOS GCM.
NASA Astrophysics Data System (ADS)
Keyser, V.
2015-12-01
Philosophers of science discuss how multiple modes of measurement can generate evidence for the existence and character of a phenomenon (Horwich 1982; Hacking 1983; Franklin and Howson 1984; Collins 1985; Sober 1989; Trout 1993; Culp 1995; Keeley 2002; Staley 2004; Weber 2005; Keyser 2012). But how can this work systematically in climate change measurement? Additionally, what conclusions can scientists and policy-makers draw when different modes of measurement fail to be robust by producing contradictory results? First, I present a new technical account of robust measurement (RAMP) that focuses on the physical independence of measurement processes. I detail how physically independent measurement processes "check each other's results." (This account is in contrast to philosophical accounts of robustness analysis that focus on independent model assumptions or independent measurement products or results.) Second, I present a puzzle about contradictory and divergent climate change measures, which has consistently re-emerged in climate measurement. This discussion will focus on land, drilling, troposphere, and computer simulation measures. Third, to systematically solve this climate measurement puzzle, I use RAMP in the context of drought measurement in order to generate a classification of measurement processes. Here, I discuss how multimodal precipitation measures—e.g., measures of precipitation deficit like the Standard Precipitation Index vs. air humidity measures like the Standardized Relative Humidity Index--can help with the classification scheme of climate change measurement processes. Finally, I discuss how this classification of measures can help scientists and policy-makers draw effective conclusions in contradictory multimodal climate change measurement contexts.
Developing the architecture for the Climate Information Portal for Copernicus
NASA Astrophysics Data System (ADS)
Som de Cerff, Wim; Thijsse, Peter; Plieger, Maarten; Pascoe, Stephen; Jukes, Martin; Leadbetter, Adam; Goosen, Hasse; de Vreede, Ernst
2015-04-01
Climate change is impacting the environment, society and policy decisions. Information about climate change is available from many sources, but not all of them are reliable. The CLIPC project is developing a portal to provide a single point of access for authoritative scientific information on climate change. This ambitious objective is made possible through the Copernicus Earth Observation Programme for Europe, which will deliver a new generation of environmental measurements of climate quality. The data about the physical environment which is used to inform climate change policy and adaptation measures comes from several categories: satellite measurements, terrestrial observing systems, model projections and simulations and from re-analyses (syntheses of all available observations constrained with numerical weather prediction systems). These data categories are managed by different communities: CLIPC will provide a single point of access for the whole range of data. Information on data value and limitations will be provided as part of a knowledge base of authoritative climate information. The impacts of climate change on society will generally reflect a range of different environmental and climate system changes, and different sectors and actors within society will react differently to these changes. The CLIPC portal will provide some a number of indicators showing impacts on specific sectors which have been generated using a range of factors selected through structured expert consultation. It will also, as part of the transformation services, allow users to explore the consequences of using different combinations of driving factors which they consider to be of particular relevance to their work or life. The portal will provide information on the scientific quality and pitfalls of such transformations to prevent misleading usage of the results. The CLIPC project will not be able to process a comprehensive range of climate change impacts on the physical environment and society, but will develop an end to end processing chain (indicator toolkit), from comprehensive information on the climate state through to highly aggregated decision relevant products. This processing chain will be demonstrated within three thematic areas: water, rural and urban. Indicators of climate change and climate change impact will be provided, and a toolkit to update and post process the collection of indicators will be integrated into the portal. For the indicators three levels (Tiers) have been loosely defined: Tier 1: field summarising properties of the climate system; e.g. temperature change; Tier 2: expressed in terms of environmental properties outside the climate system; e.g. flooding change; Tier 3: expressed in social and economic impact. For the architecture, CLIPC has two interlocked themes: 1. Harmonised access to climate datasets derived from models, observations and re-analyses 2. A climate impact toolkit to evaluate, rank and aggregate indicators For development of the CLIPC architecture an Agile 'storyline' approach is taken. The storyline is a real world use case and consists of producing a Tier 3 indicator (Urban Heat Vulnerability) and making it available through the CLIPC infrastructure for a user group. In this way architecture concepts can be directly tested and improved. Also, the produced indicator can be shown to users to refine requirements. Main components of the CLIPC architecture are 1) Data discovery and access, 2) Data processing, 3) Data visualization, 4) Knowledge base and 5) User Management. The Data discovery and access component main challenge is to provide harmonized access to various sources of climate data (ngEO, EMODNET/SeaDataNet, ESGF, MyOcean). The discovery service concept will be provided using a CLIPC data and data product catalogue and via a structured data search on selected infrastructures, using NERC vocabulary services and mappings. Data processing will be provided using OGC WPS services, linking/re-using existing processing services from climate4impact.eu. The processing services will allow users to calculate climate impact indicators (Tier 1, 2 and 3). Processing wizards will guide users in processing indicators. The PyWPS framework will be used. The CLIPC portal will have its own central viewing service, using OGC standards for interoperability. For the WMS server side the ADAGUC framework will be used. For Tier 3 visualizations specific tailored visualisations will be developed. Tier 3 can be complicated to build and require manual work from specialists to provide meaningful results before they can be published as e.g. interactive maps. The CLIPC knowledge base is a set of services that supply explanatory information to the users when working with CLIPC services. It is structured around 1) a catalogue, containing ISO standardized metadata, citations, background information, links to data; 2) Commentary information, e.g. FAQ, annotation URLs , version information, disclaimers; 3) Technical documents, e.g. using vocabularies and mappings 4) Glossaries, adding and using existing glossaries from e.g. EUPORIAS/IS-ENES, IPCC; 5) literature references. CLIPC will have a very light weight user management system, providing as little barriers to the user as possible. We will make use of OpenID, accepting from selected OpenID providers such as Google and ESGF. In the presentation we will show the storyline implementation: the first results of the Tier 3 indicator, the architecture in development and the lessons learned.
EFFECTS OF CLIMATE CHANGE ON WEATHER AND WATER
Information regarding weather and hydrological processes and how they may change in the future is available from a variety of dynamically downscaled climate models. Current studies are helping to improve the use of such models for regional climate impact studies by testing the s...
Historical Climate Change Impacts on the Hydrological Processes of the Ponto-Caspian Basin
NASA Astrophysics Data System (ADS)
Koriche, Sifan A.; Singarayer, Joy S.; Coe, Michael T.; Nandini, Sri; Prange, Matthias; Cloke, Hannah; Lunt, Dan
2017-04-01
The Ponto-Caspian basin is one of the largest basins globally, composed of a closed basin (Caspian Sea) and open basins connecting to the global ocean (Black and Azov Sea). Over the historical time period (1850-present) Caspian Sea levels have varied between -25 and -29mbsl (Arpe et al., 2012), resulting in considerable changes to the area of the lake (currently 371,000 km2). Given projections of future climate change and the importance of the Caspian Sea for fisheries, agriculture, and industry, it is vital to understand how sea levels may vary in the future. Hydrological models can be used to assess the impacts of climate change on hydrological processes for future forecasts. However, it is critical to first evaluate such models using observational data for the present and recent past, and to understand the key hydrological processes driving past changes in sea level. In this study, the Terrestrial Hydrological Model (THMB) (Coe, 2000, 2002) is applied and evaluated to investigate the hydrological processes of the Ponto-Caspian basin for the historical period 1900 to 2000. The model has been forced using observational reanalysis datasets (ERA-Interim, ERA-20) and historical climate model data outputs (from CESM and HadCM3 models) to investigate the variability in the Caspian Sea level and the major river discharges. We examine the differences produced by driving the hydrological model with reanalysis data or climate models. We evaluate the model performance compared to observational discharge measurements and Caspian Sea level data. Secondly, we investigated the sensitivity of historical Caspian Sea level variations to different aspects of climate changes to examine the most important processes involved over this time period.
Using expert opinion to prioritize impacts of climate change on sea turtles' nesting grounds.
Fuentes, M M P B; Cinner, J E
2010-12-01
Managers and conservationists often need to prioritize which impacts from climate change to deal with from a long list of threats. However, data which allows comparison of the relative impact from climatic threats for decision-making is often unavailable. This is the case for the management of sea turtles in the face of climate change. The terrestrial life stages of sea turtles can be negatively impacted by various climatic processes, such as sea level rise, altered cyclonic activity, and increased sand temperatures. However, no study has systematically investigated the relative impact of each of these climatic processes, making it challenging for managers to prioritize their decisions and resources. To address this we offer a systematic method for eliciting expert knowledge to estimate the relative impact of climatic processes on sea turtles' terrestrial reproductive phase. For this we used as an example the world's largest population of green sea turtles and asked 22 scientists and managers to answer a paper based survey with a series of pair-wise comparison matrices that compared the anticipated impacts from each climatic process. Both scientists and managers agreed that increased sand temperature will likely cause the most threat to the reproductive output of the nGBR green turtle population followed by sea level rise, then altered cyclonic activity. The methodology used proved useful to determine the relative impact of the selected climatic processes on sea turtles' reproductive output and provided valuable information for decision-making. Thus, the methodological approach can potentially be applied to other species and ecosystems of management concern. Copyright © 2009 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Timm, K.; Sparrow, E. B.; Pettit, E. C.; Trainor, S. F.; Taylor, K.
2014-12-01
Increasing temperatures are projected to have a positive effect on the length of Alaska's tourism season, but the natural attractions that tourism relies on, such as glaciers, wildlife, fish, or other natural resources, may change. In order to continue to derive benefits from these resources, nature-based tour operators may have to adapt to these changes, and communication is an essential, but poorly understood, component of the climate change adaptation process. The goal of this study was to determine how to provide useful climate change information to nature-based tour operators by answering the following questions: 1. What environmental changes do nature-based tour operators perceive? 2. How are nature-based tour operators responding to climate and environmental change? 3. What climate change information do nature-based tour operators need? To answer these questions, twenty-four nature-based tour operators representing 20 different small and medium sized businesses in Juneau, Alaska were interviewed. The results show that many of Juneau's nature-based tour operators are observing, responding to, and in some cases, actively planning for further changes in the environment. The types of responses tended to vary depending on the participants' certainty in climate change and the perceived risks to their organization. Using these two factors, this study proposes a framework to classify climate change responses for the purpose of generating meaningful information and communication processes that promote adaptation and build adaptive capacity. During the course of the study, several other valuable lessons were learned about communicating about adaptation. The results of this study demonstrate that science communication research has an important place in the practice of promoting and fostering climate change adaptation. While the focus of this study was tour operators, the lessons learned may be valuable to other organizations striving to engage unique groups in climate change adaptation planning efforts and to social scientists trying to understanding of the role of communication in climate change adaptation.
A Climate Change Vulnerability Assessment of California's At-Risk Birds
Gardali, Thomas; Seavy, Nathaniel E.; DiGaudio, Ryan T.; Comrack, Lyann A.
2012-01-01
Conservationists must develop new strategies and adapt existing tools to address the consequences of anthropogenic climate change. To support statewide climate change adaptation, we developed a framework for assessing climate change vulnerability of California's at-risk birds and integrating it into the existing California Bird Species of Special Concern list. We defined climate vulnerability as the amount of evidence that climate change will negatively impact a population. We quantified climate vulnerability by scoring sensitivity (intrinsic characteristics of an organism that make it vulnerable) and exposure (the magnitude of climate change expected) for each taxon. Using the combined sensitivity and exposure scores as an index, we ranked 358 avian taxa, and classified 128 as vulnerable to climate change. Birds associated with wetlands had the largest representation on the list relative to other habitat groups. Of the 29 state or federally listed taxa, 21 were also classified as climate vulnerable, further raising their conservation concern. Integrating climate vulnerability and California's Bird Species of Special Concern list resulted in the addition of five taxa and an increase in priority rank for ten. Our process illustrates a simple, immediate action that can be taken to inform climate change adaptation strategies for wildlife. PMID:22396726
A climate change vulnerability assessment of California's at-risk birds.
Gardali, Thomas; Seavy, Nathaniel E; DiGaudio, Ryan T; Comrack, Lyann A
2012-01-01
Conservationists must develop new strategies and adapt existing tools to address the consequences of anthropogenic climate change. To support statewide climate change adaptation, we developed a framework for assessing climate change vulnerability of California's at-risk birds and integrating it into the existing California Bird Species of Special Concern list. We defined climate vulnerability as the amount of evidence that climate change will negatively impact a population. We quantified climate vulnerability by scoring sensitivity (intrinsic characteristics of an organism that make it vulnerable) and exposure (the magnitude of climate change expected) for each taxon. Using the combined sensitivity and exposure scores as an index, we ranked 358 avian taxa, and classified 128 as vulnerable to climate change. Birds associated with wetlands had the largest representation on the list relative to other habitat groups. Of the 29 state or federally listed taxa, 21 were also classified as climate vulnerable, further raising their conservation concern. Integrating climate vulnerability and California's Bird Species of Special Concern list resulted in the addition of five taxa and an increase in priority rank for ten. Our process illustrates a simple, immediate action that can be taken to inform climate change adaptation strategies for wildlife.
Transportation Resilience Tools from the U.S. Department of Transportation
NASA Astrophysics Data System (ADS)
Snow, C.; Rodehorst, B.; Miller, R.; Choate, A.; Hyman, R.; Kafalenos, R.; Beucler, B.
2014-12-01
The U.S. Department of Transportation (U.S. DOT) and ICF International have been working to develop tools and resources to help state departments of transportation (DOTs) and metropolitan planning organizations (MPOs) prepare for the impacts of climate change. U.S. DOT recently released a set of climate change and extreme weather tools for state DOTs and MPOs that address key challenges they have faced in increasing their climate change resilience. The tools were developed under the U.S. DOT Gulf Coast Study, Phase 2. The CMIP Climate Data Processing Tool provides an easy way for users to gather and process downscaled climate model data at the local level, and "translates" that data into information relevant to transportation engineers and planners. The Vulnerability Assessment Scoring Tool (VAST), provides a step-by-step approach for users to assess their vulnerability to climate change in a transparent, cost-effective way. The Transportation Climate Change Sensitivity Matrix provides detailed information on how 11 different climate stressors may affect transportation infrastructure and operations. These tools significantly advance the state of the practice for transportation agencies to respond to climate change impacts, and beta-versions have been used successfully by several state DOTs and MPOs. This presentation will focus on these tools, examples of how they can be applied within transportation agencies, and opportunities to apply the lessons learned from the tools—or even the tools themselves—beyond the transportation sector, including as part of the national Climate Resilience Toolkit.
Interactive effects of climate change and biodiversity loss on ecosystem functioning.
Pires, Aliny P F; Srivastava, Diane S; Marino, Nicholas A C; MacDonald, A Andrew M; Figueiredo-Barros, Marcos Paulo; Farjalla, Vinicius F
2018-05-01
Climate change and biodiversity loss are expected to simultaneously affect ecosystems, however research on how each driver mediates the effect of the other has been limited in scope. The multiple stressor framework emphasizes non-additive effects, but biodiversity may also buffer the effects of climate change, and climate change may alter which mechanisms underlie biodiversity-function relationships. Here, we performed an experiment using tank bromeliad ecosystems to test the various ways that rainfall changes and litter diversity may jointly determine ecological processes. Litter diversity and rainfall changes interactively affected multiple functions, but how depends on the process measured. High litter diversity buffered the effects of altered rainfall on detritivore communities, evidence of insurance against impacts of climate change. Altered rainfall affected the mechanisms by which litter diversity influenced decomposition, reducing the importance of complementary attributes of species (complementarity effects), and resulting in an increasing dependence on the maintenance of specific species (dominance effects). Finally, altered rainfall conditions prevented litter diversity from fueling methanogenesis, because such changes in rainfall reduced microbial activity by 58%. Together, these results demonstrate that the effects of climate change and biodiversity loss on ecosystems cannot be understood in isolation and interactions between these stressors can be multifaceted. © 2018 by the Ecological Society of America.
The Lancet Countdown: tracking progress on health and climate change.
Watts, Nick; Adger, W Neil; Ayeb-Karlsson, Sonja; Bai, Yuqi; Byass, Peter; Campbell-Lendrum, Diarmid; Colbourn, Tim; Cox, Peter; Davies, Michael; Depledge, Michael; Depoux, Anneliese; Dominguez-Salas, Paula; Drummond, Paul; Ekins, Paul; Flahault, Antoine; Grace, Delia; Graham, Hilary; Haines, Andy; Hamilton, Ian; Johnson, Anne; Kelman, Ilan; Kovats, Sari; Liang, Lu; Lott, Melissa; Lowe, Robert; Luo, Yong; Mace, Georgina; Maslin, Mark; Morrissey, Karyn; Murray, Kris; Neville, Tara; Nilsson, Maria; Oreszczyn, Tadj; Parthemore, Christine; Pencheon, David; Robinson, Elizabeth; Schütte, Stefanie; Shumake-Guillemot, Joy; Vineis, Paolo; Wilkinson, Paul; Wheeler, Nicola; Xu, Bing; Yang, Jun; Yin, Yongyuan; Yu, Chaoqing; Gong, Peng; Montgomery, Hugh; Costello, Anthony
2017-03-18
The Lancet Countdown: tracking progress on health and climate change is an international, multidisciplinary research collaboration between academic institutions and practitioners across the world. It follows on from the work of the 2015 Lancet Commission, which concluded that the response to climate change could be "the greatest global health opportunity of the 21st century". The Lancet Countdown aims to track the health impacts of climate hazards; health resilience and adaptation; health co-benefits of climate change mitigation; economics and finance; and political and broader engagement. These focus areas form the five thematic working groups of the Lancet Countdown and represent different aspects of the complex association between health and climate change. These thematic groups will provide indicators for a global overview of health and climate change; national case studies highlighting countries leading the way or going against the trend; and engagement with a range of stakeholders. The Lancet Countdown ultimately aims to report annually on a series of indicators across these five working groups. This paper outlines the potential indicators and indicator domains to be tracked by the collaboration, with suggestions on the methodologies and datasets available to achieve this end. The proposed indicator domains require further refinement, and mark the beginning of an ongoing consultation process-from November, 2016 to early 2017-to develop these domains, identify key areas not currently covered, and change indicators where necessary. This collaboration will actively seek to engage with existing monitoring processes, such as the UN Sustainable Development Goals and WHO's climate and health country profiles. The indicators will also evolve over time through ongoing collaboration with experts and a range of stakeholders, and be dependent on the emergence of new evidence and knowledge. During the course of its work, the Lancet Countdown will adopt a collaborative and iterative process, which aims to complement existing initiatives, welcome engagement with new partners, and be open to developing new research projects on health and climate change. Copyright © 2017 Elsevier Ltd. All rights reserved.
Untangling climate signals from autogenic changes in long-term peatland development
NASA Astrophysics Data System (ADS)
Morris, Paul J.; Baird, Andy J.; Young, Dylan M.; Swindles, Graeme T.
2015-12-01
Peatlands represent important archives of Holocene paleoclimatic information. However, autogenic processes may disconnect peatland hydrological behavior from climate and overwrite climatic signals in peat records. We use a simulation model of peatland development driven by a range of Holocene climate reconstructions to investigate climate signal preservation in peat records. Simulated water-table depths and peat decomposition profiles exhibit homeostatic recovery from prescribed changes in rainfall, whereas changes in temperature cause lasting alterations to peatland structure and function. Autogenic ecohydrological feedbacks provide both high- and low-pass filters for climatic information, particularly rainfall. Large-magnitude climatic changes of an intermediate temporal scale (i.e., multidecadal to centennial) are most readily preserved in our simulated peat records. Simulated decomposition signals are offset from the climatic changes that generate them due to a phenomenon known as secondary decomposition. Our study provides the mechanistic foundations for a framework to separate climatic and autogenic signals in peat records.
Climate change: Conflict of observational science, theory, and politics
Gerhard, L.C.
2004-01-01
Debate over whether human activity causes Earth climate change obscures the immensity of the dynamic systems that create and maintain climate on the planet. Anthropocentric debate leads people to believe that they can alter these planetary dynamic systems to prevent that they perceive as negative climate impacts on human civilization. Although politicians offer simplistic remedies, such as the Kyoto Protocol, global climate continues to change naturally. Better planning for the inevitable dislocations that have followed natural global climate changes throughout human history requires us to accept the fact that climate will change, and that human society must adapt to the changes. Over the last decade, the scientific literature reported a shift in emphasis from attempting to build theoretical models of putative human impacts on climate to understanding the planetwide dynamic processes that are the natural climate drivers. The current scientific literature is beginning to report the history of past climate change, the extent of natural climate variability, natural system drivers, and the episodicity of many climate changes. The scientific arguments have broadened from focus upon human effects on climate to include the array of natural phenomena that have driven global climate change for eons. However, significant political issues with long-term social consequences continue their advance. This paper summarizes recent scientific progress in climate science and arguments about human influence on climate. ?? 2004. The American Association of Petroleum Geologists. All rights reserved.
Response of salt marsh and mangrove wetlands to changes in atmospheric CO2, climate, and sea-level
Mckee, Karen L.; Rogers, Kerrylee; Saintilan, Neil; Middleton, Beth A.
2012-01-01
Coastal salt marsh and mangrove ecosystems are particularly vulnerable to changes in atmospheric CO2 concentrations and associated climate and climate-induced changes. We provide a review of the literature detailing theoretical predictions and observed responses of coastal wetlands to a range of climate change stressors, including CO2, temperature, rainfall, and sea-level rise. This review incorporates a discussion of key processes controlling responses in different settings and thresholds of resilience derived from experimental and observational studies. We specifically consider the potential and observed effects on salt marsh and mangrove vegetation of changes in (1) elevated [CO2] on physiology, growth, and distribution; (2) temperature on distribution and diversity; (3) rainfall and salinity regimes on growth and competitive interactions; and (4) sea level on geomorphological, hydrological, and biological processes.
Snowpack sensitivity to perturbed climate changes in alpine catchements
USDA-ARS?s Scientific Manuscript database
There is great interest in ascertaining the degree of climate change necessary to induce substantial changes in snow accumulation and ablation processes in mountain headwater catchments. Therefore, the response of mountain snow hydrology to changes in air temperature and precipitation was examined ...
Bioethics and the Framing of Climate Change's Health Risks.
Valles, Sean A
2015-06-01
Cheryl Cox Macpherson recently argued, in an article for this journal, that 'Climate Change is a Bioethics Problem'. This article elaborates on that position, particularly highlighting bioethicists' potential ability to help reframe the current climate change discourse to give more attention to its health risks. This reframing process is especially important because of the looming problem of climate change skepticism. Recent empirical evidence from science framing experiments indicates that the public reacts especially positively to climate change messages framed in public health terms, and bioethicists are particularly well positioned to contribute their expertise to the process of carefully developing and communicating such messages. Additionally, as climate framing research and practice continue, it will be important for bioethicists to contribute to the creation of that project's nascent ethical standards. The discourse surrounding antibiotic resistance is posited as an example that can lend insight into how communicating a public health-framed message, including the participation of bioethicists, can help to override public skepticism about the findings of politically contentious scientific fields. © 2014 John Wiley & Sons Ltd.
Taking a climate chance: a procedural critique of Vietnam's climate change strategy.
Fortier, François
2010-01-01
This article asks through what processes and for which interests the emerging Vietnamese climate change strategy is being designed, and if, ultimately, it is likely or not to be effective in the face of the looming threat. Through a review of an emerging body of literature and field observations, the paper finds the strategy partial and problematic in several ways. Its technocratic process prevents a pluralist representation of interests, obfuscating and perpetuating sectorial ones, at the expense of a more transparent and democratic resource allocation. The strategy therefore reflects and reinforces existing power relations in both politics and production. It feeds into a business-as-usual complacency, protecting national and international interests vested in unchallenged continuity, even when considering post-carbon technological fixes, which largely serve to expand capital accumulation opportunities. The article concludes that the national climate change strategy provides an illusion of intervention and security, but largely fails to identify and mitigate the underlying causes of climate change, or to lay the ground for a robust mid- and long-term adaptation strategy that can cope with yet unknown levels of climatic and other structural changes.
Climate Change and Health: Transcending Silos to Find Solutions.
Machalaba, Catherine; Romanelli, Cristina; Stoett, Peter; Baum, Sarah E; Bouley, Timothy A; Daszak, Peter; Karesh, William B
2015-01-01
Climate change has myriad implications for the health of humans, our ecosystems, and the ecological processes that sustain them. Projections of rising greenhouse gas emissions suggest increasing direct and indirect burden of infectious and noninfectious disease, effects on food and water security, and other societal disruptions. As the effects of climate change cannot be isolated from social and ecological determinants of disease that will mitigate or exacerbate forecasted health outcomes, multidisciplinary collaboration is critically needed. The aim of this article was to review the links between climate change and its upstream drivers (ie, processes leading to greenhouse gas emissions) and health outcomes, and identify existing opportunities to leverage more integrated global health and climate actions to prevent, prepare for, and respond to anthropogenic pressures. We conducted a literature review of current and projected health outcomes associated with climate change, drawing on findings and our collective expertise to review opportunities for adaptation and mitigation across disciplines. Health outcomes related to climate change affect a wide range of stakeholders, providing ready collaborative opportunities for interventions, which can be differentiated by addressing the upstream drivers leading to climate change or the downstream effects of climate change itself. Although health professionals are challenged with risks from climate change and its drivers, the adverse health outcomes cannot be resolved by the public health community alone. A phase change in global health is needed to move from a passive responder in partnership with other societal sectors to drive innovative alternatives. It is essential for global health to step outside of its traditional boundaries to engage with other stakeholders to develop policy and practical solutions to mitigate disease burden of climate change and its drivers; this will also yield compound benefits that help address other health, environmental, and societal challenges. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Considering Climate Change in Road and Building Design
NASA Astrophysics Data System (ADS)
Jacobs, Jennifer M.; Kirshen, Paul H.; Daniel, Jo Sias
2013-07-01
What is the role of climate in infrastructure design? How can engineers design for a changing climate? How can climate scientists better inform the design process? These were the questions posed at the first Infrastructure and Climate Network (ICNet) Steering Committee Workshop, which was sponsored by a U.S. National Science Foundation research grant (CBET-1231326) from the Research Coordination Networks-Science, Engineering and Education for Sustainability (RCN-SEES) program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiricka, Alexandra, E-mail: alexandra.jiricka@boku.ac.at; Department of Landscape, Spatial and Infrastructure Sciences, Institute for Landscape Development, Recreation and Conservation Planning, Peter-Jordan-Straße 82, 1190 Vienna; Formayer, Herbert
Current political discussions and developments indicate the importance and urgency of incorporating climate change considerations into EIA processes. The recent revision of the EU Directive 2014/52/EU on Environmental Impact Assessment (EIA) requires changes in the EIA practice of the EU member states. This paper investigates the extent to which the Environmental Impact Assessment (EIA) can contribute to an early consideration of climate change consequences in planning processes. In particular the roles of different actors in order to incorporate climate change impacts and adaptation into project planning subject to EIA at the appropriate levels are a core topic. Semi-structured expert interviewsmore » were carried out with representatives of the main infrastructure companies and institutions responsible in these sectors in Austria, which have to carry out EIA regularly. In a second step expert interviews were conducted with EIA assessors and EIA authorities in Austria and Germany, in order to examine the extent to which climate-based changes are already considered in EIA processes. This paper aims to discuss the different perspectives in the current EIA practice with regard to integrating climate change impacts as well as barriers and solutions identified by the groups of actors involved, namely project developers, environmental competent authorities and consultants (EIA assessors/practitioners). The interviews show that different groups of actors consider the topic to different degrees. Downscaling of climate change scenarios is in this context both, a critical issue with regards to availability of data and costs. Furthermore, assistance for the interpretation of relevant impacts, to be deducted from climate change scenarios, on the specific environmental issues in the area is needed. The main barriers identified by the EIA experts therefore include a lack of data as well as general uncertainty as to how far climate change should be considered in the process without reliable data but in the presence of knowledge about possible consequences at an abstract level. A joint strategy on how to cope with uncertain prognoses about main impacts on environmental issues for areas without reliable data requires a discussion and cooperation between EIA consultants and environmental authorities. - Highlights: • The consideration of climate change impacts in EIA practice in Austria and Germany was analysed through expert interviews. • Barriers as well as possible solutions were indentified by the different groups of actors involved in EIA. • The main challenges regard the investigation of specific entry points. • Limits of feasibility need to be discussed amongst the different groups of actors.« less
Hope, Andrew G.; Waltari, Eric; Fedorov, Vadim B.; Goropashnaya, Anna V.; Talbot, Sandra; Cook, Joseph A.
2011-01-01
Environmental processes govern demography, species movements, community turnover and diversification and yet in many respects these dynamics are still poorly understood at high latitudes. We investigate the combined effects of climate change and geography through time for a widespread Holarctic shrew, Sorex tundrensis. We include a comprehensive suite of closely related outgroup taxa and three independent loci to explore phylogeographic structure and historical demography. We then explore the implications of these findings for other members of boreal communities. The tundra shrew and its sister species, the Tien Shan shrew (Sorex asper), exhibit strong geographic population structure across Siberia and into Beringia illustrating local centres of endemism that correspond to Late Pleistocene refugia. Ecological niche predictions for both current and historical distributions indicate a model of persistence through time despite dramatic climate change. Species tree estimation under a coalescent process suggests that isolation between populations has been maintained across timeframes deeper than the periodicity of Pleistocene glacial cycling. That some species such as the tundra shrew have a history of persistence largely independent of changing climate, whereas other boreal species shifted their ranges in response to climate change, highlights the dynamic processes of community assembly at high latitudes.
Hope, Andrew G.; Waltari, Eric; Fedorov, V.B.; Goropashnaya, A.V.; Talbot, Sandra; Cook, Joseph A.
2014-01-01
Environmental processes govern demography, species movements, community turnover and diversification and yet in many respects these dynamics are still poorly understood at high latitudes. We investigate the combined effects of climate change and geography through time for a widespread Holarctic shrew, Sorex tundrensis. We include a comprehensive suite of closely related outgroup taxa and three independent loci to explore phylogeographic structure and historical demography. We then explore the implications of these findings for other members of boreal communities. The tundra shrew and its sister species, the Tien Shan shrew (Sorex asper), exhibit strong geographic population structure across Siberia and into Beringia illustrating local centres of endemism that correspond to Late Pleistocene refugia. Ecological niche predictions for both current and historical distributions indicate a model of persistence through time despite dramatic climate change. Species tree estimation under a coalescent process suggests that isolation between populations has been maintained across timeframes deeper than the periodicity of Pleistocene glacial cycling. That some species such as the tundra shrew have a history of persistence largely independent of changing climate, whereas other boreal species shifted their ranges in response to climate change, highlights the dynamic processes of community assembly at high latitudes.
NASA Astrophysics Data System (ADS)
Lantuit, Hugues; Boike, Julia; Dahms, Melanie; Hubberten, Hans-Wolfgang
2013-04-01
The northern permafrost region contains approximately 50% of the estimated global below-ground organic carbon pool and more than twice as much as is contained in the current atmos-pheric carbon pool. The sheer size of this carbon pool, together with the large amplitude of predicted arctic climate change im-plies that there is a high potential for global-scale feedbacks from arctic climate change if these carbon reservoirs are desta-bilized. Nonetheless, significant gaps exist in our current state of knowledge that prevent us from producing accurate assess-ments of the vulnerability of the arctic permafrost to climate change, or of the implications of future climate change for global greenhouse gas (GHG) emissions. Specifically: • Our understanding of the physical and biogeochemical processes at play in permafrost areas is still insuffi-cient in some key aspects • Size estimates for the high latitude continental carbon and nitrogen stocks vary widely between regions and research groups. • The representation of permafrost-related processes in global climate models still tends to be rudimentary, and is one reason for the frequently poor perform-ances of climate models at high latitudes. The key objectives of PAGE21 are: • to improve our understanding of the processes affect-ing the size of the arctic permafrost carbon and nitro-gen pools through detailed field studies and monitor-ing, in order to quantify their size and their vulnerability to climate change, • to produce, assemble and assess high-quality datasets in order to develop and evaluate representations of permafrost and related processes in global models, • to improve these models accordingly, • to use these models to reduce the uncertainties in feed-backs from arctic permafrost to global change, thereby providing the means to assess the feasibility of stabili-zation scenarios, and • to ensure widespread dissemination of our results in order to provide direct input into the ongoing debate on climate-change mitigation. The concept of PAGE21 is to directly address these questions through a close interaction between monitoring activities, proc-ess studies and modeling on the pertinent temporal and spatial scales. Field sites have been selected to cover a wide range of environmental conditions for the validation of large scale mod-els, the development of permafrost monitoring capabilities, the study of permafrost processes, and for overlap with existing monitoring programs. PAGE21 will contribute to upgrading the project sites with the objective of providing a measurement baseline, both for process studies and for modeling programs. PAGE21 is determined to break down the traditional barriers in permafrost sciences between observational and model-supported site studies and large-scale climate modeling. Our concept for the interaction between site-scale studies and large-scale modeling is to establish and maintain a direct link be-tween these two areas for developing and evaluating, on all spatial scales, the land-surface modules of leading European global climate models taking part in the Coupled Model Inter-comparison Project Phase 5 (CMIP5), designed to inform the IPCC process. The timing of this project is such that the main scientific results from PAGE21, and in particular the model-based assessments will build entirely on new outputs and results from the CMIP5 Climate Model Intercomparison Project designed to inform the IPCC Fifth Assessment Report. However, PAGE21 is designed to leave a legacy that will en-dure beyond the lifetime of the projections that it produces. This legacy will comprise • an improved understanding of the key processes and parameters that determine the vulnerability of arctic permafrost to climate change, • the production of a suite of major European coupled climate models including detailed and validated repre-sentations of permafrost-related processes, that will reduce uncertainties in future climate projections pro-duced well beyond the lifetime of PAGE21, and • the training of a new generation of permafrost scien-tists who will bridge the long-standing gap between permafrost field science and global climate modeling, for the long-term benefit of science and society.
NASA Astrophysics Data System (ADS)
Lupon, Anna; Gerber, Stefan; Sabater, Francesc; Bernal, Susana
2015-05-01
Future changes in climate may affect soil nitrogen (N) transformations, and consequently, plant nutrition and N losses from terrestrial to stream ecosystems. We investigated the response of soil N cycling to changes in soil moisture, soil temperature, and precipitation across three Mediterranean forest types (evergreen oak, beech, and riparian) by fusing a simple process-based model (which included climate modifiers for key soil N processes) with measurements of soil organic N content, mineralization, nitrification, and concentration of ammonium and nitrate. The model describes sources (atmospheric deposition and net N mineralization) and sinks (plant uptake and hydrological losses) of inorganic N from and to the 0-10 cm soil pool as well as net nitrification. For the three forest types, the model successfully recreated the magnitude and temporal pattern of soil N processes and N concentrations (Nash-Sutcliffe coefficient = 0.49-0.96). Changes in soil water availability drove net N mineralization and net nitrification at the oak and beech forests, while temperature and precipitation were the strongest climatic factors for riparian soil N processes. In most cases, net N mineralization and net nitrification showed a different sensitivity to climatic drivers (temperature, soil moisture, and precipitation). Our model suggests that future climate change may have a minimal effect on the soil N cycle of these forests (<10% change in mean annual rates) because positive warming and negative drying effects on the soil N cycle may counterbalance each other.
Climate Assessment for Army Enterprise Planning Fact Sheet
2017-11-30
decision metric values that affect Army enterprise planning decisions . The payoff of this research improved planning processes for...portions of the processes . 1D. Approach The research approach identified and developed advanced decision metrics that quantified climate...fundamental physical and ecological processes to climate change for each of the decision metrics. Where there is significant interaction among
On the limitations of General Circulation Climate Models
NASA Technical Reports Server (NTRS)
Stone, Peter H.; Risbey, James S.
1990-01-01
General Circulation Models (GCMs) by definition calculate large-scale dynamical and thermodynamical processes and their associated feedbacks from first principles. This aspect of GCMs is widely believed to give them an advantage in simulating global scale climate changes as compared to simpler models which do not calculate the large-scale processes from first principles. However, it is pointed out that the meridional transports of heat simulated GCMs used in climate change experiments differ from observational analyses and from other GCMs by as much as a factor of two. It is also demonstrated that GCM simulations of the large scale transports of heat are sensitive to the (uncertain) subgrid scale parameterizations. This leads to the question whether current GCMs are in fact superior to simpler models for simulating temperature changes associated with global scale climate change.
The essential interactions between understanding climate variability and climate change
NASA Astrophysics Data System (ADS)
Neelin, J. D.
2017-12-01
Global change is sometimes perceived as a field separate from other aspects of atmospheric and oceanic sciences. Despite the long history of communication between the scientific communities studying global change and those studying interannual variability and weather, increasing specialization and conflicting societal demands on the fields can put these interactions at risk. At the same time, current trajectories for greenhouse gas emissions imply substantial adaptation to climate change will be necessary. Instead of simply projecting effects to be avoided, the field is increasingly being asked to provide regional-level information for specific adaptation strategies—with associated requirements for increased precision on projections. For extreme events, challenges include validating models for rare events, especially for events that are unprecedented in the historical record. These factors will be illustrated with examples of information transfer to climate change from work on fundamental climate processes aimed originally at timescales from hours to interannual. Work to understand the effects that control probability distributions of moisture, temperature and precipitation in historical weather can yield new factors to examine for the changes in the extremes of these distributions under climate change. Surprisingly simple process models can give insights into the behavior of vastly more complex climate models. Observation systems and model ensembles aimed at weather and interannual variations prove valuable for global change and vice versa. Work on teleconnections in the climate system, such as the remote impacts of El Niño, is informing analysis of projected regional rainfall change over California. Young scientists need to prepare to work across the full spectrum of climate variability and change, and to communicate their findings, as they and our society head for future that is more interesting than optimal.
NASA Astrophysics Data System (ADS)
DeFrancis, G.; Haynes, R.; Schroer, K.
2017-12-01
The Montshire Museum of Science, a regional science center serving families, teachers, and students in rural Vermont and New Hampshire, has been actively engaged in in climate literacy initiatives for over 10 years. The Museum's visitor evaluation data shows that before audiences can be engaged in conversations around climate change, they need to be introduced to the underlying earth processes that drive climate, and to the nature of how climate science is done. Through this work, the Museum has developed a suite of climate science programs that can be incorporated in informal science programming at museums, science centers, and libraries, and in the formal K-8 classroom environment. Front-end and formative evaluation data was used in the program design, and summative evaluation showed an increase in concept understanding in the topic presented. Family science and student workshops developed focused on Albedo and the Earth's energy budget, properties and characteristics of sea ice, sediment cores and ice cores to study changes in the climate over time, and the geography of the polar regions. We found that successful climate literacy learning experiences require meaningful hands-on, inquiry-based activities focused on a single earth process, and leads to an increase in science talk and conversation about climate change between the program instructor and audience members as learners begin to understand how these processes interact in the Earth's climate system.
Climate Impact of Solar Variability
NASA Technical Reports Server (NTRS)
Schatten, Kenneth H. (Editor); Arking, Albert (Editor)
1990-01-01
The conference on The Climate Impact of Solar Variability, was held at Goddard Space Flight Center from April 24 to 27, 1990. In recent years they developed a renewed interest in the potential effects of increasing greenhouse gases on climate. Carbon dioxide, methane, nitrous oxide, and the chlorofluorocarbons have been increasing at rates that could significantly change climate. There is considerable uncertainty over the magnitude of this anthropogenic change. The climate system is very complex, with feedback processes that are not fully understood. Moreover, there are two sources of natural climate variability (volcanic aerosols and solar variability) added to the anthropogenic changes which may confuse our interpretation of the observed temperature record. Thus, if we could understand the climatic impact of the natural variability, it would aid our interpretation and understanding of man-made climate changes.
Generating High Resolution Climate Scenarios Through Regional Climate Modelling Over Southern Africa
NASA Astrophysics Data System (ADS)
Ndhlovu, G. Z.; Woyessa, Y. E.; Vijayaraghavan, S.
2017-12-01
limate change has impacted the global environment and the Continent of Africa, especially Southern Africa, regarded as one of the most vulnerable regions in Africa, has not been spared from these impacts. Global Climate Models (GCMs) with coarse horizontal resolutions of 150-300 km do not provide sufficient details at the local basin scale due to mismatch between the size of river basins and the grid cell of the GCM. This makes it difficult to apply the outputs of GCMs directly to impact studies such as hydrological modelling. This necessitates the use of regional climate modelling at high resolutions that provide detailed information at regional and local scales to study both climate change and its impacts. To this end, an experiment was set up and conducted with PRECIS, a regional climate model, to generate climate scenarios at a high resolution of 25km for the local region in Zambezi River basin of Southern Africa. The major input data used included lateral and surface boundary conditions based on the GCMs. The data is processed, analysed and compared with CORDEX climate change project data generated for Africa. This paper, highlights the major differences of the climate scenarios generated by PRECIS Model and CORDEX Project for Africa and further gives recommendations for further research on generation of climate scenarios. The climatic variables such as precipitation and temperatures have been analysed for flood and droughts in the region. The paper also describes the setting up and running of an experiment using a high-resolution PRECIS model. In addition, a description has been made in running the model and generating the output variables on a sub basin scale. Regional climate modelling which provides information on climate change impact may lead to enhanced understanding of adaptive water resources management. Understanding the regional climate modelling results on sub basin scale is the first step in analysing complex hydrological processes and a basis for designing of adaptation and mitigation strategies in the region. Key words: Climate change, regional climate modelling, hydrological processes, extremes, scenarios [1] Corresponding author: Email:gndhlovu@cut.ac.za Tel:+27 (0) 51 507 3072
A New High Resolution Climate Dataset for Climate Change Impacts Assessments in New England
NASA Astrophysics Data System (ADS)
Komurcu, M.; Huber, M.
2016-12-01
Assessing regional impacts of climate change (such as changes in extreme events, land surface hydrology, water resources, energy, ecosystems and economy) requires much higher resolution climate variables than those available from global model projections. While it is possible to run global models in higher resolution, the high computational cost associated with these simulations prevent their use in such manner. To alleviate this problem, dynamical downscaling offers a method to deliver higher resolution climate variables. As part of an NSF EPSCoR funded interdisciplinary effort to assess climate change impacts on New Hampshire ecosystems, hydrology and economy (the New Hampshire Ecosystems and Society project), we create a unique high-resolution climate dataset for New England. We dynamically downscale global model projections under a high impact emissions scenario using the Weather Research and Forecasting model (WRF) with three nested grids of 27, 9 and 3 km horizontal resolution with the highest resolution innermost grid focusing over New England. We prefer dynamical downscaling over other methods such as statistical downscaling because it employs physical equations to progressively simulate climate variables as atmospheric processes interact with surface processes, emissions, radiation, clouds, precipitation and other model components, hence eliminates fix relationships between variables. In addition to simulating mean changes in regional climate, dynamical downscaling also allows for the simulation of climate extremes that significantly alter climate change impacts. We simulate three time slices: 2006-2015, 2040-2060 and 2080-2100. This new high-resolution climate dataset (with more than 200 variables saved in hourly (six hourly) intervals for the highest resolution domain (outer two domains)) along with model input and restart files used in our WRF simulations will be publicly available for use to the broader scientific community to support in-depth climate change impacts assessments for New England. We present results focusing on future changes in New England extreme events.
NASA Astrophysics Data System (ADS)
Wang, Qian; Yang, Xiangdong; Anderson, Nicholas John; Dong, Xuhui
2016-07-01
The reconstruction of Holocene environmental changes in lakes on the plateau region of southwest China provides an understanding of how these ecosystems may respond to climate change. Fossil diatom assemblages were investigated from an 11,000-year lake sediment core from a deep, alpine lake (Lugu Hu) in southwest China, an area strongly influenced by the southwest (or the Indian) summer monsoon. Changes in diatom assemblage composition, notably the abundance of the two dominant planktonic species, Cyclotella rhomboideo-elliptica and Cyclostephanos dubius, reflect the effects of climate variability on nutrient dynamics, mediated via thermal stratification (internal nutrient cycling) and catchment-vegetation processes. Statistical analyses of the climate-diatom interactions highlight the strong effect of changing orbitally-induced solar radiation during the Holocene, presumably via its effect on the lake's thermal budget. In a partial redundancy analysis, climate (solar insolation) and proxies reflecting catchment process (pollen percentages, C/N ratio) were the most important drivers of diatom ecological change, showing the strong effects of climate-catchment-vegetation interactions on lake functioning. This diatom record reflects long-term ontogeny of the lake-catchment ecosystem and suggests that climatic changes (both temperature and precipitation) impact lake ecology indirectly through shifts in thermal stratification and catchment nutrient exports.
Amy Daniels; Nancy Shaw; Dave Peterson; Keith Nislow; Monica Tomosy; Mary Rowland
2014-01-01
As a growing body of science shows, climate change impacts on wildlife are already profoundâfrom shifting speciesâ ranges and altering the synchronicity of food sources to changing the availability of water. Such impacts are only expected to increase in the coming decades. As climate change shapes complex, interwoven ecological processes, novel conditions and...
USDA-ARS?s Scientific Manuscript database
Frozen soil prevails in cold regions and exerts significant influence on the hydrological cycle. In the context of climate warming, the spatial and temporal dynamics of frozen soil and hydrological processes also will change. How these changes inter-relate is a key challenge in studies of hydrologic...
Weaver, C. P.; Moss, Richard H.; Ebi, Kristie L.; ...
2017-07-21
Climate change is a risk management challenge for society, with uncertain but potentially severe outcomes affecting natural and human systems, across generations. Managing climate-related risks will be more difficult without a base of knowledge and practice aimed at identifying and evaluating specific risks, and their likelihood and consequences, as well as potential actions to promote resilience in the face of these risks. Here, we suggest three improvements to the process of conducting climate change assessments to better characterize risk and inform risk management actions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weaver, C. P.; Moss, Richard H.; Ebi, Kristie L.
Climate change is a risk management challenge for society, with uncertain but potentially severe outcomes affecting natural and human systems, across generations. Managing climate-related risks will be more difficult without a base of knowledge and practice aimed at identifying and evaluating specific risks, and their likelihood and consequences, as well as potential actions to promote resilience in the face of these risks. Here, we suggest three improvements to the process of conducting climate change assessments to better characterize risk and inform risk management actions.
Z. Dai; K.D. Johnson; R.A. Birdsey; J.L. Hernandez-Stefanoni; J.M. Dupuy
2015-01-01
Assessing the effect of climate change on carbon sequestration in tropical forest ecosystems is important to inform monitoring, reporting, and verification (MRV) for reducing deforestation and forest degradation (REDD), and to effectively assess forest management options under climate change. Two process-based models, Forest-DNDC and Biome-BGC, with different spatial...
Turner, Lyle R.; Alderman, Katarzyna; Connell, Des; Tong, Shilu
2013-01-01
Climate change presents risks to health that must be addressed by both decision-makers and public health researchers. Within the application of Environmental Health Impact Assessment (EHIA), there have been few attempts to incorporate climate change-related health risks as an input to the framework. This study used a focus group design to examine the perceptions of government, industry and academic specialists about the suitability of assessing the health consequences of climate change within an EHIA framework. Practitioners expressed concern over a number of factors relating to the current EHIA methodology and the inclusion of climate change-related health risks. These concerns related to the broad scope of issues that would need to be considered, problems with identifying appropriate health indicators, the lack of relevant qualitative information that is currently incorporated in assessment and persistent issues surrounding stakeholder participation. It was suggested that improvements are needed in data collection processes, particularly in terms of adequate communication between environmental and health practitioners. Concerns were raised surrounding data privacy and usage, and how these could impact on the assessment process. These findings may provide guidance for government and industry bodies to improve the assessment of climate change-related health risks. PMID:23525029
Turner, Lyle R; Alderman, Katarzyna; Connell, Des; Tong, Shilu
2013-03-22
Climate change presents risks to health that must be addressed by both decision-makers and public health researchers. Within the application of Environmental Health Impact Assessment (EHIA), there have been few attempts to incorporate climate change-related health risks as an input to the framework. This study used a focus group design to examine the perceptions of government, industry and academic specialists about the suitability of assessing the health consequences of climate change within an EHIA framework. Practitioners expressed concern over a number of factors relating to the current EHIA methodology and the inclusion of climate change-related health risks. These concerns related to the broad scope of issues that would need to be considered, problems with identifying appropriate health indicators, the lack of relevant qualitative information that is currently incorporated in assessment and persistent issues surrounding stakeholder participation. It was suggested that improvements are needed in data collection processes, particularly in terms of adequate communication between environmental and health practitioners. Concerns were raised surrounding data privacy and usage, and how these could impact on the assessment process. These findings may provide guidance for government and industry bodies to improve the assessment of climate change-related health risks.
Climate change and coastal vulnerability assessment: Scenarios for integrated assessment
Nicholls, R.J.; Wong, P.P.; Burkett, V.; Woodroffe, C.D.; Hay, J.
2008-01-01
Coastal vulnerability assessments still focus mainly on sea-level rise, with less attention paid to other dimensions of climate change. The influence of non-climatic environmental change or socio-economic change is even less considered, and is often completely ignored. Given that the profound coastal changes of the twentieth century are likely to continue through the twenty-first century, this is a major omission, which may overstate the importance of climate change, and may also miss significant interactions of climate change with other non-climate drivers. To better support climate and coastal management policy development, more integrated assessments of climatic change in coastal areas are required, including the significant non-climatic changes. This paper explores the development of relevant climate and non-climate drivers, with an emphasis on the non-climate drivers. While these issues are applicable within any scenario framework, our ideas are illustrated using the widely used SRES scenarios, with both impacts and adaptation being considered. Importantly, scenario development is a process, and the assumptions that are made about future conditions concerning the coast need to be explicit, transparent and open to scientific debate concerning their realism and likelihood. These issues are generic across other sectors. ?? Integrated Research System for Sustainability Science and Springer 2008.
Amburgey, Staci M.; Miller, David A. W.; Grant, Evan H. Campbell; Rittenhouse, Tracy A. G.; Benard, Michael F.; Richardson, Jonathan L.; Urban, Mark C.; Hughson, Ward; Brand, Adrianne B,; Davis, Christopher J.; Hardin, Carmen R.; Paton, Peter W. C.; Raithel, Christopher J.; Relyea, Rick A.; Scott, A. Floyd; Skelly, David K.; Skidds, Dennis E.; Smith, Charles K.; Werner, Earl E.
2018-01-01
Species’ distributions will respond to climate change based on the relationship between local demographic processes and climate and how this relationship varies based on range position. A rarely tested demographic prediction is that populations at the extremes of a species’ climate envelope (e.g., populations in areas with the highest mean annual temperature) will be most sensitive to local shifts in climate (i.e., warming). We tested this prediction using a dynamic species distribution model linking demographic rates to variation in temperature and precipitation for wood frogs (Lithobates sylvaticus) in North America. Using long-term monitoring data from 746 populations in 27 study areas, we determined how climatic variation affected population growth rates and how these relationships varied with respect to long-term climate. Some models supported the predicted pattern, with negative effects of extreme summer temperatures in hotter areas and positive effects on recruitment for summer water availability in drier areas. We also found evidence of interacting temperature and precipitation influencing population size, such as extreme heat having less of a negative effect in wetter areas. Other results were contrary to predictions, such as positive effects of summer water availability in wetter parts of the range and positive responses to winter warming especially in milder areas. In general, we found wood frogs were more sensitive to changes in temperature or temperature interacting with precipitation than to changes in precipitation alone. Our results suggest that sensitivity to changes in climate cannot be predicted simply by knowing locations within the species’ climate envelope. Many climate processes did not affect population growth rates in the predicted direction based on range position. Processes such as species-interactions, local adaptation, and interactions with the physical landscape likely affect the responses we observed. Our work highlights the need to measure demographic responses to changing climate.
ERIC Educational Resources Information Center
Brownlee, Matthew T.J.; Powell, Robert B.; Hallo, Jeffery C.
2013-01-01
Recently, many organizations involved in environmental education have initiated programs that aim to educate visitors or other publics who interact with nature-based resources about the impacts and landscape transformations occurring because of climatic changes. However, many psychological, human-evolutionary, and social-ecological processes that…
Responding to climate change in national forests: a guidebook for developing adaptation options
David L. Peterson; Connie I. Millar; Linda A. Joyce; Michael J. Furniss; Jessica E. Halofsky; Ronald P. Neilson; Toni Lyn Morelli
2011-01-01
This guidebook contains science-based principles, processes, and tools necessary to assist with developing adaptation options for national forest lands. The adaptation process is based on partnerships between local resource managers and scientists who work collaboratively to understand potential climate change effects, identify important resource issues, and develop...
A blueprint for using climate change predictions in an eco-hydrological study
NASA Astrophysics Data System (ADS)
Caporali, E.; Fatichi, S.; Ivanov, V. Y.
2009-12-01
There is a growing interest to extend climate change predictions to smaller, catchment-size scales and identify their implications on hydrological and ecological processes. Small scale processes are, in fact, expected to mediate climate changes, producing local effects and feedbacks that can interact with the principal consequences of the change. This is particularly applicable, when a complex interaction, such as the inter-relationship between the hydrological cycle and vegetation dynamics, is considered. This study presents a blueprint methodology for studying climate change impacts, as inferred from climate models, on eco-hydrological dynamics at the catchment scale. Climate conditions, present or future, are imposed through input hydrometeorological variables for hydrological and eco-hydrological models. These variables are simulated with an hourly weather generator as an outcome of a stochastic downscaling technique. The generator is parameterized to reproduce the climate of southwestern Arizona for present (1961-2000) and future (2081-2100) conditions. The methodology provides the capability to generate ensemble realizations for the future that take into account the heterogeneous nature of climate predictions from different models. The generated time series of meteorological variables for the two scenarios corresponding to the current and mean expected future serve as input to a coupled hydrological and vegetation dynamics model, “Tethys-Chloris”. The hydrological model reproduces essential components of the land-surface hydrological cycle, solving the mass and energy budget equations. The vegetation model parsimoniously parameterizes essential plant life-cycle processes, including photosynthesis, phenology, carbon allocation, and tissue turnover. The results for the two mean scenarios are compared and discussed in terms of changes in the hydrological balance components, energy fluxes, and indices of vegetation productivity The need to account for uncertainties in projections of future climate is discussed and a methodology for propagating these uncertainties into the probability density functions of changes in eco-hydrological variables is presented.
NASA Astrophysics Data System (ADS)
Zhao, G.; Gao, H.; Cuo, L.
2014-12-01
With the rapid population growth and economic development in the State of Texas, a fast urbanization process has occurred over the past several decades. The direct consequences of the increased impervious area are greater surface runoff and higher flood peaks. Meanwhile, climate change has led to more frequent extreme events. Therefore, a thorough understanding of the hydrological processes under urbanization and climate change is indispensable for sustainable water management. In this investigation, a case study was conducted by applying the Distributed Hydrology Soil Vegetation Model (DHSVM) to the San Antonio River Basin (SARB), Texas. Hosting the seventh largest city in the U.S. (i.e., City of San Antonio), the SARB is vulnerable to both floods and droughts. A set of historical and future land cover maps were assembled to represent the urbanization process. Two forcing datasets were employed to drive the DHSVM model. The first is a long-term observation based dataset (1915-2011), which was used as inputs for calibrating and validating DHSVM, as well as evaluating the urbanization effect. The second is the statistically downscaled climate simulations (1950-2099) from the Coupled Model Intercomparison Project Phase 5 (CMIP5), which were applied for understanding impacts related to climate change. Results show that urbanization exerts a much larger influence on streamflow than climate change does. Under the same observed forcings, annual average streamflow increased from 993.0 cfs (with 1929 land cover) to 1777.7 cfs (with 2011 land cover). As for climate change, results suggest that it will exacerbate the drought severity — with reduced evapotranspiration and soil moisture caused by decreased precipitation. However, the projected future streamflow does not show a clear increasing or decreasing trend. Regarding the combined effect from urbanization and climate change, the results indicate that the seasonal streamflow pattern will be notably changed (i.e., streamflow in October will be significantly increased, which makes it a second flow peak in addition to May). Furthermore, with significantly decreased evapotranspiration and slightly increased soil moisture, more water will be available for streamflow, increasing the possibility of flood risk in the region.
Prototype development of user specific climate services
NASA Astrophysics Data System (ADS)
Jacob, Daniela
2017-04-01
Systematic consultations in the last years with representatives from sectors particularly affected by climate change have helped the Climate Service Center Germany (GERICS) to identify the most pressing needs of stakeholders from public and private sectors. Besides the development of innovative climate service products and methods, areas are also identified, for which intensive research activities have to be initiated. An example is the demand of decision makers for high-resolution climate change information needed at regional to local levels for their activities towards climate change adaptation. For questions concerning adaptation to climate change, no standard solutions can be provided. Different from mitigation measures, adaptation measures must be framed in accordance with the specific circumstances prevailing in the local situation. Here, individual solutions, which satisfy the individual requirements and needs, are necessary. They have to be developed in close co-operation with the customers and users. For example, the implications of climate change on strategic and operative decisions, e.g. in enterprises and urban planning, are becoming increasingly important. Therefore, high-quality consultancy for businesses and public administration is needed, in order to support decision makers in identifying associated risks and opportunities. For the development of prototype products, GERICS has framed a general methodological approach, including the idea generation, the iterative development, and the prototype testing in co-development with the user. High process transparency and high product quality are prerequisite for the success of a product. The co-development process ensures the best possible communication of user tailored climate change information for different target groups.
2003-07-01
CH4, N2O, O3, etc. Aerosols Clouds ATMOSPHERIC COMPOSITION WATER CYCLE LAND-USE/ LAND-COVER CHANGE HUMAN CONTRIBUTIONS AND RESPONSES CARBON...Oceanographic Institution. Climate Variability and Change ATMOSPHERIC COMPOSITION CLIMATE VARIABILITY AND CHANGE GLOBAL WATER CYCLE LAND-USE/LAND-COVER CHANGE...their access to and use of water. CCSP-supported research on the global water cycle focuses on how natural processes and human activities influence the
Climate Change, Soils, and Human Health
NASA Astrophysics Data System (ADS)
Brevik, Eric C.
2013-04-01
According to the Intergovernmental Panel on Climate Change, global temperatures are expected to increase 1.1 to 6.4 degrees C during the 21st century and precipitation patterns will be altered by climate change (IPCC, 2007). Soils are intricately linked to the atmospheric/climate system through the carbon, nitrogen, and hydrologic cycles. Altered climate will, therefore, have an effect on soil processes and properties. Studies into the effects of climate change on soil processes and properties are still incomplete, but have revealed that climate change will impact soil organic matter dynamics including soil organisms and the multiple soil properties that are tied to organic matter, soil water, and soil erosion. The exact direction and magnitude of those impacts will be dependent on the amount of change in atmospheric gases, temperature, and precipitation amounts and patterns. Recent studies give reason to believe at least some soils may become net sources of atmospheric carbon as temperatures rise; this is particularly true of high latitude regions with permanently frozen soils. Soil erosion by both wind and water is also likely to increase. These soil changes will lead to both direct and indirect impacts on human health. Possible indirect impacts include temperature extremes, food safety and air quality issues, increased and/or expanded disease incidences, and occupational health issues. Potential direct impacts include decreased food security and increased atmospheric dust levels. However, there are still many things we need to know more about. How climate change will affect the nitrogen cycle and, in turn, how the nitrogen cycle will affect carbon sequestration in soils is a major research need, as is a better understanding of soil water-CO2 level-temperature relationships. Knowledge of the response of plants to elevated atmospheric CO2 given limitations in nutrients like nitrogen and phosphorus and how that affects soil organic matter dynamics is a critical need. There is also a great need for a better understanding of how soil organisms will respond to climate change because those organisms are incredibly important in a number of soil processes, including the carbon and nitrogen cycles. All of these questions are important in trying to understand human health impacts. More information on climate change, soils, and human health issues can be found in Brevik (2012). References Brevik, E.C. 2012. Climate change, soils, and human health. In: E.C. Brevik and L. Burgess (Eds). Soils and human health. CRC Press, Boca Raton, FL. in press. IPCC. 2007. Summary for policymakers. pp. 1-18. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds). Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.
The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6
Webb, Mark J.; Andrews, Timothy; Bodas-Salcedo, Alejandro; ...
2017-01-01
Our primary objective of CFMIP is to inform future assessments of cloud feedbacks through improved understanding of cloud–climate feedback mechanisms and better evaluation of cloud processes and cloud feedbacks in climate models. But, the CFMIP approach is also increasingly being used to understand other aspects of climate change, and so a second objective has now been introduced, to improve understanding of circulation, regional-scale precipitation, and non-linear changes. CFMIP is supporting ongoing model inter-comparison activities by coordinating a hierarchy of targeted experiments for CMIP6, along with a set of cloud-related output diagnostics. CFMIP contributes primarily to addressing the CMIP6 questions Howmore » does the Earth system respond to forcing? and What are the origins and consequences of systematic model biases? and supports the activities of the WCRP Grand Challenge on Clouds, Circulation and Climate Sensitivity.A compact set of Tier 1 experiments is proposed for CMIP6 to address this question: (1) what are the physical mechanisms underlying the range of cloud feedbacks and cloud adjustments predicted by climate models, and which models have the most credible cloud feedbacks? Additional Tier 2 experiments are proposed to address the following questions. (2) Are cloud feedbacks consistent for climate cooling and warming, and if not, why? (3) How do cloud-radiative effects impact the structure, the strength and the variability of the general atmospheric circulation in present and future climates? (4) How do responses in the climate system due to changes in solar forcing differ from changes due to CO 2, and is the response sensitive to the sign of the forcing? (5) To what extent is regional climate change per CO 2 doubling state-dependent (non-linear), and why? (6) Are climate feedbacks during the 20th century different to those acting on long-term climate change and climate sensitivity? (7) How do regional climate responses (e.g. in precipitation) and their uncertainties in coupled models arise from the combination of different aspects of CO 2 forcing and sea surface warming?CFMIP also proposes a number of additional model outputs in the CMIP DECK, CMIP6 Historical and CMIP6 CFMIP experiments, including COSP simulator outputs and process diagnostics to address the following questions. How well do clouds and other relevant variables simulated by models agree with observations?What physical processes and mechanisms are important for a credible simulation of clouds, cloud feedbacks and cloud adjustments in climate models?Which models have the most credible representations of processes relevant to the simulation of clouds?How do clouds and their changes interact with other elements of the climate system?« less
The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6.
NASA Technical Reports Server (NTRS)
Webb, Mark J.; Andrews, Timothy; Bodas-Salcedo, Alejandro; Bony, Sandrine; Bretherton, Christopher S.; Chadwick, Robin; Chepfer, Helene; Douville, Herve; Good, Peter; Kay, Jennifer E.;
2017-01-01
The primary objective of CFMIP is to inform future assessments of cloud feedbacks through improved understanding of cloud-climate feedback mechanisms and better evaluation of cloud processes and cloud feedbacks in climate models. However, the CFMIP approach is also increasingly being used to understand other aspects of climate change, and so a second objective has now been introduced, to improve understanding of circulation, regional-scale precipitation, and non-linear changes. CFMIP is supporting ongoing model inter-comparison activities by coordinating a hierarchy of targeted experiments for CMIP6, along with a set of cloud-related output diagnostics. CFMIP contributes primarily to addressing the CMIP6 questions 'How does the Earth system respond to forcing?' and 'What are the origins and consequences of systematic model biases?' and supports the activities of the WCRP Grand Challenge on Clouds, Circulation and Climate Sensitivity. A compact set of Tier 1 experiments is proposed for CMIP6 to address this question: (1) what are the physical mechanisms underlying the range of cloud feedbacks and cloud adjustments predicted by climate models, and which models have the most credible cloud feedbacks? Additional Tier 2 experiments are proposed to address the following questions. (2) Are cloud feedbacks consistent for climate cooling and warming, and if not, why? (3) How do cloud-radiative effects impact the structure, the strength and the variability of the general atmospheric circulation in present and future climates? (4) How do responses in the climate system due to changes in solar forcing differ from changes due to CO2, and is the response sensitive to the sign of the forcing? (5) To what extent is regional climate change per CO2 doubling state-dependent (non-linear), and why? (6) Are climate feedbacks during the 20th century different to those acting on long-term climate change and climate sensitivity? (7) How do regional climate responses (e.g. in precipitation) and their uncertainties in coupled models arise from the combination of different aspects of CO2 forcing and sea surface warming? CFMIP also proposes a number of additional model outputs in the CMIP DECK, CMIP6 Historical and CMIP6 CFMIP experiments, including COSP simulator outputs and process diagnostics to address the following questions. 1. How well do clouds and other relevant variables simulated by models agree with observations? 2. What physical processes and mechanisms are important for a credible simulation of clouds, cloud feedbacks and cloud adjustments in climate models? 3. Which models have the most credible representations of processes relevant to the simulation of clouds? 4. How do clouds and their changes interact with other elements of the climate system?
The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb, Mark J.; Andrews, Timothy; Bodas-Salcedo, Alejandro
Our primary objective of CFMIP is to inform future assessments of cloud feedbacks through improved understanding of cloud–climate feedback mechanisms and better evaluation of cloud processes and cloud feedbacks in climate models. But, the CFMIP approach is also increasingly being used to understand other aspects of climate change, and so a second objective has now been introduced, to improve understanding of circulation, regional-scale precipitation, and non-linear changes. CFMIP is supporting ongoing model inter-comparison activities by coordinating a hierarchy of targeted experiments for CMIP6, along with a set of cloud-related output diagnostics. CFMIP contributes primarily to addressing the CMIP6 questions Howmore » does the Earth system respond to forcing? and What are the origins and consequences of systematic model biases? and supports the activities of the WCRP Grand Challenge on Clouds, Circulation and Climate Sensitivity.A compact set of Tier 1 experiments is proposed for CMIP6 to address this question: (1) what are the physical mechanisms underlying the range of cloud feedbacks and cloud adjustments predicted by climate models, and which models have the most credible cloud feedbacks? Additional Tier 2 experiments are proposed to address the following questions. (2) Are cloud feedbacks consistent for climate cooling and warming, and if not, why? (3) How do cloud-radiative effects impact the structure, the strength and the variability of the general atmospheric circulation in present and future climates? (4) How do responses in the climate system due to changes in solar forcing differ from changes due to CO 2, and is the response sensitive to the sign of the forcing? (5) To what extent is regional climate change per CO 2 doubling state-dependent (non-linear), and why? (6) Are climate feedbacks during the 20th century different to those acting on long-term climate change and climate sensitivity? (7) How do regional climate responses (e.g. in precipitation) and their uncertainties in coupled models arise from the combination of different aspects of CO 2 forcing and sea surface warming?CFMIP also proposes a number of additional model outputs in the CMIP DECK, CMIP6 Historical and CMIP6 CFMIP experiments, including COSP simulator outputs and process diagnostics to address the following questions. How well do clouds and other relevant variables simulated by models agree with observations?What physical processes and mechanisms are important for a credible simulation of clouds, cloud feedbacks and cloud adjustments in climate models?Which models have the most credible representations of processes relevant to the simulation of clouds?How do clouds and their changes interact with other elements of the climate system?« less
NASA Astrophysics Data System (ADS)
Terando, A. J.; Lascurain, A.; Aldridge, H. D.; Davis, C.
2016-12-01
Climate Voyager provides an innovative way to visualize both large-scale and local climate change projections using a three-map layout and time series plot. This product includes a suite of tools designed to assist with climate risk and opportunity assessments, including changes in average seasonal conditions and the capability to evaluate a variety of different decision-relevant thresholds (e.g. changes in extreme temperature occurrence). Each tool summarizes output from 20 downscaled global climate models and contains a historical average for comparison with the spread of projected future outcomes. The Climate Voyager website is interactive, allowing users to explore both regional and location-specific guidance for two Representative Concentration Pathways (RCPs) and four future 20-year time periods. By presenting climate model projections and measures of uncertainty of specific parameters beyond just annual temperatures and precipitation, Climate Voyager can help a wide variety of decision makers plan for climate changes that may affect them. We present a case study in which a new module was developed within Climate Voyager for use by Tribes and native communities in the eastern U.S. to help make informed resource decisions. In this first attempt, Ramps (Allium tricoccum), a plant species of great cultural significance, was incorporated through consultation with the tribal organization. We will also discuss the process of engagement employed with end-users and the potential to make the Climate Voyager interface an iterative, co-produced process to enhance the usability of climate model information for adaptation planning.
Linking Indigenous Knowledge and Observed Climate Change Studies
NASA Technical Reports Server (NTRS)
Alexander, Chief Clarence; Bynum, Nora; Johnson, Liz; King, Ursula; Mustonen, Tero; Neofotis, Peter; Oettle, Noel; Rosenzweig, Cynthia; Sakakibara, Chie; Shadrin, Chief Vyacheslav;
2010-01-01
We present indigenous knowledge narratives and explore their connections to documented temperature and other climate changes and observed climate change impact studies. We then propose a framework for enhancing integration of these indigenous narratives of observed climate change with global assessments. Our aim is to contribute to the thoughtful and respectful integration of indigenous knowledge with scientific data and analysis, so that this rich body of knowledge can inform science, and so that indigenous and traditional peoples can use the tools and methods of science for the benefit of their communities if they choose to do so. Enhancing ways of understanding such connections are critical as the Intergovernmental Panel on Climate Change Fifth Assessment process gets underway.
NASA Astrophysics Data System (ADS)
Ma, Jian; Chadwick, Robin; Seo, Kyong-Hwan; Dong, Changming; Huang, Gang; Foltz, Gregory R.; Jiang, Jonathan H.
2018-05-01
This review describes the climate change–induced responses of the tropical atmospheric circulation and their impacts on the hydrological cycle. We depict the theoretically predicted changes and diagnose physical mechanisms for observational and model-projected trends in large-scale and regional climate. The tropical circulation slows down with moisture and stratification changes, connecting to a poleward expansion of the Hadley cells and a shift of the intertropical convergence zone. Redistributions of regional precipitation consist of thermodynamic and dynamical components, including a strong offset between moisture increase and circulation weakening throughout the tropics. This allows other dynamical processes to dominate local circulation changes, such as a surface warming pattern effect over oceans and multiple mechanisms over land. To improve reliability in climate projections, more fundamental understandings of pattern formation, circulation change, and the balance of various processes redistributing land rainfall are suggested to be important.
Climate Change and Socio-Hydrological Dynamics: Adaptations and Feedbacks
NASA Astrophysics Data System (ADS)
Woyessa, Yali E.; Welderufael, Worku A.
2012-10-01
A functioning ecological system results in ecosystem goods and services which are of direct value to human beings. Ecosystem services are the conditions and processes which sustain and fulfil human life, and maintain biodiversity and the production of ecosystem goods. However, human actions affect ecological systems and the services they provide through various activities, such as land use, water use, pollution and climate change. Climate change is perhaps one of the most important sustainable development challenges that threatens to undo many of the development efforts being made to reach the targets set for the Millennium Development Goals. Understanding the provision of ecosystem services and how they change under different scenarios of climate and biophysical conditions could assist in bringing the issue of ecosystem services into decision making process. Similarly, the impacts of land use change on ecosystems and biodiversity have received considerable attention from ecologists and hydrologists alike. Land use change in a catchment can impact on water supply by altering hydrological processes, such as infiltration, groundwater recharge, base flow and direct runoff. In the past a variety of models were used for predicting landuse changes. Recently, the focus has shifted away from using mathematically oriented models to agent-based modeling (ABM) approach to simulate land use scenarios. The agent-based perspective, with regard to land-use cover change, is centered on the general nature and rules of land-use decision making by individuals. A conceptual framework is developed to investigate the possibility of incorporating the human dimension of land use decision and climate change model into a hydrological model in order to assess the impact of future land use scenario and climate change on the ecological system in general and water resources in particular.
Quantifying climate feedbacks in polar regions.
Goosse, Hugues; Kay, Jennifer E; Armour, Kyle C; Bodas-Salcedo, Alejandro; Chepfer, Helene; Docquier, David; Jonko, Alexandra; Kushner, Paul J; Lecomte, Olivier; Massonnet, François; Park, Hyo-Seok; Pithan, Felix; Svensson, Gunilla; Vancoppenolle, Martin
2018-05-15
The concept of feedback is key in assessing whether a perturbation to a system is amplified or damped by mechanisms internal to the system. In polar regions, climate dynamics are controlled by both radiative and non-radiative interactions between the atmosphere, ocean, sea ice, ice sheets and land surfaces. Precisely quantifying polar feedbacks is required for a process-oriented evaluation of climate models, a clear understanding of the processes responsible for polar climate changes, and a reduction in uncertainty associated with model projections. This quantification can be performed using a simple and consistent approach that is valid for a wide range of feedbacks, offering the opportunity for more systematic feedback analyses and a better understanding of polar climate changes.
A Climate Change Risk and Resilience Assessment Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, Lisa
This presentation summarizes a site-specific climate resilience planning process applied at two different U.S. Department of Energy sites, in Colorado and along the Gulf Coast that federal site managers can use to identify and analyze potential climate-related risks and explore resilience options to minimize those risks.
Disturbances catalyze the adaptation of forest ecosystems to changing climate conditions
Thom, Dominik; Rammer, Werner; Seidl, Rupert
2016-01-01
The rates of anthropogenic climate change substantially exceed those at which forest ecosystems – dominated by immobile, long-lived organisms – are able to adapt. The resulting maladaptation of forests has potentially detrimental effects on ecosystem functioning. Furthermore, as many forest-dwelling species are highly dependent on the prevailing tree species, a delayed response of the latter to a changing climate can contribute to an extinction debt and mask climate-induced biodiversity loss. However, climate change will likely also intensify forest disturbances. Here, we tested the hypothesis that disturbances foster the reorganization of ecosystems and catalyze the adaptation of forest composition to climate change. Our specific objectives were (i) to quantify the rate of autonomous forest adaptation to climate change, (ii) examine the role of disturbance in the adaptation process, and (iii) investigate spatial differences in climate-induced species turnover in an unmanaged mountain forest landscape (Kalkalpen National Park, Austria). Simulations with a process-based forest landscape model were performed for 36 unique combinations of climate and disturbance scenarios over 1000 years. We found that climate change strongly favored European beech and oak species (currently prevailing in mid- to low-elevation areas), with novel species associations emerging on the landscape. Yet, it took between 357 and 706 years before the landscape attained a dynamic equilibrium with the climate system. Disturbances generally catalyzed adaptation and decreased the time needed to attain equilibrium by up to 211 years. However, while increasing disturbance frequency and severity accelerated adaptation, increasing disturbance size had the opposite effect. Spatial analyses suggest that particularly the lowest and highest elevation areas will be hotspots of future species change. We conclude that the growing maladaptation of forests to climate and the long lead times of autonomous adaptation need to be considered more explicitly in the ongoing efforts to safeguard biodiversity and ecosystem services provisioning. PMID:27633953
Disturbances catalyze the adaptation of forest ecosystems to changing climate conditions.
Thom, Dominik; Rammer, Werner; Seidl, Rupert
2017-01-01
The rates of anthropogenic climate change substantially exceed those at which forest ecosystems - dominated by immobile, long-lived organisms - are able to adapt. The resulting maladaptation of forests has potentially detrimental effects on ecosystem functioning. Furthermore, as many forest-dwelling species are highly dependent on the prevailing tree species, a delayed response of the latter to a changing climate can contribute to an extinction debt and mask climate-induced biodiversity loss. However, climate change will likely also intensify forest disturbances. Here, we tested the hypothesis that disturbances foster the reorganization of ecosystems and catalyze the adaptation of forest composition to climate change. Our specific objectives were (i) to quantify the rate of autonomous forest adaptation to climate change, (ii) examine the role of disturbance in the adaptation process, and (iii) investigate spatial differences in climate-induced species turnover in an unmanaged mountain forest landscape (Kalkalpen National Park, Austria). Simulations with a process-based forest landscape model were performed for 36 unique combinations of climate and disturbance scenarios over 1000 years. We found that climate change strongly favored European beech and oak species (currently prevailing in mid- to low-elevation areas), with novel species associations emerging on the landscape. Yet, it took between 357 and 706 years before the landscape attained a dynamic equilibrium with the climate system. Disturbances generally catalyzed adaptation and decreased the time needed to attain equilibrium by up to 211 years. However, while increasing disturbance frequency and severity accelerated adaptation, increasing disturbance size had the opposite effect. Spatial analyses suggest that particularly the lowest and highest elevation areas will be hotspots of future species change. We conclude that the growing maladaptation of forests to climate and the long lead times of autonomous adaptation need to be considered more explicitly in the ongoing efforts to safeguard biodiversity and ecosystem services provisioning. © 2016 John Wiley & Sons Ltd.
Stang, Shannon; Wang, Haiying; Gardner, Kevin H; Mo, Weiwei
2018-07-15
As drinking water supply systems plan for sustainable management practices, impacts from future water quality and climate changes are a major concern. This study aims to understand the intraannual changes of energy consumption for water treatment, investigate the relative importance of water quality and climate indicators on energy consumption for water treatment, and predict the effects of climate change on the embodied energy of treated, potable water at two municipal drinking water systems located in the northeast and southeast US. To achieve this goal, a life cycle assessment was first performed to quantify the monthly energy consumption in the two drinking water systems. Regression and relative importance analyses were then performed between climate indicators, raw water quality indicators, and chemical and energy usages in the treatment processes to determine their correlations. These relationships were then used to project changes in embodied energy associated with the plants' processes, and the results were compared between the two regions. The projections of the southeastern US water plant were for an increase in energy demand resulted from an increase of treatment chemical usages. The northeastern US plant was projected to decrease its energy demand due to a reduced demand for heating the plant's infrastructure. The findings indicate that geographic location and treatment process may determine the way climate change affects drinking water systems. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kargel, J. S.; Leonard, G. J.
2012-12-01
Recent deadly glacier-related disasters in the Himalayan-Karakoram region—the Attabad landslide and formation of glacier meltwater-fed Lake Gojal, the Gayari ice avalanche/landslide and burial of a Pakistani Army base, and the Seti River outburst disaster—beg the question of whether disasters may be on the rise. Science is not yet ready to offer a full answer, but it is an important one to resolve, because future land-use planning and mitigative measures may be affected. Natural disasters have been commonplace throughout the long human history of the Himalaya-Karakoram region. The broad outlines of the changing natural process, natural hazard, and risk environment may be established. The risk is rising rapidly primarily due to increased human presence in these once-forbidding mountains. Risk is shifting also because climate change is modifying the land surface process system. Rapidly changing glaciers cause a destabilization of the landscape. Glaciers are fundamentally a mestastable phenomenon put in motion by the high gravitational potential energies of the components of glacial systems: snow, ice, water, and debris. Any change in the climate-land-glacier system MUST result in a change in the land process system, with hazards and risks rising or falling or changing location or type. Most commonly, glacier-related disasters include a natural process cascade; as the factors affecting land surface processes and the frequency or magnitude of any one of the elements of the process cascade changes, the net hazard and risk to people changes. Otherwise similar glaciers and glacierized basins have differing sets of hazardous conditions and processes depending on whether the glacier is stable, advancing or retreating. The consequences for the overall risk to people will depend on the details of a specific glacier near a particular village or bridge or railroad. One size does not fit all. Generalizations about trends in natural hazards as related to climate change impacts on glaciers are possible, but any particular locality may buck the general trends. Hence, climate change is affecting the natural process, natural hazard, and human risk environment. However, changing glaciers exhibit a montage of different response behaviors, so the natural hazards and shifting hazards are also a montage. Overwhelmingly, changing land use has the largest impact on the natural hazard and risk environment. We will take recent examples of natural disasters--using both remote sensing data and field data-- and discuss how changing climate, the changing cryosphere, and changing human relationships to the land in Himalayan realms may have contributed to or altered those events.
Mukwada, Geoffrey; Manatsa, Desmond
2018-05-24
The impact of climate change on mountain ecosystems has been in the spotlight for the past three decades. Climate change is generally considered to be a threat to ecosystem health in mountain regions. Vegetation indices can be used to detect shifts in ecosystem phenology and climate change in mountain regions while satellite imagery can play an important role in this process. However, what has remained problematic is determining the extent to which ecosystem phenology is affected by climate change under increasingly warming conditions. In this paper, we use climate and vegetation indices that were derived from satellite data to investigate the link between ecosystem phenology and climate change in the Namahadi Catchment Area of the Drakensberg Mountain Region of South Africa. The time series for climate indices as well as those for gridded precipitation and temperature data were analyzed in order to determine climate shifts, and concomitant changes in vegetation health were assessed in the resultant epochs using vegetation indices. The results indicate that vegetation indices should only be used to assess trends in climate change under relatively pristine conditions, where human influence is limited. This knowledge is important for designing climate change monitoring strategies that are based on ecosystem phenology and vegetation health.
Grand challenges in understanding the interplay of climate and land changes
Liu, Shuguang; Bond-Lamberty, Ben; Boysen, Lena R.; ...
2017-03-28
Half of the Earth s land surface has been altered by human activities, creating various consequences on the climate and weather systems at local to global scales, which in turn affects a myriad of land surface processes and our adaptation behaviors. We here review the status and major knowledge gaps of studying the interactions of land and atmospheric changes and present eleven grand challenge areas for scientific research and adaptation communities in the coming decade: (1) collective and separate impacts of major land changes and the interactions with non-land-change factors such as atmospheric CO2 increase, (2) carbon and other biogeochemicalmore » cycles, (3) climatically relevant biospheric emissions such as aerosols, (4) water cycle, (5) agriculture, (6) urbanization, (7) gradual acclimation of plants, communities, and ecosystems to climate and environmental changes, (8) plant migration, (9) land use projections, (10) reduction of uncertainties in models and data, and finally (11) adaptation strategies. We conclude that we need to create and maintain a close cross-disciplinary coordination between measurements and process representation in models to analyze complex multi-facet interrelated perturbations and feedbacks between land and climate changes. Along with major scientific research thrusts, land-use and land cover change mitigation and adaptation assessments should be strengthened to identify barriers that need to be overcome, evaluate and prioritize opportunities, and examine how decision making processes work in specific contexts.« less
Grand challenges in understanding the interplay of climate and land changes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shuguang; Bond-Lamberty, Ben; Boysen, Lena R.
Half of the Earth s land surface has been altered by human activities, creating various consequences on the climate and weather systems at local to global scales, which in turn affects a myriad of land surface processes and our adaptation behaviors. We here review the status and major knowledge gaps of studying the interactions of land and atmospheric changes and present eleven grand challenge areas for scientific research and adaptation communities in the coming decade: (1) collective and separate impacts of major land changes and the interactions with non-land-change factors such as atmospheric CO2 increase, (2) carbon and other biogeochemicalmore » cycles, (3) climatically relevant biospheric emissions such as aerosols, (4) water cycle, (5) agriculture, (6) urbanization, (7) gradual acclimation of plants, communities, and ecosystems to climate and environmental changes, (8) plant migration, (9) land use projections, (10) reduction of uncertainties in models and data, and finally (11) adaptation strategies. We conclude that we need to create and maintain a close cross-disciplinary coordination between measurements and process representation in models to analyze complex multi-facet interrelated perturbations and feedbacks between land and climate changes. Along with major scientific research thrusts, land-use and land cover change mitigation and adaptation assessments should be strengthened to identify barriers that need to be overcome, evaluate and prioritize opportunities, and examine how decision making processes work in specific contexts.« less
NASA Astrophysics Data System (ADS)
Surminski, Swenja; Di Mauro, Manuela; Baglee, J. Alastair R.; Connell, Richenda K.; Hankinson, Joel; Haworth, Anna R.; Ingirige, Bingunath; Proverbs, David
2018-06-01
Climate change poses severe risks for businesses, which companies as well as governments need to understand in order to take appropriate steps to manage those. This, however, represents a significant challenge as climate change risk assessment is itself a complex, dynamic and geographically diverse process. A wide range of factors including the nature of production processes and value chains, the location of business sites as well as relationships and interdependencies with customers and suppliers play a role in determining if and how companies are impacted by climate risks. This research explores the methodological challenges for a national-scale assessment of climate risks through the lens of the UK Climate Change Risk Assessment (UKCCRA) process and compares the approaches adopted in the first and second UKCCRA (2011, 2016), while also reflecting on international experiences elsewhere. A review of these issues is presented, drawing on a wide body of contemporary evidence from a range of sources including the research disciplines, grey literature and government policy. The study reveals the methodological challenges and highlights six broad themes, namely scale, evidence base, adaptation responses, scope, interdependencies and public policy. The paper concludes by identifying suitable lessons for future national climate risk assessments, which should guide the next phase of research in preparation for UKCCRA3 and those of national-level risk assessments elsewhere. This article is part of the theme issue `Advances in risk assessment for climate change adaptation policy'.
Surminski, Swenja; Di Mauro, Manuela; Baglee, J Alastair R; Connell, Richenda K; Hankinson, Joel; Haworth, Anna R; Ingirige, Bingunath; Proverbs, David
2018-06-13
Climate change poses severe risks for businesses, which companies as well as governments need to understand in order to take appropriate steps to manage those. This, however, represents a significant challenge as climate change risk assessment is itself a complex, dynamic and geographically diverse process. A wide range of factors including the nature of production processes and value chains, the location of business sites as well as relationships and interdependencies with customers and suppliers play a role in determining if and how companies are impacted by climate risks. This research explores the methodological challenges for a national-scale assessment of climate risks through the lens of the UK Climate Change Risk Assessment (UKCCRA) process and compares the approaches adopted in the first and second UKCCRA (2011, 2016), while also reflecting on international experiences elsewhere. A review of these issues is presented, drawing on a wide body of contemporary evidence from a range of sources including the research disciplines, grey literature and government policy. The study reveals the methodological challenges and highlights six broad themes, namely scale, evidence base, adaptation responses, scope, interdependencies and public policy. The paper concludes by identifying suitable lessons for future national climate risk assessments, which should guide the next phase of research in preparation for UKCCRA3 and those of national-level risk assessments elsewhere.This article is part of the theme issue 'Advances in risk assessment for climate change adaptation policy'. © 2018 The Author(s).
Climate and land use controls over terrestrial water use efficiency in monsoon Asia.
Hanqin Tian; Chaoqun Lu; Guangsheng Chen; Xiaofeng Xu; Mingliang Liu; et al
2011-01-01
Much concern has been raised regarding how and to what extent climate change and intensive human activities have altered water use efficiency (WUE, amount of carbon uptake per unit of water use) in monsoon Asia. By using a process-based ecosystem model [dynamic land ecosystem model (DLEM)], we examined effects of climate change, land use/cover change, and land...
Ordóñez Barona, Camilo
2015-12-01
Urban trees are a dominant natural element in cities; they provide important ecosystem services to urban citizens and help urban areas adapt to climate change. Many rationales have been proposed to provide a purpose for urban forest management, some of which have been ineffective in addressing important ecological and social management themes. Among these rationales we find a values-based perspective, which sees management as a process where the desires of urban dwellers are met. Another perspective is climate change adaptation, which sees management as a process where urban forest vulnerability to climate change is reduced and resilience enhanced. Both these rationales have the advantage of complementing, enhancing, and broadening urban forest management objectives. A critical analysis of the literature on public values related to urban forests and climate change adaptation in the context of urban forests is undertaken to discuss what it means to adopt these two issues in urban forest management. The analysis suggests that by seeing urban forest management as a process by which public values are satisfied and urban-forest vulnerabilities to climate change are reduced, we can place issues such as naturalization, adaptive management, and engaging people in management at the centre of urban forest management. Focusing urban forest management on these issues may help ensure the success of programs focused on planting more trees and increasing citizen participation in urban forest management. Copyright © 2015 Elsevier Ltd. All rights reserved.
Physical, Ecological, and Societal Indicators for the National Climate Assessment
NASA Technical Reports Server (NTRS)
Kenney, Melissa A.; Chen, Robert; Baptista, Sandra R.; Quattrochi, Dale; O'Brien, Sheila
2011-01-01
The National Climate Assessment (NCA) is being conducted under the auspices of the U.S. Global Change Research Program (USGCRP), pursuant to the Global Change Research Act of 1990, Section 106, which requires a report to Congress every 4 years. The current NCA (http://globalchange.gov/what-we-do/assessment/) differs in multiple ways from previous U.S. climate assessment efforts, being: (1) more focused on supporting the Nation s activities in adaptation and mitigation and on evaluating the current state of scientific knowledge relative to climate impacts and trends; (2) a long-term, consistent process for evaluation of climate risks and opportunities and providing information to support decision-making processes within regions and sectors; and (3) establishing a permanent assessment capacity both inside and outside of the federal government. As a part of ongoing, long-term assessment activities, the NCA intends to develop an integrated strategic framework and deploy climate-relevant physical, ecological, and societal indicators. The NCA indicators framework is underdevelopment by the NCA Development and Advisory Committee Indicators Working Group and are envisioned as a relatively small number of policy-relevant integrated indicators designed to provide a consistent, objective, and transparent overview of major variations in climate impacts, vulnerabilities, adaptation, and mitigation activities across sectors, regions, and timeframes. The potential questions that could be addressed by these indicators include: How do we know that there is a changing climate and how is it expected to change in the future? Are important climate impacts and opportunities occurring or predicted to occur in the future? Are we adapting successfully? What are the vulnerabilities and resiliencies given a changing climate? Are we preparing adequately for extreme events? It is not expected that the NCA societal indicators would be linked directly to a single decision or portfolio of decisions, but subsets of indicators, or the data supporting the indicator, might be used to inform decision-making processes such as the development and implementation of climate adaptation strategies in a particular sector or region.
Physical, Ecological, and Societal Indicators for the National Climate Assessment
NASA Astrophysics Data System (ADS)
O'Brien, S.; Kenney, M.; Chen, R. S.; Baptista, S. R.; Quattrochi, D. A.
2011-12-01
The National Climate Assessment (NCA) is being conducted under the auspices of the U.S. Global Change Research Program (USGCRP), pursuant to the Global Change Research Act of 1990, Section 106, which requires a report to Congress every 4 years. The current NCA (http://globalchange.gov/what-we-do/assessment/) differs in multiple ways from previous U.S. climate assessment efforts, being: (1) more focused on supporting the Nation's activities in adaptation and mitigation and on evaluating the current state of scientific knowledge relative to climate impacts and trends; (2) a long-term, consistent process for evaluation of climate risks and opportunities and providing information to support decision-making processes within regions and sectors; and (3) establishing a permanent assessment capacity both inside and outside of the federal government. As a part of ongoing, long-term assessment activities, the NCA intends to develop an integrated strategic framework and deploy climate-relevant physical, ecological, and societal indicators. The NCA indicators framework is underdevelopment by the NCA Development and Advisory Committee Indicators Working Group and are envisioned as a relatively small number of policy-relevant integrated indicators designed to provide a consistent, objective, and transparent overview of major variations in climate impacts, vulnerabilities, adaptation, and mitigation activities across sectors, regions, and timeframes. The potential questions that could be addressed by these indicators include: -How do we know that there is a changing climate and how is it expected to change in the future? -Are important climate impacts and opportunities occurring or predicted to occur in the future? -Are we adapting successfully? -What are the vulnerabilities and resiliencies given a changing climate? -Are we preparing adequately for extreme events? It is not expected that the NCA indicators would be linked directly to a single decision or portfolio of decisions, but subsets of indicators, or the data supporting the indicator, might be used to inform decision-making processes such as the development and implementation of climate adaptation strategies in a particular sector or region.
Report of the panel on the land surface: Process of change, section 5
NASA Technical Reports Server (NTRS)
Adams, John B.; Barron, Eric E.; Bloom, Arthur A.; Breed, Carol; Dohrenwend, J.; Evans, Diane L.; Farr, Thomas T.; Gillespie, Allan R.; Isaks, B. L.; Williams, Richard S.
1991-01-01
The panel defined three main areas of study that are central to the Solid Earth Science (SES) program: climate interactions with the Earth's surface, tectonism as it affects the Earth's surface and climate, and human activities that modify the Earth's surface. Four foci of research are envisioned: process studies with an emphasis on modern processes in transitional areas; integrated studies with an emphasis on long term continental climate change; climate-tectonic interactions; and studies of human activities that modify the Earth's surface, with an emphasis on soil degradation. The panel concluded that there is a clear requirement for global coverage by high resolution stereoscopic images and a pressing need for global topographic data in support of studies of the land surface.
Climate Change Impact on Sugarcane Production in Developing Countries
USDA-ARS?s Scientific Manuscript database
A combination of long-term change in the weather patterns worldwide (Global climate change), caused by natural processes and anthropogenic factors, may result in major environmental issues that have affected and will continuously affect agriculture. Increases in atmospheric carbon dioxide concentrat...
The Political Economy of Health Co-Benefits: Embedding Health in the Climate Change Agenda.
Workman, Annabelle; Blashki, Grant; Bowen, Kathryn J; Karoly, David J; Wiseman, John
2018-04-04
A complex, whole-of-economy issue such as climate change demands an interdisciplinary, multi-sectoral response. However, evidence suggests that human health has remained elusive in its influence on the development of ambitious climate change mitigation policies for many national governments, despite a recognition that the combustion of fossil fuels results in pervasive short- and long-term health consequences. We use insights from literature on the political economy of health and climate change, the science–policy interface and power in policy-making, to identify additional barriers to the meaningful incorporation of health co-benefits into climate change mitigation policy development. Specifically, we identify four key interrelated areas where barriers may exist in relation to health co-benefits: discourse, efficiency, vested interests and structural challenges. With these insights in mind, we argue that the current politico-economic paradigm in which climate change is situated and the processes used to develop climate change mitigation policies do not adequately support accounting for health co-benefits. We present approaches for enhancing the role of health co-benefits in the development of climate change mitigation policies to ensure that health is embedded in the broader climate change agenda.
The Political Economy of Health Co-Benefits: Embedding Health in the Climate Change Agenda
Workman, Annabelle; Blashki, Grant; Bowen, Kathryn J.; Karoly, David J.; Wiseman, John
2018-01-01
A complex, whole-of-economy issue such as climate change demands an interdisciplinary, multi-sectoral response. However, evidence suggests that human health has remained elusive in its influence on the development of ambitious climate change mitigation policies for many national governments, despite a recognition that the combustion of fossil fuels results in pervasive short- and long-term health consequences. We use insights from literature on the political economy of health and climate change, the science–policy interface and power in policy-making, to identify additional barriers to the meaningful incorporation of health co-benefits into climate change mitigation policy development. Specifically, we identify four key interrelated areas where barriers may exist in relation to health co-benefits: discourse, efficiency, vested interests and structural challenges. With these insights in mind, we argue that the current politico-economic paradigm in which climate change is situated and the processes used to develop climate change mitigation policies do not adequately support accounting for health co-benefits. We present approaches for enhancing the role of health co-benefits in the development of climate change mitigation policies to ensure that health is embedded in the broader climate change agenda. PMID:29617317
Leaf-trait plasticity and species vulnerability to climate change in a Mongolian steppe.
Liancourt, Pierre; Boldgiv, Bazartseren; Song, Daniel S; Spence, Laura A; Helliker, Brent R; Petraitis, Peter S; Casper, Brenda B
2015-09-01
Climate change is expected to modify plant assemblages in ways that will have major consequences for ecosystem functions. How climate change will affect community composition will depend on how individual species respond, which is likely related to interspecific differences in functional traits. The extraordinary plasticity of some plant traits is typically neglected in assessing how climate change will affect different species. In the Mongolian steppe, we examined whether leaf functional traits under ambient conditions and whether plasticity in these traits under altered climate could explain climate-induced biomass responses in 12 co-occurring plant species. We experimentally created three probable climate change scenarios and used a model selection procedure to determine the set of baseline traits or plasticity values that best explained biomass response. Under all climate change scenarios, plasticity for at least one leaf trait correlated with change in species performance, while functional leaf-trait values in ambient conditions did not. We demonstrate that trait plasticity could play a critical role in vulnerability of species to a rapidly changing environment. Plasticity should be considered when examining how climate change will affect plant performance, species' niche spaces, and ecological processes that depend on plant community composition. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Kueppers, L. M.; Molotch, N. P.; Meromy, L.; Moyes, A. B.; Conlisk, E.; Castanha, C.
2015-12-01
The extent and density of forest trees in mountain landscapes is a first order control on watershed function, affecting patterns of snow accumulation, timing of snowmelt, and amount and quality of run-off, through alterations of surface energy and water fluxes and wind. Climate change is increasingly affecting the density and distribution of mature forests through changes to disturbance regimes, increases in physiological stress and increases in mortality due to warmer temperatures. In addition, climate change is likely altering patterns of regeneration and driving establishment of trees in high elevation meadows and alpine tundra. Though hard to detect in current forestry datasets, changes in tree establishment are critical to the future of forests. Experimental approaches, such as our climate warming experiment in the Colorado Front Range, can provide valuable data regarding seedling sensitivity to climate variability and change across important landscape positions. We've found that warming enhances negative effects of water stress across forest, treeline and alpine sites, reducing recruitment in the absence of additional summer moisture. At the lowest elevation, reductions with warming have reduced Engelmann spruce recruitment to zero. Species differ in their responses to warming in the alpine, but together confirm the importance of seed dispersal to upward forest shifts. The presence of trees or other vegetation can facilitate tree establishment by modifying microclimates, especially at and above treeline. Ultimately, these ecological and demographic processes govern the timescales of tree and forest responses to climate variability and change. For the long-lived species that dominate high elevation watersheds, these processes can take decades or centuries to play out, meaning many tree populations are and will continue to be out of equilibrium with a rapidly changing climate. Projecting changes in tree distributions and abundances across mountain landscapes requires integration of changes in hydroclimatic conditions across diverse topoclimatic settings; the sensitivity of recruitment, growth and mortality to climate; and feedbacks between trees and microclimate into modeling tools that represent time-explicit ecological and demographic processes.
Climate change: effects on animal disease systems and implications for surveillance and control.
de La Rocque, S; Rioux, J A; Slingenbergh, J
2008-08-01
Climate driven and other changes in landscape structure and texture, plus more general factors, may create favourable ecological niches for emerging diseases. Abiotic factors impact on vectors, reservoirs and pathogen bionomics and their ability to establish in new ecosystems. Changes in climatic patterns and in seasonal conditions may affect disease behaviour in terms of spread pattern, diffusion range, amplification and persistence in novel habitats. Pathogen invasion may result in the emergence of novel disease complexes, presenting major challenges for the sustainability of future animal agriculture at the global level. In this paper, some of the ecological mechanisms underlying the impact of climatic change on disease transmission and disease spread are further described. Potential effects of different climatic variables on pathogens and host population dynamics and distribution are complex to assess, and different approaches are used to describe the underlying epidemiological processes and the availability of ecological niches for pathogens and vectors. The invasion process can disrupt the long-term co-evolution of species. Pathogens adhering to an r-type strategy (e.g. RNA viruses) may be more inclined to encroach on a novel niche resulting from climate change. However, even when linkage between disease dynamics and climate change are relatively strong, there are other factors changing disease behaviour, and these should be accounted for as well. Overall vulnerability of a given ecosystem is a key variable in this regard. The impact of climate-driven changes varies in different parts of the world and in the different agro-climatic zones. Perhaps priority should go to those geographical areas where the integrity of the ecosystem is most severely affected and the adaptability, in terms of robustness and sustainability of response, relatively low.
Developing Capacity for Cities to Adapt to a Changing Climate-a Case Study in Boulder, Colorado
NASA Astrophysics Data System (ADS)
Sands, R.; Groves, D. G.; Nason, M.; Pandya, R.
2016-12-01
The City of Boulder in Colorado has undertaken many progressive climate-related initiatives, from signing the Kyoto protocol to passing a Climate Action Tax. But as the city prepared to launch its Climate Commitment document and lead a community process, it realized that one critical group that had not been fully engaged in the process was its own staff. It became clear that for organizational change to occur and for the city to meet its goals, city staff needed to develop a deeper understanding of the importance of the climate goals while also learning better how to use these goals to guide their long-term planning. In early 2016, the city launched a year-long "Climate Leaders" initiative which comprised of a series of workshops that brought together over 70 staff members with climate scientists and experts in climate adaptation planning. The first two workshops, billed as Climate 101 and 201, reviewed the best available scientific information about climate threats and potential impacts, and worked with participants to understand how climate changes could affect diverse city functions. These interactive workshops also explored ways to help city staff feel comfortable preparing for a significantly different climate and discussed ways to communicate this information to the public. From there the group split into two tracks. A "mitigation" track focused on the ways in which Boulder could meet its aggressive emissions reduction targets. The "adaptation" track developed integrated scenarios for citywide planning to highlight Boulder's vulnerability to climate change and guide adaptation planning. Bringing these two conversations together is helping city staff to explore critical linkages between mitigation and adaptation, develop common messages to build community support for climate action, and inform comprehensive climate resiliency planning. We will describe how Boulder successfully partnered with scientists and planning experts to program a year of interactive workshops to bring diverse city staff into the climate action process. We will share outcomes from the development of the integrated climate scenarios vulnerability assessment and adaptation planning. Lastly we will share key lessons learned that will be valuable to other cities and jurisdictions engaging in similar climate action.
Wen J. Wang; Hong S. He; Frank R. Thompson; Martin A. Spetich; Jacob S. Fraser
2018-01-01
Demographic processes (fecundity, dispersal, colonization, growth, and mortality) and their interactions with environmental changes are notwell represented in current climate-distribution models (e.g., niche and biophysical process models) and constitute a large uncertainty in projections of future tree species distribution shifts.We investigate how species biological...
NASA Astrophysics Data System (ADS)
Song, X.; Chen, X.; Dai, H.; Hammond, G. E.; Song, H. S.; Stegen, J.
2016-12-01
The hyporheic zone is an active region for biogeochemical processes such as carbon and nitrogen cycling, where the groundwater and surface water mix and interact with each other with distinct biogeochemical and thermal properties. The biogeochemical dynamics within the hyporheic zone are driven by both river water and groundwater hydraulic dynamics, which are directly affected by climate change scenarios. Besides that, the hydraulic and thermal properties of local sediments and microbial and chemical processes also play important roles in biogeochemical dynamics. Thus for a comprehensive understanding of the biogeochemical processes in the hyporheic zone, a coupled thermo-hydro-biogeochemical model is needed. As multiple uncertainty sources are involved in the integrated model, it is important to identify its key modules/parameters through sensitivity analysis. In this study, we develop a 2D cross-section model in the hyporheic zone at the DOE Hanford site adjacent to Columbia River and use this model to quantify module and parametric sensitivity on assessment of climate change. To achieve this purpose, We 1) develop a facies-based groundwater flow and heat transfer model that incorporates facies geometry and heterogeneity characterized from a field data set, 2) derive multiple reaction networks/pathways from batch experiments with in-situ samples and integrate temperate dependent reactive transport modules to the flow model, 3) assign multiple climate change scenarios to the coupled model by analyzing historical river stage data, 4) apply a variance-based global sensitivity analysis to quantify scenario/module/parameter uncertainty in hierarchy level. The objectives of the research include: 1) identifing the key control factors of the coupled thermo-hydro-biogeochemical model in the assessment of climate change, and 2) quantify the carbon consumption in different climate change scenarios in the hyporheic zone.
Inadvertent Weather Modification in Urban Areas: Lessons for Global Climate Change.
NASA Astrophysics Data System (ADS)
Changnon, Stanley A.
1992-05-01
Large metropolitan areas in North America, home to 65% of the nation's population, have created major changes in their climates over the past 150 years. The rate and amount of the urban climate change approximate those being predicted globally using climate models. Knowledge of urban weather and climate modification holds lessons for the global climate change issue. First, adjustments to urban climate changes can provide guidance for adjusting to global change. A second lesson relates to the difficulty but underscores the necessity of providing scientifically credible proof of change within the noise of natural climatic variability. The evolution of understanding about how urban conditions influence weather reveals several unexpected outcomes, particularly relating to precipitation changes. These suggest that similar future surprises can be expected in a changed global climate, a third lesson. In-depth studies of how urban climate changes affected the hydrologic cycle, the regional economy, and human activities were difficult because of data problems, lack of impact methodology, and necessity for multi disciplinary investigations. Similar impact studies for global climate change will require diverse scientific talents and funding commitments adequate to measure the complexity of impacts and human adjustments. Understanding the processes whereby urban areas and other human activities have altered the atmosphere and changed clouds and precipitation regionally appears highly relevant to the global climate-change issue. Scientific and governmental policy development needs to recognize an old axiom that became evident in the studies of inadvertent urban and regional climate change and their behavioral implications: Think globally but act locally. Global climate change is an international issue, and the atmosphere must be treated globally. But the impacts and the will to act and adjust will occur regionally.
Adapting to the Effects of Climate Change on Inuit Health
Ford, James D.; Willox, Ashlee Cunsolo; Chatwood, Susan; Furgal, Christopher; Harper, Sherilee; Mauro, Ian; Pearce, Tristan
2014-01-01
Climate change will have far-reaching implications for Inuit health. Focusing on adaptation offers a proactive approach for managing climate-related health risks—one that views Inuit populations as active agents in planning and responding at household, community, and regional levels. Adaptation can direct attention to the root causes of climate vulnerability and emphasize the importance of traditional knowledge regarding environmental change and adaptive strategies. An evidence base on adaptation options and processes for Inuit regions is currently lacking, however, thus constraining climate policy development. In this article, we tackled this deficit, drawing upon our understanding of the determinants of health vulnerability to climate change in Canada to propose key considerations for adaptation decision-making in an Inuit context. PMID:24754615
Adapting to the effects of climate change on Inuit health.
Ford, James D; Willox, Ashlee Cunsolo; Chatwood, Susan; Furgal, Christopher; Harper, Sherilee; Mauro, Ian; Pearce, Tristan
2014-06-01
Climate change will have far-reaching implications for Inuit health. Focusing on adaptation offers a proactive approach for managing climate-related health risks-one that views Inuit populations as active agents in planning and responding at household, community, and regional levels. Adaptation can direct attention to the root causes of climate vulnerability and emphasize the importance of traditional knowledge regarding environmental change and adaptive strategies. An evidence base on adaptation options and processes for Inuit regions is currently lacking, however, thus constraining climate policy development. In this article, we tackled this deficit, drawing upon our understanding of the determinants of health vulnerability to climate change in Canada to propose key considerations for adaptation decision-making in an Inuit context.
Competitive and demographic leverage points of community shifts under climate warming
Sorte, Cascade J. B.; White, J. Wilson
2013-01-01
Accelerating rates of climate change and a paucity of whole-community studies of climate impacts limit our ability to forecast shifts in ecosystem structure and dynamics, particularly because climate change can lead to idiosyncratic responses via both demographic effects and altered species interactions. We used a multispecies model to predict which processes and species' responses are likely to drive shifts in the composition of a space-limited benthic marine community. Our model was parametrized from experimental manipulations of the community. Model simulations indicated shifts in species dominance patterns as temperatures increase, with projected shifts in composition primarily owing to the temperature dependence of growth, mortality and competition for three critical species. By contrast, warming impacts on two other species (rendering them weaker competitors for space) and recruitment rates of all species were of lesser importance in determining projected community changes. Our analysis reveals the importance of temperature-dependent competitive interactions for predicting effects of changing climate on such communities. Furthermore, by identifying processes and species that could disproportionately leverage shifts in community composition, our results contribute to a mechanistic understanding of climate change impacts, thereby allowing more insightful predictions of future biodiversity patterns. PMID:23658199
Ecoclimatic indicators to study climate suitability of areas for the cultivation of specific crops
NASA Astrophysics Data System (ADS)
Caubel, J.; Garcia de Cortazar Atauri, I.; Cufi, J.; Huard, F.; Launay, M.; Ripoche, D.; Graux, A.; deNoblet, N.
2013-12-01
Climatic conditions play a fundamental role in the suitability of geographical areas for cropping. In the context of climate change, we could expect changes in overall climatic conditions and so, on the suitability for cropping. Therefore, assessing the future climate suitability of areas for cropping is decisive for anticipating agriculture in a given area. Moreover, it is crucial to have access to the split up information concerning the effect of climate on the achievement of the main ecophysiological processes and cultural practices taking place during the crop cycle. In this way, stakeholders can envisage land use adaptations under climate change conditions, such as changes in cultural practices or development of new varieties for example. We proposed an aggregation tool of ecoclimatic indicators to design evaluation trees of climate suitability of areas for cropping, GETARI (Generic Evaluation Tool of Ecoclimatic Indicators). It calculates an overall climate suitability index at the annual scale, from a designed evaluation tree. This aggregation tool allows to characterize climate suitability according to crop ecophysiology, grain/fruit quality or crop management. GETARI proposes the major ecophysiological processes and cultural practices taking place during phenological periods, together with the climatic effects that are known to affect their achievement. The climatic effects on the ecophysiological processes (or cultural practices) during phenological periods are captured by the ecoclimatic indicators, which are agroclimatic indicators calculated over phenological periods. They give information about crop response to climate through ecophysiological or agronomic thresholds. Those indices of suitability are normalized and aggregated according to aggregation rules in order to compute an overall climate index. In order to illustrate how GETARI can be used, we designed evaluation trees in order to study the climate suitability for maize cropping regarding ecophysiology, for wheat cropping regarding its management and for grape cropping regarding its quality. The designed evaluation trees were developed in accordance with expert assessment and were applied in some past climatic conditions in France to verify their consistence. To conclude, the use of indicators does not replace models but represent additional tools for understanding and spatializing some results obtained by models. Their use can provide information about suitability of geographical areas for cropping in future climatic conditions and can enable to minimize the risk of crop failure. This work is carried out under the research program ORACLE (Opportunities and Risks of Agrosystems & forests in response to CLimate, socio-economic and policy changEs in France (and Europe).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graber, J.; Amthor, J.; Dahlman, R.
2008-12-01
One of the most daunting challenges facing science in the 21st Century is to predict how Earth's ecosystems will respond to global climate change. The global carbon cycle plays a central role in regulating atmospheric carbon dioxide (CO{sub 2}) levels and thus Earth's climate, but our basic understanding of the myriad of tightly interlinked biological processes that drive the global carbon cycle remains limited at best. Whether terrestrial and ocean ecosystems will capture, store, or release carbon is highly dependent on how changing climate conditions affect processes performed by the organisms that form Earth's biosphere. Advancing our knowledge of biologicalmore » components of the global carbon cycle is thus crucial to predicting potential climate change impacts, assessing the viability of climate change adaptation and mitigation strategies, and informing relevant policy decisions. Global carbon cycling is dominated by the paired biological processes of photosynthesis and respiration. Photosynthetic plants and microbes of Earth's land-masses and oceans use solar energy to transform atmospheric CO{sub 2} into organic carbon. The majority of this organic carbon is rapidly consumed by plants or microbial decomposers for respiration and returned to the atmosphere as CO{sub 2}. Coupling between the two processes results in a near equilibrium between photosynthesis and respiration at the global scale, but some fraction of organic carbon also remains in stabilized forms such as biomass, soil, and deep ocean sediments. This process, known as carbon biosequestration, temporarily removes carbon from active cycling and has thus far absorbed a substantial fraction of anthropogenic carbon emissions.« less
Quantifying Direct and Indirect Impact of Future Climate on Sub-Arctic Hydrology
NASA Astrophysics Data System (ADS)
Endalamaw, A. M.; Bolton, W. R.; Young-Robertson, J. M.; Morton, D.; Hinzman, L. D.
2016-12-01
Projected future climate will have a significant impact on the hydrology of interior Alaskan sub-arctic watersheds, directly though the changes in precipitation and temperature patterns, and indirectly through the cryospheric and ecological impacts. Although the latter is the dominant factor controlling the hydrological processes in the interior Alaska sub-arctic, it is often overlooked in many climate change impact studies. In this study, we aim to quantify and compare the direct and indirect impact of the projected future climate on the hydrology of the interior Alaskan sub-arctic watersheds. The Variable Infiltration Capacity (VIC) meso-scale hydrological model will be implemented to simulate the hydrological processes, including runoff, evapotranspiration, and soil moisture dynamics in the Chena River Basin (area = 5400km2), located in the interior Alaska sub-arctic region. Permafrost and vegetation distribution will be derived from the Geophysical Institute Permafrost Lab (GIPL) model and the Lund-Potsdam-Jena Dynamic Global Model (LPJ) model, respectively. All models will be calibrated and validated using historical data. The Scenario Network for Alaskan and Arctic Planning (SNAP) 5-model average projected climate data products will be used as forcing data for each of these models. The direct impact of climate change on hydrology is estimated using surface parameterization derived from the present day permafrost and vegetation distribution, and future climate forcing from SNAP projected climate data products. Along with the projected future climate, outputs of GIPL and LPJ will be incorporated into the VIC model to estimate the indirect and overall impact of future climate on the hydrology processes in the interior Alaskan sub-arctic watersheds. Finally, we will present the potential hydrological and ecological changes by the end of the 21st century.
Bring, Arvid; Destouni, Georgia
2011-06-01
Rapid changes to the Arctic hydrological cycle challenge both our process understanding and our ability to find appropriate adaptation strategies. We have investigated the relevance and accuracy development of climate change projections for assessment of water cycle changes in major Arctic drainage basins. Results show relatively good agreement of climate model projections with observed temperature changes, but high model inaccuracy relative to available observation data for precipitation changes. Direct observations further show systematically larger (smaller) runoff than precipitation increases (decreases). This result is partly attributable to uncertainties and systematic bias in precipitation observations, but still indicates that some of the observed increase in Arctic river runoff is due to water storage changes, for example melting permafrost and/or groundwater storage changes, within the drainage basins. Such causes of runoff change affect sea level, in addition to ocean salinity, and inland water resources, ecosystems, and infrastructure. Process-based hydrological modeling and observations, which can resolve changes in evapotranspiration, and groundwater and permafrost storage at and below river basin scales, are needed in order to accurately interpret and translate climate-driven precipitation changes to changes in freshwater cycling and runoff. In contrast to this need, our results show that the density of Arctic runoff monitoring has become increasingly biased and less relevant by decreasing most and being lowest in river basins with the largest expected climatic changes.
Beyond dichotomies: Gender and intersecting inequalities in climate change studies.
Djoudi, Houria; Locatelli, Bruno; Vaast, Chloe; Asher, Kiran; Brockhaus, Maria; Basnett Sijapati, Bimbika
2016-12-01
Climate change and related adaptation strategies have gender-differentiated impacts. This paper reviews how gender is framed in 41 papers on climate change adaptation through an intersectionality lens. The main findings show that while intersectional analysis has demonstrated many advantages for a comprehensive study of gender, it has not yet entered the field of climate change and gender. In climate change studies, gender is mostly handled in a men-versus-women dichotomy and little or no attention has been paid to power and social and political relations. These gaps which are echoed in other domains of development and gender research depict a 'feminization of vulnerability' and reinforce a 'victimization' discourse within climate change studies. We argue that a critical intersectional assessment would contribute to unveil agency and emancipatory pathways in the adaptation process by providing a better understanding of how the differential impacts of climate change shape, and are shaped by, the complex power dynamics of existing social and political relations.
Community shifts under climate change: mechanisms at multiple scales.
Gornish, Elise S; Tylianakis, Jason M
2013-07-01
Processes that drive ecological dynamics differ across spatial scales. Therefore, the pathways through which plant communities and plant-insect relationships respond to changing environmental conditions are also expected to be scale-dependent. Furthermore, the processes that affect individual species or interactions at single sites may differ from those affecting communities across multiple sites. We reviewed and synthesized peer-reviewed literature to identify patterns in biotic or abiotic pathways underpinning changes in the composition and diversity of plant communities under three components of climate change (increasing temperature, CO2, and changes in precipitation) and how these differ across spatial scales. We also explored how these changes to plants affect plant-insect interactions. The relative frequency of biotic vs. abiotic pathways of climate effects at larger spatial scales often differ from those at smaller scales. Local-scale studies show variable responses to climate drivers, often driven by biotic factors. However, larger scale studies identify changes to species composition and/or reduced diversity as a result of abiotic factors. Differing pathways of climate effects can result from different responses of multiple species, habitat effects, and differing effects of invasions at local vs. regional to global scales. Plant community changes can affect higher trophic levels as a result of spatial or phenological mismatch, foliar quality changes, and plant abundance changes, though studies on plant-insect interactions at larger scales are rare. Climate-induced changes to plant communities will have considerable effects on community-scale trophic exchanges, which may differ from the responses of individual species or pairwise interactions.
Hope, A.G.; Waltari, Eric; Fedorov, V.B.; Goropashnaya, A.V.; Talbot, S.L.; Cook, J.A.
2011-01-01
Environmental processes govern demography, species movements, community turnover and diversification and yet in many respects these dynamics are still poorly understood at high latitudes. We investigate the combined effects of climate change and geography through time for a widespread Holarctic shrew, Sorex tundrensis. We include a comprehensive suite of closely related outgroup taxa and three independent loci to explore phylogeographic structure and historical demography. We then explore the implications of these findings for other members of boreal communities. The tundra shrew and its sister species, the Tien Shan shrew (Sorex asper), exhibit strong geographic population structure across Siberia and into Beringia illustrating local centres of endemism that correspond to Late Pleistocene refugia. Ecological niche predictions for both current and historical distributions indicate a model of persistence through time despite dramatic climate change. Species tree estimation under a coalescent process suggests that isolation between populations has been maintained across timeframes deeper than the periodicity of Pleistocene glacial cycling. That some species such as the tundra shrew have a history of persistence largely independent of changing climate, whereas other boreal species shifted their ranges in response to climate change, highlights the dynamic processes of community assembly at high latitudes. ?? 2011 Blackwell Publishing Ltd.
[Lake eutrophication modeling in considering climatic factors change: a review].
Su, Jie-Qiong; Wang, Xuan; Yang, Zhi-Feng
2012-11-01
Climatic factors are considered as the key factors affecting the trophic status and its process in most lakes. Under the background of global climate change, to incorporate the variations of climatic factors into lake eutrophication models could provide solid technical support for the analysis of the trophic evolution trend of lake and the decision-making of lake environment management. This paper analyzed the effects of climatic factors such as air temperature, precipitation, sunlight, and atmosphere on lake eutrophication, and summarized the research results about the lake eutrophication modeling in considering in considering climatic factors change, including the modeling based on statistical analysis, ecological dynamic analysis, system analysis, and intelligent algorithm. The prospective approaches to improve the accuracy of lake eutrophication modeling with the consideration of climatic factors change were put forward, including 1) to strengthen the analysis of the mechanisms related to the effects of climatic factors change on lake trophic status, 2) to identify the appropriate simulation models to generate several scenarios under proper temporal and spatial scales and resolutions, and 3) to integrate the climatic factors change simulation, hydrodynamic model, ecological simulation, and intelligent algorithm into a general modeling system to achieve an accurate prediction of lake eutrophication under climatic change.
Iowa Climate Change Adaptation and Resilience Report
The findings of a pilot project to work with stakeholders and governments in Iowa to identify barriers to and incentives for considering regional effects of climate change in hazard mitigation planning and other community planning processes.
Greenhouse warming and landscape care
Kevin T. Smith
2009-01-01
Climate change is one of the few truly planetary processes that influence the assessments and actions of governments and of everyday citizens. Principles and practices of ecological landscaping fit well with concern about hte effects of climate change.
NASA Astrophysics Data System (ADS)
Urban, F. E.; Clow, G. D.; Meares, D. C.
2004-12-01
Observations of long-term climate and surficial geological processes are sparse in most of the Arctic, despite the fact that this region is highly sensitive to climate change. Instrumental networks that monitor the interplay of climatic variability and geological/cryospheric processes are a necessity for documenting and understanding climate change. Improvements to the spatial coverage and temporal scale of Arctic climate data are in progress. The USGS, in collaboration with The Bureau of Land Management (BLM) and The Fish and Wildlife Service (FWS) currently maintains two types of monitoring networks in northern Alaska: (1) A 15 site network of continuously operating active-layer and climate monitoring stations, and (2) a 21 element array of deep bore-holes in which the thermal state of deep permafrost is monitored. Here, we focus on the USGS Alaska Active Layer and Climate Monitoring Network (AK-CLIM). These 15 stations are deployed in longitudinal transects that span Alaska north of the Brooks Range, (11 in The National Petroleum Reserve Alaska, (NPRA), and 4 in The Arctic National Wildlife Refuge (ANWR)). An informative overview and update of the USGS AK-CLIM network is presented, including insight to current data, processing and analysis software, and plans for data telemetry. Data collection began in 1998 and parameters currently measured include air temperature, soil temperatures (5-120 cm), snow depth, incoming and reflected short-wave radiation, soil moisture (15 cm), wind speed and direction. Custom processing and analysis software has been written that calculates additional parameters such as active layer thaw depth, thawing-degree-days, albedo, cloudiness, and duration of seasonal snow cover. Data from selected AK-CLIM stations are now temporally sufficient to begin identifying trends, anomalies, and inter-annual variability in the climate of northern Alaska.
Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5
NASA Astrophysics Data System (ADS)
Dufresne, J.-L.; Foujols, M.-A.; Denvil, S.; Caubel, A.; Marti, O.; Aumont, O.; Balkanski, Y.; Bekki, S.; Bellenger, H.; Benshila, R.; Bony, S.; Bopp, L.; Braconnot, P.; Brockmann, P.; Cadule, P.; Cheruy, F.; Codron, F.; Cozic, A.; Cugnet, D.; de Noblet, N.; Duvel, J.-P.; Ethé, C.; Fairhead, L.; Fichefet, T.; Flavoni, S.; Friedlingstein, P.; Grandpeix, J.-Y.; Guez, L.; Guilyardi, E.; Hauglustaine, D.; Hourdin, F.; Idelkadi, A.; Ghattas, J.; Joussaume, S.; Kageyama, M.; Krinner, G.; Labetoulle, S.; Lahellec, A.; Lefebvre, M.-P.; Lefevre, F.; Levy, C.; Li, Z. X.; Lloyd, J.; Lott, F.; Madec, G.; Mancip, M.; Marchand, M.; Masson, S.; Meurdesoif, Y.; Mignot, J.; Musat, I.; Parouty, S.; Polcher, J.; Rio, C.; Schulz, M.; Swingedouw, D.; Szopa, S.; Talandier, C.; Terray, P.; Viovy, N.; Vuichard, N.
2013-05-01
We present the global general circulation model IPSL-CM5 developed to study the long-term response of the climate system to natural and anthropogenic forcings as part of the 5th Phase of the Coupled Model Intercomparison Project (CMIP5). This model includes an interactive carbon cycle, a representation of tropospheric and stratospheric chemistry, and a comprehensive representation of aerosols. As it represents the principal dynamical, physical, and bio-geochemical processes relevant to the climate system, it may be referred to as an Earth System Model. However, the IPSL-CM5 model may be used in a multitude of configurations associated with different boundary conditions and with a range of complexities in terms of processes and interactions. This paper presents an overview of the different model components and explains how they were coupled and used to simulate historical climate changes over the past 150 years and different scenarios of future climate change. A single version of the IPSL-CM5 model (IPSL-CM5A-LR) was used to provide climate projections associated with different socio-economic scenarios, including the different Representative Concentration Pathways considered by CMIP5 and several scenarios from the Special Report on Emission Scenarios considered by CMIP3. Results suggest that the magnitude of global warming projections primarily depends on the socio-economic scenario considered, that there is potential for an aggressive mitigation policy to limit global warming to about two degrees, and that the behavior of some components of the climate system such as the Arctic sea ice and the Atlantic Meridional Overturning Circulation may change drastically by the end of the twenty-first century in the case of a no climate policy scenario. Although the magnitude of regional temperature and precipitation changes depends fairly linearly on the magnitude of the projected global warming (and thus on the scenario considered), the geographical pattern of these changes is strikingly similar for the different scenarios. The representation of atmospheric physical processes in the model is shown to strongly influence the simulated climate variability and both the magnitude and pattern of the projected climate changes.
Tremblay, Junior A; Boulanger, Yan; Cyr, Dominic; Taylor, Anthony R; Price, David T; St-Laurent, Martin-Hugues
2018-01-01
Many studies project future bird ranges by relying on correlative species distribution models. Such models do not usually represent important processes explicitly related to climate change and harvesting, which limits their potential for predicting and understanding the future of boreal bird assemblages at the landscape scale. In this study, we attempted to assess the cumulative and specific impacts of both harvesting and climate-induced changes on wildfires and stand-level processes (e.g., reproduction, growth) in the boreal forest of eastern Canada. The projected changes in these landscape- and stand-scale processes (referred to as "drivers of change") were then assessed for their impacts on future habitats and potential productivity of black-backed woodpecker (BBWO; Picoides arcticus), a focal species representative of deadwood and old-growth biodiversity in eastern Canada. Forest attributes were simulated using a forest landscape model, LANDIS-II, and were used to infer future landscape suitability to BBWO under three anthropogenic climate forcing scenarios (RCP 2.6, RCP 4.5 and RCP 8.5), compared to the historical baseline. We found climate change is likely to be detrimental for BBWO, with up to 92% decline in potential productivity under the worst-case climate forcing scenario (RCP 8.5). However, large declines were also projected under baseline climate, underlining the importance of harvest in determining future BBWO productivity. Present-day harvesting practices were the single most important cause of declining areas of old-growth coniferous forest, and hence appeared as the single most important driver of future BBWO productivity, regardless of the climate scenario. Climate-induced increases in fire activity would further promote young, deciduous stands at the expense of old-growth coniferous stands. This suggests that the biodiversity associated with deadwood and old-growth boreal forests may be greatly altered by the cumulative impacts of natural and anthropogenic disturbances under a changing climate. Management adaptations, including reduced harvesting levels and strategies to promote coniferous species content, may help mitigate these cumulative impacts.
Siña, Mariella; Wood, Rachel C; Saldarriaga, Enrique; Lawler, Joshua; Zunt, Joseph; Garcia, Patricia; Cárcamo, César
2016-01-01
Climate change poses multiple risks to the population of Lima, the largest city and capital of Peru, located on the Pacific coast in a desert ecosystem. These risks include increased water scarcity, increased heat, and the introduction and emergence of vector-borne and other climate sensitive diseases. To respond to these threats, it is necessary for the government, at every level, to adopt more mitigation and adaptation strategies. Here, focus groups were conducted with representatives from five Lima municipalities to determine priorities, perception of climate change, and decision-making processes for implementing projects within each municipality. These factors can affect the ability and desire of a community to implement climate change adaptation and mitigation strategies. The results show that climate change and other environmental factors are of relatively low priority, whereas public safety and water and sanitation services are of highest concern. Perhaps most importantly, climate change is not well understood among the municipalities. Participants had trouble distinguishing climate change from other environmental issues and did not fully understand its causes and effects. Greater understanding of what climate change is and why it is important is necessary for it to become a priority for the municipalities. Different aspects of increased climate change awareness seem to be connected to having experienced extreme weather events, whether related or not to climate change, and to higher socioeconomic status.
NASA Astrophysics Data System (ADS)
Bartholomeus, R.; Witte, J.; van Bodegom, P.; Dam, J. V.; Aerts, R.
2010-12-01
With recent climate change, extremes in meteorological conditions are forecast and observed to increase globally, and to affect vegetation composition. More prolonged dry periods will alternate with more intensive rainfall events, both within and between years, which will change soil moisture dynamics. In temperate climates, soil moisture, in concert with nutrient availability and soil acidity, is the most important environmental filter in determining local plant species composition, as it determines the availability of both oxygen and water to plant roots. These resources are indispensable for meeting the physiological demands of plants. The consequences of climate change for our natural environment are among the most pressing issues of our time. The international research community is beginning to realise that climate extremes may be more powerful drivers of vegetation change and species extinctions than slow-and-steady climatic changes, but the causal mechanisms of such changes are presently unknown. The roles of amplitudes in water availability as drivers of vegetation change have been particularly elusive owing to the lack of integration of the key variables involved. Here we show that the combined effect of increased rainfall variability, temperature and atmospheric CO2-concentration will lead to an increased variability in both wet and dry extremes in stresses faced by plants (oxygen and water stress, respectively). We simulated these plant stresses with a novel, process-based approach, incorporating in detail the interacting processes in the soil-plant-atmosphere interface. In order to quantify oxygen and water stress with causal measures, we focused on interacting meteorological, soil physical, microbial, and plant physiological processes in the soil-plant-atmosphere system. As both the supply and demand of oxygen and water depend strongly on the prevailing meteorological conditions, both oxygen and water stress were calculated dynamically in time to capture climate change effects. We demonstrate that increased rainfall variability in interaction with predicted changes in temperature and CO2, affects soil moisture conditions and plant oxygen and water demands such, that both oxygen stress and water stress will intensify due to climate change. Moreover, these stresses will increasingly coincide, causing variable stress conditions. These variable stress conditions were found to decrease future habitat suitability, especially for plant species that are presently endangered. The future existence of such species is thus at risk by climate change, which has direct implications for policies to maintain endangered species, as applied by international nature management organisations (e.g. IUCN). Our integrated mechanistic analysis of two stresses combined, which has never been done so far, reveals large impacts of climate change on species extinctions and thereby on biodiversity.
Accounting for health in climate change policies: a case study of Fiji.
Morrow, Georgina; Bowen, Kathryn
2014-01-01
Climate change is expected to affect the health of most populations in the coming decades, having the greatest impact on the poorest and most disadvantaged people in the world. The Pacific islands, including Fiji, are particularly vulnerable to the effects of climate change. The three major health impacts of climate change in Fiji explored in this study were dengue fever, diarrhoeal disease, and malnutrition, as they each pose a significant threat to human health. The aim of this study was to investigate to what extent the Fiji National Climate Change Policy, and a selection of relevant sectoral policies, account for these human health effects of climate change. The study employed a three-pronged policy analysis to evaluate: 1) the content of the Fijian National Climate Change Policy and to what extent health was incorporated within this; 2) the context within which the policy was developed; 3) the relevant processes; and 4) the actors involved. A selection of relevant sectoral policies were also analysed to assess the extent to which these included climate change and health considerations. The policy analysis showed that these three health impacts of climate change were only considered to a minor extent, and often indirectly, in both the Fiji National Climate Change Policy and the corresponding National Climate Change Adaptation Strategy, as well as the Public Health Act. Furthermore, supporting documents in relevant sectors including water and agriculture made no mention of climate change and health impacts. The projected health impacts of climate change should be considered as part of reviewing the Fiji National Climate Change Policy and National Climate Change Adaptation Strategy, and the Public Health Act. In the interest of public health, this should include strategies for combating dengue fever, malnutrition, and water-borne disease. Related sectoral policies in water and agriculture should also be revised to consider climate change and its impact on human health. Approaches to include health aspects of climate change within sectoral and climate change specific policies should be encouraged, via a number of mechanisms, such as the Health in All Policies approach. Future research could support the Fiji health sector in developing climate change and health programmes.
An effective online data monitoring and saving strategy for large-scale climate simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xian, Xiaochen; Archibald, Rick; Mayer, Benjamin
Large-scale climate simulation models have been developed and widely used to generate historical data and study future climate scenarios. These simulation models often have to run for a couple of months to understand the changes in the global climate over the course of decades. This long-duration simulation process creates a huge amount of data with both high temporal and spatial resolution information; however, how to effectively monitor and record the climate changes based on these large-scale simulation results that are continuously produced in real time still remains to be resolved. Due to the slow process of writing data to disk,more » the current practice is to save a snapshot of the simulation results at a constant, slow rate although the data generation process runs at a very high speed. This study proposes an effective online data monitoring and saving strategy over the temporal and spatial domains with the consideration of practical storage and memory capacity constraints. Finally, our proposed method is able to intelligently select and record the most informative extreme values in the raw data generated from real-time simulations in the context of better monitoring climate changes.« less
An effective online data monitoring and saving strategy for large-scale climate simulations
Xian, Xiaochen; Archibald, Rick; Mayer, Benjamin; ...
2018-01-22
Large-scale climate simulation models have been developed and widely used to generate historical data and study future climate scenarios. These simulation models often have to run for a couple of months to understand the changes in the global climate over the course of decades. This long-duration simulation process creates a huge amount of data with both high temporal and spatial resolution information; however, how to effectively monitor and record the climate changes based on these large-scale simulation results that are continuously produced in real time still remains to be resolved. Due to the slow process of writing data to disk,more » the current practice is to save a snapshot of the simulation results at a constant, slow rate although the data generation process runs at a very high speed. This study proposes an effective online data monitoring and saving strategy over the temporal and spatial domains with the consideration of practical storage and memory capacity constraints. Finally, our proposed method is able to intelligently select and record the most informative extreme values in the raw data generated from real-time simulations in the context of better monitoring climate changes.« less
Permafrost carbon-climate feedbacks accelerate global warming
Koven, Charles D.; Ringeval, Bruno; Friedlingstein, Pierre; Ciais, Philippe; Cadule, Patricia; Khvorostyanov, Dmitry; Krinner, Gerhard; Tarnocai, Charles
2011-01-01
Permafrost soils contain enormous amounts of organic carbon, which could act as a positive feedback to global climate change due to enhanced respiration rates with warming. We have used a terrestrial ecosystem model that includes permafrost carbon dynamics, inhibition of respiration in frozen soil layers, vertical mixing of soil carbon from surface to permafrost layers, and CH4 emissions from flooded areas, and which better matches new circumpolar inventories of soil carbon stocks, to explore the potential for carbon-climate feedbacks at high latitudes. Contrary to model results for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4), when permafrost processes are included, terrestrial ecosystems north of 60°N could shift from being a sink to a source of CO2 by the end of the 21st century when forced by a Special Report on Emissions Scenarios (SRES) A2 climate change scenario. Between 1860 and 2100, the model response to combined CO2 fertilization and climate change changes from a sink of 68 Pg to a 27 + -7 Pg sink to 4 + -18 Pg source, depending on the processes and parameter values used. The integrated change in carbon due to climate change shifts from near zero, which is within the range of previous model estimates, to a climate-induced loss of carbon by ecosystems in the range of 25 + -3 to 85 + -16 Pg C, depending on processes included in the model, with a best estimate of a 62 + -7 Pg C loss. Methane emissions from high-latitude regions are calculated to increase from 34 Tg CH4/y to 41–70 Tg CH4/y, with increases due to CO2 fertilization, permafrost thaw, and warming-induced increased CH4 flux densities partially offset by a reduction in wetland extent. PMID:21852573
NASA Astrophysics Data System (ADS)
Chung, Duk Ho; Cho, Kyu Seong; Hong, Deok Pyo; Park, Kyeong Jin
2016-04-01
This study aimed to investigate the perception of earth system thinking of science gifted students in future problem solving (FPS) in relation to climate changes. In order to this study, the research problem associated with climate changes was developed through a literature review. The thirty seven science gifted students participated in lessons. The ideas in problem solving process of science gifted students were analyzed using the semantic network analysis method. The results are as follows. In the problem solving processes, science gifted students are ''changes of the sunlight by water layer'', ''changes of the Earth''s temperature'', ''changes of the air pressure'', '' change of the wind and weather''were represented in order. On other hand, regard to earth system thinking for climate changes, while science gifted students were used sub components related to atmospheres frequently, they were used sub components related to biosphere, geosphere, and hydrosphere a little. But, the analytical results of the structural relationship between the sub components related to earth system, they were recognised that biosphere, geosphere, and hydrosphere used very important in network structures. In conclusion, science gifted students were understood well that components of the earth system are influencing each other. Keywords : Science gifted students, Future problem solving, Climate change, Earth system thinking
NASA Astrophysics Data System (ADS)
Malone, A.
2017-12-01
Quantifying mass balance sensitivity to climate change is essential for forecasting glacier evolution and deciphering climate signals embedded in archives of past glacier changes. Ideally, these quantifications result from decades of field measurement, remote sensing, and a hierarchy modeling approach, but in data-sparse regions, such as the Himalayas and tropical Andes, regional-scale modeling rooted in first principles provides a first-order picture. Previous regional-scaling modeling studies have applied a surface energy and mass balance approach in order to quantify equilibrium line altitude sensitivity to climate change. In this study, an expanded regional-scale surface energy and mass balance model is implemented to quantify glacier-wide mass balance sensitivity to climate change for tropical Andean glaciers. Data from the Randolph Glacier Inventory are incorporated, and additional physical processes are included, such as a dynamic albedo and cloud-dependent atmospheric emissivity. The model output agrees well with the limited mass balance records for tropical Andean glaciers. The dominant climate variables driving interannual mass balance variability differ depending on the climate setting. For wet tropical glaciers (annual precipitation >0.75 m y-1), temperature is the dominant climate variable. Different hypotheses for the processes linking wet tropical glacier mass balance variability to temperature are evaluated. The results support the hypothesis that glacier-wide mass balance on wet tropical glaciers is largely dominated by processes at the lowest elevation where temperature plays a leading role in energy exchanges. This research also highlights the transient nature of wet tropical glaciers - the vast majority of tropical glaciers and a vital regional water resource - in an anthropogenic warming world.
Ecosystems and Climate Change. Research Priorities for the U.S. Climate Change Science Program
2006-06-01
ORION, NSF’s proposed NEON network) to gain quantitative understanding of ecosystem processes in representative systems and across gradients of...these interactions and subsequent effects expected to vary across gradients of land use (i.e., from unmanaged to managed or urban ecosystems) and...ecosystem processes along a gradient of managed to unmanaged landscapes? How will changes in freshwater inputs affect the coastal oceans? 2.4 How
Land Use and Land Cover Change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Daniel; Polsky, Colin; Bolstad, Paul V.
2014-05-01
A contribution to the 3rd National Climate Assessment report, discussing the following key messages: 1. Choices about land-use and land-cover patterns have affected and will continue to affect how vulnerable or resilient human communities and ecosystems are to the effects of climate change. 2. Land-use and land-cover changes affect local, regional, and global climate processes. 3. Individuals, organizations, and governments have the capacity to make land-use decisions to adapt to the effects of climate change. 4. Choices about land use and land management provide a means of reducing atmospheric greenhouse gas levels.
Jorge Durán; Jennifer L. Morse; Alexandra Rodríguez; John L. Campbell; Lynn M. Christenson; Charles T. Driscoll; Timothy J. Fahey; Melany C. Fisk; Myron J. Mitchell; Pamela H. Templer; Peter M. Groffman
2017-01-01
Climate of the northern hardwood forests of North America will become significantly warmer in the coming decades. Associated increases in soil temperature, decreases in water availability and changes in winter snow pack and soil frost are likely to affect soil carbon (C) and nitrogen (N) cycling. Most studies of the effects of climate change on soil function have...
Built-up resilience to climate change in peatlands
NASA Astrophysics Data System (ADS)
Wang, H.; Tian, J.; Ho, M.; Flanagan, N. E.; Vilgalys, R.; Richardson, C. J.
2017-12-01
Peatlands have stored about 30% of global soil carbon over millennia. Most studies suggest that climate change effects, like drought and warming, may decrease C sequestration and increase C loss in peatlands, thus resulting in a positive feedback on climate change. However, the long-term feedback between plant-microbe mediated carbon processes and climate change still remains highly uncertain. Here, we conducted a series of field and lab experiments in southern shrub and northern Sphagnum peatlands to document how previously unrecognized mechanisms regulate the buildup of anti-microbial phenolics, which protects stored carbon directly by reducing phenol oxidase activity during short-term drought, and indirectly through a shift from low-phenolics Sphagnum/herbs to high-phenolics shrubs after long-term moderate drought. We further showed a symbiosis of slow-growing decomposers concomitant with a shift of high-phenolic plants, which increased peat resistance to disturbance. Our results indicate that shrub expansion induced by climate change in boreal peatlands may be a long-term self-adaptive mechanism not only increasing carbon sequestration, but also potentially protecting soil carbon. Therefore, peatlands are highly resilient ecosystems in which the symbiotic adaption of both plants and microbes, triggered by persistent climate change, likely can acclimate to the stressors and maintain their carbon sequestration function and processes.
Beyond Wiki to Judgewiki for Transparent Climate Change Decisions
NASA Astrophysics Data System (ADS)
Capron, M. E.
2008-12-01
Climate Change is like the prisoner's dilemma, a zero-sum game, or cheating in sports. Everyone and every country is tempted to selfishly maintain or advance their standard of living. The tremendous difference between standards of living amplifies the desire to opt out of Climate Change solutions adverse to economic competitiveness. Climate Change is also exceedingly complex. No one person, one organization, one country, or partial collection of countries has the capacity and the global support needed to make decisions on Climate Change solutions. There are thousands of potential actions, tens of thousands of known and unknown environmental and economic impacts. Some actions are belatedly found to be unsustainable beyond token volumes, corn ethanol or soy-biodiesel for example. Mankind can address human nature and complexity with a globally transparent information and decision process available to all 7 billion of us. We need a process that builds trust and simplifies complexity. Fortunately, we have the Internet for trust building communication and computers to simplify complexity. Mankind can produce new software tailored to the challenge. We would combine group information collection software (a wiki) with a decision-matrix (a judge), market forecasting, and video games to produce the tool mankind needs for trust building transparent decisions on Climate Change actions. The resulting software would be a judgewiki.
A 'Healthy Islands' framework for climate change in the Pacific.
McIver, Lachlan; Bowen, Kathryn; Hanna, Elizabeth; Iddings, Steven
2017-06-01
Small Pacific Island countries (PICs) are among the most vulnerable countries in the world to the anticipated detrimental health effects of climate change. The assessment of health vulnerabilities and planning adaptation strategies to minimize the impacts of climate change on health tests traditional health governance structures and depends on strong linkages and partnerships between actors involved in these vital processes. This article reviews the actors, processes and contexts of the climate change and health vulnerability assessment and adaptation planning project carried out by the World Health Organization and health sector partners in three island countries in the Micronesian region of the Pacific throughout 2010 and 2011: Federated States of Micronesia, Marshall Islands and Palau. Despite their shared history and cultural characteristics, the findings and implications of this article are considered to have substantial relevance and potential application to other PICs. The modified 'Healthy Islands' framework for climate change and health adaptation presented in this article draws upon real-world experience and governance theory from both the health and climate change literature and, for the first time, places health systems adaptation within the vision for 'Healthy Islands' in the Pacific region. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Climate Change and Fish Availability
NASA Astrophysics Data System (ADS)
Teng, Paul P. S.; Lassa, Jonatan; Caballero-Anthony, Mely
Human consumption of fish has been trending upwards in the past decades and this is projected to continue. The main sources of fish are from wild fisheries (marine and freshwater) and aquaculture. Climate change is anticipated to affect the availability of fish through its effect on these two sources as well as on supply chain processes such as storage, transport, processing and retail. Climate change is known to result in warmer and more acid oceans. Ocean acidification due to higher CO2 concentration levels at sea modifies the distribution of phytoplankton and zooplankton to affect wild, capture fisheries. Higher temperature causes warm-water coral reefs to respond with species replacement and bleaching, leading to coral cover loss and habitat loss. Global changes in climatic systems may also cause fish invasion, extinction and turnover. While this may be catastrophic for small scale fish farming in poor tropical communities, there are also potential effects on animal protein supply shifts at local and global scales with food security consequences. This paper discusses the potential impacts of climate change on fisheries and aquaculture in the Asian Pacific region, with special emphasis on Southeast Asia. The key question to be addressed is “What are the impacts of global climate change on global fish harvests and what does it mean to the availability of fish?”
Options for national parks and reserves for adapting to climate change.
Baron, Jill S; Gunderson, Lance; Allen, Craig D; Fleishman, Erica; McKenzie, Donald; Meyerson, Laura A; Oropeza, Jill; Stephenson, Nate
2009-12-01
Past and present climate has shaped the valued ecosystems currently protected in parks and reserves, but future climate change will redefine these conditions. Continued conservation as climate changes will require thinking differently about resource management than we have in the past; we present some logical steps and tools for doing so. Three critical tenets underpin future management plans and activities: (1) climate patterns of the past will not be the climate patterns of the future; (2) climate defines the environment and influences future trajectories of the distributions of species and their habitats; (3) specific management actions may help increase the resilience of some natural resources, but fundamental changes in species and their environment may be inevitable. Science-based management will be necessary because past experience may not serve as a guide for novel future conditions. Identifying resources and processes at risk, defining thresholds and reference conditions, and establishing monitoring and assessment programs are among the types of scientific practices needed to support a broadened portfolio of management activities. In addition to the control and hedging management strategies commonly in use today, we recommend adaptive management wherever possible. Adaptive management increases our ability to address the multiple scales at which species and processes function, and increases the speed of knowledge transfer among scientists and managers. Scenario planning provides a broad forward-thinking framework from which the most appropriate management tools can be chosen. The scope of climate change effects will require a shared vision among regional partners. Preparing for and adapting to climate change is as much a cultural and intellectual challenge as an ecological challenge.
Options for national parks and reserves for adapting to climate change
Baron, Jill S.; Gunderson, Lance; Allen, Craig D.; Fleishman, Erica; McKenzie, Donald; Meyerson, Laura A.; Oropeza, Jill; Stephenson, Nathan L.
2009-01-01
Past and present climate has shaped the valued ecosystems currently protected in parks and reserves, but future climate change will redefine these conditions. Continued conservation as climate changes will require thinking differently about resource management than we have in the past; we present some logical steps and tools for doing so. Three critical tenets underpin future management plans and activities: (1) climate patterns of the past will not be the climate patterns of the future; (2) climate defines the environment and influences future trajectories of the distributions of species and their habitats; (3) specific management actions may help increase the resilience of some natural resources, but fundamental changes in species and their environment may be inevitable. Science-based management will be necessary because past experience may not serve as a guide for novel future conditions. Identifying resources and processes at risk, defining thresholds and reference conditions, and establishing monitoring and assessment programs are among the types of scientific practices needed to support a broadened portfolio of management activities. In addition to the control and hedging management strategies commonly in use today, we recommend adaptive management wherever possible. Adaptive management increases our ability to address the multiple scales at which species and processes function, and increases the speed of knowledge transfer among scientists and managers. Scenario planning provides a broad forward-thinking framework from which the most appropriate management tools can be chosen. The scope of climate change effects will require a shared vision among regional partners. Preparing for and adapting to climate change is as much a cultural and intellectual challenge as an ecological challenge.
NASA Astrophysics Data System (ADS)
Men, Guang; Wan, Xiuquan; Liu, Zedong
2016-10-01
Tropical Atlantic climate change is relevant to the variation of Atlantic meridional overturning circulation (AMOC) through different physical processes. Previous coupled climate model simulation suggested a dipole-like SST structure cooling over the North Atlantic and warming over the South Tropical Atlantic in response to the slowdown of the AMOC. Using an ocean-only global ocean model here, an attempt was made to separate the total influence of various AMOC change scenarios into an oceanic-induced component and an atmospheric-induced component. In contrast with previous freshwater-hosing experiments with coupled climate models, the ocean-only modeling presented here shows a surface warming in the whole tropical Atlantic region and the oceanic-induced processes may play an important role in the SST change in the equatorial south Atlantic. Our result shows that the warming is partly governed by oceanic process through the mechanism of oceanic gateway change, which operates in the regime where freshwater forcing is strong, exceeding 0.3 Sv. Strong AMOC change is required for the gateway mechanism to work in our model because only when the AMOC is sufficiently weak, the North Brazil Undercurrent can flow equatorward, carrying warm and salty north Atlantic subtropical gyre water into the equatorial zone. This threshold is likely to be model-dependent. An improved understanding of these issues may have help with abrupt climate change prediction later.
Quantifying climate feedbacks in polar regions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goosse, Hugues; Kay, Jennifer E.; Armour, Kyle C.
The concept of feedback is key in assessing whether a perturbation to a system is amplified or damped by mechanisms internal to the system. In polar regions, climate dynamics are controlled by both radiative and non-radiative interactions between the atmosphere, ocean, sea ice, ice sheets and land surfaces. Precisely quantifying polar feedbacks is required for a process-oriented evaluation of climate models, a clear understanding of the processes responsible for polar climate changes, and a reduction in uncertainty associated with model projections. This quantification can be performed using a simple and consistent approach that is valid for a wide range ofmore » feedbacks, thus offering the opportunity for more systematic feedback analyses and a better understanding of polar climate changes.« less
Quantifying climate feedbacks in polar regions
Goosse, Hugues; Kay, Jennifer E.; Armour, Kyle C.; ...
2018-05-15
The concept of feedback is key in assessing whether a perturbation to a system is amplified or damped by mechanisms internal to the system. In polar regions, climate dynamics are controlled by both radiative and non-radiative interactions between the atmosphere, ocean, sea ice, ice sheets and land surfaces. Precisely quantifying polar feedbacks is required for a process-oriented evaluation of climate models, a clear understanding of the processes responsible for polar climate changes, and a reduction in uncertainty associated with model projections. This quantification can be performed using a simple and consistent approach that is valid for a wide range ofmore » feedbacks, thus offering the opportunity for more systematic feedback analyses and a better understanding of polar climate changes.« less
Uncertainty in simulating wheat yields under climate change
NASA Astrophysics Data System (ADS)
Asseng, S.; Ewert, F.; Rosenzweig, C.; Jones, J. W.; Hatfield, J. L.; Ruane, A. C.; Boote, K. J.; Thorburn, P. J.; Rötter, R. P.; Cammarano, D.; Brisson, N.; Basso, B.; Martre, P.; Aggarwal, P. K.; Angulo, C.; Bertuzzi, P.; Biernath, C.; Challinor, A. J.; Doltra, J.; Gayler, S.; Goldberg, R.; Grant, R.; Heng, L.; Hooker, J.; Hunt, L. A.; Ingwersen, J.; Izaurralde, R. C.; Kersebaum, K. C.; Müller, C.; Naresh Kumar, S.; Nendel, C.; O'Leary, G.; Olesen, J. E.; Osborne, T. M.; Palosuo, T.; Priesack, E.; Ripoche, D.; Semenov, M. A.; Shcherbak, I.; Steduto, P.; Stöckle, C.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Travasso, M.; Waha, K.; Wallach, D.; White, J. W.; Williams, J. R.; Wolf, J.
2013-09-01
Projections of climate change impacts on crop yields are inherently uncertain. Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate. However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic and objective comparisons among process-based crop simulation models are difficult. Here we present the largest standardized model intercomparison for climate change impacts so far. We found that individual crop models are able to simulate measured wheat grain yields accurately under a range of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models than to variations among downscaled general circulation models. Uncertainties in simulated impacts increased with CO2 concentrations and associated warming. These impact uncertainties can be reduced by improving temperature and CO2 relationships in models and better quantified through use of multi-model ensembles. Less uncertainty in describing how climate change may affect agricultural productivity will aid adaptation strategy development andpolicymaking.
Ecological Assimilation of Land and Climate Observations - the EALCO model
NASA Astrophysics Data System (ADS)
Wang, S.; Zhang, Y.; Trishchenko, A.
2004-05-01
Ecosystems are intrinsically dynamic and interact with climate at a highly integrated level. Climate variables are the main driving factors in controlling the ecosystem physical, physiological, and biogeochemical processes including energy balance, water balance, photosynthesis, respiration, and nutrient cycling. On the other hand, ecosystems function as an integrity and feedback on the climate system through their control on surface radiation balance, energy partitioning, and greenhouse gases exchange. To improve our capability in climate change impact assessment, a comprehensive ecosystem model is required to address the many interactions between climate change and ecosystems. In addition, different ecosystems can have very different responses to the climate change and its variation. To provide more scientific support for ecosystem impact assessment at national scale, it is imperative that ecosystem models have the capability of assimilating the large scale geospatial information including satellite observations, GIS datasets, and climate model outputs or reanalysis. The EALCO model (Ecological Assimilation of Land and Climate Observations) is developed for such purposes. EALCO includes the comprehensive interactions among ecosystem processes and climate, and assimilates a variety of remote sensing products and GIS database. It provides both national and local scale model outputs for ecosystem responses to climate change including radiation and energy balances, water conditions and hydrological cycles, carbon sequestration and greenhouse gas exchange, and nutrient (N) cycling. These results form the foundation for the assessment of climate change impact on ecosystems, their services, and adaptation options. In this poster, the main algorithms for the radiation, energy, water, carbon, and nitrogen simulations were diagrammed. Sample input data layers at Canada national scale were illustrated. Model outputs including the Canada wide spatial distributions of net radiation, evapotranspiration, gross primary production, net primary production, and net ecosystem production were discussed.
Strategic plant choices can alleviate climate change impacts: A review.
Espeland, Erin K; Kettenring, Karin M
2018-09-15
Ecosystem-based adaptation (EbA) uses biodiversity and ecosystem services to reduce climate change impacts to local communities. Because plants can alleviate the abiotic and biotic stresses of climate change, purposeful plant choices could improve adaptation. However, there has been no systematic review of how plants can be applied to alleviate effects of climate change. Here we describe how plants can modify climate change effects by altering biological and physical processes. Plant effects range from increasing soil stabilization to reducing the impact of flooding and storm surges. Given the global scale of plant-related activities such as farming, landscaping, forestry, conservation, and restoration, plants can be selected strategically-i.e., planting and maintaining particular species with desired impacts-to simultaneously restore degraded ecosystems, conserve ecosystem function, and help alleviate effects of climate change. Plants are a tool for EbA that should be more broadly and strategically utilized. Copyright © 2018. Published by Elsevier Ltd.
Mesocosms Reveal Ecological Surprises from Climate Change.
Fordham, Damien A
2015-12-01
Understanding, predicting, and mitigating the impacts of climate change on biodiversity poses one of the most crucial challenges this century. Currently, we know more about how future climates are likely to shift across the globe than about how species will respond to these changes. Two recent studies show how mesocosm experiments can hasten understanding of the ecological consequences of climate change on species' extinction risk, community structure, and ecosystem functions. Using a large-scale terrestrial warming experiment, Bestion et al. provide the first direct evidence that future global warming can increase extinction risk for temperate ectotherms. Using aquatic mesocosms, Yvon-Durocher et al. show that human-induced climate change could, in some cases, actually enhance the diversity of local communities, increasing productivity. Blending these theoretical and empirical results with computational models will improve forecasts of biodiversity loss and altered ecosystem processes due to climate change.
Coordinated Approaches to Quantify Long-Term Ecosystem dynamics in Response to Global Change
USDA-ARS?s Scientific Manuscript database
Climate change and its impact on ecosystems are usually assessed at decadal and century time scales. Ecological responses to climate change at those scales are strongly regulated by long-term processes, such as changes in species composition, carbon dynamics in soil and by big trees, and nutrient r...
Gender and climate change-induced migration: proposing a framework for analysis
NASA Astrophysics Data System (ADS)
Chindarkar, Namrata
2012-06-01
This paper proposes frameworks to analyze the gender dimensions of climate change-induced migration. The experiences, needs and priorities of climate migrants will vary by gender and these differences need to be accounted for if policies are to be inclusive. Among the vulnerable groups, women are likely to be disproportionately affected due to climate change because on average women tend to be poorer, less educated, have a lower health status and have limited direct access to or ownership of natural resources. Both the process (actual movement) and the outcomes (rural-rural or rural-urban migration, out-migration mainly of men) of climate change-induced migration are also likely to be highly gendered.
Can Microbial Ecology and Mycorrhizal Functioning Inform Climate Change Models?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hofmockel, Kirsten; Hobbie, Erik
Our funded research focused on soil organic matter dynamics and plant-microbe interactions by examining the role of belowground processes and mechanisms across scales, including decomposition of organic molecules, microbial interactions, and plant-microbe interactions associated with a changing climate. Research foci included mycorrhizal mediated priming of soil carbon turnover, organic N use and depolymerization by free-living microbes and mycorrhizal fungi, and the use of isotopes as additional constraints for improved modeling of belowground processes. This work complemented the DOE’s mandate to understand both the consequences of atmospheric and climatic change for key ecosystems and the feedbacks on C cycling.
The Greenhouse Effect and Climate Feedbacks
NASA Astrophysics Data System (ADS)
Covey, C.; Haberle, R. M.; McKay, C. P.; Titov, D. V.
This chapter reviews the theory of the greenhouse effect and climate feedback. It also compares the theory with observations, using examples taken from all four known terrestrial worlds with substantial atmospheres: Venus, Earth, Mars, and Titan. The greenhouse effect traps infrared radiation in the atmosphere, thereby increasing surface temperature. It is one of many factors that affect a world's climate. (Others include solar luminosity and the atmospheric scattering and absorption of solar radiation.) A change in these factors — defined as climate forcing — may change the climate in a way that brings other processes — defined as feedbacks — into play. For example, when Earth's atmospheric carbon dioxide increases, warming the surface, the water vapor content of the atmosphere increases. This is a positive feedback on global warming because water vapor is itself a potent greenhouse gas. Many positive and negative feedback processes are significant in determining Earth's climate, and probably the climates of our terrestrial neighbors.
Loehman, Rachel A.; Keane, Robert E.; Holsinger, Lisa M.; Wu, Zhiwei
2016-01-01
ContextInteractions among disturbances, climate, and vegetation influence landscape patterns and ecosystem processes. Climate changes, exotic invasions, beetle outbreaks, altered fire regimes, and human activities may interact to produce landscapes that appear and function beyond historical analogs.ObjectivesWe used the mechanistic ecosystem-fire process model FireBGCv2 to model interactions of wildland fire, mountain pine beetle (Dendroctonus ponderosae), and white pine blister rust (Cronartium ribicola) under current and future climates, across three diverse study areas.MethodsWe assessed changes in tree basal area as a measure of landscape response over a 300-year simulation period for the Crown of the Continent in north-central Montana, East Fork of the Bitterroot River in western Montana, and Yellowstone Central Plateau in western Wyoming, USA.ResultsInteracting disturbances reduced overall basal area via increased tree mortality of host species. Wildfire decreased basal area more than beetles or rust, and disturbance interactions modeled under future climate significantly altered landscape basal area as compared with no-disturbance and current climate scenarios. Responses varied among landscapes depending on species composition, sensitivity to fire, and pathogen and beetle suitability and susceptibility.ConclusionsUnderstanding disturbance interactions is critical for managing landscapes because forest responses to wildfires, pathogens, and beetle attacks may offset or exacerbate climate influences, with consequences for wildlife, carbon, and biodiversity.
NASA Astrophysics Data System (ADS)
Alexeev, V. A.; Gordov, E. P.
2016-12-01
Recently initiated collaborative research project is presented. Its main objective is to develop high spatial and temporal resolution datasets for studying the ongoing and future climate changes in Siberia, caused by global and regional processes in the atmosphere and the ocean. This goal will be achieved by using a set of regional and global climate models for the analysis of the mechanisms of climate change and quantitative assessment of changes in key climate variables, including analysis of extreme weather and climate events and their dynamics, evaluation of the frequency, amplitude and the risks caused by the extreme events in the region. The main practical application of the project is to provide experts, stakeholders and the public with quantitative information about the future climate change in Siberia obtained on the base of a computational web- geoinformation platform. The thematic platform will be developed in order to facilitate processing and analysis of high resolution georeferenced datasets that will be delivered and made available to scientific community, policymakes and other end users as a result of the project. Software packages will be developed to implement calculation of various climatological indicators in order to characterize and diagnose climate change and its dynamics, as well as to archive results in digital form of electronic maps (GIS layers). By achieving these goals the project will provide science based tools necessary for developing mitigation measures for adapting to climate change and reducing negative impact on the population and infrastructure of the region. Financial support of the computational web- geoinformation platform prototype development by the RF Ministry of Education and Science under Agreement 14.613.21.0037 (RFMEFI61315X0037) is acknowledged.
Mysiak, Jaroslav; Torresan, Silvia; Bosello, Francesco; Mistry, Malcolm; Amadio, Mattia; Marzi, Sepehr; Furlan, Elisa; Sperotto, Anna
2018-06-13
We describe a climate risk index that has been developed to inform national climate adaptation planning in Italy and that is further elaborated in this paper. The index supports national authorities in designing adaptation policies and plans, guides the initial problem formulation phase, and identifies administrative areas with higher propensity to being adversely affected by climate change. The index combines (i) climate change-amplified hazards; (ii) high-resolution indicators of exposure of chosen economic, social, natural and built- or manufactured capital (MC) assets and (iii) vulnerability, which comprises both present sensitivity to climate-induced hazards and adaptive capacity. We use standardized anomalies of selected extreme climate indices derived from high-resolution regional climate model simulations of the EURO-CORDEX initiative as proxies of climate change-altered weather and climate-related hazards. The exposure and sensitivity assessment is based on indicators of manufactured, natural, social and economic capital assets exposed to and adversely affected by climate-related hazards. The MC refers to material goods or fixed assets which support the production process (e.g. industrial machines and buildings); Natural Capital comprises natural resources and processes (renewable and non-renewable) producing goods and services for well-being; Social Capital (SC) addressed factors at the individual (people's health, knowledge, skills) and collective (institutional) level (e.g. families, communities, organizations and schools); and Economic Capital (EC) includes owned and traded goods and services. The results of the climate risk analysis are used to rank the subnational administrative and statistical units according to the climate risk challenges, and possibly for financial resource allocation for climate adaptation.This article is part of the theme issue 'Advances in risk assessment for climate change adaptation policy'. © 2018 The Authors.
NASA Astrophysics Data System (ADS)
Mysiak, Jaroslav; Torresan, Silvia; Bosello, Francesco; Mistry, Malcolm; Amadio, Mattia; Marzi, Sepehr; Furlan, Elisa; Sperotto, Anna
2018-06-01
We describe a climate risk index that has been developed to inform national climate adaptation planning in Italy and that is further elaborated in this paper. The index supports national authorities in designing adaptation policies and plans, guides the initial problem formulation phase, and identifies administrative areas with higher propensity to being adversely affected by climate change. The index combines (i) climate change-amplified hazards; (ii) high-resolution indicators of exposure of chosen economic, social, natural and built- or manufactured capital (MC) assets and (iii) vulnerability, which comprises both present sensitivity to climate-induced hazards and adaptive capacity. We use standardized anomalies of selected extreme climate indices derived from high-resolution regional climate model simulations of the EURO-CORDEX initiative as proxies of climate change-altered weather and climate-related hazards. The exposure and sensitivity assessment is based on indicators of manufactured, natural, social and economic capital assets exposed to and adversely affected by climate-related hazards. The MC refers to material goods or fixed assets which support the production process (e.g. industrial machines and buildings); Natural Capital comprises natural resources and processes (renewable and non-renewable) producing goods and services for well-being; Social Capital (SC) addressed factors at the individual (people's health, knowledge, skills) and collective (institutional) level (e.g. families, communities, organizations and schools); and Economic Capital (EC) includes owned and traded goods and services. The results of the climate risk analysis are used to rank the subnational administrative and statistical units according to the climate risk challenges, and possibly for financial resource allocation for climate adaptation. This article is part of the theme issue `Advances in risk assessment for climate change adaptation policy'.
Torresan, Silvia; Bosello, Francesco; Mistry, Malcolm; Amadio, Mattia; Marzi, Sepehr; Furlan, Elisa; Sperotto, Anna
2018-01-01
We describe a climate risk index that has been developed to inform national climate adaptation planning in Italy and that is further elaborated in this paper. The index supports national authorities in designing adaptation policies and plans, guides the initial problem formulation phase, and identifies administrative areas with higher propensity to being adversely affected by climate change. The index combines (i) climate change-amplified hazards; (ii) high-resolution indicators of exposure of chosen economic, social, natural and built- or manufactured capital (MC) assets and (iii) vulnerability, which comprises both present sensitivity to climate-induced hazards and adaptive capacity. We use standardized anomalies of selected extreme climate indices derived from high-resolution regional climate model simulations of the EURO-CORDEX initiative as proxies of climate change-altered weather and climate-related hazards. The exposure and sensitivity assessment is based on indicators of manufactured, natural, social and economic capital assets exposed to and adversely affected by climate-related hazards. The MC refers to material goods or fixed assets which support the production process (e.g. industrial machines and buildings); Natural Capital comprises natural resources and processes (renewable and non-renewable) producing goods and services for well-being; Social Capital (SC) addressed factors at the individual (people's health, knowledge, skills) and collective (institutional) level (e.g. families, communities, organizations and schools); and Economic Capital (EC) includes owned and traded goods and services. The results of the climate risk analysis are used to rank the subnational administrative and statistical units according to the climate risk challenges, and possibly for financial resource allocation for climate adaptation. This article is part of the theme issue ‘Advances in risk assessment for climate change adaptation policy’. PMID:29712797
Ground Water and Climate Change
NASA Technical Reports Server (NTRS)
Taylor, Richard G.; Scanlon, Bridget; Doell, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike;
2013-01-01
As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.
Ground water and climate change
Taylor, Richard G.; Scanlon, Bridget R.; Döll, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard F.; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F.P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J.-F.; Holman, Ian; Treidel, Holger
2012-01-01
As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.
Regional Climate Change across the Continental U.S. Projected from Downscaling IPCC AR5 Simulations
NASA Astrophysics Data System (ADS)
Otte, T. L.; Nolte, C. G.; Otte, M. J.; Pinder, R. W.; Faluvegi, G.; Shindell, D. T.
2011-12-01
Projecting climate change scenarios to local scales is important for understanding and mitigating the effects of climate change on society and the environment. Many of the general circulation models (GCMs) that are participating in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) do not fully resolve regional-scale processes and therefore cannot capture local changes in temperature and precipitation extremes. We seek to project the GCM's large-scale climate change signal to the local scale using a regional climate model (RCM) by applying dynamical downscaling techniques. The RCM will be used to better understand the local changes of temperature and precipitation extremes that may result from a changing climate. Preliminary results from downscaling NASA/GISS ModelE simulations of the IPCC AR5 Representative Concentration Pathway (RCP) scenario 6.0 will be shown. The Weather Research and Forecasting (WRF) model will be used as the RCM to downscale decadal time slices for ca. 2000 and ca. 2030 and illustrate potential changes in regional climate for the continental U.S. that are projected by ModelE and WRF under RCP6.0.
Climate change and species interactions: ways forward.
Angert, Amy L; LaDeau, Shannon L; Ostfeld, Richard S
2013-09-01
With ongoing and rapid climate change, ecologists are being challenged to predict how individual species will change in abundance and distribution, how biotic communities will change in structure and function, and the consequences of these climate-induced changes for ecosystem functioning. It is now well documented that indirect effects of climate change on species abundances and distributions, via climatic effects on interspecific interactions, can outweigh and even reverse the direct effects of climate. However, a clear framework for incorporating species interactions into projections of biological change remains elusive. To move forward, we suggest three priorities for the research community: (1) utilize tractable study systems as case studies to illustrate possible outcomes, test processes highlighted by theory, and feed back into modeling efforts; (2) develop a robust analytical framework that allows for better cross-scale linkages; and (3) determine over what time scales and for which systems prediction of biological responses to climate change is a useful and feasible goal. We end with a list of research questions that can guide future research to help understand, and hopefully mitigate, the negative effects of climate change on biota and the ecosystem services they provide. © 2013 New York Academy of Sciences.
Assessment of bias correction under transient climate change
NASA Astrophysics Data System (ADS)
Van Schaeybroeck, Bert; Vannitsem, Stéphane
2015-04-01
Calibration of climate simulations is necessary since large systematic discrepancies are generally found between the model climate and the observed climate. Recent studies have cast doubt upon the common assumption of the bias being stationary when the climate changes. This led to the development of new methods, mostly based on linear sensitivity of the biases as a function of time or forcing (Kharin et al. 2012). However, recent studies uncovered more fundamental problems using both low-order systems (Vannitsem 2011) and climate models, showing that the biases may display complicated non-linear variations under climate change. This last analysis focused on biases derived from the equilibrium climate sensitivity, thereby ignoring the effect of the transient climate sensitivity. Based on the linear response theory, a general method of bias correction is therefore proposed that can be applied on any climate forcing scenario. The validity of the method is addressed using twin experiments with a climate model of intermediate complexity LOVECLIM (Goosse et al., 2010). We evaluate to what extent the bias change is sensitive to the structure (frequency) of the applied forcing (here greenhouse gases) and whether the linear response theory is valid for global and/or local variables. To answer these question we perform large-ensemble simulations using different 300-year scenarios of forced carbon-dioxide concentrations. Reality and simulations are assumed to differ by a model error emulated as a parametric error in the wind drag or in the radiative scheme. References [1] H. Goosse et al., 2010: Description of the Earth system model of intermediate complexity LOVECLIM version 1.2, Geosci. Model Dev., 3, 603-633. [2] S. Vannitsem, 2011: Bias correction and post-processing under climate change, Nonlin. Processes Geophys., 18, 911-924. [3] V.V. Kharin, G. J. Boer, W. J. Merryfield, J. F. Scinocca, and W.-S. Lee, 2012: Statistical adjustment of decadal predictions in a changing climate, Geophys. Res. Lett., 39, L19705.
Forest responses to changing climate: lessons from the past and uncertainty for the future
Donald H. DeHayes; George L., Jr. Jacobson; Paul G. Schaberg; Bruce Bongarten; Louis Iverson; Ann C. Dieffenbacher-Krall
2000-01-01
The earth's climate has undergone dramatic and long-term changes through natural processes many millennia before humans influenced global climate. Considerable evidence indicates that increasing concentrations of carbon dioxide and other greenhouse gases in the earth's atmosphere will lead to near-term warming, perhaps as much as 2 to 4°C in...
Tree mortality from drought, insects, and their interactions in a changing climate
William R. L. Anderegg; Jeffrey A. Hicke; Rosie A. Fisher; Craig D. Allen; Juliann Aukema; Barbara Bentz; Sharon Hood; Jeremy W. Lichstein; Alison K. Macalady; Nate McDowell; Yude Pan; Kenneth Raffa; Anna Sala; John D. Shaw; Nathan L. Stephenson; Christina Tague; Melanie Zeppel
2015-01-01
Climate change is expected to drive increased tree mortality through drought, heat stress, and insect attacks, with manifold impacts on forest ecosystems. Yet, climate-induced tree mortality and biotic disturbance agents are largely absent from process-based ecosystem models. Using data sets from the western USA and associated studies, we present a framework for...
Improving the role of vulnerability assessments In decision support for effective climate adaptation
Linda A. Joyce; Constance I. Millar
2014-01-01
Vulnerability assessments (VA) have been proposed as an initial step in a process to develop and implement adaptation management for climate change in forest ecosystems. Scientific understanding of the effects of climate change is an ever-accumulating knowledge base. Synthesizing information from this knowledge base in the context of our understanding of ecosystem...
Wei Wu; James S. Clark; James M. Vose
2012-01-01
Predicting long-term consequences of climate change on hydrologic processes has been limited due to the needs to accommodate the uncertainties in hydrological measurements for calibration, and to account for the uncertainties in the models that would ingest those calibrations and uncertainties in climate predictions as basis for hydrological predictions. We implemented...
The influence of climate variability and change on the science and practice of restoration ecology
Donald A. Falk; Connie Millar
2016-01-01
Variation in Earthâs climate system has always been a primary driver of ecosystem processes and biological evolution. In recent decades, however, the prospect of anthropogenically driven change to the climate system has become an increasingly dominant concern for scientists and conservation biologists. Understanding how ecosystems may...
Impact of climate change on the streamflow hydrology of the Yangtze River in China
USDA-ARS?s Scientific Manuscript database
Tuotuo River basin, the source region of the Yangtze River, is the key area, where the impact of climate change has been observed on many of the hydrological processes of this central region of the Tibetan Plateau. In this study, we examined six global climate models (GCMs) under three Respectively ...
Climate change and watershed mercury export in a Coastal Plain watershed
Heather Golden; Christopher D. Knightes; Paul A. Conrads; Toby D. Feaster; Gary M. Davis; Stephen T. Benedict; Paul M. Bradley
2016-01-01
Future changes in climatic conditions may affect variations in watershed processes (e.g., hydrological, biogeochemical) and surface water quality across a wide range of physiographic provinces, ecosystems, and spatial scales. How such climatic shifts will impact watershed mercury (Hg) dynamics and hydrologically-driven Hg transport is a significant concern.
Erika L. Rowland; Jennifer E. Davison; Lisa J. Graumlich
2011-01-01
Assessing the impact of climate change on species and associated management objectives is a critical initial step for engaging in the adaptation planning process. Multiple approaches are available. While all possess limitations to their application associated with the uncertainties inherent in the data and models that inform their results, conducting and incorporating...
Fitzpatrick, Joan; Gray, Floyd; Dubiel, Russell; Langman, Jeff; Moring, J. Bruce; Norman, Laura M.; Page, William R.; Parcher, Jean W.
2013-01-01
The prediction of global climate change in response to both natural forces and human activity is one of the defining issues of our times. The unprecedented observational capacity of modern earth-orbiting satellites coupled with the development of robust computational representations (models) of the Earth’s weather and climate systems afford us the opportunity to observe and investigate how these systems work now, how they have worked in the past, and how they will work in the future when forced in specific ways. In the most recent report on global climate change by the Intergovernmental Panel on Climate Change (IPCC; Solomon and others, 2007), analyses using multiple climate models support recent observations that the Earth’s climate is changing in response to a combination of natural and human-induced causes. These changes will be significant in the United States–Mexican border region, where the process of climate change affects all of the Borderlands challenge themes discussed in the preceding chapters. The dual possibilities of both significantly-changed climate and increasing variability in climate make it challenging to take full measure of the potential effects because the Borderlands already experience a high degree of interannual variability and climatological extremes.
The Swedish Regional Climate Modelling Programme, SWECLIM: a review.
Rummukainen, Markku; Bergström, Sten; Persson, Gunn; Rodhe, Johan; Tjernström, Michael
2004-06-01
The Swedish Regional Climate Modelling Programme, SWECLIM, was a 6.5-year national research network for regional climate modeling, regional climate change projections and hydrological impact assessment and information to a wide range of stakeholders. Most of the program activities focussed on the regional climate system of Northern Europe. This led to the establishment of an advanced, coupled atmosphere-ocean-hydrology regional climate model system, a suite of regional climate change projections and progress on relevant data and process studies. These were, in turn, used for information and educational purposes, as a starting point for impact analyses on different societal sectors and provided contributions also to international climate research.
The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6
NASA Astrophysics Data System (ADS)
Webb, Mark J.; Andrews, Timothy; Bodas-Salcedo, Alejandro; Bony, Sandrine; Bretherton, Christopher S.; Chadwick, Robin; Chepfer, Hélène; Douville, Hervé; Good, Peter; Kay, Jennifer E.; Klein, Stephen A.; Marchand, Roger; Medeiros, Brian; Pier Siebesma, A.; Skinner, Christopher B.; Stevens, Bjorn; Tselioudis, George; Tsushima, Yoko; Watanabe, Masahiro
2017-01-01
The primary objective of CFMIP is to inform future assessments of cloud feedbacks through improved understanding of cloud-climate feedback mechanisms and better evaluation of cloud processes and cloud feedbacks in climate models. However, the CFMIP approach is also increasingly being used to understand other aspects of climate change, and so a second objective has now been introduced, to improve understanding of circulation, regional-scale precipitation, and non-linear changes. CFMIP is supporting ongoing model inter-comparison activities by coordinating a hierarchy of targeted experiments for CMIP6, along with a set of cloud-related output diagnostics. CFMIP contributes primarily to addressing the CMIP6 questions How does the Earth system respond to forcing?
and What are the origins and consequences of systematic model biases?
and supports the activities of the WCRP Grand Challenge on Clouds, Circulation and Climate Sensitivity.A compact set of Tier 1 experiments is proposed for CMIP6 to address this question: (1) what are the physical mechanisms underlying the range of cloud feedbacks and cloud adjustments predicted by climate models, and which models have the most credible cloud feedbacks? Additional Tier 2 experiments are proposed to address the following questions. (2) Are cloud feedbacks consistent for climate cooling and warming, and if not, why? (3) How do cloud-radiative effects impact the structure, the strength and the variability of the general atmospheric circulation in present and future climates? (4) How do responses in the climate system due to changes in solar forcing differ from changes due to CO2, and is the response sensitive to the sign of the forcing? (5) To what extent is regional climate change per CO2 doubling state-dependent (non-linear), and why? (6) Are climate feedbacks during the 20th century different to those acting on long-term climate change and climate sensitivity? (7) How do regional climate responses (e.g. in precipitation) and their uncertainties in coupled models arise from the combination of different aspects of CO2 forcing and sea surface warming?CFMIP also proposes a number of additional model outputs in the CMIP DECK, CMIP6 Historical and CMIP6 CFMIP experiments, including COSP simulator outputs and process diagnostics to address the following questions.
How well do clouds and other relevant variables simulated by models agree with observations?
What physical processes and mechanisms are important for a credible simulation of clouds, cloud feedbacks and cloud adjustments in climate models?
Which models have the most credible representations of processes relevant to the simulation of clouds?
How do clouds and their changes interact with other elements of the climate system?
Climate Change Concepts and POGIL: Using climate change to teach general chemistry
NASA Astrophysics Data System (ADS)
King, D. B.; Lewis, J. E.; Anderson, K.; Latch, D.; Sutheimer, S.; Webster, G.; Middlecamp, C.; Moog, R.
2013-12-01
Climate change is a topic that can be used to engage students in a variety of courses and disciplines. Through an NSF-funded project, we have written a set of in-class POGIL (Process Oriented Guided Inquiry Learning) activities that use climate change topics to teach general chemistry concepts. POGIL is a pedagogical approach that uses group activities to teach content and process skills. In these group activities an initial model and a series of critical thinking questions are used to guide students through the introduction to or application of course content. Students complete the activities on their own, with the faculty member as a facilitator of learning, rather than a provider of information. Through assigned group roles and intentionally designed activity structure, process skills, such as teamwork, communication, and information processing, are developed during completion of the activity. While POGIL activities were initially developed for chemistry courses, this approach has now been used to create materials for use in other fields, such as biology, math, engineering and computer science. An additional component of this project is the incorporation of questions that relate to socio-scientific issues, e.g., the economic and social effects of climate change policies. The goal is for students to use evidence-based arguments in situations where opinion-based arguments are common. Key components (i.e., models and the corresponding critical thinking questions) of one activity will be presented. We will also report preliminary feedback based on initial classroom testing of several of the activities.
Building a stakeholder network for the Indiana Climate Change Impacts Assessment
NASA Astrophysics Data System (ADS)
Dukes, J. S.; Widhalm, M.
2017-12-01
The Indiana Climate Change Impacts Assessment (IN CCIA) is a stakeholder-informed, service-driven resource developed under the coordination of the Purdue Climate Change Research Center (PCCRC) and with involvement from a diverse mix of contributors throughout the state. The IN CCIA brings together the best available climate change research into a series of reports aimed at helping Hoosiers better understand climate change-related risks so they can prepare for challenges and capitalize on opportunities. The IN CCIA development process aims to 1) increase the dialogue about climate change across the state, 2) provide Indiana decision makers with accessible, credible climate impact information, and 3) build a network of experts and stakeholders to support ongoing assessment efforts and knowledge sharing. This presentation will report on our experience with developing and maintaining a diverse stakeholder network. We will describe our efforts to connect with stakeholders before, during, and after the development of assessment reports and share the top themes that emerged from our pre-assessment inquires and other interactions.
Vulnerability Assessments in Support of the Climate Ready ...
As part of the Climate Ready Estuaries (CRE) program, the Global Change Research Program (GCRP) in the National Center for Environmental Assessment, Office of Research and Development at the U.S. Environmental Protection Agency has prepared a report exploring a new methodology for climate change vulnerability assessments using Massachusetts Bays’ salt marsh ecosystem as a demonstration. The aim is to synthesize place-based information on the potential implications of climate change for key ecosystem processes in each estuary, in a form that will enable managers to undertake management adaptation planning.
Wang, Wen J; He, Hong S; Thompson, Frank R; Spetich, Martin A; Fraser, Jacob S
2018-09-01
Demographic processes (fecundity, dispersal, colonization, growth, and mortality) and their interactions with environmental changes are not well represented in current climate-distribution models (e.g., niche and biophysical process models) and constitute a large uncertainty in projections of future tree species distribution shifts. We investigate how species biological traits and environmental heterogeneity affect species distribution shifts. We used a species-specific, spatially explicit forest dynamic model LANDIS PRO, which incorporates site-scale tree species demography and competition, landscape-scale dispersal and disturbances, and regional-scale abiotic controls, to simulate the distribution shifts of four representative tree species with distinct biological traits in the central hardwood forest region of United States. Our results suggested that biological traits (e.g., dispersal capacity, maturation age) were important for determining tree species distribution shifts. Environmental heterogeneity, on average, reduced shift rates by 8% compared to perfect environmental conditions. The average distribution shift rates ranged from 24 to 200myear -1 under climate change scenarios, implying that many tree species may not able to keep up with climate change because of limited dispersal capacity, long generation time, and environmental heterogeneity. We suggest that climate-distribution models should include species demographic processes (e.g., fecundity, dispersal, colonization), biological traits (e.g., dispersal capacity, maturation age), and environmental heterogeneity (e.g., habitat fragmentation) to improve future predictions of species distribution shifts in response to changing climates. Copyright © 2018 Elsevier B.V. All rights reserved.
Ancillotto, L; Santini, L; Ranc, N; Maiorano, L; Russo, D
2016-04-01
Urbanisation and climate change are two global change processes that affect animal distributions, posing critical threats to biodiversity. Due to its versatile ecology and synurbic habits, Kuhl's pipistrelle (Pipistrellus kuhlii) offers a unique opportunity to explore the relative effects of climate change and urbanisation on species distributions. In a climate change scenario, this typically Mediterranean species is expected to expand its range in response to increasing temperatures. We collected 25,132 high-resolution occurrence records from P. kuhlii European range between 1980 and 2013 and modelled the species' distribution with a multi-temporal approach, using three bioclimatic variables and one proxy of urbanisation. Temperature in the coldest quarter of the year was the most important factor predicting the presence of P. kuhlii and showed an increasing trend in the study period; mean annual precipitation and precipitation seasonality were also relevant, but to a lower extent. Although urbanisation increased in recently colonised areas, it had little effect on the species' presence predictability. P. kuhlii expanded its geographical range by about 394 % in the last four decades, a process that can be interpreted as a response to climate change.
NASA Astrophysics Data System (ADS)
Ancillotto, L.; Santini, L.; Ranc, N.; Maiorano, L.; Russo, D.
2016-04-01
Urbanisation and climate change are two global change processes that affect animal distributions, posing critical threats to biodiversity. Due to its versatile ecology and synurbic habits, Kuhl's pipistrelle ( Pipistrellus kuhlii) offers a unique opportunity to explore the relative effects of climate change and urbanisation on species distributions. In a climate change scenario, this typically Mediterranean species is expected to expand its range in response to increasing temperatures. We collected 25,132 high-resolution occurrence records from P. kuhlii European range between 1980 and 2013 and modelled the species' distribution with a multi-temporal approach, using three bioclimatic variables and one proxy of urbanisation. Temperature in the coldest quarter of the year was the most important factor predicting the presence of P. kuhlii and showed an increasing trend in the study period; mean annual precipitation and precipitation seasonality were also relevant, but to a lower extent. Although urbanisation increased in recently colonised areas, it had little effect on the species' presence predictability. P. kuhlii expanded its geographical range by about 394 % in the last four decades, a process that can be interpreted as a response to climate change.
Climate change and evolutionary adaptation.
Hoffmann, Ary A; Sgrò, Carla M
2011-02-24
Evolutionary adaptation can be rapid and potentially help species counter stressful conditions or realize ecological opportunities arising from climate change. The challenges are to understand when evolution will occur and to identify potential evolutionary winners as well as losers, such as species lacking adaptive capacity living near physiological limits. Evolutionary processes also need to be incorporated into management programmes designed to minimize biodiversity loss under rapid climate change. These challenges can be met through realistic models of evolutionary change linked to experimental data across a range of taxa.
Porcal, Petr; Koprivnjak, Jean-François; Molot, Lewis A; Dillon, Peter J
2009-09-01
Dissolved organic matter, measured as dissolved organic carbon (DOC), is an important component of aquatic ecosystems and of the global carbon cycle. It is known that changes in DOC quality and quantity are likely to have ecological repercussions. This review has four goals: (1) to discuss potential mechanisms responsible for recent changes in aquatic DOC concentrations; (2) to provide a comprehensive overview of the interactions between DOC, nutrients, and trace metals in mainly boreal environments; (3) to explore the impact of climate change on DOC and the subsequent effects on nutrients and trace metals; and (4) to explore the potential impact of DOC cycling on climate change. We review recent research on the mechanisms responsible for recent changes in aquatic DOC concentrations, DOC interactions with trace metals, N, and P, and on the possible impacts of climate change on DOC in mainly boreal lakes. We then speculate on how climate change may affect DOC export and in-lake processing and how these changes might alter nutrient and metal export and processing. Furthermore, the potential impacts of changing DOC cycling patterns on climate change are examined. It has been noted that DOC concentrations in lake and stream waters have increased during the last 30 years across much of Europe and North America. The potential reasons for this increase include increasing atmospheric CO(2) concentration, climate warming, continued N deposition, decreased sulfate deposition, and hydrological changes due to increased precipitation, droughts, and land use changes. Any change in DOC concentrations and properties in lakes and streams will also impact the acid-base chemistry of these waters and, presumably, the biological, chemical, and photochemical reactions taking place. For example, the interaction of trace metals with DOC may be significantly altered by climate change as organically complexed metals such as Cu, Fe, and Al are released during photo-oxidation of DOC. The production and loss of DOC as CO(2) from boreal lakes may also be affected by changing climate. Climate change is unlikely to be uniform spatially with some regions becoming wetter while others become drier. As a result, rates of change in DOC export and concentrations will vary regionally and the changes may be non-linear. Climate change models predict that higher temperatures are likely to occur over most of the boreal forests in North America, Europe, and Asia over the next century. Climate change is also expected to affect the severity and frequency of storm and drought events. Two general climate scenarios emerge with which to examine possible DOC trends: warmer and wetter or warmer and drier. Increasing temperature and hydrological changes (specifically, runoff) are likely to lead to changes in the quality and quantity of DOC export from terrestrial sources to rivers and lakes as well as changes in DOC processing rates in lakes. This will alter the quality and concentrations of DOC and its constituents as well as its interactions with trace metals and the availability of nutrients. In addition, export rates of nutrients and metals will also change in response to changing runoff. Processing of DOC within lakes may impact climate depending on the extent to which DOC is mineralized to dissolved inorganic carbon (DIC) and evaded to the atmosphere or settles as particulate organic carbon (POC) to bottom sediments and thereby remaining in the lake. The partitioning of DOC between sediments and the atmosphere is a function of pH. Decreased DOC concentrations may also limit the burial of sulfate, as FeS, in lake sediments, thereby contributing acidity to the water by increasing the formation of H(2)S. Under a warmer and drier scenario, if lake water levels fall, previously stored organic sediments may be exposed to greater aeration which would lead to greater CO(2) evasion to the atmosphere. The interaction of trace metals with DOC may be significantly altered by climate change. Iron enhances the formation of POC during irradiation of lake water with UV light and therefore may be an important pathway for transfer of allochthonous DOC to the sediments. Therefore, changing Fe/DOC ratios could affect POC formation rates. If climate change results in altered DOC chemistry (e.g., fewer and/or weaker binding sites) more trace metals could be present in their toxic and bioavailable forms. The availability of nutrients may be significantly altered by climate change. Decreased DOC concentrations in lakes may result in increased Fe colloid formation and co-incident loss of adsorbable P from the water column. Climate change expressed as changes in runoff and temperature will likely result in changes in aquatic DOC quality and concentration with concomitant effects on trace metals and nutrients. Changes in the quality and concentration of DOC have implications for acid-base chemistry and for the speciation and bioavailability of certain trace metals and nutrients. Moreover, changes in DOC, metals, and nutrients are likely to drive changes in rates of C evasion and storage in lake sediments. The key controls on allochthonous DOC quality, quantity, and catchment export in response to climate change are still not fully understood. More detailed knowledge of these processes is required so that changes in DOC and its interactions with nutrients and trace metals can be better predicted based on changes caused by changing climate. More studies are needed concerning the effects of trace metals on DOC, the effects of changing DOC quality and quantity on trace metals and nutrients, and how runoff and temperature-related changes in DOC export affect metal and nutrient export to rivers and lakes.
Regional Climate Change across North America in 2030 Projected from RCP6.0
NASA Astrophysics Data System (ADS)
Otte, T.; Nolte, C. G.; Faluvegi, G.; Shindell, D. T.
2012-12-01
Projecting climate change scenarios to local scales is important for understanding and mitigating the effects of climate change on society and the environment. Many of the general circulation models (GCMs) that are participating in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) do not fully resolve regional-scale processes and therefore cannot capture local changes in temperature and precipitation extremes. We seek to project the GCM's large-scale climate change signal to the local scale using a regional climate model (RCM) by applying dynamical downscaling techniques. The RCM will be used to better understand the local changes of temperature and precipitation extremes that may result from a changing climate. In this research, downscaling techniques that we developed with historical data are now applied to GCM fields. Results from downscaling NASA/GISS ModelE2 simulations of the IPCC AR5 Representative Concentration Pathway (RCP) scenario 6.0 will be shown. The Weather Research and Forecasting (WRF) model has been used as the RCM to downscale decadal time slices for ca. 2000 and ca. 2030 over North America and illustrate potential changes in regional climate that are projected by ModelE2 and WRF under RCP6.0. The analysis focuses on regional climate fields that most strongly influence the interactions between climate change and air quality. In particular, an analysis of extreme temperature and precipitation events will be presented.
Diagnosis of Middle Atmosphere Climate Sensitivity by the Climate Feedback Response Analysis Method
NASA Technical Reports Server (NTRS)
Zhu, Xun; Yee, Jeng-Hwa; Cai, Ming; Swartz, William H.; Coy, Lawrence; Aquila, Valentina; Talaat, Elsayed R.
2014-01-01
We present a new method to diagnose the middle atmosphere climate sensitivity by extending the Climate Feedback-Response Analysis Method (CFRAM) for the coupled atmosphere-surface system to the middle atmosphere. The Middle atmosphere CFRAM (MCFRAM) is built on the atmospheric energy equation per unit mass with radiative heating and cooling rates as its major thermal energy sources. MCFRAM preserves the CFRAM unique feature of an additive property for which the sum of all partial temperature changes due to variations in external forcing and feedback processes equals the observed temperature change. In addition, MCFRAM establishes a physical relationship of radiative damping between the energy perturbations associated with various feedback processes and temperature perturbations associated with thermal responses. MCFRAM is applied to both measurements and model output fields to diagnose the middle atmosphere climate sensitivity. It is found that the largest component of the middle atmosphere temperature response to the 11-year solar cycle (solar maximum vs. solar minimum) is directly from the partial temperature change due to the variation of the input solar flux. Increasing CO2 always cools the middle atmosphere with time whereas partial temperature change due to O3 variation could be either positive or negative. The partial temperature changes due to different feedbacks show distinctly different spatial patterns. The thermally driven globally averaged partial temperature change due to all radiative processes is approximately equal to the observed temperature change, ranging from 0.5 K near 70 km from the near solar maximum to the solar minimum.
Remote Sensing of Climate-Driven Range Shifts of Vegetation across North American Mountain Ranges
NASA Astrophysics Data System (ADS)
Kendrick, J. A.; Sax, D. F.; Kellner, J. R.
2015-12-01
Global climate change is driving shifts in local environmental conditions, and many organisms are projected to become poorly adapted to their current ranges. Some species may respond by gradually shifting their range limits to track environmental change. This adaptation strategy is expected to be most feasible in regions with sharp climatic gradients, such as mountain ranges. However, the extent to which this process is taking place is poorly understood, and some evidence suggests that shifts upwards in elevation might be more difficult than expected. Direct empirical evidence of range shifts in response to recent climate change could inform models and conservation strategies. Here we used Monte Carlo spectral unmixing of Landsat surface reflectance data to characterize changes in vegetation cover across major North American mountain ranges over the past 30 years. This approach allows us to observe changes in photosynthetic and nonphotosynthetic vegetation as well as absolute change in vegetation cover. We found evidence of a gradual increase in total vegetation cover at increasing elevations, but this pattern varied in its strength both within and among mountain ranges. We also observed more dramatic changes in vegetation type which differed strongly between regions with different climates. Our analysis shows that upslope range shift is a possible climate response in many cases, but that this process does not occur uniformly.
Risks posed by climate change to the delivery of Water Framework Directive objectives in the UK.
Wilby, R L; Orr, H G; Hedger, M; Forrow, D; Blackmore, M
2006-12-01
The EU Water Framework Directive (WFD) is novel because it integrates water quality, water resources, physical habitat and, to some extent, flooding for all surface and groundwaters and takes forward river basin management. However, the WFD does not explicitly mention risks posed by climate change to the achievement of its environmental objectives. This is despite the fact that the time scale for the implementation process and achieving particular objectives extends into the 2020s, when climate models project changes in average temperature and precipitation. This paper begins by reviewing the latest UK climate change scenarios and the wider policy and science context of the WFD. We then examine the potential risks of climate change to key phases of the River Basin Management Process that underpin the WFD (such as characterisation of river basins and their water bodies, risk assessments to identify pressures and impacts, programmes of measures (POMs) options appraisal, monitoring and modelling, policy and management activities). Despite these risks the WFD could link new policy and participative mechanisms (being established for the River Basin Management Plans) to the emerging framework of national and regional climate change adaptation policy. The risks are identified with a view to informing policy opportunities, objective setting, adaptation strategies and the research agenda. Key knowledge gaps have already been identified during the implementation of the WFD, such as the links between hydromorphology and ecosystem status, but the overarching importance of linking climate change to these considerations needs to be highlighted. The next generation of (probabilistic) climate change scenarios will present new opportunities and challenges for risk analysis and policy-making.
Tejedor Garavito, Natalia; Newton, Adrian C; Golicher, Duncan; Oldfield, Sara
2015-01-01
There are widespread concerns that anthropogenic climate change will become a major cause of global biodiversity loss. However, the potential impact of climate change on the extinction risk of species remains poorly understood, particularly in comparison to other current threats. The objective of this research was to examine the relative impact of climate change on extinction risk of upper montane tree species in the tropical Andes, an area of high biodiversity value that is particularly vulnerable to climate change impacts. The extinction risk of 129 tree species endemic to the region was evaluated according to the IUCN Red List criteria, both with and without the potential impacts of climate change. Evaluations were supported by development of species distribution models, using three methods (generalized additive models, recursive partitioning, and support vector machines), all of which produced similarly high AUC values when averaged across all species evaluated (0.82, 0.86, and 0.88, respectively). Inclusion of climate change increased the risk of extinction of 18-20% of the tree species evaluated, depending on the climate scenario. The relative impact of climate change was further illustrated by calculating the Red List Index, an indicator that shows changes in the overall extinction risk of sets of species over time. A 15% decline in the Red List Index was obtained when climate change was included in this evaluation. While these results suggest that climate change represents a significant threat to tree species in the tropical Andes, they contradict previous suggestions that climate change will become the most important cause of biodiversity loss in coming decades. Conservation strategies should therefore focus on addressing the multiple threatening processes currently affecting biodiversity, rather than focusing primarily on potential climate change impacts.
Tejedor Garavito, Natalia; Newton, Adrian C.; Golicher, Duncan; Oldfield, Sara
2015-01-01
There are widespread concerns that anthropogenic climate change will become a major cause of global biodiversity loss. However, the potential impact of climate change on the extinction risk of species remains poorly understood, particularly in comparison to other current threats. The objective of this research was to examine the relative impact of climate change on extinction risk of upper montane tree species in the tropical Andes, an area of high biodiversity value that is particularly vulnerable to climate change impacts. The extinction risk of 129 tree species endemic to the region was evaluated according to the IUCN Red List criteria, both with and without the potential impacts of climate change. Evaluations were supported by development of species distribution models, using three methods (generalized additive models, recursive partitioning, and support vector machines), all of which produced similarly high AUC values when averaged across all species evaluated (0.82, 0.86, and 0.88, respectively). Inclusion of climate change increased the risk of extinction of 18–20% of the tree species evaluated, depending on the climate scenario. The relative impact of climate change was further illustrated by calculating the Red List Index, an indicator that shows changes in the overall extinction risk of sets of species over time. A 15% decline in the Red List Index was obtained when climate change was included in this evaluation. While these results suggest that climate change represents a significant threat to tree species in the tropical Andes, they contradict previous suggestions that climate change will become the most important cause of biodiversity loss in coming decades. Conservation strategies should therefore focus on addressing the multiple threatening processes currently affecting biodiversity, rather than focusing primarily on potential climate change impacts. PMID:26177097
NASA Astrophysics Data System (ADS)
Arnbjerg-Nielsen, Karsten; Zhou, Qianqian
2014-05-01
There has been a significant increase in climatic extremes in many regions. In Central and Northern Europe, this has led to more frequent and more severe floods. Along with improved flood modelling technologies this has enabled development of economic assessment of climate change adaptation to increasing urban flood risk. Assessment of adaptation strategies often requires a comprehensive risk-based economic analysis of current risk, drivers of change of risk over time, and measures to reduce the risk. However, such studies are often associated with large uncertainties. The uncertainties arise from basic assumptions in the economic analysis and the hydrological model, but also from the projection of future societies to local climate change impacts and suitable adaptation options. This presents a challenge to decision makers when trying to identify robust measures. We present an integrated uncertainty analysis, which can assess and quantify the overall uncertainty in relation to climate change adaptation to urban flash floods. The analysis is based on an uncertainty cascade that by means of Monte Carlo simulations of flood risk assessments incorporates climate change impacts as a key driver of risk changes over time. The overall uncertainty is then attributed to six bulk processes: climate change impact, urban rainfall-runoff processes, stage-depth functions, unit cost of repair, cost of adaptation measures, and discount rate. We apply the approach on an urban hydrological catchment in Odense, Denmark, and find that the uncertainty on the climate change impact appears to have the least influence on the net present value of the studied adaptation measures-. This does not imply that the climate change impact is not important, but that the uncertainties are not dominating when deciding on action or in-action. We then consider the uncertainty related to choosing between adaptation options given that a decision of action has been taken. In this case the major part of the uncertainty on the estimated net present values is identical for all adaptation options and will therefore not affect a comparison between adaptation measures. This makes the chose among the options easier. Furthermore, the explicit attribution of uncertainty also enables a reduction of the overall uncertainty by identifying the processes which contributes the most. This knowledge can then be used to further reduce the uncertainty related to decision making, as a substantial part of the remaining uncertainty is epistemic.
NASA Astrophysics Data System (ADS)
Bush, D. F.; Sieber, R.; Seiler, G.; Chandler, M. A.; Chmura, G. L.
2017-12-01
Efforts to address climate change require public understanding of Earth and climate science. To meet this need, educators require instructional approaches and scientific technologies that overcome cultural barriers to impart conceptual understanding of the work of climate scientists. We compared student inquiry learning with now ubiquitous climate education toy models, data and tools against that which took place using a computational global climate model (GCM) from the National Aeronautics and Space Administration (NASA). Our study at McGill University and John Abbott College in Montreal, QC sheds light on how best to teach the research processes important to Earth and climate scientists studying atmospheric and Earth system processes but ill-understood by those outside the scientific community. We followed a pre/post, control/treatment experimental design that enabled detailed analysis and statistically significant results. Our research found more students succeed at understanding climate change when exposed to actual climate research processes and instruments. Inquiry-based education with a GCM resulted in significantly higher scores pre to post on diagnostic exams (quantitatively) and more complete conceptual understandings (qualitatively). We recognize the difficulty in planning and teaching inquiry with complex technology and we also found evidence that lectures support learning geared toward assessment exams.
Effects of climate change on forest vegetation [Chapter 6
Patrick N. Behrens; Robert E. Keane; David L. Peterson; Joanne J. Ho
2018-01-01
Projected rapid changes in climate will affect vegetation assemblages in the Intermountain Adaptation Partnership (IAP) region directly and indirectly. Direct effects include altered vegetation growth, mortality, and regeneration, and indirect effects include changes in disturbance regimes (Chapter 8) and interactions with altered ecosystem processes (e.g., hydrology,...
When Teachers Adopt Environmental Behaviors in the Aim of Protecting the Climate
ERIC Educational Resources Information Center
Pruneau, Diane; Doyon, Andre; Langis, Joanne; Vasseur, Liette; Ouellet, Eileen; McLaughlin, Elizabeth; Boudreau, Gaston; Martin, Gilles
2006-01-01
The authors invited teachers participating in a climate change education course to voluntarily demonstrate new environmental behaviors. They were interviewed and described the process of change they experienced. Facilitating professional development activities were participation in a community of change, construction of knowledge of climate…
When considering the effects of climate change, it has become clear that processes resulting in changes in stratospheric ozone are more complex than previously believed. As a result of this, human health and environmental issues will be longer-lasting and more regionally variable...
Sustained Assessment Metadata as a Pathway to Trustworthiness of Climate Science Information
NASA Astrophysics Data System (ADS)
Champion, S. M.; Kunkel, K.
2017-12-01
The Sustained Assessment process has produced a suite of climate change reports: The Third National Climate Assessment (NCA3), Regional Surface Climate Conditions in CMIP3 and CMIP5 for the United States: Differences, Similarities, and Implications for the U.S. National Climate Assessment, Impacts of Climate Change on Human Health in the United States: A Scientific Assessment, The State Climate Summaries, as well as the anticipated Climate Science Special Report and Fourth National Climate Assessment. Not only are these groundbreaking reports of climate change science, they are also the first suite of climate science reports to provide access to complex metadata directly connected to the report figures and graphics products. While the basic metadata documentation requirement is federally mandated through a series of federal guidelines as a part of the Information Quality Act, Sustained Assessment products are also deemed Highly Influential Scientific Assessments, which further requires demonstration of the transparency and reproducibility of the content. To meet these requirements, the Technical Support Unit (TSU) for the Sustained Assessment embarked on building a system for not only collecting and documenting metadata to the required standards, but one that also provides consumers unprecedented access to the underlying data and methods. As our process and documentation have evolved, the value of both continue to grow in parallel with the consumer expectation of quality, accessible climate science information. This presentation will detail the how the TSU accomplishes the mandated requirements with their metadata collection and documentation process, as well as the technical solution designed to demonstrate compliance while also providing access to the content for the general public. We will also illustrate how our accessibility platforms guide consumers through the Assessment science at a level of transparency that builds trust and confidence in the report content.
NASA Astrophysics Data System (ADS)
Lagron, C. S.; Ray, A. J.; Barsugli, J. J.
2016-12-01
The Federal Energy Regulatory Commission (FERC) issues licenses for non-federal hydropower projects through its Integrated Licensing Process (ILP). Through this multi-stage, multi-year decision process, NOAA National Marine Fisheries Service (NMFS) can request studies needed to prescribe license conditions to mitigate dams' effects on trust resources, e.g. fish passages and flow requirements. NMFS must understand the combined effects of hydropower projects and climate change to fulfill its mandates to maintain fisheries and protected species. Although 30-50 year hydropower licenses and renewals are within the time frame of anticipated risks from changing climate, FERC has consistently rejected NMFS' climate study requests, stating climate science is "too uncertain," and therefore not actionable. The ILP is an opportunity to incorporate climate change risks in this decision process, and to make decisions now to avoid failures later in the system regarding both hydropower reliability (the concern of FERC and the applicant) and ecosystem health (NMFS's concern). NMFS has partnered with climate scientists at the ESRL Physical Sciences Division to co-produce a climate study request for the relicensing of the Hiram Project on the Saco River in Southern Maine. The Saco hosts Atlantic salmon (Salmo salar) runs which are not currently self-sustaining. This presentation will describe basin-to-basin variability in both historic river analyses (Hydro-Climate Data Network, HCDN) and projected hydrologic responses of New England rivers to climate forcings using statewide Precipitation-Runoff Modeling System (PRMS) demonstrate the need to develop Saco-specific watershed models. Furthermore, although methods for projecting fishery-relevant metrics (heat waves, flood annual exceedance probabilities) have been proven in nearby basins, this modeling has not been conducted at fishery-relevant thresholds. Climate study requests are an example of bridging between science and applications. We argue that the current state of climate science provides actionable information on climate risks in the region, and will articulate the need and required elements for a Saco-specific climate study request.
Applications of geographic information systems (GIS) for transportation and climate change
DOT National Transportation Integrated Search
2011-08-31
This report describes the current practice and application of GIS technologies for integrating climate change into the transportation decision-making process. It examines how select state, regional, and local agencies are using GIS to analyze, mitiga...
Climate Change Adaptation Challenges and EO Business Opportunities
NASA Astrophysics Data System (ADS)
Lopez-Baeza, Ernesto; Mathieu, Pierre-Philippe; Bansal, Rahul; Del Rey, Maria; Mohamed, Ebrahim; Ruiz, Paz; Signes, Marcos
Climate change is one of the defining challenges of the 21st century, but is no longer a matter of just scientific concern. It encompasses economics, sociology, global politics as well as national and local politics, law, health and environmental security, etc. The challenge of facing the impacts of climate change is often framed in terms of two potential paths that civilization might take: mitigation and adaptation. On the one hand, mitigation involves reducing the magnitude of climate change itself and is composed of emissions reductions and geoengineering. On the other hand and by contrast, adaptation involves efforts to limit our vulnerability to climate change impacts through various measures. It refers to our ability to adjust ourselves to climate change -including climate variability and extremes, to moderate potential damage, to take advantage of opportunities, or to cope with the consequences. Therefore, we are now faced with a double challenge: next to deep cuts in greenhouse gas emissions, we also need to adapt to the changing climate conditions. The use of satellites to monitor processes and trends at the global scale is essential in the context of climate change. Earth Observation has the potential to improve our predictive vision and to advance climate models. Space sciences and technologies constitute a significant issue in Education and Public Awareness of Science. Space missions face the probably largest scientific and industrial challenges of humanity. It is thus a fact that space drives innovation in the major breakthrough and cutting edge technological advances of mankind (techniques, processes, new products, … as well as in markets and business models). Technology and innovation is the basis of all space activities. Space agencies offer an entire range of space-related activities - from space science and environmental monitoring to industrial competitiveness and end-user services. More specifically, Earth Observation satellites have a unique global view of planet Earth, providing us -with better data- with consistent and frequent information on the state of our environment at the regional and global scale, also in important but remote areas. Climate Knowledge and Innovation Communities (Climate-KIC), a relatively new initiative from the European Institute of Innovation & Technology (EIT), provides the innovations, entrepreneurship, education and expert guidance needed to shape Europe's climate change agenda. This paper shows some initiatives that the University of Valencia Climate-KIC Education Group is carrying out in collaboration with the Climate-KIC Central Education Lead in the field of space education to foster and encourage students and entrepreneurs to endevour in these new space business opportunities offered by this step forward towards climate change adaptation challenges.
Ragettli, Silvan; Immerzeel, Walter W; Pellicciotti, Francesca
2016-08-16
Mountain ranges are the world's natural water towers and provide water resources for millions of people. However, their hydrological balance and possible future changes in river flow remain poorly understood because of high meteorological variability, physical inaccessibility, and the complex interplay between climate, cryosphere, and hydrological processes. Here, we use a state-of-the art glacio-hydrological model informed by data from high-altitude observations and the latest climate change scenarios to quantify the climate change impact on water resources of two contrasting catchments vulnerable to changes in the cryosphere. The two study catchments are located in the Central Andes of Chile and in the Nepalese Himalaya in close vicinity of densely populated areas. Although both sites reveal a strong decrease in glacier area, they show a remarkably different hydrological response to projected climate change. In the Juncal catchment in Chile, runoff is likely to sharply decrease in the future and the runoff seasonality is sensitive to projected climatic changes. In the Langtang catchment in Nepal, future water availability is on the rise for decades to come with limited shifts between seasons. Owing to the high spatiotemporal resolution of the simulations and process complexity included in the modeling, the response times and the mechanisms underlying the variations in glacier area and river flow can be well constrained. The projections indicate that climate change adaptation in Central Chile should focus on dealing with a reduction in water availability, whereas in Nepal preparedness for flood extremes should be the policy priority.
Pellicciotti, Francesca
2016-01-01
Mountain ranges are the world’s natural water towers and provide water resources for millions of people. However, their hydrological balance and possible future changes in river flow remain poorly understood because of high meteorological variability, physical inaccessibility, and the complex interplay between climate, cryosphere, and hydrological processes. Here, we use a state-of-the art glacio-hydrological model informed by data from high-altitude observations and the latest climate change scenarios to quantify the climate change impact on water resources of two contrasting catchments vulnerable to changes in the cryosphere. The two study catchments are located in the Central Andes of Chile and in the Nepalese Himalaya in close vicinity of densely populated areas. Although both sites reveal a strong decrease in glacier area, they show a remarkably different hydrological response to projected climate change. In the Juncal catchment in Chile, runoff is likely to sharply decrease in the future and the runoff seasonality is sensitive to projected climatic changes. In the Langtang catchment in Nepal, future water availability is on the rise for decades to come with limited shifts between seasons. Owing to the high spatiotemporal resolution of the simulations and process complexity included in the modeling, the response times and the mechanisms underlying the variations in glacier area and river flow can be well constrained. The projections indicate that climate change adaptation in Central Chile should focus on dealing with a reduction in water availability, whereas in Nepal preparedness for flood extremes should be the policy priority. PMID:27482082
A dataset mapping the potential biophysical effects of vegetation cover change
NASA Astrophysics Data System (ADS)
Duveiller, Gregory; Hooker, Josh; Cescatti, Alessandro
2018-02-01
Changing the vegetation cover of the Earth has impacts on the biophysical properties of the surface and ultimately on the local climate. Depending on the specific type of vegetation change and on the background climate, the resulting competing biophysical processes can have a net warming or cooling effect, which can further vary both spatially and seasonally. Due to uncertain climate impacts and the lack of robust observations, biophysical effects are not yet considered in land-based climate policies. Here we present a dataset based on satellite remote sensing observations that provides the potential changes i) of the full surface energy balance, ii) at global scale, and iii) for multiple vegetation transitions, as would now be required for the comprehensive evaluation of land based mitigation plans. We anticipate that this dataset will provide valuable information to benchmark Earth system models, to assess future scenarios of land cover change and to develop the monitoring, reporting and verification guidelines required for the implementation of mitigation plans that account for biophysical land processes.
A dataset mapping the potential biophysical effects of vegetation cover change
Duveiller, Gregory; Hooker, Josh; Cescatti, Alessandro
2018-01-01
Changing the vegetation cover of the Earth has impacts on the biophysical properties of the surface and ultimately on the local climate. Depending on the specific type of vegetation change and on the background climate, the resulting competing biophysical processes can have a net warming or cooling effect, which can further vary both spatially and seasonally. Due to uncertain climate impacts and the lack of robust observations, biophysical effects are not yet considered in land-based climate policies. Here we present a dataset based on satellite remote sensing observations that provides the potential changes i) of the full surface energy balance, ii) at global scale, and iii) for multiple vegetation transitions, as would now be required for the comprehensive evaluation of land based mitigation plans. We anticipate that this dataset will provide valuable information to benchmark Earth system models, to assess future scenarios of land cover change and to develop the monitoring, reporting and verification guidelines required for the implementation of mitigation plans that account for biophysical land processes. PMID:29461538
The Climate Variability & Predictability (CVP) Program at NOAA - Recent Program Advancements
NASA Astrophysics Data System (ADS)
Lucas, S. E.; Todd, J. F.
2015-12-01
The Climate Variability & Predictability (CVP) Program supports research aimed at providing process-level understanding of the climate system through observation, modeling, analysis, and field studies. This vital knowledge is needed to improve climate models and predictions so that scientists can better anticipate the impacts of future climate variability and change. To achieve its mission, the CVP Program supports research carried out at NOAA and other federal laboratories, NOAA Cooperative Institutes, and academic institutions. The Program also coordinates its sponsored projects with major national and international scientific bodies including the World Climate Research Programme (WCRP), the International and U.S. Climate Variability and Predictability (CLIVAR/US CLIVAR) Program, and the U.S. Global Change Research Program (USGCRP). The CVP program sits within NOAA's Climate Program Office (http://cpo.noaa.gov/CVP). The CVP Program currently supports multiple projects in areas that are aimed at improved representation of physical processes in global models. Some of the topics that are currently funded include: i) Improved Understanding of Intraseasonal Tropical Variability - DYNAMO field campaign and post -field projects, and the new climate model improvement teams focused on MJO processes; ii) Climate Process Teams (CPTs, co-funded with NSF) with projects focused on Cloud macrophysical parameterization and its application to aerosol indirect effects, and Internal-Wave Driven Mixing in Global Ocean Models; iii) Improved Understanding of Tropical Pacific Processes, Biases, and Climatology; iv) Understanding Arctic Sea Ice Mechanism and Predictability;v) AMOC Mechanisms and Decadal Predictability Recent results from CVP-funded projects will be summarized. Additional information can be found at http://cpo.noaa.gov/CVP.
Orographic Barriers, Rainshadows, and Earth Surface Processes in the Central Andes
NASA Astrophysics Data System (ADS)
Bookhagen, B.; Strecker, M. R.
2016-12-01
The Central Andes of NW Argentina, northern Chile, and SW Bolivia are characterized by a steep E-W topographic, climatic and environmental gradient. The first windward topographic rise in the eastern Central Andes forces high orographic rainfall and dense vegetation. In contrast, the higher-elevation areas of the windward flanks become progressively drier, until arid conditions are attained in the orogen interior. On seasonal, annual, and inter-annual timescales, large rainstorms may propagate into the semi-arid to arid high-elevation sectors and cause erosion and mass-transport processes that impact infrastructure and the natural environment. Similar to these present-day effects of climate variability the Central Andes experienced pronounced paleoclimatic changes with deeper penetration of moisture into the orogen and thus an orogenward shift of the climate gradient during Pleistocene and Holocene times, lasting several millennia. In this presentation, we demonstrate the impact of climate change on Earth surface processes at different timescales ranging from the late Pleistocene to the past decade. For millennial timescales and beyond, we rely on field observations, dating of geomorphic markers, erosion rates from cosmogenic nuclide dating, and the analysis of sedimentary archives to reconstruct past environmental conditions. For the last decades we use, satellite-derived rainfall and landcover observations, climate models, hydrometeorologic data, and riverbed-elevation changes are used to characterize environmental and atmospheric conditions. Decadal-scale climate variability shows statistically significant hydrometeorologic trends and exhibits changes of fluvial-transport magnitudes. Hydrometeorologic data, their trends and change points suggest that highest rainfall magnitudes have increased most in the past decades, resulting in large, event-driven mass-transport processes with fundamental impacts on population and infrastructure.
Faulkner, Stephen P.
2010-01-01
Landscape patterns and processes reflect both natural ecosystem attributes and the policy and management decisions of individual Federal, State, county, and private organizations. Land-use regulation, water management, and habitat conservation and restoration efforts increasingly rely on landscape-level approaches that incorporate scientific information into the decision-making process. Since management actions are implemented to affect future conditions, decision-support models are necessary to forecast potential future conditions resulting from these decisions. Spatially explicit modeling approaches enable testing of different scenarios and help evaluate potential outcomes of management actions in conjunction with natural processes such as climate change. The ability to forecast the effects of changing land use and climate is critically important to land and resource managers since their work is inherently site specific, yet conservation strategies and practices are expressed at higher spatial and temporal scales that must be considered in the decisionmaking process.
Butler, D.R.; Malanson, G.P.; Walsh, S.J.; Fagre, D.B.
2007-01-01
The spatial distribution and pattern of alpine treeline in the American West reflect the overarching influences of geological history, lithology and structure, and geomorphic processes and landforms, and geologic and geomorphic factors—both forms and processes—can control the spatiotemporal response of the ecotone to climate change. These influences occur at spatial scales ranging from the continental scale to fine scale processes and landforms at the slope scale. Past geomorphic influences, particularly Pleistocene glaciation, have also left their impact on treeline, and treelines across the west are still adjusting to post-Pleistocene conditions within Pleistocene-created landforms. Current fine scale processes include solifluction and changes on relict solifluction and digging by animals. These processes should be examined in detail in future studies to facilitate a better understanding of where individual tree seedlings become established as a primary response of the ecotone to climate change.
Giménez-Benavides, L; Escudero, A; García-Camacho, R; García-Fernández, A; Iriondo, J M; Lara-Romero, C; Morente-López, J
2018-01-01
Mediterranean mountains are extraordinarily diverse and hold a high proportion of endemic plants, but they are particularly vulnerable to climate change, and most species distribution models project drastic changes in community composition. Retrospective studies and long-term monitoring also highlight that Mediterranean high-mountain plants are suffering severe range contractions. The aim of this work is to review the current knowledge of climate change impacts on the process of plant regeneration by seed in Mediterranean high-mountain plants, by combining available information from observational and experimental studies. We also discuss some processes that may provide resilience against changing environmental conditions and suggest some research priorities for the future. With some exceptions, there is still little evidence of the direct effects of climate change on pollination and reproductive success of Mediterranean high-mountain plants, and most works are observational and/or centred only in the post-dispersal stages (germination and establishment). The great majority of studies agree that the characteristic summer drought and the extreme heatwaves, which are projected to be more intense in the future, are the most limiting factors for the regeneration process. However, there is an urgent need for studies combining elevational gradient approaches with experimental manipulations of temperature and drought to confirm the magnitude and variability of species' responses. There is also limited knowledge about the ability of Mediterranean high-mountain plants to cope with climate change through phenotypic plasticity and local adaptation processes. This could be achieved by performing common garden and reciprocal translocation experiments with species differing in life history traits. © 2017 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.
Boulanger, Yan; Cyr, Dominic; Taylor, Anthony R.; Price, David T.; St-Laurent, Martin-Hugues
2018-01-01
Many studies project future bird ranges by relying on correlative species distribution models. Such models do not usually represent important processes explicitly related to climate change and harvesting, which limits their potential for predicting and understanding the future of boreal bird assemblages at the landscape scale. In this study, we attempted to assess the cumulative and specific impacts of both harvesting and climate-induced changes on wildfires and stand-level processes (e.g., reproduction, growth) in the boreal forest of eastern Canada. The projected changes in these landscape- and stand-scale processes (referred to as “drivers of change”) were then assessed for their impacts on future habitats and potential productivity of black-backed woodpecker (BBWO; Picoides arcticus), a focal species representative of deadwood and old-growth biodiversity in eastern Canada. Forest attributes were simulated using a forest landscape model, LANDIS-II, and were used to infer future landscape suitability to BBWO under three anthropogenic climate forcing scenarios (RCP 2.6, RCP 4.5 and RCP 8.5), compared to the historical baseline. We found climate change is likely to be detrimental for BBWO, with up to 92% decline in potential productivity under the worst-case climate forcing scenario (RCP 8.5). However, large declines were also projected under baseline climate, underlining the importance of harvest in determining future BBWO productivity. Present-day harvesting practices were the single most important cause of declining areas of old-growth coniferous forest, and hence appeared as the single most important driver of future BBWO productivity, regardless of the climate scenario. Climate-induced increases in fire activity would further promote young, deciduous stands at the expense of old-growth coniferous stands. This suggests that the biodiversity associated with deadwood and old-growth boreal forests may be greatly altered by the cumulative impacts of natural and anthropogenic disturbances under a changing climate. Management adaptations, including reduced harvesting levels and strategies to promote coniferous species content, may help mitigate these cumulative impacts. PMID:29414989
Climate-Smart Design for Ecosystem Management: A Test Application for Coral Reefs.
West, Jordan M; Courtney, Catherine A; Hamilton, Anna T; Parker, Britt A; Julius, Susan H; Hoffman, Jennie; Koltes, Karen H; MacGowan, Petra
2017-01-01
The interactive and cumulative impacts of climate change on natural resources such as coral reefs present numerous challenges for conservation planning and management. Climate change adaptation is complex due to climate-stressor interactions across multiple spatial and temporal scales. This leaves decision makers worldwide faced with local, regional, and global-scale threats to ecosystem processes and services, occurring over time frames that require both near-term and long-term planning. Thus there is a need for structured approaches to adaptation planning that integrate existing methods for vulnerability assessment with design and evaluation of effective adaptation responses. The Corals and Climate Adaptation Planning project of the U.S. Coral Reef Task Force seeks to develop guidance for improving coral reef management through tailored application of a climate-smart approach. This approach is based on principles from a recently-published guide which provides a framework for adopting forward-looking goals, based on assessing vulnerabilities to climate change and applying a structured process to design effective adaptation strategies. Work presented in this paper includes: (1) examination of the climate-smart management cycle as it relates to coral reefs; (2) a compilation of adaptation strategies for coral reefs drawn from a comprehensive review of the literature; (3) in-depth demonstration of climate-smart design for place-based crafting of robust adaptation actions; and (4) feedback from stakeholders on the perceived usefulness of the approach. We conclude with a discussion of lessons-learned on integrating climate-smart design into real-world management planning processes and a call from stakeholders for an "adaptation design tool" that is now under development.
Assessment of the health impacts of climate change in Kiribati.
McIver, Lachlan; Woodward, Alistair; Davies, Seren; Tibwe, Tebikau; Iddings, Steven
2014-05-14
Kiribati-a low-lying, resource-poor Pacific atoll nation-is one of the most vulnerable countries in the World to the impacts of climate change, including the likely detrimental effects on human health. We describe the preparation of a climate change and health adaptation plan for Kiribati carried out by the World Health Organization and the Kiribati Ministry of Health and Medical Services, including an assessment of risks to health, sources of vulnerability and suggestions for highest priority adaptation responses. This paper identifies advantages and disadvantages in the process that was followed, lays out a future direction of climate change and health adaptation work in Kiribati, and proposes lessons that may be applicable to other small, developing island nations as they prepare for and adapt to the impacts of climate change on health.
Saldarriaga, Enrique; Lawler, Joshua; Zunt, Joseph; Garcia, Patricia; Cárcamo, César
2016-01-01
Climate change poses multiple risks to the population of Lima, the largest city and capital of Peru, located on the Pacific coast in a desert ecosystem. These risks include increased water scarcity, increased heat, and the introduction and emergence of vector-borne and other climate sensitive diseases. To respond to these threats, it is necessary for the government, at every level, to adopt more mitigation and adaptation strategies. Here, focus groups were conducted with representatives from five Lima municipalities to determine priorities, perception of climate change, and decision-making processes for implementing projects within each municipality. These factors can affect the ability and desire of a community to implement climate change adaptation and mitigation strategies. The results show that climate change and other environmental factors are of relatively low priority, whereas public safety and water and sanitation services are of highest concern. Perhaps most importantly, climate change is not well understood among the municipalities. Participants had trouble distinguishing climate change from other environmental issues and did not fully understand its causes and effects. Greater understanding of what climate change is and why it is important is necessary for it to become a priority for the municipalities. Different aspects of increased climate change awareness seem to be connected to having experienced extreme weather events, whether related or not to climate change, and to higher socioeconomic status. PMID:26808087
Changing Family Habits: A Case Study into Climate Change Mitigation Behavior in Families
ERIC Educational Resources Information Center
Leger, Michel T.; Pruneau, Diane
2012-01-01
A case-study methodology was used to explore the process of change as experienced by 3 suburban families in an attempt to incorporate climate change mitigation behavior into their day to day life. Cross-case analysis of the findings revealed the emergence of three major conceptual themes associated with behavior adoption: collectively applied…
Michael J. Furniss; Ken B. Roby; Dan Cenderelli; John Chatel; Caty F. Clifton; Alan Clingenpeel; Polly E. Hays; Dale Higgins; Ken Hodges; Carol Howe; Laura Jungst; Joan Louie; Christine Mai; Ralph Martinez; Kerry Overton; Brian P. Staab; Rory Steinke; Mark Weinhold
2013-01-01
Existing models and predictions project serious changes to worldwide hydrologic processes as a result of global climate change. Projections indicate that significant change may threaten National Forest System watersheds that are an important source of water used to support people, economies, and ecosystems.Wildland managers are expected to anticipate and...
Speaking of climate change: From what we know to how we know it (Invited)
NASA Astrophysics Data System (ADS)
Holthuis, N.
2013-12-01
Researchers have found that a deficit model of knowledge doesn't fully explain why some people continue to deny that climate change is happening or that human activity is to blame. Recent work in science education has focused our attention on the need to go beyond simply communicating what we know about climate change to how we know it. That is, allowing and encouraging students to grapple with the processes that scientists have gone through to make their claims builds deeper understanding of why the consensus around climate change is strong, where uncertainties remain, and how to think about implications for society and themselves. This suggests that teachers need to provide scaffolding that builds not only students' understanding of how climate systems work or the causes and effects of climate change but also their capacity to evaluate the scientific evidence behind these claims. What is the evidence for anthropogenic climate change? What data are missing or currently being collected? How sure are scientists about their claims? What claim can be made from a particular set of data? And conversely, what claim cannot be made given these data? Climate change education provides not only an excellent opportunity to integrate science content with such scientific practices, but also an imperative to do so. In this study, we explore how students and teachers may engage collectively in this process of argumentation in order to arrive at a conclusion or claim supported by evidence. We take the position that learning to construct and evaluate arguments involves growth in scientific practices and meta-procedural (epistemic) knowledge This work was conducted over the course of three years through the NASA-funded Stanford Global Climate Change project. Scientists and educators provided teacher professional development on the science of global climate change, pedagogical strategies, and curriculum materials that emphasize both what we know about climate change and we how know it. We conducted an in-depth study of the classrooms of the participating teachers, focusing on the following research questions: 1) What did students learn about climate change and to what extent have their opinions shifted after experiencing this climate change curriculum? 2) How do teachers and students talk about how we know about climate change? 3) What classroom conditions support such talk? Our results show statistically significantly gains from pre to post in students' content knowledge and a shift in their opinions. These gains are positively related to the percentage of students engaged and interacting with one another or with the teacher. Through classroom observations and video recordings, we identify how teachers and students talk about how we know about climate change and we discuss how that talk can be supported by classroom implementation, the curriculum, and professional development.
Climate Science across the Liberal Arts Curriculum at Gustavus Adolphus College
NASA Astrophysics Data System (ADS)
Bartley, J. K.; Triplett, L.; Dontje, J.; Huber, T.; Koomen, M.; Jeremiason, J.; La Frenierre, J.; Niederriter, C.; Versluis, A.
2014-12-01
The human and social dimensions of climate change are addressed in courses in humanities, social sciences, and arts disciplines. However, faculty members in these disciplines are not climate science experts and thus may feel uncomfortable discussing the science that underpins our understanding of climate change. In addition, many students are interested in the connections between climate change and their program of study, but not all students take courses that address climate science as a principal goal. At Gustavus Adolphus College, the Climate Science Project aims to help non-geoscience faculty introduce climate science content in their courses in order to increase climate science literacy among students and inform discussions of the implications of climate change. We assembled an interdisciplinary team of faculty with climate science expertise to develop climate science modules for use in non-geoscience courses. Faculty from the social sciences, humanities, arts, education, and natural sciences attended workshops in which they developed plans to include climate science in their courses. Based on these workshops, members of the development team created short modules for use by participating faculty that introduce climate science concepts to a non-specialist audience. Each module was tested and modified prior to classroom implementation by a team of faculty and geoscience students. Faculty and student learning are assessed throughout the process, and participating faculty members are interviewed to improve the module development process. The Climate Science Project at Gustavus Adolphus College aims to increase climate science literacy in both faculty members and students by creating accessible climate science content and supporting non-specialist faculty in learning key climate science concepts. In this way, climate science becomes embedded in current course offerings, including non-science courses, reaching many more students than new courses or enhanced content in the geosciences can reach. In addition, this model can be adopted by institutions with limited geoscience course offerings to increase geoscience literacy among a broad cross-section of students.
NASA Astrophysics Data System (ADS)
Han, B.; Flores, A. N.; Benner, S. G.
2017-12-01
In semiarid and arid regions where water supply is intensively managed, future water scarcity is a product of complex interactions between climate change and human activities. Evaluating future water scarcity under alternative scenarios of climate change, therefore, necessitates modeling approaches that explicitly represent the coupled biophysical and social processes responsible for the redistribution of water in these regions. At regional scales a particular challenge lies in adequately capturing not only the central tendencies of change in projections of climate change, but also the associated plausible range of variability in those projections. This study develops a framework that combines a stochastic weather generator, historical climate observations, and statistically downscaled General Circulation Model (GCM) projections. The method generates a large ensemble of daily climate realizations, avoiding deficiencies of using a few or mean values of individual GCM realizations. Three climate change scenario groups reflecting the historical, RCP4.5, and RCP8.5 future projections are developed. Importantly, the model explicitly captures the spatiotemporally varying irrigation activities as constrained by local water rights in a rapidly growing, semi-arid human-environment system in southwest Idaho. We use this modeling framework to project water use and scarcity patterns under the three future climate change scenarios. The model is built using the Envision alternative futures modeling framework. Climate projections for the region show future increases in both precipitation and temperature, especially under the RCP8.5 scenario. The increase of temperature has a direct influence on the increase of the irrigation water use and water scarcity, while the influence of increased precipitation on water use is less clear. The predicted changes are potentially useful in identifying areas in the watershed particularly sensitive to water scarcity, the relative importance of changes in precipitation versus temperature as a driver of scarcity, and potential shortcomings of the current water management framework in the region.
Investigating the variation of terrestrial water storage under changing climate and land cover
NASA Astrophysics Data System (ADS)
Fang, Y.; Niu, G. Y.; Zhang, X.; Troch, P. A. A.
2015-12-01
Terrestrial water storage (TWS) consists of groundwater, soil moisture, snow and ice, lakes and rivers and water contained in biomass. The water storage, especially the subsurface storage, is an essential property of the catchment, which controls climate, hydrological and biogeochemical processes at different scales. During the past decades, climate and land cover change has been proved to exert significant influences on hydrological processes which in turn alters the TWS variation. In order to better understand the interaction and feedback mechanism between TWS and earth system, it is necessary to quantify the effects of climate and land cover change on TWS variation. Direct estimation of total TWS has been made possible by the Gravity Recovery And Climate Experiment (GRACE) satellites that measures the earth gravity field. At present, few efforts were made to explicitly investigate the TWS variation under changing climate and land cover. GRACE data has its own limitations. One is its temporal coverage is short, it's only available since 2002, which is not sufficient to reflect the trend due to climate and land cover change. The other reason is that it cannot distinguish different components contributing to TWS. The limitation of TWS observation data can be overcame by numerical models developed to reproduce or to predict different earth system processes. After calibration and validation, with limited observations, these models can be trusted to extend our knowledge to where observations are not available both in time and space. In this study, based on Noah-MP LSM and satellite and ground data, we aim to: (1) Investigate the variation of total TWS as well as its components over Upper Colorado River Basin from 1990 to 2014. (2) Identify the major factors that control the TWS variation. (3) Quantify how the changing climate and land cover affect TWS variation in the same period.
Hay, Lauren E.; Markstrom, Steven; Ward-Garrison, Christian D.
2011-01-01
The hydrologic response of different climate-change emission scenarios for the twenty-first century were evaluated in 14 basins from different hydroclimatic regions across the United States using the Precipitation-Runoff Modeling System (PRMS), a process-based, distributed-parameter watershed model. This study involves four major steps: 1) setup and calibration of the PRMS model in 14 basins across the United States by local U.S. Geological Survey personnel; 2) statistical downscaling of the World Climate Research Programme’s Coupled Model Intercomparison Project phase 3 climate-change emission scenarios to create PRMS input files that reflect these emission scenarios; 3) run PRMS for the climate-change emission scenarios for the 14 basins; and 4) evaluation of the PRMS output.This paper presents an overview of this project, details of the methodology, results from the 14 basin simulations, and interpretation of these results. A key finding is that the hydrological response of the different geographical regions of the United States to potential climate change may be very different, depending on the dominant physical processes of that particular region. Also considered is the tremendous amount of uncertainty present in the climate emission scenarios and how this uncertainty propagates through the hydrologic simulations. This paper concludes with a discussion of the lessons learned and potential for future work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, Melissa R.; Aziz, H. M. Abdul; Coletti, Mark A.
Changing human activity within a geographical location may have significant influence on the global climate, but that activity must be parameterized in such a way as to allow these high-resolution sub-grid processes to affect global climate within that modeling framework. Additionally, we must have tools that provide decision support and inform local and regional policies regarding mitigation of and adaptation to climate change. The development of next-generation earth system models, that can produce actionable results with minimum uncertainties, depends on understanding global climate change and human activity interactions at policy implementation scales. Unfortunately, at best we currently have only limitedmore » schemes for relating high-resolution sectoral emissions to real-time weather, ultimately to become part of larger regions and well-mixed atmosphere. Moreover, even our understanding of meteorological processes at these scales is imperfect. This workshop addresses these shortcomings by providing a forum for discussion of what we know about these processes, what we can model, where we have gaps in these areas and how we can rise to the challenge to fill these gaps.« less
Interactions between above- and belowground organisms modified in climate change experiments
NASA Astrophysics Data System (ADS)
Stevnbak, Karen; Scherber, Christoph; Gladbach, David J.; Beier, Claus; Mikkelsen, Teis N.; Christensen, Søren
2012-11-01
Climate change has been shown to affect ecosystem process rates and community composition, with direct and indirect effects on belowground food webs. In particular, altered rates of herbivory under future climate can be expected to influence above-belowground interactions. Here, we use a multifactor, field-scale climate change experiment and independently manipulate atmospheric CO2 concentration, air and soil temperature and drought in all combinations since 2005. We show that changes in these factors modify the interaction between above- and belowground organisms. We use an insect herbivore to experimentally increase aboveground herbivory in grass phytometers exposed to all eight combinations of climate change factors for three years. Aboveground herbivory increased the abundance of belowground protozoans, microbial growth and microbial nitrogen availability. Increased CO2 modified these links through a reduction in herbivory and cascading effects through the soil food web. Interactions between CO2, drought and warming can affect belowground protozoan abundance. Our findings imply that climate change affects aboveground-belowground interactions through changes in nutrient availability.
The Role of Social Influences on Pro-Environment Behaviors in the San Diego Region.
Estrada, Mica; Schultz, P Wesley; Silva-Send, Nilmini; Boudrias, Michel A
2017-04-01
From a social psychological perspective, addressing the threats of climate change involves not only education, which imparts objective facts upon a passive individual, but also a socializing process. The Tripartite Integration Model of Social Influence (TIMSI) provides a theoretical framework that connects acquiring climate change knowledge with integration into a community, which results in greater engagement in climate friendly behaviors. Survey data were collected from 1000 residents in San Diego County. Measures included (a) knowledge about climate change; (b) self-efficacy, what pro-environmental actions they felt they could do; (c) identity, to what extent they identified as part of a community that is concerned about climate change; (d) values, endorsement of values of the community that is concerned about climate change; and (e) pro-environmental behavior, engagement in conservation behaviors. Results indicated that self-efficacy and values mediated the relationship between knowledge and pro-environmental behavior.
NASA Astrophysics Data System (ADS)
Witte, J. P. M.; Runhaar, J.; van Ek, R.; van der Hoek, D. C. J.; Bartholomeus, R. P.; Batelaan, O.; van Bodegom, P. M.; Wassen, M. J.; van der Zee, S. E. A. T. M.
2012-11-01
For policy making and spatial planning, information is needed about the impacts of climate change on natural ecosystems. To provide this information, commonly hydrological and ecological models are used. We give arguments for our assessment that modelling only is insufficient for determining the impacts of climate changes on natural ecosystems at regional scales. Instead, we proposed a combination of hydrological simulations, a literature review and process-knowledge on climate-hydrology-vegetation interactions, to compile a sketch map that indicates climate change effects on a number of ecosystems in the Netherlands. Soon after a first version of our sketch map was published by a Dutch professional journal, copies appeared in policy documents, and also in a commercial and popular atlas of the Netherlands. Moreover, the map led to a question in the Dutch parliament about the sustainability of bog reserves under the future climate. Apparently, there was an urgent need for the information provided by the map. The map shows that climate change will presumably have the largest influence on ecosystems in the Netherlands that depend on precipitation as the major water source, like heathlands, dry grasslands, rain-fed moorland pools and raised bogs. Also highly susceptible are fens in reserves surrounded by deeply drained polders, because such fens depend on the inlet of surface water, of which quality is likely to deteriorate upon climate change. While the map is indicative for directions of change, in view of the uncertainties of our study, no conclusions should be drawn that may have far-reaching consequences, such as giving up certain nature targets that might no longer be feasible in the future climate. Instead, we advise to anticipate the potential threats from climate change by taking a number of adaptation measures that enhance the robustness of nature reserves. To improve climate change projections on hydrology and ecosystems, future research should especially focus on feedbacks of vegetation on the water balance, on processes that directly influence plant performance and on the ecological effects of weather extremes.
Jump-Diffusion models and structural changes for asset forecasting in hydrology
NASA Astrophysics Data System (ADS)
Tranquille Temgoua, André Guy; Martel, Richard; Chang, Philippe J. J.; Rivera, Alfonso
2017-04-01
Impacts of climate change on surface water and groundwater are of concern in many regions of the world since water is an essential natural resource. Jump-Diffusion models are generally used in economics and other related fields but not in hydrology. The potential application could be made for hydrologic data series analysis and forecast. The present study uses Jump-Diffusion models by adding structural changes to detect fluctuations in hydrologic processes in relationship with climate change. The model implicitly assumes that modifications in rivers' flowrates can be divided into three categories: (a) normal changes due to irregular precipitation events especially in tropical regions causing major disturbance in hydrologic processes (this component is modelled by a discrete Brownian motion); (b) abnormal, sudden and non-persistent modifications in hydrologic proceedings are handled by Poisson processes; (c) the persistence of hydrologic fluctuations characterized by structural changes in hydrological data related to climate variability. The objective of this paper is to add structural changes in diffusion models with jumps, in order to capture the persistence of hydrologic fluctuations. Indirectly, the idea is to observe if there are structural changes of discharge/recharge over the study area, and to find an efficient and flexible model able of capturing a wide variety of hydrologic processes. Structural changes in hydrological data are estimated using the method of nonlinear discrete filters via Method of Simulated Moments (MSM). An application is given using sensitive parameters such as baseflow index and recession coefficient to capture discharge/recharge. Historical dataset are examined by the Volume Spread Analysis (VSA) to detect real time and random perturbations in hydrologic processes. The application of the method allows establishing more accurate hydrologic parameters. The impact of this study is perceptible in forecasting floods and groundwater recession. Keywords: hydrologic processes, Jump-Diffusion models, structural changes, forecast, climate change
How Did Climate and Humans Respond to Past Volcanic Eruptions?
NASA Technical Reports Server (NTRS)
Toohey, Matthew; Ludlow, Francis; Legrande, Allegra N.
2016-01-01
To predict and prepare for future climate change, scientists are striving to understand how global-scale climatic change manifests itself on regional scales and also how societies adapt or don't to sometimes subtle and complex climatic changes. In this regard, the strongest volcanic eruptions of the past are powerful test cases, showcasing how the broad climate system responds to sudden changes in radiative forcing and how societies have responded to the resulting climatic shocks. These issues were at the heart of the inaugural workshop of the Volcanic Impacts on Climate and Society (VICS) Working Group, convened in June 2016 at the Lamont-Doherty Earth Observatory of Columbia University in Palisades, N.Y. The 3-day meeting gathered approximately 50 researchers, who presented work intertwining the history of volcanic eruptions and the physical processes that connect eruptions with human and natural systems on a global scale.
Developing quantitative criteria to evaluate AOGCMs for application to regional climate assessments
NASA Astrophysics Data System (ADS)
Hayhoe, K.; Wake, C.; Bradbury, J.; Degaetano, A.; Hertel, A.
2006-12-01
Climate projections are the foundation for regional assessments of potential climate impacts. However, the soundness of regional assessments depends on the ability of global climate models to reproduce key processes responsible for regional climate trends. Here, we develop a systematic method to compare observed climate with historical atmosphere-ocean general circulation model (AOGCM) simulations, to assess the degree to which AOGCMs are able to reproduce regional circulation patterns. Applying this methodology to the U.S. Northeast (NE), we find that nearly all AOGCMs simulate a reasonable winter NAO pattern and seasonal positions of the Jet Stream and the East Coast Trough. However, not all models capture observed correlations between these circulation patterns and seasonal climate anomalies in the NE. Using only those AOGCMs that meet the criteria in each of these areas, we then develop projections of future climate change in the NE. The primary changes projected to occur over the next century - slightly greater temperature increases in summer than winter, and increases in winter precipitation - are consistent with projected trends in regional climate processes and are relatively independent of model or scale. These suggest confidence in the direction and potential range of the most notable regional climate trends, with the absolute magnitude of change depending on both the sensitivity of the climate system to human forcing as well as on human emissions over coming decades.
Dingfang Chen; Mei Yu; Grizelle González; Xiaoming Zou; Qiong Gao
2017-01-01
Tropical forests play an important role in regulating the global climate and the carbon cycle. With the changing temperature and moisture along the elevation gradient, the Luquillo Experimental Forest in Northeastern Puerto Rico provides a natural approach to understand tropical forest ecosystems under climate change. In this study, we conducted a soil translocation...
Impacts of climate change on marine top predators: Advances and future challenges
NASA Astrophysics Data System (ADS)
Hobday, Alistair J.; Arrizabalaga, Haritz; Evans, Karen; Nicol, Simon; Young, Jock W.; Weng, Kevin C.
2015-03-01
Oceanic top predators are the subject of studies by researchers under the international Climate Impacts on Oceanic Top Predators (CLIOTOP) program. A wide range of data sets have shown that environmental conditions, such as temperature and marine productivity, affect the distribution and biological processes of these species, and thus the activities of the humans that depend on them. In this special issue, 25 papers arising from the 2nd CLIOTOP symposium, held in Noumea, New Caledonia in February 2013 report the importance of realistic physical descriptions of oceanic processes for climate change projections, demonstrate a wide range of predator responses to historical climate variability, describe new analytical approaches for understanding the physiology, behaviour and trophodynamics, and project future distributions for a range of species. Several contributions discuss the implications for conservation and fisheries and show that resolving ecosystem management challenges and conflicts in the face of climate change is possible, but will require attention by decision-makers to issues that are broader than their traditional mandate. In the coming years, an increased focus on the development of management options to reduce the impacts of climate change on top predators and their dependent industries is needed.
NASA Astrophysics Data System (ADS)
Ray, A. J.; Barsugli, J. J.; Averyt, K. B.; Deheza, V.; Udall, B.
2008-12-01
In 2007 Colorado's Governor Ritter issued a Colorado Climate Action Plan, in response to the risks associated with climate change and sets a goal to adapt to those climate changes "that cannot be avoided." The Western Water Assessment, a NOAA funded RISA program, was commissioned to do a synthesis of the science on climate change aimed at planners, decisionmakers, and policymakers in water in Colorado. Changes in Colorado's climate and implications for water resources are occurring in a global context. The objective of the report is to communicate the state of the science regarding the physical aspects of climate change that are important for evaluating impacts on Colorado's water resources, and to support state efforts to develop a water adaptation plan. However, the identification of specific climate change impacts on water resources is beyond the scope of this report. Water managers have a long history of adapting to changing circumstances, including changes in economies and land use, environmental concerns, and population growth. Climate change will further affect the decisions made about use of water. However, current water management practices may not be robust enough to cope with this climate change. This presentation reports on the process of developing the report and challenges we faced. We developed the report based on ongoing interactions with the water management community and discussions with them about their decision processes and needs. A second presentation (see Barsugli et al) presents the synthesis findings from the report. We followed the IPCC WG1 model of observations, attribution, and projections. However, many published studies and datasets include information about Colorado, there are few climate studies that focus only on the state. Consequently, many important scientific analyses for Colorado have not been done, and Colorado- specific information is often imbedded in or averaged with studies of the larger Western U.S. We used findings from peer-reviewed regional studies, and conducted new analyses derived from existing datasets and model projections, and took advantage of new regional analyses. In addition to the IPCC Fourth Assessment, we also took advantage of very new Climate Change Science Program Assessments. Many water managers, although often technically savvy engineers, hydrologists and other professionals, but are not trained as climate or atmospheric scientists, and seeks to complexity by using Fahrenheit units, minimizing use of or defining jargon terms, and re-plotting published figures/data for simplicity. The report is written at a less technical level than the IPCC reports, and some features are intended to raise the level of climate literacy of our audience about climate and how climate science is done. For example, the report includes a primer on climate models and theory that situates Colorado in the context of global climate change and describes how the unique features of the state -- such as the complex topography -- relate to interpreting and using climate change projections. This report responds to Colorado state agencies' and water management community needs to understanding of climate change and is an initial step in establishing Colorado's water-related adaptation needs. Another impact of this report is as an experiment in climate services for climate change information and exploring the challenges of communicating the information to diverse decisionmakers.
Julia A. Jones; Irena F. Creed; Kendra L. Hatcher; Robert J. Warren; Mary Beth Adams; Melinda H. Benson; Emery Boose; Warren A. Brown; John L. Campbell; Alan Covich; David W. Clow; Clifford N. Dahm; Kelly Elder; Chelcy R. Ford; Nancy B. Grimm; Donald L Henshaw; Kelli L. Larson; Evan S. Miles; Kathleen M. Miles; Stephen D. Sebestyen; Adam T. Spargo; Asa B. Stone; James M. Vose; Mark W. Williams
2012-01-01
Analyses of long-term records at 35 headwater basins in the United States and Canada indicate that climate change effects on streamflow are not as clear as might be expected, perhaps because of ecosystem processes and human influences. Evapotranspiration was higher than was predicted by temperature in water-surplus ecosystems and lower than was predicted in water-...
Adapting the US Food System to Climate Change Goes Beyond the Farm Gate
NASA Astrophysics Data System (ADS)
Easterling, W. E.
2014-12-01
The literature on climate change effects on food and agriculture has concentrated primarily on how crops and livestock likely will be directly affected by climate variability and change and by elevated carbon dioxide. Integrated assessments have simulated large-scale economic response to shifting agricultural productivity caused by climate change, including possible changes in food costs and prices. A small but growing literature has shown how different facets of agricultural production inside the farm gate could be adapted to climate variability and change. Very little research has examined how the full food system (production, processing and storage, transportation and trade, and consumption) is likely to be affected by climate change and how different adaptation approaches will be required by different parts of the food system. This paper will share partial results of a major assessment sponsored by USDA to determine how climate change-induced changes in global food security could affect the US food system. Emphasis is given to understanding how adaptation strategies differ widely across the food system. A common thread, however, is risk management-based decision making. Technologies and management strategies may co-evolve with climate change but a risk management framework for implementing those technologies and strategies may provide a stable foundation.
Bringing New Ph.D.s Together for Interdisciplinary Climate Change Research
NASA Astrophysics Data System (ADS)
Phelan, Liam; Jones, Holly; Marlon, Jennifer R.
2013-01-01
Climate change is complex and thus requires interdisciplinary research, and new scholars are rising to that challenge. The Dissertations Initiative for the Advancement of Climate Change Research (DISCCRS (pronounced "discourse"); see http://www.disccrs.org) brings together select groups of recent PhD graduates to encourage interdisciplinary work on climate change. The DISCCRS Symposium VII held just outside of Colorado Springs, Colo., brought together 33 graduates from fields as diverse as climatology, ecology, anthropology, and political science for an intensive week of cross-disciplinary engagement in activities like facilitation and leadership training, collaborative research development, peer networking, communication training, and analysis of working group processes.
Hejazi, Mohamad I; Voisin, Nathalie; Liu, Lu; Bramer, Lisa M; Fortin, Daniel C; Hathaway, John E; Huang, Maoyi; Kyle, Page; Leung, L Ruby; Li, Hong-Yi; Liu, Ying; Patel, Pralit L; Pulsipher, Trenton C; Rice, Jennie S; Tesfa, Teklu K; Vernon, Chris R; Zhou, Yuyu
2015-08-25
There is evidence that warming leads to greater evapotranspiration and surface drying, thus contributing to increasing intensity and duration of drought and implying that mitigation would reduce water stresses. However, understanding the overall impact of climate change mitigation on water resources requires accounting for the second part of the equation, i.e., the impact of mitigation-induced changes in water demands from human activities. By using integrated, high-resolution models of human and natural system processes to understand potential synergies and/or constraints within the climate-energy-water nexus, we show that in the United States, over the course of the 21st century and under one set of consistent socioeconomics, the reductions in water stress from slower rates of climate change resulting from emission mitigation are overwhelmed by the increased water stress from the emissions mitigation itself. The finding that the human dimension outpaces the benefits from mitigating climate change is contradictory to the general perception that climate change mitigation improves water conditions. This research shows the potential for unintended and negative consequences of climate change mitigation.
NASA Astrophysics Data System (ADS)
Halversen, C.; Weiss, E. L.; Pedemonte, S.
2016-02-01
Today's youth have been tasked with the overwhelming job of addressing the world's climate future. The students who will become the scientists, policy makers, and citizens of tomorrow must gain a robust understanding of the causes and effects of climate change, as well as possible adaptation strategies. Currently, few high quality curriculum materials exist that address climate change in a developmentally appropriate manner. The NOAA-funded Ocean Sciences Sequence for Grades 6-8: The Ocean-Atmosphere Connection and Climate Change (OSS) addresses this gap by providing teachers with scientifically accurate climate change curriculum that hits on some of the most salient points in climate science, while simultaneously developing students' science process skills. OSS was developed through a collaboration between some of the nation's leading ocean and climate scientists and the Lawrence Hall of Science's highly qualified curriculum development team. Scientists were active partners throughout the entire development process, from initial brainstorming of key concepts and creating the conceptual storyline for the curriculum to final review of the content and activities. The goal was to focus strategically and effectively on core concepts within ocean and climate sciences that students should understand. OSS was designed in accordance with the latest research from the learning sciences and provides numerous opportunities for students to develop facility with science practices by "doing" science.Through hands-on activities, technology, informational readings, and embedded assessments, OSS deeply addresses a significant number of standards from the Next Generation Science Standards and is being used by many teachers as they explore the shifts required by NGSS. It also aligns with the Ocean Literacy and Climate Literacy Frameworks. OSS comprises 33 45-minute sessions organized into three thematic units, each driven by an exploratory question: (1) How do the ocean and atmosphere interact?; (2) How does carbon flow through the ocean, land, and atmosphere?; and (3) What are the causes and effects of climate change? The curriculum deliberately explores the ocean and climate as global systems and challenges students to use scientific evidence to make explanations about climate change.
10 CFR 300.11 - Independent verification.
Code of Federal Regulations, 2014 CFR
2014-01-01
... DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES § 300.11..., Health and Safety Auditor Certification: California Climate Action Registry; Clean Development Mechanism... statements (or lack thereof) of any significant changes in entity boundaries, products, or processes; (iii...
10 CFR 300.11 - Independent verification.
Code of Federal Regulations, 2013 CFR
2013-01-01
... DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES § 300.11..., Health and Safety Auditor Certification: California Climate Action Registry; Clean Development Mechanism... statements (or lack thereof) of any significant changes in entity boundaries, products, or processes; (iii...
10 CFR 300.11 - Independent verification.
Code of Federal Regulations, 2012 CFR
2012-01-01
... DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES § 300.11..., Health and Safety Auditor Certification: California Climate Action Registry; Clean Development Mechanism... statements (or lack thereof) of any significant changes in entity boundaries, products, or processes; (iii...
DOT National Transportation Integrated Search
2009-07-01
This report is part on on-going work for the US Department of Transportations Center for Climate Change and Environmental Forecasting and the Federal Highway Administration to highlight innovative actions and initiatives undertaken by states and m...
Are Plant Species Able to Keep Pace with the Rapidly Changing Climate?
Cunze, Sarah; Heydel, Felix; Tackenberg, Oliver
2013-01-01
Future climate change is predicted to advance faster than the postglacial warming. Migration may therefore become a key driver for future development of biodiversity and ecosystem functioning. For 140 European plant species we computed past range shifts since the last glacial maximum and future range shifts for a variety of Intergovernmental Panel on Climate Change (IPCC) scenarios and global circulation models (GCMs). Range shift rates were estimated by means of species distribution modelling (SDM). With process-based seed dispersal models we estimated species-specific migration rates for 27 dispersal modes addressing dispersal by wind (anemochory) for different wind conditions, as well as dispersal by mammals (dispersal on animal's coat – epizoochory and dispersal by animals after feeding and digestion – endozoochory) considering different animal species. Our process-based modelled migration rates generally exceeded the postglacial range shift rates indicating that the process-based models we used are capable of predicting migration rates that are in accordance with realized past migration. For most of the considered species, the modelled migration rates were considerably lower than the expected future climate change induced range shift rates. This implies that most plant species will not entirely be able to follow future climate-change-induced range shifts due to dispersal limitation. Animals with large day- and home-ranges are highly important for achieving high migration rates for many plant species, whereas anemochory is relevant for only few species. PMID:23894290
EdGCM: Research Tools for Training the Climate Change Generation
NASA Astrophysics Data System (ADS)
Chandler, M. A.; Sohl, L. E.; Zhou, J.; Sieber, R.
2011-12-01
Climate scientists employ complex computer simulations of the Earth's physical systems to prepare climate change forecasts, study the physical mechanisms of climate, and to test scientific hypotheses and computer parameterizations. The Intergovernmental Panel on Climate Change 4th Assessment Report (2007) demonstrates unequivocally that policy makers rely heavily on such Global Climate Models (GCMs) to assess the impacts of potential economic and emissions scenarios. However, true climate modeling capabilities are not disseminated to the majority of world governments or U.S. researchers - let alone to the educators who will be training the students who are about to be presented with a world full of climate change stakeholders. The goal is not entirely quixotic; in fact, by the mid-1990's prominent climate scientists were predicting with certainty that schools and politicians would "soon" be running GCMs on laptops [Randall, 1996]. For a variety of reasons this goal was never achieved (nor even really attempted). However, around the same time NASA and the National Science Foundation supported a small pilot project at Columbia University to show the potential of putting sophisticated computer climate models - not just "demos" or "toy models" - into the hands of non-specialists. The Educational Global Climate Modeling Project (EdGCM) gave users access to a real global climate model and provided them with the opportunity to experience the details of climate model setup, model operation, post-processing and scientific visualization. EdGCM was designed for use in both research and education - it is a full-blown research GCM, but the ultimate goal is to develop a capability to embed these crucial technologies across disciplines, networks, platforms, and even across academia and industry. With this capability in place we can begin training the skilled workforce that is necessary to deal with the multitude of climate impacts that will occur over the coming decades. To further increase the educational potential of climate models, the EdGCM project has also created "EZgcm". Through a joint venture of NASA, Columbia University and McGill University EZgcm moves the focus toward a greater use of Web 1.0 and Web 2.0-based technologies. It shifts the educational objectives towards a greater emphasis on teaching students how science is conducted and what role science plays in assessing climate change. That is, students learn about the steps of the scientific process as conveyed by climate modeling research: constructing a hypothesis, designing an experiment, running a computer model, using scientific visualization to support analysis, communicating the results of that analysis, and role playing the scientific peer review process. This is in stark contrast to what they learn from the political debate over climate change, which they often confuse with a scientific debate.
The ice record of greenhouse gases: a view in the context of future changes
NASA Astrophysics Data System (ADS)
Raynaud, D.; Barnola, J.-M.; Chappellaz, J.; Blunier, T.; Indermühle, A.; Stauffer, B.
2000-01-01
Analysis of air trapped in polar ice provides the most direct information on the natural variability of Greenhouse Trace Gases (GTG). It gives the context for the dramatic change in their atmospheric concentrations induced by anthropogenic activities over the last 200 yr, leading to present-day levels which have been unprecedented over the last 400,000 yr. The GTG ice record also provides insight into the processes generally involved in the interplay between these trace gases and the climate and in particular those which are likely to take place in the next centuries in terms of climate changes and climate feedbacks on ecosystems. The paper gives selected examples of the GTG record, taken during different climatic periods in the past, and illustrating what we can learn in terms of processes.
NASA Astrophysics Data System (ADS)
Wang, Y.; Yang, H.; Yang, D.; Gao, B.; Qin, Y.
2017-12-01
The Tibetan Plateau is more sensitive to the global climate change than other areas due to its special geography. Previous studies have shown that, besides the changes of temperature and precipitation, the changes in the cryosphere such as glacier and frozen ground also have important and far-reaching effects on the ecological and hydrological processes in the basin. In order to reliably predict the future runoff changing trend in the future, it's important to estimate the responses of cryosphere to the future climate change, as well as its impacts on the hydrological processes. Based on typical future climate scenarios (under emission scenario RCP4.5) from five general circulation models (GCMs) and one regional climate model (RCM), as well as a distributed eco-hydrological model (GBEHM), this study analyzes the possible future climate change (from 2011 to 2060) and its impacts on cryospheric and hydrological processes in upper Heihe River Basin, a typical cold mountain region located in the Northeast Tibetan Plateau. The results suggest that air temperature is expected to rise in the future by approximately 0.32 °C/10a, and precipitation is expected to rise slightly by about 3 mm/10a. Under the rising air temperature, the maximum frozen depth of seasonally frozen ground will decrease by about 4.1 cm/10a and the active layer depth of the frozen ground will increase by about 6.2 cm/10a. The runoff is expected to reduce by approximately 6 mm/10a and the evapotranspiration is expected to increase by approximately 9 mm/10a. These changes in hydrological processes are mainly caused by the air temperature rise. The impacts of air temperature change on the hydrological processes are mainly due to the changes of frozen ground. The thickening of active layer of the frozen ground increases the soil storage capacity, leading to the decrease of runoff and increase of evapotranspiration. Results show that, when the active layer depth increase by 1 cm, the runoff will decrease by about 1 2 mm and the evapotranspiration will increase by about 0.7 2 mm. Additionally, the changes from permafrost to seasonal frozen ground increase the groundwater infiltration, which also leads to the decrease of surface runoff.
Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being.
Pecl, Gretta T; Araújo, Miguel B; Bell, Johann D; Blanchard, Julia; Bonebrake, Timothy C; Chen, I-Ching; Clark, Timothy D; Colwell, Robert K; Danielsen, Finn; Evengård, Birgitta; Falconi, Lorena; Ferrier, Simon; Frusher, Stewart; Garcia, Raquel A; Griffis, Roger B; Hobday, Alistair J; Janion-Scheepers, Charlene; Jarzyna, Marta A; Jennings, Sarah; Lenoir, Jonathan; Linnetved, Hlif I; Martin, Victoria Y; McCormack, Phillipa C; McDonald, Jan; Mitchell, Nicola J; Mustonen, Tero; Pandolfi, John M; Pettorelli, Nathalie; Popova, Ekaterina; Robinson, Sharon A; Scheffers, Brett R; Shaw, Justine D; Sorte, Cascade J B; Strugnell, Jan M; Sunday, Jennifer M; Tuanmu, Mao-Ning; Vergés, Adriana; Villanueva, Cecilia; Wernberg, Thomas; Wapstra, Erik; Williams, Stephen E
2017-03-31
Distributions of Earth's species are changing at accelerating rates, increasingly driven by human-mediated climate change. Such changes are already altering the composition of ecological communities, but beyond conservation of natural systems, how and why does this matter? We review evidence that climate-driven species redistribution at regional to global scales affects ecosystem functioning, human well-being, and the dynamics of climate change itself. Production of natural resources required for food security, patterns of disease transmission, and processes of carbon sequestration are all altered by changes in species distribution. Consideration of these effects of biodiversity redistribution is critical yet lacking in most mitigation and adaptation strategies, including the United Nation's Sustainable Development Goals. Copyright © 2017, American Association for the Advancement of Science.
Improving the forecast for biodiversity under climate change.
Urban, M C; Bocedi, G; Hendry, A P; Mihoub, J-B; Pe'er, G; Singer, A; Bridle, J R; Crozier, L G; De Meester, L; Godsoe, W; Gonzalez, A; Hellmann, J J; Holt, R D; Huth, A; Johst, K; Krug, C B; Leadley, P W; Palmer, S C F; Pantel, J H; Schmitz, A; Zollner, P A; Travis, J M J
2016-09-09
New biological models are incorporating the realistic processes underlying biological responses to climate change and other human-caused disturbances. However, these more realistic models require detailed information, which is lacking for most species on Earth. Current monitoring efforts mainly document changes in biodiversity, rather than collecting the mechanistic data needed to predict future changes. We describe and prioritize the biological information needed to inform more realistic projections of species' responses to climate change. We also highlight how trait-based approaches and adaptive modeling can leverage sparse data to make broader predictions. We outline a global effort to collect the data necessary to better understand, anticipate, and reduce the damaging effects of climate change on biodiversity. Copyright © 2016, American Association for the Advancement of Science.
Accounting for health in climate change policies: a case study of Fiji
Morrow, Georgina; Bowen, Kathryn
2014-01-01
Background Climate change is expected to affect the health of most populations in the coming decades, having the greatest impact on the poorest and most disadvantaged people in the world. The Pacific islands, including Fiji, are particularly vulnerable to the effects of climate change. Objective The three major health impacts of climate change in Fiji explored in this study were dengue fever, diarrhoeal disease, and malnutrition, as they each pose a significant threat to human health. The aim of this study was to investigate to what extent the Fiji National Climate Change Policy, and a selection of relevant sectoral policies, account for these human health effects of climate change. Design The study employed a three-pronged policy analysis to evaluate: 1) the content of the Fijian National Climate Change Policy and to what extent health was incorporated within this; 2) the context within which the policy was developed; 3) the relevant processes; and 4) the actors involved. A selection of relevant sectoral policies were also analysed to assess the extent to which these included climate change and health considerations. Results The policy analysis showed that these three health impacts of climate change were only considered to a minor extent, and often indirectly, in both the Fiji National Climate Change Policy and the corresponding National Climate Change Adaptation Strategy, as well as the Public Health Act. Furthermore, supporting documents in relevant sectors including water and agriculture made no mention of climate change and health impacts. Conclusions The projected health impacts of climate change should be considered as part of reviewing the Fiji National Climate Change Policy and National Climate Change Adaptation Strategy, and the Public Health Act. In the interest of public health, this should include strategies for combating dengue fever, malnutrition, and water-borne disease. Related sectoral policies in water and agriculture should also be revised to consider climate change and its impact on human health. Approaches to include health aspects of climate change within sectoral and climate change specific policies should be encouraged, via a number of mechanisms, such as the Health in All Policies approach. Future research could support the Fiji health sector in developing climate change and health programmes. PMID:24836442
NASA Astrophysics Data System (ADS)
Mutiibwa, D.; Irmak, S.
2011-12-01
The majority of recent climate change studies have largely focused on detection and attribution of anthropogenic forcings of greenhouse gases, aerosols, stratospheric and tropospheric ozone. However, there is growing evidence that land cover/land use (LULC) change can significantly impact atmospheric processes from local to regional weather and climate variability. Human activities such as conversion of natural ecosystem to croplands and urban-centers, deforestation and afforestation impact biophysical properties of the land surfaces including albedo, energy balance, moisture-holding capacity of soil, and surface roughness. Alterations in these properties affect the heat and moisture exchanges between the land surface and atmospheric boundary layer, and ultimately impact the climate system. The challenge is to demonstrate that LULC changes produce a signal that can be discerned from natural climate noise. In this study, we attempt to detect the signature of anthropogenic forcing of LULC change on climate on regional scale. The signal projector investigated for detecting the signature of LULC changes on regional climate of the High Plains of the USA is the Normalized Difference Vegetation Index (NDVI). NDVI is an indicator that captures short and long-term geographical distribution of vegetation surfaces. The study develops an enhanced signal processing procedure to maximize the signal to noise ratio by introducing a pre-filtering technique of ARMA processes on the investigated climate and signal variables, before applying the optimal fingerprinting technique to detect the signals of LULC changes on observed climate, temperature, in the High Plains. The intent is to filter out as much noise as possible while still retaining the essential features of the signal by making use of the known characteristics of the noise and the anticipated signal. The study discusses the approach of identifying and suppressing the autocorrelation in optimal fingerprint analysis by applying linear transformation of ARMA processes to the analysis variables. With the assumption that natural climate variability is a near stationary process, the pre-filters are developed to generate stationary residuals. The High Plains region although impacted by droughts over the last three decades has had an increase in agricultural lands, both irrigated and non-irrigated. The study shows that for the most part of the High Plains region there is significant influence of evaporative cooling on regional climate during the summer months. As the vegetation coverage increases coupled with increased in irrigation application, the regional daytime surface energy in summer is increasingly redistributed into latent heat flux which increases the effect of evaporative cooling on summer temperatures. We included the anthropogenic forcing of CO2 on regional climate with the main purpose of surpassing the radiative heating effect of greenhouse gases from natural climate noise, to enhance the LULC signal-to-noise ratio. The warming signal due to greenhouse gas forcing is observed to be weakest in the central part of the High Plains. The results showed that the CO2 signal in the region was weak or is being surpassed by the evaporative cooling effect.
Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios
NASA Astrophysics Data System (ADS)
Stocker, Benjamin D.; Roth, Raphael; Joos, Fortunat; Spahni, Renato; Steinacher, Marco; Zaehle, Soenke; Bouwman, Lex; Xu-Ri; Prentice, Iain Colin
2013-07-01
Atmospheric concentrations of the three important greenhouse gases (GHGs) CO2, CH4 and N2O are mediated by processes in the terrestrial biosphere that are sensitive to climate and CO2. This leads to feedbacks between climate and land and has contributed to the sharp rise in atmospheric GHG concentrations since pre-industrial times. Here, we apply a process-based model to reproduce the historical atmospheric N2O and CH4 budgets within their uncertainties and apply future scenarios for climate, land-use change and reactive nitrogen (Nr) inputs to investigate future GHG emissions and their feedbacks with climate in a consistent and comprehensive framework. Results suggest that in a business-as-usual scenario, terrestrial N2O and CH4 emissions increase by 80 and 45%, respectively, and the land becomes a net source of C by AD 2100. N2O and CH4 feedbacks imply an additional warming of 0.4-0.5°C by AD 2300; on top of 0.8-1.0°C caused by terrestrial carbon cycle and Albedo feedbacks. The land biosphere represents an increasingly positive feedback to anthropogenic climate change and amplifies equilibrium climate sensitivity by 22-27%. Strong mitigation limits the increase of terrestrial GHG emissions and prevents the land biosphere from acting as an increasingly strong amplifier to anthropogenic climate change.
Health Impacts of Climate Change in the Solomon Islands: An Assessment and Adaptation Action Plan
Spickett, Jeffery T; Katscherian, Dianne
2014-01-01
The Pacific island countries are particularly vulnerable to the environmental changes wrought by global climate change such as sea level rise, more frequent and intense extreme weather events and increasing temperatures. The potential biophysical changes likely to affect these countries have been identified and it is important that consideration be given to the implications of these changes on the health of their citizens. The potential health impacts of climatic changes on the population of the Solomon Islands were assessed through the use of a Health Impact Assessment framework. The process used a collaborative and consultative approach with local experts to identify the impacts to health that could arise from local environmental changes, considered the risks associated with these and proposed appropriate potential adaptive responses. Participants included knowledgeable representatives from the biophysical, socio-economic, infrastructure, environmental diseases and food sectors. The risk assessments considered both the likelihood and consequences of the health impacts occurring using a qualitative process. To mitigate the adverse effects of the health impacts, an extensive range of potential adaptation strategies were developed. The overall process provided an approach that could be used for further assessments as well as an extensive range of responses which could be used by sectors and to assist future decision making associated with the Solomon Islands’ responses to climate change. PMID:25168977
NASA Astrophysics Data System (ADS)
Saito, L.; Biondi, F.; Fenstermaker, L. F.; Arnone, J.; Devitt, D.; Riddle, B.; Young, M.
2010-12-01
In 2008, the Nevada System of Higher Education received a 5-year, $15 million grant from the National Science Foundation’s (NSF) Experimental Program to Stimulate Competitive Research (EPSCoR). The mission of the project is to create a statewide interdisciplinary program to stimulate transformative research, education, and outreach about the effects of regional climate change on ecosystem services (especially water resources), and support use of this knowledge by policy makers and stakeholders. The overarching question that this effort will address is: how will climate change affect water resources, disturbance regimes and linked ecosystem and human services? While the overall project includes cyberinfrastructure, policy, education and climate modeling, this presentation will focus on the ecological change and water resources components. The goals of these two components are: 1) improving understanding of processes controlling local- and basin-wide impacts of climate on species dynamics, disturbance regimes, and water recharge rates; 2) evaluating interactions between landscape-level processes and biophysical indicators; 3) evaluating interactions between surface and groundwater systems; 4) predicting changes in wildfire regime, primary productivity, and biodiversity (including invasive species); and 5) assessing how interactions between water and ecology will differ under climate change and/or climate variability scenarios. To achieve these goals, the two components will quantify present-day climate variability at multiple temporal and spatial scales, including at multiple elevations within Nevada’s Basin and Range ecosystem continuum. This presentation will discuss key elements for achieving these goals, including the establishment of instrumented transects spanning a range of elevations and vegetation zones in eastern and southern Nevada.
Human dimensions of climate change: the vulnerability of small farmers in the Amazon.
Brondizio, Eduardo S; Moran, Emilio F
2008-05-27
This paper argues for a twofold perspective on human adaptation to climate change in the Amazon. First, we need to understand the processes that mediate perceptions of environmental change and the behavioural responses at the levels of the individual and the local population. Second, we should take into account the process of production and dissemination of global and national climate information and models to regional and local populations, especially small farmers. We discuss the sociocultural and environmental diversity of small farmers in the Amazon and their susceptibility to climate change associated with drought, flooding and accidental fire. Using survey, ethnographic and archival data from study areas in the state of Pará, we discuss farmers' sources of knowledge and long-term memory of climatic events, drought and accidental fire; their sources of climate information; their responses to drought and fire events and the impact of changing rainfall patterns on land use. We highlight the challenges of adaptation to climate change created by the influence of migration and family turnover on collective action and memory, the mismatch of scales used to monitor and disseminate climate data and the lack of extension services to translate large-scale forecasts to local needs. We found that for most farmers, memories of extended drought tend to decrease significantly after 3 years. Over 50% of the farmers interviewed in 2002 did not remember as significant the El Niño Southern Oscillation (ENSO) drought of 1997/1998. This helps explain why approximately 40% of the farmers have not changed their land-use behaviours in the face of the strongest ENSO event of the twentieth century.
Rohr, Jason R; Johnson, Philip; Hickey, Christopher W; Helm, Roger C; Fritz, Alyce; Brasfield, Sandra
2013-01-01
Various international and national regulations hold polluters liable for the cleanup of released hazardous substances and the restoration/rehabilitation of natural resources to preincident baseline conditions, a process often referred to as natural resource damage assessment and restoration (NRDAR). Here, we, the authors, describe how global climate change (GCC) will challenge each of the steps of NRDAR processes and offer eight recommendations to improve these processes in light of GCC. First, we call for a better understanding of the net effects of GCC and contaminants on natural resources. Second, we urge facilities and environmental managers to plan for GCC-related factors that are expected to increase the probability of contaminant releases. Third, we suggest re-evaluating definitions of baseline and reference conditions given that GCC will alter both their trajectories and variability. Fourth, we encourage long-term monitoring to improve the quantification of baseline conditions that will change as climate changes. This will enhance the accuracy of injury assessments, the effectiveness of restoration, and the detection of early warning signs that ecosystems are approaching tipping points. Fifth, in response to or anticipation of GCC, restoration projects may need to be conducted in areas distant from the site of injury or focused on functionally equivalent natural resources; thus, community involvement in NRDAR processes will be increasingly important. Sixth, we promote using NRDAR restoration projects as opportunities to mitigate GCC-related impacts. Seventh, we recommend adaptive management approaches to NRDAR processes and communication of successes and failures widely. Finally, we recommend focusing on managing the stressors that might be exacerbated by GCC, such as pollution and habitat loss, because there is a long history of successfully mitigating these stressors, which can be more easily managed on local scales than climate change. We believe that adoption of these recommendations will lead to a more efficacious NRDAR process, despite the challenges posed by climate change. Environ. Toxicol. Chem. 2013;32:93–101. © 2012 SETAC PMID:23097077
Rohr, Jason R; Johnson, Philip; Hickey, Christopher W; Helm, Roger C; Fritz, Alyce; Brasfield, Sandra
2013-01-01
Various international and national regulations hold polluters liable for the cleanup of released hazardous substances and the restoration/rehabilitation of natural resources to preincident baseline conditions, a process often referred to as natural resource damage assessment and restoration (NRDAR). Here, we, the authors, describe how global climate change (GCC) will challenge each of the steps of NRDAR processes and offer eight recommendations to improve these processes in light of GCC. First, we call for a better understanding of the net effects of GCC and contaminants on natural resources. Second, we urge facilities and environmental managers to plan for GCC-related factors that are expected to increase the probability of contaminant releases. Third, we suggest re-evaluating definitions of baseline and reference conditions given that GCC will alter both their trajectories and variability. Fourth, we encourage long-term monitoring to improve the quantification of baseline conditions that will change as climate changes. This will enhance the accuracy of injury assessments, the effectiveness of restoration, and the detection of early warning signs that ecosystems are approaching tipping points. Fifth, in response to or anticipation of GCC, restoration projects may need to be conducted in areas distant from the site of injury or focused on functionally equivalent natural resources; thus, community involvement in NRDAR processes will be increasingly important. Sixth, we promote using NRDAR restoration projects as opportunities to mitigate GCC-related impacts. Seventh, we recommend adaptive management approaches to NRDAR processes and communication of successes and failures widely. Finally, we recommend focusing on managing the stressors that might be exacerbated by GCC, such as pollution and habitat loss, because there is a long history of successfully mitigating these stressors, which can be more easily managed on local scales than climate change. We believe that adoption of these recommendations will lead to a more efficacious NRDAR process, despite the challenges posed by climate change. Copyright © 2012 SETAC.
NASA Astrophysics Data System (ADS)
Terando, A. J.; Reich, B. J.; Pacifici, K.
2013-12-01
Fire is an important disturbance process in many coupled natural-human systems. Changes in the frequency and severity of fires due to anthropogenic climate change could have significant costs to society and the plant and animal communities that are adapted to a particular fire regime Planning for these changes requires a robust model of the relationship between climate and fire that accounts for multiple sources of uncertainty that are present when simulating ecological and climatological processes. Here we model how anthropogenic climate change could affect the wildfire regime for a region in the Southeast US whose natural ecosystems are dependent on frequent, low-intensity fires while humans are at risk from large catastrophic fires. We develop a modeling framework that incorporates three major sources of uncertainty: (1) uncertainty in the ecological drivers of expected monthly area burned, (2) uncertainty in the environmental drivers influencing the probability of an extreme fire event, and (3) structural uncertainty in different downscaled climate models. In addition we use two policy-relevant emission scenarios (climate stabilization and 'business-as-usual') to characterize the uncertainty in future greenhouse gas forcings. We use a Bayesian framework to incorporate different sources of uncertainty including simulation of predictive errors and Stochastic Search Variable Selection. Our results suggest that although the mean process remains stationary, the probability of extreme fires declines through time, owing to the persistence of high atmospheric moisture content during the peak fire season that dampens the effect of increasing temperatures. Including multiple sources of uncertainty leads to wide prediction intervals, but is potentially more useful for decision-makers that will require adaptation strategies that are robust to rapid but uncertain climate and ecological change.
Rashford, Benjamin S.; Adams, Richard M.; Wu, Jun; Voldseth, Richard A.; Guntenspergen, Glenn R.; Werner, Brett; Johnson, W. Carter
2016-01-01
Wetland productivity in the Prairie Pothole Region (PPR) of North America is closely linked to climate. A warmer and drier climate, as predicted, will negatively affect the productivity of PPR wetlands and the services they provide. The effect of climate change on wetland productivity, however, will not only depend on natural processes (e.g., evapotranspiration), but also on human responses. Agricultural land use, the predominant use in the PPR, is unlikely to remain static as climate change affects crop yields and prices. Land use in uplands surrounding wetlands will further affect wetland water budgets and hence wetland productivity. The net impact of climate change on wetland productivity will therefore depend on both the direct effects of climate change on wetlands and the indirect effects on upland land use. We examine the effect of climate change and land-use response on semipermanent wetland productivity by combining an economic model of agricultural land-use change with an ecological model of wetland dynamics. Our results suggest that the climate change scenarios evaluated are likely to have profound effects on land use in the North and South Dakota PPR, with wheat displacing other crops and pasture. The combined pressure of land-use and climate change significantly reduces wetland productivity. In a climate scenario with a +4 °C increase in temperature, our model predicts that almost the entire region may lack the wetland productivity necessary to support wetland-dependent species.
NASA Astrophysics Data System (ADS)
Burkhart, J. F.; Tallaksen, L. M.; Stordal, F.; Berntsen, T.; Westermann, S.; Kristjansson, J. E.; Etzelmuller, B.; Hagen, J. O.; Schuler, T.; Hamran, S. E.; Lande, T. S.; Bryn, A.
2015-12-01
Climate change is impacting the high latitudes more rapidly and significantly than any other region of the Earth because of feedback processes between the atmosphere and the underlying surface. A warmer climate has already led to thawing of permafrost, reducing snow cover and a longer growing season; changes, which in turn influence the atmospheric circulation and the hydrological cycle. Still, many studies rely on one-way coupling between the atmosphere and the land surface, thereby neglecting important interactions and feedbacks. The observation, understanding and prediction of such processes from local to regional and global scales, represent a major scientific challenge that requires multidisciplinary scientific effort. The successful integration of earth observations (remote and in-situ data) and model development requires a harmonized research effort between earth system scientists, modelers and the developers of technologies and sensors. LATICE, which is recognized as a priority research area by the Faculty of Mathematics and Natural Sciences at the University of Oslo, aims to advance the knowledge base concerning land atmosphere interactions and their role in controlling climate variability and climate change at high northern latitudes. The consortium consists of an interdisciplinary team of experts from the atmospheric and terrestrial (hydrosphere, cryosphere and biosphere) research groups, together with key expertise on earth observations and novel sensor technologies. LATICE addresses critical knowledge gaps in the current climate assessment capacity through: Improving parameterizations of processes in earth system models controlling the interactions and feedbacks between the land (snow, ice, permafrost, soil and vegetation) and the atmosphere at high latitudes, including the boreal, alpine and artic zone. Assessing the influence of climate and land cover changes on water and energy fluxes. Integrating remote earth observations with in-situ data and suitable models to allow studies of finer-scale processes governing land-atmosphere interactions. Addressing observational challenges through the development of novel observational products and networks.
Climate shapes the protein abundance of dominant soil bacteria.
Bastida, Felipe; Crowther, Tom W; Prieto, Iván; Routh, Devin; García, Carlos; Jehmlich, Nico
2018-05-28
Sensitive models of climate change impacts would require a better integration of multi-omics approaches that connect the abundance and activity of microbial populations. Here, we show that climate is a fundamental driver of the protein abundance of Actinobacteria, Planctomycetes and Proteobacteria, supporting the hypothesis that metabolic activity of some dominant phyla may be closely linked to climate. These results may improve our capacity to construct microbial models that better predict the impact of climate change in ecosystem processes. Copyright © 2018 Elsevier B.V. All rights reserved.
Thom, Dominik; Rammer, Werner; Seidl, Rupert
2017-11-01
Currently, the temperate forest biome cools the earth's climate and dampens anthropogenic climate change. However, climate change will substantially alter forest dynamics in the future, affecting the climate regulation function of forests. Increasing natural disturbances can reduce carbon uptake and evaporative cooling, but at the same time increase the albedo of a landscape. Simultaneous changes in vegetation composition can mitigate disturbance impacts, but also influence climate regulation directly (e.g., via albedo changes). As a result of a number of interactive drivers (changes in climate, vegetation, and disturbance) and their simultaneous effects on climate-relevant processes (carbon exchange, albedo, latent heat flux) the future climate regulation function of forests remains highly uncertain. Here we address these complex interactions to assess the effect of future forest dynamics on the climate system. Our specific objectives were (1) to investigate the long-term interactions between changing vegetation composition and disturbance regimes under climate change, (2) to quantify the response of climate regulation to changes in forest dynamics, and (3) to identify the main drivers of the future influence of forests on the climate system. We investigated these issues using the individual-based forest landscape and disturbance model (iLand). Simulations were run over 200 yr for Kalkalpen National Park (Austria), assuming different future climate projections, and incorporating dynamically responding wind and bark beetle disturbances. To consistently assess the net effect on climate the simulated responses of carbon exchange, albedo, and latent heat flux were expressed as contributions to radiative forcing. We found that climate change increased disturbances (+27.7% over 200 yr) and specifically bark beetle activity during the 21st century. However, negative feedbacks from a simultaneously changing tree species composition (+28.0% broadleaved species) decreased disturbance activity in the long run (-10.1%), mainly by reducing the host trees available for bark beetles. Climate change and the resulting future forest dynamics significantly reduced the climate regulation function of the landscape, increasing radiative forcing by up to +10.2% on average over 200 yr. Overall, radiative forcing was most strongly driven by carbon exchange. We conclude that future changes in forest dynamics can cause amplifying climate feedbacks from temperate forest ecosystems.
Cognitive and psychological science insights to improve climate change data visualization
NASA Astrophysics Data System (ADS)
Harold, Jordan; Lorenzoni, Irene; Shipley, Thomas F.; Coventry, Kenny R.
2016-12-01
Visualization of climate data plays an integral role in the communication of climate change findings to both expert and non-expert audiences. The cognitive and psychological sciences can provide valuable insights into how to improve visualization of climate data based on knowledge of how the human brain processes visual and linguistic information. We review four key research areas to demonstrate their potential to make data more accessible to diverse audiences: directing visual attention, visual complexity, making inferences from visuals, and the mapping between visuals and language. We present evidence-informed guidelines to help climate scientists increase the accessibility of graphics to non-experts, and illustrate how the guidelines can work in practice in the context of Intergovernmental Panel on Climate Change graphics.
Uncertainty in Simulating Wheat Yields Under Climate Change
NASA Technical Reports Server (NTRS)
Asseng, S.; Ewert, F.; Rosenzweig, Cynthia; Jones, J. W.; Hatfield, J. W.; Ruane, A. C.; Boote, K. J.; Thornburn, P. J.; Rotter, R. P.; Cammarano, D.;
2013-01-01
Projections of climate change impacts on crop yields are inherently uncertain1. Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate2. However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic and objective comparisons among process-based crop simulation models1,3 are difficult4. Here we present the largest standardized model intercomparison for climate change impacts so far. We found that individual crop models are able to simulate measured wheat grain yields accurately under a range of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models than to variations among downscaled general circulation models. Uncertainties in simulated impacts increased with CO2 concentrations and associated warming. These impact uncertainties can be reduced by improving temperature and CO2 relationships in models and better quantified through use of multi-model ensembles. Less uncertainty in describing how climate change may affect agricultural productivity will aid adaptation strategy development and policymaking.
Climate change hampers endangered species through intensified moisture-related plant stresses
NASA Astrophysics Data System (ADS)
(Ruud) Bartholomeus, R. P.; (Flip) Witte, J. P. M.; (Peter) van Bodegom, P. M.; (Jos) van Dam, J. C.; (Rien) Aerts, R.
2010-05-01
With recent climate change, extremes in meteorological conditions are forecast and observed to increase globally, and to affect vegetation composition. More prolonged dry periods will alternate with more intensive rainfall events, both within and between years, which will change soil moisture dynamics. In temperate climates, soil moisture, in concert with nutrient availability and soil acidity, is the most important environmental filter in determining local plant species composition, as it determines the availability of both oxygen and water to plant roots. These resources are indispensable for meeting the physiological demands of plants. The consequences of climate change for our natural environment are among the most pressing issues of our time. The international research community is beginning to realise that climate extremes may be more powerful drivers of vegetation change and species extinctions than slow-and-steady climatic changes, but the causal mechanisms of such changes are presently unknown. The roles of amplitudes in water availability as drivers of vegetation change have been particularly elusive owing to the lack of integration of the key variables involved. Here we show that the combined effect of increased rainfall variability, temperature and atmospheric CO2-concentration will lead to an increased variability in both wet and dry extremes in stresses faced by plants (oxygen and water stress, respectively). We simulated these plant stresses with a novel, process-based approach, incorporating in detail the interacting processes in the soil-plant-atmosphere interface. In order to quantify oxygen and water stress with causal measures, we focused on interacting meteorological, soil physical, microbial, and plant physiological processes in the soil-plant-atmosphere system. The first physiological process inhibited at high soil moisture contents is plant root respiration, i.e. oxygen consumption in the roots, which responds to increased temperatures. High soil moisture contents hamper oxygen transport from the atmosphere, through the soil - where part of the oxygen additionally disappears by soil microbial oxygen consumption - and to the root cells. Reduced respiration negatively affects the energy supply to plant metabolism. Plant transpiration, which responds to increased temperatures and atmospheric CO2-concentrations, is the first physiological process that will be inhibited by low soil moisture contents, negatively affecting both photosynthesis and cooling. As both the supply and demand of oxygen and water depend strongly on the prevailing meteorological conditions, both oxygen and water stress were calculated dynamically in time to capture climate change effects. We demonstrate that increased rainfall variability in interaction with predicted changes in temperature and CO2, affects soil moisture conditions and plant oxygen and water demands such, that both oxygen stress and water stress will intensify due to climate change. Moreover, these stresses will increasingly coincide, causing variable stress conditions. These variable stress conditions were found to decrease future habitat suitability, especially for plant species that are presently endangered. The future existence of such species is thus at risk by climate change, which has direct implications for policies to maintain endangered species, as applied by international nature management organisations (e.g. IUCN). Our integrated mechanistic analysis of two stresses combined, which has never been done so far, reveals large impacts of climate change on species extinctions and thereby on biodiversity.
Climate and sex ratio variation in a viviparous lizard.
Cunningham, George D; While, Geoffrey M; Wapstra, Erik
2017-05-01
The extent to which key biological processes, such as sex determination, respond to environmental fluctuations is fundamental for assessing species' susceptibility to ongoing climate change. Few studies, however, address how climate affects offspring sex in the wild. We monitored two climatically distinct populations of the viviparous skink Niveoscincus ocellatus for 16 years, recording environmental temperatures, offspring sex and date of birth. We found strong population-specific effects of temperature on offspring sex, with female offspring more common in warm years at the lowland site but no effect at the highland site. In contrast, date of birth advanced similarly in response to temperature at both sites. These results suggest strong population-specific effects of temperature on offspring sex that are independent of climatic effects on other physiological processes. These results have significant implications for our understanding of the ecological and evolutionary consequences of variation in sex ratios under climate change. © 2017 The Author(s).
Using transformational change to improve organizational culture and climate in a school of nursing.
Springer, Pamela J; Clark, Cynthia M; Strohfus, Pamela; Belcheir, Marcia
2012-02-01
A positive organizational culture and climate is closely associated with an affirming workplace and job satisfaction. Especially during a time of faculty shortages, academic leaders need to be cognizant of the culture and climate in schools of nursing. The culture of an organization affects employees, systems, and processes, and if the culture becomes problematic, transformational leadership is essential to create change. The purpose of this article is to describe an 8-year journey to change the culture and climate of a school of nursing from one of dissatisfaction and distrust to one of high employee satisfaction and trust. Kotter's model for transformational change was used to frame a longitudinal study using the Cultural and Climate Assessment Scale to transform the organizational culture and climate of a school of nursing. Copyright 2012, SLACK Incorporated.
Risk to a Changing Climate in the Mexico City Metropolitan Area
NASA Astrophysics Data System (ADS)
Vargas, N. D.
2016-12-01
The issue of climate change has dominated the atmospheric sciences agenda in recent decades. The concern about an increase in climate related disasters, mainly in large population centers, has led to ask whether they are mainly due to changes in climate or in vulnerability.The Mexico City Metropolitan Area (MCMA) is an example of megalopolis under high climate risk, where floods, landslides, health problems, high air pollution events, socioeconomic droughts are becoming important environmental and social problems. As urbanization spreads and population increases exposure to natural hazards increases, and so the magnitude of risk to a changing climate and the negative impacts. Since the late nineteenth century, in the MCMA an average maximum temperature could be around 22°C, whereas today it is about 24.5ºC. That is, the increase in the average temperature in Mexico City is around 3°C in a hundred years. But there are areas where an increase in the average temperature is similar in only thirty years. The heating rate of the city can vary depending on the change in land use. Areas that conserve forested regions in the process of urbanization tend to warm less than areas where the transformation into concrete and cement is almost complete. Thus, the climate of the MCMA shows important changes mainly in relation to land use changes. Global warming and natural climate variability were also analyzed as possible forcing factors of the observed warming by comparing low frequency variations in local temperature and indices for natural forcing. The hydrological cycle of the MCMA has also changed with urbanization. The "bubble of hot air" over the urban area has more capacity to hold moisture now than before the UHI. However, the increased risk to floods, heat or drought appears to be related not only to more frequent intense climatic hazards induced by the urbanization effect. This process also induces increased vulnerability to a changing climate. The establishment of areas with trees, water parks or green infrastructure can recover some ecosystem services and therefore, reduce climate risk in cities, with co-benefits that costly infrastructure does not always provide. Contemplating the services of urban ecosystems in the management of cities would lead to lower impacts of climate change for residents of cities.
Climate-mediated dance of the plankton
NASA Astrophysics Data System (ADS)
Behrenfeld, Michael J.
2014-10-01
Climate change will unquestionably influence global ocean plankton because it directly impacts both the availability of growth-limiting resources and the ecological processes governing biomass distributions and annual cycles. Forecasting this change demands recognition of the vital, yet counterintuitive, attributes of the plankton world. The biomass of photosynthetic phytoplankton, for example, is not proportional to their division rate. Perhaps more surprising, physical processes (such as deep vertical mixing) can actually trigger an accumulation in phytoplankton while simultaneously decreasing their division rates. These behaviours emerge because changes in phytoplankton division rates are paralleled by proportional changes in grazing, viral attack and other loss rates. Here I discuss this trophic dance between predators and prey, how it dictates when phytoplankton biomass remains constant or achieves massive blooms, and how it can determine even the sign of change in ocean ecosystems under a warming climate.
Toward Equity: Starting to Thaw the Chilly Campus Climate for Women.
ERIC Educational Resources Information Center
Thorner, Prudence M.
1989-01-01
Describes efforts at the University of Virginia to change climate for women within the institution. Describes the process of organizing women, forming a task force, identifying barriers, and producing changes. Concludes that partnership between an association of faculty and staff, and a supportive senior administration has enabled change to come…
ERIC Educational Resources Information Center
Pruneau, Diane; Doyon, Andre; Langis, Joanne; Vasseur, Liette; Martin, Gilles; Ouellet, Eileen; Boudreau, Gaston
2006-01-01
During a training program on climate change education, teachers were invited to experiment with environmental behaviors in their personal lives. They then created their own climate change education model, with which they experimented in their classroom. Through teachers' and students' work, individual interviews, and questionnaires, researchers…
Michael G. Ryan; James M. Vose; Paul J. Hanson; Louis R. Iverson; Chelcy F. Miniat; Charles H. Luce; Lawrence E. Band; Steven L. Klein; Don McKenzie; David N. Wear
2014-01-01
Some of the changes to U.S. forests will be directly caused by the effects of an altered climate, such as increases in atmospheric carbon dioxide (CO2) temperature (T), and nitrogen (N) deposition on tree growth, mortality, and regeneration. Other changes will be indirectly caused by climate-induced changes in disturbances, such as droughts, fire, insect outbreaks,...
NASA Astrophysics Data System (ADS)
Gordova, Yulia; Gordov, Evgeny; Okladnikov, Igor; Titov, Alexander
2017-04-01
Due to a global climate change the following consequences are predicted: rise in sea level due to melting glaciers and polar ice, changes in precipitation, changes in the hydrological regime, impact on ecosystems, agriculture and forestry. In Russia's vast territory these effects will be most dramatic. According to Hydrometeorological Center of Russian Federation report there is an increase in the magnitude and frequency of extreme weather events, as well as in their damage to ecosystems and infrastructure. In the framework of adaptation to climate change and mitigation of its consequences it is necessary to promote and support activities aimed at reducing possible risks. Adaptation methods include among others improving seasonal weather forecasts, systems of early warning and systems of management of risks. But there is a problem of insufficient awareness among decision-makers, as well a lack of scientific background. Those responsible for making decisions, stakeholders and the public do not have the skills and knowledge to work with the accumulated climate data to development an adaptation and sustainable development strategy. The goal is to provide these groups with tools, skills, thematic information for understanding climate processes occurring in the region. We believe that the preparation of both the persons responsible for decision-making, and the future specialist in environmental sciences shouldn't be realized artificial learning environment, but on the basis of actual operating computational and information systems used in climate research. Such kind of a system was developed by a team of the Institute of Monitoring of Climatic and Ecological Systems SB RAS. The information-computational Web GIS "Climate" (http://climate.climate.scert.ru) provides opportunities to study regional climate change and its consequences providing access to climate and weather models, a large set of geophysical data and means of processing and visualization. Also, the system is used for undergraduate and graduate students training. In addition, the system capabilities allow creating information resources to raise public awareness about climate change, its causes and consequences, which is a necessary step for the subsequent adaptation to these changes. "Climate" allows climatologists, specialists in related fields, decision-makers, stakeholders and the public use a variety of geographically distributed spatially-referenced data, resources and processing services via a web-browser. Currently, an interactive System User Manual for decision-makers is developed. It contains not only the information needed to use the system and perform practical tasks, but also the basic concepts explained in detail. The knowledge necessary for understanding the causes and possible consequences of the processes is given. The results of implementation of practical tasks are available not only in the form of color surface maps, but also on the Internet and in the form of layers for most GIS. Thus these layers can be used in usual desktop GIS which is a common software for most of decision-makers. Thus, this manual helps to prepare qualified users, which in the future will be able to determine the policy of the region to adapt to climate change impacts and hazards. The work is supported by Russian Science Foundation grant № 16-19-10257.
Impacts of climate change on marine organisms and ecosystems.
Brierley, Andrew S; Kingsford, Michael J
2009-07-28
Human activities are releasing gigatonnes of carbon to the Earth's atmosphere annually. Direct consequences of cumulative post-industrial emissions include increasing global temperature, perturbed regional weather patterns, rising sea levels, acidifying oceans, changed nutrient loads and altered ocean circulation. These and other physical consequences are affecting marine biological processes from genes to ecosystems, over scales from rock pools to ocean basins, impacting ecosystem services and threatening human food security. The rates of physical change are unprecedented in some cases. Biological change is likely to be commensurately quick, although the resistance and resilience of organisms and ecosystems is highly variable. Biological changes founded in physiological response manifest as species range-changes, invasions and extinctions, and ecosystem regime shifts. Given the essential roles that oceans play in planetary function and provision of human sustenance, the grand challenge is to intervene before more tipping points are passed and marine ecosystems follow less-buffered terrestrial systems further down a spiral of decline. Although ocean bioengineering may alleviate change, this is not without risk. The principal brake to climate change remains reduced CO(2) emissions that marine scientists and custodians of the marine environment can lobby for and contribute to. This review describes present-day climate change, setting it in context with historical change, considers consequences of climate change for marine biological processes now and in to the future, and discusses contributions that marine systems could play in mitigating the impacts of global climate change.
Aalto, Juha; Harrison, Stephan; Luoto, Miska
2017-09-11
The periglacial realm is a major part of the cryosphere, covering a quarter of Earth's land surface. Cryogenic land surface processes (LSPs) control landscape development, ecosystem functioning and climate through biogeochemical feedbacks, but their response to contemporary climate change is unclear. Here, by statistically modelling the current and future distributions of four major LSPs unique to periglacial regions at fine scale, we show fundamental changes in the periglacial climate realm are inevitable with future climate change. Even with the most optimistic CO 2 emissions scenario (Representative Concentration Pathway (RCP) 2.6) we predict a 72% reduction in the current periglacial climate realm by 2050 in our climatically sensitive northern Europe study area. These impacts are projected to be especially severe in high-latitude continental interiors. We further predict that by the end of the twenty-first century active periglacial LSPs will exist only at high elevations. These results forecast a future tipping point in the operation of cold-region LSP, and predict fundamental landscape-level modifications in ground conditions and related atmospheric feedbacks.Cryogenic land surface processes characterise the periglacial realm and control landscape development and ecosystem functioning. Here, via statistical modelling, the authors predict a 72% reduction of the periglacial realm in Northern Europe by 2050, and almost complete disappearance by 2100.
Baron, Jill S.; Griffith, Brad; Joyce, Linda A.; Kareiva, Peter; Keller, Brian D.; Palmer, Margaret A.; Peterson, Charles H.; Scott, J. Michael; Julius, Susan Herrod; West, Jordan M.
2008-01-01
Climate variables are key determinants of geographic distributions and biophysical characteristics of ecosystems, communities, and species. Climate change is therefore affecting many species attributes, ecological interactions, and ecosystem processes. Because changes in the climate system will continue into the future regardless of emissions mitigation, strategies for protecting climate-sensitive ecosystems through management will be increasingly important. While there will always be uncertainties associated with the future path of climate change, the response of ecosystems to climate impacts, and the effects of management, it is both possible and essential for adaptation to proceed using the best available science. This report provides a preliminary review of adaptation options for climate-sensitive ecosystems and resources in the United States. The term “adaptation” in this document refers to adjustments in human social systems (e.g., management) in response to climate stimuli and their effects. Since management always occurs in the context of desired ecosystem conditions or natural resource management goals, it is instructive to examine particular goals and processes used by different organizations to fulfill their objectives. Such an examination allows for discussion of specific adaptation options as well as potential barriers and opportunities for implementation. Using this approach, this report presents a series of chapters on the following selected management systems: National Forests, National Parks, National Wildlife Refuges, Wild and Scenic Rivers, National Estuaries, and Marine Protected Areas. For these chapters, the authors draw on the literature, their own expert opinion, and expert workshops composed of resource management scientists and representatives of managing agencies. The information drawn from across these chapters is then analyzed to develop the key synthetic messages presented below.
Shenandoah National Park Phenology Project-Weather data collection, description, and processing
Jones, John W.; Aiello, Danielle P.; Osborne, Jesse D.
2010-01-01
The weather data described in this document are being collected as part of a U.S. Geological Survey (USGS) study of changes in Shenandoah National Park (SNP) landscape phenology (Jones and Osbourne, 2008). Phenology is the study of the timing of biological events, such as annual plant flowering and seasonal bird migration. These events are partially driven by changes in temperature and precipitation; therefore, phenology studies how these events may reflect changes in climate. Landscape phenology is the study of changes in biological events over broad areas and assemblages of vegetation. To study climate-change relations over broad areas (at landscape scale), the timing and amount of annual tree leaf emergence, maximum foliage, and leaf fall for forested areas are of interest. To better link vegetation changes with climate, weather data are necessary. This report documents weather-station data collection and processing procedures used in the Shenandoah National Park Phenology Project.
The 13 million year Cenozoic pulse of the Earth
NASA Astrophysics Data System (ADS)
Chen, Jiasheng; Kravchinsky, Vadim A.; Liu, Xiuming
2015-12-01
The geomagnetic polarity reversal rate changes radically from very low to extremely high. Such process indicates fundamental changes in the Earth's core reorganization and core-mantle boundary heat flow fluctuations. However, we still do not know how critical such changes are to surface geology and climate processes. Our analysis of the geomagnetic reversal frequency, oxygen isotope record, and tectonic plate subduction rate, which are indicators of the changes in the heat flux at the core mantle boundary, climate and plate tectonic activity, shows that all these changes indicate similar rhythms on million years' timescale in the Cenozoic Era occurring with the common fundamental periodicity of ∼13 Myr during most of the time. The periodicity is disrupted only during the last 20 Myr. Such periodic behavior suggests that large scale climate and tectonic changes at the Earth's surface are closely connected with the million year timescale cyclical reorganization of the Earth's interior.
NASA Astrophysics Data System (ADS)
Peck, M. A.
2016-02-01
Gaining a cause-and-effect understanding of climate-driven changes in marine fish populations at appropriate spatial scales is important for providing robust advice for ecosystem-based fisheries management. Coupling long-term, retrospective analyses and 3-d biophysical, individual-based models (IBMs) shows great potential to reveal mechanism underlying historical changes and to project future changes in marine fishes. IBMs created for marine fish early life stages integrate organismal-level physiological responses and climate-driven changes in marine habitats (from ocean physics to lower trophic level productivity) to test and reveal processes affecting marine fish recruitment. Case studies are provided for hindcasts and future (A1 and B2 projection) simulations performed on some of the most ecologically- and commercially-important pelagic and demersal fishes in the North Sea including European anchovy, Atlantic herring, European sprat and Atlantic cod. We discuss the utility of coupling biophysical IBMs to size-spectrum models to better project indirect (trophodynamic) pathways of climate influence on the early life stages of these and other fishes. Opportunities and challenges are discussed regarding the ability of these physiological-based tools to capture climate-driven changes in living marine resources and food web dynamics of shelf seas.
Climate change: potential implications for Ireland's biodiversity
NASA Astrophysics Data System (ADS)
Donnelly, Alison
2018-03-01
A national biodiversity and climate change adaptation plan is being developed for Ireland by the Department of Communications, Climate Action, and Environment. In order to inform such a plan, it was necessary to review and synthesize some of the recent literature pertaining to the impact of climate change on biodiversity in Ireland. Published research on this topic fell within three broad categories: (i) changes in the timing of life-cycle events (phenology) of plants, birds, and insects; (ii) changes in the geographic range of some bird species; and (iii) changes in the suitable climatic zones of key habitats and species. The synthesis revealed evidence of (i) a trend towards earlier spring activity of plants, birds, and insects which may result in a change in ecosystem function; (ii) an increase in the number of bird species; and (iii) both increases and decreases in the suitable climatic area of key habitats and species, all of which are expected to impact Ireland's future biodiversity. This process identified data gaps and limitations in available information both of which could be used to inform a focused research strategy. In addition, it raises awareness of the potential implications of climate change for biodiversity in Ireland and elsewhere and demonstrates the need for biodiversity conservation plans to factor climate change into future designs.
Climate change: potential implications for Ireland's biodiversity.
Donnelly, Alison
2018-03-12
A national biodiversity and climate change adaptation plan is being developed for Ireland by the Department of Communications, Climate Action, and Environment. In order to inform such a plan, it was necessary to review and synthesize some of the recent literature pertaining to the impact of climate change on biodiversity in Ireland. Published research on this topic fell within three broad categories: (i) changes in the timing of life-cycle events (phenology) of plants, birds, and insects; (ii) changes in the geographic range of some bird species; and (iii) changes in the suitable climatic zones of key habitats and species. The synthesis revealed evidence of (i) a trend towards earlier spring activity of plants, birds, and insects which may result in a change in ecosystem function; (ii) an increase in the number of bird species; and (iii) both increases and decreases in the suitable climatic area of key habitats and species, all of which are expected to impact Ireland's future biodiversity. This process identified data gaps and limitations in available information both of which could be used to inform a focused research strategy. In addition, it raises awareness of the potential implications of climate change for biodiversity in Ireland and elsewhere and demonstrates the need for biodiversity conservation plans to factor climate change into future designs.
Health risks of climate change in the World Health Organization South-East Asia Region.
Bowen, Kathryn J; Ebi, Kristie L
2017-09-01
Countries in the World Health Organization (WHO) South-East Asia Region are particularly vulnerable to a changing climate. Changes in extreme weather events, undernutrition and the spread of infectious diseases are projected to increase the number of deaths due to climate change by 2030, indicating the need to strengthen activities for adaptation and mitigation. With support from the WHO Regional Office for South-East Asia and others, countries have started to include climate change as a key consideration in their national public health policies. Further efforts are needed to develop evidence-based responses; garner the necessary support from partner ministries; and access funding for activities related to health and climate change. National action plans for climate change generally identify health as one of their priorities; however, limited information is available on implementation processes, including which ministries and departments would be involved; the time frame; stakeholder responsibilities; and how the projects would be financed. While progress is being made, efforts are needed to increase the capacity of health systems to manage the health risks of climate change in South-East Asia, if population health is to be protected and strengthened while addressing changing weather and climate patterns. Enhancing the resilience of health systems is key to ensuring a sustainable path to improved planetary and population health.
NASA Astrophysics Data System (ADS)
Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark
2018-04-01
This study with 79 students in Montreal, Quebec, compared the educational use of a National Aeronautics and Space Administration (NASA) global climate model (GCM) to climate education technologies developed for classroom use that included simpler interfaces and processes. The goal was to show how differing climate education technologies succeed and fail at getting students to evolve in their understanding of anthropogenic global climate change (AGCC). Many available climate education technologies aim to convey key AGCC concepts or Earth systems processes; the educational GCM used here aims to teach students the methods and processes of global climate modeling. We hypothesized that challenges to learning about AGCC make authentic technology-enabled inquiry important in developing accurate understandings of not just the issue but how scientists research it. The goal was to determine if student learning trajectories differed between the comparison and treatment groups based on whether each climate education technology allowed authentic scientific research. We trace learning trajectories using pre/post exams, practice quizzes, and written student reflections. To examine the reasons for differing learning trajectories, we discuss student pre/post questionnaires, student exit interviews, and 535 min of recorded classroom video. Students who worked with a GCM demonstrated learning trajectories with larger gains, higher levels of engagement, and a better idea of how climate scientists conduct research. Students who worked with simpler climate education technologies scored lower in the course because of lower levels of engagement with inquiry processes that were perceived to not actually resemble the work of climate scientists.
NASA Astrophysics Data System (ADS)
Bussi, Gianbattista; Dadson, Simon J.; Prudhomme, Christel; Whitehead, Paul G.
2016-11-01
The effects of climate change and variability on river flows have been widely studied. However the impacts of such changes on sediment transport have received comparatively little attention. In part this is because modelling sediment production and transport processes introduces additional uncertainty, but it also results from the fact that, alongside the climate change signal, there have been and are projected to be significant changes in land cover which strongly affect sediment-related processes. Here we assess the impact of a range of climatic variations and land covers on the River Thames catchment (UK). We first calculate a response of the system to climatic stressors (average precipitation, average temperature and increase in extreme precipitation) and land-cover stressors (change in the extent of arable land). To do this we use an ensemble of INCA hydrological and sediment behavioural models. The resulting system response, which reveals the nature of interactions between the driving factors, is then compared with climate projections originating from the UKCP09 assessment (UK Climate Projections 2009) to evaluate the likelihood of the range of projected outcomes. The results show that climate and land cover each exert an individual control on sediment transport. Their effects vary depending on the land use and on the level of projected climate change. The suspended sediment yield of the River Thames in its lowermost reach is expected to change by -4% (-16% to +13%, confidence interval, p = 0.95) under the A1FI emission scenario for the 2030s, although these figures could be substantially altered by an increase in extreme precipitation, which could raise the suspended sediment yield up to an additional +10%. A 70% increase in the extension of the arable land is projected to increase sediment yield by around 12% in the lowland reaches. A 50% reduction is projected to decrease sediment yield by around 13%.
Wildhaber, Mark L.; Wikle, Christopher K.; Anderson, Christopher J.; Franz, Kristie J.; Moran, Edward H.; Dey, Rima; Mader, Helmut; Kraml, Julia
2012-01-01
Climate change operates over a broad range of spatial and temporal scales. Understanding its effects on ecosystems requires multi-scale models. For understanding effects on fish populations of riverine ecosystems, climate predicted by coarse-resolution Global Climate Models must be downscaled to Regional Climate Models to watersheds to river hydrology to population response. An additional challenge is quantifying sources of uncertainty given the highly nonlinear nature of interactions between climate variables and community level processes. We present a modeling approach for understanding and accomodating uncertainty by applying multi-scale climate models and a hierarchical Bayesian modeling framework to Midwest fish population dynamics and by linking models for system components together by formal rules of probability. The proposed hierarchical modeling approach will account for sources of uncertainty in forecasts of community or population response. The goal is to evaluate the potential distributional changes in an ecological system, given distributional changes implied by a series of linked climate and system models under various emissions/use scenarios. This understanding will aid evaluation of management options for coping with global climate change. In our initial analyses, we found that predicted pallid sturgeon population responses were dependent on the climate scenario considered.
Where the Rubber Hits the Road: The Politics and Science of Climate Change in Congress
NASA Astrophysics Data System (ADS)
Koppes, M.
2004-12-01
Scientific understanding of the magnitude and rate of global and regional climate change is being actively communicated to Capitol Hill, however this information is being framed within the political debate that has brought climate change policy in the U.S. to a practical standstill. Efforts by scientists to communicate to Congress advances in the understanding of climate change have been obscured by policy-makers, lobbyists and some scientists themselves, into two polarized camps: those that who claim that current climate change is insignificant and/or of non-anthropogenic origin, and those who predict irreversible climate change in the near future and advocate a precautionary approach to anthropogenic contributions. As a science policy advisor to a Member of Congress active in the climate policy debate over the past year, I have observed firsthand most of the scientific information on climate change presented to Congress being partitioned into these camps. The political debate surrounding climate change policy has centered on the policymakers' understanding of scientific uncertainty. Communication by researchers of the definition of risk and uncertainty in climate science, in the language and framework of the legislative debate, is of utmost importance in order for policymakers to effectively understand and utilize science in the decision-making process. A comparison with the recent white paper on climate change policy developed by the UK Science and Technology council and currently adopted by UK policymakers demonstrates the importance of a general public understanding of the existing magnitude of climate change, uncertainties in the rate of future climate variability and its associated economic and social costs. Communication of research results on climate change has been most effective in the policy debate when framed within the context of economic or security risks in the short term. Other effective methods include communicating local and regional climate scenarios and associated probabilities to individual policy-makers, as is currently being utilized to promote sponsorship of the Climate Stewardship Act in Congress.
The purpose of this draft report is to provide a summary of climate change impacts to selected watersheds and recommendations for how to improve the process of conducting watershed assessments in the future.
Adapting dairy farms to climate change
USDA-ARS?s Scientific Manuscript database
Climate change is projected to affect many aspects of dairy production. These aspects include the growing season length, crop growth processes, harvest timing and losses, heat stress on cattle, nutrient emissions and losses, and ultimately farm profitability. To assess the sensitivity of dairy farms...
How uncertain are climate model projections of water availability indicators across the Middle East?
Hemming, Debbie; Buontempo, Carlo; Burke, Eleanor; Collins, Mat; Kaye, Neil
2010-11-28
The projection of robust regional climate changes over the next 50 years presents a considerable challenge for the current generation of climate models. Water cycle changes are particularly difficult to model in this area because major uncertainties exist in the representation of processes such as large-scale and convective rainfall and their feedback with surface conditions. We present climate model projections and uncertainties in water availability indicators (precipitation, run-off and drought index) for the 1961-1990 and 2021-2050 periods. Ensembles from two global climate models (GCMs) and one regional climate model (RCM) are used to examine different elements of uncertainty. Although all three ensembles capture the general distribution of observed annual precipitation across the Middle East, the RCM is consistently wetter than observations, especially over the mountainous areas. All future projections show decreasing precipitation (ensemble median between -5 and -25%) in coastal Turkey and parts of Lebanon, Syria and Israel and consistent run-off and drought index changes. The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) GCM ensemble exhibits drying across the north of the region, whereas the Met Office Hadley Centre work Quantifying Uncertainties in Model ProjectionsAtmospheric (QUMP-A) GCM and RCM ensembles show slight drying in the north and significant wetting in the south. RCM projections also show greater sensitivity (both wetter and drier) and a wider uncertainty range than QUMP-A. The nature of these uncertainties suggests that both large-scale circulation patterns, which influence region-wide drying/wetting patterns, and regional-scale processes, which affect localized water availability, are important sources of uncertainty in these projections. To reduce large uncertainties in water availability projections, it is suggested that efforts would be well placed to focus on the understanding and modelling of both large-scale processes and their teleconnections with Middle East climate and localized processes involved in orographic precipitation.
William D. Dijak; Brice B. Hanberry; Jacob S. Fraser; Hong S. He; Wen J. Wang; Frank R. Thompson
2017-01-01
Context. Global climate change impacts forest growth and methods of modeling those impacts at the landscape scale are needed to forecast future forest species composition change and abundance. Changes in forest landscapes will affect ecosystem processes and services such as succession and disturbance, wildlife habitat, and production of forest...
NASA Astrophysics Data System (ADS)
Zhong, H.; Sun, L.; Tian, Z.; Liang, Z.; Fischer, G.
2014-12-01
China is one of the most populous and fast developing countries, also faces a great pressure on grain production and food security. Multi-cropping system is widely applied in China to fully utilize agro-climatic resources and increase land productivity. As the heat resource keep improving under climate warming, multi-cropping system will also shifting northward, and benefit crop production. But water shortage in North China Plain will constrain the adoption of new multi-cropping system. Effectiveness of multi-cropping system adaptation to climate change will greatly depend on future hydrological change and agriculture water management. So it is necessary to quantitatively express the water demand of different multi-cropping systems under climate change. In this paper, we proposed an integrated climate-cropping system-crops adaptation framework, and specifically focused on: 1) precipitation and hydrological change under future climate change in China; 2) the best multi-cropping system and correspondent crop rotation sequence, and water demand under future agro-climatic resources; 3) attainable crop production with water constraint; and 4) future water management. In order to obtain climate projection and precipitation distribution, global climate change scenario from HADCAM3 is downscaled with regional climate model (PRECIS), historical climate data (1960-1990) was interpolated from more than 700 meteorological observation stations. The regional Agro-ecological Zone (AEZ) model is applied to simulate the best multi-cropping system and crop rotation sequence under projected climate change scenario. Finally, we use the site process-based DSSAT model to estimate attainable crop production and the water deficiency. Our findings indicate that annual land productivity may increase and China can gain benefit from climate change if multi-cropping system would be adopted. This study provides a macro-scale view of agriculture adaptation, and gives suggestions to national agriculture adaptation strategy decisions.
NASA Astrophysics Data System (ADS)
Ludwig, R.
2017-12-01
There is as yet no confirmed knowledge whether and how climate change contributes to the magnitude and frequency of hydrological extreme events and how regional water management could adapt to the corresponding risks. The ClimEx project (2015-2019) investigates the effects of climate change on the meteorological and hydrological extreme events and their implications for water management in Bavaria and Québec. High Performance Computing is employed to enable the complex simulations in a hydro-climatological model processing chain, resulting in a unique high-resolution and transient (1950-2100) dataset of climatological and meteorological forcing and hydrological response: (1) The climate module has developed a large ensemble of high resolution data (12km) of the CRCM5 RCM for Central Europe and North-Eastern North America, downscaled from 50 members of the CanESM2 GCM. The dataset is complemented by all available data from the Euro-CORDEX project to account for the assessment of both natural climate variability and climate change. The large ensemble with several thousand model years provides the potential to catch rare extreme events and thus improves the process understanding of extreme events with return periods of 1000+ years. (2) The hydrology module comprises process-based and spatially explicit model setups (e.g. WaSiM) for all major catchments in Bavaria and Southern Québec in high temporal (3h) and spatial (500m) resolution. The simulations form the basis for in depth analysis of hydrological extreme events based on the inputs from the large climate model dataset. The specific data situation enables to establish a new method for `virtual perfect prediction', which assesses climate change impacts on flood risk and water resources management by identifying patterns in the data which reveal preferential triggers of hydrological extreme events. The presentation will highlight first results from the analysis of the large scale ClimEx model ensemble, showing the current and future ratio of natural variability and climate change impacts on meteorological extreme events. Selected data from the ensemble is used to drive a hydrological model experiment to illustrate the capacity to better determine the recurrence periods of hydrological extreme events under conditions of climate change.
Reconstruction of late Holocene climate based on tree growth and mechanistic hierarchical models
Tipton, John; Hooten, Mevin B.; Pederson, Neil; Tingley, Martin; Bishop, Daniel
2016-01-01
Reconstruction of pre-instrumental, late Holocene climate is important for understanding how climate has changed in the past and how climate might change in the future. Statistical prediction of paleoclimate from tree ring widths is challenging because tree ring widths are a one-dimensional summary of annual growth that represents a multi-dimensional set of climatic and biotic influences. We develop a Bayesian hierarchical framework using a nonlinear, biologically motivated tree ring growth model to jointly reconstruct temperature and precipitation in the Hudson Valley, New York. Using a common growth function to describe the response of a tree to climate, we allow for species-specific parameterizations of the growth response. To enable predictive backcasts, we model the climate variables with a vector autoregressive process on an annual timescale coupled with a multivariate conditional autoregressive process that accounts for temporal correlation and cross-correlation between temperature and precipitation on a monthly scale. Our multi-scale temporal model allows for flexibility in the climate response through time at different temporal scales and predicts reasonable climate scenarios given tree ring width data.
Identifying climate drivers of infectious disease dynamics: recent advances and challenges ahead
Walter, Katharine S.; Wesolowski, Amy; Buckee, Caroline O.; Shevliakova, Elena; Tatem, Andrew J.; Boos, William R.; Weinberger, Daniel M.; Pitzer, Virginia E.
2017-01-01
Climate change is likely to profoundly modulate the burden of infectious diseases. However, attributing health impacts to a changing climate requires being able to associate changes in infectious disease incidence with the potentially complex influences of climate. This aim is further complicated by nonlinear feedbacks inherent in the dynamics of many infections, driven by the processes of immunity and transmission. Here, we detail the mechanisms by which climate drivers can shape infectious disease incidence, from direct effects on vector life history to indirect effects on human susceptibility, and detail the scope of variation available with which to probe these mechanisms. We review approaches used to evaluate and quantify associations between climate and infectious disease incidence, discuss the array of data available to tackle this question, and detail remaining challenges in understanding the implications of climate change for infectious disease incidence. We point to areas where synthesis between approaches used in climate science and infectious disease biology provide potential for progress. PMID:28814655
Identifying climate drivers of infectious disease dynamics: recent advances and challenges ahead.
Metcalf, C Jessica E; Walter, Katharine S; Wesolowski, Amy; Buckee, Caroline O; Shevliakova, Elena; Tatem, Andrew J; Boos, William R; Weinberger, Daniel M; Pitzer, Virginia E
2017-08-16
Climate change is likely to profoundly modulate the burden of infectious diseases. However, attributing health impacts to a changing climate requires being able to associate changes in infectious disease incidence with the potentially complex influences of climate. This aim is further complicated by nonlinear feedbacks inherent in the dynamics of many infections, driven by the processes of immunity and transmission. Here, we detail the mechanisms by which climate drivers can shape infectious disease incidence, from direct effects on vector life history to indirect effects on human susceptibility, and detail the scope of variation available with which to probe these mechanisms. We review approaches used to evaluate and quantify associations between climate and infectious disease incidence, discuss the array of data available to tackle this question, and detail remaining challenges in understanding the implications of climate change for infectious disease incidence. We point to areas where synthesis between approaches used in climate science and infectious disease biology provide potential for progress. © 2017 The Authors.
Understanding and managing trust at the climate science-policy interface
NASA Astrophysics Data System (ADS)
Lacey, Justine; Howden, Mark; Cvitanovic, Christopher; Colvin, R. M.
2018-01-01
Climate change effects are accelerating, making the need for appropriate actions informed by sound climate knowledge ever more pressing. A strong climate science-policy relationship facilitates the effective integration of climate knowledge into local, national and global policy processes, increases society's responsiveness to a changing climate, and aligns research activity to policy needs. This complex science-policy relationship requires trust between climate science `producers' and `users', but our understanding of trust at this interface remains largely uncritical. To assist climate scientists and policymakers, this Perspective provides insights into how trust develops and operates at the interface of climate science and policy, and examines the extent to which trust can manage — or even create — risk at this interface.
Paleoclimatic change, disaster history and the urbanscape transitions in Athens
NASA Astrophysics Data System (ADS)
Yang, Liang
2017-04-01
Past abrupt climate changes on millennium time scales have received wide attention among natural and social scientists, also because of today's rapid climate changes and their extensive impacts on our society. In the eastern Mediterranean area, coherent patterns and synchronous events in history suggest obvious links between urban development and climate forcing. The city of Athens as the origin of ancient Greek civilization experienced many periods of prosperity and decay. Though the transitions were mostly dominated by wars and power changes between empires, severe climate events and natural disasters may also considerably have shaped the process of Athens' development. Among natural disasters, earthquake, tsunami, flood and wildfire were the main forces that stressed the development of Athens. To recover from and respond to these disaster impacts, the city was thereafter developed in ways that either changed the ever existed city patterns or guided sensitive areas to specific directions, which could have transformed the urbanscape gradually. However, the possibility that these transitions may have been responses/resilience strategies triggered by abrupt climate events has so far hardly been explored. With extensive literature review, existing archaeological records and paleoclimate reconstruction modelling results, this study analyzes the large scale climate variations, related environment changes in mesoscale, aiming at setting into context the local natural disasters in Athens and its surrounding areas during the Holocene period. The study treats a number of important climate events in the area and urban transitions of the city, of which the integration of all these elements and insights from recent analysis throw some new light on understanding the forcing-transition process. Preliminary results indicate unclear link of climate forcing and urban transition over the whole city, but a few signs of possible linkages were recognized at specific blocks of Athens. Along with the population growth and land sprawl, more areas and more sections of the city were becoming susceptible to climate events and increased consideration of disasters in their development. The findings have significance for our in-depth understanding of the ancient city construction and development, as well as for the future urban development in facing of global climate change. Keywords: Climate change, natural disasters, urban transition, Holocene, Athens
Achete, Fernanda; Van der Wegen, Mick; Roelvink, Jan Adriaan; Jaffe, Bruce E.
2017-01-01
Suspended sediment concentration is an important estuarine health indicator. Estuarine ecosystems rely on the maintenance of habitat conditions, which are changing due to direct human impact and climate change. This study aims to evaluate the impact of climate change relative to engineering measures on estuarine fine sediment dynamics and sediment budgets. We use the highly engineered San Francisco Bay-Delta system as a case study. We apply a process-based modeling approach (Delft3D-FM) to assess the changes in hydrodynamics and sediment dynamics resulting from climate change and engineering scenarios. The scenarios consider a direct human impact (shift in water pumping location), climate change (sea level rise and suspended sediment concentration decrease), and abrupt disasters (island flooding, possibly as the results of an earthquake). Levee failure has the largest impact on the hydrodynamics of the system. Reduction in sediment input from the watershed has the greatest impact on turbidity levels, which are key to primary production and define habitat conditions for endemic species. Sea level rise leads to more sediment suspension and a net sediment export if little room for accommodation is left in the system due to continuous engineering works. Mitigation measures like levee reinforcement are effective for addressing direct human impacts, but less effective for a persistent, widespread, and increasing threat like sea level rise. Progressive adaptive mitigation measures to the changes in sediment and flow dynamics resulting from sea level rise may be a more effective strategy. Our approach shows that a validated process-based model is a useful tool to address long-term (decades to centuries) changes in sediment dynamics in highly engineered estuarine systems. In addition, our modeling approach provides a useful basis for long-term, process-based studies addressing ecosystem dynamics and health.
NASA Astrophysics Data System (ADS)
Schuster, Z.
2015-12-01
The paradigm of stakeholder-based science is becoming more popular as organizations such as the U.S. Department of the Interior Climate Science Centers adopt it as a way of providing practicable climate change information to practitioners. One of the key issues stakeholders face in adopting climate change information into their decision processes is how uncertainty is addressed and communicated. In this study, we conducted a series of semi-structured interviews with managers and scientists working on stream habitat restoration of cold-water fisheries in the Driftless Area of Wisconsin that were focused on how they interpret and manage uncertainty and what types of information they need to make better decisions. One of the important lessons we learned from the interviews is that if researchers are going to provide useful climate change information to stakeholders, they need to understand where and how decisions are made and what adaptation measures are actually available in a given decision arena. This method of incorporating social science methods into climate science production can provide a framework for researchers from the Climate Science Centers and others who are interested in pursuing stakeholder-based science. By indentifying a specific ecological system and conducting interviews with actors who work on that system, researchers will be able to gain a better understanding of how their climate change science can fit into existing or shape new decision processes. We also interpreted lessons learned from our interviews via existing literature in areas such as stakeholder-based modeling and the decision sciences to provide guidance specific to the stakeholder-based science process.
NASA Astrophysics Data System (ADS)
Faqih, A.
2017-03-01
Providing information regarding future climate scenarios is very important in climate change study. The climate scenario can be used as basic information to support adaptation and mitigation studies. In order to deliver future climate scenarios over specific region, baseline and projection data from the outputs of global climate models (GCM) is needed. However, due to its coarse resolution, the data have to be downscaled and bias corrected in order to get scenario data with better spatial resolution that match the characteristics of the observed data. Generating this downscaled data is mostly difficult for scientist who do not have specific background, experience and skill in dealing with the complex data from the GCM outputs. In this regards, it is necessary to develop a tool that can be used to simplify the downscaling processes in order to help scientist, especially in Indonesia, for generating future climate scenario data that can be used for their climate change-related studies. In this paper, we introduce a tool called as “Statistical Bias Correction for Climate Scenarios (SiBiaS)”. The tool is specially designed to facilitate the use of CMIP5 GCM data outputs and process their statistical bias corrections relative to the reference data from observations. It is prepared for supporting capacity building in climate modeling in Indonesia as part of the Indonesia 3rd National Communication (TNC) project activities.
Nonlinear dynamics in ecosystem response to climatic change: Case studies and policy implications
Burkett, Virginia R.; Wilcox, Douglas A.; Stottlemyer, Robert; Barrow, Wylie; Fagre, Dan; Baron, Jill S.; Price, Jeff; Nielsen, Jennifer L.; Allen, Craig D.; Peterson, David L.; Ruggerone, Greg; Doyle, Thomas
2005-01-01
Many biological, hydrological, and geological processes are interactively linked in ecosystems. These ecological phenomena normally vary within bounded ranges, but rapid, nonlinear changes to markedly different conditions can be triggered by even small differences if threshold values are exceeded. Intrinsic and extrinsic ecological thresholds can lead to effects that cascade among systems, precluding accurate modeling and prediction of system response to climate change. Ten case studies from North America illustrate how changes in climate can lead to rapid, threshold-type responses within ecological communities; the case studies also highlight the role of human activities that alter the rate or direction of system response to climate change. Understanding and anticipating nonlinear dynamics are important aspects of adaptation planning since responses of biological resources to changes in the physical climate system are not necessarily proportional and sometimes, as in the case of complex ecological systems, inherently nonlinear.
Loveland, Thomas; Mahmood, Rezaul; Patel-Weynand, Toral; Karstensen, Krista; Beckendorf, Kari; Bliss, Norman; Carleton, Andrew
2012-01-01
This technical report responds to the recognition by the U.S. Global Change Research Program (USGCRP) and the National Climate Assessment (NCA) of the importance of understanding how land use and land cover (LULC) affects weather and climate variability and change and how that variability and change affects LULC. Current published, peer-reviewed, scientific literature and supporting data from both existing and original sources forms the basis for this report's assessment of the current state of knowledge regarding land change and climate interactions. The synthesis presented herein documents how current and future land change may alter environment processes and in turn, how those conditions may affect both land cover and land use by specifically investigating, * The primary contemporary trends in land use and land cover, * The land-use and land-cover sectors and regions which are most affected by weather and climate variability,* How land-use practices are adapting to climate change, * How land-use and land-cover patterns and conditions are affecting weather and climate, and * The key elements of an ongoing Land Resources assessment. These findings present information that can be used to better assess land change and climate interactions in order to better assess land management and adaptation strategies for future environmental change and to assist in the development of a framework for an ongoing national assessment.
Luo, Kaisheng; Tao, Fulu; Moiwo, Juana P.; Xiao, Dengpan
2016-01-01
The contributions of climate and land use change (LUCC) to hydrological change in Heihe River Basin (HRB), Northwest China were quantified using detailed climatic, land use and hydrological data, along with the process-based SWAT (Soil and Water Assessment Tool) hydrological model. The results showed that for the 1980s, the changes in the basin hydrological change were due more to LUCC (74.5%) than to climate change (21.3%). While LUCC accounted for 60.7% of the changes in the basin hydrological change in the 1990s, climate change explained 57.3% of that change. For the 2000s, climate change contributed 57.7% to hydrological change in the HRB and LUCC contributed to the remaining 42.0%. Spatially, climate had the largest effect on the hydrology in the upstream region of HRB, contributing 55.8%, 61.0% and 92.7% in the 1980s, 1990s and 2000s, respectively. LUCC had the largest effect on the hydrology in the middle-stream region of HRB, contributing 92.3%, 79.4% and 92.8% in the 1980s, 1990s and 2000s, respectively. Interestingly, the contribution of LUCC to hydrological change in the upstream, middle-stream and downstream regions and the entire HRB declined continually over the past 30 years. This was the complete reverse (a sharp increase) of the contribution of climate change to hydrological change in HRB. PMID:27647454
Means and extremes: building variability into community-level climate change experiments.
Thompson, Ross M; Beardall, John; Beringer, Jason; Grace, Mike; Sardina, Paula
2013-06-01
Experimental studies assessing climatic effects on ecological communities have typically applied static warming treatments. Although these studies have been informative, they have usually failed to incorporate either current or predicted future, patterns of variability. Future climates are likely to include extreme events which have greater impacts on ecological systems than changes in means alone. Here, we review the studies which have used experiments to assess impacts of temperature on marine, freshwater and terrestrial communities, and classify them into a set of 'generations' based on how they incorporate variability. The majority of studies have failed to incorporate extreme events. In terrestrial ecosystems in particular, experimental treatments have reduced temperature variability, when most climate models predict increased variability. Marine studies have tended to not concentrate on changes in variability, likely in part because the thermal mass of oceans will moderate variation. In freshwaters, climate change experiments have a much shorter history than in the other ecosystems, and have tended to take a relatively simple approach. We propose a new 'generation' of climate change experiments using down-scaled climate models which incorporate predicted changes in climatic variability, and describe a process for generating data which can be applied as experimental climate change treatments. © 2013 John Wiley & Sons Ltd/CNRS.
Climate change and dead zones.
Altieri, Andrew H; Gedan, Keryn B
2015-04-01
Estuaries and coastal seas provide valuable ecosystem services but are particularly vulnerable to the co-occurring threats of climate change and oxygen-depleted dead zones. We analyzed the severity of climate change predicted for existing dead zones, and found that 94% of dead zones are in regions that will experience at least a 2 °C temperature increase by the end of the century. We then reviewed how climate change will exacerbate hypoxic conditions through oceanographic, ecological, and physiological processes. We found evidence that suggests numerous climate variables including temperature, ocean acidification, sea-level rise, precipitation, wind, and storm patterns will affect dead zones, and that each of those factors has the potential to act through multiple pathways on both oxygen availability and ecological responses to hypoxia. Given the variety and strength of the mechanisms by which climate change exacerbates hypoxia, and the rates at which climate is changing, we posit that climate change variables are contributing to the dead zone epidemic by acting synergistically with one another and with recognized anthropogenic triggers of hypoxia including eutrophication. This suggests that a multidisciplinary, integrated approach that considers the full range of climate variables is needed to track and potentially reverse the spread of dead zones. © 2014 John Wiley & Sons Ltd.
Paleoclimates: Understanding climate change past and present
Cronin, Thomas M.
2010-01-01
The field of paleoclimatology relies on physical, chemical, and biological proxies of past climate changes that have been preserved in natural archives such as glacial ice, tree rings, sediments, corals, and speleothems. Paleoclimate archives obtained through field investigations, ocean sediment coring expeditions, ice sheet coring programs, and other projects allow scientists to reconstruct climate change over much of earth's history. When combined with computer model simulations, paleoclimatic reconstructions are used to test hypotheses about the causes of climatic change, such as greenhouse gases, solar variability, earth's orbital variations, and hydrological, oceanic, and tectonic processes. This book is a comprehensive, state-of-the art synthesis of paleoclimate research covering all geological timescales, emphasizing topics that shed light on modern trends in the earth's climate. Thomas M. Cronin discusses recent discoveries about past periods of global warmth, changes in atmospheric greenhouse gas concentrations, abrupt climate and sea-level change, natural temperature variability, and other topics directly relevant to controversies over the causes and impacts of climate change. This text is geared toward advanced undergraduate and graduate students and researchers in geology, geography, biology, glaciology, oceanography, atmospheric sciences, and climate modeling, fields that contribute to paleoclimatology. This volume can also serve as a reference for those requiring a general background on natural climate variability.
NASA Astrophysics Data System (ADS)
Ercan, A.; Kavvas, M. L.; Ishida, K.; Chen, Z. Q.; Amin, M. Z. M.; Shaaban, A. J.
2017-12-01
Impacts of climate change on the hydrologic processes under future climate change conditions were assessed over various watersheds of Peninsular Malaysia by means of a coupled regional climate and physically-based hydrology model that utilized an ensemble of future climate change projections. An ensemble of 15 different future climate realizations from coarse resolution global climate models' (GCMs) projections for the 21st century were dynamically downscaled to 6 km resolution over Peninsular Malaysia by a regional numerical climate model, which was then coupled with the watershed hydrology model WEHY through the atmospheric boundary layer over the selected watersheds of Peninsular Malaysia. Hydrologic simulations were carried out at hourly increments and at hillslope-scale in order to assess the impacts of climate change on the water balances and flooding conditions at the selected watersheds during the 21st century. The coupled regional climate and hydrology model was simulated for a duration of 90 years for each of the 15 realizations. It is demonstrated that the increase in mean monthly flows due to the impact of expected climate change during 2040-2100 is statistically significant at the selected watersheds. Furthermore, the flood frequency analyses for the selected watersheds indicate an overall increasing trend in the second half of the 21st century.
Assessment of the Health Impacts of Climate Change in Kiribati
McIver, Lachlan; Woodward, Alistair; Davies, Seren; Tibwe, Tebikau; Iddings, Steven
2014-01-01
Kiribati—a low-lying, resource-poor Pacific atoll nation—is one of the most vulnerable countries in the World to the impacts of climate change, including the likely detrimental effects on human health. We describe the preparation of a climate change and health adaptation plan for Kiribati carried out by the World Health Organization and the Kiribati Ministry of Health and Medical Services, including an assessment of risks to health, sources of vulnerability and suggestions for highest priority adaptation responses. This paper identifies advantages and disadvantages in the process that was followed, lays out a future direction of climate change and health adaptation work in Kiribati, and proposes lessons that may be applicable to other small, developing island nations as they prepare for and adapt to the impacts of climate change on health. PMID:24830452
NASA Astrophysics Data System (ADS)
Yuan, J.; Kopp, R. E.
2017-12-01
Quantitative risk analysis of regional climate change is crucial for risk management and impact assessment of climate change. Two major challenges to assessing the risks of climate change are: CMIP5 model runs, which drive EURO-CODEX downscaling runs, do not cover the full range of uncertainty of future projections; Climate models may underestimate the probability of tail risks (i.e. extreme events). To overcome the difficulties, this study offers a viable avenue, where a set of probabilistic climate ensemble is generated using the Surrogate/Model Mixed Ensemble (SMME) method. The probabilistic ensembles for temperature and precipitation are used to assess the range of uncertainty covered by five bias-corrected simulations from the high-resolution (0.11º) EURO-CODEX database, which are selected by the PESETA (The Projection of Economic impacts of climate change in Sectors of the European Union based on bottom-up Analysis) III project. Results show that the distribution of SMME ensemble is notably wider than both distribution of raw ensemble of GCMs and the spread of the five EURO-CORDEX in RCP8.5. Tail risks are well presented by the SMME ensemble. Both SMME ensemble and EURO-CORDEX projections are aggregated to administrative level, and are integrated into impact functions of PESETA III to assess climate risks in Europe. To further evaluate the uncertainties introduced by the downscaling process, we compare the 5 runs from EURO-CORDEX with runs from the corresponding GCMs. Time series of regional mean, spatial patterns, and climate indices are examined for the future climate (2080-2099) deviating from the present climate (1981-2010). The downscaling processes do not appear to be trend-preserving, e.g. the increase in regional mean temperature from EURO-CORDEX is slower than that from the corresponding GCM. The spatial pattern comparison reveals that the differences between each pair of GCM and EURO-CORDEX are small in winter. In summer, the temperatures of EURO-CORDEX are generally lower than those of GCMs, while the drying trends in precipitation of EURO-CORDEX are smaller than those of GCMs. Climate indices are significantly affected by bias-correction and downscaling process. Our study provides valuable information for selecting climate indices in different regions over Europe.
NASA Astrophysics Data System (ADS)
Neupane, Ram P.; Kumar, Sandeep
2015-10-01
Land use and climate are two major components that directly influence catchment hydrologic processes, and therefore better understanding of their effects is crucial for future land use planning and water resources management. We applied Soil and Water Assessment Tool (SWAT) to assess the effects of potential land use change and climate variability on hydrologic processes of large agriculture dominated Big Sioux River (BSR) watershed located in North Central region of USA. Future climate change scenarios were simulated using average output of temperature and precipitation data derived from Special Report on Emission Scenarios (SRES) (B1, A1B, and A2) for end-21st century. Land use change was modeled spatially based on historic long-term pattern of agricultural transformation in the basin, and included the expansion of corn (Zea mays L.) cultivation by 2, 5, and 10%. We estimated higher surface runoff in all land use scenarios with maximum increase of 4% while expanding 10% corn cultivation in the basin. Annual stream discharge was estimated higher with maximum increase of 72% in SRES-B1 attributed from higher groundwater contribution of 152% in the same scenario. We assessed increased precipitation during spring season but the summer precipitation decreased substantially in all climate change scenarios. Similar to decreased summer precipitation, discharge of the BSR also decreased potentially affecting agricultural production due to reduced future water availability during crop growing season in the basin. However, combined effects of potential land use change with climate variability enhanced for higher annual discharge of the BSR. Therefore, these estimations can be crucial for implications of future land use planning and water resources management of the basin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nugent, Philip J; Omitaomu, Olufemi A; Parish, Esther S
The urban climate is changing rapidly. Therefore, climate change and its projected impacts on environmental conditions must be considered in assessing and comparing urban planning alternatives. In this paper, we present an integrated framework for urban climate adaptation tool (Urban-CAT) that will help cities to plan for, rather than react to, possible risks. Urban-CAT will be developed as a scenario planning tool that is locally relevant to existing urban decision-making processes.
NASA Astrophysics Data System (ADS)
Maslowski, W.; Roberts, A.; Osinski, R.; Brunke, M.; Cassano, J. J.; Clement Kinney, J. L.; Craig, A.; Duvivier, A.; Fisel, B. J.; Gutowski, W. J., Jr.; Hamman, J.; Hughes, M.; Nijssen, B.; Zeng, X.
2014-12-01
The Arctic is undergoing rapid climatic changes, which are some of the most coordinated changes currently occurring anywhere on Earth. They are exemplified by the retreat of the perennial sea ice cover, which integrates forcing by, exchanges with and feedbacks between atmosphere, ocean and land. While historical reconstructions from Global Climate and Global Earth System Models (GC/ESMs) are in broad agreement with these changes, the rate of change in the GC/ESMs remains outpaced by observations. Reasons for that stem from a combination of coarse model resolution, inadequate parameterizations, unrepresented processes and a limited knowledge of physical and other real world interactions. We demonstrate the capability of the Regional Arctic System Model (RASM) in addressing some of the GC/ESM limitations in simulating observed seasonal to decadal variability and trends in the sea ice cover and climate. RASM is a high resolution, fully coupled, pan-Arctic climate model that uses the Community Earth System Model (CESM) framework. It uses the Los Alamos Sea Ice Model (CICE) and Parallel Ocean Program (POP) configured at an eddy-permitting resolution of 1/12° as well as the Weather Research and Forecasting (WRF) and Variable Infiltration Capacity (VIC) models at 50 km resolution. All RASM components are coupled via the CESM flux coupler (CPL7) at 20-minute intervals. RASM is an example of limited-area, process-resolving, fully coupled earth system model, which due to the additional constraints from lateral boundary conditions and nudging within a regional model domain facilitates detailed comparisons with observational statistics that are not possible with GC/ESMs. In this talk, we will emphasize the utility of RASM to understand sensitivity to variable parameter space, importance of critical processes, coupled feedbacks and ultimately to reduce uncertainty in arctic climate change projections.
Will extreme climatic events facilitate biological invasions?
USDA-ARS?s Scientific Manuscript database
Extreme climatic events, such as intense heat waves, hurricanes, floods and droughts, can dramatically affect ecological and evolutionary processes, and more extreme events are projected with ongoing climate change. However, the implications of these events for biological invasions, which themselves...
J. Lu; Ge Sun; Devendra M. Amatya; S. V. Harder; Steve G. McNulty
2006-01-01
The hydrologic processes in wetland ecosystems are not well understood. There are also great concerns and uncertainties about the hydrologic response of wetlands to forest management and climate change. The objective of this study is to apply a hydrologic model to better understand the hydrologic processes of a low relief coastal forested watershed and its responses to...
Climate change and land use drivers of fecal bacteria in tropical Hawaiian rivers
Ayron M. Strauch; Richard A. Mackenzie; Gregory L. Bruland; Ralph Tingley; Christian P. Giardina
2014-01-01
Potential shifts in rainfall driven by climate change are anticipated to affect watershed processes (e.g., soil moisture, runoff, stream flow), yet few model systems exist in the tropics to test hypotheses about how these processes may respond to these shifts. We used a sequence of nine watersheds on Hawaii Island spanning 3000 mm (7500â4500 mm) of mean annual rainfall...
Understanding the Dynamics of Socio-Hydrological Environment: a Conceptual Framework
NASA Astrophysics Data System (ADS)
Woyessa, Y.; Welderufael, W.; Edossa, D.
2011-12-01
Human actions affect ecological systems and the services they provide through various activities, such as land use, water use, pollution and climate change. Climate change is perhaps one of the most important sustainable development challenges that threaten to undo many of the development efforts being made to reach the targets set for the Millennium Development Goals. Understanding the change of ecosystems under different scenarios of climate and biophysical conditions could assist in bringing the issue of ecosystem services into decision making process. Similarly, the impacts of land use change on ecosystems and biodiversity have received considerable attention from ecologists and hydrologists alike. Land use change in a catchment can impact on water supply by altering hydrological processes, such as infiltration, groundwater recharge, base flow and direct runoff. In the past a variety of models were used for predicting land-use changes. Recently the focus has shifted away from using mathematically oriented models to agent-based modelling (ABM) approach to simulate land use scenarios. A conceptual framework is being developed which integrates climate change scenarios and the human dimension of land use decision into a hydrological model in order to assess its impacts on the socio-hydrological dynamics of a river basin. The following figures present the framework for the analysis and modelling of the socio-hydrological dynamics. Keywords: climate change, land use, river basin
People as sensors: mass media and local temperature influence climate change discussion on Twitter
NASA Astrophysics Data System (ADS)
Kirilenko, A.; Molodtsova, T.; Stepchenkova, S.
2014-12-01
We examined whether people living under significant temperature anomalies connect their sensory experiences to climate change and the role that media plays in this process. We used Twitter messages containing words "climate change" and "global warming" as the indicator of attention that public pays to the issue. Specifically, the goals were: (1) to investigate whether people immediately notice significant local weather anomalies and connect them to climate change and (2) to examine the role of mass media in this process. Over 2 million tweets were collected for a two-year period (2012 - 2013) and were assigned to 157 urban areas in the continental USA (Figure 1). Geographical locations of the tweets were identified with a geolocation resolving algorithm based the profile of the users. Daily number of tweets (tweeting rate) was computed for 157 conterminous USA urban areas and adjusted for data acquisition errors. The USHCN daily minimum and maximum temperatures were obtained for the station locations closest to the centers of the urban areas and the 1981-2010 30-year temperature mean and standard deviation were used as the climate normals. For the analysis, we computed the following indices for each day of 2012 - 2013 period: standardized temperature anomaly, absolute standardized temperature anomaly, and extreme cold and hot temperature anomalies for each urban zone. The extreme cold and hot temperature anomalies were then transformed into country-level values that represent the number of people living in extreme temperature conditions. The rate of tweeting on climate change was regressed on the time variables, number of climate change publications in the mass media, and temperature. In the majority of regression models, the mass media and temperature variables were significant at the p<0.001 level. Additionally, we did not find convincing evidence that the media acts as a mediator in the relationship between local weather and climate change discourse intensity. Our analysis of Twitter data confirmed that the public is able to recognize extreme temperature anomalies and connects these anomalies to climate change. Finally, we demonstrated the utility of social network data for research on public climate change perception.
Levy, Karen; Zimmerman, Julie; Elliott, Mark; Bartram, Jamie; Carlton, Elizabeth; Clasen, Thomas; Dillingham, Rebecca; Eisenberg, Joseph; Guerrant, Richard; Lantagne, Daniele; Mihelcic, James; Nelson, Kara
2016-01-01
Increased precipitation and temperature variability as well as extreme events related to climate change are predicted to affect the availability and quality of water globally. Already heavily burdened with diarrheal diseases due to poor access to water, sanitation and hygiene facilities, communities throughout the developing world lack the adaptive capacity to sufficiently respond to the additional adversity caused by climate change. Studies suggest that diarrhea rates are positively correlated with increased temperature, and show a complex relationship with precipitation. Although climate change will likely increase rates of diarrheal diseases on average, there is a poor mechanistic understanding of the underlying disease transmission processes and substantial uncertainty surrounding current estimates. This makes it difficult to recommend appropriate adaptation strategies. We review the relevant climate-related mechanisms behind transmission of diarrheal disease pathogens and argue that systems-based mechanistic approaches incorporating human, engineered and environmental components are urgently needed. We then review successful systems-based approaches used in other environmental health fields and detail one modeling framework to predict climate change impacts on diarrheal diseases and design adaptation strategies. PMID:26799810
Whitehead, Paul G; Jin, Li; Macadam, Ian; Janes, Tamara; Sarkar, Sananda; Rodda, Harvey J E; Sinha, Rajiv; Nicholls, Robert J
2018-09-15
The Ganga-Brahmaputra-Meghna (GBM) River System, the associated Hooghly River and the Mahanadi River System represent the largest river basins in the world serving a population of over 780 million. The rivers are of vital concern to India and Bangladesh as they provide fresh water for people, agriculture, industry, conservation and support the Delta System in the Bay of Bengal. Future changes in both climate and socio-economics have been investigated to assess whether these will alter river flows and water quality. Climate datasets downscaled from three different Global Climate Models have been used to drive a daily process based flow and water quality model. The results suggest that due to climate change the flows will increase in the monsoon period and also be enhanced in the dry season. However, once socio-economic changes are also considered, increased population, irrigation, water use and industrial development reduce water availability in drought conditions, threatening water supplies and posing a threat to river and coastal ecosystems. This study, as part of the DECCMA (Deltas, vulnerability and Climate Change: Migration and Adaptation) project, also addresses water quality issues, particularly nutrients (N and P) and their transport along the rivers and discharge into the Delta System. Climate will alter flows, increasing flood flows and changing pollution dilution factors in the rivers, as well as other key processes controlling water quality. Socio-economic change will affect water quality, as water diversion strategies, increased population and industrial development alter the water balance and enhance fluxes of nutrients from agriculture, urban centers and atmospheric deposition. Copyright © 2018 Elsevier B.V. All rights reserved.
Incorporating geodiversity into conservation decisions.
Comer, Patrick J; Pressey, Robert L; Hunter, Malcolm L; Schloss, Carrie A; Buttrick, Steven C; Heller, Nicole E; Tirpak, John M; Faith, Daniel P; Cross, Molly S; Shaffer, Mark L
2015-06-01
In a rapidly changing climate, conservation practitioners could better use geodiversity in a broad range of conservation decisions. We explored selected avenues through which this integration might improve decision making and organized them within the adaptive management cycle of assessment, planning, implementation, and monitoring. Geodiversity is seldom referenced in predominant environmental law and policy. With most natural resource agencies mandated to conserve certain categories of species, agency personnel are challenged to find ways to practically implement new directives aimed at coping with climate change while retaining their species-centered mandate. Ecoregions and ecological classifications provide clear mechanisms to consider geodiversity in plans or decisions, the inclusion of which will help foster the resilience of conservation to climate change. Methods for biodiversity assessment, such as gap analysis, climate change vulnerability analysis, and ecological process modeling, can readily accommodate inclusion of a geophysical component. We adapted others' approaches for characterizing landscapes along a continuum of climate change vulnerability for the biota they support from resistant, to resilient, to susceptible, and to sensitive and then summarized options for integrating geodiversity into planning in each landscape type. In landscapes that are relatively resistant to climate change, options exist to fully represent geodiversity while ensuring that dynamic ecological processes can change over time. In more susceptible landscapes, strategies aiming to maintain or restore ecosystem resilience and connectivity are paramount. Implementing actions on the ground requires understanding of geophysical constraints on species and an increasingly nimble approach to establishing management and restoration goals. Because decisions that are implemented today will be revisited and amended into the future, increasingly sophisticated forms of monitoring and adaptation will be required to ensure that conservation efforts fully consider the value of geodiversity for supporting biodiversity in the face of a changing climate. © 2015 Society for Conservation Biology.
A New Time-varying Concept of Risk in a Changing Climate.
Sarhadi, Ali; Ausín, María Concepción; Wiper, Michael P
2016-10-20
In a changing climate arising from anthropogenic global warming, the nature of extreme climatic events is changing over time. Existing analytical stationary-based risk methods, however, assume multi-dimensional extreme climate phenomena will not significantly vary over time. To strengthen the reliability of infrastructure designs and the management of water systems in the changing environment, multidimensional stationary risk studies should be replaced with a new adaptive perspective. The results of a comparison indicate that current multi-dimensional stationary risk frameworks are no longer applicable to projecting the changing behaviour of multi-dimensional extreme climate processes. Using static stationary-based multivariate risk methods may lead to undesirable consequences in designing water system infrastructures. The static stationary concept should be replaced with a flexible multi-dimensional time-varying risk framework. The present study introduces a new multi-dimensional time-varying risk concept to be incorporated in updating infrastructure design strategies under changing environments arising from human-induced climate change. The proposed generalized time-varying risk concept can be applied for all stochastic multi-dimensional systems that are under the influence of changing environments.
Challenges of coordinating global climate observations - Role of satellites in climate monitoring
NASA Astrophysics Data System (ADS)
Richter, C.
2017-12-01
Global observation of the Earth's atmosphere, ocean and land is essential for identifying climate variability and change, and for understanding their causes. Observation also provides data that are fundamental for evaluating, refining and initializing the models that predict how the climate system will vary over the months and seasons ahead, and that project how climate will change in the longer term under different assumptions concerning greenhouse gas emissions and other human influences. Long-term observational records have enabled the Intergovernmental Panel on Climate Change to deliver the message that warming of the global climate system is unequivocal. As the Earth's climate enters a new era, in which it is forced by human activities, as well as natural processes, it is critically important to sustain an observing system capable of detecting and documenting global climate variability and change over long periods of time. High-quality climate observations are required to assess the present state of the ocean, cryosphere, atmosphere and land and place them in context with the past. The global observing system for climate is not a single, centrally managed observing system. Rather, it is a composite "system of systems" comprising a set of climate-relevant observing, data-management, product-generation and data-distribution systems. Data from satellites underpin many of the Essential Climate Variables(ECVs), and their historic and contemporary archives are a key part of the global climate observing system. In general, the ECVs will be provided in the form of climate data records that are created by processing and archiving time series of satellite and in situ measurements. Early satellite data records are very valuable because they provide unique observations in many regions which were not otherwise observed during the 1970s and which can be assimilated in atmospheric reanalyses and so extend the satellite climate data records back in time.
NASA Astrophysics Data System (ADS)
Cook, Jeffrey J.
It is clear that interest groups are involved in the rulemaking process at the Environmental Protection Agency (EPA), but it has been difficult to determine whether certain groups are more influential on outcomes. This debate persists because the literature illustrates that groups can be influential at discrete stages in the process, but the field rarely analyzes the entire rulemaking process. This uncertainty has spurred controversy regarding the EPA's recent climate change regulations. Therefore, this dissertation conducted three case studies of recent climate change regulations and addresses three questions. First, what, if any, strategies did interest groups use to influence the content of these climate change rules? Second, did these strategies translate into influence? Third, what can these climate change case studies tell us about the role of interest groups in other controversial rules at the EPA, and across the bureaucracy more broadly? Ultimately, I argue that interest group influence was generally balanced across each of the three case studies. These findings then serve as the basis to develop my Regulatory Spheres of Influence Framework. The framework illustrates that given the nature of EPA rulemakings, it is very difficult for one side either business or environmental to dominate the process in highly controversial rules. It is possible that these conclusions track to other controversial rules across the bureaucracy and I note that my framework could be applied in other contexts to test this assertion.
Results from the VALUE perfect predictor experiment: process-based evaluation
NASA Astrophysics Data System (ADS)
Maraun, Douglas; Soares, Pedro; Hertig, Elke; Brands, Swen; Huth, Radan; Cardoso, Rita; Kotlarski, Sven; Casado, Maria; Pongracz, Rita; Bartholy, Judit
2016-04-01
Until recently, the evaluation of downscaled climate model simulations has typically been limited to surface climatologies, including long term means, spatial variability and extremes. But these aspects are often, at least partly, tuned in regional climate models to match observed climate. The tuning issue is of course particularly relevant for bias corrected regional climate models. In general, a good performance of a model for these aspects in present climate does therefore not imply a good performance in simulating climate change. It is now widely accepted that, to increase our condidence in climate change simulations, it is necessary to evaluate how climate models simulate relevant underlying processes. In other words, it is important to assess whether downscaling does the right for the right reason. Therefore, VALUE has carried out a broad process-based evaluation study based on its perfect predictor experiment simulations: the downscaling methods are driven by ERA-Interim data over the period 1979-2008, reference observations are given by a network of 85 meteorological stations covering all European climates. More than 30 methods participated in the evaluation. In order to compare statistical and dynamical methods, only variables provided by both types of approaches could be considered. This limited the analysis to conditioning local surface variables on variables from driving processes that are simulated by ERA-Interim. We considered the following types of processes: at the continental scale, we evaluated the performance of downscaling methods for positive and negative North Atlantic Oscillation, Atlantic ridge and blocking situations. At synoptic scales, we considered Lamb weather types for selected European regions such as Scandinavia, the United Kingdom, the Iberian Pensinsula or the Alps. At regional scales we considered phenomena such as the Mistral, the Bora or the Iberian coastal jet. Such process-based evaluation helps to attribute biases in surface variables to underlying processes and ultimately to improve climate models.
Adapting agriculture to climate change: a review
NASA Astrophysics Data System (ADS)
Anwar, Muhuddin Rajin; Liu, De Li; Macadam, Ian; Kelly, Georgina
2013-07-01
The agricultural sector is highly vulnerable to future climate changes and climate variability, including increases in the incidence of extreme climate events. Changes in temperature and precipitation will result in changes in land and water regimes that will subsequently affect agricultural productivity. Given the gradual change of climate in the past, historically, farmers have adapted in an autonomous manner. However, with large and discrete climate change anticipated by the end of this century, planned and transformational changes will be needed. In light of these, the focus of this review is on farm-level and farmers responses to the challenges of climate change both spatially and over time. In this review of adapting agriculture to climate change, the nature, extent, and causes of climate change are analyzed and assessed. These provide the context for adapting agriculture to climate change. The review identifies the binding constraints to adaptation at the farm level. Four major priority areas are identified to relax these constraints, where new initiatives would be required, i.e., information generation and dissemination to enhance farm-level awareness, research and development (R&D) in agricultural technology, policy formulation that facilitates appropriate adaptation at the farm level, and strengthening partnerships among the relevant stakeholders. Forging partnerships among R&D providers, policy makers, extension agencies, and farmers would be at the heart of transformational adaptation to climate change at the farm level. In effecting this transformational change, sustained efforts would be needed for the attendant requirements of climate and weather forecasting and innovation, farmer's training, and further research to improve the quality of information, invention, and application in agriculture. The investment required for these would be highly significant. The review suggests a sequenced approach through grouping research initiatives into short-term, medium-term, and long-term initiatives, with each initiative in one stage contributing to initiatives in a subsequent stage. The learning by doing inherent in such a process-oriented approach is a requirement owing to the many uncertainties associated with climate change.
Climate Projections and Uncertainty Communication.
Joslyn, Susan L; LeClerc, Jared E
2016-01-01
Lingering skepticism about climate change might be due in part to the way climate projections are perceived by members of the public. Variability between scientists' estimates might give the impression that scientists disagree about the fact of climate change rather than about details concerning the extent or timing. Providing uncertainty estimates might clarify that the variability is due in part to quantifiable uncertainty inherent in the prediction process, thereby increasing people's trust in climate projections. This hypothesis was tested in two experiments. Results suggest that including uncertainty estimates along with climate projections leads to an increase in participants' trust in the information. Analyses explored the roles of time, place, demographic differences (e.g., age, gender, education level, political party affiliation), and initial belief in climate change. Implications are discussed in terms of the potential benefit of adding uncertainty estimates to public climate projections. Copyright © 2015 Cognitive Science Society, Inc.
2016-06-01
several changes that may prove to be consequential. B. Funding Climates The amount appropriated to DoD each year for procurement over the period FY...important to realize that the turns in the funds appropriated for procurement are a lagging indicator of a change in budget climate . Funding and...each of the events identified to signal major and sustained changes in the defense funding climate , which in fact they did. Analysis of surrounding
NASA Astrophysics Data System (ADS)
Zhenyu, Yu; Luo, Yi; Yang, Kun; Qiongfei, Deng
2017-05-01
Based on the data published by the State Statistical Bureau and the weather station data, the annual mean temperature, wind speed, humidity, light duration and precipitation of Dianchi Lake in 1990 ~ 2014 were analysed. Combined with the population The results show that the climatic changes in Dianchi Lake basin are related to the climatic change in the past 25 years, and the correlation between these factors and the main climatic factors are analysed by linear regression, Mann-Kendall test, cumulative anomaly, R/S and Morlet wavelet analysis. Population, housing construction area growth and other aspects of the correlation trends and changes in the process, revealing the population expansion and housing construction area growth on the climate of the main factors of the cycle tendency of significant impact.
Improving assessment and modelling of climate change impacts on global terrestrial biodiversity.
McMahon, Sean M; Harrison, Sandy P; Armbruster, W Scott; Bartlein, Patrick J; Beale, Colin M; Edwards, Mary E; Kattge, Jens; Midgley, Guy; Morin, Xavier; Prentice, I Colin
2011-05-01
Understanding how species and ecosystems respond to climate change has become a major focus of ecology and conservation biology. Modelling approaches provide important tools for making future projections, but current models of the climate-biosphere interface remain overly simplistic, undermining the credibility of projections. We identify five ways in which substantial advances could be made in the next few years: (i) improving the accessibility and efficiency of biodiversity monitoring data, (ii) quantifying the main determinants of the sensitivity of species to climate change, (iii) incorporating community dynamics into projections of biodiversity responses, (iv) accounting for the influence of evolutionary processes on the response of species to climate change, and (v) improving the biophysical rule sets that define functional groupings of species in global models. Published by Elsevier Ltd.
How Do Land-Use and Climate Change Affect Watershed Health? A Scenario-Based Analysis
With the growing emphasis on biofuel crops and potential impacts of climate variability and change, there is a need to quantify their effects on hydrological processes for developing watershed management plans. Environmental consequences are currently estimated by utilizing comp...
Undergraduate Students' Conceptions of Natural and Anthropogenic Climate Change
NASA Astrophysics Data System (ADS)
Trenbath, K. L.
2011-12-01
Scientists and educators strive to improve climate literacy throughout society, whether through communication of research findings or though classroom teaching. Despite these efforts, climate change misconceptions exist in students and the general public. When educators present evidence that contradicts misconceptions, students may begin to struggle with their inaccurate ideas and perhaps transition towards a scientifically-accepted understanding. These transitions, called conceptual change, can occur in college climate change courses. The purpose of this presentation is to describe college students' ideas of natural and anthropogenic climate change and the way these ideas change throughout a climate change course. This presentation is based on five case studies of undergraduate students in a large lecture-hall course dedicated to climate change. Each case study student represents a different level of climate change understanding at the beginning of the semester. These case studies and subsequent cross-case analyses result from a qualitative research study using interviews, field notes, artifact analysis, coding and categorization, and research memos. The cases show shifts in all five students' ideas of natural and anthropogenic climate change. During the first month of class, the three lower achieving students expressed uncertainty about the increase in average global temperatures due to anthropogenic climate change. At the end of the semester, these students explained that warming from climate change is natural, yet the rate of this warming is increasing due to human activities. Two of the lower achieving students constructed definitions of climate change different than the definition used by the professor in the classroom. These students solidified the idea that the term "climate change" describes the change that results from natural forcings only, while the term "global warming" describes change in the climate that results from human-caused forcings. Their constructed definition removes human-causes from association with the word "climate change", which may influence their climate change understanding. Of the two higher achieving students, one emphasized anthropogenic climate change at the beginning of the semester, but later focused on natural climate change during his interviews. The other high achieving student included tangential environmental topics in her descriptions of climate change throughout the entire semester, thus conflating climate change's definition. These alternative definitions of climate change indicate that the learners constructed hybrid conceptions in order to incorporate class content with their prior ideas. These hybrid conceptions indicate that the students' understandings lie somewhere between misconceptions and conceptual change. Since the students demonstrated these hybrid conceptions at the end of class, perhaps more time is needed for the students to process the information. These case studies identify the gaps the professor should address for conceptual change to fully occur.
U.S. Global Climate Change Impacts Report, Adaptation
NASA Astrophysics Data System (ADS)
Pulwarty, R.
2009-12-01
Adaptation measures improve our ability to cope with or avoid harmful climate impacts and take advantage of beneficial ones, now and as climate varies and changes. Adaptation and mitigation are necessary elements of an effective response to climate change. Adaptation options also have the potential to moderate harmful impacts of current and future climate variability and change. The Global Climate Change Impacts Report identifies examples of adaptation-related actions currently being pursued in various sectors and regions to address climate change, as well as other environmental problems that could be exacerbated by climate change such as urban air pollution and heat waves. Some adaptation options that are currently being pursued in various regions and sectors to deal with climate change and/or other environmental issues are identified in this report. A range of adaptation responses can be employed to reduce risks through redesign or relocation of infrastructure, sustainability of ecosystem services, increased redundancy of critical social services, and operational improvements. Adapting to climate change is an evolutionary process and requires both analytic and deliberative decision support. Many of the climate change impacts described in the report have economic consequences. A significant part of these consequences flow through public and private insurance markets, which essentially aggregate and distribute society's risk. However, in most cases, there is currently insufficient robust information to evaluate the practicality, efficiency, effectiveness, costs, or benefits of adaptation measures, highlighting a need for research. Adaptation planning efforts such as that being conducted in New York City and the Colorado River will be described. Climate will be continually changing, moving at a relatively rapid rate, outside the range to which society has adapted in the past. The precise amounts and timing of these changes will not be known with certainty. The disaster research and emergency management communities have shown over that early warnings of impending hazards need to be complemented by information on the risks actually posed by the hazards (including those resulting from low levels of preparedness), existing strategies on the ground, and likely pathways to mitigate the loss and damage in the particular context in which they arise. Effective adaptations require information for long-term infrastructural planning and as critically deliberative mechanisms to structure learning and redesign in the face of emergent problems. Adaptation tends to be reactive, unevenly distributed, and focused on coping rather than preventing problems. Reduction in vulnerability will require anticipatory deliberative processes focused on incorporating adaptation into long-term municipal and public service planning, including energy, water, and health services, in the face of changing climate-related risks combined with ongoing changes in population, land use and development patterns.
NASA Astrophysics Data System (ADS)
Hand, Ralf; Keenlyside, Noel S.; Omrani, Nour-Eddine; Bader, Jürgen; Greatbatch, Richard J.
2018-03-01
Beside its global effects, climate change is manifested in many regionally pronounced features mainly resulting from changes in the oceanic and atmospheric circulation. Here we investigate the influence of the North Atlantic SST on shaping the winter-time response to global warming. Our results are based on a long-term climate projection with the Max Planck Institute Earth System Model (MPI-ESM) to investigate the influence of North Atlantic sea surface temperature pattern changes on shaping the atmospheric climate change signal. In sensitivity experiments with the model's atmospheric component we decompose the response into components controlled by the local SST structure and components controlled by global/remote changes. MPI-ESM simulates a global warming response in SST similar to other climate models: there is a warming minimum—or "warming hole"—in the subpolar North Atlantic, and the sharp SST gradients associated with the Gulf Stream and the North Atlantic Current shift northward by a few a degrees. Over the warming hole, global warming causes a relatively weak increase in rainfall. Beyond this, our experiments show more localized effects, likely resulting from future SST gradient changes in the North Atlantic. This includes a significant precipitation decrease to the south of the Gulf Stream despite increased underlying SSTs. Since this region is characterised by a strong band of precipitation in the current climate, this is contrary to the usual case that wet regions become wetter and dry regions become drier in a warmer climate. A moisture budget analysis identifies a complex interplay of various processes in the region of modified SST gradients: reduced surface winds cause a decrease in evaporation; and thermodynamic, modified atmospheric eddy transports, and coastal processes cause a change in the moisture convergence. The changes in the the North Atlantic storm track are mainly controlled by the non-regional changes in the forcing. The impact of the local SST pattern changes on regions outside the North Atlantic is small in our setup.
Providing rapid climate risk assessments to support cities (Invited)
NASA Astrophysics Data System (ADS)
Rosenzweig, C.; Solecki, W.; Horton, R. M.; Bader, D.; Ali, S.
2013-12-01
Hurricane Sandy struck the East Coast of the United States on October 29, 2012 and brought the issue of urban resilience to the forefront of public discussion not only in New York City, but in cities around the world. While Hurricane Sandy as an individual extreme climate event cannot be attributed to climate change, it can serve as a warning for cities regarding disaster risks, focus attention on the importance of reducing climate vulnerability, and the need to include increasing climate risks and resilience into rebuilding programs. As severe as Sandy was, the the storm could have been much worse. The science behind potential impacts was ';in place' and ';in time,' i.e., climate risks were well understood before the storm, due to work by scientists in the region starting in the late 1990s. In the wake of this transformative storm, the rebuilding process in New York is being informed by the potential for a changing climate. The $20 billion Special Initiative for Rebuilding and Resiliency (SIRR) Plan for New York is grounded upon climate risk information provided by the New York City Panel on Climate Change (NPCC). This expert panel, tasked with advising on the City on climate-related issues, completed a 'rapid response' climate assessment with updated climate projections and coastal flood maps. Cities are emerging as the ';first responders' to climate change in both adaptation and mitigation. Their efforts are playing a role in catalyzing national and international responses as well. New York City's actions in the wake of Hurricane Sandy are an example of a positive tipping-point response. The Urban Climate Change Research Network, a consortium of over 450 scholars and practitioners in developing and developed country cities around the world, was established in 2007 to enhance science-based decision-making on climate and other sustainability related issues in urban areas around the world. The UCCRN's first major publication is the First UCCRN Assessment Report on Climate Change and Cities (ARC3), which represents a four-year effort by 110 authors from 50+ cities around the world, and is the first ever global, interdisciplinary, science-based assessment to address climate risks, adaptation, mitigation, and policy mechanisms relevant to cities. The UCCRN has initiated the process of developing the Second UCCRN Report on Climate Change and Cities (ARC3-2), to facilitate ongoing and active learning and to continue providing practical, evidence-based guidance for city decision-makers.
Climate Change Resilience Planning at the Department of Energy's Savannah River Site
NASA Astrophysics Data System (ADS)
Werth, D. W.; Johnson, A.
2015-12-01
The Savannah River National Laboratory (SRNL) is developing a site sustainability plan for the Department of Energy's Savannah River Site (SRS) in South Carolina in accordance with Executive Order 13693, which charges each DOE agency with "identifying and addressing projected impacts of climate change" and "calculating the potential cost and risk to mission associated with agency operations". The plan will comprise i) projections of climate change, ii) surveys of site managers to estimate the effects of climate change on site operations, and iii) a determination of adaptive actions. Climate change projections for SRS are obtained from multiple sources, including an online repository of downscaled global climate model (GCM) simulations of future climate and downscaled GCM simulations produced at SRNL. Taken together, we have projected data for temperature, precipitation, humidity, and wind - all variables with a strong influence on site operations. SRNL is working to engage site facility managers and facilitate a "bottom up" approach to climate change resilience planning, where the needs and priorities of stakeholders are addressed throughout the process. We make use of the Vulnerability Assessment Scoring Tool, an Excel-based program designed to accept as input various climate scenarios ('exposure'), the susceptibility of assets to climate change ('sensitivity'), and the ability of these assets to cope with climate change ('adaptive capacity'). These are combined to produce a series of scores that highlight vulnerabilities. Working with site managers, we have selected the most important assets, estimated their expected response to climate change, and prepared a report highlighting the most endangered facilities. Primary risks include increased energy consumption, decreased water availability, increased forest fire danger, natural resource degradation, and compromised outdoor worker safety in a warmer and more humid climate. Results of this study will aid in driving future management decisions and promoting sustainable practices at SRS.
Buma, Brian; Hennon, Paul E; Harrington, Constance A; Popkin, Jamie R; Krapek, John; Lamb, Melinda S; Oakes, Lauren E; Saunders, Sari; Zeglen, Stefan
2017-07-01
Climate change is causing rapid changes to forest disturbance regimes worldwide. While the consequences of climate change for existing disturbance processes, like fires, are relatively well studied, emerging drivers of disturbance such as snow loss and subsequent mortality are much less documented. As the climate warms, a transition from winter snow to rain in high latitudes will cause significant changes in environmental conditions such as soil temperatures, historically buffered by snow cover. The Pacific coast of North America is an excellent test case, as mean winter temperatures are currently at the snow-rain threshold and have been warming for approximately 100 years post-Little Ice Age. Increased mortality in a widespread tree species in the region has been linked to warmer winters and snow loss. Here, we present the first high-resolution range map of this climate-sensitive species, Callitropsis nootkatensis (yellow-cedar), and document the magnitude and location of observed mortality across Canada and the United States. Snow cover loss related mortality spans approximately 10° latitude (half the native range of the species) and 7% of the overall species range and appears linked to this snow-rain transition across its range. Mortality is commonly >70% of basal area in affected areas, and more common where mean winter temperatures is at or above the snow-rain threshold (>0 °C mean winter temperature). Approximately 50% of areas with a currently suitable climate for the species (<-2 °C) are expected to warm beyond that threshold by the late 21st century. Regardless of climate change scenario, little of the range which is expected to remain suitable in the future (e.g., a climatic refugia) is in currently protected landscapes (<1-9%). These results are the first documentation of this type of emerging climate disturbance and highlight the difficulties of anticipating novel disturbance processes when planning for conservation and management. © 2016 John Wiley & Sons Ltd.
Compounding Impacts of Human-Induced Water Stress and Climate Change on Water Availability
NASA Technical Reports Server (NTRS)
Mehran, Ali; AghaKouchak, Amir; Nakhjiri, Navid; Stewardson, Michael J.; Peel, Murray C.; Phillips, Thomas J.; Wada, Yoshihide; Ravalico, Jakin K.
2017-01-01
The terrestrial phase of the water cycle can be seriously impacted by water management and human water use behavior (e.g., reservoir operation, and irrigation withdrawals). Here we outline a method for assessing water availability in a changing climate, while explicitly considering anthropogenic water demand scenarios and water supply infrastructure designed to cope with climatic extremes. The framework brings a top-down and bottom-up approach to provide localized water assessment based on local water supply infrastructure and projected water demands. When our framework is applied to southeastern Australia we find that, for some combinations of climatic change and water demand, the region could experience water stress similar or worse than the epic Millennium Drought. We show considering only the influence of future climate on water supply, and neglecting future changes in water demand and water storage augmentation might lead to opposing perspectives on future water availability. While human water use can significantly exacerbate climate change impacts on water availability, if managed well, it allows societies to react and adapt to a changing climate. The methodology we present offers a unique avenue for linking climatic and hydrologic processes to water resource supply and demand management and other human interactions.
Compounding Impacts of Human-Induced Water Stress and Climate Change on Water Availability.
Mehran, Ali; AghaKouchak, Amir; Nakhjiri, Navid; Stewardson, Michael J; Peel, Murray C; Phillips, Thomas J; Wada, Yoshihide; Ravalico, Jakin K
2017-07-24
The terrestrial phase of the water cycle can be seriously impacted by water management and human water use behavior (e.g., reservoir operation, and irrigation withdrawals). Here we outline a method for assessing water availability in a changing climate, while explicitly considering anthropogenic water demand scenarios and water supply infrastructure designed to cope with climatic extremes. The framework brings a top-down and bottom-up approach to provide localized water assessment based on local water supply infrastructure and projected water demands. When our framework is applied to southeastern Australia we find that, for some combinations of climatic change and water demand, the region could experience water stress similar or worse than the epic Millennium Drought. We show considering only the influence of future climate on water supply, and neglecting future changes in water demand and water storage augmentation might lead to opposing perspectives on future water availability. While human water use can significantly exacerbate climate change impacts on water availability, if managed well, it allows societies to react and adapt to a changing climate. The methodology we present offers a unique avenue for linking climatic and hydrologic processes to water resource supply and demand management and other human interactions.
Alpine treeline of western North America: Linking organism-to-landscape dynamics
Malanson, George P.; Butler, David R.; Fagre, Daniel B.; Walsh, Stephen J; Tomback, Diana F.; Daniels, Lori D.; Resler, Lynn M.; Smith, William K.; Weiss, Daniel J.; Peterson, David L.; Bunn, Andrew G.; Hiemstra, Christopher A.; Liptzin, Daniel; Bourgeron, Patrick S.; Shen, Zehao; Millar, Constance I.
2007-01-01
Although the ecological dynamics of the alpine treeline ecotone are influenced by climate, it is an imperfect indicator of climate change. Mechanistic processes that shape the ecotone—seed rain, seed germination, seedling establishment and subsequent tree growth form, or, conversely tree dieback—depend on microsite patterns. Growth forms affect wind and snow, and so develop positive and negative feedback loops that create these microsites. As a result, complex landscape patterns are generated at multiple spatial scales. Although these mechanistic processes are fundamentally the same for all forest-tundra ecotones across western North America, factors such as prior climate, underlying geology and geomorphology, and genetic constraints of dominant tree species lead to geographic differences in the responses of particular ecotones to climate change.
Visualizing interconnections among climate risks
NASA Astrophysics Data System (ADS)
Tanaka, K.; Yokohata, T.; Nishina, K.; Takahashi, K.; Emori, S.; Kiguchi, M.; Iseri, Y.; Honda, Y.; Okada, M.; Masaki, Y.; Yamamoto, A.; Shigemitsu, M.; Yoshimori, M.; Sueyoshi, T.; Hanasaki, N.; Ito, A.; Sakurai, G.; Iizumi, T.; Nishimori, M.; Lim, W. H.; Miyazaki, C.; Kanae, S.; Oki, T.
2015-12-01
It is now widely recognized that climate change is affecting various sectors of the world. Climate change impact on one sector may spread out to other sectors including those seemingly remote, which we call "interconnections of climate risks". While a number of climate risks have been identified in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5), there has been no attempt to explore their interconnections comprehensively. Here we present a first and most exhaustive visualization of climate risks drawn based on a systematic literature survey. Our risk network diagrams depict that changes in the climate system impact natural capitals (terrestrial water, crop, and agricultural land) as well as social infrastructures, influencing the socio-economic system and ultimately our access to food, water, and energy. Our findings suggest the importance of incorporating climate risk interconnections into impact and vulnerability assessments and call into question the widely used damage function approaches, which address a limited number of climate change impacts in isolation. Furthermore, the diagram is useful to educate decision makers, stakeholders, and general public about cascading risks that can be triggered by the climate change. Socio-economic activities today are becoming increasingly more inter-dependent because of the rapid technological progress, urbanization, and the globalization among others. Equally complex is the ecosystem that is susceptible to climate change, which comprises interwoven processes affecting one another. In the context of climate change, a number of climate risks have been identified and classified according to regions and sectors. These reports, however, did not fully address the inter-relations among risks because of the complexity inherent in this issue. Climate risks may ripple through sectors in the present inter-dependent world, posing a challenge ahead of us to maintain the resilience of the system. It is therefore imperative to improve our understanding on how climate change may induce a chain of impacts. Our study is a first step toward this goal by mapping out climate risks and their cause-effect relationships based on current literature.
Compositional Stability of the Bacterial Community in a Climate-Sensitive Sub-Arctic Peatland.
Weedon, James T; Kowalchuk, George A; Aerts, Rien; Freriks, Stef; Röling, Wilfred F M; van Bodegom, Peter M
2017-01-01
The climate sensitivity of microbe-mediated soil processes such as carbon and nitrogen cycling offers an interesting case for evaluating the corresponding sensitivity of microbial community composition to environmental change. Better understanding of the degree of linkage between functional and compositional stability would contribute to ongoing efforts to build mechanistic models aiming at predicting rates of microbe-mediated processes. We used an amplicon sequencing approach to test if previously observed large effects of experimental soil warming on C and N cycle fluxes (50-100% increases) in a sub-arctic Sphagnum peatland were reflected in changes in the composition of the soil bacterial community. We found that treatments that previously induced changes to fluxes did not associate with changes in the phylogenetic composition of the soil bacterial community. For both DNA- and RNA-based analyses, variation in bacterial communities could be explained by the hierarchy: spatial variation (12-15% of variance explained) > temporal variation (7-11%) > climate treatment (4-9%). We conclude that the bacterial community in this environment is stable under changing conditions, despite the previously observed sensitivity of process rates-evidence that microbe-mediated soil processes can alter without concomitant changes in bacterial communities. We propose that progress in linking soil microbial communities to ecosystem processes can be advanced by further investigating the relative importance of community composition effects versus physico-chemical factors in controlling biogeochemical process rates in different contexts.
NASA Astrophysics Data System (ADS)
Heyn, K.; Campbell, E.
2016-12-01
The Portland Water Bureau has been studying the anticipated effects of climate change on its primary surface water source, the Bull Run Watershed, since the early 2000's. Early efforts by the bureau were almost exclusively reliant on outside expertise from climate modelers and researchers, particularly those at the Climate Impacts Group (CIG) at the University of Washington. Early work products from CIG formed the basis of the bureau's understanding of the most likely and consequential impacts to the watershed from continued GHG-caused warming. However, by mid-decade, as key supply and demand conditions for the bureau changed, it found it lacked the technical capacity and tools to conduct more refined and updated research to build on the outside analysis it had obtained. Beginning in 2010 through its participation in the Pilot Utility Modeling Applications (PUMA) project, the bureau identified and began working to address the holes in its technical and institutional capacity by embarking on a process to assess and select a hydrologic model while obtaining downscaled climate change data to utilize within it. Parallel to the development of these technical elements, the bureau made investments in qualified staff to lead the model selection, development and utilization, while working to establish productive, collegial and collaborative relationships with key climate research staff at the Oregon Climate Change Research Institute (OCCRI), the University of Washington and the University of Idaho. This presentation describes the learning process of a major metropolitan area drinking water utility as its approach to addressing the complex problem of climate change evolves, matures, and begins to influence broader aspects of the organization's planning efforts.
NASA Astrophysics Data System (ADS)
Marhaento, H.; Booij, M. J.; Hoekstra, A. Y.
2017-12-01
Future hydrological processes in the Samin catchment (278 km2) in Java, Indonesia have been simulated using the Soil and Water Assessment Tool (SWAT) model using inputs from predicted land use distributions in the period 2030 - 2050, bias corrected Regional Climate Model (RCM) output and output of six Global Climate Models (GCMs) to include climate model uncertainty. Two land use change scenarios namely a business-as-usual (BAU) scenario, where no measures are taken to control land use change, and a controlled (CON) scenario, where the future land use follows the land use planning, were used in the simulations together with two climate change scenarios namely Representative Concentration Pathway (RCP) 4.5 and 8.5. It was predicted that in 2050 settlement and agriculture area of the study catchment will increase by 33.9% and 3.5%, respectively under the BAU scenario, whereas agriculture area and evergreen forest will increase by 15.2% and 10.2%, respectively under the CON scenario. In comparison to the baseline conditions (1983 - 2005), the predicted mean annual maximum and minimum temperature in 2030 - 2050 will increase by an average of +10C, while changes in the mean annual rainfall range from -20% to +19% under RCP 4.5 and from -25% to +15% under RCP 8.5. The results show that land use change and climate change individually will cause changes in the water balance components, but that more pronounced changes are expected if the drivers are combined, in particular for changes in annual stream flow and surface runoff. It was observed that combination of the RCP 4.5 climate scenario and BAU land use scenario resulted in an increase of the mean annual stream flow from -7% to +64% and surface runoff from +21% to +102%, which is 40% and 60% more than when land use change is acting alone. Furthermore, under the CON scenario the annual stream flow and surface runoff could be potentially reduced by up to 10% and 30%, respectively indicating the effectiveness of applied land use planning. The findings of this study will be useful for the water resource managers to mitigate future risks associated with land use and climate changes in the study catchment. Keywords: land use change, climate change, hydrological impact assessment, Samin catchment
Peter Caldwell; Catalina Segura; Shelby Gull Laird; Ge Sun; Steven G. McNulty; Maria Sandercock; Johnny Boggs; James M. Vose
2015-01-01
Assessment of potential climate change impacts on stream water temperature (Ts) across large scales remains challenging for resource managers because energy exchange processes between the atmosphere and the stream environment are complex and uncertain, and few long-term datasets are available to evaluate changes over time. In this study, we...
The effects of climate change and land-use change on demographic rates and population viability.
Selwood, Katherine E; McGeoch, Melodie A; Mac Nally, Ralph
2015-08-01
Understanding the processes that lead to species extinctions is vital for lessening pressures on biodiversity. While species diversity, presence and abundance are most commonly used to measure the effects of human pressures, demographic responses give a more proximal indication of how pressures affect population viability and contribute to extinction risk. We reviewed how demographic rates are affected by the major anthropogenic pressures, changed landscape condition caused by human land use, and climate change. We synthesized the results of 147 empirical studies to compare the relative effect size of climate and landscape condition on birth, death, immigration and emigration rates in plant and animal populations. While changed landscape condition is recognized as the major driver of species declines and losses worldwide, we found that, on average, climate variables had equally strong effects on demographic rates in plant and animal populations. This is significant given that the pressures of climate change will continue to intensify in coming decades. The effects of climate change on some populations may be underestimated because changes in climate conditions during critical windows of species life cycles may have disproportionate effects on demographic rates. The combined pressures of land-use change and climate change may result in species declines and extinctions occurring faster than otherwise predicted, particularly if their effects are multiplicative. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.
Implications of climate change mitigation for sustainable development
NASA Astrophysics Data System (ADS)
Jakob, Michael; Steckel, Jan Christoph
2016-10-01
Evaluating the trade-offs between the risks related to climate change, climate change mitigation as well as co-benefits requires an integrated scenarios approach to sustainable development. We outline a conceptual multi-objective framework to assess climate policies that takes into account climate impacts, mitigation costs, water and food availability, technological risks of nuclear energy and carbon capture and sequestration as well as co-benefits of reducing local air pollution and increasing energy security. This framework is then employed as an example to different climate change mitigation scenarios generated with integrated assessment models. Even though some scenarios encompass considerable challenges for sustainability, no scenario performs better or worse than others in all dimensions, pointing to trade-offs between different dimensions of sustainable development. For this reason, we argue that these trade-offs need to be evaluated in a process of public deliberation that includes all relevant social actors.
Future changes in large-scale transport and stratosphere-troposphere exchange
NASA Astrophysics Data System (ADS)
Abalos, M.; Randel, W. J.; Kinnison, D. E.; Garcia, R. R.
2017-12-01
Future changes in large-scale transport are investigated in long-term (1955-2099) simulations of the Community Earth System Model - Whole Atmosphere Community Climate Model (CESM-WACCM) under an RCP6.0 climate change scenario. We examine artificial passive tracers in order to isolate transport changes from future changes in emissions and chemical processes. The model suggests enhanced stratosphere-troposphere exchange in both directions (STE), with decreasing tropospheric and increasing stratospheric tracer concentrations in the troposphere. Changes in the different transport processes are evaluated using the Transformed Eulerian Mean continuity equation, including parameterized convective transport. Dynamical changes associated with the rise of the tropopause height are shown to play a crucial role on future transport trends.
Impacts of Seed Dispersal on Future Vegetation Structure under Changing Climates
NASA Astrophysics Data System (ADS)
Lee, E.; Schlosser, C. A.; Gao, X.; Prinn, R. G.
2011-12-01
As the impacts between land cover change, future climates and ecosystems are expected to be substantial, there are growing needs for improving the capability of simulating the global vegetation structure and landscape as realistically as possible. Current DGVMs assume ubiquitous availability of seeds and do not consider any seed dispersal mechanisms in plant migration process, which may influence the assessment of impacts to the ecosystem that rely on the vegetation structure changes (i.e., change in albedo, runoff, and terrestrial carbon sequestration capacity). This study incorporates time-varying wind-driven seed dispersal (i.e., the SEED configuration) as a dynamic constraint to the migration process of natural vegetation in the Community Land Model (CLM)-DGVM. The SEED configuration is validated using a satellite-derived tree cover dataset. Then the configuration is applied to project future vegetation structures and their implications for carbon fluxes, albedo, and hydrology under two climate mitigation scenarios (No-policy vs. 450ppm CO2 stabilization) for the 21st century. Our results show that regional changes of vegetation structure under changing climates are expected to be significant. For example, Alaska and Siberia are expected to experience substantial shifts of forestry structure, characterized by expansion of needle-leaf boreal forest and shrinkage of C3 grass Arctic. A suggested vulnerability assessment shows that vegetation structures in Alaska, Greenland, Central America, southern South America, East Africa and East Asia are susceptible to changing climates, regardless of the two climate mitigation scenarios. Regions such as Greenland, Tibet, South Asia and Northern Australia, however, may substantially alleviate their risks of rapid change in vegetation structure, given a robust greenhouse gas stabilization target. Proliferation of boreal forests in the high latitudes is expected to amplify the warming trend (i.e., a positive feedback to climate), if no mitigation policy is implemented. In contrast, under the 450ppm scenario, vegetation structure may buffer the warming trend, which is a negative feedback to climate. Moreover, runoff changes due to vegetation shifts may offset or complement runoff changes under anthropogenic climate warming.
Health Impacts of Climate Change in Vanuatu: An Assessment and Adaptation Action Plan
Spickett, Jeffery T; Katscherian, Dianne; McIver, Lachlan
2013-01-01
Climate change is one of the greatest global challenges and Pacific island countries are particularly vulnerable due to, among other factors, their geography, demography and level of economic development. A Health Impact Assessment (HIA) framework was used as a basis for the consideration of the potential health impacts of changes in the climate on the population of Vanuatu, to assess the risks and propose a range of potential adaptive responses appropriate for Vanuatu. The HIA process involved the participation of a broad range of stakeholders including expert sector representatives in the areas of bio-physical, socio-economic, infrastructure, environmental diseases and food, who provided informed comment and input into the understanding of the potential health impacts and development of adaptation strategies. The risk associated with each of these impacts was assessed with the application of a qualitative process that considered both the consequences and the likelihood of each of the potential health impacts occurring. Potential adaptation strategies and actions were developed which could be used to mitigate the identified health impacts and provide responses which could be used by the various sectors in Vanuatu to contribute to future decision making processes associated with the health impacts of climate change. PMID:23618474
2011-12-01
Climate change is already beginning to affect New York State, and these impacts are projected to grow. At the same time, the state has the ability to develop adaptation strategies to prepare for and respond to climate risks now and in the future. The ClimAID assessment provides information on climate change impacts and adaptation for eight sectors in New York State: water resources, coastal zones, ecosystems, agriculture, energy, transportation,telecommunications, and public health. Observed climate trends and future climate projections were developed for seven regions across the state. Within each of the sectors, climate risks, vulnerabilities, and adaptation strategies are identified. Integrating themes across all of the sectors are equity and environmental justice and economics.Case studies are used to examine specific vulnerabilities and potential adaptation strategies in each of the eight sectors. These case studies also illustrate the linkages among climate vulnerabilities, risks, and adaptation, and demonstrate specific monitoring needs. Stakeholder participation was critical to the ClimAID assessment process to ensure relevance to decision makers across the state.
The Monash University Interactive Simple Climate Model
NASA Astrophysics Data System (ADS)
Dommenget, D.
2013-12-01
The Monash university interactive simple climate model is a web-based interface that allows students and the general public to explore the physical simulation of the climate system with a real global climate model. It is based on the Globally Resolved Energy Balance (GREB) model, which is a climate model published by Dommenget and Floeter [2011] in the international peer review science journal Climate Dynamics. The model simulates most of the main physical processes in the climate system in a very simplistic way and therefore allows very fast and simple climate model simulations on a normal PC computer. Despite its simplicity the model simulates the climate response to external forcings, such as doubling of the CO2 concentrations very realistically (similar to state of the art climate models). The Monash simple climate model web-interface allows you to study the results of more than a 2000 different model experiments in an interactive way and it allows you to study a number of tutorials on the interactions of physical processes in the climate system and solve some puzzles. By switching OFF/ON physical processes you can deconstruct the climate and learn how all the different processes interact to generate the observed climate and how the processes interact to generate the IPCC predicted climate change for anthropogenic CO2 increase. The presentation will illustrate how this web-base tool works and what are the possibilities in teaching students with this tool are.
Climate, carbon cycling, and deep-ocean ecosystems.
Smith, K L; Ruhl, H A; Bett, B J; Billett, D S M; Lampitt, R S; Kaufmann, R S
2009-11-17
Climate variation affects surface ocean processes and the production of organic carbon, which ultimately comprises the primary food supply to the deep-sea ecosystems that occupy approximately 60% of the Earth's surface. Warming trends in atmospheric and upper ocean temperatures, attributed to anthropogenic influence, have occurred over the past four decades. Changes in upper ocean temperature influence stratification and can affect the availability of nutrients for phytoplankton production. Global warming has been predicted to intensify stratification and reduce vertical mixing. Research also suggests that such reduced mixing will enhance variability in primary production and carbon export flux to the deep sea. The dependence of deep-sea communities on surface water production has raised important questions about how climate change will affect carbon cycling and deep-ocean ecosystem function. Recently, unprecedented time-series studies conducted over the past two decades in the North Pacific and the North Atlantic at >4,000-m depth have revealed unexpectedly large changes in deep-ocean ecosystems significantly correlated to climate-driven changes in the surface ocean that can impact the global carbon cycle. Climate-driven variation affects oceanic communities from surface waters to the much-overlooked deep sea and will have impacts on the global carbon cycle. Data from these two widely separated areas of the deep ocean provide compelling evidence that changes in climate can readily influence deep-sea processes. However, the limited geographic coverage of these existing time-series studies stresses the importance of developing a more global effort to monitor deep-sea ecosystems under modern conditions of rapidly changing climate.
Hydroclimatic Extremes and Cholera Dynamics in the 21st Century
NASA Astrophysics Data System (ADS)
Akanda, A. S.; Jutla, A. S.; Islam, S.
2012-12-01
Cholera, an acute water-borne diarrheal illness, has reemerged as a significant health threat across much of the developing world. Despite major advances in the ecological and the microbiological understanding of the causative agent, V. cholerae, the role of the underlying climatic and environmental processes in propagating transmission is not adequately understood. Recent findings suggest a more prominent role of hydroclimatic extremes - droughts and floods - on the unique dual cholera peaks in the Bengal Delta region of South Asia, the native homeland of cholera. Increasing water scarcity and abundance, and coastal sea-level rise, influenced by changing climate patterns and large-scale climatic phenomena, is likely to adversely impact cholera transmission in South Asia. We focus on understanding how associated changes in macro-scale conditions in this region will impact micro-scale processes related to cholera in coming decades. We use the PRECIS Regional Climate Model over the Ganges-Brahmaputra-Meghna (GBM) basin region to simulate detailed high resolution projections of climate patterns for the 21st century. Precipitation outputs are analyzed for the 1980-2040 period to identify the trends and changes in hydroclimatic extremes and potential impacts on cholera dynamics over the next three decades (2010-2040), in relation to the cholera surveillance operations over the past three decades (1980-2010). We find that an increased number of extreme precipitation events with prolonged dry periods in the Ganges basin region will likely adversely affect dry season cholera outbreaks. Increased monsoon precipitation volumes in the Brahmaputra basin catchments are likely to cause record floods and subsequently trigger large epidemics in downstream areas. Our results provide new insight by identifying the changes in the two distinctly different, pre and post monsoon, cholera transmission mechanisms related to large-scale climatic controls that prevail in the region. A quantitative understanding of the changes in seasonal hydroclimatic controls and underlying dominant processes will form the basis for forecasting future epidemic cholera outbreaks in light of changing climate patterns.
NASA Astrophysics Data System (ADS)
Huggel, C.
2012-04-01
Impacts of climate change are observed and projected across a range of ecosystems and economic sectors, and mountain regions thereby rank among the hotspots of climate change. The Andes are considered particularly vulnerable to climate change, not only due to fragile ecosystems but also due to the high vulnerability of the population. Natural resources such as water systems play a critical role and are observed and projected to be seriously affected. Adaptation to climate change impacts is therefore crucial to contain the negative effects on the population. Adaptation projects require information on the climate and affected socio-environmental systems. There is, however, generally a lack of methodological guidelines how to generate the necessary scientific information and how to communicate to implementing governmental and non-governmental institutions. This is particularly important in view of the international funds for adaptation such as the Green Climate Fund established and set into process at the UNFCCC Conferences of the Parties in Cancun 2010 and Durban 2011. To facilitate this process international and regional organizations (World Bank and Andean Community) and a consortium of research institutions have joined forces to develop and define comprehensive methodologies for baseline and climate change impact assessments for the Andes, with an application potential to other mountain regions (AndesPlus project). Considered are the climatological baseline of a region, and the assessment of trends based on ground meteorological stations, reanalysis data, and satellite information. A challenge is the scarcity of climate information in the Andes, and the complex climatology of the mountain terrain. A climate data platform has been developed for the southern Peruvian Andes and is a key element for climate data service and exchange. Water resources are among the key livelihood components for the Andean population, and local and national economy, in particular for agriculture and hydropower. The retreat of glaciers as one of the clearest signal of climate change represents a problem for water supply during the long dry season. Hydrological modeling, using data from the few gauging stations and complemented by satellite precipitation data, is needed to generate baseline and climate impact information. Food security is often considered threatened due to climate change impacts, in the Andes for instance by droughts and cold spells that seriously affect high-elevation food systems. Eventually, methodologies are compiled and developed for analyzing risks from natural hazards and disasters. The vulnerabilities and risks for all types of climate impacts need to be reflected by analyzing the local and regional social, cultural, political and economic context. To provide the necessary references and information the project AndesPlus has developed a web-based knowledge and information platform. The highly interdisciplinary process of the project should contribute to climate impact and adaptation information services, needed to meet the challenges of adaptation.
NASA Astrophysics Data System (ADS)
Herring, D.; Lipschultz, F.
2016-12-01
As people and organizations grapple with a changing climate amid a range of other factors simultaneously shifting, there is a need for credible, legitimate & salient scientific information in useful formats. In addition, an assessment framework is needed to guide the process of planning and implementing projects that allow communities and businesses to adapt to specific changing conditions, while also building overall resilience to future change. We will discuss how the U.S. Climate Resilience Toolkit (CRT) can improve people's ability to understand and manage their climate-related risks and opportunities, and help them make their communities and businesses more resilient. In close coordination with the U.S. Climate Data Initiative, the CRT is continually evolving to offer actionable authoritative information, relevant tools, and subject matter expertise from across the U.S. federal government in one easy-to-use location. The Toolkit's "Climate Explorer" is designed to help people understand potential climate conditions over the course of this century. It offers easy access to downloadable maps, graphs, and data tables of observed and projected temperature, precipitation and other decision-relevant climate variables dating back to 1950 and out to 2100. Since climate is only one of many changing factors affecting decisions about the future, it also ties climate information to a wide range of relevant variables to help users explore vulnerabilities and impacts. New topic areas have been added, such as "Fisheries," "Regions," and "Built Environment" sections that feature case studies and personal experiences in making adaptation decisions. A curated "Reports" section is integrated with semantic web capabilities to help users locate the most relevant information sources. As part of the USGCRP's sustained assessment process, the CRT is aligning with other federal activities, such as the upcoming 4th National Climate Assessment.
Novel approaches to reducing uncertainty in regional climate predictions (Invited)
NASA Astrophysics Data System (ADS)
Ammann, C. M.
2009-12-01
Regional planning in preparation for future climate changes is rapidly gaining importance. However, compared to the global mean projections, correctly anticipating regional climate is often much more difficult, particularly with regard to hydrologic changes. The reason for the high, inherent uncertainty in location specific forecasts arises on one hand from the superposition of large internal variability in the atmosphere-ocean system on the more gradual changes. On the other hand, this problem is confounded by the fact that regional climate records are often short and therefore offer little guidance as to how an underlying trend can be identified within the noise. The use of indirect climate information (proxy records) from a host of natural archives has made significant progress recently. Based on an extended record, process studies can help reveal the regional response to changes in large scale climate that likely have to be expected. But in order to come up with robust, season and parameter specific (temperature versus moisture) climate reconstructions, comprehensive data compilations are needed that integrate proxy records of different characteristics, temporal representations, and different systematic and sampling uncertainties. Based on understanding of physical processes, and making explicit use of that knowledge, new dynamical and statistical techniques in paleoclimatology are being developed and explored. In addition to improved estimates of the past climate, the cascade of uncertainties is directly taken into account so that errors can more comprehensively be assessed. A brief overview of the problems and its potential implications for regional planning is followed by an application that demonstrates how collaboration between paleoclimatologists, climate modelers and statisticians can advance our understanding of the climate system and how agencies, businesses and individuals might be able to make better informed decisions in preparation for future climate.
NASA Astrophysics Data System (ADS)
Chapin, T.; Brinkman, T. J.
2016-12-01
Although human behavior accounts for more uncertainty in future trajectories in climate change than do biophysical processes, most climate-change research fails to include human actions in research design and implementation. This is well-illustrated in the Arctic. At the global scale, arctic processes strongly influence the strength of biophysical feedbacks between global human emissions and the rate of climate warming. However, most human actions in the arctic have little effect on these feedbacks, so research can contribute most effectively to reduction in arctic warming through improved understanding of the strength of arctic-global biophysical feedbacks, as in NASA's ABoVE program, and its effective communication to policy makers and the public. In contrast, at the local to regional scale within the arctic, human actions may influence the ecological and societal consequences of arctic warming, so research benefits from active stakeholder engagement in research design and implementation. Human communities and other stakeholders (government and NGOs) respond heterogeneously to socioeconomic and environmental change, so research that documents the range of historical and current adaptive responses to change provides insights on the resilience (flexibility of future options) of social-ecological processes in the arctic. Alaskan communities have attempted a range of adaptive responses to coastal erosion (e.g., seasonal migration, protection in place, relocation), wildfire (fire suppression to use of fire to manage wildlife habitat or landscape heterogeneity), declining sea ice (e.g., new hunting technology, sea ice observations and predictions), and changes in wildlife and fish availability (e.g., switch to harvest of alternative species, harvest times, or harvest locations). Research that draws on both traditional and western knowledge facilitates adaptation and predictions of the likely societal consequences of climate change in the Arctic. Effective inclusion of these actors in the research process could strongly influence the resilience of arctic social-ecological systems to climate change.
Impact of climate change on human infectious diseases: Empirical evidence and human adaptation.
Wu, Xiaoxu; Lu, Yongmei; Zhou, Sen; Chen, Lifan; Xu, Bing
2016-01-01
Climate change refers to long-term shifts in weather conditions and patterns of extreme weather events. It may lead to changes in health threat to human beings, multiplying existing health problems. This review examines the scientific evidences on the impact of climate change on human infectious diseases. It identifies research progress and gaps on how human society may respond to, adapt to, and prepare for the related changes. Based on a survey of related publications between 1990 and 2015, the terms used for literature selection reflect three aspects--the components of infectious diseases, climate variables, and selected infectious diseases. Humans' vulnerability to the potential health impacts by climate change is evident in literature. As an active agent, human beings may control the related health effects that may be effectively controlled through adopting proactive measures, including better understanding of the climate change patterns and of the compound disease-specific health effects, and effective allocation of technologies and resources to promote healthy lifestyles and public awareness. The following adaptation measures are recommended: 1) to go beyond empirical observations of the association between climate change and infectious diseases and develop more scientific explanations, 2) to improve the prediction of spatial-temporal process of climate change and the associated shifts in infectious diseases at various spatial and temporal scales, and 3) to establish locally effective early warning systems for the health effects of predicated climate change. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Simulated discharge trends indicate robustness of hydrological models in a changing climate
NASA Astrophysics Data System (ADS)
Addor, Nans; Nikolova, Silviya; Seibert, Jan
2016-04-01
Assessing the robustness of hydrological models under contrasted climatic conditions should be part any hydrological model evaluation. Robust models are particularly important for climate impact studies, as models performing well under current conditions are not necessarily capable of correctly simulating hydrological perturbations caused by climate change. A pressing issue is the usually assumed stationarity of parameter values over time. Modeling experiments using conceptual hydrological models revealed that assuming transposability of parameters values in changing climatic conditions can lead to significant biases in discharge simulations. This raises the question whether parameter values should to be modified over time to reflect changes in hydrological processes induced by climate change. Such a question denotes a focus on the contribution of internal processes (i.e., catchment processes) to discharge generation. Here we adopt a different perspective and explore the contribution of external forcing (i.e., changes in precipitation and temperature) to changes in discharge. We argue that in a robust hydrological model, discharge variability should be induced by changes in the boundary conditions, and not by changes in parameter values. In this study, we explore how well the conceptual hydrological model HBV captures transient changes in hydrological signatures over the period 1970-2009. Our analysis focuses on research catchments in Switzerland undisturbed by human activities. The precipitation and temperature forcing are extracted from recently released 2km gridded data sets. We use a genetic algorithm to calibrate HBV for the whole 40-year period and for the eight successive 5-year periods to assess eventual trends in parameter values. Model calibration is run multiple times to account for parameter uncertainty. We find that in alpine catchments showing a significant increase of winter discharge, this trend can be captured reasonably well with constant parameter values over the whole reference period. Further, preliminary results suggest that some trends in parameter values do not reflect changes in hydrological processes, as reported by others previously, but instead might stem from a modeling artifact related to the parameterization of evapotranspiration, which is overly sensitive to temperature increase. We adopt a trading-space-for-time approach to better understand whether robust relationships between parameter values and forcing can be established, and to critically explore the rationale behind time-dependent parameter values in conceptual hydrological models.
Toward inventory-based estimates of soil organic carbon in forests of the United States
G.M. Domke; C.H. Perry; B.F. Walters; L.E. Nave; C.W. Woodall; C.W. Swanston
2017-01-01
Soil organic carbon (SOC) is the largest terrestrial carbon (C) sink on Earth; this pool plays a critical role in ecosystem processes and climate change. Given the cost and time required to measure SOC, and particularly changes in SOC, many signatory nations to the United Nations Framework Convention on Climate Change report estimates of SOC stocks and stock changes...
Data Sparsity Considerations in Climate Impact Analysis for the Water Sector (Invited)
NASA Astrophysics Data System (ADS)
Asante, K. O.; Khimsara, P.; Chan, A.
2013-12-01
Scientists and planners are helping governments and communities around the world to prepare for climate change by performing local impact studies and developing adaptation plans. Most studies begin by analyzing global climate models outputs to estimate the magnitude of projected change, assessing vulnerabilities and proposing adaptation measures. In these studies, climate projections from the Intergovernmental Panel on Climate Change (IPCC) Data Distribution Centre (DDC) are either used directly or downscaled using regional models. Since climate projections cover the entire global, climate change analysis can be performed for any location. However, selection of climate projections for use in historically data sparse regions presents special challenges. Key questions arise about the impact of historical data sparsity on quality of climate projections, spatial consistency of results and suitability for applications such as water resource planning. In this paper, a water-sector climate study conducted in a data-rich setting in California is compared to a similar study conducted a data-sparse setting in Mozambique. The challenges of selecting projections, performing analysis and interpreting the results for climate adaption planning are compared to illustrate the decision process and challenges encountered in these two very different settings.
Detecting and Attributing Health Burdens to Climate Change.
Ebi, Kristie L; Ogden, Nicholas H; Semenza, Jan C; Woodward, Alistair
2017-08-07
Detection and attribution of health impacts caused by climate change uses formal methods to determine a ) whether the occurrence of adverse health outcomes has changed, and b ) the extent to which that change could be attributed to climate change. There have been limited efforts to undertake detection and attribution analyses in health. Our goal was to show a range of approaches for conducting detection and attribution analyses. Case studies for heatwaves, Lyme disease in Canada, and Vibrio emergence in northern Europe highlight evidence that climate change is adversely affecting human health. Changes in rates and geographic distribution of adverse health outcomes were detected, and, in each instance, a proportion of the observed changes could, in our judgment, be attributed to changes in weather patterns associated with climate change. The results of detection and attribution studies can inform evidence-based risk management to reduce current, and plan for future, changes in health risks associated with climate change. Gaining a better understanding of the size, timing, and distribution of the climate change burden of disease and injury requires reliable long-term data sets, more knowledge about the factors that confound and modify the effects of climate on health, and refinement of analytic techniques for detection and attribution. At the same time, significant advances are possible in the absence of complete data and statistical certainty: there is a place for well-informed judgments, based on understanding of underlying processes and matching of patterns of health, climate, and other determinants of human well-being. https://doi.org/10.1289/EHP1509.
Evolving Best Practice in Learning About Air Quality and Climate Change Science in ACCENT
NASA Astrophysics Data System (ADS)
Schuepbach, E.
2008-12-01
Learning about air quality and climate change science has developed into a transdisciplinary impact generator, moulded by academic-stakeholder partnerships, where complementary skills and competences lead to a culture of dialogue, mutual learning and decision-making. These sweeping changes are mirrored in the evolving best practice within the European Network of Excellence on Atmospheric Composition Change (ACCENT). The Training and Education Programme in ACCENT pursues an integrated approach and innovative avenues to sharing knowledge and communicating air quality and climate change science to various end-user groups, including teachers, policy makers, stakeholders, and the general public. Early career scientists are involved in the process, and are trained to acquire new knowledge in a variety of learning communities and environments. Here, examples of both the open system of teaching within ACCENT training workshops for early career scientists, and the engagement of non-academic audiences in the joint learning process are presented.