Science.gov

Sample records for climate change projections

  1. Climate Change Schools Project...

    ERIC Educational Resources Information Center

    McKinzey, Krista

    2010-01-01

    This article features the award-winning Climate Change Schools Project which aims to: (1) help schools to embed climate change throughout the national curriculum; and (2) showcase schools as "beacons" for climate change teaching, learning, and positive action in their local communities. Operating since 2007, the Climate Change Schools Project…

  2. Projections of Future Climate Change

    SciTech Connect

    Cubasch, U.; Meehl , G.; Boer, G. J.; Stouffer, Ron; Dix, M.; Noda, A.; Senior, C. A.; Raper, S.; Yap, K. S.; Abe-Ouchi, A.; Brinkop, S.; Claussen, M.; Collins, M.; Evans, J.; Fischer-Bruns, I.; Flato, G.; Fyfe, J. C.; Ganopolski, A.; Gregory, J. M.; Hu, Z. Z.; Joos, Fortunat; Knutson, T.; Knutti, R.; Landsea, C.; Mearns, L. O.; Milly, C.; Mitchell, J. F.; Nozawa, T.; Paeth, H.; Raisanen, J.; Sausen, R.; Smith, Steven J.; Stocker, T.; Timmermann, A.; Ulbrich, U.; Weaver, A.; Wegner, J.; Whetton, P.; Wigley, T. M.; Winton, M.; Zwiers, F.; Kim, J. W.; Stone, J.

    2001-10-01

    Contents: Executive Summary 9.1 Introduction 9.2 Climate and Climate Change 9.3 Projections of Climate Change 9.4 General Summary Appendix 9.1: Tuning of a Simple Climate Model toAOGCM Results References

  3. Identifying uncertainties in Arctic climate change projections

    NASA Astrophysics Data System (ADS)

    Hodson, Daniel L. R.; Keeley, Sarah P. E.; West, Alex; Ridley, Jeff; Hawkins, Ed; Hewitt, Helene T.

    2013-06-01

    Wide ranging climate changes are expected in the Arctic by the end of the 21st century, but projections of the size of these changes vary widely across current global climate models. This variation represents a large source of uncertainty in our understanding of the evolution of Arctic climate. Here we systematically quantify and assess the model uncertainty in Arctic climate changes in two CO2 doubling experiments: a multimodel ensemble (CMIP3) and an ensemble constructed using a single model (HadCM3) with multiple parameter perturbations (THC-QUMP). These two ensembles allow us to assess the contribution that both structural and parameter variations across models make to the total uncertainty and to begin to attribute sources of uncertainty in projected changes. We find that parameter uncertainty is an major source of uncertainty in certain aspects of Arctic climate. But also that uncertainties in the mean climate state in the 20th century, most notably in the northward Atlantic ocean heat transport and Arctic sea ice volume, are a significant source of uncertainty for projections of future Arctic change. We suggest that better observational constraints on these quantities will lead to significant improvements in the precision of projections of future Arctic climate change.

  4. Projected Climate Change Impacts on Pennsylvania

    NASA Astrophysics Data System (ADS)

    Najjar, R.; Shortle, J.; Abler, D.; Blumsack, S.; Crane, R.; Kaufman, Z.; McDill, M.; Ready, R.; Rydzik, M.; Wagener, T.; Wardrop, D.; Wilson, T.

    2009-05-01

    We present an assessment of the potential impacts of human-induced climate change on the commonwealth of Pennsylvania, U.S.A. We first assess a suite of 21 global climate models for the state, rating them based on their ability to simulate the climate of Pennsylvania on time scales ranging from submonthly to interannual. The multi-model mean is superior to any individual model. Median projections by late century are 2-4 degrees C warming and 5-10 percent precipitation increases (B1 and A2 scenarios), with larger precipitation increases in winter and spring. Impacts on the commonwealth's aquatic and terrestrial ecosystems, water resources, agriculture, forests, energy, outdoor recreation, tourism, and human health, are evaluated. We also examine barriers and opportunities for Pennsylvania created by climate change mitigation. This assessment was sponsored by the Pennsylvania Department of Environmental Protection which, pursuant to the Pennsylvania Climate Change Act, Act 70 of 2008, is required to develop a report on the potential scientific and economic impacts of climate change to Pennsylvania.

  5. Climate Change Projections for African Urban Areas

    NASA Astrophysics Data System (ADS)

    Simonis, Ingo; Engelbrecht, Francois; Bucchignani, Edoardo; Mercogliano, Paola; Naidoo, Mogesh

    2013-04-01

    Mainly driven by changes in the orbital characteristics of Earth around the sun, the planet's climate has been continuously changing over periods of tens of thousands of years. However, the warming that has been detected in the Earth's atmosphere over the last century is occurring at a rate that cannot be explained by any known natural cycle. Main-stream science has indeed reached consensus that the 'enhanced green house effect', caused by the interplay of incoming short-wave irradiation, outgoing long-wave radiation and the absorption of energy by enhanced levels of CO2 and water vapour in the troposphere, is the main forcing mechanism responsible for the phenomena of global warming. The enhanced greenhouse effect strengthens the 'natural green house effect' that results from the CO2 and water vapour occurring naturally in the atmosphere. The continuous burning of fossil fuels since the industrial revolution and the simultaneous degradation of large forests, are the main reasons for the increase in CO2 concentrations in the atmosphere. The availability of climate change projection data varies considerably for different areas on Earth. Whereas the data centres storing climate change projections for Europe and North America now store petabytes of data, regionally downscaled projections for Africa are rarely available. In the context of the research project CLUVA, (Assessing vulnerability of urban systems, populations and goods in relation to natural and man-made disasters in Africa, co-funded by the European Commission under grant agreement no: 265137), the Council for Industrial and Scientific Research (CSIR) in South Africa and the Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC) in Italy have produced a large set of projections of climate change over Africa, covering the time period 1950 to 2100. Through the collaboration between CMCC and CSIR, a multi-model ensemble of eight high-resolution simulations of climate change over parts of West and East

  6. Hydrological climate change projections for Central America

    NASA Astrophysics Data System (ADS)

    Hidalgo, Hugo G.; Amador, Jorge A.; Alfaro, Eric J.; Quesada, Beatriz

    2013-07-01

    Runoff climate change projections for the 21st century were calculated from a suite of 30 General Circulation Model (GCM) simulations for the A1B emission scenario in a 0.5° × 0.5° grid over Central America. The GCM data were downscaled using a version of the Bias Correction and Spatial Downscaling (BCSD) method and then used in the Variable Infiltration Capacity (VIC) macroscale hydrological model. The VIC model showed calibration skill in Honduras, Nicaragua, Costa Rica and Panama, but the results for some of the northern countries (Guatemala, El Salvador and Belize) and for the Caribbean coast of Central America was not satisfactory. Bias correction showed to remove effectively the biases in the GCMs. Results of the projected climate in the 2050-2099 period showed median significant reductions in precipitation (as much as 5-10%) and runoff (as much as 10-30%) in northern Central America. Therefore in this sub-region the prevalence of severe drought may increase significantly in the future under this emissions scenario. Northern Central America could warm as much as 3 °C during 2050-2099 and southern Central America could reach increases as much as 4 °C during the same period. The projected dry pattern over Central America is consistent with a southward displacement of the Intertropical Convergence Zone (ITCZ). In addition, downscaling of the NCEP/NCAR Reanalysis data from 1948 to 2012 and posterior run in VIC, for two locations in the northern and southern sub-regions of Central America, suggested that the annual runoff has been decreasing since ca. 1980, which is consistent with the sign of the runoff changes of the GCM projections. However, the Reanalysis 1980-2012 drying trends are generally much stronger than the corresponding GCM trends. Among the possible reasons for that discrepancy are model deficiencies, amplification of the trends due to constructive interference with natural modes of variability in the Reanalysis data, errors in the Reanalysis

  7. Prediction of climate variability and projection of climate change

    SciTech Connect

    Grassl, H.

    1996-12-31

    The years since 1985 have seen rapid progress in climate research. By the implementation of a new observing system in the Tropical Pacific Ocean combined with the development of adapted coupled ocean-atmosphere models the Tropical Ocean-Global Atmosphere (TOGA) project of the World Climate Research Programme (WCRP) led to the breakthrough to physically-based climate predictions. For most of the tropics and partly extending to mid-latitudes, climate anomalies can now be predicted for the next season and in some places even for the next year. On the other hand, global coupled ocean-atmosphere-land models have recently approached natural climate variability on time-scales to several decades to such an extent, that these models, partly validated with data from the past, became useful for answering the following two questions: Has mankind already changed global climate? Is anthropogenic global climate change, in the coming century, surmounting at least all variability observed during the last 10,000 years? Both questions are answered by yes. For the first question, the observed patterns of warming and cooling with respect to geographical, seasonal and vertical dependence can only be explained by a combined action of global greenhouse gas increase, regional sulfate aerosol load and stratospheric ozone depletion. For the second, even low climate sensitivity and low economic growth, will lead, if no measures are taken, to a mean global warming of 1.0 C, thus surmounting the warmest phase of the holocene. Implications of these findings for the implementation of the UN Framework Convention on Climate Change will also be discussed.

  8. Projected change in global fisheries revenues under climate change.

    PubMed

    Lam, Vicky W Y; Cheung, William W L; Reygondeau, Gabriel; Sumaila, U Rashid

    2016-01-01

    Previous studies highlight the winners and losers in fisheries under climate change based on shifts in biomass, species composition and potential catches. Understanding how climate change is likely to alter the fisheries revenues of maritime countries is a crucial next step towards the development of effective socio-economic policy and food sustainability strategies to mitigate and adapt to climate change. Particularly, fish prices and cross-oceans connections through distant water fishing operations may largely modify the projected climate change impacts on fisheries revenues. However, these factors have not formally been considered in global studies. Here, using climate-living marine resources simulation models, we show that global fisheries revenues could drop by 35% more than the projected decrease in catches by the 2050 s under high CO2 emission scenarios. Regionally, the projected increases in fish catch in high latitudes may not translate into increases in revenues because of the increasing dominance of low value fish, and the decrease in catches by these countries' vessels operating in more severely impacted distant waters. Also, we find that developing countries with high fisheries dependency are negatively impacted. Our results suggest the need to conduct full-fledged economic analyses of the potential economic effects of climate change on global marine fisheries. PMID:27600330

  9. Projected change in global fisheries revenues under climate change

    NASA Astrophysics Data System (ADS)

    Lam, Vicky W. Y.; Cheung, William W. L.; Reygondeau, Gabriel; Sumaila, U. Rashid

    2016-09-01

    Previous studies highlight the winners and losers in fisheries under climate change based on shifts in biomass, species composition and potential catches. Understanding how climate change is likely to alter the fisheries revenues of maritime countries is a crucial next step towards the development of effective socio-economic policy and food sustainability strategies to mitigate and adapt to climate change. Particularly, fish prices and cross-oceans connections through distant water fishing operations may largely modify the projected climate change impacts on fisheries revenues. However, these factors have not formally been considered in global studies. Here, using climate-living marine resources simulation models, we show that global fisheries revenues could drop by 35% more than the projected decrease in catches by the 2050 s under high CO2 emission scenarios. Regionally, the projected increases in fish catch in high latitudes may not translate into increases in revenues because of the increasing dominance of low value fish, and the decrease in catches by these countries’ vessels operating in more severely impacted distant waters. Also, we find that developing countries with high fisheries dependency are negatively impacted. Our results suggest the need to conduct full-fledged economic analyses of the potential economic effects of climate change on global marine fisheries.

  10. Projected change in global fisheries revenues under climate change

    PubMed Central

    Lam, Vicky W. Y.; Cheung, William W. L.; Reygondeau, Gabriel; Sumaila, U. Rashid

    2016-01-01

    Previous studies highlight the winners and losers in fisheries under climate change based on shifts in biomass, species composition and potential catches. Understanding how climate change is likely to alter the fisheries revenues of maritime countries is a crucial next step towards the development of effective socio-economic policy and food sustainability strategies to mitigate and adapt to climate change. Particularly, fish prices and cross-oceans connections through distant water fishing operations may largely modify the projected climate change impacts on fisheries revenues. However, these factors have not formally been considered in global studies. Here, using climate-living marine resources simulation models, we show that global fisheries revenues could drop by 35% more than the projected decrease in catches by the 2050 s under high CO2 emission scenarios. Regionally, the projected increases in fish catch in high latitudes may not translate into increases in revenues because of the increasing dominance of low value fish, and the decrease in catches by these countries’ vessels operating in more severely impacted distant waters. Also, we find that developing countries with high fisheries dependency are negatively impacted. Our results suggest the need to conduct full-fledged economic analyses of the potential economic effects of climate change on global marine fisheries. PMID:27600330

  11. Projected change in global fisheries revenues under climate change.

    PubMed

    Lam, Vicky W Y; Cheung, William W L; Reygondeau, Gabriel; Sumaila, U Rashid

    2016-09-07

    Previous studies highlight the winners and losers in fisheries under climate change based on shifts in biomass, species composition and potential catches. Understanding how climate change is likely to alter the fisheries revenues of maritime countries is a crucial next step towards the development of effective socio-economic policy and food sustainability strategies to mitigate and adapt to climate change. Particularly, fish prices and cross-oceans connections through distant water fishing operations may largely modify the projected climate change impacts on fisheries revenues. However, these factors have not formally been considered in global studies. Here, using climate-living marine resources simulation models, we show that global fisheries revenues could drop by 35% more than the projected decrease in catches by the 2050 s under high CO2 emission scenarios. Regionally, the projected increases in fish catch in high latitudes may not translate into increases in revenues because of the increasing dominance of low value fish, and the decrease in catches by these countries' vessels operating in more severely impacted distant waters. Also, we find that developing countries with high fisheries dependency are negatively impacted. Our results suggest the need to conduct full-fledged economic analyses of the potential economic effects of climate change on global marine fisheries.

  12. Regional Climate Change Projections over Northeast Brazil

    NASA Astrophysics Data System (ADS)

    Cassain Sales, Domingo; Araújo Costa, Alexandre; Mariano da Silva, Emerson; Cavalcante, Arnóbio M. B.; das Chagas Vasconcelos Júnior, Francisco; Martins de Araújo Junior, Luiz; Oliveira Guimarães, Sullyandro

    2013-04-01

    Climate change and climate change impact studies often require a spatial resolution beyond the horizontal grid spacing of the data generated by Global Climate Models (GCMs). Dynamical Downscaling is one of techniques that allow regionalization of information from such models, in which the GCM data drive a Regional Climate Model (RCM) that in turn, at least theoretically, presents the climatological fields in more detail and can add value to climatic analysis. In this context, CORDEX is a coordinated experiment that standardizes dynamical downscaling simulations over continental regions, to provide a contribution from the regional climate modeling community to the IPCC/AR5 and beyond. Because computer resources are limited, a modeling group involved in CORDEX typically chooses one or few of the suggested domains, and use one or a few CMIP5 GCM data to drive its regional model. At the State University of Ceará (UECE), in Brazil, we used RAMS6.0 (Regional Atmospheric Modeling System Version 6.0), driven by HadGEM2-ES (Hadley Centre Global Enviroment Model Version 2 - Earth System) data, over a extended CORDEX Central America domain (longitude: 124.5W to 24.5W, latitude: 33.5N to 17.5S). This work presents the evaluation of climatological features of precipitation and temperature over Northeast Brazil region (longitude: 47W to 34.5W, latitude: 2.5S to 17.5S) for 20 years of the historical period (1985-2005) evaluating short-term (2015-2035), mid-term (2045-2065) and long-term (2079-2099) changes, under the RCP4.5 e RCP8.5 scenarios. For the historical period, the results were compared against several observed data sets, in order to evaluate the performance of RAMS6.0 nested to HadGEM2-ES. The correlation between the simulated and observed annual cycle of precipitation is high (above 0.93). RAMS6.0 shows a wet bias of 0.706 mm/day that is larger than HadGEM2-ES bias (0.197 mm/day), however the regional model corrects the month of maximum precipitation (the global model

  13. Climate change in Central America and Mexico: regional climate model validation and climate change projections

    NASA Astrophysics Data System (ADS)

    Karmalkar, Ambarish V.; Bradley, Raymond S.; Diaz, Henry F.

    2011-08-01

    Central America has high biodiversity, it harbors high-value ecosystems and it's important to provide regional climate change information to assist in adaptation and mitigation work in the region. Here we study climate change projections for Central America and Mexico using a regional climate model. The model evaluation shows its success in simulating spatial and temporal variability of temperature and precipitation and also in capturing regional climate features such as the bimodal annual cycle of precipitation and the Caribbean low-level jet. A variety of climate regimes within the model domain are also better identified in the regional model simulation due to improved resolution of topographic features. Although, the model suffers from large precipitation biases, it shows improvements over the coarse-resolution driving model in simulating precipitation amounts. The model shows a dry bias in the wet season and a wet bias in the dry season suggesting that it's unable to capture the full range of precipitation variability. Projected warming under the A2 scenario is higher in the wet season than that in the dry season with the Yucatan Peninsula experiencing highest warming. A large reduction in precipitation in the wet season is projected for the region, whereas parts of Central America that receive a considerable amount of moisture in the form of orographic precipitation show significant decreases in precipitation in the dry season. Projected climatic changes can have detrimental impacts on biodiversity as they are spatially similar, but far greater in magnitude, than those observed during the El Niño events in recent decades that adversely affected species in the region.

  14. Conservation Planning with Uncertain Climate Change Projections

    PubMed Central

    Moilanen, Atte; Araújo, Miguel B.

    2013-01-01

    Climate change is affecting biodiversity worldwide, but conservation responses are constrained by considerable uncertainty regarding the magnitude, rate and ecological consequences of expected climate change. Here we propose a framework to account for several sources of uncertainty in conservation prioritization. Within this framework we account for uncertainties arising from (i) species distributions that shift following climate change, (ii) basic connectivity requirements of species, (iii) alternative climate change scenarios and their impacts, (iv) in the modelling of species distributions, and (v) different levels of confidence about present and future. When future impacts of climate change are uncertain, robustness of decision-making can be improved by quantifying the risks and trade-offs associated with climate scenarios. Sensible prioritization that accounts simultaneously for the present and potential future distributions of species is achievable without overly jeopardising present-day conservation values. Doing so requires systematic treatment of uncertainties and testing of the sensitivity of results to assumptions about climate. We illustrate the proposed framework by identifying priority areas for amphibians and reptiles in Europe. PMID:23405068

  15. Incorporating climate change projections into riparian restoration planning and design

    USGS Publications Warehouse

    Perry, Laura G.; Lindsay V. Reynolds,; Beechie, Timothy J.; Collins, Mathias J.; Shafroth, Patrick B.

    2015-01-01

    Climate change and associated changes in streamflow may alter riparian habitats substantially in coming decades. Riparian restoration provides opportunities to respond proactively to projected climate change effects, increase riparian ecosystem resilience to climate change, and simultaneously address effects of both climate change and other human disturbances. However, climate change may alter which restoration methods are most effective and which restoration goals can be achieved. Incorporating climate change into riparian restoration planning and design is critical to long-term restoration of desired community composition and ecosystem services. In this review, we discuss and provide examples of how climate change might be incorporated into restoration planning at the key stages of assessing the project context, establishing restoration goals and design criteria, evaluating design alternatives, and monitoring restoration outcomes. Restoration planners have access to numerous tools to predict future climate, streamflow, and riparian ecology at restoration sites. Planners can use those predictions to assess which species or ecosystem services will be most vulnerable under future conditions, and which sites will be most suitable for restoration. To accommodate future climate and streamflow change, planners may need to adjust methods for planting, invasive species control, channel and floodplain reconstruction, and water management. Given the considerable uncertainty in future climate and streamflow projections, riparian ecological responses, and effects on restoration outcomes, planners will need to consider multiple potential future scenarios, implement a variety of restoration methods, design projects with flexibility to adjust to future conditions, and plan to respond adaptively to unexpected change.

  16. PROJECTED CLIMATE-INDUCED FAUNAL CHANGE IN THE WESTERN HEMISPHERE

    EPA Science Inventory

    Climate change is predicted to be one of the greatest drivers of ecological change in the coming century. Increases in temperature over the last century have clearly been linked to shifts in species distributions. Given the magnitude of projected future climatic changes, we can e...

  17. Making Climate Change Education Place Based and Relevant: Minnesota's Changing Climate Education Project

    NASA Astrophysics Data System (ADS)

    Poppleton, K. L.

    2012-12-01

    Climate change is the environmental issue of our time and it has become increasingly important to develop education materials that are accessible to teachers and effective for teaching students. In order to inspire interest and an understanding of the personal relevance of this complex issue, and with funding allocated through Minnesota's Environment and Natural Resource Trust Fund, the Will Steger Foundation developed Minnesota's Changing Climate curriculum, online classroom, and professional development opportunities. Minnesota's Changing Climate is based on the tenants of environmental and place based education- knowing that deep understanding and connection to this issue begins with a local connection and sense of appreciation towards the natural environment. The Grades 3-8 and 9-12 curricula gives students the opportunity to explore and learn about Minnesota's unique biomes and what a changing climate means for the state through 6 hands on and interdisciplinary lessons. The online classroom features opportunities to interact with Minnesota's four biomes through panoramas and short videos featuring the biomes and ongoing climate research there. During the first two years of this project over 300 educators have attending professional development opportunities on Minnesota's Changing Climate. Evaluation results show that over 90% of educators found the curriculum and online classroom useful for teaching climate change, The project was selected as the Environmental Education Award Recipient for 2012 by Minnesota Environmental Initiative an organization that honors innovative projects that have achieved extraordinary environmental results by harnessing the power of partnership.; Screen shot of Minnesota's Changing Climate online classroom. ;

  18. Implication of Agricultural Land Use Change on Regional Climate Projection

    NASA Astrophysics Data System (ADS)

    Wang, G.; Ahmed, K. F.; You, L.

    2015-12-01

    Agricultural land use plays an important role in land-atmosphere interaction. Agricultural activity is one of the most important processes driving human-induced land use land cover change (LULCC) in a region. In addition to future socioeconomic changes, climate-induced changes in crop yield represent another important factor shaping agricultural land use. In feedback, the resulting LULCC influences the direction and magnitude of global, regional and local climate change by altering Earth's radiative equilibrium. Therefore, assessment of climate change impact on future agricultural land use and its feedback is of great importance in climate change study. In this study, to evaluate the feedback of projected land use changes to the regional climate in West Africa, we employed an asynchronous coupling between a regional climate model (RegCM) and a prototype land use projection model (LandPro). The LandPro model, which was developed to project the future change in agricultural land use and the resulting shift in natural vegetation in West Africa, is a spatially explicit model that can account for both climate and socioeconomic changes in projecting future land use changes. In the asynchronously coupled modeling framework, LandPro was run for every five years during the period of 2005-2050 accounting for climate-induced change in crop yield and socioeconomic changes to project the land use pattern by the mid-21st century. Climate data at 0.5˚ was derived from RegCM to drive the crop model DSSAT for each of the five-year periods to simulate crop yields, which was then provided as input data to LandPro. Subsequently, the land use land cover map required to run RegCM was updated every five years using the outputs from the LandPro simulations. Results from the coupled model simulations improve the understanding of climate change impact on future land use and the resulting feedback to regional climate.

  19. Projected climate-induced faunal change in the Western Hemisphere.

    PubMed

    Lawler, Joshua J; Shafer, Sarah L; White, Denis; Kareiva, Peter; Maurer, Edwin P; Blaustein, Andrew R; Bartlein, Patrick J

    2009-03-01

    Climate change is predicted to be one of the greatest drivers of ecological change in the coming century. Increases in temperature over the last century have clearly been linked to shifts in species distributions. Given the magnitude of projected future climatic changes, we can expect even larger range shifts in the coming century. These changes will, in turn, alter ecological communities and the functioning of ecosystems. Despite the seriousness of predicted climate change, the uncertainty in climate-change projections makes it difficult for conservation managers and planners to proactively respond to climate stresses. To address one aspect of this uncertainty, we identified predictions of faunal change for which a high level of consensus was exhibited by different climate models. Specifically, we assessed the potential effects of 30 coupled atmosphere-ocean general circulation model (AOGCM) future-climate simulations on the geographic ranges of 2954 species of birds, mammals, and amphibians in the Western Hemisphere. Eighty percent of the climate projections based on a relatively low greenhouse-gas emissions scenario result in the local loss of at least 10% of the vertebrate fauna over much of North and South America. The largest changes in fauna are predicted for the tundra, Central America, and the Andes Mountains where, assuming no dispersal constraints, specific areas are likely to experience over 90% turnover, so that faunal distributions in the future will bear little resemblance to those of today. PMID:19341131

  20. Projected climate-induced faunal change in the Western Hemisphere

    USGS Publications Warehouse

    Lawler, J.J.; Shafer, S.L.; White, D.; Kareiva, P.; Maurer, E.P.; Blaustein, A.R.; Bartlein, P.J.

    2009-01-01

    Climate change is predicted to be one of the greatest drivers of ecological change in the coming century. Increases in temperature over the last century have clearly been linked to shifts in species distributions. Given the magnitude of projected future climatic changes, we can expect even larger range shifts in the coming century. These changes will, in turn, alter ecological communities and the functioning of ecosystems. Despite the seriousness of predicted climate change, the uncertainty in climate-change projections makes it difficult for conservation managers and planners to proactively respond to climate stresses. To address one aspect of this uncertainty, we identified predictions of faunal change for which a high level of consensus was exhibited by different climate models. Specifically, we assessed the potential effects of 30 coupled atmosphere-ocean general circulation model (AOGCM) future-climate simulations on the geographic ranges of 2954 species of birds, mammals, and amphibians in the Western Hemisphere. Eighty percent of the climate projections based on a relatively low greenhouse-gas emissions scenario result in the local loss of at least 10% of the vertebrate fauna over much of North and South America. The largest changes in fauna are predicted for the tundra, Central America, and the Andes Mountains where, assuming no dispersal constraints, specific areas are likely to experience over 90% turnover, so that faunal distributions in the future will bear little resemblance to those of today. ?? 2009 by the Ecological Society of America.

  1. Projected climate change impacts to the North Sea marine system

    NASA Astrophysics Data System (ADS)

    Schrum, Corinna

    2015-04-01

    Future climate change impacts to the North Sea marine system are driven by a combination of changes induced by the globally forced oceanic boundary conditions and the regional atmospheric and terrestrial changes. We reviewed the recent progress and the projected future change of the North Sea marine system as part of the North Sea Climate Change Assessment (NOSCCA) and focussed on three major aspects, namely the change of (i) sea level, the (ii) hydrographic and circulation changes of the North Sea and the (iii) changes in lower trophic level dynamics, biogeochemistry and ocean acidification. In recent years more and more regional climate change assessments became available for the North Sea and new developments contributed important understanding on regional processes mediating climate change impacts in the North Sea. Important new knowledge on regional future sea level change was gained by improved understanding of processes contributing to global sea level rise during the last decade. Assessment of climate change impacts to hydrography, circulation and biogeochemistry has benefited from new and advanced downscaling methods. The large number of regional studies enables now a critical review of the current knowledge on climate change impacts on the North Sea and allows the identification of challenges, robust changes, uncertainties and specific recommendations for future research. The long term trends in the climate conditions are superposed on the natural modes of variability and separating these to give a clear anthropogenic climate change signal is one of the 'grand challenges' of climate change impact studies in marine regions and of particular relevance for North Sea. The impact of natural variability on future annual average steric sea level, sea surface temperature and ocean acidification is less dominant compared to the climate change signal and their projected changes for the North Sea, namely rising future sea level, increasing surface temperature and

  2. Projected impacts of climate change on salmon habitat restoration.

    PubMed

    Battin, James; Wiley, Matthew W; Ruckelshaus, Mary H; Palmer, Richard N; Korb, Elizabeth; Bartz, Krista K; Imaki, Hiroo

    2007-04-17

    Throughout the world, efforts are under way to restore watersheds, but restoration planning rarely accounts for future climate change. Using a series of linked models of climate, land cover, hydrology, and salmon population dynamics, we investigated the impacts of climate change on the effectiveness of proposed habitat restoration efforts designed to recover depleted Chinook salmon populations in a Pacific Northwest river basin. Model results indicate a large negative impact of climate change on freshwater salmon habitat. Habitat restoration and protection can help to mitigate these effects and may allow populations to increase in the face of climate change. The habitat deterioration associated with climate change will, however, make salmon recovery targets much more difficult to attain. Because the negative impacts of climate change in this basin are projected to be most pronounced in relatively pristine, high-elevation streams where little restoration is possible, climate change and habitat restoration together are likely to cause a spatial shift in salmon abundance. River basins that span the current snow line appear especially vulnerable to climate change, and salmon recovery plans that enhance lower-elevation habitats are likely to be more successful over the next 50 years than those that target the higher-elevation basins likely to experience the greatest snow-rain transition.

  3. Projected impacts of climate change on salmon habitat restoration

    PubMed Central

    Battin, James; Wiley, Matthew W.; Ruckelshaus, Mary H.; Palmer, Richard N.; Korb, Elizabeth; Bartz, Krista K.; Imaki, Hiroo

    2007-01-01

    Throughout the world, efforts are under way to restore watersheds, but restoration planning rarely accounts for future climate change. Using a series of linked models of climate, land cover, hydrology, and salmon population dynamics, we investigated the impacts of climate change on the effectiveness of proposed habitat restoration efforts designed to recover depleted Chinook salmon populations in a Pacific Northwest river basin. Model results indicate a large negative impact of climate change on freshwater salmon habitat. Habitat restoration and protection can help to mitigate these effects and may allow populations to increase in the face of climate change. The habitat deterioration associated with climate change will, however, make salmon recovery targets much more difficult to attain. Because the negative impacts of climate change in this basin are projected to be most pronounced in relatively pristine, high-elevation streams where little restoration is possible, climate change and habitat restoration together are likely to cause a spatial shift in salmon abundance. River basins that span the current snow line appear especially vulnerable to climate change, and salmon recovery plans that enhance lower-elevation habitats are likely to be more successful over the next 50 years than those that target the higher-elevation basins likely to experience the greatest snow–rain transition. PMID:17412830

  4. Choice of baseline climate data impacts projected species' responses to climate change.

    PubMed

    Baker, David J; Hartley, Andrew J; Butchart, Stuart H M; Willis, Stephen G

    2016-07-01

    Climate data created from historic climate observations are integral to most assessments of potential climate change impacts, and frequently comprise the baseline period used to infer species-climate relationships. They are often also central to downscaling coarse resolution climate simulations from General Circulation Models (GCMs) to project future climate scenarios at ecologically relevant spatial scales. Uncertainty in these baseline data can be large, particularly where weather observations are sparse and climate dynamics are complex (e.g. over mountainous or coastal regions). Yet, importantly, this uncertainty is almost universally overlooked when assessing potential responses of species to climate change. Here, we assessed the importance of historic baseline climate uncertainty for projections of species' responses to future climate change. We built species distribution models (SDMs) for 895 African bird species of conservation concern, using six different climate baselines. We projected these models to two future periods (2040-2069, 2070-2099), using downscaled climate projections, and calculated species turnover and changes in species-specific climate suitability. We found that the choice of baseline climate data constituted an important source of uncertainty in projections of both species turnover and species-specific climate suitability, often comparable with, or more important than, uncertainty arising from the choice of GCM. Importantly, the relative contribution of these factors to projection uncertainty varied spatially. Moreover, when projecting SDMs to sites of biodiversity importance (Important Bird and Biodiversity Areas), these uncertainties altered site-level impacts, which could affect conservation prioritization. Our results highlight that projections of species' responses to climate change are sensitive to uncertainty in the baseline climatology. We recommend that this should be considered routinely in such analyses.

  5. Choice of baseline climate data impacts projected species' responses to climate change.

    PubMed

    Baker, David J; Hartley, Andrew J; Butchart, Stuart H M; Willis, Stephen G

    2016-07-01

    Climate data created from historic climate observations are integral to most assessments of potential climate change impacts, and frequently comprise the baseline period used to infer species-climate relationships. They are often also central to downscaling coarse resolution climate simulations from General Circulation Models (GCMs) to project future climate scenarios at ecologically relevant spatial scales. Uncertainty in these baseline data can be large, particularly where weather observations are sparse and climate dynamics are complex (e.g. over mountainous or coastal regions). Yet, importantly, this uncertainty is almost universally overlooked when assessing potential responses of species to climate change. Here, we assessed the importance of historic baseline climate uncertainty for projections of species' responses to future climate change. We built species distribution models (SDMs) for 895 African bird species of conservation concern, using six different climate baselines. We projected these models to two future periods (2040-2069, 2070-2099), using downscaled climate projections, and calculated species turnover and changes in species-specific climate suitability. We found that the choice of baseline climate data constituted an important source of uncertainty in projections of both species turnover and species-specific climate suitability, often comparable with, or more important than, uncertainty arising from the choice of GCM. Importantly, the relative contribution of these factors to projection uncertainty varied spatially. Moreover, when projecting SDMs to sites of biodiversity importance (Important Bird and Biodiversity Areas), these uncertainties altered site-level impacts, which could affect conservation prioritization. Our results highlight that projections of species' responses to climate change are sensitive to uncertainty in the baseline climatology. We recommend that this should be considered routinely in such analyses. PMID:26950769

  6. Projecting the Hydrologic Impacts of Climate Change on Montane Wetlands.

    PubMed

    Lee, Se-Yeun; Ryan, Maureen E; Hamlet, Alan F; Palen, Wendy J; Lawler, Joshua J; Halabisky, Meghan

    2015-01-01

    Wetlands are globally important ecosystems that provide critical services for natural communities and human society. Montane wetland ecosystems are expected to be among the most sensitive to changing climate, as their persistence depends on factors directly influenced by climate (e.g. precipitation, snowpack, evaporation). Despite their importance and climate sensitivity, wetlands tend to be understudied due to a lack of tools and data relative to what is available for other ecosystem types. Here, we develop and demonstrate a new method for projecting climate-induced hydrologic changes in montane wetlands. Using observed wetland water levels and soil moisture simulated by the physically based Variable Infiltration Capacity (VIC) hydrologic model, we developed site-specific regression models relating soil moisture to observed wetland water levels to simulate the hydrologic behavior of four types of montane wetlands (ephemeral, intermediate, perennial, permanent wetlands) in the U. S. Pacific Northwest. The hybrid models captured observed wetland dynamics in many cases, though were less robust in others. We then used these models to a) hindcast historical wetland behavior in response to observed climate variability (1916-2010 or later) and classify wetland types, and b) project the impacts of climate change on montane wetlands using global climate model scenarios for the 2040s and 2080s (A1B emissions scenario). These future projections show that climate-induced changes to key driving variables (reduced snowpack, higher evapotranspiration, extended summer drought) will result in earlier and faster drawdown in Pacific Northwest montane wetlands, leading to systematic reductions in water levels, shortened wetland hydroperiods, and increased probability of drying. Intermediate hydroperiod wetlands are projected to experience the greatest changes. For the 2080s scenario, widespread conversion of intermediate wetlands to fast-drying ephemeral wetlands will likely reduce

  7. Projecting the Hydrologic Impacts of Climate Change on Montane Wetlands.

    PubMed

    Lee, Se-Yeun; Ryan, Maureen E; Hamlet, Alan F; Palen, Wendy J; Lawler, Joshua J; Halabisky, Meghan

    2015-01-01

    Wetlands are globally important ecosystems that provide critical services for natural communities and human society. Montane wetland ecosystems are expected to be among the most sensitive to changing climate, as their persistence depends on factors directly influenced by climate (e.g. precipitation, snowpack, evaporation). Despite their importance and climate sensitivity, wetlands tend to be understudied due to a lack of tools and data relative to what is available for other ecosystem types. Here, we develop and demonstrate a new method for projecting climate-induced hydrologic changes in montane wetlands. Using observed wetland water levels and soil moisture simulated by the physically based Variable Infiltration Capacity (VIC) hydrologic model, we developed site-specific regression models relating soil moisture to observed wetland water levels to simulate the hydrologic behavior of four types of montane wetlands (ephemeral, intermediate, perennial, permanent wetlands) in the U. S. Pacific Northwest. The hybrid models captured observed wetland dynamics in many cases, though were less robust in others. We then used these models to a) hindcast historical wetland behavior in response to observed climate variability (1916-2010 or later) and classify wetland types, and b) project the impacts of climate change on montane wetlands using global climate model scenarios for the 2040s and 2080s (A1B emissions scenario). These future projections show that climate-induced changes to key driving variables (reduced snowpack, higher evapotranspiration, extended summer drought) will result in earlier and faster drawdown in Pacific Northwest montane wetlands, leading to systematic reductions in water levels, shortened wetland hydroperiods, and increased probability of drying. Intermediate hydroperiod wetlands are projected to experience the greatest changes. For the 2080s scenario, widespread conversion of intermediate wetlands to fast-drying ephemeral wetlands will likely reduce

  8. Projecting the Hydrologic Impacts of Climate Change on Montane Wetlands

    PubMed Central

    Hamlet, Alan F.; Palen, Wendy J.; Lawler, Joshua J.; Halabisky, Meghan

    2015-01-01

    Wetlands are globally important ecosystems that provide critical services for natural communities and human society. Montane wetland ecosystems are expected to be among the most sensitive to changing climate, as their persistence depends on factors directly influenced by climate (e.g. precipitation, snowpack, evaporation). Despite their importance and climate sensitivity, wetlands tend to be understudied due to a lack of tools and data relative to what is available for other ecosystem types. Here, we develop and demonstrate a new method for projecting climate-induced hydrologic changes in montane wetlands. Using observed wetland water levels and soil moisture simulated by the physically based Variable Infiltration Capacity (VIC) hydrologic model, we developed site-specific regression models relating soil moisture to observed wetland water levels to simulate the hydrologic behavior of four types of montane wetlands (ephemeral, intermediate, perennial, permanent wetlands) in the U. S. Pacific Northwest. The hybrid models captured observed wetland dynamics in many cases, though were less robust in others. We then used these models to a) hindcast historical wetland behavior in response to observed climate variability (1916–2010 or later) and classify wetland types, and b) project the impacts of climate change on montane wetlands using global climate model scenarios for the 2040s and 2080s (A1B emissions scenario). These future projections show that climate-induced changes to key driving variables (reduced snowpack, higher evapotranspiration, extended summer drought) will result in earlier and faster drawdown in Pacific Northwest montane wetlands, leading to systematic reductions in water levels, shortened wetland hydroperiods, and increased probability of drying. Intermediate hydroperiod wetlands are projected to experience the greatest changes. For the 2080s scenario, widespread conversion of intermediate wetlands to fast-drying ephemeral wetlands will likely reduce

  9. Effects of Projected Transient Changes in Climate on Tennessee Forests

    SciTech Connect

    Dale, Virginia H; Tharp, M Lynn; Lannom, Karen O.; Hodges, Donald G.

    2010-01-01

    This study examines transient effects of projected climate change on the structure and species composition of forests in Tennessee. The climate change scenarios for 2030 and 2080 were provided by the National Center for Atmospheric Research (NCAR) from three General Circulation Models (GCMs) that simulate the range of potential climate conditions for the state. The precipitation and temperature projections from the three GCMs for 2030 and 2080 were related to changes in the ecoregions by using the monthly record of temperature and precipitation from 1980 to 1997 for each 1 km cell across the state as aggregated into the five ecological provinces. Temperatures are projected to increase in all ecological provinces in all months for all three GCMs for both 2030 and 2080. Precipitation patterns are more complex with one model projecting wetter summers and two models projecting drier summers. The forest ecosystem model LINKAGES was used to simulate conditions in forest stands for the five ecological provinces of Tennessee from 1989 to 2300. These model runs suggest there will be a change in tree diversity and species composition in all ecological provinces with the greatest changes occurring in the Southern Mixed Forest province. Most projections show a decline in total tree biomass followed by recovery as species replacement occurs in stands. The changes in forest biomass and composition, as simulated in this study, are likely to have implications on forest economy, tourism, understory conditions, wildlife habitat, mast provisioning, and other services provided by forest systems.

  10. Climate Change Communicators: The C3E3 Project

    NASA Astrophysics Data System (ADS)

    Sharif, H. O.; Joseph, J.

    2013-12-01

    The University of Texas at San Antonio (UTSA), San Antonio College (SAC), and the University of North Dakota (UND) have partnered with NASA to provide underrepresented undergraduates from UTSA, SAC, and other community colleges climate-related research and education experiences through the Climate Change Communication: Engineer, Environmental science, and Education (C3E3) project. The program aims to develop a robust response to climate change by providing K-16 climate change education; enhance the effectiveness of K-16 education particularly in engineering and other STEM disciplines by use of new instructional technologies; increase the enrollment in engineering programs and the number of engineering degrees awarded by showing engineering's usefulness in relation to the much-discussed contemporary issue of climate change; increase persistence in STEM degrees by providing student research opportunities; and increase the ethnic diversity of those receiving engineering degrees and help ensure an ethnically diverse response to climate change. Students participated in the second summer internship funded by the project. More than 60 students participated in guided research experiences aligned with NASA Science Plan objectives for climate and Earth system science and the educational objectives of the three institutions. The students went through training in modern media technology (webcasts), and in using this technology to communicate the information on climate change to others, especially high school students, culminating in production of webcasts on investigating the aspects of climate change using NASA data. Content developed is leveraged by NASA Earth observation data and NASA Earth system models and tools. Several departments are involved in the educational program.

  11. An Ontology for Uncertainty in Climate Change Projections

    NASA Astrophysics Data System (ADS)

    King, A. W.

    2011-12-01

    Paraphrasing Albert Einstein's aphorism about scientific quantification: not all uncertainty that counts can be counted, and not all uncertainty that can be counted counts. The meaning of the term "uncertainty" in climate change science and assessment is itself uncertain. Different disciplines and perspectives bring different nuances if not meanings of the term to the conversation. For many scientists, uncertainty is somehow associated with statistical dispersion and standard error. For many users of climate change information, uncertainty is more related to their confidence, or lack thereof, in climate models. These "uncertainties" may be related, but they are not identical, and there is considerable room for confusion and misunderstanding. A knowledge framework, a system of concepts and vocabulary, for communicating uncertainty can add structure to the characterization and quantification of uncertainty and aid communication among scientists and users. I have developed an ontology for uncertainty in climate change projections derived largely from the report of the W3C Uncertainty Reasoning for the World Wide Web Incubator Group (URW3-XG) dealing with the problem of uncertainty representation and reasoning on the World Wide Web. I have adapted this ontology for uncertainty about information to uncertainty about climate change. Elements of the ontology apply with little or no translation to the information of climate change projections, with climate change almost a use case. Other elements can be translated into language used in climate-change discussions; translating aleatory uncertainty in the UncertaintyNature class as irreducible uncertainty is an example. I have added classes for source of uncertainty (UncertaintySource) (different model physics, for example) and metrics of uncertainty (UncertaintyMetric), at least, in the case of the latter, for those instances of uncertainty that can be quantified (i.e., counted). The statistical standard deviation isa member

  12. An Objective Approach to Select Climate Scenarios when Projecting Species Distribution under Climate Change.

    PubMed

    Casajus, Nicolas; Périé, Catherine; Logan, Travis; Lambert, Marie-Claude; de Blois, Sylvie; Berteaux, Dominique

    2016-01-01

    An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one.

  13. An Objective Approach to Select Climate Scenarios when Projecting Species Distribution under Climate Change

    PubMed Central

    Casajus, Nicolas; Périé, Catherine; Logan, Travis; Lambert, Marie-Claude; de Blois, Sylvie; Berteaux, Dominique

    2016-01-01

    An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one. PMID:27015274

  14. Influence of SST biases on future climate change projections

    SciTech Connect

    Ashfaq, Moetasim; Skinner, Chris B; Cherkauer, Keith

    2010-01-01

    We use a quantile-based bias correction technique and a multi-member ensemble of the atmospheric component of NCAR CCSM3 (CAM3) simulations to investigate the influence of sea surface temperature (SST) biases on future climate change projections. The simulations, which cover 1977 1999 in the historical period and 2077 2099 in the future (A1B) period, use the CCSM3-generated SSTs as prescribed boundary conditions. Bias correction is applied to the monthly time-series of SSTs so that the simulated changes in SST mean and variability are preserved. Our comparison of CAM3 simulations with and without SST correction shows that the SST biases affect the precipitation distribution in CAM3 over many regions by introducing errors in atmospheric moisture content and upper-level (lower-level) divergence (convergence). Also, bias correction leads to significantly different precipitation and surface temperature changes over many oceanic and terrestrial regions (predominantly in the tropics) in response to the future anthropogenic increases in greenhouse forcing. The differences in the precipitation response from SST bias correction occur both in the mean and the percent change, and are independent of the ocean atmosphere coupling. Many of these differences are comparable to or larger than the spread of future precipitation changes across the CMIP3 ensemble. Such biases can affect the simulated terrestrial feedbacks and thermohaline circulations in coupled climate model integrations through changes in the hydrological cycle and ocean salinity. Moreover, biases in CCSM3-generated SSTs are generally similar to the biases in CMIP3 ensemble mean SSTs, suggesting that other GCMs may display a similar sensitivity of projected climate change to SST errors. These results help to quantify the influence of climate model biases on the simulated climate change, and therefore should inform the effort to further develop approaches for reliable climate change projection.

  15. Projecting future climate change: Implications of carbon cycle model intercomparisons

    NASA Astrophysics Data System (ADS)

    Kheshgi, Haroon S.; Jain, Atul K.

    2003-06-01

    The range of responses of alternate detailed models for the ocean and biosphere components of the global carbon cycle, cataloged in model intercomparison studies, are simulated by a reduced form Earth system model employing a range of model parameters. The reduced form model, parameterized in this way, allows the integration of these components of the carbon cycle with an energy balance climate model with a prescribed range of climate sensitivity. We use this model to construct ranges of: (1) past carbon budgets given past CO2 concentrations, fossil carbon emissions, and temperature records, (2) future CO2 concentrations and temperature for given emission scenarios, and (3) CO2 emissions and temperature for given trajectories of future CO2 concentrations leading to constant levels within the next several centuries. Carbon cycle is an additional contributor to uncertainty in climate projections that is calculated to expand the range of projected global temperature beyond that reported in the 2001 Intergovernmental Panel on Climate Change assessment.

  16. National Climate Change and Wildlife Science Center project accomplishments: highlights

    USGS Publications Warehouse

    Holl, Sally

    2011-01-01

    The National Climate Change and Wildlife Science Center (NCCWSC) has invested more than $20M since 2008 to put cutting-edge climate science research in the hands of resource managers across the Nation. With NCCWSC support, more than 25 cooperative research initiatives led by U.S. Geological Survey (USGS) researchers and technical staff are advancing our understanding of habitats and species to provide guidance to managers in the face of a changing climate. Projects focus on quantifying and predicting interactions between climate, habitats, species, and other natural resources such as water. Spatial scales of the projects range from the continent of North America, to a regional scale such as the Pacific Northwest United States, to a landscape scale such as the Florida Everglades. Time scales range from the outset of the 20th century to the end of the 21st century. Projects often lead to workshops, presentations, publications and the creation of new websites, computer models, and data visualization tools. Partnership-building is also a key focus of the NCCWSC-supported projects. New and on-going cooperative partnerships have been forged and strengthened with resource managers and scientists at Federal, tribal, state, local, academic, and non-governmental organizations. USGS scientists work closely with resource managers to produce timely and relevant results that can assist managers and policy makers in current resource management decisions. This fact sheet highlights accomplishments of five NCCWSC projects.

  17. Projected changes to Tasman Sea eddies in a future climate

    NASA Astrophysics Data System (ADS)

    Oliver, Eric C. J.; O'Kane, Terence J.; Holbrook, Neil J.

    2015-11-01

    The Tasman Sea is a hot spot of ocean warming, that is linked to the increased poleward influence of the East Australian Current (EAC) over recent decades. Specifically, the EAC produces mesoscale eddies which have significant impacts on the physical, chemical, and biological properties of the Tasman Sea. To effectively consider and explain potential eddy changes in the next 50 years, we use high-resolution dynamically downscaled climate change simulations to characterize the projected future marine climate and mesoscale eddies in the Tasman Sea through the 2060s. We assess changes in the marine climate and the eddy field using bulk statistics and by detecting and tracking individual eddies. We find that the eddy kinetic energy is projected to increase along southeast Australia. In addition, we find that eddies in the projected future climate are composed of a higher proportion of anticyclonic eddies in this region and that these eddies are longer lived and more stable. This amounts to nearly a doubling of eddy-related southward temperature transport in the upper 200 m of the Tasman Sea. These changes are concurrent with increases in baroclinic and barotropic instabilities focused around the EAC separation point. This poleward transport and increase in eddy activity would be expected to also increase the frequency of sudden warming events, including ocean temperature extremes, with potential impacts on marine fisheries, aquaculture, and biodiversity off Tasmania's east coast, through direct warming or competition/predation from invasive migrating species.

  18. Hydrologic Response to Climate Variability, Climate Change, and Climate Extreme in the U.S.: Climate Model Evaluation and Projections

    SciTech Connect

    Leung, Lai R.; Qian, Yun

    2005-08-01

    Water resources are sensitive to climate variability and change; predictions of seasonal to interannual climate variations and projections of long-term climate trends can provide significant values in managing water resources. This study examines the control (1975–1995) and future (1995–2100) climate simulated by a global climate model (GCM) and a regional climate simulation driven by the GCM control simulation for the U.S. Comparison of the regional climate simulation with observations across 13 subregions showed that the simulation captured the seasonality and the distributions of precipitation rate quite well. The GCM control and climate change simulations showed that, as a result of a 1% increase in greenhouse gas concentrations per year, there will be a warming of 2–3°C across the U.S. from 2000 to 2100. Although precipitation is not projected to change during this century, the warming trend will increase evapotranspiration to reduce annual basin mean runoff over five subregions along the coastal and south-central U.S.

  19. Projected impacts of climate change on hydropower potential in China

    NASA Astrophysics Data System (ADS)

    Liu, Xingcai; Tang, Qiuhong; Voisin, Nathalie; Cui, Huijuan

    2016-08-01

    Hydropower is an important renewable energy source in China, but it is sensitive to climate change, because the changing climate may alter hydrological conditions (e.g., river flow and reservoir storage). Future changes and associated uncertainties in China's gross hydropower potential (GHP) and developed hydropower potential (DHP) are projected using simulations from eight global hydrological models (GHMs), including a large-scale reservoir regulation model, forced by five general circulation models (GCMs) with climate data under two representative concentration pathways (RCP2.6 and RCP8.5). Results show that the estimation of the present GHP of China is comparable to other studies; overall, the annual GHP is projected to change by -1.7 to 2 % in the near future (2020-2050) and increase by 3 to 6 % in the late 21st century (2070-2099). The annual DHP is projected to change by -2.2 to -5.4 % (0.7-1.7 % of the total installed hydropower capacity (IHC)) and -1.3 to -4 % (0.4-1.3 % of total IHC) for 2020-2050 and 2070-2099, respectively. Regional variations emerge: GHP will increase in northern China but decrease in southern China - mostly in south central China and eastern China - where numerous reservoirs and large IHCs currently are located. The area with the highest GHP in southwest China will have more GHP, while DHP will reduce in the regions with high IHC (e.g., Sichuan and Hubei) in the future. The largest decrease in DHP (in %) will occur in autumn or winter, when streamflow is relatively low and water use is competitive. Large ranges in hydropower estimates across GHMs and GCMs highlight the necessity of using multimodel assessments under climate change conditions. This study prompts the consideration of climate change in planning for hydropower development and operations in China, to be further combined with a socioeconomic analysis for strategic expansion.

  20. The Impact of Project-Based Climate Change Learning Experiences on Students' Broad Climate Literacy

    NASA Astrophysics Data System (ADS)

    DeWaters, J.; Powers, S. E.; Dhaniyala, S.

    2014-12-01

    Evidence-based pedagogical approaches such as project- and inquiry-based techniques have been shown to promote effective learning in science and engineering. The impact of project-based learning experiences on middle school (MS), high school (HS), and undergraduate (UG) students' climate literacy was investigated as part of a NASA Innovations in Climate Education (NICE) project. Project-based modules were developed and taught by MS and HS teachers who participated in climate change education workshops. UG students enrolled in a climate science course completed independent research projects that provided the basis for several of the HS/MS modules. All modules required students to acquire and analyze historical temperature data and future climate predictions, and apply their analysis to the solution of a societal or environmental problem related to our changing climate. Three versions of a quantitative survey were developed and used in a pre-test/post-test research design to help evaluate the project's impact on MS, HS, and UG students' climate literacy, which includes broad climate knowledge as well as affective and behavioral aspects. Content objectives were guided primarily by the 2009 document, Climate Literacy: The Essential Principles of Climate Sciences. All three groups of students made modest but statistically significant cognitive (p<<0.001) and affective (p<0.01) gains; UG students also showed an increase in behavior scores (p=0.001). Results of an ANCOVA showed significant differences in students' cognitive (p<0.001), behavioral (p=0.005) and self-efficacy (p=0.012) outcomes among the 9 participating MS and HS classrooms, where both teacher and module content varied. The presentation will include a description of some key aspects of the project-based curricula developed and used in this research, the development and content of the climate literacy survey, and the interpretation of specific pre/post changes in participating students relative to the content

  1. Rates of projected climate change dramatically exceed past rates of climatic niche evolution among vertebrate species.

    PubMed

    Quintero, Ignacio; Wiens, John J

    2013-08-01

    A key question in predicting responses to anthropogenic climate change is: how quickly can species adapt to different climatic conditions? Here, we take a phylogenetic approach to this question. We use 17 time-calibrated phylogenies representing the major tetrapod clades (amphibians, birds, crocodilians, mammals, squamates, turtles) and climatic data from distributions of > 500 extant species. We estimate rates of change based on differences in climatic variables between sister species and estimated times of their splitting. We compare these rates to predicted rates of climate change from 2000 to 2100. Our results are striking: matching projected changes for 2100 would require rates of niche evolution that are > 10,000 times faster than rates typically observed among species, for most variables and clades. Despite many caveats, our results suggest that adaptation to projected changes in the next 100 years would require rates that are largely unprecedented based on observed rates among vertebrate species.

  2. Intraspecific variation buffers projected climate change impacts on Pinus contorta.

    PubMed

    Oney, Brian; Reineking, Björn; O'Neill, Gregory; Kreyling, Juergen

    2013-02-01

    Species distribution modeling (SDM) is an important tool to assess the impact of global environmental change. Many species exhibit ecologically relevant intraspecific variation, and few studies have analyzed its relevance for SDM. Here, we compared three SDM techniques for the highly variable species Pinus contorta. First, applying a conventional SDM approach, we used MaxEnt to model the subject as a single species (species model), based on presence-absence observations. Second, we used MaxEnt to model each of the three most prevalent subspecies independently and combined their projected distributions (subspecies model). Finally, we used a universal growth transfer function (UTF), an approach to incorporate intraspecific variation utilizing provenance trial tree growth data. Different model approaches performed similarly when predicting current distributions. MaxEnt model discrimination was greater (AUC - species model: 0.94, subspecies model: 0.95, UTF: 0.89), but the UTF was better calibrated (slope and bias - species model: 1.31 and -0.58, subspecies model: 1.44 and -0.43, UTF: 1.01 and 0.04, respectively). Contrastingly, for future climatic conditions, projections of lodgepole pine habitat suitability diverged. In particular, when the species' intraspecific variability was acknowledged, the species was projected to better tolerate climatic change as related to suitable habitat without migration (subspecies model: 26% habitat loss or UTF: 24% habitat loss vs. species model: 60% habitat loss), and given unlimited migration may increase amount of suitable habitat (subspecies model: 8% habitat gain or UTF: 12% habitat gain vs. species model: 51% habitat loss) in the climatic period 2070-2100 (SRES A2 scenario, HADCM3). We conclude that models derived from within-species data produce different and better projections, and coincide with ecological theory. Furthermore, we conclude that intraspecific variation may buffer against adverse effects of climate change. A key

  3. Sources of Uncertainty in Climate Change Projections of Precipitation

    NASA Astrophysics Data System (ADS)

    Gutmann, Ethan; Clark, Martyn; Eidhammer, Trude; Ikeda, Kyoko; Deser, Clara; Brekke, Levi; Arnold, Jeffrey; Rasmussen, Roy

    2016-04-01

    Predicting the likely changes in precipitation due to anthropogenic climate influences is one of the most important problems in earth science today. This problem is complicated by the enormous uncertainty in current predictions. Until all such sources of uncertainty are adequately addressed and quantified, we can not know what changes may be predictable, and which masked by the internal variability of the climate system itself. Here we assess multiple sources of uncertainty including those due to internal variability, climate model selection, emissions scenario, regional climate model physics, and statistical downscaling methods. This work focuses on the Colorado Rocky Mountains because these mountains serve as the water towers for much of the western United States, but the results are more broadly applicable, and results will be presented covering the Columbia River Basin and the California Sierra Nevadas as well. Internal variability is assessed using 30 members of the CESM Large Ensemble. Uncertainty due to the choice of climate models is assessed using 100 climate projections from the CMIP5 archive, including multiple emissions scenarios. Uncertainty due to regional climate model physics is assessed using a limited set of high-resolution Weather Research and Forecasting (WRF) model simulations in comparison to a larger multi-physics ensemble using the Intermediate Complexity Atmospheric Research (ICAR) model. Finally, statistical downscaling uncertainty is assessed using multiple statistical downscaling models. In near-term projections (25-35 years) internal variability is the largest source of uncertainty; however, over longer time scales (70-80 years) other sources of uncertainty become more important, with the importance of different sources of uncertainty varying depending on the metric assessed.

  4. Project BudBurst: People, Plants, and Climate Change

    NASA Astrophysics Data System (ADS)

    Henderson, S.; Ward, D.; Havens, K.; Gardiner, L. S.; Alaback, P.

    2010-12-01

    Providing opportunities for individuals to contribute to a better understanding of climate change is the hallmark of Project BudBurst (www.budburst.org). This highly successful, national citizen science program, now in its third year, is bringing climate change education outreach to thousands of individuals. Project BudBurst is a national citizen science initiative designed to engage the public in observations of phenological (plant life cycle) events that raise awareness of climate change, and create a cadre of informed citizen scientists. Citizen science programs such as Project BudBurst provide the opportunity for students and interested laypersons to actively participate in scientific research. Such programs are important not only from an educational perspective, but because they also enable scientists to broaden the geographic and temporal scale of their observations. The goals of Project BudBurst are to 1) increase awareness of phenology as an area of scientific study; 2) Increase awareness of the impacts of changing climates on plants; and 3) increase science literacy by engaging participants in the scientific process. From its 2008 launch in February, this on-line educational and data-entry program, engaged participants of all ages and walks of life in recording the timing of the leafing and flowering of wild and cultivated species found across the continent. Thus far, thousands of participants from all 50 states have submitted data. Project BudBurst has been the subject of almost 200 media outlets including NPR, national and regional television broadcasts, and most of the major national and regional newspapers. This presentation will provide an overview of Project BudBurst and will report on the results of the 2009 field campaign and discuss plans to expand Project BudBurst in 2010 including the use of mobile phones applications for data collection and reporting from the field. Project BudBurst co managed by the National Ecological Observatory Network and

  5. Climate Change Projections of the North American Regional Climate Change Assessment Program (NARCCAP)

    SciTech Connect

    Mearns, L. O.; Sain, Steve; Leung, Lai-Yung R.; Bukovsky, M. S.; McGinnis, Seth; Biner, S.; Caya, Daniel; Arritt, R.; Gutowski, William; Takle, Eugene S.; Snyder, Mark A.; Jones, Richard; Nunes, A M B.; Tucker, S.; Herzmann, D.; McDaniel, Larry; Sloan, Lisa

    2013-10-01

    We investigate major results of the NARCCAP multiple regional climate model (RCM) experiments driven by multiple global climate models (GCMs) regarding climate change for seasonal temperature and precipitation over North America. We focus on two major questions: How do the RCM simulated climate changes differ from those of the parent GCMs and thus affect our perception of climate change over North America, and how important are the relative contributions of RCMs and GCMs to the uncertainty (variance explained) for different seasons and variables? The RCMs tend to produce stronger climate changes for precipitation: larger increases in the northern part of the domain in winter and greater decreases across a swath of the central part in summer, compared to the four GCMs driving the regional models as well as to the full set of CMIP3 GCM results. We pose some possible process-level mechanisms for the difference in intensity of change, particularly for summer. Detailed process-level studies will be necessary to establish mechanisms and credibility of these results. The GCMs explain more variance for winter temperature and the RCMs for summer temperature. The same is true for precipitation patterns. Thus, we recommend that future RCM-GCM experiments over this region include a balanced number of GCMs and RCMs.

  6. Climate change projection of the Tasman Sea from an Eddy-resolving Ocean Model

    NASA Astrophysics Data System (ADS)

    Matear, R. J.; Chamberlain, M. A.; Sun, C.; Feng, M.

    2013-06-01

    The ocean's western boundary current regions display the greatest rate of twentieth century warming and global climate models project that the accelerated rate of warming will continue with climate change. All existing global climate change projections come from simulations that do not fully resolve either these boundary currents or their eddies. Using an Ocean Eddy-resolving Model (OEM) that captures the dynamics of the East Australian Current (EAC) and its eddies we show the response of the Tasman Sea to climate change differs from what is projected with a coarse resolution Global Climate Model (GCM). With climate change, the OEM projects increased EAC transport with increased eddy activity and an approximately 1° southward latitudinal shift in the point where the EAC separates from the shelf and flows eastward. The OEM increased eddy activity in the Tasman Sea with climate change increases the nutrient supply to the upper ocean and causes an increase in the phytoplankton concentrations and primary productivity by 10% in the oligotrophic waters of the Tasman Sea. The increase in primary productivity is absent in the GCM climate change projection, which projects the region will have a decrease in primary productivity with climate change. Applying the OEM climate change projection for the Tasman Sea to other western boundary current regions suggests the projected intensification of all western boundary currents with climate change should increase eddy activity and provide an important nutrient supply mechanism to counter the increased stratification projected with global warming.

  7. ESTIMATING RISK TO CALIFORNIA ENERGY INFRASTRUCTURE FROM PROJECTED CLIMATE CHANGE

    SciTech Connect

    Sathaye, Jayant; Dale, Larry; Larsen, Peter; Fitts, Gary; Koy, Kevin; Lewis, Sarah; Lucena, Andre

    2011-06-22

    This report outlines the results of a study of the impact of climate change on the energy infrastructure of California and the San Francisco Bay region, including impacts on power plant generation; transmission line and substation capacity during heat spells; wildfires near transmission lines; sea level encroachment upon power plants, substations, and natural gas facilities; and peak electrical demand. Some end-of-century impacts were projected:Expected warming will decrease gas-fired generator efficiency. The maximum statewide coincident loss is projected at 10.3 gigawatts (with current power plant infrastructure and population), an increase of 6.2 percent over current temperature-induced losses. By the end of the century, electricity demand for almost all summer days is expected to exceed the current ninetieth percentile per-capita peak load. As much as 21 percent growth is expected in ninetieth percentile peak demand (per-capita, exclusive of population growth). When generator losses are included in the demand, the ninetieth percentile peaks may increase up to 25 percent. As the climate warms, California's peak supply capacity will need to grow faster than the population.Substation capacity is projected to decrease an average of 2.7 percent. A 5C (9F) air temperature increase (the average increase predicted for hot days in August) will diminish the capacity of a fully-loaded transmission line by an average of 7.5 percent.The potential exposure of transmission lines to wildfire is expected to increase with time. We have identified some lines whose probability of exposure to fire are expected to increase by as much as 40 percent. Up to 25 coastal power plants and 86 substations are at risk of flooding (or partial flooding) due to sea level rise.

  8. Streamflow projections for a Southwestern river: Climate change and climate variability

    NASA Astrophysics Data System (ADS)

    Gutzler, D. S.

    2013-12-01

    Climate projections for flows in the upper Gila River in southwestern New Mexico are assessed. The State of New Mexico is currently considering proposals for new consumptive uses of water extracted from the Gila, pursuant to a recent interstate stream settlement. Among the factors being considered is the prospect of decreasing flow in this snow-fed river associated with projected 21st Century climate change. Southwestern North America already exhibits a sustained and pronounced trend toward warmer temperature. Policymakers requested a projection for the next several decades as input to their ongoing deliberations over new extractions from the river. For lead times of several decades the predictability derived from current climatic conditions, the source of most prediction skill for seasonal forecasts, is minimal. On the other hand, the magnitude of the signal of greenhouse-gas forced long-term climate change in streamflow, driven largely by temperature change, is modest compared to the large natural decadal variability of flow. The upper Gila is known to exhibit tremendous decadal variability, driven largely by precipitation, as seen in a century of instrumental gage data and from a much longer dendrochronological reconstruction of flow. We have compared dynamical projections of flow in the upper Gila generated by the Bureau of Reclamation's West-Wide Climate Risk Assessment, with a statistical projection derived from a regression of observed precipitation and temperature onto historical flows. The latter approach assumes statistical stationarity. We show that the stationarity assumption will be violated by mid-century but is defensible on the time scale of interest set by policymakers. These two approaches yield consistent projections of 5-10% average decline in flow on the upper Gila for the period 2021-2050, if -- and only if -- a long historical period is chosen to represent baseline "average" flow. An averaging period much longer than the 30 year "climate

  9. Climate Change Impact Uncertainties for Maize in Panama: Farm Information, Climate Projections, and Yield Sensitivities

    NASA Technical Reports Server (NTRS)

    Ruane, Alex C.; Cecil, L. Dewayne; Horton, Radley M.; Gordon, Roman; McCollum, Raymond (Brown, Douglas); Brown, Douglas; Killough, Brian; Goldberg, Richard; Greeley, Adam P.; Rosenzweig, Cynthia

    2011-01-01

    We present results from a pilot project to characterize and bound multi-disciplinary uncertainties around the assessment of maize (Zea mays) production impacts using the CERES-Maize crop model in a climate-sensitive region with a variety of farming systems (Panama). Segunda coa (autumn) maize yield in Panama currently suffers occasionally from high water stress at the end of the growing season, however under future climate conditions warmer temperatures accelerate crop maturation and elevated CO (sub 2) concentrations improve water retention. This combination reduces end-of-season water stresses and eventually leads to small mean yield gains according to median projections, although accelerated maturation reduces yields in seasons with low water stresses. Calibrations of cultivar traits, soil profile, and fertilizer amounts are most important for representing baseline yields, however sensitivity to all management factors is reduced in an assessment of future yield changes (most dramatically for fertilizers), suggesting that yield changes may be more generalizable than absolute yields. Uncertainty around General Circulation Model (GCM)s' projected changes in rainfall gain in importance throughout the century, with yield changes strongly correlated with growing season rainfall totals. Climate changes are expected to be obscured by the large inter-annual variations in Panamanian climate that will continue to be the dominant influence on seasonal maize yield into the coming decades. The relatively high (A2) and low (B1) emissions scenarios show little difference in their impact on future maize yields until the end of the century. Uncertainties related to the sensitivity of CERES-Maize to carbon dioxide concentrations have a substantial influence on projected changes, and remain a significant obstacle to climate change impacts assessment. Finally, an investigation into the potential of simple statistical yield emulators based upon key climate variables characterizes the

  10. Climatic change projections for winter streamflow in Guadalquivir river

    NASA Astrophysics Data System (ADS)

    Jesús Esteban Parra, María; Hidalgo Muñoz, José Manuel; García-Valdecasas-Ojeda, Matilde; Raquel Gámiz Fortis, Sonia; Castro Díez, Yolanda

    2015-04-01

    In this work we have obtained climate change projections for winter streamflow of the Guadalquivir River in the period 2071-2100 using the Principal Component Regression (PCR) method. The streamflow data base used has been provided by the Center for Studies and Experimentation of Public Works, CEDEX. Series from gauging stations and reservoirs with less than 10% of missing data (filled by regression with well correlated neighboring stations) have been considered. The homogeneity of these series has been evaluated through the Pettit test and degree of human alteration by the Common Area Index. The application of these criteria led to the selection of 13 streamflow time series homogeneously distributed over the basin, covering the period 1952-2011. For this streamflow data, winter seasonal values were obtained by averaging the monthly values from January to March. The PCR method has been applied using the Principal Components of the mean anomalies of sea level pressure (SLP) in winter (December to February averaged) as predictors of streamflow for the development of a downscaled statistical model. The SLP database is the NCEP reanalysis covering the North Atlantic region, and the calibration and validation periods used for fitting and evaluating the ability of the model are 1952-1992 and 1993-2011, respectively. In general, using four Principal Components, regression models are able to explain up to 70% of the variance of the streamflow data. Finally, the statistical model obtained for the observational data was applied to the SLP data for the period 2071-2100, using the outputs of different GCMs of the CMIP5 under the RPC8.5 scenario. The results found for the end of the century show no significant changes or moderate decrease in the streamflow of this river for most GCMs in winter, but for some of them the decrease is very strong. Keywords: Statistical downscaling, streamflow, Guadalquivir River, climate change. ACKNOWLEDGEMENTS This work has been financed by the

  11. Projected changes in distributions of Australian tropical savanna birds under climate change using three dispersal scenarios

    PubMed Central

    Reside, April E; VanDerWal, Jeremy; Kutt, Alex S

    2012-01-01

    Identifying the species most vulnerable to extinction as a result of climate change is a necessary first step in mitigating biodiversity decline. Species distribution modeling (SDM) is a commonly used tool to assess potential climate change impacts on distributions of species. We use SDMs to predict geographic ranges for 243 birds of Australian tropical savannas, and to project changes in species richness and ranges under a future climate scenario between 1990 and 2080. Realistic predictions require recognition of the variability in species capacity to track climatically suitable environments. Here we assess the effect of dispersal on model results by using three approaches: full dispersal, no dispersal and a partial-dispersal scenario permitting species to track climate change at a rate of 30 km per decade. As expected, the projected distributions and richness patterns are highly sensitive to the dispersal scenario. Projected future range sizes decreased for 66% of species if full dispersal was assumed, but for 89% of species when no dispersal was assumed. However, realistic future predictions should not assume a single dispersal scenario for all species and as such, we assigned each species to the most appropriate dispersal category based on individual mobility and habitat specificity; this permitted the best estimates of where species will be in the future. Under this “realistic” dispersal scenario, projected ranges sizes decreased for 67% of species but showed that migratory and tropical-endemic birds are predicted to benefit from climate change with increasing distributional area. Richness hotspots of tropical savanna birds are expected to move, increasing in southern savannas and southward along the east coast of Australia, but decreasing in the arid zone. Understanding the complexity of effects of climate change on species’ range sizes by incorporating dispersal capacities is a crucial step toward developing adaptation policies for the conservation of

  12. Projected wetland densities under climate change: Habitat loss but little geographic shift in conservation strategy

    USGS Publications Warehouse

    Sofaer, Helen; Skagen, Susan; Barsugli, Joseph J.; Rashford, Benjamin S.; Reese, Gordon; Hoeting, Jennifer A.; Wood, Andrew W.; Noon, Barry R.

    2016-01-01

    Climate change poses major challenges for conservation and management because it alters the area, quality, and spatial distribution of habitat for natural populations. To assess species’ vulnerability to climate change and target ongoing conservation investments, researchers and managers often consider the effects of projected changes in climate and land use on future habitat availability and quality and the uncertainty associated with these projections. Here, we draw on tools from hydrology and climate science to project the impact of climate change on the density of wetlands in the Prairie Pothole Region of the USA, a critical area for breeding waterfowl and other wetland-dependent species. We evaluate the potential for a trade-off in the value of conservation investments under current and future climatic conditions and consider the joint effects of climate and land use. We use an integrated set of hydrological and climatological projections that provide physically based measures of water balance under historical and projected future climatic conditions. In addition, we use historical projections derived from ten general circulation models (GCMs) as a baseline from which to assess climate change impacts, rather than historical climate data. This method isolates the impact of greenhouse gas emissions and ensures that modeling errors are incorporated into the baseline rather than attributed to climate change. Our work shows that, on average, densities of wetlands (here defined as wetland basins holding water) are projected to decline across the U.S. Prairie Pothole Region, but that GCMs differ in both the magnitude and the direction of projected impacts. However, we found little evidence for a shift in the locations expected to provide the highest wetland densities under current vs. projected climatic conditions. This result was robust to the inclusion of projected changes in land use under climate change. We suggest that targeting conservation towards wetland

  13. Objective climate classification as a framework for assessing projected climate change in High Mountain Asia

    NASA Astrophysics Data System (ADS)

    Forsythe, Nathan; Fowler, Hayley; Pritchard, David; Blenkinsop, Stephen

    2016-04-01

    This study builds upon foundational work by Forsythe et al (2015, doi: 10.5194/esd-6-311-2015) which used principal component analysis (PCA) and k-means clustering to derive objective present climate classifications over High Mountain Asia and adjacent regions (60E to 100E, 20N to 40N) based on global meteorological reanalyses' estimates of the drivers of water resources availability and variability (precipitation, surface shortwave radiation, daily mean near surface air temperature and its diurnal range). This study refines Forsythe et al (2015) by testing the potential for spatially disaggregating coarse global reanalyses (and climate model outputs) using iterative classification and regression processing to achieve a 5km (0.05 decimal degree) horizontal resolution in order better capture the severe topographic range and gradients of the HMA domain. This spatial refinement should allow for better intercomparability of resultant classifications derived from datasets with different native resolutions. This intercomparability is critical because the second stage of this assesses climate change projections from a range regional climate model experiments - UK Hadley Centre RQUMP 25km South Asia perturbed physics ensemble, CORDEX South Asia domain and (pending dataset availability) NextData EC-Earth 15km high resolution HMA domain - using derived objective classifications as a framework for aggregation. By establishing sub-regional units of relative homogeneity, the objective classification approach allows twofold assessment of project future climate scenarios, i.e. change can be quantified not only as perturbation of key variables (e.g. precipitation, temperature, etc) but also in terms of the spatial descriptors (areal extent, surface elevation range and mean, latitudinal and longitudinal bounds) of the identified climate zones. It is expected that this novel approach, and in particular the very high target spatial resolution, will yield important insights into the

  14. Land use compounds habitat losses under projected climate change in a threatened California ecosystem.

    PubMed

    Riordan, Erin Coulter; Rundel, Philip W

    2014-01-01

    Given the rapidly growing human population in mediterranean-climate systems, land use may pose a more immediate threat to biodiversity than climate change this century, yet few studies address the relative future impacts of both drivers. We assess spatial and temporal patterns of projected 21(st) century land use and climate change on California sage scrub (CSS), a plant association of considerable diversity and threatened status in the mediterranean-climate California Floristic Province. Using a species distribution modeling approach combined with spatially-explicit land use projections, we model habitat loss for 20 dominant shrub species under unlimited and no dispersal scenarios at two time intervals (early and late century) in two ecoregions in California (Central Coast and South Coast). Overall, projected climate change impacts were highly variable across CSS species and heavily dependent on dispersal assumptions. Projected anthropogenic land use drove greater relative habitat losses compared to projected climate change in many species. This pattern was only significant under assumptions of unlimited dispersal, however, where considerable climate-driven habitat gains offset some concurrent climate-driven habitat losses. Additionally, some of the habitat gained with projected climate change overlapped with projected land use. Most species showed potential northern habitat expansion and southern habitat contraction due to projected climate change, resulting in sharply contrasting patterns of impact between Central and South Coast Ecoregions. In the Central Coast, dispersal could play an important role moderating losses from both climate change and land use. In contrast, high geographic overlap in habitat losses driven by projected climate change and projected land use in the South Coast underscores the potential for compounding negative impacts of both drivers. Limiting habitat conversion may be a broadly beneficial strategy under climate change. We emphasize

  15. Land Use Compounds Habitat Losses under Projected Climate Change in a Threatened California Ecosystem

    PubMed Central

    Riordan, Erin Coulter; Rundel, Philip W.

    2014-01-01

    Given the rapidly growing human population in mediterranean-climate systems, land use may pose a more immediate threat to biodiversity than climate change this century, yet few studies address the relative future impacts of both drivers. We assess spatial and temporal patterns of projected 21st century land use and climate change on California sage scrub (CSS), a plant association of considerable diversity and threatened status in the mediterranean-climate California Floristic Province. Using a species distribution modeling approach combined with spatially-explicit land use projections, we model habitat loss for 20 dominant shrub species under unlimited and no dispersal scenarios at two time intervals (early and late century) in two ecoregions in California (Central Coast and South Coast). Overall, projected climate change impacts were highly variable across CSS species and heavily dependent on dispersal assumptions. Projected anthropogenic land use drove greater relative habitat losses compared to projected climate change in many species. This pattern was only significant under assumptions of unlimited dispersal, however, where considerable climate-driven habitat gains offset some concurrent climate-driven habitat losses. Additionally, some of the habitat gained with projected climate change overlapped with projected land use. Most species showed potential northern habitat expansion and southern habitat contraction due to projected climate change, resulting in sharply contrasting patterns of impact between Central and South Coast Ecoregions. In the Central Coast, dispersal could play an important role moderating losses from both climate change and land use. In contrast, high geographic overlap in habitat losses driven by projected climate change and projected land use in the South Coast underscores the potential for compounding negative impacts of both drivers. Limiting habitat conversion may be a broadly beneficial strategy under climate change. We emphasize the

  16. Climate Change

    MedlinePlus

    Climate is the average weather in a place over a period of time. Climate change is major change in temperature, rainfall, snow, ... by natural factors or by human activities. Today climate changes are occurring at an increasingly rapid rate. ...

  17. Projecting yield changes of spring wheat under future climate scenarios on the Canadian Prairies

    NASA Astrophysics Data System (ADS)

    Qian, Budong; De Jong, Reinder; Huffman, Ted; Wang, Hong; Yang, Jingyi

    2016-02-01

    The potential impact of the rise in atmospheric CO2 concentration and associated climatic change on agricultural productivity needs assessment. Projecting crop yield changes under climate change requires future climate scenarios as input to crop yield models. It is widely accepted that downscaling of climate data is required to bridge the gap between large-scale global climate models (GCMs) and climate change impact models, such as crop growth models. Regional climate models (RCMs) are often used to dynamically downscale GCM simulations to smaller regional scales, while statistical methods, such as regression-based transfer functions and stochastic weather generators, are also widely employed to develop future climate scenarios for this purpose. The methods used in developing future climate scenarios often contribute to uncertainties in the projected impacts of climate change, in addition to those associated with GCMs and forcing scenarios. We employed climate scenarios from the state-of-the-art RCMs in the North American Regional Climate Change Assessment Program (NARCCAP), along with climate scenarios generated by a stochastic weather generator based on climate change simulations performed by their driving GCMs, to drive the CERES-Wheat model in DSSAT to project changes in spring wheat yield on the Canadian Prairies. The future time horizon of 2041-2070 and the baseline period of 1971-2000 were considered. The projected changes showed an average increase ranging from 26 to 37 % of the baseline yield when the effects of the elevated CO2 concentration were simulated, but only up to 15 % if the elevated CO2 effect was excluded. In addition to their potential use in climate change impact assessment, the results also demonstrated that the simulated crop yield changes were fairly consistent whether future climate scenarios were derived from RCMs or they were generated by a stochastic weather generator based on the simulated climate change from the GCMs that were used

  18. The potential effects of climate change on malaria in tropical Africa using regionalised climate projections

    NASA Astrophysics Data System (ADS)

    Ermert, V.; Fink, A. H.; Paeth, H.; Morse, A. P.

    2012-04-01

    The projected climate change will probably alter the range and transmission potential of malaria in Africa. The potential impacts of climate change on the malaria distribution is assessed for tropical Africa. Bias-corrected regional climate projections with a horizontal resolution of 0.5° are used from the Regional Model (REMO), which include land use and land cover changes. The malaria models employed are the 2010 version of the Liverpool Malaria Model (LMM2010), the Garki model, the Plasmodium falciparum infection model from Smith et al. (2005) (S2005), and the Malaria Seasonality Model (MSM) from the Mapping Malaria Risk in Africa project. The results of the models are compared with data from the Malaria Atlas Project (MAP) and novel validation procedures for the LMM2010 and MSM lend more credence to their results. For climate scenarios A1B and B1 and for 2001-2050, REMO projects an overall drying and warming trend in the African malaria belt, that is largely imposed by the man-made degradation of vegetation. As a result, the malaria projections show a decreased malaria spread in West Africa. The northern Sahel is no more suitable for malaria in the projections. More unstable malaria transmission and shorter malaria seasons are expected for various areas farther south. An increase in the malaria epidemic risk is found for more densely populated areas in the southern part of the Sahel. In East Africa, higher temperatures and nearly unchanged precipitation patterns lead to longer transmission seasons and an increase in the area of highland malaria. For altitudes up to 2000 m the malaria transmission stabilises and the epidemic risk is reduced but for higher altitudes the risk of malaria epidemics is increased. The results of the more complex and simple malaria models are similar to each other. However, a different response to the warming of highlands is found for the LMM2010 and MSM. This shows the requirement of a multi model uncertainty analysis for the

  19. "Intelligent Ensemble" Projections of Precipitation and Surface Radiation in Support of Agricultural Climate Change Adaptation

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick C.; Baker, Noel C.

    2015-01-01

    Earth's climate is changing and will continue to change into the foreseeable future. Expected changes in the climatological distribution of precipitation, surface temperature, and surface solar radiation will significantly impact agriculture. Adaptation strategies are, therefore, required to reduce the agricultural impacts of climate change. Climate change projections of precipitation, surface temperature, and surface solar radiation distributions are necessary input for adaption planning studies. These projections are conventionally constructed from an ensemble of climate model simulations (e.g., the Coupled Model Intercomparison Project 5 (CMIP5)) as an equal weighted average, one model one vote. Each climate model, however, represents the array of climate-relevant physical processes with varying degrees of fidelity influencing the projection of individual climate variables differently. Presented here is a new approach, termed the "Intelligent Ensemble, that constructs climate variable projections by weighting each model according to its ability to represent key physical processes, e.g., precipitation probability distribution. This approach provides added value over the equal weighted average method. Physical process metrics applied in the "Intelligent Ensemble" method are created using a combination of NASA and NOAA satellite and surface-based cloud, radiation, temperature, and precipitation data sets. The "Intelligent Ensemble" method is applied to the RCP4.5 and RCP8.5 anthropogenic climate forcing simulations within the CMIP5 archive to develop a set of climate change scenarios for precipitation, temperature, and surface solar radiation in each USDA Farm Resource Region for use in climate change adaptation studies.

  20. Idiosyncratic responses of grizzly bear habitat to climate change based on projected food resource changes.

    PubMed

    Roberts, David R; Nielsen, Scott E; Stenhouse, Gordon B

    2014-07-01

    Climate change vulnerability assessments for species of conservation concern often use species distribution and ecological niche modeling to project changes in habitat. One of many assumptions of these approaches is that food web dependencies are consistent in time and environmental space. Species at higher trophic levels that rely on the availability of species at lower trophic levels as food may be sensitive to extinction cascades initiated by changes in the habitat of key food resources. Here we assess climate change vulnerability for Ursus arctos (grizzly bears) in the southern Canadian Rocky Mountains using projected changes to 17 of the most commonly consumed plant food items. We used presence-absence information from 7088 field plots to estimate ecological niches and to project changes in future distributions of each species. Model projections indicated idiosyncratic responses among food items. Many food items persisted or even increased, although several species were found to be vulnerable based on declines or geographic shifts in suitable habitat. These included Hedysarum alpinum (alpine sweet vetch), a critical spring and autumn root-digging resource when little else is available. Potential habitat loss was also identified for three fruiting species of lower importance to bears: Empetrum nigrum (crowberry), Vaccinium scoparium (grouseberry), and Fragaria virginiana (strawberry). A general trend towards uphill migration of bear foods may result in higher vulnerability to bear populations at low elevations, which are also those that are most likely to have human-bear conflict problems. Regardless, a wide diet breadth of grizzly bears, as well as wide environmental niches of most food items, make climate change a much lower threat to grizzly bears than other bear species such as polar bears and panda bears. We cannot exclude, however, future alterations in human behavior and land use resulting from climate change that may reduce survival rates.

  1. Idiosyncratic responses of grizzly bear habitat to climate change based on projected food resource changes.

    PubMed

    Roberts, David R; Nielsen, Scott E; Stenhouse, Gordon B

    2014-07-01

    Climate change vulnerability assessments for species of conservation concern often use species distribution and ecological niche modeling to project changes in habitat. One of many assumptions of these approaches is that food web dependencies are consistent in time and environmental space. Species at higher trophic levels that rely on the availability of species at lower trophic levels as food may be sensitive to extinction cascades initiated by changes in the habitat of key food resources. Here we assess climate change vulnerability for Ursus arctos (grizzly bears) in the southern Canadian Rocky Mountains using projected changes to 17 of the most commonly consumed plant food items. We used presence-absence information from 7088 field plots to estimate ecological niches and to project changes in future distributions of each species. Model projections indicated idiosyncratic responses among food items. Many food items persisted or even increased, although several species were found to be vulnerable based on declines or geographic shifts in suitable habitat. These included Hedysarum alpinum (alpine sweet vetch), a critical spring and autumn root-digging resource when little else is available. Potential habitat loss was also identified for three fruiting species of lower importance to bears: Empetrum nigrum (crowberry), Vaccinium scoparium (grouseberry), and Fragaria virginiana (strawberry). A general trend towards uphill migration of bear foods may result in higher vulnerability to bear populations at low elevations, which are also those that are most likely to have human-bear conflict problems. Regardless, a wide diet breadth of grizzly bears, as well as wide environmental niches of most food items, make climate change a much lower threat to grizzly bears than other bear species such as polar bears and panda bears. We cannot exclude, however, future alterations in human behavior and land use resulting from climate change that may reduce survival rates. PMID:25154102

  2. Committed changes in tropical tree cover under the projected 21st century climate change

    NASA Astrophysics Data System (ADS)

    Zeng, Z.; Piao, S.; Chen, A.; Lin, X.; Nan, H.; Li, J.; Ciais, P.

    2013-12-01

    Warming and drought pose a serious threat to tropical forest. Yet the extent of this threat is uncertain, given the lack of methods to evaluate the forest tree cover changes under future climate predicted by complex dynamic vegetation models. Here we develop an empirical approach based on the observed climate space of tropical trees to estimate the maximum potential tropical tree cover (MPTC) in equilibrium with a given climate. We show that compared to present-day (2000-2009) conditions, MPTC will be reduced by 1 to 15% in the tropical band under equilibrium future (2090-2099) climate conditions predicted by 19 IPCC climate models. Tropical forests are found to regress or disappear mainly in the current transition zones between forest and savanna ecosystems. This climate pressure on tropical forests, added to human-caused land use pressure, poses a grand challenge to the sustainability of the world's largest biomass carbon pool. Tropical tree cover fraction in the climate space. (a), The maximum potential tree cover fraction (MPTC). In each climate bin with 0.1C interval of mean annual temperature and 10 mminterval of annual precipitation, MPTC is estimated by fitting Eq. (1) and Eq. (2) and only shown when the fitting is significant. (b), The MODIS-derived actual tree cover fraction averaged over 2000-2010. The projected changes in maximum potential tree cover fraction (MPTC) across the tropics over the 21st century under SRES A2. Across the 19 GCMs used in this estimation, projected changes in MPTC between the end of 21st century (2090-2099) and present (2000-2009) are shown for different scenarios in possibility quantiles, including (a), 100%; (b), 75%; (c), 50%; (d), 25%, and (e), 0%.

  3. Projecting malaria hazard from climate change in eastern Africa using large ensembles to estimate uncertainty.

    PubMed

    Leedale, Joseph; Tompkins, Adrian M; Caminade, Cyril; Jones, Anne E; Nikulin, Grigory; Morse, Andrew P

    2016-01-01

    The effect of climate change on the spatiotemporal dynamics of malaria transmission is studied using an unprecedented ensemble of climate projections, employing three diverse bias correction and downscaling techniques, in order to partially account for uncertainty in climate- driven malaria projections. These large climate ensembles drive two dynamical and spatially explicit epidemiological malaria models to provide future hazard projections for the focus region of eastern Africa. While the two malaria models produce very distinct transmission patterns for the recent climate, their response to future climate change is similar in terms of sign and spatial distribution, with malaria transmission moving to higher altitudes in the East African Community (EAC) region, while transmission reduces in lowland, marginal transmission zones such as South Sudan. The climate model ensemble generally projects warmer and wetter conditions over EAC. The simulated malaria response appears to be driven by temperature rather than precipitation effects. This reduces the uncertainty due to the climate models, as precipitation trends in tropical regions are very diverse, projecting both drier and wetter conditions with the current state-of-the-art climate model ensemble. The magnitude of the projected changes differed considerably between the two dynamical malaria models, with one much more sensitive to climate change, highlighting that uncertainty in the malaria projections is also associated with the disease modelling approach. PMID:27063736

  4. Impacts of sea ice / SST changes for the observed climate change -GREENICE project-

    NASA Astrophysics Data System (ADS)

    Ogawa, Fumiaki; Gao, Yongqi; Keenlyside, Noel; Koenigk, Torben; Semenov, Vladimir; Suo, Lingling; Yang, Shuting; Wang, Tao

    2016-04-01

    Under the recent global warming, melting of arctic sea-ice in recent decades could have contributed to recent climate changes including its long-term trend and extreme weather events. While the climatic response to the sea-ice loss have been studied recently, it is still an open question to what extent the sea-ice change has influenced recent climate change. Other factors, such as for example, SST could also have had an influence. A main objective of GREENICE research project is to show what extent of the observed climate trend as well as observed weather extremes could be explained by the change and variability in sea ice and SST, respectively. In this project, we designed two atmospheric general circulation model experiments: In both experiments observed daily sea ice cover variations are prescribed, while for SST, one experiment uses observed daily variations and the other the observed climatology. The experiment is performed by several different state-of-the-art AGCMs. Our preliminary results show that the observed wintertime temperature trend near the surface is poorly reproduced in our hindcast experiments using observed SIC and SST. The impact of SIC variation seems to be confined near the surface, while SST variation seems a key for temperature trend above. It suggests a necessity to consider the atmospheric poleward energy transport associated with SST variation to understand the observed arctic amplification. Other aspects of SIC/SST impact on the observed circulation change such as NAO shall also be discussed.

  5. Global Food Security in a Changing Climate: Considerations and Projections

    NASA Astrophysics Data System (ADS)

    Walsh, M. K.; Brown, M. E.; Backlund, P. W.; Antle, J. M.; Carr, E. R.; Easterling, W. E.; Funk, C. C.; Murray, A.; Ngugi, M.; Barrett, C. B.; Ingram, J. S. I.; Dancheck, V.; O'Neill, B. C.; Tebaldi, C.; Mata, T.; Ojima, D. S.; Grace, K.; Jiang, H.; Bellemare, M.; Attavanich, W.; Ammann, C. M.; Maletta, H.

    2015-12-01

    Global food security is an elusive challenge and important policy focus from the community to the globe. Food is provisioned through food systems that may be simple or labyrinthine, yet each has vulnerabilities to climate change through its effects on food production, transportation, storage, and other integral food system activities. At the same time, the future of food systems is sensitive to socioeconomic trajectories determined by choices made outside of the food system, itself. Constrictions for any reason can lead to decreased food availability, access, utilization, or stability - that is, to diminished food security. Possible changes in trade and other U.S. relationships to the rest of the world under changing conditions to the end of the century are considered through integrated assessment modelling under a range of emissions scenarios. Climate change is likely to diminish continued progress on global food security through production disruptions leading to local availability limitations and price increases, interrupted transport conduits, and diminished food safety, among other causes. In the near term, some high-latitude production export regions may benefit from changes in climate. The types and price of food imports is likely to change, as are export demands, affecting U.S. consumers and producers. Demands placed on foreign assistance programs may increase, as may demand for advanced technologies. Adaptation across the food system has great potential to manage climate change effects on food security, and the complexity of the food system offers multiple potential points of intervention for decision makers at every level. However, effective adaptation is subject to highly localized conditions and socioeconomic factors, and the technical feasibility of an adaptive intervention is not necessarily a guarantee of its application if it is unaffordable or does not provide benefits within a relatively short time frame.

  6. Incorporating vegetation dynamics in regional climate change projections over the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Alo, C. A.; Anagnostou, E. N.

    2009-09-01

    Recent projections of climate change over the Mediterranean region based on general circulation models (e.g. IPCC AR4 GCMs) and regional climate models (e.g. PRUDENCE RCMs) generally show strong warming and pronounced decrease in precipitation, especially in the summer. While the role of vegetation in modulating the regional climate is widely recognized, most, if not all, of these GCM and RCM climate change projections do not account for the response of the dynamic biosphere to potential climate changes. Here, we present preliminary results from ongoing 15-year simulations over the Mediterranean region with a regional climate model (RegCM3) asynchronously coupled to a dynamic vegetation model (CLM-DGVM). Three experiments are performed in order to explore the impact of vegetation feedback on simulated changes in mean climate, climate variability and extreme climatic events (i.e., flood-inducing storms, droughts, heat waves, and extreme winds). This includes 1) a present day climate run with dynamic vegetation, 2) a future climate run with dynamic vegetation, and 3) a future climate run with static vegetation (i.e. vegetation fixed at the present day state). RegCM3 and CLM-DGVM are both run at a horizontal grid spacing of 20 km over a region covering the Mediterranean basin and parts of Central Europe and Northern Africa. Results illustrate the importance of including vegetation feedback in predictions of climate change impacts on Mediterranean climate variability, extreme climatic events and storms.

  7. The NASA Global Climate Change Education Project: An Integrated Effort to Improve the Teaching and Learning about Climate Change (Invited)

    NASA Astrophysics Data System (ADS)

    Chambers, L. H.; Pippin, M. R.; Welch, S.; Spruill, K.; Matthews, M. J.; Person, C.

    2010-12-01

    The NASA Global Climate Change Education (GCCE) Project, initiated in 2008, seeks to: - improve the teaching and learning about global climate change in elementary and secondary schools, on college campuses, and through lifelong learning; - increase the number of people, particularly high school and undergraduate students, using NASA Earth observation data, Earth system models, and/or simulations to investigate and analyze global climate change issues; - increase the number of undergraduate students prepared for employment and/or to enter graduate school in technical fields relevant to global climate change. Through an annual solicitation, proposals are requested for projects that address these goals using a variety of approaches. These include using NASA Earth system data, interactive models and/or simulations; providing research experiences for undergraduate or community college students, or for pre- or in-service teachers; or creating long-term teacher professional development experiences. To date, 57 projects have been funded to pursue these goals (22 in 2008, 18 in 2009, and 17 in 2010), each for a 2-3 year period. The vast majority of awards address either teacher professional development, or use of data, models, or simulations; only 7 awards have been made for research experiences. NASA, with assistance from the Virginia Space Grant Consortium, is working to develop these awardees into a synergistic community that works together to maximize its impact. This paper will present examples of collaborations that are evolving within this developing community. It will also introduce the opportunities available in fiscal year 2011, when a change in emphasis is expected for the project as it moves within the NASA Office of Education Minority University Research and Education Program (MUREP).

  8. Projected future climate change and Baltic Sea ecosystem management

    NASA Astrophysics Data System (ADS)

    Andersson, Agneta

    2015-04-01

    Climate change is likely to have large effects on the Baltic Sea ecosystem. Simulations indicate 2-4oC warming and 50-80% decreasing ice cover by 2100. Precipitation may increase ~30% in the north, causing increased land runoff of allochthonous organic matter (AOM) and organic pollutants. Salinity will decrease by about 2 units. Coupled physical-biogeochemical models indicate that in the south, bottom-water anoxia may spread, reducing cod recruitment and increasing sediment phosphorus release, promoting cyanobacterial blooms. In the north, heterotrophic bacteria will be favoured by AOM while phytoplankton may become hampered. More trophic levels in the food web will increase energy losses and consequently reduce fish production. Future management of the Baltic Sea must consider effects of climate change on the ecosystem dynamics and functions, as well as effects of anthrophogenic nutrient and pollutant load. Monitoring should have a holistic approach and encompass both autotrophic (phytoplankton) and heterotrophic (e.g. bacterial) processes.

  9. Assessing the Influence of Precipitation on Diurnal Temperature Range Changes: Implications for Climate Change Projection

    NASA Astrophysics Data System (ADS)

    Van den Hoof, C.; Garreaud, R.

    2014-12-01

    In this study, we investigate up to what extent the spatial heterogeneity in the projected changes in DTR during the rest of the 21st century (under several emission scenarios) is explained by the regional variability in projected precipitation changes. DTR is indeed a suitable index of climate variability and change [1] and several studies have highlighted the existence of a negative correlation with both the cloud cover and the precipitation rate over land throughout last century [2]. Precipitation reduces DTR mainly by decreasing surface solar radiation through increased cloud cover and by increasing daytime surface evaporative cooling through increased soil moisture content. Whether or not these processes are captured in the current generation of global and regional models is matter of research. To achieve our objective, we make use of the climate projections made available by the CMIP5 project as well as their historical runs, along with reanalysis and station data. At inter-annual timescale, the seasonal mean DTR simulated by an ensemble of CMIP5 models for the last decades shows a negative relationship over land with the simulated precipitation at zero lag. The correlation is globally very strong except during winter at higher latitudes. This corresponds well with the correlations observed in the re-analysis datasets. Some spatial variability in correlation strength is however noticeable between both datasets. Concerning the projected changes, the negative correlation between DTR and precipitation does not hold globally; no correlation or even positive correlations are observed in different climate regions, including Northern South America and Central Europe. Within this study we will further investigate the physical process that could explain this change in correlation sign as well as the reason why positive correlations are rarely observed or simulated at inter-annual timescale under current climate during summer and at lower latitudes during winter. [1] K

  10. Projecting Wind Energy Potential Under Climate Change with Ensemble of Climate Model Simulations

    NASA Astrophysics Data System (ADS)

    Jain, A.; Shashikanth, K.; Ghosh, S.; Mukherjee, P. P.

    2013-12-01

    Recent years have witnessed an increasing global concern over energy sustainability and security, triggered by a number of issues, such as (though not limited to): fossil fuel depletion, energy resource geopolitics, economic efficiency versus population growth debate, environmental concerns and climate change. Wind energy is a renewable and sustainable form of energy in which wind turbines convert the kinetic energy of wind into electrical energy. Global warming and differential surface heating may significantly impact the wind velocity and hence the wind energy potential. Sustainable design of wind mills requires understanding the impacts of climate change on wind energy potential, which we evaluate here with multiple General Circulation Models (GCMs). GCMs simulate the climate variables globally considering the greenhouse emission scenarios provided as Representation Concentration path ways (RCPs). Here we use new generation climate model outputs obtained from Coupled model Intercomparison Project 5(CMIP5). We first compute the wind energy potential with reanalysis data (NCEP/ NCAR), at a spatial resolution of 2.50, where the gridded data is fitted to Weibull distribution and with the Weibull parameters, the wind energy densities are computed at different grids. The same methodology is then used, to CMIP5 outputs (resultant of U-wind and V-wind) of MRI, CMCC, BCC, CanESM, and INMCM4 for historical runs. This is performed separately for four seasons globally, MAM, JJA, SON and DJF. We observe the muti-model average of wind energy density for historic period has significant bias with respect to that of reanalysis product. Here we develop a quantile based superensemble approach where GCM quantiles corresponding to selected CDF values are regressed to reanalysis data. It is observed that this regression approach takes care of both, bias in GCMs and combination of GCMs. With superensemble, we observe that the historical wind energy density resembles quite well with

  11. Climate change in the South American Monsoon System: present climate and CMIP5 projections

    NASA Astrophysics Data System (ADS)

    Jones, C.; Carvalho, L. V.

    2013-05-01

    The South American Monsoon System (SAMS) is the most important climatic feature in South America. This study focuses on the large-scale characteristics of the SAMS: seasonal amplitudes, onset and demise dates and durations. Changes in the SAMS are investigated with the gridded precipitation, CFSR reanalyses and fifth phase of the Coupled Model Intercomparison Project (CMIP5) simulations for two scenarios ("historical" and high emission representative concentration pathways "rcp8.5"). Qualitative comparisons with a previous study indicate that some CMIP5 models have significantly improved their representation of the SAMS relative to their CMIP3 versions. Some models exhibit persistent deficiencies in simulating the SAMS. The observations and CMIP5 model simulations (historical experiment) consistently show statistically significant trends indicating the SAMS has larger seasonal amplitudes, early onsets, late demises and longer durations in recent decades. Future changes in the SAMS are analyzed with six CMIP5 model simulations of the rcp8.5 high emission scenario. All simulations unquestionably show significant increases in seasonal amplitudes, early onsets and late demises of the SAMS. The simulations for this scenario project a 30% increase in the amplitude from the current level by 2045-2050. In addition, the rcp8.5 scenario projects an ensemble mean decrease of 14-day in the onset and 17-day increase in the demise date of the SAMS by 2045-2050. The results additionally indicate lack of spatial agreement in model projections of changes in total wet season precipitation over South America during 2070-100. The CMIP5 projections analyzed here suggest increases in total monsoon precipitation over southeast Brazil, Uruguay and northern Argentina

  12. From Global Climate Model Projections to Local Impacts Assessments: Analyses in Support of Planning for Climate Change

    NASA Astrophysics Data System (ADS)

    Snover, A. K.; Littell, J. S.; Mantua, N. J.; Salathe, E. P.; Hamlet, A. F.; McGuire Elsner, M.; Tohver, I.; Lee, S.

    2010-12-01

    Assessing and planning for the impacts of climate change require regionally-specific information. Information is required not only about projected changes in climate but also the resultant changes in natural and human systems at the temporal and spatial scales of management and decision making. Therefore, climate impacts assessment typically results in a series of analyses, in which relatively coarse-resolution global climate model projections of changes in regional climate are downscaled to provide appropriate input to local impacts models. This talk will describe recent examples in which coarse-resolution (~150 to 300km) GCM output was “translated” into information requested by decision makers at relatively small (watershed) and large (multi-state) scales using regional climate modeling, statistical downscaling, hydrologic modeling, and sector-specific impacts modeling. Projected changes in local air temperature, precipitation, streamflow, and stream temperature were developed to support Seattle City Light’s assessment of climate change impacts on hydroelectric operations, future electricity load, and resident fish populations. A state-wide assessment of climate impacts on eight sectors (agriculture, coasts, energy, forests, human health, hydrology and water resources, salmon, and urban stormwater infrastructure) was developed for Washington State to aid adaptation planning. Hydro-climate change scenarios for approximately 300 streamflow locations in the Columbia River basin and selected coastal drainages west of the Cascades were developed in partnership with major water management agencies in the Pacific Northwest to allow planners to consider how hydrologic changes may affect management objectives. Treatment of uncertainty in these assessments included: using “bracketing” scenarios to describe a range of impacts, using ensemble averages to characterize the central estimate of future conditions (given an emissions scenario), and explicitly assessing

  13. Evaluation of Authentic Science Projects on Climate Change in Secondary Schools: A Focus on Gender Differences

    ERIC Educational Resources Information Center

    Dijkstra, Elma; Goedhart, Martin

    2011-01-01

    Background and purpose: This study examines secondary-school students' opinions on participating in authentic science projects which are part of an international EU project on climate change research in seven countries. Partnerships between schools and research institutes result in student projects, in which students work with and learn from…

  14. Projecting Future Heat-Related Mortality under Climate Change Scenarios: A Systematic Review

    PubMed Central

    Barnett, Adrian Gerard; Wang, Xiaoming; Vaneckova, Pavla; FitzGerald, Gerard; Tong, Shilu

    2011-01-01

    Background: Heat-related mortality is a matter of great public health concern, especially in the light of climate change. Although many studies have found associations between high temperatures and mortality, more research is needed to project the future impacts of climate change on heat-related mortality. Objectives: We conducted a systematic review of research and methods for projecting future heat-related mortality under climate change scenarios. Data sources and extraction: A literature search was conducted in August 2010, using the electronic databases PubMed, Scopus, ScienceDirect, ProQuest, and Web of Science. The search was limited to peer-reviewed journal articles published in English from January 1980 through July 2010. Data synthesis: Fourteen studies fulfilled the inclusion criteria. Most projections showed that climate change would result in a substantial increase in heat-related mortality. Projecting heat-related mortality requires understanding historical temperature–mortality relationships and considering the future changes in climate, population, and acclimatization. Further research is needed to provide a stronger theoretical framework for projections, including a better understanding of socioeconomic development, adaptation strategies, land-use patterns, air pollution, and mortality displacement. Conclusions: Scenario-based projection research will meaningfully contribute to assessing and managing the potential impacts of climate change on heat-related mortality. PMID:21816703

  15. Linking climate change projections for an Alaskan watershed to future coho salmon production.

    PubMed

    Leppi, Jason C; Rinella, Daniel J; Wilson, Ryan R; Loya, Wendy M

    2014-06-01

    Climate change is predicted to dramatically change hydrologic processes across Alaska, but estimates of how these impacts will influence specific watersheds and aquatic species are lacking. Here, we linked climate, hydrology, and habitat models within a coho salmon (Oncorhynchus kisutch) population model to assess how projected climate change could affect survival at each freshwater life stage and, in turn, production of coho salmon smolts in three subwatersheds of the Chuitna (Chuit) River watershed, Alaska. Based on future climate scenarios and projections from a three-dimensional hydrology model, we simulated coho smolt production over a 20-year span at the end of the century (2080-2100). The direction (i.e., positive vs. negative) and magnitude of changes in smolt production varied substantially by climate scenario and subwatershed. Projected smolt production decreased in all three subwatersheds under the minimum air temperature and maximum precipitation scenario due to elevated peak flows and a resulting 98% reduction in egg-to-fry survival. In contrast, the maximum air temperature and minimum precipitation scenario led to an increase in smolt production in all three subwatersheds through an increase in fry survival. Other climate change scenarios led to mixed responses, with projected smolt production increasing and decreasing in different subwatersheds. Our analysis highlights the complexity inherent in predicting climate-change-related impacts to salmon populations and demonstrates that population effects may depend on interactions between the relative magnitude of hydrologic and thermal changes and their interactions with features of the local habitat.

  16. Linking climate change projections for an Alaskan watershed to future coho salmon production.

    PubMed

    Leppi, Jason C; Rinella, Daniel J; Wilson, Ryan R; Loya, Wendy M

    2014-06-01

    Climate change is predicted to dramatically change hydrologic processes across Alaska, but estimates of how these impacts will influence specific watersheds and aquatic species are lacking. Here, we linked climate, hydrology, and habitat models within a coho salmon (Oncorhynchus kisutch) population model to assess how projected climate change could affect survival at each freshwater life stage and, in turn, production of coho salmon smolts in three subwatersheds of the Chuitna (Chuit) River watershed, Alaska. Based on future climate scenarios and projections from a three-dimensional hydrology model, we simulated coho smolt production over a 20-year span at the end of the century (2080-2100). The direction (i.e., positive vs. negative) and magnitude of changes in smolt production varied substantially by climate scenario and subwatershed. Projected smolt production decreased in all three subwatersheds under the minimum air temperature and maximum precipitation scenario due to elevated peak flows and a resulting 98% reduction in egg-to-fry survival. In contrast, the maximum air temperature and minimum precipitation scenario led to an increase in smolt production in all three subwatersheds through an increase in fry survival. Other climate change scenarios led to mixed responses, with projected smolt production increasing and decreasing in different subwatersheds. Our analysis highlights the complexity inherent in predicting climate-change-related impacts to salmon populations and demonstrates that population effects may depend on interactions between the relative magnitude of hydrologic and thermal changes and their interactions with features of the local habitat. PMID:24323577

  17. a New Japanese Project for Arctic Climate Change Research - Grene Arctic - (Invited)

    NASA Astrophysics Data System (ADS)

    Enomoto, H.

    2013-12-01

    A new Arctic Climate Change Research Project 'Rapid Change of the Arctic Climate System and its Global Influences' has started in 2011 for a five years project. GRENE-Arctic project is an initiative of Arctic study by more than 30 Japanese universities and institutes as the flame work of GRENE (Green Network of Excellence) of MEXT (Ministry of Education, Culture, Sports, Science and Technology, Japan). The GRENE-Arctic project set four strategic research targets: 1. Understanding the mechanism of warming amplification in the Arctic 2. Understanding the Arctic system for global climate and future change 3. Evaluation of the effects of Arctic change on weather in Japan, marine ecosystems and fisheries 4. Prediction of sea Ice distribution and Arctic sea routes This project aims to realize the strategic research targets by executing following studies: -Improvement of coupled general circulation models based on validations of the Arctic climate reproducibility and on mechanism analyses of the Arctic climate change and variability -The role of Arctic cryosphere in the global change -Change in terrestrial ecosystem of pan-Arctic and its effect on climate -Studies on greenhouse gas cycles in the Arctic and their responses to climate change -Atmospheric studies on Arctic change and its global impacts -Ecosystem studies of the Arctic ocean declining Sea ice -Projection of Arctic Sea ice responding to availability of Arctic sea route (* ** ***) *Changes in the Arctic ocean and mechanisms on catastrophic reduction of Arctic sea ice cover **Coordinated observational and modeling studies on the basic structure and variability of the Arctic sea ice-ocean system ***Sea ice prediction and construction of ice navigation support system for the Arctic sea route. Although GRENE Arctic project aims to product scientific contribution in a concentrated program during 2011-2016, Japanese Arctic research community established Japan Consortium for Arctic Environmental Research (JCAR) in May

  18. Projected changes, climate change signal, and uncertainties in the CMIP5-based projections of ocean surface wave heights

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolan; Feng, Yang; Swail, Val R.

    2016-04-01

    Ocean surface waves can be major hazards in coastal and offshore activities. However, wave observations are available only at limited locations and cover only the recent few decades. Also, there exists very limited information on ocean wave behavior in response to climate change, because such information is not simulated in current global climate models. In a recent study, we used a multivariate regression model with lagged dependent variable to make statistical global projections of changes in significant wave heights (Hs) using mean sea level pressure (SLP) information from 20 CMIP5 climate models for the twenty-first century. The statistical model was calibrated and validated using the ERA-Interim reanalysis of Hs and SLP for the period 1981-2010. The results show Hs increases in the tropics (especially in the eastern tropical Pacific) and in southern hemisphere high-latitudes. Under the projected 2070-2099 climate condition of the RCP8.5 scenario, the occurrence frequency of the present-day one-in-10-year extreme wave heights is likely to double or triple in several coastal regions around the world (e.g., the Chilean coast, Gulf of Oman, Gulf of Bengal, Gulf of Mexico). More recently, we used the analysis of variance approaches to quantify the climate change signal and uncertainty in multi-model ensembles of statistical Hs simulations globally, which are based on the CMIP5 historical, RCP4.5 and RCP8.5 forcing scenario simulations of SLP. In a 4-model 3-run ensemble, the 4-model common signal of climate change is found to strengthen over time, as would be expected. For the historical followed by RCP8.5 scenario, the common signal in annual mean Hs is found to be significant over 16.6%, 55.0% and 82.2% of the area by year 2005, 2050 and 2099, respectively. For the annual maximum, the signal is much weaker. The signal is strongest in the eastern tropical Pacific, featuring significant increases in both the annual mean and maximum of Hs in this region. The climate

  19. Projected shifts in Coffea arabica suitability among major global producing regions due to climate change.

    PubMed

    Ovalle-Rivera, Oriana; Läderach, Peter; Bunn, Christian; Obersteiner, Michael; Schroth, Götz

    2015-01-01

    Regional studies have shown that climate change will affect climatic suitability for Arabica coffee (Coffea arabica) within current regions of production. Increases in temperature and changes in precipitation patterns will decrease yield, reduce quality and increase pest and disease pressure. This is the first global study on the impact of climate change on suitability to grow Arabica coffee. We modeled the global distribution of Arabica coffee under changes in climatic suitability by 2050s as projected by 21 global circulation models. The results suggest decreased areas suitable for Arabica coffee in Mesoamerica at lower altitudes. In South America close to the equator higher elevations could benefit, but higher latitudes lose suitability. Coffee regions in Ethiopia and Kenya are projected to become more suitable but those in India and Vietnam to become less suitable. Globally, we predict decreases in climatic suitability at lower altitudes and high latitudes, which may shift production among the major regions that produce Arabica coffee. PMID:25875230

  20. Projected Shifts in Coffea arabica Suitability among Major Global Producing Regions Due to Climate Change

    PubMed Central

    Ovalle-Rivera, Oriana; Läderach, Peter; Bunn, Christian; Obersteiner, Michael; Schroth, Götz

    2015-01-01

    Regional studies have shown that climate change will affect climatic suitability for Arabica coffee (Coffea arabica) within current regions of production. Increases in temperature and changes in precipitation patterns will decrease yield, reduce quality and increase pest and disease pressure. This is the first global study on the impact of climate change on suitability to grow Arabica coffee. We modeled the global distribution of Arabica coffee under changes in climatic suitability by 2050s as projected by 21 global circulation models. The results suggest decreased areas suitable for Arabica coffee in Mesoamerica at lower altitudes. In South America close to the equator higher elevations could benefit, but higher latitudes lose suitability. Coffee regions in Ethiopia and Kenya are projected to become more suitable but those in India and Vietnam to become less suitable. Globally, we predict decreases in climatic suitability at lower altitudes and high latitudes, which may shift production among the major regions that produce Arabica coffee. PMID:25875230

  1. Projected shifts in Coffea arabica suitability among major global producing regions due to climate change.

    PubMed

    Ovalle-Rivera, Oriana; Läderach, Peter; Bunn, Christian; Obersteiner, Michael; Schroth, Götz

    2015-01-01

    Regional studies have shown that climate change will affect climatic suitability for Arabica coffee (Coffea arabica) within current regions of production. Increases in temperature and changes in precipitation patterns will decrease yield, reduce quality and increase pest and disease pressure. This is the first global study on the impact of climate change on suitability to grow Arabica coffee. We modeled the global distribution of Arabica coffee under changes in climatic suitability by 2050s as projected by 21 global circulation models. The results suggest decreased areas suitable for Arabica coffee in Mesoamerica at lower altitudes. In South America close to the equator higher elevations could benefit, but higher latitudes lose suitability. Coffee regions in Ethiopia and Kenya are projected to become more suitable but those in India and Vietnam to become less suitable. Globally, we predict decreases in climatic suitability at lower altitudes and high latitudes, which may shift production among the major regions that produce Arabica coffee.

  2. Climate change and watershed mercury export: a multiple projection and model analysis

    EPA Science Inventory

    Future shifts in climatic conditions may impact watershed mercury (Hg) dynamics and transport. We apply an ensemble of watershed models to simulate and assess the responses of hydrological and total Hg (HgT) fluxes and concentrations to two climate change projections in the US Co...

  3. Projecting boreal bird responses to climate change: the signal exceeds the noise.

    PubMed

    Stralberg, D; Matsuoka, S M; Hamann, A; Bayne, E M; Sólymos, P; Schmiegelow, F K A; Wang, X; Cumming, S G; Song, S J

    2015-01-01

    For climate change projections to be useful, the magnitude of change must be understood relative to the magnitude of uncertainty in model predictions. We quantified the signal-to-noise ratio in projected distributional responses of boreal birds to climate change, and compared sources of uncertainty. Boosted regression tree models of abundance were generated for 80 boreal-breeding bird species using a comprehensive data set of standardized avian point counts (349,629 surveys at 122,202 unique locations) and 4-km climate, land use, and topographic data. For projected changes in abundance, we calculated signal-to-noise ratios and examined variance components related to choice of global climate model (GCM) and two sources of species distribution model (SDM) uncertainty: sampling error and variable selection. We also evaluated spatial, temporal, and interspecific variation in these sources of uncertainty. The mean signal-to-noise ratio across species increased over time to 2.87 by the end of the 21st century, with the signal greater than the noise for 88% of species. Across species, climate change represented the largest component (0.44) of variance in projected abundance change. Among sources of uncertainty evaluated, choice of GCM (mean variance component = 0.17) was most important for 66% of species, sampling error (mean= 0.12) for 29% of species, and variable selection (mean =0.05) for 5% of species. Increasing the number of GCMs from four to 19 had minor effects on these results. The range of projected changes and uncertainty characteristics across species differed markedly, reinforcing the individuality of species' responses to climate change and the challenges of one-size-fits-all approaches to climate change adaptation. We discuss the usefulness of different conservation approaches depending on the strength of the climate change signal relative to the noise, as well as the dominant source of prediction uncertainty. PMID:26255357

  4. The New England Climate Adaptation Project: Enhancing Local Readiness to Adapt to Climate Change through Role-Play Simulations

    NASA Astrophysics Data System (ADS)

    Rumore, D.; Kirshen, P. H.; Susskind, L.

    2014-12-01

    Despite scientific consensus that the climate is changing, local efforts to prepare for and manage climate change risks remain limited. How we can raise concern about climate change risks and enhance local readiness to adapt to climate change's effects? In this presentation, we will share the lessons learned from the New England Climate Adaptation Project (NECAP), a participatory action research project that tested science-based role-play simulations as a tool for educating the public about climate change risks and simulating collective risk management efforts. NECAP was a 2-year effort involving the Massachusetts Institute of Technology, the Consensus Building Institute, the National Estuarine Research Reserve System, and four coastal New England municipalities. During 2012-2013, the NECAP team produced downscaled climate change projections, a summary risk assessment, and a stakeholder assessment for each partner community. Working with local partners, we used these assessments to create a tailored, science-based role-play simulation for each site. Through a series of workshops in 2013, NECAP engaged between 115-170 diverse stakeholders and members of the public in each partner municipality in playing the simulation and a follow up conversation about local climate change risks and possible adaptation strategies. Data were collected through before-and-after surveys administered to all workshop participants, follow-up interviews with 25 percent of workshop participants, public opinion polls conducted before and after our intervention, and meetings with public officials. This presentation will report our research findings and explain how science-based role-play simulations can be used to help communicate local climate change risks and enhance local readiness to adapt.

  5. Projected asymmetric response of Adélie penguins to Antarctic climate change.

    PubMed

    Cimino, Megan A; Lynch, Heather J; Saba, Vincent S; Oliver, Matthew J

    2016-06-29

    The contribution of climate change to shifts in a species' geographic distribution is a critical and often unresolved ecological question. Climate change in Antarctica is asymmetric, with cooling in parts of the continent and warming along the West Antarctic Peninsula (WAP). The Adélie penguin (Pygoscelis adeliae) is a circumpolar meso-predator exposed to the full range of Antarctic climate and is undergoing dramatic population shifts coincident with climate change. We used true presence-absence data on Adélie penguin breeding colonies to estimate past and future changes in habitat suitability during the chick-rearing period based on historic satellite observations and future climate model projections. During the contemporary period, declining Adélie penguin populations experienced more years with warm sea surface temperature compared to populations that are increasing. Based on this relationship, we project that one-third of current Adélie penguin colonies, representing ~20% of their current population, may be in decline by 2060. However, climate model projections suggest refugia may exist in continental Antarctica beyond 2099, buffering species-wide declines. Climate change impacts on penguins in the Antarctic will likely be highly site specific based on regional climate trends, and a southward contraction in the range of Adélie penguins is likely over the next century.

  6. Projected asymmetric response of Adélie penguins to Antarctic climate change

    PubMed Central

    Cimino, Megan A.; Lynch, Heather J.; Saba, Vincent S.; Oliver, Matthew J.

    2016-01-01

    The contribution of climate change to shifts in a species’ geographic distribution is a critical and often unresolved ecological question. Climate change in Antarctica is asymmetric, with cooling in parts of the continent and warming along the West Antarctic Peninsula (WAP). The Adélie penguin (Pygoscelis adeliae) is a circumpolar meso-predator exposed to the full range of Antarctic climate and is undergoing dramatic population shifts coincident with climate change. We used true presence-absence data on Adélie penguin breeding colonies to estimate past and future changes in habitat suitability during the chick-rearing period based on historic satellite observations and future climate model projections. During the contemporary period, declining Adélie penguin populations experienced more years with warm sea surface temperature compared to populations that are increasing. Based on this relationship, we project that one-third of current Adélie penguin colonies, representing ~20% of their current population, may be in decline by 2060. However, climate model projections suggest refugia may exist in continental Antarctica beyond 2099, buffering species-wide declines. Climate change impacts on penguins in the Antarctic will likely be highly site specific based on regional climate trends, and a southward contraction in the range of Adélie penguins is likely over the next century. PMID:27352849

  7. Projected asymmetric response of Adélie penguins to Antarctic climate change.

    PubMed

    Cimino, Megan A; Lynch, Heather J; Saba, Vincent S; Oliver, Matthew J

    2016-01-01

    The contribution of climate change to shifts in a species' geographic distribution is a critical and often unresolved ecological question. Climate change in Antarctica is asymmetric, with cooling in parts of the continent and warming along the West Antarctic Peninsula (WAP). The Adélie penguin (Pygoscelis adeliae) is a circumpolar meso-predator exposed to the full range of Antarctic climate and is undergoing dramatic population shifts coincident with climate change. We used true presence-absence data on Adélie penguin breeding colonies to estimate past and future changes in habitat suitability during the chick-rearing period based on historic satellite observations and future climate model projections. During the contemporary period, declining Adélie penguin populations experienced more years with warm sea surface temperature compared to populations that are increasing. Based on this relationship, we project that one-third of current Adélie penguin colonies, representing ~20% of their current population, may be in decline by 2060. However, climate model projections suggest refugia may exist in continental Antarctica beyond 2099, buffering species-wide declines. Climate change impacts on penguins in the Antarctic will likely be highly site specific based on regional climate trends, and a southward contraction in the range of Adélie penguins is likely over the next century. PMID:27352849

  8. Projected asymmetric response of Adélie penguins to Antarctic climate change

    NASA Astrophysics Data System (ADS)

    Cimino, Megan A.; Lynch, Heather J.; Saba, Vincent S.; Oliver, Matthew J.

    2016-06-01

    The contribution of climate change to shifts in a species’ geographic distribution is a critical and often unresolved ecological question. Climate change in Antarctica is asymmetric, with cooling in parts of the continent and warming along the West Antarctic Peninsula (WAP). The Adélie penguin (Pygoscelis adeliae) is a circumpolar meso-predator exposed to the full range of Antarctic climate and is undergoing dramatic population shifts coincident with climate change. We used true presence-absence data on Adélie penguin breeding colonies to estimate past and future changes in habitat suitability during the chick-rearing period based on historic satellite observations and future climate model projections. During the contemporary period, declining Adélie penguin populations experienced more years with warm sea surface temperature compared to populations that are increasing. Based on this relationship, we project that one-third of current Adélie penguin colonies, representing ~20% of their current population, may be in decline by 2060. However, climate model projections suggest refugia may exist in continental Antarctica beyond 2099, buffering species-wide declines. Climate change impacts on penguins in the Antarctic will likely be highly site specific based on regional climate trends, and a southward contraction in the range of Adélie penguins is likely over the next century.

  9. Impacts of Future Climate Change on California Perennial Crop Yields: Model Projections with Climate and Crop Uncertainties

    SciTech Connect

    Lobell, D; Field, C; Cahill, K; Bonfils, C

    2006-01-10

    Most research on the agricultural impacts of climate change has focused on the major annual crops, yet perennial cropping systems are less adaptable and thus potentially more susceptible to damage. Improved assessments of yield responses to future climate are needed to prioritize adaptation strategies in the many regions where perennial crops are economically and culturally important. These impact assessments, in turn, must rely on climate and crop models that contain often poorly defined uncertainties. We evaluated the impact of climate change on six major perennial crops in California: wine grapes, almonds, table grapes, oranges, walnuts, and avocados. Outputs from multiple climate models were used to evaluate climate uncertainty, while multiple statistical crop models, derived by resampling historical databases, were used to address crop response uncertainties. We find that, despite these uncertainties, climate change in California is very likely to put downward pressure on yields of almonds, walnuts, avocados, and table grapes by 2050. Without CO{sub 2} fertilization or adaptation measures, projected losses range from 0 to >40% depending on the crop and the trajectory of climate change. Climate change uncertainty generally had a larger impact on projections than crop model uncertainty, although the latter was substantial for several crops. Opportunities for expansion into cooler regions are identified, but this adaptation would require substantial investments and may be limited by non-climatic constraints. Given the long time scales for growth and production of orchards and vineyards ({approx}30 years), climate change should be an important factor in selecting perennial varieties and deciding whether and where perennials should be planted.

  10. Climate change projections for the Texas High Plains and Rolling Plains

    NASA Astrophysics Data System (ADS)

    Modala, Naga Raghuveer; Ale, Srinivasulu; Goldberg, Daniel W.; Olivares, Miriam; Munster, Clyde L.; Rajan, Nithya; Feagin, Rusty A.

    2016-03-01

    Potential changes in future climate in the Texas Plains region were investigated in the context of agriculture by analyzing three climate model projections under the A2 climate scenario (medium-high emission scenario). Spatially downscaled historic (1971-2000) and future (2041-2070) climate datasets (rainfall and temperature) were downloaded from the North American Regional Climate Change Assessment Program (NARCCAP). Climate variables predicted by three regional climate models (RCMs) namely the Regional Climate Model Version3-Geophysical Fluid Dynamics Laboratory (RCM3-GFDL), Regional Climate Model Version3-Third Generation Coupled Global Climate Model (RCM3-CGCM3), and Canadian Regional Climate Model-Community Climate System Model (CRCM-CCSM) were evaluated in this study. Gaussian and Gamma distribution mapping techniques were employed to remove the bias in temperature and rainfall data, respectively. Both the minimum and maximum temperatures across the study region in the future showed an upward trend, with the temperatures increasing in the range of 1.9 to 2.9 °C and 2.0 to 3.2 °C, respectively. All three climate models predicted a decline in rainfall within a range of 30 to 127 mm in majority of counties across the study region. In addition, they predicted an increase in the intensity of extreme rainfall events in the future. The frost-free season as predicted by the three models showed an increase by 2.6-3.4 weeks across the region, and the number of frost days declined by 17.9 to 30 %. Overall, these projections indicate considerable changes to the climate in the Texas Plains region in the future, and these changes could potentially impact agriculture in this region.

  11. Projected future climate changes in the context of geological and geomorphological hazards.

    PubMed

    Liggins, Felicity; Betts, Richard A; McGuire, Bill

    2010-05-28

    On palaeoclimate time scales, enhanced levels of geological and geomorphological activity have been linked to climatic factors, including examples of processes that are expected to be important in current and future anthropogenic climate change. Planetary warming leading to increased rainfall, ice-mass loss and rising sea levels is potentially relevant to geospheric responses in many geologically diverse regions. Anthropogenic climate change, therefore, has the potential to alter the risk of geological and geomorphological hazards through the twenty-first century and beyond. Here, we review climate change projections from both global and regional climate models in the context of geohazards. In assessing the potential for geospheric responses to climate change, it appears prudent to consider regional levels of warming of 2 degrees C above average pre-industrial temperature as being potentially unavoidable as an influence on processes requiring a human adaptation response within this century. At the other end of the scale when considering changes that could be avoided by reduction of emissions, scenarios of unmitigated warming exceeding 4 degrees C in the global average include much greater local warming in some regions. However, considerable further work is required to better understand the uncertainties associated with these projections, uncertainties inherent not only in the climate modelling but also in the linkages between climate change and geospheric responses.

  12. Changes in the Global Wave Climate from Single-Model Projections

    NASA Astrophysics Data System (ADS)

    Lemos, Gil; Behrens, Arno; Dobrynin, Mikhail; Miranda, Pedro; Semedo, Alvaro; Staneva, Joanna

    2016-04-01

    Ocean surface wind waves are of outmost relevance for practical and scientific reasons. On the one hand waves have a direct impact in coastal erosion, but also in sediment transport and beach nourishment, in ship routing and ship design, as well as in coastal and offshore infrastructures, just to mention the most relevant. On the other hand waves are part of the climate system, and modulate most of the exchanges that take place at the atmosphere-ocean interface. In fact waves are the "ultimate" air-sea interaction process, clearly visible and noticeable. Up until recently the impact of climate change in future global wave climate had received very little attention. Some single model single scenario global wave climate projections, based on CMIP3 scenarios, were pursuit and received relative attention in the IPCC (Intergovernmental Panel for Climate Change) AR5 (Fifth Assessment Report). In the present study the impact of a warmer climate in the future global wave climate is investigated through a 3-member "coherent" ensemble of wave climate projections: single-model, single-forcing, and single-scenario. In this methodology model variability is eliminated, leaving only room for the climate change signal. The three ensemble members were produced with the wave model WAM, forced with wind speed and ice coverage from EC-Earth projections, following the representative concentration pathway with a high emissions scenario 8.5 (RCP8.5). The ensemble present climate reference period (the control run) has been set for 1971 to 2005. The projected changes in the global wave climate are analyzed for the 2071-2100 period. The ensemble reference period is evaluated trough the comparison with the European Centre for medium-range weather forecasts (ECMWF) ERA-Interim reanalysis.

  13. Projected hydrologic regime changes in the Poyang Lake Basin due to climate change

    NASA Astrophysics Data System (ADS)

    Wang, Le; Guo, Shenglian; Hong, Xingjun; Liu, Dedi; Xiong, Lihua

    2016-09-01

    Poyang Lake, the largest freshwater lake in China, and its surrounding sub-basins have suffered frequent floods and droughts in recent decades. To better understand and quantitatively assess hydrological impacts of climate change in the region, this study adopted the Statistical Downscaling Model (SDSM) to downscale the outputs of a Global Climate Model (GCM) under three scenarios (RCP2.6, RCP4.5 and RCP8.5) as recommended by the fifth phase of the Coupled Model Inter-comparison Project (CMIP5) during future periods (2010‒2099) in the Poyang Lake Basin. A semi-distributed two-parameter monthly water balance model was also used to simulate and predict projected changes of runoff in the Ganjiang sub-basin. Results indicate that: 1) SDSM can simulate monthly mean precipitation reasonably well, while a bias correction procedure should be applied to downscaled extreme precipitation indices (EPI) before being employed to simulate future precipitation; 2) for annual mean precipitation, a mixed pattern of positive or negative changes are detected in the entire basin, with a slightly higher or lower trend in the 2020s and 2050s, with a consistent increase in the 2080s; 3) all six EPI show a general increase under RCP4.5 and RCP8.5 scenarios, while a mixed pattern of positive and negative changes is detected for most indices under the RCP2.6 scenario; and 4) the future runoff in the Ganjiang sub-basin shows an overall decreasing trend for all periods but the 2080s under the RCP8.5 scenario when runoff is more sensitive to changes in precipitation than evaporation.

  14. Projected continent-wide declines of the emperor penguin under climate change

    NASA Astrophysics Data System (ADS)

    Jenouvrier, Stéphanie; Holland, Marika; Stroeve, Julienne; Serreze, Mark; Barbraud, Christophe; Weimerskirch, Henri; Caswell, Hal

    2014-08-01

    Climate change has been projected to affect species distribution and future trends of local populations, but projections of global population trends are rare. We analyse global population trends of the emperor penguin (Aptenodytes forsteri), an iconic Antarctic top predator, under the influence of sea ice conditions projected by coupled climate models assessed in the Intergovernmental Panel on Climate Change (IPCC) effort. We project the dynamics of all 45 known emperor penguin colonies by forcing a sea-ice-dependent demographic model with local, colony-specific, sea ice conditions projected through to the end of the twenty-first century. Dynamics differ among colonies, but by 2100 all populations are projected to be declining. At least two-thirds are projected to have declined by >50% from their current size. The global population is projected to have declined by at least 19%. Because criteria to classify species by their extinction risk are based on the global population dynamics, global analyses are critical for conservation. We discuss uncertainties arising in such global projections and the problems of defining conservation criteria for species endangered by future climate change.

  15. EPA Region 10 Climate Change and TMDL Pilot Project - South Fork Nooksack River, Washington

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) Region 10 and EPA’s Office of Research and Development (ORD) and Office of Water (OW) have launched a pilot research project to consider how projected climate change impacts could be incorporated into a TMDL and influence restoration...

  16. Projected Impacts of Climate Change on Environmental Suitability for Malaria Transmission in West Africa

    PubMed Central

    Eltahir, Elfatih A.B.

    2013-01-01

    Background: Climate change is expected to affect the distribution of environmental suitability for malaria transmission by altering temperature and rainfall patterns; however, the local and global impacts of climate change on malaria transmission are uncertain. Objective: We assessed the effect of climate change on malaria transmission in West Africa. Methods: We coupled a detailed mechanistic hydrology and entomology model with climate projections from general circulation models (GCMs) to predict changes in vectorial capacity, an indication of the risk of human malaria infections, resulting from changes in the availability of mosquito breeding sites and temperature-dependent development rates. Because there is strong disagreement in climate predictions from different GCMs, we focused on the GCM projections that produced the best and worst conditions for malaria transmission in each zone of the study area. Results: Simulation-based estimates suggest that in the desert fringes of the Sahara, vectorial capacity would increase under the worst-case scenario, but not enough to sustain transmission. In the transitional zone of the Sahel, climate change is predicted to decrease vectorial capacity. In the wetter regions to the south, our estimates suggest an increase in vectorial capacity under all scenarios. However, because malaria is already highly endemic among human populations in these regions, we expect that changes in malaria incidence would be small. Conclusion: Our findings highlight the importance of rainfall in shaping the impact of climate change on malaria transmission in future climates. Even under the GCM predictions most conducive to malaria transmission, we do not expect to see a significant increase in malaria prevalence in this region. Citation: Yamana TK, Eltahir EA. 2013. Projected impacts of climate change on environmental suitability for malaria transmission in West Africa. Environ Health Perspect 121:1179–1186; http://dx.doi.org/10.1289/ehp

  17. On the dominant uncertainty source of climate change projections at the local scale

    NASA Astrophysics Data System (ADS)

    Fatichi, Simone; Ivanov, Valeriy; Paschalis, Athanasios; Molnar, Peter; Rimkus, Stefan; Kim, Jongho; Peleg, Nadav; Burlando, Paolo; Caporali, Enrica

    2016-04-01

    Decision makers and stakeholders are usually concerned about climate change projections at local spatial scales and fine temporal resolutions. This contrasts with the reliability of climate models, which is typically higher at the global and regional scales, Therefore, there is a demand for advanced methodologies that offer the capability of transferring predictions of climate models and relative uncertainty to scales commensurate with practical applications and for higher order statistics (e.g., few square kilometres and sub-daily scale). A stochastic downscaling technique that makes use of an hourly weather generator (AWE-GEN) and of a Bayesian methodology to weight realizations from different climate models is used to generate local scale meteorological time series of plausible "futures". We computed factors of change from realizations of 32 climate models used in the Coupled Model Intercomparison Project Phase 5 (CMIP5) and for different emission scenarios (RCP 4.5 and RCP 8.5). Future climate projections for several meteorological variables (precipitation, air temperature, relative humidity, shortwave radiation) are simulated at three locations characterized by remarkably different climates, Zurich (Switzlerand), Miami and San Francisco (USA). The methodology is designed to partition three main sources of uncertainty: uncertainty due to climate models (model epistemic uncertainty), anthropogenic forcings (scenario uncertainty), and internal climate variability (stochastic uncertainty). The three types of uncertainty sources are considered as dependent, implicitly accounting for possible co-variances among the sources. For air temperature, the magnitude of the different uncertainty sources is comparable for mid-of-the-century projections, while scenario uncertainty dominates at large lead-times. The dominant source of uncertainty for changes in precipitation mean and extremes is internal climate variability, which is accounting for more than 80% of the total

  18. Biodiversity in a changing climate: a synthesis of current and projected trends in the US

    USGS Publications Warehouse

    Staudinger, Michelle D.; Carter, Shawn L.; Cross, Molly S.; Dubois, Natalie S.; Duffy, J. Emmett; Enquist, Carolyn; Griffis, Roger; Hellmann, Jessica J.; Lawler, Joshua J.; O’Leary, John; Morrison, Scott A.; Sneddon, Lesley; Stein, Bruce A.; Thompson, Laura M.; Turner, Woody

    2013-01-01

    This paper provides a synthesis of the recent literature describing how global biodiversity is being affected by climate change and is projected to respond in the future. Current studies reinforce earlier findings of major climate-change-related impacts on biological systems and document new, more subtle after-effects. For example, many species are shifting their distributions and phenologies at faster rates than were recorded just a few years ago; however, responses are not uniform across species. Shifts have been idiosyncratic and in some cases counterintuitive, promoting new community compositions and altering biotic interactions. Although genetic diversity enhances species' potential to respond to variable conditions, climate change may outpace intrinsic adaptive capacities and increase the relative vulnerabilities of many organisms. Developing effective adaptation strategies for biodiversity conservation will not only require flexible decision-making and management approaches that account for uncertainties in climate projections and ecological responses but will also necessitate coordinated monitoring efforts.

  19. Climate change and watershed mercury export: a multiple projection and model analysis

    USGS Publications Warehouse

    Golden, Heather E.; Knightes, Christopher D.; Conrads, Paul A.; Feaster, Toby D.; Davis, Gary M.; Benedict, Stephen T.; Bradley, Paul M.

    2013-01-01

    Future shifts in climatic conditions may impact watershed mercury (Hg) dynamics and transport. An ensemble of watershed models was applied in the present study to simulate and evaluate the responses of hydrological and total Hg (THg) fluxes from the landscape to the watershed outlet and in-stream THg concentrations to contrasting climate change projections for a watershed in the southeastern coastal plain of the United States. Simulations were conducted under stationary atmospheric deposition and land cover conditions to explicitly evaluate the effect of projected precipitation and temperature on watershed Hg export (i.e., the flux of Hg at the watershed outlet). Based on downscaled inputs from 2 global circulation models that capture extremes of projected wet (Community Climate System Model, Ver 3 [CCSM3]) and dry (ECHAM4/HOPE-G [ECHO]) conditions for this region, watershed model simulation results suggest a decrease of approximately 19% in ensemble-averaged mean annual watershed THg fluxes using the ECHO climate-change model and an increase of approximately 5% in THg fluxes with the CCSM3 model. Ensemble-averaged mean annual ECHO in-stream THg concentrations increased 20%, while those of CCSM3 decreased by 9% between the baseline and projected simulation periods. Watershed model simulation results using both climate change models suggest that monthly watershed THg fluxes increase during the summer, when projected flow is higher than baseline conditions. The present study's multiple watershed model approach underscores the uncertainty associated with climate change response projections and their use in climate change management decisions. Thus, single-model predictions can be misleading, particularly in developmental stages of watershed Hg modeling.

  20. Climate change and watershed mercury export: a multiple projection and model analysis.

    PubMed

    Golden, Heather E; Knightes, Christopher D; Conrads, Paul A; Feaster, Toby D; Davis, Gary M; Benedict, Stephen T; Bradley, Paul M

    2013-09-01

    Future shifts in climatic conditions may impact watershed mercury (Hg) dynamics and transport. An ensemble of watershed models was applied in the present study to simulate and evaluate the responses of hydrological and total Hg (THg) fluxes from the landscape to the watershed outlet and in-stream THg concentrations to contrasting climate change projections for a watershed in the southeastern coastal plain of the United States. Simulations were conducted under stationary atmospheric deposition and land cover conditions to explicitly evaluate the effect of projected precipitation and temperature on watershed Hg export (i.e., the flux of Hg at the watershed outlet). Based on downscaled inputs from 2 global circulation models that capture extremes of projected wet (Community Climate System Model, Ver 3 [CCSM3]) and dry (ECHAM4/HOPE-G [ECHO]) conditions for this region, watershed model simulation results suggest a decrease of approximately 19% in ensemble-averaged mean annual watershed THg fluxes using the ECHO climate-change model and an increase of approximately 5% in THg fluxes with the CCSM3 model. Ensemble-averaged mean annual ECHO in-stream THg concentrations increased 20%, while those of CCSM3 decreased by 9% between the baseline and projected simulation periods. Watershed model simulation results using both climate change models suggest that monthly watershed THg fluxes increase during the summer, when projected flow is higher than baseline conditions. The present study's multiple watershed model approach underscores the uncertainty associated with climate change response projections and their use in climate change management decisions. Thus, single-model predictions can be misleading, particularly in developmental stages of watershed Hg modeling.

  1. Influences of Regional Climate Change on Air Quality across the Continental U.S. Projected from Downscaling IPCC ARS Simulations

    EPA Science Inventory

    Projecting climate change scenarios to local scales is important for understanding, mitigating, and adapting to the effects of climate change on society and the environment. Many of the global climate models (GCMs) that are participating in the Intergovernmental Panel on Climate ...

  2. Assessing Climate Change Impacts on the Performance of Major Water Projects over China

    NASA Astrophysics Data System (ADS)

    Tang, Q.; Liu, X.; Yin, Y. Y.; Zhang, C.; Zhang, X.

    2014-12-01

    The terrestrial water cycle has been largely altered by water projects in China. Since 1950, half of the world's large dams over 15 m height have been built in China. The installed hydropower capacity in China was 249 GW in 2012, accounting for about one-fifth of the total installed hydropower capacity of the world. China has also pursued an ambitious effort, the South-North Water Diversion Project, to transfer 44.8 billion m3 of freshwater annually from southern China to the drier north. Climate change is expected to result in changes in land surface hydrology, thus pose a huge challenge to water management. The potential impacts of climate change on the performance of the major water projects are yet to be assessed. We used a land surface hydrological model together with a simple treatment of reservoir operation to assess the impact of hydrological change on the functions of the major water projects under the Intergovernmental Panel on Climate Change (IPCC) climate and socio-economic scenarios. The bias-corrected climate data from global climate models under different Representative Concentration Pathways (RCPs) were used to drive the hydrological model. The operation of 474 major reservoirs was considered with an operating rule to generate maximum possible hydroelectricity and to fulfill water diversion demands. The future socioeconomic conditions, the Shared Socioeconomic Pathways (SSPs), were used to estimate the water requirement and leverage the water diversion. The modeling results suggest that climate change would have negative impacts on hydropower production and water supply reliability in China. This research highlights the need to evaluate the performance change of existing water infrastructures and to develop adaptation strategy in sustainable water management in a changing environment.

  3. How a policy requiring all highways infrastructure projects to consider climate change was born

    NASA Astrophysics Data System (ADS)

    Murdock, T. Q.; Sobie, S. R.; Nyland, D.; Wolf, J.

    2015-12-01

    The Pacific Climate Impacts Consortium has provided projected climate change scenarios including for use in several adaptation case studies by the British Columbia Ministry of Transportation and Infrastructure. Subsequent to these individual case studies throughout the Province, a sub-committee consisting of engineers, adaptation experts, and climate scientists was formed to provide input on forming a Province-wide requirement for all design projects to consider climate change. The work of this committee has recently culminated in the release of Technical Circular T06-15 (http://www2.gov.bc.ca/assets/gov/driving-and-transportation/transportation-infrastructure/engineering-standards-and-guidelines/technical-circulars/2015/t06-15.pdf). A collaboration with the Association of Professional Engineers and Geoscientists of British Columbia has resulted in the development of Professional Practice Guidelines. These guidelines are meant to assist engineers without special climate adaptation training to make appropriate use of climate information in accordance with the Technical Circular. An overview of the process that led to this concrete policy decision will be presented. Lessons learned include pitfalls to avoid as well as what worked well. In particular, successful aspects of the process include active involvement of climate scientists in regional climate adaptation case studies, an emphasis on cross-discipline (engineer-climate scientist) communication, and consultation with professionals who would be affected by the policy.

  4. Conjunctive management of surface and groundwater resources under projected future climate change scenarios

    DOE PAGES

    Mani, Amir; Tsai, Frank T. -C.; Kao, Shih-Chieh; Naz, Bibi S.; Ashfaq, Moetasim; Rastogi, Deeksha

    2016-06-16

    Our study introduces a mixed integer linear fractional programming (MILFP) method to optimize conjunctive use of future surface water and groundwater resources under projected climate change scenarios. The conjunctive management model maximizes the ratio of groundwater usage to reservoir water usage. Future inflows to the reservoirs were estimated from the future runoffs projected through hydroclimate modeling considering the Variable Infiltration Capacity model, and 11 sets of downscaled Coupled Model Intercomparison Project phase 5 global climate model projections. Bayesian model averaging was adopted to quantify uncertainty in future runoff projections and reservoir inflow projections due to uncertain future climate projections. Optimizedmore » conjunctive management solutions were investigated for a water supply network in northern Louisiana which includes the Sparta aquifer. Runoff projections under climate change scenarios indicate that runoff will likely decrease in winter and increase in other seasons. Ultimately, results from the developed conjunctive management model with MILFP indicate that the future reservoir water, even at 2.5% low inflow cumulative probability level, could counterbalance groundwater pumping reduction to satisfy demands while improving the Sparta aquifer through conditional groundwater head constraint.« less

  5. Conjunctive management of surface and groundwater resources under projected future climate change scenarios

    NASA Astrophysics Data System (ADS)

    Mani, Amir; Tsai, Frank T.-C.; Kao, Shih-Chieh; Naz, Bibi S.; Ashfaq, Moetasim; Rastogi, Deeksha

    2016-09-01

    This study introduces a mixed integer linear fractional programming (MILFP) method to optimize conjunctive use of future surface water and groundwater resources under projected climate change scenarios. The conjunctive management model maximizes the ratio of groundwater usage to reservoir water usage. Future inflows to the reservoirs were estimated from the future runoffs projected through hydroclimate modeling considering the Variable Infiltration Capacity model, and 11 sets of downscaled Coupled Model Intercomparison Project phase 5 global climate model projections. Bayesian model averaging was adopted to quantify uncertainty in future runoff projections and reservoir inflow projections due to uncertain future climate projections. Optimized conjunctive management solutions were investigated for a water supply network in northern Louisiana which includes the Sparta aquifer. Runoff projections under climate change scenarios indicate that runoff will likely decrease in winter and increase in other seasons. Results from the developed conjunctive management model with MILFP indicate that the future reservoir water, even at 2.5% low inflow cumulative probability level, could counterbalance groundwater pumping reduction to satisfy demands while improving the Sparta aquifer through conditional groundwater head constraints.

  6. The CARIPANDA project: Climate change and water resources in the Adamello Natural Park of Italy

    NASA Astrophysics Data System (ADS)

    Bocchiola, D.

    2009-04-01

    The three years (2007-2009) CARIPANDA project funded by the Cariplo Foundation of Italy is aimed to evaluate scenarios for water resources in the Adamello natural Park of Italy in a window of 50 years or so (until 2050). The project is led by Ente Parco Adamello and involves Politecnico di Milano, Università Statale di Milano, Università di Brescia, and ARPA Lombardia as scientific partners, while ENEL hydropower Company of Italy joins the project as stake holder. The Adamello Natural Park is a noteworthy resource in the Italian Alps. The Adamello Group is made of several glacierized areas (c. 24 km2), of both debris covered and free ice types, including the widest Italian Glacier, named Adamello, spreading on an area of about c. 18 km2. Also the Adamello Natural Reserve, covering 217 km2 inside the Adamello Park and including the Adamello glaciers, hosts a number of high altitude safeguarded vegetal and animal species, the safety of which is a primary task of the Reserve. Project's activity involves analysis of local climate trend, field campaigns on glaciers, hydrological modelling and remote sensing of snow and ice covered areas, aimed to build a consistent model of the present hydrological conditions and of the areas. Then, properly tailored climate change projections for the area, obtained using local data driven downscaling of climate change projections from GCMs model, are used to infer the likely response to expected climate change conditions. With two years in the project now some preliminary findings can be highlighted and some preliminary trend analysis carried out. The proposed poster provides a resume of the main results of the project insofar, of interest as a benchmark for similar ongoing and foregoing projects about climate change impact on European mountainous natural areas.

  7. Research Project on CO{sub 2}-Induced Climate Change

    SciTech Connect

    Cess, Robert D.; Hameed, Sultan

    1999-11-03

    A major effort of the current research has focused on GCM intercomparisons. Six years ago, the climate sensitivity of 19 atmospheric general circulation models was compared, and a roughly threefold variation among the models was found; most of this variation was attributed to differences in the depictions of cloud feedback made by the models. In an update of the earlier comparisons, current models showed considerably smaller differences in net cloud feedback, with most producing modest values. There are, however, substantial differences in the feedback components, indicating that the models still have physical disagreements.

  8. Carbon-Temperature-Water Change Analysis for Peanut Production Under Climate Change: A Prototype for the AgMIP Coordinated Climate-Crop Modeling Project (C3MP)

    NASA Technical Reports Server (NTRS)

    Ruane, Alex C.; McDermid, Sonali; Rosenzweig, Cynthia; Baigorria, Guillermo A.; Jones, James W.; Romero, Consuelo C.; Cecil, L. DeWayne

    2014-01-01

    Climate change is projected to push the limits of cropping systems and has the potential to disrupt the agricultural sector from local to global scales. This article introduces the Coordinated Climate-Crop Modeling Project (C3MP), an initiative of the Agricultural Model Intercomparison and Improvement Project (AgMIP) to engage a global network of crop modelers to explore the impacts of climate change via an investigation of crop responses to changes in carbon dioxide concentration ([CO2]), temperature, and water. As a demonstration of the C3MP protocols and enabled analyses, we apply the Decision Support System for Agrotechnology Transfer (DSSAT) CROPGRO-Peanut crop model for Henry County, Alabama, to evaluate responses to the range of plausible [CO2], temperature changes, and precipitation changes projected by climate models out to the end of the 21st century. These sensitivity tests are used to derive crop model emulators that estimate changes in mean yield and the coefficient of variation for seasonal yields across a broad range of climate conditions, reproducing mean yields from sensitivity test simulations with deviations of ca. 2% for rain-fed conditions. We apply these statistical emulators to investigate how peanuts respond to projections from various global climate models, time periods, and emissions scenarios, finding a robust projection of modest (<10%) median yield losses in the middle of the 21st century accelerating to more severe (>20%) losses and larger uncertainty at the end of the century under the more severe representative concentration pathway (RCP8.5). This projection is not substantially altered by the selection of the AgMERRA global gridded climate dataset rather than the local historical observations, differences between the Third and Fifth Coupled Model Intercomparison Project (CMIP3 and CMIP5), or the use of the delta method of climate impacts analysis rather than the C3MP impacts response surface and emulator approach.

  9. Carbon-temperature-water change analysis for peanut production under climate change: a prototype for the AgMIP coordinated climate-crop modeling project (C3MP).

    PubMed

    Ruane, Alex C; McDermid, Sonali; Rosenzweig, Cynthia; Baigorria, Guillermo A; Jones, James W; Romero, Consuelo C; Dewayne Cecil, L

    2014-02-01

    Climate change is projected to push the limits of cropping systems and has the potential to disrupt the agricultural sector from local to global scales. This article introduces the Coordinated Climate-Crop Modeling Project (C3MP), an initiative of the Agricultural Model Intercomparison and Improvement Project (AgMIP) to engage a global network of crop modelers to explore the impacts of climate change via an investigation of crop responses to changes in carbon dioxide concentration ([CO2 ]), temperature, and water. As a demonstration of the C3MP protocols and enabled analyses, we apply the Decision Support System for Agrotechnology Transfer (DSSAT) CROPGRO-Peanut crop model for Henry County, Alabama, to evaluate responses to the range of plausible [CO2 ], temperature changes, and precipitation changes projected by climate models out to the end of the 21st century. These sensitivity tests are used to derive crop model emulators that estimate changes in mean yield and the coefficient of variation for seasonal yields across a broad range of climate conditions, reproducing mean yields from sensitivity test simulations with deviations of ca. 2% for rain-fed conditions. We apply these statistical emulators to investigate how peanuts respond to projections from various global climate models, time periods, and emissions scenarios, finding a robust projection of modest (<10%) median yield losses in the middle of the 21st century accelerating to more severe (>20%) losses and larger uncertainty at the end of the century under the more severe representative concentration pathway (RCP8.5). This projection is not substantially altered by the selection of the AgMERRA global gridded climate dataset rather than the local historical observations, differences between the Third and Fifth Coupled Model Intercomparison Project (CMIP3 and CMIP5), or the use of the delta method of climate impacts analysis rather than the C3MP impacts response surface and emulator approach. PMID:24115520

  10. Carbon-temperature-water change analysis for peanut production under climate change: a prototype for the AgMIP coordinated climate-crop modeling project (C3MP).

    PubMed

    Ruane, Alex C; McDermid, Sonali; Rosenzweig, Cynthia; Baigorria, Guillermo A; Jones, James W; Romero, Consuelo C; Dewayne Cecil, L

    2014-02-01

    Climate change is projected to push the limits of cropping systems and has the potential to disrupt the agricultural sector from local to global scales. This article introduces the Coordinated Climate-Crop Modeling Project (C3MP), an initiative of the Agricultural Model Intercomparison and Improvement Project (AgMIP) to engage a global network of crop modelers to explore the impacts of climate change via an investigation of crop responses to changes in carbon dioxide concentration ([CO2 ]), temperature, and water. As a demonstration of the C3MP protocols and enabled analyses, we apply the Decision Support System for Agrotechnology Transfer (DSSAT) CROPGRO-Peanut crop model for Henry County, Alabama, to evaluate responses to the range of plausible [CO2 ], temperature changes, and precipitation changes projected by climate models out to the end of the 21st century. These sensitivity tests are used to derive crop model emulators that estimate changes in mean yield and the coefficient of variation for seasonal yields across a broad range of climate conditions, reproducing mean yields from sensitivity test simulations with deviations of ca. 2% for rain-fed conditions. We apply these statistical emulators to investigate how peanuts respond to projections from various global climate models, time periods, and emissions scenarios, finding a robust projection of modest (<10%) median yield losses in the middle of the 21st century accelerating to more severe (>20%) losses and larger uncertainty at the end of the century under the more severe representative concentration pathway (RCP8.5). This projection is not substantially altered by the selection of the AgMERRA global gridded climate dataset rather than the local historical observations, differences between the Third and Fifth Coupled Model Intercomparison Project (CMIP3 and CMIP5), or the use of the delta method of climate impacts analysis rather than the C3MP impacts response surface and emulator approach.

  11. Water resources climate change projections using supervised nonlinear and multivariate soft computing techniques

    NASA Astrophysics Data System (ADS)

    Sarhadi, Ali; Burn, Donald H.; Johnson, Fiona; Mehrotra, Raj; Sharma, Ashish

    2016-05-01

    Accurate projection of global warming on the probabilistic behavior of hydro-climate variables is one of the main challenges in climate change impact assessment studies. Due to the complexity of climate-associated processes, different sources of uncertainty influence the projected behavior of hydro-climate variables in regression-based statistical downscaling procedures. The current study presents a comprehensive methodology to improve the predictive power of the procedure to provide improved projections. It does this by minimizing the uncertainty sources arising from the high-dimensionality of atmospheric predictors, the complex and nonlinear relationships between hydro-climate predictands and atmospheric predictors, as well as the biases that exist in climate model simulations. To address the impact of the high dimensional feature spaces, a supervised nonlinear dimensionality reduction algorithm is presented that is able to capture the nonlinear variability among projectors through extracting a sequence of principal components that have maximal dependency with the target hydro-climate variables. Two soft-computing nonlinear machine-learning methods, Support Vector Regression (SVR) and Relevance Vector Machine (RVM), are engaged to capture the nonlinear relationships between predictand and atmospheric predictors. To correct the spatial and temporal biases over multiple time scales in the GCM predictands, the Multivariate Recursive Nesting Bias Correction (MRNBC) approach is used. The results demonstrate that this combined approach significantly improves the downscaling procedure in terms of precipitation projection.

  12. Regional assessment of Climate change impacts in the Mediterranean: the CIRCE project

    NASA Astrophysics Data System (ADS)

    Iglesias, A.

    2011-12-01

    The CIRCE project has developed for the first time an assessment of the climate change impacts in the Mediterranean area. The objectives of the project are: to predict and to quantify physical impacts of climate change in the Mediterranean area; to evaluate the consequences of climate change for the society and the economy of the populations located in the Mediterranean area; to develop an integrated approach to understand combined effects of climate change; and to identify adaptation and mitigation strategies in collaboration with regional stakeholders. The CIRCE Project, coordinated by the Instituto Nazionale di Geofisca e Vulcanologia, started on 1st April 2007 and ended in a policy conference in Rome on June 2011. CIRCE involves 64 partners from Europe, Middle East and North Africa working together to evaluate the best strategies of adaptation to the climate change in the Mediterranean basin. CIRCE wants to understand and to explain how climate will change in the Mediterranean area bringing together the natural sciences community and social community in a new integrated and comprehensive way. The project has investigated how global and Mediterranean climates interact, how the radiative properties of the atmosphere and the radiative fluxes vary, the interaction between cloudiness and aerosol, the modifications in the water cycle. Recent observed modifications in the climate variables and detected trends will be compared. The economic and social consequences of climate change are evaluated by analysing direct impacts on migration, tourism and energy markets together with indirect impacts on the economic system. CIRCE has produced results about the consequences on agriculture, forests and ecosystems, human health and air quality. The variability of extreme events in the future scenario and their impacts is also assessed. A rigorous common framework, including a set of quantitative indicators developed specifically for the Mediterranean environment was be developed

  13. Projections of climate change effects on discharge and inundation in the Amazon River basin

    NASA Astrophysics Data System (ADS)

    Paiva, R. C. D.; Sorribas, M.; Melack, J. M.; Jones, C.; Carvalho, L. V.; Bravo, J. M.; Beighley, E.; Forsberg, B. R.; Costa, M. H.

    2015-12-01

    Climate change and related effects on the hydrologic regime of the Amazon River basin can have major impacts on human and ecological communities, transportation, flood vulnerability, fisheries and hydropower generation. We examined projections of climate change effects on discharge and inundation within the Amazon River basin. We used the regional hydrological model MGB-IPH coupled with a 1D river hydrodynamic model simulating water storage over the floodplains. The model's capability to represent physical processes over the Amazon was demonstrated in previous validation against multi in situ and remotely sensed observations. Future climate projections for the 2070 to 2099 time period were obtained by selecting five climate models from IPCC's Fifth Assessment Report (AR5) Coupled Model Intercomparison Project Phase 5 (CMIP5), based on their ability to represent the main aspects of recent Amazon climate. The climate projections present large uncertainty and results from different climate models do not agree on the sign of changes in total Amazon flood extent or discharge along the main stem of the Amazon River. However, model projections generally show better agreement with wetter (drier) conditions over western (eastern) portions of the Amazon basin. Results indicate increased mean and maximum river discharge for large rivers draining the Andes in northwestern Amazon, with increased mean and maximum discharge and inundation extent over Peruvian floodplains and Solimões River in western and central Amazonia. Decreased river discharges (mainly in the dry season) are projected for eastern basins, and decreased inundation extent at low water period in the central and lower Amazon.

  14. Climate change projections over India by a downscaling approach using PRECIS

    NASA Astrophysics Data System (ADS)

    Bal, Prasanta Kumar; Ramachandran, Andimuthu; Palanivelu, Kandasamy; Thirumurugan, Perumal; Geetha, Rajadurai; Bhaskaran, Bhaski

    2016-08-01

    This study presents a comprehensive assessment of the possible regional climate change over India by using Providing REgional Climates for Impacts Studies (PRECIS), a regional climate model (RCM) developed by Met Office Hadley Centre in the United Kingdom. The lateral boundary data for the simulations were taken from a sub-set of six members sampled from the Hadley Centre's 17- member Quantified Uncertainty in Model Projections (QUMP) perturbed physics ensemble. The model was run with 25 km × 25 km resolution from the global climate model (GCM) - HadCM3Q at the emission rate of special report on emission scenarios (SRES) A1B scenarios. Based on the model performance, six member ensembles running over a period of 1970-2100 in each experiment were utilized to predict possible range of variations in the future projections for the periods 2020s (2005-2035), 2050s (2035-2065) and 2080s (2065-2095) with respect to the baseline period (1975-2005). The analyses concentrated on maximum temperature, minimum temperature and rainfall over the region. For the whole India, the projections of maximum temperature from all the six models showed an increase within the range 2.5°C to 4.4°C by end of the century with respect to the present day climate simulations. The annual rainfall projections from all the six models indicated a general increase in rainfall being within the range 15-24%. Mann-Kendall trend test was run on time series data of temperatures and rainfall for the whole India and the results from some of the ensemble members indicated significant increasing trends. Such high resolution climate change information may be useful for the researchers to study the future impacts of climate change in terms of extreme events like floods and droughts and formulate various adaptation strategies for the society to cope with future climate change.

  15. Projected impacts of climate change on regional capacities for global plant species richness.

    PubMed

    Sommer, Jan Henning; Kreft, Holger; Kier, Gerold; Jetz, Walter; Mutke, Jens; Barthlott, Wilhelm

    2010-08-01

    Climate change represents a major challenge to the maintenance of global biodiversity. To date, the direction and magnitude of net changes in the global distribution of plant diversity remain elusive. We use the empirical multi-variate relationships between contemporary water-energy dynamics and other non-climatic predictor variables to model the regional capacity for plant species richness (CSR) and its projected future changes. We find that across all analysed Intergovernmental Panel on Climate Change emission scenarios, relative changes in CSR increase with increased projected temperature rise. Between now and 2100, global average CSR is projected to remain similar to today (+0.3%) under the optimistic B1/+1.8 degrees C scenario, but to decrease significantly (-9.4%) under the 'business as usual' A1FI/+4.0 degrees C scenario. Across all modelled scenarios, the magnitude and direction of CSR change are geographically highly non-uniform. While in most temperate and arctic regions, a CSR increase is expected, the projections indicate a strong decline in most tropical and subtropical regions. Countries least responsible for past and present greenhouse gas emissions are likely to incur disproportionately large future losses in CSR, whereas industrialized countries have projected moderate increases. Independent of direction, we infer that all changes in regional CSR will probably induce on-site species turnover and thereby be a threat to native floras.

  16. Projected impacts of climate change on regional capacities for global plant species richness.

    PubMed

    Sommer, Jan Henning; Kreft, Holger; Kier, Gerold; Jetz, Walter; Mutke, Jens; Barthlott, Wilhelm

    2010-08-01

    Climate change represents a major challenge to the maintenance of global biodiversity. To date, the direction and magnitude of net changes in the global distribution of plant diversity remain elusive. We use the empirical multi-variate relationships between contemporary water-energy dynamics and other non-climatic predictor variables to model the regional capacity for plant species richness (CSR) and its projected future changes. We find that across all analysed Intergovernmental Panel on Climate Change emission scenarios, relative changes in CSR increase with increased projected temperature rise. Between now and 2100, global average CSR is projected to remain similar to today (+0.3%) under the optimistic B1/+1.8 degrees C scenario, but to decrease significantly (-9.4%) under the 'business as usual' A1FI/+4.0 degrees C scenario. Across all modelled scenarios, the magnitude and direction of CSR change are geographically highly non-uniform. While in most temperate and arctic regions, a CSR increase is expected, the projections indicate a strong decline in most tropical and subtropical regions. Countries least responsible for past and present greenhouse gas emissions are likely to incur disproportionately large future losses in CSR, whereas industrialized countries have projected moderate increases. Independent of direction, we infer that all changes in regional CSR will probably induce on-site species turnover and thereby be a threat to native floras. PMID:20335215

  17. Projected impacts of climate change on regional capacities for global plant species richness

    PubMed Central

    Sommer, Jan Henning; Kreft, Holger; Kier, Gerold; Jetz, Walter; Mutke, Jens; Barthlott, Wilhelm

    2010-01-01

    Climate change represents a major challenge to the maintenance of global biodiversity. To date, the direction and magnitude of net changes in the global distribution of plant diversity remain elusive. We use the empirical multi-variate relationships between contemporary water-energy dynamics and other non-climatic predictor variables to model the regional capacity for plant species richness (CSR) and its projected future changes. We find that across all analysed Intergovernmental Panel on Climate Change emission scenarios, relative changes in CSR increase with increased projected temperature rise. Between now and 2100, global average CSR is projected to remain similar to today (+0.3%) under the optimistic B1/+1.8°C scenario, but to decrease significantly (−9.4%) under the ‘business as usual’ A1FI/+4.0°C scenario. Across all modelled scenarios, the magnitude and direction of CSR change are geographically highly non-uniform. While in most temperate and arctic regions, a CSR increase is expected, the projections indicate a strong decline in most tropical and subtropical regions. Countries least responsible for past and present greenhouse gas emissions are likely to incur disproportionately large future losses in CSR, whereas industrialized countries have projected moderate increases. Independent of direction, we infer that all changes in regional CSR will probably induce on-site species turnover and thereby be a threat to native floras. PMID:20335215

  18. Climate Change

    NASA Astrophysics Data System (ADS)

    Cowie, Jonathan

    2001-05-01

    In recent years climate change has become recognised as the foremost environmental problem of the twenty-first century. Not only will climate change potentially affect the multibillion dollar energy strategies of countries worldwide, but it also could seriously affect many species, including our own. A fascinating introduction to the subject, this textbook provides a broad review of past, present and likely future climate change from the viewpoints of biology, ecology and human ecology. It will be of interest to a wide range of people, from students in the life sciences who need a brief overview of the basics of climate science, to atmospheric science, geography, and environmental science students who need to understand the biological and human ecological implications of climate change. It will also be a valuable reference for those involved in environmental monitoring, conservation, policy-making and policy lobbying. The first book to cover not only the human impacts on climate, but how climate change will affect humans and the species that we rely on Written in an accessible style, with specialist terms used only when necessary and thoroughly explained The author has years of experience conveying the views of biological science learned societies to policy-makers

  19. Developing and applying uncertain global climate change projections for regional water management planning

    NASA Astrophysics Data System (ADS)

    Groves, David G.; Yates, David; Tebaldi, Claudia

    2008-12-01

    Climate change may impact water resources management conditions in difficult-to-predict ways. A key challenge for water managers is how to incorporate highly uncertain information about potential climate change from global models into local- and regional-scale water management models and tools to support local planning. This paper presents a new method for developing large ensembles of local daily weather that reflect a wide range of plausible future climate change scenarios while preserving many statistical properties of local historical weather patterns. This method is demonstrated by evaluating the possible impact of climate change on the Inland Empire Utilities Agency service area in southern California. The analysis shows that climate change could impact the region, increasing outdoor water demand by up to 10% by 2040, decreasing local water supply by up to 40% by 2040, and decreasing sustainable groundwater yields by up to 15% by 2040. The range of plausible climate projections suggests the need for the region to augment its long-range water management plans to reduce its vulnerability to climate change.

  20. The CLUVA project: Climate-change scenarios and their impact on urban areas in Africa

    NASA Astrophysics Data System (ADS)

    Di Ruocco, Angela; Weets, Guy; Gasparini, Paolo; Jørgensen, Gertrud; Lindley, Sarah; Pauleit, Stephan; Vahed, Anwar; Schiano, Pasquale; Kabisch, Sigrun; Vedeld, Trond; Coly, Adrien; Tonye, Emmanuel; Touré, Hamidou; Kombe, Wilbard; Yeshitela, Kumelachew

    2013-04-01

    CLUVA (CLimate change and Urban Vulnerability in Africa; http://www.cluva.eu/) is a 3 years project, funded by the European Commission in 2010. Its main objective is the estimate of the impacts of climate changes in the next 40 years at urban scale in Africa. The mission of CLUVA is to develop methods and knowledge to assess risks cascading from climate-changes. It downscales IPCC climate projections to evaluate threats to selected African test cities; mainly floods, sea-level rise, droughts, heat waves and desertification. The project evaluates and links: social vulnerability; vulnerability of in-town ecosystems and urban-rural interfaces; vulnerability of urban built environment and lifelines; and related institutional and governance dimensions of adaptation. A multi-scale and multi-disciplinary quantitative, probabilistic, modelling is applied. CLUVA brings together climate experts, risk management experts, urban planners and social scientists with their African counterparts in an integrated research effort focusing on the improvement of the capacity of scientific institutions, local councils and civil society to cope with climate change. The CLUVA approach was set-up in the first year of the project and developed as follows: an ensemble of eight global projections of climate changes is produced for east and west Africa until 2050 considering the new IPCC (International Panel on Climate Changes; http://www.ipcc.ch/) scenarios. These are then downscaled to urban level, where territorial modeling is required to compute hazard effects on the vulnerable physical system (urban ecosystems, informal settlements, lifelines such as transportation and sewer networks) as well as on the social context, in defined time frames, and risk analysis is then employed to assess expected consequences. An investigation of the existing urban planning and governance systems and its interface with climate risks is performed. With the aid of the African partners, the developed approach

  1. Using ensemble climate projections to assess probabilistic hydrological change in the Nordic region

    NASA Astrophysics Data System (ADS)

    Wetterhall, F.; Graham, L. P.; Andréasson, J.; Rosberg, J.; Yang, W.

    2011-08-01

    Assessing hydrological effects of global climate change at local scales is important for evaluating future hazards to society. However, applying climate model projections to local impact models can be difficult as outcomes can vary considerably between different climate models, and including results from many models is demanding. This study combines multiple climate model outputs with hydrological impact modelling through the use of response surfaces. Response surfaces represent the sensitivity of the impact model to incremental changes in climate variables and show probabilies for reaching a priori determined thresholds. Response surfaces were calculated using the HBV hydrological model for three basins in Sweden. An ensemble of future climate projections was then superimposed onto each response surface, producing a probability estimate for exceeding the threshold being evaluated. Site specific impacts thresholds were used where applicable. Probabilistic trends for future change in hazards or potential can be shown and evaluated. It is particularly useful for visualising the range of probable outcomes from climate models and can easily be updated with new results as they are made available.

  2. Projected climate change impacts and short term predictions on staple crops in Sub-Saharan Africa

    NASA Astrophysics Data System (ADS)

    Mereu, V.; Spano, D.; Gallo, A.; Carboni, G.

    2013-12-01

    Agriculture in Sub-Saharan Africa (SSA) drives the economy of many African countries and it is mainly rain-fed agriculture used for subsistence. Increasing temperatures, changed precipitation patterns and more frequent droughts may lead to a substantial decrease of crop yields. The projected impacts of future climate change on agriculture are expected to be significant and extensive in the SSA due to the shortening of the growing seasons and the increasing of water-stress risk. Differences in Agro-Ecological Zones and geographical characteristics of SSA influence the diverse impacts of climate change, which can greatly differ across the continent and within countries. The vulnerability of African Countries to climate change is aggravated by the low adaptive capacity of the continent, due to the increasing of its population, the widespread poverty, and other social factors. In this contest, the assessment of climate change impact on agricultural sector has a particular interest to stakeholder and policy makers, in order to identify specific agricultural sectors and Agro-Ecological Zones that could be more vulnerable to changes in climatic conditions and to develop the most appropriate policies to cope with these threats. For these reasons, the evaluation of climate change impacts for key crops in SSA was made exploring climate uncertainty and focusing on short period monitoring, which is particularly useful for food security and risk management analysis. The DSSAT-CSM (Decision Support System for Agrotechnology Transfer - Cropping System Model) software, version 4.5 was used for the analysis. Crop simulation models included in DSSAT-CSM are tools that allow to simulate physiological process of crop growth, development and production, by combining genetic crop characteristics and environmental (soil and weather) conditions. For each selected crop, the models were used, after a parameterization phase, to evaluate climate change impacts on crop phenology and production

  3. Climate change projections for Tamil Nadu, India: deriving high-resolution climate data by a downscaling approach using PRECIS

    NASA Astrophysics Data System (ADS)

    Bal, Prasanta Kumar; Ramachandran, A.; Geetha, R.; Bhaskaran, B.; Thirumurugan, P.; Indumathi, J.; Jayanthi, N.

    2016-02-01

    In this paper, we present regional climate change projections for the Tamil Nadu state of India, simulated by the Met Office Hadley Centre regional climate model. The model is run at 25 km horizontal resolution driven by lateral boundary conditions generated by a perturbed physical ensemble of 17 simulations produced by a version of Hadley Centre coupled climate model, known as HadCM3Q under A1B scenario. The large scale features of these 17 simulations were evaluated for the target region to choose lateral boundary conditions from six members that represent a range of climate variations over the study region. The regional climate, known as PRECIS, was then run 130 years from 1970. The analyses primarily focus on maximum and minimum temperatures and rainfall over the region. For the Tamil Nadu as a whole, the projections of maximum temperature show an increase of 1.0, 2.2 and 3.1 °C for the periods 2020s (2005-2035), 2050s (2035-2065) and 2080s (2065-2095), respectively, with respect to baseline period (1970-2000). Similarly, the projections of minimum temperature show an increase of 1.1, 2.4 and 3.5 °C, respectively. This increasing trend is statistically significant (Mann-Kendall trend test). The annual rainfall projections for the same periods indicate a general decrease in rainfall of about 2-7, 1-4 and 4-9 %, respectively. However, significant exceptions are noticed over some pockets of western hilly areas and high rainfall areas where increases in rainfall are seen. There are also indications of increasing heavy rainfall events during the northeast monsoon season and a slight decrease during the southwest monsoon season. Such an approach of using climate models may maximize the utility of high-resolution climate change information for impact-adaptation-vulnerability assessments.

  4. Combining Climatic Projections and Dispersal Ability: A Method for Estimating the Responses of Sandfly Vector Species to Climate Change

    PubMed Central

    Fischer, Dominik; Moeller, Philipp; Thomas, Stephanie M.; Naucke, Torsten J.; Beierkuhnlein, Carl

    2011-01-01

    Background In the Old World, sandfly species of the genus Phlebotomus are known vectors of Leishmania, Bartonella and several viruses. Recent sandfly catches and autochthonous cases of leishmaniasis hint on spreading tendencies of the vectors towards Central Europe. However, studies addressing potential future distribution of sandflies in the light of a changing European climate are missing. Methodology Here, we modelled bioclimatic envelopes using MaxEnt for five species with proven or assumed vector competence for Leishmania infantum, which are either predominantly located in (south-) western (Phlebotomus ariasi, P. mascittii and P. perniciosus) or south-eastern Europe (P. neglectus and P. perfiliewi). The determined bioclimatic envelopes were transferred to two climate change scenarios (A1B and B1) for Central Europe (Austria, Germany and Switzerland) using data of the regional climate model COSMO-CLM. We detected the most likely way of natural dispersal (“least-cost path”) for each species and hence determined the accessibility of potential future climatically suitable habitats by integrating landscape features, projected changes in climatic suitability and wind speed. Results and Relevance Results indicate that the Central European climate will become increasingly suitable especially for those vector species with a current south-western focus of distribution. In general, the highest suitability of Central Europe is projected for all species in the second half of the 21st century, except for P. perfiliewi. Nevertheless, we show that sandflies will hardly be able to occupy their climatically suitable habitats entirely, due to their limited natural dispersal ability. A northward spread of species with south-eastern focus of distribution may be constrained but not completely avoided by the Alps. Our results can be used to install specific monitoring systems to the projected risk zones of potential sandfly establishment. This is urgently needed for adaptation

  5. 2. Wind speed change in central Europe: the projections based on regional climate models

    NASA Astrophysics Data System (ADS)

    Siedlecki, M.

    2010-09-01

    This work presents dynamically downscaled near-surface wind speed fields and examines the impact of climate changes on wind speed across central Europe. The analysis is based on regional model simulation (5 RCM simulations taken from the project PRUDENCE and CLM regional climate model from M&D group) forced by IPCC emission scenario SRES - A2. Each model provided data from two 30-year simulations: a control run under present day climate conditions for the period 1961-90 and a simulation under conditions projected for the period 2021-2050. The research domain covered region from 42°N to 62°N and from 6°E to 36°E. The model ensemble shows a possible increase in future mean wind speed during winter season, especially over zonal belt from North German to North Poland where the future mean wind speed is 0.4 m/s higher than in the control period. The projected climate change in summer over most research domain shows a decrease of mean wind speed (about 0.2 m/s). The Jutland Peninsula and North German is the region with the highest simulated wind speed. The simulated changes are more pronounced in 95th percentile than in the mean. In winter, the values of the 95th percentile will increase over the North German, Jutland Peninsula and North Poland but the highest change is projected over east coast of Baltic Sea (1m/s).

  6. Global Warning: Project-Based Science Inspired by the Intergovernmental Panel on Climate Change

    ERIC Educational Resources Information Center

    Colaianne, Blake

    2015-01-01

    Misconceptions about climate change are common, which suggests a need to effectively address the subject in the classroom. This article describes a project-based science activity in which students report on the physical basis, adaptations, and mitigation of this global problem, adapting the framework of the United Nations' Intergovernmental Panel…

  7. Projected irrigation requirements for upland crops using soil moisture model under climate change in South Korea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An increase in abnormal climate change patterns and unsustainable irrigation in uplands cause drought and affect agricultural water security, crop productivity, and price fluctuations. In this study, we developed a soil moisture model to project irrigation requirements (IR) for upland crops under cl...

  8. Projecting the vegetation response to climatic change in the North American Central Grasslands Region

    SciTech Connect

    Lenihan, J.M.; Neilson, R.P. )

    1993-06-01

    An interdisciplinary modeling effort is underway in which high-resolution climate change projections will drive the Mapped Atmosphere-Plant-Soil System (MAPSS) to simulate vegetation change in the Central Grasslands Region. MAPSS calculates a complete site water balance and solves for the leaf area (LAI) of both woody and grass lifeforms in full competition for both light and water. Fire is a necessary constraint on simulated shrub LAI throughout much of the grasslands region, and incorporation of weather variability is critical for obtaining accurate tree/grass LAI ratios in the Prairie Peninsula. Initial estimates of the potential impact of climatic change include significant changes in both lifeform LAI and the distribution of subformation vegetation types, but the magnitude and even the direction of change varies with the climate scenario and with assumptions concerning wind speed and plant water-use efficiency.

  9. Changes in groundwater recharge under projected climate in the upper Colorado River basin

    USGS Publications Warehouse

    Tillman, Fred; Gangopadhyay, Subhrendu; Pruitt, Tom

    2016-01-01

    Understanding groundwater-budget components, particularly groundwater recharge, is important to sustainably manage both groundwater and surface water supplies in the Colorado River basin now and in the future. This study quantifies projected changes in upper Colorado River basin (UCRB) groundwater recharge from recent historical (1950–2015) through future (2016–2099) time periods, using a distributed-parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 climate projections. Simulated future groundwater recharge in the UCRB is generally expected to be greater than the historical average in most decades. Increases in groundwater recharge in the UCRB are a consequence of projected increases in precipitation, offsetting reductions in recharge that would result from projected increased temperatures.

  10. Changes in groundwater recharge under projected climate in the upper Colorado River basin

    NASA Astrophysics Data System (ADS)

    Tillman, Fred D.; Gangopadhyay, Subhrendu; Pruitt, Tom

    2016-07-01

    Understanding groundwater-budget components, particularly groundwater recharge, is important to sustainably manage both groundwater and surface water supplies in the Colorado River basin now and in the future. This study quantifies projected changes in upper Colorado River basin (UCRB) groundwater recharge from recent historical (1950-2015) through future (2016-2099) time periods, using a distributed-parameter groundwater recharge model with downscaled climate data from 97 Coupled Model Intercomparison Project Phase 5 climate projections. Simulated future groundwater recharge in the UCRB is generally expected to be greater than the historical average in most decades. Increases in groundwater recharge in the UCRB are a consequence of projected increases in precipitation, offsetting reductions in recharge that would result from projected increased temperatures.

  11. Contemporary and projected changes in global water use efficiency and crop productivity induced by land use and climate change

    NASA Astrophysics Data System (ADS)

    Pan, S.; Tian, H.; Ouyang, Z.; Ren, W.; Tao, B.; Yang, J.; Lu, C.; Wang, X.

    2012-12-01

    Much concern has been raised about the impacts of climate and land use changes on water resource and food security through the climate-lwater-food nexus. However, it is short of investigation on the quantitative understanding and assessment of how land use and climate change have affected global water use efficiency and crop productivity, the key measures of water and food security. By using the Dynamic Land Ecosystem Model (DLEM) driven by spatially-explicit information on land use, climate and other environmental changes, we have assessed the spatial and temporal patterns of crop productivity, evapotranspiration (ET) and water use efficiency across the global land surface in the past three decades (1980-2010) and the projected period (2011-2099). Specifically, we have examined the following three questions: 1) How have global crop productivity and ET been affected by climate variability and land use change in the past three decades; 2) How will global crop productivity respond to climate changes (temperature, precipitation, and solar radiation) in the future (2011-2099)? and 3) What are the relative roles of climate change and land us in altering global crop productivity and water use efficiency? Our preliminary results indicate that crop productivity in the past three decades shows an increasing trend primarily due to agricultural intensification including the increased uses of fertilizers and irrigation. However, Crop productivity shows substantially spatial and temporal variations due to inter-annual and inter-decadal climate variability and spatial heterogeneity of environmental drivers. Climate extremes especially droughts and heat wave have largely reduced crop productivity, particularly in South Asia, Northern China, Africa, South America and US. Future climate warming could reduce crop productivity and shift cropland distribution. Our study further suggests that improving water use efficiency through land management practices will be the key for reducing

  12. Projected response of an endangered marine turtle population to climate change

    NASA Astrophysics Data System (ADS)

    Saba, Vincent S.; Stock, Charles A.; Spotila, James R.; Paladino, Frank V.; Tomillo, Pilar Santidrián

    2012-11-01

    Assessing the potential impacts of climate change on individual species and populations is essential for the stewardship of ecosystems and biodiversity. Critically endangered leatherback turtles in the eastern Pacific Ocean are excellent candidates for such an assessment because their sensitivity to contemporary climate variability has been substantially studied. If incidental fisheries mortality is eliminated, this population still faces the challenge of recovery in a rapidly changing climate. Here we combined an Earth system model, climate model projections assessed by the Intergovernmental Panel on Climate Change and a population dynamics model to estimate a 7% per decade decline in the Costa Rica nesting population over the twenty-first century. Whereas changes in ocean conditions had a small effect on the population, the ~2.5°C warming of the nesting beach was the primary driver of the decline through reduced hatching success and hatchling emergence rate. Hatchling sex ratio did not substantially change. Adjusting nesting phenology or changing nesting sites may not entirely prevent the decline, but could offset the decline rate. However, if future observations show a long-term decline in hatching success and emergence rate, anthropogenic climate mitigation of nests (for example, shading, irrigation) may be able to preserve the nesting population.

  13. Development and comparison of weighting metrics for probabilistic climate change projections of Mediterranean precipitation

    NASA Astrophysics Data System (ADS)

    Kaspar-Ott, Irena; Hertig, Elke; Pollinger, Felix; Ring, Christoph; Paeth, Heiko; Jacobeit, Jucundus

    2016-04-01

    Climate protection and adaptive measures require reliable estimates of future climate change. Coupled global circulation models are still the most appropriate tool. However, the climate projections of individual models differ considerably, particularly at the regional scale and with respect to certain climate variables such as precipitation. Significant uncertainties also arise on the part of climate impact research. The model differences result from unknown initial conditions, different resolutions and driving mechanisms, different model parameterizations and emission scenarios. It is very challenging to determine which model simulates proper future climate conditions. By implementing results from all important model runs in probability density functions, the exceeding probabilities with respect to certain thresholds of climate change can be determined. The aim of this study is to derive such probabilistic estimates of future precipitation changes in the Mediterranean region for the multi-model ensemble from CMIP3 and CMIP5. The Mediterranean region represents a so-called hot spot of climate change. The analyses are carried out for the meteorological seasons in eight Mediterranean sub-regions, based on the results of principal component analyses. The methodologically innovative aspect refers mainly to the comparison of different metrics to derive model weights, such as Bayesian statistics, regression models, spatial-temporal filtering, the fingerprinting method and quality criteria for the simulated large-scale circulation. The latter describes the ability of the models to simulate the North Atlantic Oscillation, the East Atlantic pattern, the East Atlantic/West Russia pattern and the Scandinavia pattern, as they are the most important large-scale atmospheric drivers for Mediterranean precipitation. The comparison of observed atmospheric patterns with the modeled patterns leads to specific model weights. They are checked for their temporal consistency in the 20th

  14. Projecting the Local Impacts of Climate Change on a Central American Montane Avian Community

    NASA Technical Reports Server (NTRS)

    Gasner, Matthew R.; Jankowski, Jill E.; Ciecka, Anna L.; Kyle, Keiller O.; Rabenold, Kerry N.

    2010-01-01

    Significant changes in the climates of Central America are expected over the next century. Lowland rainforests harbor high alpha diversity on local scales (<1 km2), yet montane landscapes often support higher beta diversity on 10-100 km2 scales. Climate change will likely disrupt the altitudinal zonation of montane communities that produces such landscape diversity. Projections of biotic response to climate change have often used broad-scale modelling of geographical ranges, but understanding likely impacts on population viability is also necessary for anticipating local and global extinctions. We model species abundances and estimate range shifts for birds in the Tilaran Mountains of Costa Rica, asking whether projected changes in temperature and rainfall could be sufficient to imperil high-elevation endemics and whether these variables will likely impact communities similarly. We find that nearly half of 77 forest bird species can be expected to decline in the next century. Almost half of species projected to decline are endemic to Central America, and seven of eight species projected to become locally extinct are endemic to the highlands of Costa Rica and Panam . Logistic-regression modelling of distributions and similarity in projections produced by temperature and rainfall models suggest that changes in both variables will be important. Although these projections are probably conservative because they do not explicitly incorporate biological or climate variable interactions, they provide a starting point for incorporating more realistic biological complexity into community-change models. Prudent conservation planning for tropical mountains should focus on regions with room for altitudinal reorganization of communities comprised of ecological specialists.

  15. Projecting the impact of climate change on dengue transmission in Dhaka, Bangladesh.

    PubMed

    Banu, Shahera; Hu, Wenbiao; Guo, Yuming; Hurst, Cameron; Tong, Shilu

    2014-02-01

    Weather variables, mainly temperature and humidity influence vectors, viruses, human biology, ecology and consequently the intensity and distribution of the vector-borne diseases. There is evidence that warmer temperature due to climate change will influence the dengue transmission. However, long term scenario-based projections are yet to be developed. Here, we assessed the impact of weather variability on dengue transmission in a megacity of Dhaka, Bangladesh and projected the future dengue risk attributable to climate change. Our results show that weather variables particularly temperature and humidity were positively associated with dengue transmission. The effects of weather variables were observed at a lag of four months. We projected that assuming a temperature increase of 3.3°C without any adaptation measure and changes in socio-economic condition, there will be a projected increase of 16,030 dengue cases in Dhaka by the end of this century. This information might be helpful for the public health authorities to prepare for the likely increase of dengue due to climate change. The modelling framework used in this study may be applicable to dengue projection in other cities. PMID:24291765

  16. Projecting the impact of climate change on dengue transmission in Dhaka, Bangladesh.

    PubMed

    Banu, Shahera; Hu, Wenbiao; Guo, Yuming; Hurst, Cameron; Tong, Shilu

    2014-02-01

    Weather variables, mainly temperature and humidity influence vectors, viruses, human biology, ecology and consequently the intensity and distribution of the vector-borne diseases. There is evidence that warmer temperature due to climate change will influence the dengue transmission. However, long term scenario-based projections are yet to be developed. Here, we assessed the impact of weather variability on dengue transmission in a megacity of Dhaka, Bangladesh and projected the future dengue risk attributable to climate change. Our results show that weather variables particularly temperature and humidity were positively associated with dengue transmission. The effects of weather variables were observed at a lag of four months. We projected that assuming a temperature increase of 3.3°C without any adaptation measure and changes in socio-economic condition, there will be a projected increase of 16,030 dengue cases in Dhaka by the end of this century. This information might be helpful for the public health authorities to prepare for the likely increase of dengue due to climate change. The modelling framework used in this study may be applicable to dengue projection in other cities.

  17. Relevance of hydro-climatic change projection and monitoring for assessment of water cycle changes in the Arctic.

    PubMed

    Bring, Arvid; Destouni, Georgia

    2011-06-01

    Rapid changes to the Arctic hydrological cycle challenge both our process understanding and our ability to find appropriate adaptation strategies. We have investigated the relevance and accuracy development of climate change projections for assessment of water cycle changes in major Arctic drainage basins. Results show relatively good agreement of climate model projections with observed temperature changes, but high model inaccuracy relative to available observation data for precipitation changes. Direct observations further show systematically larger (smaller) runoff than precipitation increases (decreases). This result is partly attributable to uncertainties and systematic bias in precipitation observations, but still indicates that some of the observed increase in Arctic river runoff is due to water storage changes, for example melting permafrost and/or groundwater storage changes, within the drainage basins. Such causes of runoff change affect sea level, in addition to ocean salinity, and inland water resources, ecosystems, and infrastructure. Process-based hydrological modeling and observations, which can resolve changes in evapotranspiration, and groundwater and permafrost storage at and below river basin scales, are needed in order to accurately interpret and translate climate-driven precipitation changes to changes in freshwater cycling and runoff. In contrast to this need, our results show that the density of Arctic runoff monitoring has become increasingly biased and less relevant by decreasing most and being lowest in river basins with the largest expected climatic changes. PMID:21809779

  18. Relevance of hydro-climatic change projection and monitoring for assessment of water cycle changes in the Arctic.

    PubMed

    Bring, Arvid; Destouni, Georgia

    2011-06-01

    Rapid changes to the Arctic hydrological cycle challenge both our process understanding and our ability to find appropriate adaptation strategies. We have investigated the relevance and accuracy development of climate change projections for assessment of water cycle changes in major Arctic drainage basins. Results show relatively good agreement of climate model projections with observed temperature changes, but high model inaccuracy relative to available observation data for precipitation changes. Direct observations further show systematically larger (smaller) runoff than precipitation increases (decreases). This result is partly attributable to uncertainties and systematic bias in precipitation observations, but still indicates that some of the observed increase in Arctic river runoff is due to water storage changes, for example melting permafrost and/or groundwater storage changes, within the drainage basins. Such causes of runoff change affect sea level, in addition to ocean salinity, and inland water resources, ecosystems, and infrastructure. Process-based hydrological modeling and observations, which can resolve changes in evapotranspiration, and groundwater and permafrost storage at and below river basin scales, are needed in order to accurately interpret and translate climate-driven precipitation changes to changes in freshwater cycling and runoff. In contrast to this need, our results show that the density of Arctic runoff monitoring has become increasingly biased and less relevant by decreasing most and being lowest in river basins with the largest expected climatic changes.

  19. Future projection of Indian summer monsoon variability under climate change scenario: An assessment from CMIP5 climate models

    NASA Astrophysics Data System (ADS)

    Sharmila, S.; Joseph, S.; Sahai, A. K.; Abhilash, S.; Chattopadhyay, R.

    2015-01-01

    In this study, the impact of enhanced anthropogenic greenhouse gas emissions on the possible future changes in different aspects of daily-to-interannual variability of Indian summer monsoon (ISM) is systematically assessed using 20 coupled models participated in the Coupled Model Inter-comparison Project Phase 5. The historical (1951-1999) and future (2051-2099) simulations under the strongest Representative Concentration Pathway have been analyzed for this purpose. A few reliable models are selected based on their competence in simulating the basic features of present-climate ISM variability. The robust and consistent projections across the selected models suggest substantial changes in the ISM variability by the end of 21st century indicating strong sensitivity of ISM to global warming. On the seasonal scale, the all-India summer monsoon mean rainfall is likely to increase moderately in future, primarily governed by enhanced thermodynamic conditions due to atmospheric warming, but slightly offset by weakened large scale monsoon circulation. It is projected that the rainfall magnitude will increase over core monsoon zone in future climate, along with lengthening of the season due to late withdrawal. On interannual timescales, it is speculated that severity and frequency of both strong monsoon (SM) and weak monsoon (WM) might increase noticeably in future climate. Substantial changes in the daily variability of ISM are also projected, which are largely associated with the increase in heavy rainfall events and decrease in both low rain-rate and number of wet days during future monsoon. On the subseasonal scale, the model projections depict considerable amplification of higher frequency (below 30 day mode) components; although the dominant northward propagating 30-70 day mode of monsoon intraseasonal oscillations may not change appreciably in a warmer climate. It is speculated that the enhanced high frequency mode of monsoon ISOs due to increased GHG induced warming

  20. Climate Change Impact on Hydrological Extremes: Preliminary Results from the Polish-Norwegian Project

    NASA Astrophysics Data System (ADS)

    Romanowicz, Renata J.; Bogdanowicz, Ewa; Debele, Sisay E.; Doroszkiewicz, Joanna; Hisdal, Hege; Lawrence, Deborah; Meresa, Hadush K.; Napiórkowski, Jarosław J.; Osuch, Marzena; Strupczewski, Witold G.; Wilson, Donna; Wong, Wai Kwok

    2016-04-01

    This paper presents the background, objectives, and preliminary outcomes from the first year of activities of the Polish-Norwegian project CHIHE (Climate Change Impact on Hydrological Extremes). The project aims to estimate the influence of climate changes on extreme river flows (low and high) and to evaluate the impact on the frequency of occurrence of hydrological extremes. Eight "twinned" catchments in Poland and Norway serve as case studies. We present the procedures of the catchment selection applied in Norway and Poland and a database consisting of near-natural ten Polish and eight Norwegian catchments constructed for the purpose of climate impact assessment. Climate projections for selected catchments are described and compared with observations of temperature and precipitation available for the reference period. Future changes based on those projections are analysed and assessed for two periods, the near future (2021-2050) and the far-future (2071-2100). The results indicate increases in precipitation and temperature in the periods and regions studied both in Poland and Norway.

  1. Suitable Days for Plant Growth Disappear under Projected Climate Change: Potential Human and Biotic Vulnerability.

    PubMed

    Mora, Camilo; Caldwell, Iain R; Caldwell, Jamie M; Fisher, Micah R; Genco, Brandon M; Running, Steven W

    2015-06-01

    Ongoing climate change can alter conditions for plant growth, in turn affecting ecological and social systems. While there have been considerable advances in understanding the physical aspects of climate change, comprehensive analyses integrating climate, biological, and social sciences are less common. Here we use climate projections under alternative mitigation scenarios to show how changes in environmental variables that limit plant growth could impact ecosystems and people. We show that although the global mean number of days above freezing will increase by up to 7% by 2100 under "business as usual" (representative concentration pathway [RCP] 8.5), suitable growing days will actually decrease globally by up to 11% when other climatic variables that limit plant growth are considered (i.e., temperature, water availability, and solar radiation). Areas in Russia, China, and Canada are projected to gain suitable plant growing days, but the rest of the world will experience losses. Notably, tropical areas could lose up to 200 suitable plant growing days per year. These changes will impact most of the world's terrestrial ecosystems, potentially triggering climate feedbacks. Human populations will also be affected, with up to ~2,100 million of the poorest people in the world (~30% of the world's population) highly vulnerable to changes in the supply of plant-related goods and services. These impacts will be spatially variable, indicating regions where adaptations will be necessary. Changes in suitable plant growing days are projected to be less severe under strong and moderate mitigation scenarios (i.e., RCP 2.6 and RCP 4.5), underscoring the importance of reducing emissions to avoid such disproportionate impacts on ecosystems and people.

  2. Suitable Days for Plant Growth Disappear under Projected Climate Change: Potential Human and Biotic Vulnerability

    PubMed Central

    Mora, Camilo; Caldwell, Iain R.; Caldwell, Jamie M.; Fisher, Micah R.; Genco, Brandon M.; Running, Steven W.

    2015-01-01

    Ongoing climate change can alter conditions for plant growth, in turn affecting ecological and social systems. While there have been considerable advances in understanding the physical aspects of climate change, comprehensive analyses integrating climate, biological, and social sciences are less common. Here we use climate projections under alternative mitigation scenarios to show how changes in environmental variables that limit plant growth could impact ecosystems and people. We show that although the global mean number of days above freezing will increase by up to 7% by 2100 under “business as usual” (representative concentration pathway [RCP] 8.5), suitable growing days will actually decrease globally by up to 11% when other climatic variables that limit plant growth are considered (i.e., temperature, water availability, and solar radiation). Areas in Russia, China, and Canada are projected to gain suitable plant growing days, but the rest of the world will experience losses. Notably, tropical areas could lose up to 200 suitable plant growing days per year. These changes will impact most of the world’s terrestrial ecosystems, potentially triggering climate feedbacks. Human populations will also be affected, with up to ~2,100 million of the poorest people in the world (~30% of the world’s population) highly vulnerable to changes in the supply of plant-related goods and services. These impacts will be spatially variable, indicating regions where adaptations will be necessary. Changes in suitable plant growing days are projected to be less severe under strong and moderate mitigation scenarios (i.e., RCP 2.6 and RCP 4.5), underscoring the importance of reducing emissions to avoid such disproportionate impacts on ecosystems and people. PMID:26061091

  3. Hydrologic regime alteration of a Mediterranean catchment under climate change projection

    NASA Astrophysics Data System (ADS)

    Sellami, Haykel; Benabdallah, Sihem; La Jeunesse, Isabelle; Herrmann, Frank; Vanclooster, Marnik

    2014-05-01

    Most of the climate models projections for the Mediterranean basin have showed that the region will likely to experience a general tendency towards drier climate conditions with decreases in total precipitation, increases in temperature, alterations in the rainfall extreme events and droughts frequency (IPCC, 2007; Giorgi and Lionello, 2008; López-Moreno et al., 2011). The region is already suffering from water resources scarcity and vulnerability which are expected to amplify in the next century (Ludwig et al., 2011; Schneider et al., 2013). Therefore, assessing the impact of climate change on the hydrologic regime of Mediterranean catchments is with a major concern not only to scientist but also to water resources policy makers and general public. However, most of the climate change impact studies focus on the flow regime on global or regional scale rather than on the catchment scale which is more useful and more appropriate to guide practical mitigation and adaptation policy. This is because hydro-climate modeling at the local scale is confronted to the variability in climate, topography, geology, lack of observations and anthropogenic activities within the catchment. Furthermore, it is well recognized that hydrological and climate models forecasts are always affected with uncertainty making the assessment of climate change impact on Mediterranean catchment hydrology more challenging. This work aims to assess the impact of climate change on a Mediterranean catchment located in North Africa (the Chiba catchment in northeast Tunisia) through a conjunctive use of physically based hydrological model (SWAT) driven with four climate models*. Quantification of the impact of climate change has been conducted by means of the Indicators of Hydrologic Alteration (Richter et al., 1996) which are also ecologically meaningful. By comparing changes in these indicators in the reference period (1971-2000) to the projected ones in the future (2041-2070), it was possible to draw

  4. An integrated land change model for projecting future climate and land change scenarios

    USGS Publications Warehouse

    Wimberly, Michael; Sohl, Terry L.; Lamsal, Aashis; Liu, Zhihua; Hawbaker, Todd J.

    2013-01-01

    Climate change will have myriad effects on ecosystems worldwide, and natural and anthropogenic disturbances will be key drivers of these dynamics. In addition to climatic effects, continual expansion of human settlement into fire-prone forests will alter fire regimes, increase human vulnerability, and constrain future forest management options. There is a need for modeling tools to support the simulation and assessment of new management strategies over large regions in the context of changing climate, shifting development patterns, and an expanding wildland-urban interface. To address this need, we developed a prototype land change simulator that combines human-driven land use change (derived from the FORE-SCE model) with natural disturbances and vegetation dynamics (derived from the LADS model) and incorporates novel feedbacks between human land use and disturbance regimes. The prototype model was implemented in a test region encompassing the Denver metropolitan area along with its surrounding forested and agricultural landscapes. Initial results document the feasibility of integrated land change modeling at a regional scale but also highlighted conceptual and technical challenges for this type of model integration. Ongoing development will focus on improving climate sensitivities and modeling constraints imposed by climate change and human population growth on forest management activities.

  5. Advances in projection of climate change impacts using supervised nonlinear dimensionality reduction techniques

    NASA Astrophysics Data System (ADS)

    Sarhadi, Ali; Burn, Donald H.; Yang, Ge; Ghodsi, Ali

    2016-05-01

    One of the main challenges in climate change studies is accurate projection of the global warming impacts on the probabilistic behaviour of hydro-climate processes. Due to the complexity of climate-associated processes, identification of predictor variables from high dimensional atmospheric variables is considered a key factor for improvement of climate change projections in statistical downscaling approaches. For this purpose, the present paper adopts a new approach of supervised dimensionality reduction, which is called "Supervised Principal Component Analysis (Supervised PCA)" to regression-based statistical downscaling. This method is a generalization of PCA, extracting a sequence of principal components of atmospheric variables, which have maximal dependence on the response hydro-climate variable. To capture the nonlinear variability between hydro-climatic response variables and projectors, a kernelized version of Supervised PCA is also applied for nonlinear dimensionality reduction. The effectiveness of the Supervised PCA methods in comparison with some state-of-the-art algorithms for dimensionality reduction is evaluated in relation to the statistical downscaling process of precipitation in a specific site using two soft computing nonlinear machine learning methods, Support Vector Regression and Relevance Vector Machine. The results demonstrate a significant improvement over Supervised PCA methods in terms of performance accuracy.

  6. Flood projections within the Niger River Basin under future land use and climate change.

    PubMed

    Aich, Valentin; Liersch, Stefan; Vetter, Tobias; Fournet, Samuel; Andersson, Jafet C M; Calmanti, Sandro; van Weert, Frank H A; Hattermann, Fred F; Paton, Eva N

    2016-08-15

    This study assesses future flood risk in the Niger River Basin (NRB), for the first time considering the simultaneous effects of both projected climate change and land use changes. For this purpose, an ecohydrological process-based model (SWIM) was set up and validated for past climate and land use dynamics of the entire NRB. Model runs for future flood risks were conducted with an ensemble of 18 climate models, 13 of them dynamically downscaled from the CORDEX Africa project and five statistically downscaled Earth System Models. Two climate and two land use change scenarios were used to cover a broad range of potential developments in the region. Two flood indicators (annual 90th percentile and the 20-year return flood) were used to assess the future flood risk for the Upper, Middle and Lower Niger as well as the Benue. The modeling results generally show increases of flood magnitudes when comparing a scenario period in the near future (2021-2050) with a base period (1976-2005). Land use effects are more uncertain, but trends and relative changes for the different catchments of the NRB seem robust. The dry areas of the Sahelian and Sudanian regions of the basin show a particularly high sensitivity to climatic and land use changes, with an alarming increase of flood magnitudes in parts. A scenario with continuing transformation of natural vegetation into agricultural land and urbanization intensifies the flood risk in all parts of the NRB, while a "regreening" scenario can reduce flood magnitudes to some extent. Yet, land use change effects were smaller when compared to the effects of climate change. In the face of an already existing adaptation deficit to catastrophic flooding in the region, the authors argue for a mix of adaptation and mitigation efforts in order to reduce the flood risk in the NRB. PMID:27110979

  7. Flood projections within the Niger River Basin under future land use and climate change.

    PubMed

    Aich, Valentin; Liersch, Stefan; Vetter, Tobias; Fournet, Samuel; Andersson, Jafet C M; Calmanti, Sandro; van Weert, Frank H A; Hattermann, Fred F; Paton, Eva N

    2016-08-15

    This study assesses future flood risk in the Niger River Basin (NRB), for the first time considering the simultaneous effects of both projected climate change and land use changes. For this purpose, an ecohydrological process-based model (SWIM) was set up and validated for past climate and land use dynamics of the entire NRB. Model runs for future flood risks were conducted with an ensemble of 18 climate models, 13 of them dynamically downscaled from the CORDEX Africa project and five statistically downscaled Earth System Models. Two climate and two land use change scenarios were used to cover a broad range of potential developments in the region. Two flood indicators (annual 90th percentile and the 20-year return flood) were used to assess the future flood risk for the Upper, Middle and Lower Niger as well as the Benue. The modeling results generally show increases of flood magnitudes when comparing a scenario period in the near future (2021-2050) with a base period (1976-2005). Land use effects are more uncertain, but trends and relative changes for the different catchments of the NRB seem robust. The dry areas of the Sahelian and Sudanian regions of the basin show a particularly high sensitivity to climatic and land use changes, with an alarming increase of flood magnitudes in parts. A scenario with continuing transformation of natural vegetation into agricultural land and urbanization intensifies the flood risk in all parts of the NRB, while a "regreening" scenario can reduce flood magnitudes to some extent. Yet, land use change effects were smaller when compared to the effects of climate change. In the face of an already existing adaptation deficit to catastrophic flooding in the region, the authors argue for a mix of adaptation and mitigation efforts in order to reduce the flood risk in the NRB.

  8. Framework for Probabilistic Projections of Energy-Relevant Streamflow Indicators under Climate Change Scenarios for the U.S.

    SciTech Connect

    Wagener, Thorsten; Mann, Michael; Crane, Robert

    2014-04-29

    This project focuses on uncertainty in streamflow forecasting under climate change conditions. The objective is to develop easy to use methodologies that can be applied across a range of river basins to estimate changes in water availability for realistic projections of climate change. There are three major components to the project: Empirical downscaling of regional climate change projections from a range of Global Climate Models; Developing a methodology to use present day information on the climate controls on the parameterizations in streamflow models to adjust the parameterizations under future climate conditions (a trading-space-for-time approach); and Demonstrating a bottom-up approach to establishing streamflow vulnerabilities to climate change. The results reinforce the need for downscaling of climate data for regional applications, and further demonstrates the challenges of using raw GCM data to make local projections. In addition, it reinforces the need to make projections across a range of global climate models. The project demonstrates the potential for improving streamflow forecasts by using model parameters that are adjusted for future climate conditions, but suggests that even with improved streamflow models and reduced climate uncertainty through the use of downscaled data, there is still large uncertainty is the streamflow projections. The most useful output from the project is the bottom-up vulnerability driven approach to examining possible climate and land use change impacts on streamflow. Here, we demonstrate an inexpensive and easy to apply methodology that uses Classification and Regression Trees (CART) to define the climate and environmental parameters space that can produce vulnerabilities in the system, and then feeds in the downscaled projections to determine the probability top transitioning to a vulnerable sate. Vulnerabilities, in this case, are defined by the end user.

  9. Dengue fever epidemic potential as projected by general circulation models of global climate change.

    PubMed Central

    Patz, J A; Martens, W J; Focks, D A; Jetten, T H

    1998-01-01

    Climate factors influence the transmission of dengue fever, the world's most widespread vector-borne virus. We examined the potential added risk posed by global climate change on dengue transmission using computer-based simulation analysis to link temperature output from three climate general circulation models (GCMs) to a dengue vectorial capacity equation. Our outcome measure, epidemic potential, is the reciprocal of the critical mosquito density threshold of the vectorial capacity equation. An increase in epidemic potential indicates that a smaller number of mosquitoes can maintain a state of endemicity of disease where dengue virus is introduced. Baseline climate data for comparison are from 1931 to 1980. Among the three GCMs, the average projected temperature elevation was 1.16 degrees C, expected by the year 2050. All three GCMs projected a temperature-related increase in potential seasonal transmission in five selected cities, as well as an increase in global epidemic potential, with the largest area change occurring in temperate regions. For regions already at risk, the aggregate epidemic potential across the three scenarios rose on average between 31 and 47% (range, 24-74%). If climate change occurs, as many climatologists believe, this will increase the epidemic potential of dengue-carrying mosquitoes, given viral introduction and susceptible human populations. Our risk assessment suggests that increased incidence may first occur in regions bordering endemic zones in latitude or altitude. Endemic locations may be at higher risk from hemorrhagic dengue if transmission intensity increases. Images Figure 1 Figure 2 Figure 3 PMID:9452414

  10. Dengue fever epidemic potential as projected by general circulation models of global climate change.

    PubMed

    Patz, J A; Martens, W J; Focks, D A; Jetten, T H

    1998-03-01

    Climate factors influence the transmission of dengue fever, the world's most widespread vector-borne virus. We examined the potential added risk posed by global climate change on dengue transmission using computer-based simulation analysis to link temperature output from three climate general circulation models (GCMs) to a dengue vectorial capacity equation. Our outcome measure, epidemic potential, is the reciprocal of the critical mosquito density threshold of the vectorial capacity equation. An increase in epidemic potential indicates that a smaller number of mosquitoes can maintain a state of endemicity of disease where dengue virus is introduced. Baseline climate data for comparison are from 1931 to 1980. Among the three GCMs, the average projected temperature elevation was 1.16 degrees C, expected by the year 2050. All three GCMs projected a temperature-related increase in potential seasonal transmission in five selected cities, as well as an increase in global epidemic potential, with the largest area change occurring in temperate regions. For regions already at risk, the aggregate epidemic potential across the three scenarios rose on average between 31 and 47% (range, 24-74%). If climate change occurs, as many climatologists believe, this will increase the epidemic potential of dengue-carrying mosquitoes, given viral introduction and susceptible human populations. Our risk assessment suggests that increased incidence may first occur in regions bordering endemic zones in latitude or altitude. Endemic locations may be at higher risk from hemorrhagic dengue if transmission intensity increases. PMID:9452414

  11. Dengue fever epidemic potential as projected by general circulation models of global climate change.

    PubMed

    Patz, J A; Martens, W J; Focks, D A; Jetten, T H

    1998-03-01

    Climate factors influence the transmission of dengue fever, the world's most widespread vector-borne virus. We examined the potential added risk posed by global climate change on dengue transmission using computer-based simulation analysis to link temperature output from three climate general circulation models (GCMs) to a dengue vectorial capacity equation. Our outcome measure, epidemic potential, is the reciprocal of the critical mosquito density threshold of the vectorial capacity equation. An increase in epidemic potential indicates that a smaller number of mosquitoes can maintain a state of endemicity of disease where dengue virus is introduced. Baseline climate data for comparison are from 1931 to 1980. Among the three GCMs, the average projected temperature elevation was 1.16 degrees C, expected by the year 2050. All three GCMs projected a temperature-related increase in potential seasonal transmission in five selected cities, as well as an increase in global epidemic potential, with the largest area change occurring in temperate regions. For regions already at risk, the aggregate epidemic potential across the three scenarios rose on average between 31 and 47% (range, 24-74%). If climate change occurs, as many climatologists believe, this will increase the epidemic potential of dengue-carrying mosquitoes, given viral introduction and susceptible human populations. Our risk assessment suggests that increased incidence may first occur in regions bordering endemic zones in latitude or altitude. Endemic locations may be at higher risk from hemorrhagic dengue if transmission intensity increases.

  12. Evidence and implications of recent and projected climate change in Alaska's forest ecosystems

    USGS Publications Warehouse

    Wolken, Jane M.; Hollingsworth, Teresa N.; Rupp, T. Scott; Chapin, Stuart III; Trainor, Sarah F.; Barrett, Tara M.; Sullivan, Patrick F.; McGuire, A. David; Euskirchen, Eugénie S.; Hennon, Paul E.; Beever, Erik A.; Conn, Jeff S.; Crone, Lisa K.; D'Amore, David V.; Fresco, Nancy; Hanley, Thomas A.; Kielland, Knut; Kruse, James J.; Patterson, Trista; Schuur, Edward A.G.; Verbyla, David L.; Yarie, John

    2011-01-01

    The structure and function of Alaska's forests have changed significantly in response to a changing climate, including alterations in species composition and climate feedbacks (e.g., carbon, radiation budgets) that have important regional societal consequences and human feedbacks to forest ecosystems. In this paper we present the first comprehensive synthesis of climate-change impacts on all forested ecosystems of Alaska, highlighting changes in the most critical biophysical factors of each region. We developed a conceptual framework describing climate drivers, biophysical factors and types of change to illustrate how the biophysical and social subsystems of Alaskan forests interact and respond directly and indirectly to a changing climate. We then identify the regional and global implications to the climate system and associated socio-economic impacts, as presented in the current literature. Projections of temperature and precipitation suggest wildfire will continue to be the dominant biophysical factor in the Interior-boreal forest, leading to shifts from conifer- to deciduous-dominated forests. Based on existing research, projected increases in temperature in the Southcentral- and Kenai-boreal forests will likely increase the frequency and severity of insect outbreaks and associated wildfires, and increase the probability of establishment by invasive plant species. In the Coastal-temperate forest region snow and ice is regarded as the dominant biophysical factor. With continued warming, hydrologic changes related to more rapidly melting glaciers and rising elevation of the winter snowline will alter discharge in many rivers, which will have important consequences for terrestrial and marine ecosystem productivity. These climate-related changes will affect plant species distribution and wildlife habitat, which have regional societal consequences, and trace-gas emissions and radiation budgets, which are globally important. Our conceptual framework facilitates

  13. Improved confidence in climate change projections of precipitation further evaluated using daily statistics from ENSEMBLES models

    NASA Astrophysics Data System (ADS)

    Boberg, Fredrik; Berg, Peter; Thejll, Peter; Gutowski, William J.; Christensen, Jens H.

    2010-12-01

    Probability density functions for daily precipitation data are used as a validation tool comparing station measurements to seven transient regional climate model runs, with a horizontal resolution of 25 km and driven by the SRES A1B scenario forcing, within the ENSEMBLES project. The validation is performed for the control period 1961-1990 for eight predefined European subregions, and a ninth region enclosing all eight subregions, with different climate characteristics. Models that best match the observations are then used for making climate change projections of precipitation distributions during the twenty-first century for each subregion separately. We find, compared to the control period, a distinct decrease in the contribution to the total precipitation for days with moderate precipitation and a distinct increase for days with more intense precipitation. This change in contribution to the total precipitation is found to amplify with time during all of the twenty-first century with an average rate of 1.1% K-1. Furthermore, the crossover point separating the decreasing from the increasing contributions does not show any significant change with time for any specific subregion. These results are a confirmation and a specification of the results from a previous study using the same station measurements but with a regional climate model ensemble within the PRUDENCE project.

  14. Climate change adaptation accounting for huge uncertainties in future projections - the case of urban drainage

    NASA Astrophysics Data System (ADS)

    Willems, Patrick

    2015-04-01

    Hydrological design parameters, which are currently used in the guidelines for the design of urban drainage systems (Willems et al., 2013) have been revised, taking the Flanders region of Belgium as case study. The revision involved extrapolation of the design rainfall statistics, taking into account the current knowledge on future climate change trends till 2100. Uncertainties in these trend projections have been assessed after statistically analysing and downscaling by a quantile perturbation tool based on a broad ensemble set of climate model simulation results (44 regional + 69 global control-scenario climate model run combinations for different greenhouse gas scenarios). The impact results of the climate scenarios were investigated as changes to rainfall intensity-duration-frequency (IDF) curves. Thereafter, the climate scenarios and related changes in rainfall statistics were transferred to changes in flood frequencies of sewer systems and overflow frequencies of storage facilities. This has been done based on conceptual urban drainage models. Also the change in storage capacity required to exceed a given overflow return period, has been calculated for a range of return periods and infiltration or throughflow rates. These results were used on the basis of the revision of the hydraulic design rules of urban drainage systems. One of the major challenges while formulating these policy guidelines was the consideration of the huge uncertainties in the future climate change projections and impact assessments; see also the difficulties and pitfalls reported by the IWA/IAHR Joint Committee on Urban Drainage - Working group on urban rainfall (Willems et al., 2012). We made use of the risk concept, and found it a very useful approach to deal with the high uncertainties. It involves an impact study of the different climate projections, or - for practical reasons - a reduced set of climate scenarios tailored for the specific type of impact considered (urban floods in our

  15. A physics ensemble of regional climate change projections over the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Jimenez-Guerrero, P.; Jerez, S.; Montavez, J. P.; Gomez-Navarro, J. J.; Garcia-Valero, J. A.; Gonzalez-Rouco, J. F.

    2009-04-01

    Some of the most widely used Regional Climate Models (RCMs) contain large numbers of parameterizations which are known, individually, to have a significant impact on simulated climate. Up to date, considerable uncertainties exist in the the extent to which different choices of parameter-settings or schemes may influence present climate simulations and different projections for the future climate. The most thorough way to investigate this uncertainty is to run ensemble experiments in which relevant parameter combination is investigated. The use of ensemble techniques in regional climate modeling has been shown in several studies (such as the PRUDENCE, ENSEMBLES projects) as feasible for obtaining projections of climate change and to study the capacity of RCMs to reproduce the observed climatology. This work explores the sensitivity of different physical parameterizations within a regional climate version of the MM5 model when applied in a complex an heterogeneous area such as the Iberian Peninsula (IP). To do that, a multi-physics ensemble of eight climate change projections (2070-2099 vs. 1970-1999) have been performed driven by ECHAM5 global climate model outputs, forced by the SRES A2 scenario GHGs concentrations for the future period. This ensemble is the result of combination two of the available options for cumulus (Grell and Kain-Fritsch), microphysics (Simple Ice and Mixed Phase) and PBL (Eta and MRF) parametrizations. The analysis focuses on two variables: 2-m temperature and precipitation. The results indicate that for 2-m temperature the spread is caused by changes in the PBL scheme (being negligible the changes in other parameterizations). Overall, the MRF scheme for the PBL provokes the highest temperature increase (and also the highest absolute values), meanwhile the Eta scheme leads to the minimum variation and values. The average rise in the temperature is about 2.5 degrees for wintertime and 6 degrees during the summertime in the Iberian Peninsula

  16. Projected impacts of climate change on farmers' extraction of groundwater from crystalline aquifers in South India

    PubMed Central

    Ferrant, Sylvain; Caballero, Yvan; Perrin, Jérome; Gascoin, Simon; Dewandel, Benoit; Aulong, Stéphanie; Dazin, Fabrice; Ahmed, Shakeel; Maréchal, Jean-Christophe

    2014-01-01

    Local groundwater levels in South India are falling alarmingly. In the semi-arid crystalline Deccan plateau area, agricultural production relies on groundwater resources. Downscaled Global Climate Model (GCM) data are used to force a spatially distributed agro-hydrological model in order to evaluate Climate Change (CC) effects on local groundwater extraction (GWE). The slight increase of precipitation may alleviate current groundwater depletion on average, despite the increased evaporation due to warming. Nevertheless, projected climatic extremes create worse GWE shortages than for present climate. Local conditions may lead to opposing impacts on GWE, from increases to decreases (+/−20 mm/year), for a given spatially homogeneous CC forcing. Areas vulnerable to CC in terms of irrigation apportionment are thus identified. Our results emphasize the importance of accounting for local characteristics (water harvesting systems and maximal aquifer capacity versus GWE) in developing measures to cope with CC impacts in the South Indian region. PMID:24424295

  17. Projected impacts of climate change on farmers' extraction of groundwater from crystalline aquifers in South India.

    PubMed

    Ferrant, Sylvain; Caballero, Yvan; Perrin, Jérome; Gascoin, Simon; Dewandel, Benoit; Aulong, Stéphanie; Dazin, Fabrice; Ahmed, Shakeel; Maréchal, Jean-Christophe

    2014-01-15

    Local groundwater levels in South India are falling alarmingly. In the semi-arid crystalline Deccan plateau area, agricultural production relies on groundwater resources. Downscaled Global Climate Model (GCM) data are used to force a spatially distributed agro-hydrological model in order to evaluate Climate Change (CC) effects on local groundwater extraction (GWE). The slight increase of precipitation may alleviate current groundwater depletion on average, despite the increased evaporation due to warming. Nevertheless, projected climatic extremes create worse GWE shortages than for present climate. Local conditions may lead to opposing impacts on GWE, from increases to decreases (+/-20 mm/year), for a given spatially homogeneous CC forcing. Areas vulnerable to CC in terms of irrigation apportionment are thus identified. Our results emphasize the importance of accounting for local characteristics (water harvesting systems and maximal aquifer capacity versus GWE) in developing measures to cope with CC impacts in the South Indian region.

  18. Climate-Driven Phenological Change: Developing Robust Spatiotemporal Modeling and Projection Capability.

    PubMed

    Prieto, Carmen; Destouni, Georgia

    2015-01-01

    Our possibility to appropriately detect, interpret and respond to climate-driven phenological changes depends on our ability to model and predict the changes. This ability may be hampered by non-linearity in climate-phenological relations, and by spatiotemporal variability and scale mismatches of climate and phenological data. A modeling methodology capable of handling such complexities can be a powerful tool for phenological change projection. Here we develop such a methodology using citizen scientists' observations of first flight dates for orange tip butterflies (Anthocharis cardamines) in three areas extending along a steep climate gradient. The developed methodology links point data of first flight observations to calculated cumulative degree-days until first flight based on gridded temperature data. Using this methodology we identify and quantify a first flight model that is consistent across different regions, data support scales and assumptions of subgrid variability and observation bias. Model application to observed warming over the past 60 years demonstrates the model usefulness for assessment of climate-driven first flight change. The cross-regional consistency of the model implies predictive capability for future changes, and calls for further application and testing of analogous modeling approaches to other species, phenological variables and parts of the world. PMID:26545112

  19. From projected species distribution to food-web structure under climate change.

    PubMed

    Albouy, Camille; Velez, Laure; Coll, Marta; Colloca, Francesco; Le Loc'h, François; Mouillot, David; Gravel, Dominique

    2014-03-01

    Climate change is inducing deep modifications in species geographic ranges worldwide. However, the consequences of such changes on community structure are still poorly understood, particularly the impacts on food-web properties. Here, we propose a new framework, coupling species distribution and trophic models, to predict climate change impacts on food-web structure across the Mediterranean Sea. Sea surface temperature was used to determine the fish climate niches and their future distributions. Body size was used to infer trophic interactions between fish species. Our projections reveal that 54 fish species of 256 endemic and native species included in our analysis would disappear by 2080-2099 from the Mediterranean continental shelf. The number of feeding links between fish species would decrease on 73.4% of the continental shelf. However, the connectance of the overall fish web would increase on average, from 0.26 to 0.29, mainly due to a differential loss rate of feeding links and species richness. This result masks a systematic decrease in predator generality, estimated here as the number of prey species, from 30.0 to 25.4. Therefore, our study highlights large-scale impacts of climate change on marine food-web structure with potential deep consequences on ecosystem functioning. However, these impacts will likely be highly heterogeneous in space, challenging our current understanding of climate change impact on local marine ecosystems.

  20. From GCM Output to Local Hydrologic and Ecological Impacts: Integrating Climate Change Projections into Conservation Lands

    NASA Astrophysics Data System (ADS)

    Weiss, S. B.; Micheli, L.; Flint, L. E.; Flint, A. L.; Thorne, J. H.

    2014-12-01

    Assessment of climate change resilience, vulnerability, and adaptation options require downscaling of GCM outputs to local scales, and conversion of temperature and precipitation forcings into hydrologic and ecological responses. Recent work in the San Francisco Bay Area, and California demonstrate a practical approach to this process. First, climate futures (GCM x Emissions Scenario) are screened using cluster analysis for seasonal precipitation and temperature, to select a tractable subset of projections that still represent the range of climate projections. Second, monthly climate projections are downscaled to 270m and the Basin Characterization Model (BCM) applied, to generate fine-scale recharge, runoff, actual evapotranspiration (AET), and climatic water deficit (CWD) accounting for soils, bedrock geology, topography, and local climate. Third, annual time-series are used to derive 30-year climatologies and recurrence intervals of extreme events (including multi-year droughts) at the scale of small watersheds and conservation parcels/networks. We take a "scenario-neutral" approach where thresholds are defined for system "failure," such as water supply shortfalls or drought mortality/vegetation transitions, and the time-window for hitting those thresholds is evaluated across all selected climate projections. San Francisco Bay Area examples include drought thresholds (CWD) for specific vegetation-types that identify leading/trailing edges and local refugia, evaluation of hydrologic resources (recharge and runoff) provided by conservation lands, and productivity of rangelands (AET). BCM outputs for multiple futures are becoming available to resource managers through on-line data extraction tools. This approach has wide applicability to numerous resource management issues.

  1. Hydrologic regime alteration of a Mediterranean catchment under climate change projection

    NASA Astrophysics Data System (ADS)

    Sellami, Haykel; Benabdallah, Sihem; La Jeunesse, Isabelle; Herrmann, Frank; Vanclooster, Marnik

    2014-05-01

    Most of the climate models projections for the Mediterranean basin have showed that the region will likely to experience a general tendency towards drier climate conditions with decreases in total precipitation, increases in temperature, alterations in the rainfall extreme events and droughts frequency (IPCC, 2007; Giorgi and Lionello, 2008; López-Moreno et al., 2011). The region is already suffering from water resources scarcity and vulnerability which are expected to amplify in the next century (Ludwig et al., 2011; Schneider et al., 2013). Therefore, assessing the impact of climate change on the hydrologic regime of Mediterranean catchments is with a major concern not only to scientist but also to water resources policy makers and general public. However, most of the climate change impact studies focus on the flow regime on global or regional scale rather than on the catchment scale which is more useful and more appropriate to guide practical mitigation and adaptation policy. This is because hydro-climate modeling at the local scale is confronted to the variability in climate, topography, geology, lack of observations and anthropogenic activities within the catchment. Furthermore, it is well recognized that hydrological and climate models forecasts are always affected with uncertainty making the assessment of climate change impact on Mediterranean catchment hydrology more challenging. This work aims to assess the impact of climate change on a Mediterranean catchment located in North Africa (the Chiba catchment in northeast Tunisia) through a conjunctive use of physically based hydrological model (SWAT) driven with four climate models*. Quantification of the impact of climate change has been conducted by means of the Indicators of Hydrologic Alteration (Richter et al., 1996) which are also ecologically meaningful. By comparing changes in these indicators in the reference period (1971-2000) to the projected ones in the future (2041-2070), it was possible to draw

  2. Development of Distributed Research Center for monitoring and projecting regional climatic and environmental changes: first results

    NASA Astrophysics Data System (ADS)

    Gordov, Evgeny; Shiklomanov, Alexander; Okladinikov, Igor; Prusevich, Alex; Titov, Alexander

    2016-04-01

    Description and first results of the cooperative project "Development of Distributed Research Center for monitoring and projecting of regional climatic and environmental changes" recently started by SCERT IMCES and ESRC UNH are reported. The project is aimed at development of hardware and software platform prototype of Distributed Research Center (DRC) for monitoring and projecting regional climatic and environmental changes over the areas of mutual interest and demonstration the benefits of such collaboration that complements skills and regional knowledge across the northern extratropics. In the framework of the project, innovative approaches of "cloud" processing and analysis of large geospatial datasets will be developed on the technical platforms of two U.S. and Russian leading institutions involved in research of climate change and its consequences. Anticipated results will create a pathway for development and deployment of thematic international virtual research centers focused on interdisciplinary environmental studies by international research teams. DRC under development will comprise best features and functionality of earlier developed by the cooperating teams' information-computational systems RIMS (http://rims.unh.edu) and CLIMATE(http://climate.scert.ru/), which are widely used in Northern Eurasia environment studies. The project includes several major directions of research (Tasks) listed below. 1. Development of architecture and defining major hardware and software components of DRC for monitoring and projecting of regional environmental changes. 2. Development of an information database and computing software suite for distributed processing and analysis of large geospatial data hosted at ESRC and IMCES SB RAS. 3. Development of geoportal, thematic web client and web services providing international research teams with an access to "cloud" computing resources at DRC; two options will be executed: access through a basic graphical web browser and

  3. Connecting climate model projections of global temperature change with the real world

    NASA Astrophysics Data System (ADS)

    Hawkins, Ed; Sutton, Rowan

    2016-04-01

    Current state-of-the-art global climate models produce different values for Earth's mean temperature. When comparing simulations with each other and with observations it is standard practice to compare temperature anomalies with respect to a reference period. It is not always appreciated that the choice of reference period can affect conclusions, both about the skill of simulations of past climate, and about the magnitude of expected future changes in climate. We discuss some of the key issues that arise when using anomalies relative to a reference period to generate climate projections and highlight that there is no perfect choice of reference period. When evaluating models against observations, a long reference period should generally be used, but how long depends on the quality of the observations available. The IPCC AR5 choice to use a 1986-2005 reference period for future global temperature projections was reasonable, but a case-by-case approach is needed for different purposes and when assessing projections of different climate variables. Finally, we recommend that any studies that involve the use of a reference period should explicitly examine the robustness of the conclusions to alternative choices.

  4. Response of deciduous trees spring phenology to recent and projected climate change in Central Lithuania

    NASA Astrophysics Data System (ADS)

    Juknys, Romualdas; Kanapickas, Arvydas; Šveikauskaitė, Irma; Sujetovienė, Gintarė

    2016-03-01

    The analysis of long-term time series of spring phenology for different deciduous trees species has shown that leaf unfolding for all the investigated species is the most sensitive to temperatures in March and April and illustrates that forcing temperature is the main driver of the advancement of leaf unfolding. Available chilling amount has increased by 22.5 % over the last 90 years, indicating that in the investigated geographical region there is no threat of chilling shortage. The projection of climatic parameters for Central Lithuania on the basis of three global circulation models has shown that under the optimistic climate change scenario (RCP 2.6) the mean temperature tends to increase by 1.28 °C and under the pessimistic scenario (RCP 8.5) by 5.03 °C until the end of the current century. Recently, different statistical models are used not only to analyze but also to project the changes in spring phenology. Our study has shown that when the data of long-term phenological observations are available, multiple regression models are suitable for the projection of the advancement of leaf unfolding under the changing climate. According to the RCP 8.5 scenario, the projected advancement in leaf unfolding for early-season species birch consists of almost 15 days as an average of all three used GSMs. Markedly less response to the projected far future (2071-2100), climate change is foreseen for other investigated climax species: -9 days for lime, 10 days for oak, and 11 days for maple.

  5. Response of deciduous trees spring phenology to recent and projected climate change in Central Lithuania

    NASA Astrophysics Data System (ADS)

    Juknys, Romualdas; Kanapickas, Arvydas; Šveikauskaitė, Irma; Sujetovienė, Gintarė

    2016-10-01

    The analysis of long-term time series of spring phenology for different deciduous trees species has shown that leaf unfolding for all the investigated species is the most sensitive to temperatures in March and April and illustrates that forcing temperature is the main driver of the advancement of leaf unfolding. Available chilling amount has increased by 22.5 % over the last 90 years, indicating that in the investigated geographical region there is no threat of chilling shortage. The projection of climatic parameters for Central Lithuania on the basis of three global circulation models has shown that under the optimistic climate change scenario (RCP 2.6) the mean temperature tends to increase by 1.28 °C and under the pessimistic scenario (RCP 8.5) by 5.03 °C until the end of the current century. Recently, different statistical models are used not only to analyze but also to project the changes in spring phenology. Our study has shown that when the data of long-term phenological observations are available, multiple regression models are suitable for the projection of the advancement of leaf unfolding under the changing climate. According to the RCP 8.5 scenario, the projected advancement in leaf unfolding for early-season species birch consists of almost 15 days as an average of all three used GSMs. Markedly less response to the projected far future (2071-2100), climate change is foreseen for other investigated climax species: -9 days for lime, 10 days for oak, and 11 days for maple.

  6. The monitoring evaluation, reporting and verification of climate change mitigation projects

    SciTech Connect

    Vine, E.; Sathaye, J.

    1998-05-01

    Because of concerns with the growing threat of global climate change from increasing emissions of greenhouse gases, the US and other countries are implementing, by themselves or in cooperation with one or more other nations, climate change mitigation projects. These projects will reduce greenhouse gas (GHG) emissions or sequester carbon, and will also result in non-GHG benefits (i.e., environmental, economic, and social benefits). Monitoring, evaluating, reporting, and verifying (MERV) guidelines are needed for these projects to accurately determine their net GHG, and other, benefits. Implementation of MERV guidelines is also intended to: (1) increase the reliability of data for estimating GHG benefits; (2) provide real-time data so that mid-course corrections can be made; (3) introduce consistency and transparency across project types and reporters; and (4) enhance the credibility of the projects with stakeholders. In this paper, the authors review the issues involved in MERV activities. They identify several topics that future protocols and guidelines need to address, such as: (1) establishing a credible baseline; (2) accounting for impacts outside project boundaries through leakage; (3) net GHG reductions and other benefits; (4) precision of measurement; (5) MERV frequency; (6) persistence (sustainability) of savings, emissions reduction, and carbon sequestration; (7) reporting by multiple project participants; (8) verification of GHG reduction credits; (9) uncertainty and risk; (10) institutional capacity in conducting MERV; and (11) the cost of MERV.

  7. Assessing climate change impacts on the rape stem weevil, Ceutorhynchus napi Gyll., based on bias- and non-bias-corrected regional climate change projections.

    PubMed

    Junk, J; Ulber, B; Vidal, S; Eickermann, M

    2015-11-01

    Agricultural production is directly affected by projected increases in air temperature and changes in precipitation. A multi-model ensemble of regional climate change projections indicated shifts towards higher air temperatures and changing precipitation patterns during the summer and winter seasons up to the year 2100 for the region of Goettingen (Lower Saxony, Germany). A second major controlling factor of the agricultural production is the infestation level by pests. Based on long-term field surveys and meteorological observations, a calibration of an existing model describing the migration of the pest insect Ceutorhynchus napi was possible. To assess the impacts of climate on pests under projected changing environmental conditions, we combined the results of regional climate models with the phenological model to describe the crop invasion of this species. In order to reduce systematic differences between the output of the regional climate models and observational data sets, two different bias correction methods were applied: a linear correction for air temperature and a quantile mapping approach for precipitation. Only the results derived from the bias-corrected output of the regional climate models showed satisfying results. An earlier onset, as well as a prolongation of the possible time window for the immigration of Ceutorhynchus napi, was projected by the majority of the ensemble members.

  8. Assessing climate change impacts on the rape stem weevil, Ceutorhynchus napi Gyll., based on bias- and non-bias-corrected regional climate change projections

    NASA Astrophysics Data System (ADS)

    Junk, J.; Ulber, B.; Vidal, S.; Eickermann, M.

    2015-11-01

    Agricultural production is directly affected by projected increases in air temperature and changes in precipitation. A multi-model ensemble of regional climate change projections indicated shifts towards higher air temperatures and changing precipitation patterns during the summer and winter seasons up to the year 2100 for the region of Goettingen (Lower Saxony, Germany). A second major controlling factor of the agricultural production is the infestation level by pests. Based on long-term field surveys and meteorological observations, a calibration of an existing model describing the migration of the pest insect Ceutorhynchus napi was possible. To assess the impacts of climate on pests under projected changing environmental conditions, we combined the results of regional climate models with the phenological model to describe the crop invasion of this species. In order to reduce systematic differences between the output of the regional climate models and observational data sets, two different bias correction methods were applied: a linear correction for air temperature and a quantile mapping approach for precipitation. Only the results derived from the bias-corrected output of the regional climate models showed satisfying results. An earlier onset, as well as a prolongation of the possible time window for the immigration of Ceutorhynchus napi, was projected by the majority of the ensemble members.

  9. A salinity projection model for determining impacts of climate change on river ecosystems in Taiwan

    NASA Astrophysics Data System (ADS)

    Suen, Jian-Ping; Lai, Hung-Nien

    2013-06-01

    Climate change would impact ecosystems in many different ways, including alteration of hydrological conditions. The purpose of the research described in this paper is to determine the potential impacts of climate change on river ecosystems by mathematically simulating changes in salinity. Salinity, which is highly related to the relative abundance of particular organisms in the river and estuary wetland ecosystems, is a good indicator for impacts of climate change. The salinity projection model described in this research uses back-propagation neural networks, a robust method to simulate water quality conditions, to simulate salinity changes at several locations in a Taiwanese river. The results show the increase of salinity among all study sites under all climate change scenarios. We relate this to aquatic organism population effects by noting the threats of increased salinity on blockages or competition in some areas among species. Riparian mangroves and wetland plants near the river mouth may face increased stress due to the increased salinity concentrations. This tool allows a potential threat caused by salinity change to be analyzed as precautionary information for water resources and river ecosystem management.

  10. What is the importance of climate model bias when projecting the impacts of climate change on land surface processes?

    NASA Astrophysics Data System (ADS)

    Liu, M.; Rajagopalan, K.; Chung, S. H.; Jiang, X.; Harrison, J.; Nergui, T.; Guenther, A.; Miller, C.; Reyes, J.; Tague, C.; Choate, J.; Salathé, E. P.; Stöckle, C. O.; Adam, J. C.

    2014-05-01

    Regional climate change impact (CCI) studies have widely involved downscaling and bias correcting (BC) global climate model (GCM)-projected climate for driving land surface models. However, BC may cause uncertainties in projecting hydrologic and biogeochemical responses to future climate due to the impaired spatiotemporal covariance of climate variables and a breakdown of physical conservation principles. Here we quantify the impact of BC on simulated climate-driven changes in water variables (evapotranspiration (ET), runoff, snow water equivalent (SWE), and water demand for irrigation), crop yield, biogenic volatile organic compounds (BVOC), nitric oxide (NO) emissions, and dissolved inorganic nitrogen (DIN) export over the Pacific Northwest (PNW) region. We also quantify the impacts on net primary production (NPP) over a small watershed in the region (HJ-Andrews). Simulation results from the coupled ECHAM5-MPI-OM model with A1B emission scenario were first dynamically downscaled to 12 km resolution with the WRF model. Then a quantile-mapping-based statistical downscaling model was used to downscale them into 1/16° resolution daily climate data over historical and future periods. Two climate data series were generated, with bias correction (BC) and without bias correction (NBC). Impact models were then applied to estimate hydrologic and biogeochemical responses to both BC and NBC meteorological data sets. These impact models include a macroscale hydrologic model (VIC), a coupled cropping system model (VIC-CropSyst), an ecohydrological model (RHESSys), a biogenic emissions model (MEGAN), and a nutrient export model (Global-NEWS). Results demonstrate that the BC and NBC climate data provide consistent estimates of the climate-driven changes in water fluxes (ET, runoff, and water demand), VOCs (isoprene and monoterpenes) and NO emissions, mean crop yield, and river DIN export over the PNW domain. However, significant differences rise from projected SWE, crop yield

  11. What is the importance of climate model bias when projecting the impacts of climate change on land surface processes?

    NASA Astrophysics Data System (ADS)

    Liu, M.; Rajagopalan, K.; Chung, S. H.; Jiang, X.; Harrison, J.; Nergui, T.; Guenther, A.; Miller, C.; Reyes, J.; Tague, C.; Choate, J.; Salathé, E. P.; Stöckle, C. O.; Adam, J. C.

    2013-11-01

    Regional climate change impact (CCI) studies have widely involved downscaling and bias-correcting (BC) Global Climate Model (GCM)-projected climate for driving land surface models. However, BC may cause uncertainties in projecting hydrologic and biogeochemical responses to future climate due to the impaired spatiotemporal covariance of climate variables and a breakdown of physical conservation principles. Here we quantify the impact of BC on simulated climate-driven changes in water variables (evapotranspiration, ET; runoff; snow water equivalent, SWE; and water demand for irrigation), crop yield, biogenic volatile organic compounds (BVOC), nitric oxide (NO) emissions, and dissolved inorganic nitrogen (DIN) export over the Pacific Northwest (PNW) Region. We also quantify the impacts on net primary production (NPP) over a small watershed in the region (HJ Andrews). Simulation results from the coupled ECHAM5/MPI-OM model with A1B emission scenario were firstly dynamically downscaled to 12 km resolutions with WRF model. Then a quantile mapping based statistical downscaling model was used to downscale them into 1/16th degree resolution daily climate data over historical and future periods. Two series climate data were generated according to the option of bias-correction (i.e. with bias-correction (BC) and without bias-correction, NBC). Impact models were then applied to estimate hydrologic and biogeochemical responses to both BC and NBC meteorological datasets. These impact models include a macro-scale hydrologic model (VIC), a coupled cropping system model (VIC-CropSyst), an ecohydrologic model (RHESSys), a biogenic emissions model (MEGAN), and a nutrient export model (Global-NEWS). Results demonstrate that the BC and NBC climate data provide consistent estimates of the climate-driven changes in water fluxes (ET, runoff, and water demand), VOCs (isoprene and monoterpenes) and NO emissions, mean crop yield, and river DIN export over the PNW domain. However, significant

  12. What is the importance of climate model bias when projecting the impacts of climate change on land surface processes?

    SciTech Connect

    Liu, M. L.; Rajagopalan, K.; Chung, S. H.; Jiang, X.; Harrison, J. H.; Nergui, T.; Guenther, Alex B.; Miller, C.; Reyes, J.; Tague, C. L.; Choate, J. S.; Salathe, E.; Stockle, Claudio O.; Adam, J. C.

    2014-05-16

    Regional climate change impact (CCI) studies have widely involved downscaling and bias-correcting (BC) Global Climate Model (GCM)-projected climate for driving land surface models. However, BC may cause uncertainties in projecting hydrologic and biogeochemical responses to future climate due to the impaired spatiotemporal covariance of climate variables and a breakdown of physical conservation principles. Here we quantify the impact of BC on simulated climate-driven changes in water variables(evapotranspiration, ET; runoff; snow water equivalent, SWE; and water demand for irrigation), crop yield, biogenic volatile organic compounds (BVOC), nitric oxide (NO) emissions, and dissolved inorganic nitrogen (DIN) export over the Pacific Northwest (PNW) Region. We also quantify the impacts on net primary production (NPP) over a small watershed in the region (HJ Andrews). Simulation results from the coupled ECHAM5/MPI-OM model with A1B emission scenario were firstly dynamically downscaled to 12 km resolutions with WRF model. Then a quantile mapping based statistical downscaling model was used to downscale them into 1/16th degree resolution daily climate data over historical and future periods. Two series climate data were generated according to the option of bias-correction (i.e. with bias-correction (BC) and without bias-correction, NBC). Impact models were then applied to estimate hydrologic and biogeochemical responses to both BC and NBC meteorological datasets. These im20 pact models include a macro-scale hydrologic model (VIC), a coupled cropping system model (VIC-CropSyst), an ecohydrologic model (RHESSys), a biogenic emissions model (MEGAN), and a nutrient export model (Global-NEWS). Results demonstrate that the BC and NBC climate data provide consistent estimates of the climate-driven changes in water fluxes (ET, runoff, and water demand), VOCs (isoprene and monoterpenes) and NO emissions, mean crop yield, and river DIN export over the PNW domain. However

  13. Averaged 30 year climate change projections mask opportunities for species establishment

    USGS Publications Warehouse

    Serra-Diaz, Josep M.; Franklin, Janet; Sweet, Lynn C.; McCullough, Ian M.; Syphard, Alexandra D.; Regan, Helen M.; Flint, Lorraine E.; Flint, Alan L.; Dingman, John; Moritz, Max A.; Redmond, Kelly T.; Hannah, Lee; Davis, Frank W.

    2016-01-01

    Survival of early life stages is key for population expansion into new locations and for persistence of current populations (Grubb 1977, Harper 1977). Relative to adults, these early life stages are very sensitive to climate fl uctuations (Ropert-Coudert et al. 2015), which often drive episodic or ‘event-limited’ regeneration (e.g. pulses) in long-lived plant species (Jackson et al. 2009). Th us, it is diffi cult to mechanistically associate 30-yr climate norms to dynamic processes involved in species range shifts (e.g. seedling survival). What are the consequences of temporal aggregation for estimating areas of potential establishment? We modeled seedling survival for three widespread tree species in California, USA ( Quercus douglasii, Q. kelloggii , Pinus sabiniana ) by coupling a large-scale, multi-year common garden experiment to high-resolution downscaled grids of climatic water defi cit and air temperature (Flint and Flint 2012, Supplementary material Appendix 1). We projected seedling survival for nine climate change projections in two mountain landscapes spanning wide elevation and moisture gradients. We compared areas with windows of opportunity for seedling survival – defi ned as three consecutive years of seedling survival in our species, a period selected based on studies of tree niche ontogeny (Supplementary material Appendix 1) – to areas of 30-yr averaged estimates of seedling survival. We found that temporal aggregation greatly underestimated the potential for species establishment (e.g. seedling survival) under climate change scenarios.

  14. Using ensemble climate projections to assess probabilistic hydrological change in the Nordic region

    NASA Astrophysics Data System (ADS)

    Wetterhall, F.; Graham, L. P.; Andréasson, J.; Rosberg, J.; Yang, W.

    2010-05-01

    Effects on the local scale of human-induced global climate change is important for many parts of our society today to assess future hazards to human lives, infrastructure and buildings, agriculture et cetera. However, applying climate model output direct in impact studies is difficult because of the discrepancy in scales, and GCMs insufficient representation of important hydrological variables. In this study, response surfaces were created by running the hydrological HBV model with differentiated perturbations in the observed input data (e. g. temperature and precipitation). The probability for reaching an a priori determined threshold any given year calculated from the results and plotted as contour lines. The study areas were three catchments in Sweden. A joint probabilistic distribution of future climate projections of temperature and precipitation from the perturbed physics experiment, together with output from RCMs from the ENSEMBLES project, were then overlaid on the response surfaces. Site-specific thresholds were set where they were available, otherwise a general threshold, such as the probability of exceeding a 100 year return period were selected. The approach gives the opportunity to analyse climate model projections from many sources in a probabilistic framework and can be used as decision support system to adapt to future changes in the local hydrology.

  15. Development of a High-Resolution Climate Model for Future Climate Change Projection on the Earth Simulator

    NASA Astrophysics Data System (ADS)

    Kanzawa, H.; Emori, S.; Nishimura, T.; Suzuki, T.; Inoue, T.; Hasumi, H.; Saito, F.; Abe-Ouchi, A.; Kimoto, M.; Sumi, A.

    2002-12-01

    The fastest supercomputer of the world, the Earth Simulator (total peak performance 40TFLOPS) has recently been available for climate researches in Yokohama, Japan. We are planning to conduct a series of future climate change projection experiments on the Earth Simulator with a high-resolution coupled ocean-atmosphere climate model. The main scientific aims for the experiments are to investigate 1) the change in global ocean circulation with an eddy-permitting ocean model, 2) the regional details of the climate change including Asian monsoon rainfall pattern, tropical cyclones and so on, and 3) the change in natural climate variability with a high-resolution model of the coupled ocean-atmosphere system. To meet these aims, an atmospheric GCM, CCSR/NIES AGCM, with T106(~1.1o) horizontal resolution and 56 vertical layers is to be coupled with an oceanic GCM, COCO, with ~ 0.28ox 0.19o horizontal resolution and 48 vertical layers. This coupled ocean-atmosphere climate model, named MIROC, also includes a land-surface model, a dynamic-thermodynamic seaice model, and a river routing model. The poles of the oceanic model grid system are rotated from the geographic poles so that they are placed in Greenland and Antarctic land masses to avoild the singularity of the grid system. Each of the atmospheric and the oceanic parts of the model is parallelized with the Message Passing Interface (MPI) technique. The coupling of the two is to be done with a Multi Program Multi Data (MPMD) fashion. A 100-model-year integration will be possible in one actual month with 720 vector processors (which is only 14% of the full resources of the Earth Simulator).

  16. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects.

    PubMed

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-02-01

    Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa). We also examined whether the proposed activities or expected outcomes allowed for potential contributions to the two goals. Despite the separation between the two goals in international and national institutions, 37% of the PDDs explicitly mentioned a contribution to the other objective, although only half of those substantiated it. In addition, most adaptation (90%) and all mitigation PDDs could potentially report a contribution to at least partially to the other goal. Some adaptation project developers were interested in mitigation for the prospect of carbon funding, whereas mitigation project developers integrated adaptation to achieve greater long-term sustainability or to attain CCB certification. International and national institutions can provide incentives for projects to harness synergies and avoid trade-offs between adaptation and mitigation.

  17. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects

    NASA Astrophysics Data System (ADS)

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-02-01

    Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa). We also examined whether the proposed activities or expected outcomes allowed for potential contributions to the two goals. Despite the separation between the two goals in international and national institutions, 37 % of the PDDs explicitly mentioned a contribution to the other objective, although only half of those substantiated it. In addition, most adaptation (90 %) and all mitigation PDDs could potentially report a contribution to at least partially to the other goal. Some adaptation project developers were interested in mitigation for the prospect of carbon funding, whereas mitigation project developers integrated adaptation to achieve greater long-term sustainability or to attain CCB certification. International and national institutions can provide incentives for projects to harness synergies and avoid trade-offs between adaptation and mitigation.

  18. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects.

    PubMed

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-02-01

    Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa). We also examined whether the proposed activities or expected outcomes allowed for potential contributions to the two goals. Despite the separation between the two goals in international and national institutions, 37% of the PDDs explicitly mentioned a contribution to the other objective, although only half of those substantiated it. In addition, most adaptation (90%) and all mitigation PDDs could potentially report a contribution to at least partially to the other goal. Some adaptation project developers were interested in mitigation for the prospect of carbon funding, whereas mitigation project developers integrated adaptation to achieve greater long-term sustainability or to attain CCB certification. International and national institutions can provide incentives for projects to harness synergies and avoid trade-offs between adaptation and mitigation. PMID:26306792

  19. Research project on CO{sub 2}-induced climate change. Annual progress report, March 1, 1994--February 28, 1995

    SciTech Connect

    Cess, R.D.; Hameed, S.

    1995-01-01

    This summarizes current progress in the research project at SUNY Stony Brook on CO2-induced climate change. Three tasks are described, corresponding to the task categories in the USDOE/PRC CAS cooperative project on climate change. Task 1, led by Dr. Robert Cess, concerns the intercomparison of CO2 related climatic warming in contemporary general circulation models. Task 2, directed by Dr. Sultan Hameed, looks at understanding the natural variability in climatic data and comparing its significant features between observations and model simulations. Task 3, also directed by Dr. Hameed focuses on analysis of historical climate data developed at the institute of Geography of the Chinese Academy of Sciences.

  20. Revealing, Reducing, and Representing Uncertainties in New Hydrologic Projections for Climate-changed Futures

    NASA Astrophysics Data System (ADS)

    Arnold, Jeffrey; Clark, Martyn; Gutmann, Ethan; Wood, Andy; Nijssen, Bart; Rasmussen, Roy

    2016-04-01

    The United States Army Corps of Engineers (USACE) has had primary responsibility for multi-purpose water resource operations on most of the major river systems in the U.S. for more than 200 years. In that time, the USACE projects and programs making up those operations have proved mostly robust against the range of natural climate variability encountered over their operating life spans. However, in some watersheds and for some variables, climate change now is known to be shifting the hydroclimatic baseline around which that natural variability occurs and changing the range of that variability as well. This makes historical stationarity an inappropriate basis for assessing continued project operations under climate-changed futures. That means new hydroclimatic projections are required at multiple scales to inform decisions about specific threats and impacts, and for possible adaptation responses to limit water-resource vulnerabilities and enhance operational resilience. However, projections of possible future hydroclimatologies have myriad complex uncertainties that require explicit guidance for interpreting and using them to inform those decisions about climate vulnerabilities and resilience. Moreover, many of these uncertainties overlap and interact. Recent work, for example, has shown the importance of assessing the uncertainties from multiple sources including: global model structure [Meehl et al., 2005; Knutti and Sedlacek, 2013]; internal climate variability [Deser et al., 2012; Kay et al., 2014]; climate downscaling methods [Gutmann et al., 2012; Mearns et al., 2013]; and hydrologic models [Addor et al., 2014; Vano et al., 2014; Mendoza et al., 2015]. Revealing, reducing, and representing these uncertainties is essential for defining the plausible quantitative climate change narratives required to inform water-resource decision-making. And to be useful, such quantitative narratives, or storylines, of climate change threats and hydrologic impacts must sample

  1. Changes of seasonal storm properties in California and Nevada from an ensemble of climate projections

    NASA Astrophysics Data System (ADS)

    Yu, Zhongbo; Jiang, Peng; Gautam, Mahesh R.; Zhang, Yong; Acharya, Kumud

    2015-04-01

    Precipitation characteristics, such as intensity, frequency, duration, and event pattern, are changing due to the increases in greenhouse gases, transition of ocean oscillation phases, etc. In this paper, we evaluate the ability of 11 realizations from multiple regional climate model (RCM)/global climate model pairs in the North American Regional Climate Change Assessment Program (NARCCAP) to simulate the seasonal variability and magnitude of storm properties, including storm duration, interstorm period, and storm intensity. The results indicate that NARCCAP RCMs simulate the seasonal variability better in the Greater Sacramento and San Joaquin than in Las Vegas, which may be due to the RCMs' inability to simulate local convective precipitation associated with the North American Monsoon. We also investigate the impacts of climate change on these storm characteristics by comparing the percentage change and absolute change of storm properties determined from NARCCAP historical runs and future runs. We find that individual RCMs exhibit great uncertainty in the percentage changes in storm duration, interstorm period, and average storm intensity. The ensemble means of storm properties across 11 future NARCCAP RCM projections show different responses to climate change in different locations. Our analyses provide guidelines for selecting the appropriate RCMs for hydrologic studies related to storm properties and provide forecasters and water managers with detailed information of future changes in storm properties so that they can sustainably manage water resources. Our results may also contribute to the nonstationary precipitation scenario development by incorporating the percentage changes of storm properties caused by human-induced warming into the stochastic precipitation model.

  2. Testing a Weather Generator for Downscaling Climate Change Projections over Switzerland

    NASA Astrophysics Data System (ADS)

    Keller, Denise E.; Fischer, Andreas M.; Liniger, Mark A.; Appenzeller, Christof; Knutti, Reto

    2016-04-01

    Climate information provided by global or regional climate models (RCMs) are often too coarse and prone to substantial biases, making it impossible to directly use daily time-series of the RCMs for local assessments and in climate impact models. Hence, statistical downscaling becomes necessary. For the Swiss National Climate Change Initiative (CH2011), a delta-change approach was used to provide daily climate projections at the local scale. This data have the main limitations that changes in variability, extremes and in the temporal structure, such as changes in the wet day frequency, are not reproduced. The latter is a considerable downside of the delta-change approach for many impact applications. In this regard, stochastic weather generators (WGs) are an appealing technique that allow the simulation of multiple realizations of synthetic weather sequences consistent with the locally observed weather statistics and its future changes. Here, we analyse a Richardson-type weather generator (WG) as an alternative method to downscale daily precipitation, minimum and maximum temperature. The WG is calibrated for 26 Swiss stations and the reference period 1980-2009. It is perturbed with change factors derived from 12 RCMs (ENSEMBLES) to represent the climate of 2070-2099 assuming the SRES A1B emission scenario. The WG can be run in multi-site mode, making it especially attractive for impact-modelers that rely on a realistic spatial structure in downscaled time-series. The results from the WG are benchmarked against the original delta-change approach that applies mean additive or multiplicative adjustments to the observations. According to both downscaling methods, the results reveal area-wide mean temperature increases and a precipitation decrease in summer, consistent with earlier studies. For the summer drying, the WG indicates primarily a decrease in wet-day frequency and correspondingly an increase in mean dry spell length by around 18% - 40% at low

  3. Conditioning of Flow Projections under Climate Change on Hydrologic Signatures within the GLUE Framework

    NASA Astrophysics Data System (ADS)

    Todorovic, Andrijana; Plavsic, Jasna; Despotovic, Jovan

    2016-04-01

    Climate change impact on water resources is generally quantified in terms of relative changes in characteristic flows (e.g. annual runoff, median annual flows, etc.) over a future period compared to the baseline one. These changes are estimated under the assumed emission scenarios and with one or more modelling chains (combinations of the Global and Regional Climate Models, and a hydrological model). Since different modelling chains yield different projections, estimates of these relative changes are uncertain. High prediction uncertainty is reflected in a wide 90 per cent prediction uncertainty band (90PPU) or in a distribution that resembles the uniform distribution. Therefore, research in robustness of the modelling chains has been conducted. The goal of the research is to appoint higher probabilities to the projections obtained by the more robust chains, and in that way reduce the uncertainty in flow projections under climate change. In this research, the hydrologic projections are conditioned on the hydrologic signatures within the GLUE framework. Namely, a relative change obtained with a modelling chain is assigned a likelihood depending on the performance of the chain in terms of the hydrologic signatures over the baseline period. High flow projections (2nd percentile of the daily flows) are conditioned on the high-segment of the flow duration curve (FDC), projections of the median flows are conditioned on the FDC mid-segment slope, and the projections of the low flows are conditioned on the FDC low-segment. The projections of total annual runoff are conditioned on the entire FDC. The likelihoods are quantified in terms of Nash-Sutcliffe efficiency coefficient (NSE) evaluated from the FDCs of the flows simulated by the modelling chains and the observed FDC. The methodology presented is applied to develop flow projections in the Kolubara River catchment in Serbia over the mid 21st century (2041-2070). Hydrologic projections are obtained by the HBV

  4. Incorporating Climate Change Projections into a Hydrologic Hazard Analysis for Friant Dam

    NASA Astrophysics Data System (ADS)

    Holman, K. D.; Novembre, N.; Sankovich-Bahls, V.; England, J. F.

    2015-12-01

    The Bureau of Reclamation's Dam Safety Office has initiated a series of pilot studies focused on exploring potential impacts of climate change on hydrologic hazards at specific dam locations across the Western US. Friant Dam, located in Fresno, California, was chosen for study because the site had recently undergone a high-level hydrologic hazard analysis using the Stochastic Event Flood Model (SEFM). SEFM is a deterministic flood-event model that treats input parameters as variables, rather than fixed values. Monte Carlo sampling allows the hydrometeorological input parameters to vary according to observed relationships. In this study, we explore the potential impacts of climate change on the hydrologic hazard at Friant Dam using historical and climate-adjusted hydrometeorological inputs to the SEFM. Historical magnitude-frequency relationships of peak inflow and reservoir elevation were developed at Friant Dam for the baseline study using observed temperature and precipitation data between 1966 and 2011. Historical air temperatures, antecedent precipitation, mean annual precipitation, and the precipitation-frequency curve were adjusted for the climate change study using the delta method to create climate-adjusted hydrometeorological inputs. Historical and future climate projections are based on the Bias-Corrected Spatially-Disaggregated CMIP5 dataset (BCSD-CMIP5). The SEFM model was run thousands of times to produce magnitude-frequency relationships of peak reservoir inflow, inflow volume, and reservoir elevation, based on historical and climate-adjusted inputs. Results suggest that peak reservoir inflow and peak reservoir elevation increase (decrease) for all return periods under mean increases (decreases) in precipitation, independently of changes in surface air temperature.

  5. Climatic suitability of Aedes albopictus in Europe referring to climate change projections: comparison of mechanistic and correlative niche modelling approaches.

    PubMed

    Fischer, D; Thomas, S M; Neteler, M; Tjaden, N B; Beierkuhnlein, C

    2014-01-01

    The Asian tiger mosquito, Aedes albopictus, is capable of transmitting a broad range of viruses to humans. Since its introduction at the end of the 20th century, it has become well established in large parts of southern Europe. As future expansion as a result of climate change can be expected, determining the current and projected future climatic suitability of this invasive mosquito in Europe is of interest. Several studies have tried to detect the potential habitats for this species, but differing data sources and modelling approaches must be considered when interpreting the findings. Here, various modelling methodologies are compared with special emphasis on model set-up and study design. Basic approaches and model algorithms for the projection of spatio-temporal trends within the 21st century differ substantially. Applied methods range from mechanistic models (e.g. overlay of climatic constraints based on geographic information systems or rather process-based approaches) to correlative niche models. We conclude that spatial characteristics such as introduction gateways and dispersal pathways need to be considered. Laboratory experiments addressing the climatic constraints of the mosquito are required for improved modelling results. However, the main source of uncertainty remains the insufficient knowledge about the species' ability to adapt to novel environments. PMID:24556349

  6. Climatic suitability of Aedes albopictus in Europe referring to climate change projections: comparison of mechanistic and correlative niche modelling approaches.

    PubMed

    Fischer, D; Thomas, S M; Neteler, M; Tjaden, N B; Beierkuhnlein, C

    2014-02-13

    The Asian tiger mosquito, Aedes albopictus, is capable of transmitting a broad range of viruses to humans. Since its introduction at the end of the 20th century, it has become well established in large parts of southern Europe. As future expansion as a result of climate change can be expected, determining the current and projected future climatic suitability of this invasive mosquito in Europe is of interest. Several studies have tried to detect the potential habitats for this species, but differing data sources and modelling approaches must be considered when interpreting the findings. Here, various modelling methodologies are compared with special emphasis on model set-up and study design. Basic approaches and model algorithms for the projection of spatio-temporal trends within the 21st century differ substantially. Applied methods range from mechanistic models (e.g. overlay of climatic constraints based on geographic information systems or rather process-based approaches) to correlative niche models. We conclude that spatial characteristics such as introduction gateways and dispersal pathways need to be considered. Laboratory experiments addressing the climatic constraints of the mosquito are required for improved modelling results. However, the main source of uncertainty remains the insufficient knowledge about the species' ability to adapt to novel environments.

  7. Climate Change Projection for the Department of Energy's Savannah River Site

    NASA Astrophysics Data System (ADS)

    Werth, D. W.

    2014-12-01

    As per recent Department of Energy (DOE) sustainability requirements, the Savannah River National Laboratory (SRNL) is developing a climate projection for the DOE's Savannah River Site (SRS) near Aiken, SC. This will comprise data from both a statistical and a dynamic downscaling process, each interpolated to the SRS. We require variables most relevant to operational activities at the site (such as the US Forest Service's forest management program), and select temperature, precipitation, wind, and humidity as being most relevant to energy and water resource requirements, fire and forest ecology, and facility and worker safety. We then develop projections of the means and extremes of these variables, estimate the effect on site operations, and develop long-term mitigation strategies. For example, given that outdoor work while wearing protective gear is a daily facet of site operations, heat stress is of primary importance to work planning, and we use the downscaled data to estimate changes in the occurrence of high temperatures. For the statistical downscaling, we use global climate model (GCM) data from the Climate Model Intercomparison Project, version 5 (CMIP-5), which was used in the IPCC Fifth Assessment Report (AR5). GCM data from five research groups was selected, and two climate change scenarios - RCP 4.5 and RCP 8.5 - are used with observed data from site instruments and other databases to produce the downscaled projections. We apply a quantile regression downscaling method, which involves the use of the observed cumulative distribution function to correct that of the GCM. This produces a downscaled projection with an interannual variability closer to that of the observed data and allows for more extreme values in the projections, which are often absent in GCM data. The statistically downscaled data is complemented with dynamically downscaled data from the NARCCAP database, which comprises output from regional climate models forced with GCM output from the

  8. Heavy snow loads in Finnish forests respond regionally asymmetrically to projected climate change

    NASA Astrophysics Data System (ADS)

    Lehtonen, Ilari; Kämäräinen, Matti; Gregow, Hilppa; Venäläinen, Ari; Peltola, Heli

    2016-10-01

    This study examined the impacts of projected climate change on heavy snow loads on Finnish forests, where snow-induced forest damage occurs frequently. For snow-load calculations, we used daily data from five global climate models under representative concentration pathway (RCP) scenarios RCP4.5 and RCP8.5, statistically downscaled onto a high-resolution grid using a quantile-mapping method. Our results suggest that projected climate warming results in regionally asymmetric response on heavy snow loads in Finnish forests. In eastern and northern Finland, the annual maximum snow loads on tree crowns were projected to increase during the present century, as opposed to southern and western parts of the country. The change was rather similar both for heavy rime loads and wet snow loads, as well as for frozen snow loads. Only the heaviest dry snow loads were projected to decrease over almost the whole of Finland. Our results are aligned with previous snowfall projections, typically indicating increasing heavy snowfalls over the areas with mean temperature below -8 °C. In spite of some uncertainties related to our results, we conclude that the risk for snow-induced forest damage is likely to increase in the future in the eastern and northern parts of Finland, i.e. in the areas experiencing the coldest winters in the country. The increase is partly due to the increase in wet snow hazards but also due to more favourable conditions for rime accumulation in a future climate that is more humid but still cold enough.

  9. The Greenhouse Gas Project Of ESA's Climate Change Initiative (GHG-CCI): Phase 1 Achievements

    NASA Astrophysics Data System (ADS)

    Buchwitz, M.; Reuter, M.; Schneising, O.; Boesch, H.; Aben, I.; Armante, R.; Bergamaschi, P.; Blumenstock, T.; Bovensmann, H.; Brunner, D.; Buchmann, B.; Burrows, J. P.; Butz, A.; Chevallier, F.; Crevoisier, C. D.; Detmers, R.; Deutcher, N.; Dils, B.; Frankenberg, C.; Guerlet, S.; Hasekamp, O. P.; Heymann, J.; Kaminski, T.; Laeng, A.; Lichtenberg, G.; De Maziere, M.; Noel, S.; Notholt, J.; Parker, R.; Scholze, M.; Sussmann, R.; Stiller, G. P.; Warneke, T.; Zehner, C.

    2013-12-01

    The GHG-CCI project (http://www.esa-ghg-cci.org) is one of several projects of ESA's Climate Change Initiative (CCI, http://www.esa-cci.org/), which delivers data sets of various Essential Climate Variables (ECVs). The goal of GHG-CCI is to generate global satellite-derived data sets of the two important anthropogenic greenhouse gases (GHG) carbon dioxide (CO2) and methane (CH4) with a quality as needed to derive information on regional CO2 and CH4 surface sources and sinks. A good understanding of GHG sources and sinks is a pre-requisite for reliable climate prediction. The GHG-CCI core ECV data products are near-surface sensitive column-averaged dry air mole fractions of CO2 and CH4, denoted XCO2 and XCH4, retrieved from SCIAMACHY/ENVISAT and TANSO- FTS/GOSAT. Other satellite instruments such as IASI and MIPAS are also used as they provide additional information about the two GHGs. Here we present an overview of Phase 1 of the GHG-CCI project (Sept.2010 - Dec.2013), focusing on scientific achievements and on the “Climate Research Data Package” (CRDP), which is the first version of the ECV GHG data base.

  10. Pan-Arctic observations in GRENE Arctic Climate Change Research Project and its successor

    NASA Astrophysics Data System (ADS)

    Yamanouchi, Takashi

    2016-04-01

    We started a Japanese initiative - "Arctic Climate Change Research Project" - within the framework of the Green Network of Excellence (GRENE) Program, funded by the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT), in 2011. This Project targeted understanding and forecasting "Rapid Change of the Arctic Climate System and its Global Influences." Four strategic research targets are set by the Ministry: 1. Understanding the mechanism of warming amplification in the Arctic; 2. Understanding the Arctic climate system for global climate and future change; 3. Evaluation of the impacts of Arctic change on the weather and climate in Japan, marine ecosystems and fisheries; 4. Projection of sea ice distribution and Arctic sea routes. Through a network of universities and institutions in Japan, this 5-year Project involves more than 300 scientists from 39 institutions and universities. The National Institute of Polar Research (NIPR) works as the core institute and The Japan Agency for Marine- Earth Science and Technology (JAMSTEC) joins as the supporting institute. There are 7 bottom up research themes approved: the atmosphere, terrestrial ecosystems, cryosphere, greenhouse gases, marine ecology and fisheries, sea ice and Arctic sea routes and climate modeling, among 22 applications. The Project will realize multi-disciplinal study of the Arctic region and connect to the projection of future Arctic and global climatic change by modeling. The project has been running since the beginning of 2011 and in those 5 years pan-Arctic observations have been carried out in many locations, such as Svalbard, Russian Siberia, Alaska, Canada, Greenland and the Arctic Ocean. In particular, 95 GHz cloud profiling radar in high precision was established at Ny-Ålesund, Svalbard, and intensive atmospheric observations were carried out in 2014 and 2015. In addition, the Arctic Ocean cruises by R/V "Mirai" (belonging to JAMSTEC) and other icebreakers belonging to other

  11. Project BudBurst - Meeting the Needs of Climate Change Educators and Scientists

    NASA Astrophysics Data System (ADS)

    Henderson, S.

    2015-12-01

    It is challenging for many to get a sense of what climate change means as long periods of time are involved - like decades - which can be difficult to grasp. However, there are a number of citizen science based projects, including NEON's Project BudBurst, that provide the opportunity for both learning about climate change and advancing scientific knowledge. In this presentation, we will share lessons learned from Project BudBurst. Project BudBurst is a national citizen science initiative designed to engage the public in observations of phenological (plant life cycle) events and to increase climate literacy. Project BudBurst is important from an educational perspective, but also because it enables scientists to broaden the geographic and temporal scale of their observations. The goals of Project BudBurst are to 1) increase awareness of phenology as an area of scientific study; 2) Increase awareness of the impacts of changing climates on plants at a continental-scale; and 3) increase science literacy by engaging participants in the scientific process. It was important to better understand if and how Project BudBurst is meeting its goals. Specifically, does participation by non-experts advance scientific knowledge? Does participation advance educational goals and outcomes? Is participation an effective approach to advance/enhance science education in both formal and informal settings? Critical examination of Project BudBurst supports advancement of scientific knowledge and realization of educational objectives. Citizen science collected observations and measurements are being used by scientists as evidenced by the increase of such data in scientific publication. In addition, we found that there is a significant increase in educators utilizing citizen science as part of their instruction. Part of this increase is due to the resources and professional development materials available to educators. Working with partners also demonstrated that the needs of both science and

  12. Climate Change and Projected Impacts in Agriculture: an Example on Mediterranean Crops

    NASA Astrophysics Data System (ADS)

    Ferrise, R.; Moriondo, M.; Bindi, M.

    2009-04-01

    Recently, the availability of multi-model ensemble prediction methods has permitted the assignment of likelihoods to future climate projections. This allowed moving from the scenario-based approach to the risk-based approach in assessing the effects of climate change, thus providing more useful information for decision-makers that, as reported by Schneider (2001), need probability estimates to assess the seriousness of the projected impacts. The probabilistic approach to evaluate crop response to climate change mainly consists in applying an impact model (such as crop growth model) to a very large number of climate projections so to provide a probabilistic distribution of the variable selected to evaluate the impact. By comparing the outputs of the multi-simulation with a critical threshold (such as minimum yield below which it is not admissible to fall), it is possible to evaluate the risk related to future climate conditions. Unfortunately, such an approach is a time-consuming process due to the large number of model runs needed for such a procedure. An alternative method relies on the set up of impact response surfaces (RS) with respect to key climatic variables on which a probabilistic representation of projected changes in the same climatic variables may be overlaid (Fronzek et al. 2008). This approach was exploited within the ENSEMBLES EU Project aiming at assessing climate change impact on typical Mediterranean crops. This work presents the results of the project with a particular concerning about the assessment of risk, of durum wheat (T. turgidum L. subsp. durum (Desf.) Husn) and grapevine (Vitis vinifera L.) yield falling below fixed thresholds, using probabilistic information about future climate. Methodology The simple mechanistic crop growth models, SIRIUS Quality (Jamieson et al., 1998) and VITE-model (Bindi et al., 1997a,b), were selected to respectively simulate durum wheat and grapevine yields in present and future scenarios. SIRIUS Quality is a

  13. Providing more informative projections of climate change impact on plant distribution in a mountain environment

    NASA Astrophysics Data System (ADS)

    Randin, C.; Engler, R.; Pearman, P.; Vittoz, P.; Guisan, A.

    2007-12-01

    Due to their conic shape and the reduction of area with increasing elevation, mountain ecosystems were early identified as potentially very sensitive to global warming. Moreover, mountain systems may experience unprecedented rates of warming during the next century, two or three times higher than that records of the 20th century. In this context, species distribution models (SDM) have become important tools for rapid assessment of the impact of accelerated land use and climate change on the distribution plant species. In this study, we developed and tested new predictor variables for species distribution models (SDM), specific to current and future geographic projections of plant species in a mountain system, using the Western Swiss Alps as model region. Since meso- and micro-topography are relevant to explain geographic patterns of plant species in mountain environments, we assessed the effect of scale on predictor variables and geographic projections of SDM. We also developed a methodological framework of space-for-time evaluation to test the robustness of SDM when projected in a future changing climate. Finally, we used a cellular automaton to run dynamic simulations of plant migration under climate change in a mountain landscape, including realistic distance of seed dispersal. Results of future projections for the 21st century were also discussed in perspective of vegetation changes monitored during the 20th century. Overall, we showed in this study that, based on the most severe A1 climate change scenario and realistic dispersal simulations of plant dispersal, species extinctions in the Western Swiss Alps could affect nearly one third (28.5%) of the 284 species modeled by 2100. With the less severe B1 scenario, only 4.6% of species are predicted to become extinct. However, even with B1, 54% (153 species) may still loose more than 80% of their initial surface. Results of monitoring of past vegetation changes suggested that plant species can react quickly to the

  14. The impact of SST biases on projections of anthropogenic climate change: A greater role for atmosphere-only models?

    NASA Astrophysics Data System (ADS)

    He, Jie; Soden, Brian J.

    2016-07-01

    There is large uncertainty in the model simulation of regional climate change from anthropogenic forcing. Recent studies have tried to link such uncertainty to intermodel differences in the pattern of sea surface temperature (SST) change. On the other hand, coupled climate models also contain systematic biases in their climatology, largely due to drift in SSTs. To the extent that the projected changes depend on the mean state, biases in the present-day climatology also contribute to the intermodel spread in climate change projections. By comparing atmospheric general circulation model (AGCM) simulations using the climatological SSTs from different coupled models, we show that biases in the climatological SST generally have a larger impact on regional projections over land than do intermodel differences in the pattern of SST change. These results advocate for a greater application of AGCM simulations with observed SSTs or flux-adjusted coupled models to improve regional projections of anthropogenic climate change.

  15. Improved confidence in climate change projections of precipitation evaluated using daily statistics from the PRUDENCE ensemble

    NASA Astrophysics Data System (ADS)

    Boberg, Fredrik; Berg, Peter; Thejll, Peter; Gutowski, William J.; Christensen, Jens H.

    2009-06-01

    An ensemble of regional climate modelling simulations from the European framework project PRUDENCE are compared across European sub-regions with observed daily precipitation from the European Climate Assessment dataset by characterising precipitation in terms of probability density functions (PDFs). Models that robustly describe the observations for the control period (1961-1990) in given regions as well as across regions are identified, based on the overlap of normalised PDFs, and then validated, using a method based on bootstrapping with replacement. We also compare the difference between the scenario period (2071-2100) and the control period precipitation using all available models. By using a metric quantifying the deviation over the entire PDF, we find a clearly marked increase in the contribution to the total precipitation from the more intensive events and a clearly marked decrease for days with light precipitation in the scenario period. This change is tested to be robust and found in all models and in all sub-regions. We find a detectable increase that scales with increased warming, making the increase in the PDF difference a relative indicator of climate change level. Furthermore, the crossover point separating decreasing from increasing contributions to the normalised precipitation spectrum when climate changes does not show any significant change which is in accordance with expectations assuming a simple analytical fit to the precipitation spectrum.

  16. Integrating ecophysiology and forest landscape models to improve projections of drought effects under climate change.

    PubMed

    Gustafson, Eric J; De Bruijn, Arjan M G; Pangle, Robert E; Limousin, Jean-Marc; McDowell, Nate G; Pockman, William T; Sturtevant, Brian R; Muss, Jordan D; Kubiske, Mark E

    2015-02-01

    Fundamental drivers of ecosystem processes such as temperature and precipitation are rapidly changing and creating novel environmental conditions. Forest landscape models (FLM) are used by managers and policy-makers to make projections of future ecosystem dynamics under alternative management or policy options, but the links between the fundamental drivers and projected responses are weak and indirect, limiting their reliability for projecting the impacts of climate change. We developed and tested a relatively mechanistic method to simulate the effects of changing precipitation on species competition within the LANDIS-II FLM. Using data from a field precipitation manipulation experiment in a piñon pine (Pinus edulis) and juniper (Juniperus monosperma) ecosystem in New Mexico (USA), we calibrated our model to measurements from ambient control plots and tested predictions under the drought and irrigation treatments against empirical measurements. The model successfully predicted behavior of physiological variables under the treatments. Discrepancies between model output and empirical data occurred when the monthly time step of the model failed to capture the short-term dynamics of the ecosystem as recorded by instantaneous field measurements. We applied the model to heuristically assess the effect of alternative climate scenarios on the piñon-juniper ecosystem and found that warmer and drier climate reduced productivity and increased the risk of drought-induced mortality, especially for piñon. We concluded that the direct links between fundamental drivers and growth rates in our model hold great promise to improve our understanding of ecosystem processes under climate change and improve management decisions because of its greater reliance on first principles.

  17. Integrating ecophysiology and forest landscape models to improve projections of drought effects under climate change.

    PubMed

    Gustafson, Eric J; De Bruijn, Arjan M G; Pangle, Robert E; Limousin, Jean-Marc; McDowell, Nate G; Pockman, William T; Sturtevant, Brian R; Muss, Jordan D; Kubiske, Mark E

    2015-02-01

    Fundamental drivers of ecosystem processes such as temperature and precipitation are rapidly changing and creating novel environmental conditions. Forest landscape models (FLM) are used by managers and policy-makers to make projections of future ecosystem dynamics under alternative management or policy options, but the links between the fundamental drivers and projected responses are weak and indirect, limiting their reliability for projecting the impacts of climate change. We developed and tested a relatively mechanistic method to simulate the effects of changing precipitation on species competition within the LANDIS-II FLM. Using data from a field precipitation manipulation experiment in a piñon pine (Pinus edulis) and juniper (Juniperus monosperma) ecosystem in New Mexico (USA), we calibrated our model to measurements from ambient control plots and tested predictions under the drought and irrigation treatments against empirical measurements. The model successfully predicted behavior of physiological variables under the treatments. Discrepancies between model output and empirical data occurred when the monthly time step of the model failed to capture the short-term dynamics of the ecosystem as recorded by instantaneous field measurements. We applied the model to heuristically assess the effect of alternative climate scenarios on the piñon-juniper ecosystem and found that warmer and drier climate reduced productivity and increased the risk of drought-induced mortality, especially for piñon. We concluded that the direct links between fundamental drivers and growth rates in our model hold great promise to improve our understanding of ecosystem processes under climate change and improve management decisions because of its greater reliance on first principles. PMID:25155807

  18. Changing Climate Extremes in the Northeast: CMIP5 Simulations and Projections

    NASA Astrophysics Data System (ADS)

    Thibeault, J. M.; Seth, A.

    2013-12-01

    Extreme climate events are known to have severe impacts on human and natural systems. As greenhouse warming progresses, a major concern is the potential for an increase in the frequency and intensity of extreme events. The Northeast (defined as the Northeast US, southern Quebec, and southeastern Ontario) is sensitive to climate extremes. The region is prone to flooding and drought, which poses challenges for infrastructure and water resource management, and increases risks to agriculture and forests. Extreme heat can be dangerous to human health, especially in the large urban centers of the Northeast. Annual average temperatures have steadily increased since the 1970s, accompanied by more frequent extremely hot weather, a longer growing season, and fewer frost days. Heavy precipitation events have become more frequent in recent decades. This research examines multi-model projections of annual and monthly extreme indices for the Northeast, using extreme indices computed by the Expert Team on Climate Change Detection and Indices (ETCCDI) for twenty-three global climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) for the 20th century historical and RCP8.5 experiments. Model simulations are compared to HadEX2 and ERA-interim gridded observations. CMIP5 simulations are consistent with observations - conditions in the Northeast are already becoming warmer and wetter. Projections indicate significant shifts toward warmer and wetter conditions by the middle century (2041-2070). Most indices are projected to be largely outside their late 20th century ranges by the late century (2071-2099). These results provide important information to stakeholders developing plans to lessen the adverse impacts of a warmer and wetter climate in the Northeast.

  19. Multimodel ensemble projections of future climate extreme changes in the Haihe River Basin, China

    NASA Astrophysics Data System (ADS)

    Wang, Weiguang; Shao, Quanxi; Yang, Tao; Yu, Zhongbo; Xing, Wanqiu; Zhao, Cuiping

    2014-11-01

    Exploring the characteristic of the extreme climatic events, especially future projection is considerably important in assessing the impacts of climatic change on hydrology and water resources system. We investigate the future patterns of climate extremes (2001-2099) in the Haihe River Basin (HRB) derived from Coupled General Circulation Model (CGCM) multimodel ensemble projections using the Bayesian Model Average (BMA) approach, under a range of emission scenarios. The extremes are depicted by three extreme temperature indices (i.e., frost days (FD), growing season length (GSL), and T min >90th percentile (TN90)) and five extreme precipitation indices (i.e., consecutive dry days (CDD), precipitation ≥10 mm (R10), maximum 5-day precipitation total (R5D), precipitation >95th percentile (R95T), and simple daily intensity index (SDII)). The results indicate frost days display negative trend over the HRB in the 21st century, particularly in the southern basin. Moreover, a greater season length and more frequent warm nights are also projected in the basin. The decreasing CDD, together with the increasing R10, R5D, R95T, and SDII in the 21st century indicate that the extreme precipitation events will increase in their intensity and frequency in the basin. Meanwhile, the changes of all eight extremes climate indices under A2 and A1B scenarios are more pronounced than in B1. The results will be of practical significance in mitigation of the detrimental effects of variations of climatic extremes and improve the regional strategy for water resource and eco-environment management, particularly for the HRB characterized by the severe water shortages and fragile ecological environment.

  20. Projected Scenarios for Coastal First Nations’ Fisheries Catch Potential under Climate Change: Management Challenges and Opportunities

    PubMed Central

    Weatherdon, Lauren V.; Ota, Yoshitaka; Jones, Miranda C.; Close, David A.; Cheung, William W. L.

    2016-01-01

    Studies have demonstrated ways in which climate-related shifts in the distributions and relative abundances of marine species are expected to alter the dynamics and catch potential of global fisheries. While these studies assess impacts on large-scale commercial fisheries, few efforts have been made to quantitatively project impacts on small-scale subsistence and commercial fisheries that are economically, socially and culturally important to many coastal communities. This study uses a dynamic bioclimate envelope model to project scenarios of climate-related changes in the relative abundance, distribution and richness of 98 exploited marine fishes and invertebrates of commercial and cultural importance to First Nations in coastal British Columbia, Canada. Declines in abundance are projected for most of the sampled species under both the lower (Representative Concentration Pathway [RCP] 2.6) and higher (RCP 8.5) emission scenarios (-15.0% to -20.8%, respectively), with poleward range shifts occurring at a median rate of 10.3 to 18.0 km decade-1 by 2050 relative to 2000. While a cumulative decline in catch potential is projected coastwide (-4.5 to -10.7%), estimates suggest a strong positive correlation between the change in relative catch potential and latitude, with First Nations’ territories along the northern and central coasts of British Columbia likely to experience less severe declines than those to the south. Furthermore, a strong negative correlation is projected between latitude and the number of species exhibiting declining abundance. These trends are shown to be robust to alternative species distribution models. This study concludes by discussing corresponding management challenges that are likely to be encountered under climate change, and by highlighting the value of joint-management frameworks and traditional fisheries management approaches that could aid in offsetting impacts and developing site-specific mitigation and adaptation strategies derived

  1. Projected Scenarios for Coastal First Nations' Fisheries Catch Potential under Climate Change: Management Challenges and Opportunities.

    PubMed

    Weatherdon, Lauren V; Ota, Yoshitaka; Jones, Miranda C; Close, David A; Cheung, William W L

    2016-01-01

    Studies have demonstrated ways in which climate-related shifts in the distributions and relative abundances of marine species are expected to alter the dynamics and catch potential of global fisheries. While these studies assess impacts on large-scale commercial fisheries, few efforts have been made to quantitatively project impacts on small-scale subsistence and commercial fisheries that are economically, socially and culturally important to many coastal communities. This study uses a dynamic bioclimate envelope model to project scenarios of climate-related changes in the relative abundance, distribution and richness of 98 exploited marine fishes and invertebrates of commercial and cultural importance to First Nations in coastal British Columbia, Canada. Declines in abundance are projected for most of the sampled species under both the lower (Representative Concentration Pathway [RCP] 2.6) and higher (RCP 8.5) emission scenarios (-15.0% to -20.8%, respectively), with poleward range shifts occurring at a median rate of 10.3 to 18.0 km decade(-1) by 2050 relative to 2000. While a cumulative decline in catch potential is projected coastwide (-4.5 to -10.7%), estimates suggest a strong positive correlation between the change in relative catch potential and latitude, with First Nations' territories along the northern and central coasts of British Columbia likely to experience less severe declines than those to the south. Furthermore, a strong negative correlation is projected between latitude and the number of species exhibiting declining abundance. These trends are shown to be robust to alternative species distribution models. This study concludes by discussing corresponding management challenges that are likely to be encountered under climate change, and by highlighting the value of joint-management frameworks and traditional fisheries management approaches that could aid in offsetting impacts and developing site-specific mitigation and adaptation strategies derived

  2. "Dangerous" Climate Change

    NASA Astrophysics Data System (ADS)

    Mastrandrea, M. D.

    2003-12-01

    Current climate change mitigation policy decisions must be made despite layers of uncertainty. Modeling of future climate, projections for future economic growth and greenhouse gas emissions, and characterizations of the interactions and feedbacks within the coupled social-natural system all contain uncertain components. Researchers communicating with policymakers have learned that, instead of presenting "best guesses" or other point estimates, uncertainty assignments require such techniques as probability distributions of outcomes and quantitatively defined descriptions of subjective confidence. We present a quantification of "dangerous" climate change, a term important in policy discussions. Article 2 of the United Nations Framework Convention on Climate Change expresses the opinion of the signing Parties that steps be taken to "prevent dangerous anthropogenic interference with the climate system," but the Convention did not specify what constitutes the value judgment of being "dangerous." We present one possible definition. A threshold for "dangerous" climate change is a clear tool for evaluating the need for and impact of proposed climate policy. Monte Carlo analyses with a simple integrated assessment model demonstrate that endogenously calculated climate policy controls appreciably reduce the probability of "dangerous" climate change. Under mid-range assumptions, climate policy reduces the probability of "dangerous" climate change by 30-50%.

  3. Preparing teachers to address climate change with project-based instructional modules

    NASA Astrophysics Data System (ADS)

    Powers, S. E.; DeWaters, J.; Small, M.; Dhaniyala, S.

    2012-12-01

    Clarkson University's Project-Based Global Climate Change Education project funded by NASA has created and disseminated several instructional modules for middle and high school teachers. The modules were developed by a team of teachers and university students and faculty. Fundamental to these inquiry-based modules are questions about climate change or mitigation efforts, use of real-world data to explore historical climate changes, and review of IPCC model results to understand predictions of further changes over the next century. As an example, the Climate Connections module requires middle school students to investigate a geographic region, learn about the culture and likely carbon footprint, and then acquire and analyze data sets of historical and predicted temperature changes. The findings are then interpreted in relation to the impact of these changes on the region's culture. NOAA, NASA, IPCC and DOE databases are used extensively. The inquiry approach and core content included in these modules are well aligned with the new Framework for K-12 Science Education. The climate change science in these modules covers aspects of the disciplinary core subjects (dimension 3) and most of the cross cutting concepts (dimension 2). Our approach for inquiry and analysis are also authentic ways to include most of the science and engineering practices (dimension 1) included in the framework. Dissemination of the modules to teachers in New York State has been a joint effort by NYSERDA (New York State Energy Research and Development Authority) and Clarkson. Half-day and full-day workshops and week-long institutes provided opportunities to either introduce the modules and the basics of finding and using temperature data, or delve into the science concepts and integration of the modules into an instructional plan. A significant challenge has been identified by the workshop instructors - many science teachers lack the skills necessary to fully engage in the science and engineering

  4. Direct and indirect effects of climate change on projected future fire regimes in the western United States.

    PubMed

    Liu, Zhihua; Wimberly, Michael C

    2016-01-15

    We asked two research questions: (1) What are the relative effects of climate change and climate-driven vegetation shifts on different components of future fire regimes? (2) How does incorporating climate-driven vegetation change into future fire regime projections alter the results compared to projections based only on direct climate effects? We used the western United States (US) as study area to answer these questions. Future (2071-2100) fire regimes were projected using statistical models to predict spatial patterns of occurrence, size and spread for large fires (>400 ha) and a simulation experiment was conducted to compare the direct climatic effects and the indirect effects of climate-driven vegetation change on fire regimes. Results showed that vegetation change amplified climate-driven increases in fire frequency and size and had a larger overall effect on future total burned area in the western US than direct climate effects. Vegetation shifts, which were highly sensitive to precipitation pattern changes, were also a strong determinant of the future spatial pattern of burn rates and had different effects on fire in currently forested and grass/shrub areas. Our results showed that climate-driven vegetation change can exert strong localized effects on fire occurrence and size, which in turn drive regional changes in fire regimes. The effects of vegetation change for projections of the geographic patterns of future fire regimes may be at least as important as the direct effects of climate change, emphasizing that accounting for changing vegetation patterns in models of future climate-fire relationships is necessary to provide accurate projections at continental to global scales.

  5. Participatory Scenario Planning for Climate Change Adaptation: the Maui Groundwater Project

    NASA Astrophysics Data System (ADS)

    Keener, V. W.; Brewington, L.; Finucane, M.

    2015-12-01

    For the last century, the island of Maui in Hawai'i has been the center of environmental, agricultural, and legal conflict with respect to both surface and groundwater allocation. Planning for sustainable future freshwater supply in Hawai'i requires adaptive policies and decision-making that emphasizes private and public partnerships and knowledge transfer between scientists and non-scientists. We have downscaled dynamical climate models to 1 km resolution in Maui and coupled them with a USGS Water Budget model and a participatory scenario building process to quantify future changes in island-scale climate and groundwater recharge under different land uses. Although these projections are uncertain, the integrated nature of the Pacific RISA research program has allowed us to take a multi-pronged approach to facilitate the uptake of climate information into policy and management. This presentation details the ongoing work to support the development of Hawai'i's first island-wide water use plan under the new climate adaptation directive. Participatory scenario planning began in 2012 to bring together a diverse group of ~100 decision-makers in state and local government, watershed restoration, agriculture, and conservation to 1) determine the type of information (climate variables, land use and development, agricultural practices) they would find helpful in planning for climate change, and 2) develop a set of nested scenarios that represent alternative climate and management futures. This integration of knowledge is an iterative process, resulting in flexible and transparent narratives of complex futures comprised of information at multiple scales. We will present an overview of the downscaling, scenario building, hydrological modeling processes, and stakeholder response.

  6. Projected changes in climate extremes over Qatar and the Arabian Gulf region

    NASA Astrophysics Data System (ADS)

    Kundeti, K.; Kanikicharla, K. K.; Al sulaiti, M.; Khulaifi, M.; Alboinin, N.; Kito, A.

    2015-12-01

    The climate of the State of Qatar and the adjacent region is dominated by subtropical dry, hot desert climate with low annual rainfall, very high temperatures in summer and a big difference between maximum and minimum temperatures, especially in the inland areas. The coastal areas are influenced by the Arabian Gulf, and have lower maximum, but higher minimum temperatures and a higher moisture percentage in the air. The global warming can have profound impact on the mean climate as well as extreme weather events over the Arabian Peninsula that may affect both natural and human systems significantly. Therefore, it is important to assess the future changes in the seasonal/annual mean of temperature and precipitation and also the extremes in temperature and wind events for a country like Qatar. This study assesses the performance of the Coupled Model Inter comparison Project Phase 5 (CMIP5) simulations in present and develops future climate scenarios. The changes in climate extremes are assessed for three future periods 2016-2035, 2046-2065 and 2080-2099 with respect to 1986-2005 (base line) under two RCPs (Representative Concentrate Pathways) - RCP4.5 and RCP8.5. We analyzed the projected changes in temperature and precipitation extremes using several indices including those that capture heat stress. The observations show an increase in warm extremes over many parts in this region that are generally well captured by the models. The results indicate a significant change in frequency and intensity of both temperature and precipitation extremes over many parts of this region which may have serious implications on human health, water resources and the onshore/offshore infrastructure in this region. Data from a high-resolution (20km) AGCM simulation from Meteorological Research Institute of Japan Meteorological Agency for the present (1979-2003) and a future time slice (2075-2099) corresponding to RCP8.5 have also been utilized to assess the impact of climate change on

  7. Projection of Climate Change Influences on U.S. West Nile Virus Vectors

    PubMed Central

    Brown, Heidi E.; Young, Alex; Lega, Joceline; Andreadis, Theodore G.; Schurich, Jessica; Comrie, Andrew

    2015-01-01

    While estimates of the impact of climate change on health are necessary for health care planners and climate change policy makers, models to produce quantitative estimates remain scarce. We describe a freely available dynamic simulation model parameterized for three West Nile virus vectors, which provides an effective tool for studying vector-borne disease risk due to climate change. The Dynamic Mosquito Simulation Model is parameterized with species specific temperature-dependent development and mortality rates. Using downscaled daily weather data, we estimate mosquito population dynamics under current and projected future climate scenarios for multiple locations across the country. Trends in mosquito abundance were variable by location, however, an extension of the vector activity periods, and by extension disease risk, was almost uniformly observed. Importantly, mid-summer decreases in abundance may be off-set by shorter extrinsic incubation periods resulting in a greater proportion of infective mosquitoes. Quantitative descriptions of the effect of temperature on the virus and mosquito are critical to developing models of future disease risk. PMID:27057131

  8. Implications of projected climate change for groundwater recharge in the western United States

    NASA Astrophysics Data System (ADS)

    Meixner, Thomas; Manning, Andrew H.; Stonestrom, David A.; Allen, Diana M.; Ajami, Hoori; Blasch, Kyle W.; Brookfield, Andrea E.; Castro, Christopher L.; Clark, Jordan F.; Gochis, David J.; Flint, Alan L.; Neff, Kirstin L.; Niraula, Rewati; Rodell, Matthew; Scanlon, Bridget R.; Singha, Kamini; Walvoord, Michelle A.

    2016-03-01

    Existing studies on the impacts of climate change on groundwater recharge are either global or basin/location-specific. The global studies lack the specificity to inform decision making, while the local studies do little to clarify potential changes over large regions (major river basins, states, or groups of states), a scale often important in the development of water policy. An analysis of the potential impact of climate change on groundwater recharge across the western United States (west of 100° longitude) is presented synthesizing existing studies and applying current knowledge of recharge processes and amounts. Eight representative aquifers located across the region were evaluated. For each aquifer published recharge budget components were converted into four standard recharge mechanisms: diffuse, focused, irrigation, and mountain-systems recharge. Future changes in individual recharge mechanisms and total recharge were then estimated for each aquifer. Model-based studies of projected climate-change effects on recharge were available and utilized for half of the aquifers. For the remainder, forecasted changes in temperature and precipitation were logically propagated through each recharge mechanism producing qualitative estimates of direction of changes in recharge only (not magnitude). Several key patterns emerge from the analysis. First, the available estimates indicate average declines of 10-20% in total recharge across the southern aquifers, but with a wide range of uncertainty that includes no change. Second, the northern set of aquifers will likely incur little change to slight increases in total recharge. Third, mountain system recharge is expected to decline across much of the region due to decreased snowpack, with that impact lessening with higher elevation and latitude. Factors contributing the greatest uncertainty in the estimates include: (1) limited studies quantitatively coupling climate projections to recharge estimation methods using detailed

  9. Impacts of Climate Change On The Occurrence of Extreme Events: The Mice Project

    NASA Astrophysics Data System (ADS)

    Palutikof, J. P.; Mice Team

    It is widely accepted that climate change due to global warming will have substan- tial impacts on the natural environment, and on human activities. Furthermore, it is increasingly recognized that changes in the severity and frequency of extreme events, such as windstorm and flood, are likely to be more important than changes in the average climate. The EU-funded project MICE (Modelling the Impacts of Climate Extremes) commenced in January 2002. It seeks to identify the likely changes in the occurrence of extremes of rainfall, temperature and windstorm due to global warm- ing, using information from climate models as a basis, and to study the impacts of these changes in selected European environments. The objectives are: a) to evaluate, by comparison with gridded and station observations, the ability of climate models to successfully reproduce the occurrence of extremes at the required spatial and temporal scales. b) to analyse model output with respect to future changes in the occurrence of extremes. Statistical analyses will determine changes in (i) the return periods of ex- tremes, (ii) the joint probability of extremes (combinations of damaging events such as windstorm followed by heavy rain), (iii) the sequential behaviour of extremes (whether events are well-separated or clustered) and (iv) the spatial patterns of extreme event occurrence across Europe. The range of uncertainty in model predictions will be ex- plored by analysing changes in model experiments with different spatial resolutions and forcing scenarios. c) to determine the impacts of the predicted changes in extremes occurrence on selected activity sectors: agriculture (Mediterranean drought), commer- cial forestry and natural forest ecosystems (windstorm and flood in northern Europe, fire in the Mediterranean), energy use (temperature extremes), tourism (heat stress and Mediterranean beach holidays, changes in the snow pack and winter sports ) and civil protection/insurance (windstorm and flood

  10. A statistical modeling framework for projecting future ambient ozone and its health impact due to climate change

    NASA Astrophysics Data System (ADS)

    Chang, Howard H.; Hao, Hua; Sarnat, Stefanie Ebelt

    2014-06-01

    The adverse health effects of ambient ozone are well established. Given the high sensitivity of ambient ozone concentrations to meteorological conditions, the impacts of future climate change on ozone concentrations and its associated health effects are of concern. We describe a statistical modeling framework for projecting future ozone levels and its health impacts under a changing climate. This is motivated by the continual effort to evaluate projection uncertainties to inform public health risk assessment. The proposed approach was applied to the 20-county Atlanta metropolitan area using regional climate model (RCM) simulations from the North American Regional Climate Change Assessment Program. Future ozone levels and ozone-related excesses in asthma emergency department (ED) visits were examined for the period 2041-2070. The computationally efficient approach allowed us to consider 8 sets of climate model outputs based on different combinations of 4 RCMs and 4 general circulation models. Compared to the historical period of 1999-2004, we found consistent projections across climate models of an average 11.5% higher ozone levels (range: 4.8%, 16.2%), and an average 8.3% (range: -7%-24%) higher number of ozone exceedance days. Assuming no change in the at-risk population, this corresponds to excess ozone-related ED visits ranging from 267 to 466 visits per year. Health impact projection uncertainty was driven predominantly by uncertainty in the health effect association and climate model variability. Calibrating climate simulations with historical observations reduced differences in projections across climate models.

  11. A Statistical Modeling Framework for Projecting Future Ambient Ozone and its Health Impact due to Climate Change.

    PubMed

    Chang, Howard H; Hao, Hua; Sarnat, Stefanie Ebelt

    2014-06-01

    The adverse health effects of ambient ozone are well established. Given the high sensitivity of ambient ozone concentrations to meteorological conditions, the impacts of future climate change on ozone concentrations and its associated health effects are of concern. We describe a statistical modeling framework for projecting future ozone levels and its health impacts under a changing climate. This is motivated by the continual effort to evaluate projection uncertainties to inform public health risk assessment. The proposed approach was applied to the 20-county Atlanta metropolitan area using regional climate model (RCM) simulations from the North American Regional Climate Change Assessment Program. Future ozone levels and ozone-related excesses in asthma emergency department (ED) visits were examined for the period 2041-2070. The computationally efficient approach allowed us to consider 8 sets of climate model outputs based on different combinations of 4 RCMs and 4 general circulation models. Compared to the historical period of 1999-2004, we found consistent projections across climate models of an average 11.5% higher ozone levels (range: 4.8%, 16.2%), and an average 8.3% (range: -7% to 24%) higher number of ozone exceedance days. Assuming no change in the at-risk population, this corresponds to excess ozone-related ED visits ranging from 267 to 466 visits per year. Health impact projection uncertainty was driven predominantly by uncertainty in the health effect association and climate model variability. Calibrating climate simulations with historical observations reduced differences in projections across climate models.

  12. A top-down approach to projecting market impacts of climate change

    NASA Astrophysics Data System (ADS)

    Lemoine, Derek; Kapnick, Sarah

    2016-01-01

    To evaluate policies to reduce greenhouse-gas emissions, economic models require estimates of how future climate change will affect well-being. So far, nearly all estimates of the economic impacts of future warming have been developed by combining estimates of impacts in individual sectors of the economy. Recent work has used variation in warming over time and space to produce top-down estimates of how past climate and weather shocks have affected economic output. Here we propose a statistical framework for converting these top-down estimates of past economic costs of regional warming into projections of the economic cost of future global warming. Combining the latest physical climate models, socioeconomic projections, and economic estimates of past impacts, we find that future warming could raise the expected rate of economic growth in richer countries, reduce the expected rate of economic growth in poorer countries, and increase the variability of growth by increasing the climate's variability. This study suggests we should rethink the focus on global impacts and the use of deterministic frameworks for modelling impacts and policy.

  13. PERPHECLIM ACCAF Project - Perennial fruit crops and forest phenology evolution facing climatic changes

    NASA Astrophysics Data System (ADS)

    Garcia de Cortazar-Atauri, Iñaki; Audergon, Jean Marc; Bertuzzi, Patrick; Anger, Christel; Bonhomme, Marc; Chuine, Isabelle; Davi, Hendrik; Delzon, Sylvain; Duchêne, Eric; Legave, Jean Michel; Raynal, Hélène; Pichot, Christian; Van Leeuwen, Cornelis; Perpheclim Team

    2015-04-01

    Phenology is a bio-indicator of climate evolutions. Measurements of phenological stages on perennial species provide actually significant illustrations and assessments of the impact of climate change. Phenology is also one of the main key characteristics of the capacity of adaptation of perennial species, generating questions about their consequences on plant growth and development or on fruit quality. Predicting phenology evolution and adaptative capacities of perennial species need to override three main methodological limitations: 1) existing observations and associated databases are scattered and sometimes incomplete, rendering difficult implementation of multi-site study of genotype-environment interaction analyses; 2) there are not common protocols to observe phenological stages; 3) access to generic phenological models platforms is still very limited. In this context, the PERPHECLIM project, which is funded by the Adapting Agriculture and Forestry to Climate Change Meta-Program (ACCAF) from INRA (French National Institute of Agronomic Research), has the objective to develop the necessary infrastructure at INRA level (observatories, information system, modeling tools) to enable partners to study the phenology of various perennial species (grapevine, fruit trees and forest trees). Currently the PERPHECLIM project involves 27 research units in France. The main activities currently developed are: define protocols and observation forms to observe phenology for various species of interest for the project; organizing observation training; develop generic modeling solutions to simulate phenology (Phenological Modelling Platform and modelling platform solutions); support in building research projects at national and international level; develop environment/genotype observation networks for fruit trees species; develop an information system managing data and documentation concerning phenology. Finally, PERPHECLIM project aims to build strong collaborations with public

  14. EPA Region 10 Climate Change and TMDL Pilot - Project Research Plan

    EPA Science Inventory

    Global climate change affects the fundamental drivers of the hydrological cycle. Evidence is growing that climate change will have significant ramifications for the nation’s freshwater ecosystems, as deviations in atmospheric temperature and precipitation patterns are more ...

  15. Projecting the impacts of climate change on skipjack tuna abundance and spatial distribution.

    PubMed

    Dueri, Sibylle; Bopp, Laurent; Maury, Olivier

    2014-03-01

    Climate-induced changes in the physical, chemical, and biological environment are expected to increasingly stress marine ecosystems, with important consequences for fisheries exploitation. Here, we use the APECOSM-E numerical model (Apex Predator ECOSystem Model - Estimation) to evaluate the future impacts of climate change on the physiology, spatial distribution, and abundance of skipjack tuna, the worldwide most fished species of tropical tuna. The main novelties of our approach lie in the mechanistic link between environmental factors, metabolic rates, and behavioral responses and in the fully three dimensional representation of habitat and population abundance. Physical and biogeochemical fields used to force the model are provided by the last generation of the IPSL-CM5 Earth System Model run from 1990 to 2100 under a 'business-as-usual' scenario (RCP8.5). Our simulations show significant changes in the spatial distribution of skipjack tuna suitable habitat, as well as in their population abundance. The model projects deterioration of skipjack habitat in most tropical waters and an improvement of habitat at higher latitudes. The primary driver of habitat changes is ocean warming, followed by food density changes. Our projections show an increase of global skipjack biomass between 2010 and 2050 followed by a marked decrease between 2050 and 2095. Spawning rates are consistent with population trends, showing that spawning depends primarily on the adult biomass. On the other hand, growth rates display very smooth temporal changes, suggesting that the ability of skipjack to keep high metabolic rates in the changing environment is generally effective. Uncertainties related to our model spatial resolution, to the lack or simplification of key processes and to the climate forcings are discussed.

  16. Projected changes in atmospheric river events in Arizona as simulated by global and regional climate models

    NASA Astrophysics Data System (ADS)

    Rivera, Erick R.; Dominguez, Francina

    2015-12-01

    Inland-penetrating atmospheric rivers (ARs) affect the United States Southwest and significantly contribute to cool season precipitation. In this study, we examine the results from an ensemble of dynamically downscaled simulations from the North American Regional Climate Change Assessment Program (NARCCAP) and their driving general circulation models (GCMs) in order to determine statistically significant changes in the intensity of the cool season ARs impacting Arizona and the associated precipitation. Future greenhouse gas emissions follow the A2 emission scenario from the Intergovernmental Panel on Climate Change Fourth Assessment Report simulations. We find that there is a consistent and clear intensification of the AR-related water vapor transport in both the global and regional simulations which reflects the increase in water vapor content due to warmer atmospheric temperatures, according to the Clausius-Clapeyron relationship. However, the response of AR-related precipitation intensity to increased moisture flux and column-integrated water vapor is weak and no significant changes are projected either by the GCMs or the NARCCAP models. This lack of robust precipitation variations can be explained in part by the absence of meaningful changes in both the large-scale water vapor flux convergence and the maximum positive relative vorticity in the GCMs. Additionally, some global models show a robust decrease in relative humidity which may also be responsible for the projected precipitation patterns.

  17. Projected changes in atmospheric river events in Arizona as simulated by global and regional climate models

    NASA Astrophysics Data System (ADS)

    Rivera, Erick R.; Dominguez, Francina

    2016-09-01

    Inland-penetrating atmospheric rivers (ARs) affect the United States Southwest and significantly contribute to cool season precipitation. In this study, we examine the results from an ensemble of dynamically downscaled simulations from the North American Regional Climate Change Assessment Program (NARCCAP) and their driving general circulation models (GCMs) in order to determine statistically significant changes in the intensity of the cool season ARs impacting Arizona and the associated precipitation. Future greenhouse gas emissions follow the A2 emission scenario from the Intergovernmental Panel on Climate Change Fourth Assessment Report simulations. We find that there is a consistent and clear intensification of the AR-related water vapor transport in both the global and regional simulations which reflects the increase in water vapor content due to warmer atmospheric temperatures, according to the Clausius-Clapeyron relationship. However, the response of AR-related precipitation intensity to increased moisture flux and column-integrated water vapor is weak and no significant changes are projected either by the GCMs or the NARCCAP models. This lack of robust precipitation variations can be explained in part by the absence of meaningful changes in both the large-scale water vapor flux convergence and the maximum positive relative vorticity in the GCMs. Additionally, some global models show a robust decrease in relative humidity which may also be responsible for the projected precipitation patterns.

  18. Projected 21st century climate change for wolverine habitats within the contiguous United States

    NASA Astrophysics Data System (ADS)

    Peacock, Synte

    2011-01-01

    Ensembles of 21st century climate projections made using a state of the art global climate model are analyzed to explore possible changes in spring snow cover and summer air temperature in present-day wolverine habitats in the contiguous United States (US). Projected changes in both snow cover and temperature are presented for a range of future emissions scenarios, and implications for the continued survival of the wolverine in the contiguous US are discussed. It is shown that under a high or medium-low emissions scenario there are likely to be dramatic reductions in spring snow cover in present-day wolverine habitats. Under these scenarios there is also likely to be a concomitant increase in summer-time temperatures, with projected maximum daily August temperatures far above those currently tolerated by the wolverine. It is likely that the wolverine, with its many adaptations for cold weather and deep snow pack, would have great difficulty adapting to such changes. The results of the simulations presented here suggest that the very low numbers of wolverines currently living in the contiguous US will likely further decline in response to the deterioration of their habitat in coming decades.

  19. Effects of CO[sub 2] and climate change on forest trees: The TERA project

    SciTech Connect

    Rygiewicz, P.T.; Tingey, D.T.; Olszyk, D.M.; Shimabuku, R. ); Johnson, M.G.; McVeety, B.D. )

    1994-06-01

    Rising atmospheric CO[sub 2] and other greenhouse gas concentrations may lead to altered climates, which may dramatically affect forests. In 1993, Douglas fir seedlings were planted in sunlight, climate-controlled environmental chambers (Terracosms) at a new research facility (TERA). The Terracosm experiment imposes altered climate scenarios possible within approximately 50 years: two CO[sub 2] (ambient, and ambient + 200 ppm) and two temperature (ambient, and ambient + 4[degrees]) treatments. The elevated CO[sub 2] and temperature treatments are added continuously to current ambient levels to preserve natural climatic variability. Supporting experiments are underday in the Cascade Mountains, and in Observation and Manipulation Rhizotrons. Seven tasks describe the ecosystem responses being measured: (1) Shoot carbon and water fluxes, (2) Shoot growth and phenology, (3) System nutrients, (4) System water, (5) Litter layer, (6) Root growth and phenology, and (7) Soil biology. Data will be used in a physiological process-based tree growth model (TREGRO) to assess effects of climate change on trees. Hypothesis, objectives and an overall description of the project are presented to introduce the results shown in the following four posters.

  20. The Climaware project: Impacts of climate change on water resources management - regional strategies and European view

    NASA Astrophysics Data System (ADS)

    Thirel, Guillaume; D'Agostino, Daniela; Démerliac, Stéphane; Dorchies, David; Flörke, Martina; Jay-Allemand, Maxime; Jost, Claudine; Kehr, Katrin; Perrin, Charles; Scardigno, Alessandra; Schneider, Christof; Theobald, Stephan; Träbing, Klaus

    2014-05-01

    Climate projections produced with CMIP5 and applied by the Intergovernmental Panel on Climate Change (IPCC) in its fifth assessment report indicate that changes in precipitation and temperature are expected to occur throughout Europe in the 21th century, with a likely decrease of water availability in many regions. Besides, water demand is also expected to increase, in link with these expected climate modifications, but also due to socio-economic and demographic changes. In this respect, the use of future freshwater resources may not be sustainable from the current water management perspective. Therefore adaptation strategies will most likely be needed to cope with these evolutions. In this context, the main objective of the ClimAware project (2010-2013 - www.uni-kassel.de/fb14/wasserbau/CLIMAWARE/, a project implemented within the IWRM-NET Funding Initiative) was to analyse the impacts of climate change (CC) on freshwater resources at the continental and regional scales and to identify efficient adaptation strategies to improve water management for various socio-economic sectors. This should contribute to a more effective implementation of the Water Framework Directive (WFD) and its instruments (river basin management plans, programmes of measures). The project developed integrated measures for improved freshwater management under CC constraints. More specifically, the objectives of the ClimAware project were to: • elaborate quantitative projections of changes in river flows and consequences such as flood frequency, drought occurrence and sectorial water uses. • analyse the effect of CC on the hydromorphological reference conditions of rivers and therefore the definition of "good status". • define management rules/strategies concerning dam management and irrigation practices on different time perspectives. • investigate uncertainties in climate model - scenario combinations. The research approach considered both European and regional perspectives, to get

  1. Climate Projections and Uncertainty Communication.

    PubMed

    Joslyn, Susan L; LeClerc, Jared E

    2016-01-01

    Lingering skepticism about climate change might be due in part to the way climate projections are perceived by members of the public. Variability between scientists' estimates might give the impression that scientists disagree about the fact of climate change rather than about details concerning the extent or timing. Providing uncertainty estimates might clarify that the variability is due in part to quantifiable uncertainty inherent in the prediction process, thereby increasing people's trust in climate projections. This hypothesis was tested in two experiments. Results suggest that including uncertainty estimates along with climate projections leads to an increase in participants' trust in the information. Analyses explored the roles of time, place, demographic differences (e.g., age, gender, education level, political party affiliation), and initial belief in climate change. Implications are discussed in terms of the potential benefit of adding uncertainty estimates to public climate projections.

  2. Climate Projections and Uncertainty Communication.

    PubMed

    Joslyn, Susan L; LeClerc, Jared E

    2016-01-01

    Lingering skepticism about climate change might be due in part to the way climate projections are perceived by members of the public. Variability between scientists' estimates might give the impression that scientists disagree about the fact of climate change rather than about details concerning the extent or timing. Providing uncertainty estimates might clarify that the variability is due in part to quantifiable uncertainty inherent in the prediction process, thereby increasing people's trust in climate projections. This hypothesis was tested in two experiments. Results suggest that including uncertainty estimates along with climate projections leads to an increase in participants' trust in the information. Analyses explored the roles of time, place, demographic differences (e.g., age, gender, education level, political party affiliation), and initial belief in climate change. Implications are discussed in terms of the potential benefit of adding uncertainty estimates to public climate projections. PMID:26695995

  3. Changes in Wave Climate from a Multi-model Global Statistical projection approach.

    NASA Astrophysics Data System (ADS)

    Camus, Paula; Menendez, Melisa; Perez, Jorge; Losada, Inigo

    2016-04-01

    Despite their outstanding relevance in coastal impacts related to climate change (i.e. inundation, global beach erosion), ensemble products of global wave climate projections from the new Representative Concentration Pathways (RCPs) described by the IPCC are rather limited. This work shows a global study of changes in wave climate under several scenarios in which a new statistical method is applied. The method is based on the statistical relationship between meteorological conditions over the geographical area of wave generation (predictor) and the resulting wave characteristics for a particular location (predictand). The atmospheric input variables used in the statistical method are sea level pressure anomalies and gradients over the spatial and time scales information characterized by ESTELA maps (Perez et al. 2014). ESTELA provides a characterization of the area of wave influence of any particular ocean location worldwide, which includes contour lines of wave energy and isochrones of travel time in that area. Principal components is then applied over the sea level pressure information of the ESTELA region in order to define a multi-regression statistical model based on several data mining techniques. Once the multi-regression technique is defined and validated from historical information of atmospheric reanalysis (predictor) and wave hindcast (predictand) this method has been applied by using more than 35 Global Climate Models from CMIP5 to estimate changes in several parameters of the sea state (e.g. significant wave height, peak period) at seasonal and annual scale during the last decades of 21st century. The uncertainty of the estimated wave climate changes in the ensemble is also provided and discussed.

  4. Future agricultural water demand under climate change: regional variability and uncertainties arising from CMIP5 climate projections

    NASA Astrophysics Data System (ADS)

    Schewe, J.; Wada, Y.; Wisser, D.

    2012-12-01

    The agricultural sector (irrigation and livestock) uses by far the largest amount of water among all sectors and is responsible for 70% of the global water withdrawal. At a country scale, irrigation water withdrawal often exceeds 90% of the total water used in many of emerging and developing countries such as India, Pakistan, Iran and Mexico, sustaining much of food production and the livelihood of millions of people. The livestock sector generally accounts less than 1-2% of total water withdrawal, yet exceeds 10-30% of the total water used in many of the African countries. Future agricultural water demand is, however, subject to large uncertainties due to anticipated climate change, i.e. warming temperature and changing precipitation variability, in various regions of the world. Here, we use a global hydrological and water resources model to quantify the impact of climate change on regional irrigation and livestock water demand, and the resulting uncertainties arsing from newly available CMIP5 climate projections obtained through Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP; http://www.isi-mip.org/). Irrigation water requirement per unit crop area is estimated by simulating daily soil water balance with crop-related data. Livestock water demand is calculated by combining livestock densities with their drinking water requirements that is a function of air temperature. The results of the ensemble mean show that global irrigation and livestock water demand increased by ~6% and ~12% by 2050 respectively primarily due to higher evaporative demand as a result of increased temperature. At a regional scale, agricultural water demand decreased over some parts of Europe (e.g., Italy, Germany) and Southeast Asia (e.g., the Philippines, Malaysia), but increased over South Asia, the U.S., the Middle East and Africa. However, the projections are highly uncertain over many parts of the world. The results of the ensemble projections in agricultural water demand

  5. Impact of climate change on UK estuaries: A review of past trends and potential projections

    NASA Astrophysics Data System (ADS)

    Robins, Peter E.; Skov, Martin W.; Lewis, Matt J.; Giménez, Luis; Davies, Alan G.; Malham, Shelagh K.; Neill, Simon P.; McDonald, James E.; Whitton, Timothy A.; Jackson, Suzanna E.; Jago, Colin F.

    2016-02-01

    UK estuarine environments are regulated by inter-acting physical processes, including tidal, wave, surge, river discharge and sediment supply. They regulate the fluxes of nutrients, pollutants, pathogens and viruses that determine whether coastlines achieve the Good Environmental Status (GEnS) required by the EU's Marine Strategy Directive. We review 20th century trends and 21st century projections of changes to climatic drivers, and their potential for altering estuarine bio-physical processes. Sea-level rise will cause some marine habitats to expand, and others diminish in area extent. The overall consequences of estuarine morphodynamics to these habitat shifts, and vice-versa, are unknown. Increased temperatures could intensify microbial pathogen concentrations and increase public health risk. The patterns of change of other climatic drivers are difficult to predict (e.g., river flows and storm surges). Projected increased winter river flows throughout UK catchments will enhance the risks of coastal eutrophication, harmful algal blooms and hypoxia in some contexts, although there are spatial variabilities in river flow projections. The reproductive success of estuarine biota is sensitive to saline intrusion and corresponding turbidity maxima, which are projected to gradually shift landwards as a result of sea-level rise. Although more-frequent flushing events in winter and longer periods of drought in summer are predicted, whereby the subsequent estuarine mixing and recovery rates are poorly understood. With rising estuarine salinities, subtidal species can penetrate deeper into estuaries, although this will depend on the resilience/adaptation of the species. Many climate and impact predictions lack resolution and spatial cover. Long-term monitoring and increased research, which considers the catchment-river-estuary-coast system as a whole, is needed to support risk predicting and mitigatory strategies.

  6. Projected Future Distributions of Vectors of Trypanosoma cruzi in North America under Climate Change Scenarios

    PubMed Central

    Garza, Miroslava; Feria Arroyo, Teresa Patricia; Casillas, Edgar A.; Sanchez-Cordero, Victor; Rivaldi, Chissa-Louise; Sarkar, Sahotra

    2014-01-01

    Background Chagas disease kills approximately 45 thousand people annually and affects 10 million people in Latin America and the southern United States. The parasite that causes the disease, Trypanosoma cruzi, can be transmitted by insects of the family Reduviidae, subfamily Triatominae. Any study that attempts to evaluate risk for Chagas disease must focus on the ecology and biogeography of these vectors. Expected distributional shifts of vector species due to climate change are likely to alter spatial patterns of risk of Chagas disease, presumably through northward expansion of high risk areas in North America. Methodology/Principal Findings We forecast the future (2050) distributions in North America of Triatoma gerstaeckeri and T. sanguisuga, two of the most common triatomine species and important vectors of Trypanosoma cruzi in the southern United States. Our aim was to analyze how climate change might affect the future shift of Chagas disease in North America using a maximum entropy algorithm to predict changes in suitable habitat based on vector occurrence points and predictive environmental variables. Projections based on three different general circulation models (CCCMA, CSIRO, and HADCM3) and two IPCC scenarios (A2 and B2) were analyzed. Twenty models were developed for each case and evaluated via cross-validation. The final model averages result from all twenty of these models. All models had AUC >0.90, which indicates that the models are robust. Our results predict a potential northern shift in the distribution of T. gerstaeckeri and a northern and southern distributional shift of T. sanguisuga from its current range due to climate change. Conclusions/Significance The results of this study provide baseline information for monitoring the northward shift of potential risk from Chagas disease in the face of climate change. PMID:24831117

  7. Climate change and projections for the Barents region: what is expected to change and what will stay the same?

    NASA Astrophysics Data System (ADS)

    Benestad, Rasmus E.; Parding, Kajsa M.; Isaksen, Ketil; Mezghani, Abdelkader

    2016-05-01

    We present an outlook for a number of climate parameters for temperature, precipitation, and storm statistics in the Barents region. Projected temperatures exhibited strongest increase over northern Fennoscandia and the high Arctic, exceeding 7 °C by 2099 for a typical ‘warm winter’ under the RCP4.5 scenario. More extreme temperatures may be expected with the RCP8.5, with an increase exceeding 18 °C in some places. The magnitude of the day-to-day variability in temperature is likely to decrease with higher temperatures. The skill of the downscaling models was moderate for the wet-day frequency for which the projections indicated both increases and decreases within the range of -5-+10% by 2099. The downscaled results for the wet-day mean precipitation was poor, but for the warming associated with RCP 4.5, it could result in wet-day mean precipitation being intensified by as much as 70% in 2099. The number of synoptic storms over the Barents Sea was found to increase with a warming in the Arctic, however, other climate parameters may not change much, such as the persistence of the temperature and precipitation. These climate change projections were derived using a new strategy for empirical-statistical downscaling, making use of principal component analysis to represent the local climate parameters and large ensembles of global climate model (GCM) simulations to provide information about the large scales. The method and analysis were validated on three different levels: (a) the representativeness of the GCMs, (b) traditional validation of the downscaling method, and (c) assessment of the ensembles of downscaled results in terms of past trends and interannual variability.

  8. Potential for a hazardous geospheric response to projected future climate changes.

    PubMed

    McGuire, B

    2010-05-28

    Periods of exceptional climate change in Earth history are associated with a dynamic response from the geosphere, involving enhanced levels of potentially hazardous geological and geomorphological activity. The response is expressed through the adjustment, modulation or triggering of a broad range of surface and crustal phenomena, including volcanic and seismic activity, submarine and subaerial landslides, tsunamis and landslide 'splash' waves, glacial outburst and rock-dam failure floods, debris flows and gas-hydrate destabilization. In relation to anthropogenic climate change, modelling studies and projection of current trends point towards increased risk in relation to a spectrum of geological and geomorphological hazards in a warmer world, while observations suggest that the ongoing rise in global average temperatures may already be eliciting a hazardous response from the geosphere. Here, the potential influences of anthropogenic warming are reviewed in relation to an array of geological and geomorphological hazards across a range of environmental settings. A programme of focused research is advocated in order to: (i) understand better those mechanisms by which contemporary climate change may drive hazardous geological and geomorphological activity; (ii) delineate those parts of the world that are most susceptible; and (iii) provide a more robust appreciation of potential impacts for society and infrastructure. PMID:20403831

  9. GAIA: A Project for Exploring Risks and Policy Implications of Climate Change

    NASA Astrophysics Data System (ADS)

    Simpkins, S.; Paxton, L. J.; Babin, S. M.; Pikas, C. K.; Schaefer, R. K.; Swartz, W. H.; Weiss, M.; Darrin, A.

    2010-12-01

    The Johns Hopkins University Applied Physics Laboratory is bringing resources together to create a support environment to address the impact of climate change on national interests with the Global Assimilation of Information for Action (GAIA) project. GAIA is meant to explore consequences, gaps, and resolutions for specific issues that arise from consequences of climate change. For looking at national issues, the usual approach is to 'map' a problem space and 'explore' a solution space, often from the perspective of one sponsoring agency. However, a multi-use application such as GAIA is meant to be responsive to all requests from a myriad of potential perspectives. Symposia and seminars are helpful in scoping issues and gathering information from assembled subject matter experts (SMEs). At APL we have been researching the efficacy of collaborative event designs which provide more robust data collection than the typical seminar, involve more diversity within the community of practice and provide quantitative analysis to underpin subjective conclusions. Participants will be asked to incorporate risk mitigation and behavioral economics into derived recommendations. APL has developed unique data capture methodologies that lend themselves to discovering innovative practices and allowing for deliberate selection of beneficial but less than ideal options; this is seen when the ideal solution has low probability of success or is impractical. The result is a balanced strategy developed by an informed cadre. It is through this process that APL intends to generate robust understanding of community requirements for GAIA and inform an application capable of examining climate change solution space.

  10. Potential for a hazardous geospheric response to projected future climate changes.

    PubMed

    McGuire, B

    2010-05-28

    Periods of exceptional climate change in Earth history are associated with a dynamic response from the geosphere, involving enhanced levels of potentially hazardous geological and geomorphological activity. The response is expressed through the adjustment, modulation or triggering of a broad range of surface and crustal phenomena, including volcanic and seismic activity, submarine and subaerial landslides, tsunamis and landslide 'splash' waves, glacial outburst and rock-dam failure floods, debris flows and gas-hydrate destabilization. In relation to anthropogenic climate change, modelling studies and projection of current trends point towards increased risk in relation to a spectrum of geological and geomorphological hazards in a warmer world, while observations suggest that the ongoing rise in global average temperatures may already be eliciting a hazardous response from the geosphere. Here, the potential influences of anthropogenic warming are reviewed in relation to an array of geological and geomorphological hazards across a range of environmental settings. A programme of focused research is advocated in order to: (i) understand better those mechanisms by which contemporary climate change may drive hazardous geological and geomorphological activity; (ii) delineate those parts of the world that are most susceptible; and (iii) provide a more robust appreciation of potential impacts for society and infrastructure.

  11. Climate change projected fire weather sensitivity: California Santa Ana wind occurrence

    NASA Astrophysics Data System (ADS)

    Miller, Norman L.; Schlegel, Nicole J.

    2006-08-01

    A new method based on global climate model pressure gradients was developed for identifying coastal high-wind fire weather conditions, such as the Santa Ana Occurrence (SAO). Application of this method for determining southern California Santa Ana wind occurrence resulted in a good correlation between derived large-scale SAOs and observed offshore winds during periods of low humidity. The projected change in the number of SAOs was analyzed using two global climate models, one a low temperature sensitivity and the other a middle-temperature sensitivity, both forced with low and high emission scenarios, for three future time periods. This initial analysis shows consistent shifts in SAO events from earlier (September-October) to later (November-December) in the season, suggesting that SAOs may significantly increase the extent of California coastal areas burned by wildfires, loss of life, and property.

  12. Effects of baseline conditions on the simulated hydrologic response to projected climate change

    USGS Publications Warehouse

    Koczot, Kathryn M.; Markstrom, Steven L.; Hay, Lauren E.

    2011-01-01

    Changes in temperature and precipitation projected from five general circulation models, using one late-twentieth-century and three twenty-first-century emission scenarios, were downscaled to three different baseline conditions. Baseline conditions are periods of measured temperature and precipitation data selected to represent twentieth-century climate. The hydrologic effects of the climate projections are evaluated using the Precipitation-Runoff Modeling System (PRMS), which is a watershed hydrology simulation model. The Almanor Catchment in the North Fork of the Feather River basin, California, is used as a case study. Differences and similarities between PRMS simulations of hydrologic components (i.e., snowpack formation and melt, evapotranspiration, and streamflow) are examined, and results indicate that the selection of a specific time period used for baseline conditions has a substantial effect on some, but not all, hydrologic variables. This effect seems to be amplified in hydrologic variables, which accumulate over time, such as soil-moisture content. Results also indicate that uncertainty related to the selection of baseline conditions should be evaluated using a range of different baseline conditions. This is particularly important for studies in basins with highly variable climate, such as the Almanor Catchment.

  13. Simulating Carbon Dynamics and Species Composition Under Projected Changes in Climate in the Puget Sound, Washington, USA

    NASA Astrophysics Data System (ADS)

    Laflower, D.; Hurteau, M. D.

    2014-12-01

    Changing climate has the potential to directly and indirectly alter forest carbon dynamics and species composition, particularly in temperature or precipitation limited systems. In light-limited systems, species-specific response to changing climate could result in an indirect effect of climate through altered competitive interactions. Joint Base Lewis-McChord, in Washington, contains one of the largest intact forested areas in the Puget Sound. Management priorities include development of late-successional forests and conservation. We sought to quantify how projected changes in climate would affect species diversity and carbon (C) sequestration given management priorities. We used Landis-II to simulate forest dynamics over 100 years using current climate and projected climate under two emission scenarios. Preliminary analyses indicate a decrease in soil C, relative to current climate, beginning mid-century for both emission scenarios. Under the low emission scenario, the decrease is compensated by increased aboveground C, while the high scenario experiences a decline in aboveground C. Total ecosystem C was consistent between baseline and low emission climate throughout the simulation. By late-century, the high scenario had an average decrease of 10 Mg C ha-1. Douglas-fir (DF) accounts for the largest fraction of aboveground biomass (AGB) in the study area. Interestingly, DF AGB was fairly consistent between climate scenarios through mid-century, but diverged during late-century, with the high scenario having the greatest amount of DF AGB (mean 368 Mg ha-1) and current climate having the lowest (mean 341 Mg ha-1). We found the inverse relationship when examining all other species. Given the uncertainty associated with climate projections, future simulations will include a larger suite of climate projections and address the secondary effects of climate change (e.g. increased wildfire, disease or insect outbreaks) that can impact productivity.

  14. An Assessment of Uncertainty in Projections of Climate-Induced Changes to U.S. O3 Pollution

    NASA Astrophysics Data System (ADS)

    Selin, N. E.; Garcia Menendez, F.; Monier, E.

    2015-12-01

    We have generated an ensemble simulation of 21st century climate change with over 3,000 years of modeled air quality to explore major sources of uncertainty in projections of climate-induced change to surface O3 over the US. Using the Community Atmosphere Model with Chemistry (CAM-Chem) coupled to the MIT Integrated Global System Model (IGSM-CAM), we are able to evaluate and compare how the three main drivers of uncertainty in climate simulations, emissions scenario, model response and natural variability, propagate to estimates of O3 concentrations. Our simulations of atmospheric chemistry in 2050 and 2100 under three different socioeconomic scenarios, suggest that the climate penalty on US O3 pollution may be substantial (> 5 ppb) under a business-as-usual case. These projections also reveal that greenhouse gas mitigation policies can significantly lessen these impacts. However, large uncertainties in climate models beyond emissions scenario strongly propagate to simulated O3 concentrations. Our results from hundreds of years of simulated air quality under multiple model initializations show that truly isolating the impact of anthropogenic-forced climate change requires multidecadal simulations (>15 years) and natural variability can largely mask climate-induced changes to surface O3 projected prior to 2050, under greenhouse gas mitigation, or for specific regions of the US. Similarly the effect of climate model response, largely ignored in air quality impact assessments, is evaluated by applying different values of climate sensitivity (2.0 - 4.5˚C) within the ensemble. Here again, projected impacts of climate change on O3 are shown to be largely dependent on the magnitude of model response beyond greenhouse gas emissions scenario. Finally, we discuss how uncertainty in air quality projections may further propagate to estimates of health and economic impacts, as well as the implications for cost-benefit climate policy analyses.

  15. Artisticc: An Art and Science Integration Project to Enquire into Community Level Adaptation to Climate Change

    NASA Astrophysics Data System (ADS)

    Vanderlinden, J. P.; Baztan, J.

    2014-12-01

    The prupose of this paper is to present the "Adaptation Research a Transdisciplinary community and policy centered appoach" (ARTisticc) project. ARTisticc's goal is to apply innovative standardized transdisciplinary art and science integrative approaches to foster robust, socially, culturally and scientifically, community centred adaptation to climate change. The approach used in the project is based on the strong understanding that adaptation is: (a) still "a concept of uncertain form"; (b) a concept dealing with uncertainty; (c) a concept that calls for an analysis that goes beyond the traditional disciplinary organization of science, and; (d) an unconventional process in the realm of science and policy integration. The project is centered on case studies in France, Greenland, Russia, India, Canada, Alaska, and Senegal. In every site we jointly develop artwork while we analyzing how natural science, essentially geosciences can be used in order to better adapt in the future, how society adapt to current changes and how memories of past adaptations frames current and future processes. Artforms are mobilized in order to share scientific results with local communities and policy makers, this in a way that respects cultural specificities while empowering stakeholders, ARTISTICC translates these "real life experiments" into stories and artwork that are meaningful to those affected by climate change. The scientific results and the culturally mediated productions will thereafter be used in order to co-construct, with NGOs and policy makers, policy briefs, i.e. robust and scientifically legitimate policy recommendations regarding coastal adaptation. This co-construction process will be in itself analysed with the goal of increasing arts and science's performative functions in the universe of evidence-based policy making. The project involves scientists from natural sciences, the social sciences and the humanities, as well as artitis from the performing arts (playwriters

  16. Climate Modeling and Projections of Global Warming

    NASA Astrophysics Data System (ADS)

    Fung, Inez

    2008-04-01

    Physics of the climate system is captured, with varying degrees of success, in climate models used to hindcast paleoclimates and project future climate change. This talk reviews the formulation of climate models, validation/falsification of processes included, and presents research challenges for advancing projections of future climate change.

  17. Seasonality of flood events in a changing climate - An uncertainty assessment for Europe through the combination of different climate projections

    NASA Astrophysics Data System (ADS)

    Eisner, Stephanie; Voß, Frank; Schneider, Christof

    2010-05-01

    Global climate models (GCMs) project an increasing intensity and frequency of heavy rainfall events due to climate change. As a result, the frequency and magnitude of severe flood events is expected to increase in many regions. Furthermore, a change in the seasonality of flood events can be anticipated. In regions that regularly experience snowmelt floods, for instance, temperature increase will lead to a decreased snow accumulation and to a shortened duration of the snowpack. Thus, the risk of spring floods may be reduced. This study aims to estimate the impact of the projected climate change on the seasonality of flood events in the European region. For this purpose large scale river discharge simulations were carried out with the integrated, global model WaterGAP3 (Water - Global Assessment and Prognosis) with a spatial resolution of the grid cells of 5'. WaterGAP3 couples a hydrological model for the simulation of the terrestrial water cycle with a water use model that computes withdrawal and consumptive water use of the sectors manufacturing, electricity production, agriculture and private households. Thus, on the basis of daily climate input parameters with a spatial resolution of 0.5° and downscaled to the 5' grid scale level daily stream flow was simulated and analyzed. First, the seasonality of flood events of defined recurrence periods was determined for the reference period 1961-1990 and validated against measured river discharge data. Subsequently, WaterGAP3 was forced with bias corrected time series originating from simulation runs of different GCMs for the scenario period 2071-2100. To asses the uncertainty that arises from the GCM output used as input forcing to the hydrological model, the calculations were carried out for three different GCMs (Echam5, CNRM, ISLP) and two emission scenarios (A2 and B1 of the IPCC SRES scenarios), respectively. The study demonstrates that the selection of a particular GCM is a major source of uncertainty in assessing

  18. Methodological framework for projecting the potential loss of intraspecific genetic diversity due to global climate change

    PubMed Central

    2012-01-01

    Background While research on the impact of global climate change (GCC) on ecosystems and species is flourishing, a fundamental component of biodiversity – molecular variation – has not yet received its due attention in such studies. Here we present a methodological framework for projecting the loss of intraspecific genetic diversity due to GCC. Methods The framework consists of multiple steps that combines 1) hierarchical genetic clustering methods to define comparable units of inference, 2) species accumulation curves (SAC) to infer sampling completeness, and 3) species distribution modelling (SDM) to project the genetic diversity loss under GCC. We suggest procedures for existing data sets as well as specifically designed studies. We illustrate the approach with two worked examples from a land snail (Trochulus villosus) and a caddisfly (Smicridea (S.) mucronata). Results Sampling completeness was diagnosed on the third coarsest haplotype clade level for T. villosus and the second coarsest for S. mucronata. For both species, a substantial species range loss was projected under the chosen climate scenario. However, despite substantial differences in data set quality concerning spatial sampling and sampling depth, no loss of haplotype clades due to GCC was predicted for either species. Conclusions The suggested approach presents a feasible method to tap the rich resources of existing phylogeographic data sets and guide the design and analysis of studies explicitly designed to estimate the impact of GCC on a currently still neglected level of biodiversity. PMID:23176586

  19. Analysis of projected climate change in the Carpathian Basin region based on Holdridge life zone system

    NASA Astrophysics Data System (ADS)

    Szelepcsényi, Zoltán; Breuer, Hajnalka; Sümegi, Pál

    2014-05-01

    Nowadays more and more environmental lobbyists believe that climate change must be demonstrated in a new form. The estimated temperature increase can be realized more easily, if the emphasis is on ecological effects of the predicted temperature. For this reason a bioclimatic classification method was used to analyse the projected changes for the Carpathian Basin region. We applied the Holdridge life zone system, which is relatively simple, so our results can be used to inform the population. Holdridge developed a geometric model for climate classification which declares the relationship between classes (life zones) and climate indices (mean annual biotemperature, average total annual precipitation, potential evapotranspiration ratio). The necessary data for this study was derived from regional climate model (RCM) experiments of the ENSEMBLES project using the SRES A1B emission scenario. The temperature and precipitation data series were bias corrected for the selected RCM simulations. The target area of our investigations is the Carpathian Basin region. Life zones maps were created using the selected RCM simulations and their ensemble mean for the periods: 1961-1990 (T1), 2021-2050 (T2), 2061-2090 (T3). The spatial distribution of life zones and their temporal changes were investigated. According to our results the spatial pattern of life zones changes significantly from T1 to T3. It is possible that some types of life zones (e.g. boreal rain forest) will disappear; and some types (e.g. warm temperate thorn steppe) will appear in the target area. We determined those RCM simulations which predicted the maximum and minimum changes of the spatial pattern of life zones. Maps of T1 were compared to maps of T3 using Cohen's Kappa coefficient. Furthermore, relative extents, vertical distribution patterns and mean centres of life zones have been analysed. These parameters were defined for each decade and also for T1, T2 and T3. The temporal changes of the decadal values

  20. Observed and projected climate change implications for urban infrastructure and society in the Russian Arctic

    NASA Astrophysics Data System (ADS)

    Streletskiy, D. A.; Shiklomanov, N. I.; Efimov, S. V.; Shkolnik, I.

    2012-12-01

    The discoveries of mineral resources followed by an extensive economic development of the Russian North in 1960s led to a development of complex infrastructure on permafrost and urbanization of the Russian Arctic. Despite the mass migration from the northern regions, followed by the collapse of the Soviet Union and the diminishing government support, the Russian Arctic inherited massive infrastructure and remained predominantly urban. Currently, only in five districts bordering Arctic Ocean more than 1.4 million people live in urban-style buildings built on permafrost. Majority of the buildings are constructed assuming the equilibrium conditions of heat-exchange between atmosphere and permafrost underneath. This is usually achieved by construction on piles with ventilated cellars allowing ground cooling in a winter and shading in a summer. The ability of the foundations to carry structural load or foundation bearing capacity (FBC) depends on permafrost properties and changes according to permafrost temperature and active-layer depth. Climate warming observed in recent decades created conditions of diminishing FBC and resulted in deformations and failures of structures built on permafrost. This work is focused on quantitative assessment of these changes at a regional scale. In order to estimate the role of climate change on stability of structures build according to the passive principle, the permafrost-geotechnical model was developed. The historical changes were assessed by comparing model results for period associated with industrialization and construction boom in the Russian North (1965-1975) and present conditions (1995-2005) using NCEP climatic datasets. Projected changes in FBC according to A2 IPCC scenario for the mid-21st century (2041-2060) relative to baseline period (1981-2000) were assessed using output from the ensemble of MGO RCM climate change simulations. It has been found that substantial decrease in FBC will likely occur for the majority of

  1. Evaluating the Contribution of Natural Variability and Climate Model Response to Uncertainty in Projections of Climate Change Impacts on U.S. Air Quality

    EPA Science Inventory

    We examine the effects of internal variability and model response in projections of climate impacts on U.S. ground-level ozone across the 21st century using integrated global system modeling and global atmospheric chemistry simulations. The impact of climate change on air polluti...

  2. Projected changes to high temperature events for Canada based on a regional climate model ensemble

    NASA Astrophysics Data System (ADS)

    Jeong, Dae Il; Sushama, Laxmi; Diro, Gulilat Tefera; Khaliq, M. Naveed; Beltrami, Hugo; Caya, Daniel

    2016-05-01

    Extreme hot spells can have significant impacts on human society and ecosystems, and therefore it is important to assess how these extreme events will evolve in a changing climate. In this study, the impact of climate change on hot days, hot spells, and heat waves, over 10 climatic regions covering Canada, based on 11 regional climate model (RCM) simulations from the North American Regional Climate Change Assessment Program for the June to August summer period is presented. These simulations were produced with six RCMs driven by four Atmosphere-Ocean General Circulation Models (AOGCM), for the A2 emission scenario, for the current 1970-1999 and future 2040-2069 periods. Two types of hot days, namely HD-1 and HD-2, defined respectively as days with only daily maximum temperature (Tmax) and both Tmax and daily minimum temperature (Tmin) exceeding their respective thresholds (i.e., period-of-record 90th percentile of Tmax and Tmin values), are considered in the study. Analogous to these hot days, two types of hot spells, namely HS-1 and HS-2, are identified as spells of consecutive HD-1 and HD-2 type hot days. In the study, heat waves are defined as periods of three or more consecutive days, with Tmax above 32 °C threshold. Results suggest future increases in the number of both types of hot days and hot spell events for the 10 climatic regions considered. However, the projected changes show high spatial variability and are highly dependent on the RCM and driving AOGCM combination. Extreme hot spell events such as HS-2 type hot spells of longer duration are expected to experience relatively larger increases compared to hot spells of moderate duration, implying considerable heat related environmental and health risks. Regionally, the Great Lakes, West Coast, Northern Plains, and Maritimes regions are found to be more affected due to increases in the frequency and severity of hot spells and/or heat wave characteristics, requiring more in depth studies for these regions

  3. Climate change projection for the western tropical Pacific Ocean using a high-resolution ocean model: Implications for tuna fisheries

    NASA Astrophysics Data System (ADS)

    Matear, R. J.; Chamberlain, M. A.; Sun, C.; Feng, M.

    2015-03-01

    The Western Pacific Warm Pool is a region of high tuna catch, and how future climate change might impact the tuna fisheries is an important regional issue. By using a high-resolution ocean model forced by the simulated climate of the 2060s, we investigate whether enhanced spatial resolution and bias correction of the mean state could alter the climate change projection for the western tropical Pacific and examine the consequences this might have for tropical tuna distributions. For most of the physical environmental variables, enhanced resolution and bias correction had only a minor impact on the projected changes. The climate projections showed a maximum surface warming east of the Warm Pool, a shoaling of the thermocline in the Warm Pool, and an eastward expansion of the Warm Pool. In the Warm Pool, the shoaling of the thermocline raises the nutricline into the photic zone and increases phytoplankton and primary productivity, a feature that is most evident in the high-resolution model projection but also weakly present in the coarse-resolution projection. The phytoplankton and primary productivity response to climate change was where ocean model resolution produced a clear difference. With enhanced resolution, the simulation had stronger and better-defined zonal currents, which were more consistent with observations. Along the equator, the high-resolution model enabled vertical current shear mixing to generate a sub-surface phytoplankton maximum both inside and outside the Warm Pool, which is an observed phenomenon. With climate change, the enhanced-resolution model projected enhanced vertical shear mixing, increased vertical supply of nutrients to the photic zone, and increased sub-surface phytoplankton concentrations. The increase in sub-surface phytoplankton concentrations helps to offset the decline in surface phytoplankton concentrations and results in a projection of almost no change in the western tropical Pacific primary productivity. In contrast, the low

  4. Projecting Future Land Use Changes in West Africa Driven by Climate and Socioeconomic Factors: Uncertainties and Implications for Adaptation

    NASA Astrophysics Data System (ADS)

    Wang, G.; Ahmed, K. F.; You, L.

    2015-12-01

    Land use changes constitute an important regional climate change forcing in West Africa, a region of strong land-atmosphere coupling. At the same time, climate change can be an important driver for land use, although its importance relative to the impact of socio-economic factors may vary significant from region to region. This study compares the contributions of climate change and socioeconomic development to potential future changes of agricultural land use in West Africa and examines various sources of uncertainty using a land use projection model (LandPro) that accounts for the impact of socioeconomic drivers on the demand side and the impact of climate-induced crop yield changes on the supply side. Future crop yield changes were simulated by a process-based crop model driven with future climate projections from a regional climate model, and future changes of food demand is projected using a model for policy analysis of agricultural commodities and trade. The impact of human decision-making on land use was explicitly considered through multiple "what-if" scenarios to examine the range of uncertainties in projecting future land use. Without agricultural intensification, the climate-induced decrease of crop yield together with increase of food demand are found to cause a significant increase in agricultural land use at the expense of forest and grassland by the mid-century, and the resulting land use land cover changes are found to feed back to the regional climate in a way that exacerbates the negative impact of climate on crop yield. Analysis of results from multiple decision-making scenarios suggests that human adaptation characterized by science-informed decision making to minimize land use could be very effective in many parts of the region.

  5. An analysis of European riverine flood risk and adaptation measures under projected climate change

    NASA Astrophysics Data System (ADS)

    Bouwer, Laurens; Burzel, Andreas; Holz, Friederike; Winsemius, Hessel; de Bruijn, Karind

    2015-04-01

    There is increasing need to assess costs and benefits of adaptation at scales beyond the river basin. In Europe, such estimates are required at the European scale in order to set priorities for action and financing, for instance in the context of the EU Adaptation Strategy. The goal of this work as part of the FP7 BASE project is to develop a flood impact model that can be applied at Pan-European scale and that is able to project changes in flood risk due to climate change and socio-economic developments, and costs of adaptation. For this research, we build upon the global flood hazard estimation method developed by Winsemius et al. (Hydrology and Earth System Sciences, 2013), that produces flood inundation maps at different return period, for present day (EU WATCH) and future climate (IPCC scenarios RCP4.5 and 8.5, for five climate models). These maps are used for the assessment of flood impacts. We developed and tested a model for assessing direct economic flood damages by using large scale land use maps. We characterise vulnerable land use functions, in particular residential, commercial, industrial, infrastructure and agriculture, using depth-damage relationships. Furthermore, we apply up to NUTS3 level information on Gross Domestic Product, which is used as a proxy for relative differences in maximum damage values between different areas. Next, we test two adaptation measures, by adjusting flood protection levels and adjusting damage functions. The results show the projected changes in flood risk in the future. For example, on NUTS2 level, flood risk increases in some regions up to 179% (between the baseline scenario 1960-1999 and time slice 2010-2049). On country level there are increases up to 60% for selected climate models. The conference presentation will show the most relevant improvements in damage modelling on the continental scale, and results of the analysis of adaptation measures. The results will be critically discussed under the aspect of major

  6. The NASA Innovations in Climate Education Project: 'Instructional Strategies for Expanding Climate Change Concepts within Readng/Literacy Skills

    NASA Astrophysics Data System (ADS)

    Walton-Jaggers, L. J.; Johnson, D.; Hayden, L. B.; Hale, S. R.

    2013-12-01

    The Common Core State Standards (CCSS) provide a consistent, clear understanding of what students are expected to learn, so teachers and parents know what they need to do to help them. In 2010 the standards were designed to be robust and relevant to the real world, reflecting the knowledge and skills that young people need for success in college and careers. In 2013 the Next Generation Science Standards (NGSS) in connection with the CCSS developed revised science standards in performance, prior standards documents listed what students should know or understand, foundations were each performance expectation incorporates all three dimensions from a science or engineering practice, a core disciplinary idea, and a crosscutting concept, and coherence that connects each set of performance expectations lists connections to other ideas within the disciplines of science and engineering. Elizabeth City State University (ECSU) in Elizabeth City, North Carolina has joined with the University of New Hampshire (UNH) in Durham, New Hampshire under the NASA Innovations in Climate Education (NICE) grant to empower faculty of education programs at Minority Serving Institutions (MSIs) to better engage their pre-service teachers in teaching and learning about global climate change through the use of NASA Earth observation sets. Specifically, professors from MSIs received training with Global Positioning Systems (GPS) and GES-DISC Interactive Online Visualization And aNalysis Infrastructure (GIOVANNI) to engage pre-service teachers in facets of climate education. Grambling State University faculty members served as participants of the NICE workshop for 2012 and were encouraged to develop lessons in climate education from information shared at the workshop. A corresponding project that incorporated the CCSS and NGSS at Grambling State University in Grambling, Louisiana was headed by Dr. Loretta Jaggers. This paper documents activities that pre-service students in the GSU Curriculum and

  7. Creative Climate: A global ten-year communications, research and learning project about environmental change

    NASA Astrophysics Data System (ADS)

    Brandon, M. A.; Smith, J.

    2010-12-01

    The next ten years have been described by influential science and policy figures as ‘the most important in human history’. Many believe that the actions taken will decide whether we catastrophically change the atmosphere and eradicate our fellow species or find an alternative, less-damaging development path. But communications and public engagement initiatives have tended to focus on near term impacts or debates - whether they emphasise hazards, or trumpet ‘solutions’. There are signs of diminishing returns on communications and public engagement efforts, and serious obstacles to engaging around 40% of publics in e.g. the US and the UK. The Creative Climate web project takes a new approach, inviting people to see humanity’s intellectual and practical journey with these issues as an inspiring, dynamic and unfolding story. We are inviting people to join us in building a huge living archive of experiences and ideas that respond to these issues. The website will collect thoughts and stories from doorstep to workplace, from lab to garden; from international conference to community meeting - from all over the world. The body of diaries lie at the core of the project, but these are supplemented by the offer of free online learning resources and broadcast-quality audio and video materials. The project is experimental in terms of its scope, its approach to environmental communications and debate and in its use of media. It works with formal partners, including the BBC, yet also makes the most of the opportunities for user generated content to create a rich multimedia resource that can support research, learning and engagement. The design of the project is informed by environmental social science and communications research, and by an awareness of the unfolding potential of Internet based communications to support social change. It is also intended that the Creative Climate platform will develop so as to serve researchers by offering an open resource of qualitative

  8. Understanding climate change projections for precipitation over Western Europe with a weather typing approach

    NASA Astrophysics Data System (ADS)

    Santos, João A.; Belo-Pereira, Margarida; Fraga, Helder; Pinto, Joaquim G.

    2016-04-01

    Precipitation over Western Europe (WE) is projected to increase (decrease) roughly northward (equatorward) of 50°N during the twenty first century. These changes are generally attributed to alterations in the regional large-scale circulation, e.g. jet stream, cyclone activity and blocking frequencies. A novel weather typing within the sector (30°W-10°E, 25-70°N) is used for a more comprehensive dynamical interpretation of precipitation changes. A k-means clustering on daily mean sea level pressure was undertaken for ERA-Interim reanalysis (1979-2014). Eight weather types are identified: S1, S2, S3 (summertime types), W1, W2, W3 (wintertime types), B1 and B2 (blocking-like types). Their distinctive dynamical characteristics allow identifying the main large-scale precipitation-driving mechanisms. Simulations with 22 CMIP5 models for recent climate conditions show biases in reproducing the observed seasonality of weather types. In particular, an overestimation of weather type frequencies associated with zonal airflow is identified. Considering projections following the RCP8.5 scenario over 2071-2100, the frequencies of the three driest types (S1, B2 and W3) are projected to increase (mainly S1, +4%) in detriment of the rainiest types, particularly W1 (-3%). These changes explain most of the precipitation projections over WE. However, a weather type-independent background signal is identified (increase/decrease in precipitation over northern/southern WE), suggesting modifications in precipitation-generating processes and/or model inability to accurately simulate these processes. Despite these caveats in the precipitation scenarios for WE, which must be taken into account, our approach permits a better understanding of the projected trends for precipitation over Western Europe.

  9. Accounting for Impacts of Natural Disturbances on Climate Change Mitigation Projects in Tropical Forests (Invited)

    NASA Astrophysics Data System (ADS)

    Birdsey, R.; Dai, Z.; Hernandez, J.; Johnson, K. D.; Vargas, R.

    2013-12-01

    Most forests in the world are recovering from natural or human-induced disturbances -- the fraction of the world's forests disturbed each year by fire and insects alone is conservatively estimated by FAO to be 2.6%. Natural disturbances are common in many tropical forest areas and have significant impacts on carbon stocks. For example, emissions from wildfires in tropical forests are estimated to exceed 700 TgC yr-1 annually, with significant interannual variability related to global weather cycles. Several lines of evidence point toward long-term climate-induced increases in natural disturbances, with the potential for changing the world's terrestrial ecosystems from a sink to a source of CO2. This raises the important question of whether forests can be an effective part of a climate change mitigation strategy and concurrently, how to account for the effects of disturbances separately from the effects of changes in land use or forest management. Although global and regional studies have made some good progress to quantify the impacts of natural disturbances, it remains a technical challenge to separate or 'factor out' the impacts of natural disturbances from other causes of changes in carbon stocks, such as vegetation regrowth and CO2 fertilization, when developing the accounting and monitoring systems required to support climate change mitigation projects. We tested one approach in the semi-deciduous dry forests of the Yucatan Peninsula of Mexico using the ecosystem process model DNDC. Spatial variability in simulated C stocks reflects variations in stand age, vegetation type, soil characteristics and disturbance. Disturbances that occurred between 1985 and 2010 led to a mean decrease in C stocks of 3.2 Mg C ha-1 in 2012 not including forestland lost to crops and urban land uses. Other approaches may be possible for factoring out specific causes of changes in carbon stocks, but the IPCC has twice determined that none of the currently available alternatives is

  10. Spatial and body-size dependent response of marine pelagic communities to projected global climate change.

    PubMed

    Lefort, Stelly; Aumont, Olivier; Bopp, Laurent; Arsouze, Thomas; Gehlen, Marion; Maury, Olivier

    2015-01-01

    Temperature, oxygen, and food availability directly affect marine life. Climate models project a global warming of the ocean's surface (~+3 °C), a de-oxygenation of the ocean's interior (~-3%) and a decrease in total marine net primary production (~-8%) under the 'business as usual' climate change scenario (RCP8.5). We estimated the effects of these changes on biological communities using a coupled biogeochemical (PISCES)--ecosystems (APECOSM) model forced by the physical outputs of the last generation of the IPSL-CM Earth System Model. The APECOSM model is a size-structured bio-energetic model that simulates the 3D dynamical distributions of three interactive pelagic communities (epipelagic, mesopelagic, and migratory) under the effects of multiple environmental factors. The PISCES-APECOSM model ran from 1850 to 2100 under historical forcing followed by RCP8.5. Our RCP8.5 simulation highlights significant changes in the spatial distribution, biomass, and maximum body-size of the simulated pelagic communities. Biomass and maximum body-size increase at high latitude over the course of the century, reflecting the capacity of marine organisms to respond to new suitable environment. At low- and midlatitude, biomass and maximum body-size strongly decrease. In those regions, large organisms cannot maintain their high metabolic needs because of limited and declining food availability. This resource reduction enhances the competition and modifies the biomass distribution among and within the three communities: the proportion of small organisms increases in the three communities and the migrant community that initially comprised a higher proportion of small organisms is favored. The greater resilience of small body-size organisms resides in their capacity to fulfill their metabolic needs under reduced energy supply and is further favored by the release of predation pressure due to the decline of large organisms. These results suggest that small body-size organisms might be

  11. Detecting changes in seasonal precipitation extremes using regional climate model projections: Implications for managing fluvial flood risk

    NASA Astrophysics Data System (ADS)

    Fowler, H. J.; Wilby, R. L.

    2010-03-01

    There is growing evidence of coherent, global patterns of change in annual precipitation and runoff with high latitudes experiencing increases consistent with climate model projections. This paper describes a methodology for estimating detection times for changes in seasonal precipitation extremes. The approach is illustrated using changes in UK precipitation projected by the European Union PRUDENCE climate model ensemble. We show that because of high variability from year to year and confounding factors, detection of anthropogenic climate change at regional scales is not generally expected for decades to come. Overall, the earliest detection times were found for 10 day winter precipitation totals with 10 year return period in SW England. In this case, formal detection could be possible within a decade from now if the climate model projections are realized. The outlook for changes in summer flash flood risk is highly uncertain. Our analysis further demonstrates that existing precautionary allowances for climate change used for flood management may not be sufficiently robust in NE England and east Scotland. These findings imply that for certain types of flood mechanism, adaptation decisions might have to be taken in advance of formally detected changes in flood risk. This reinforces the case for long-term environmental monitoring and reporting of climate change indices at "sentinel" locations.

  12. A big data approach for climate change indicators processing in the CLIP-C project

    NASA Astrophysics Data System (ADS)

    D'Anca, Alessandro; Conte, Laura; Palazzo, Cosimo; Fiore, Sandro; Aloisio, Giovanni

    2016-04-01

    Defining and implementing processing chains with multiple (e.g. tens or hundreds of) data analytics operators can be a real challenge in many practical scientific use cases such as climate change indicators. This is usually done via scripts (e.g. bash) on the client side and requires climate scientists to take care of, implement and replicate workflow-like control logic aspects (which may be error-prone too) in their scripts, along with the expected application-level part. Moreover, the big amount of data and the strong I/O demand pose additional challenges related to the performance. In this regard, production-level tools for climate data analysis are mostly sequential and there is a lack of big data analytics solutions implementing fine-grain data parallelism or adopting stronger parallel I/O strategies, data locality, workflow optimization, etc. High-level solutions leveraging on workflow-enabled big data analytics frameworks for eScience could help scientists in defining and implementing the workflows related to their experiments by exploiting a more declarative, efficient and powerful approach. This talk will start introducing the main needs and challenges regarding big data analytics workflow management for eScience and will then provide some insights about the implementation of some real use cases related to some climate change indicators on large datasets produced in the context of the CLIP-C project - a EU FP7 project aiming at providing access to climate information of direct relevance to a wide variety of users, from scientists to policy makers and private sector decision makers. All the proposed use cases have been implemented exploiting the Ophidia big data analytics framework. The software stack includes an internal workflow management system, which coordinates, orchestrates, and optimises the execution of multiple scientific data analytics and visualization tasks. Real-time workflow monitoring execution is also supported through a graphical user

  13. Use of the Seasons and Biomes Project in Climate Change Education

    NASA Astrophysics Data System (ADS)

    Sparrow, E. B.; Morris, K.; . Jaroensutasinee, M.; Jaroensutasinee, K.; Yule, S.; Boger, R.; Gordon, L. S.; Yoshikawa, K.; Kopplin, M. R.; Verbyla, D. L.

    2009-04-01

    The Seasons and Biomes Project is an inquiry- and project- based initiative that monitors seasons, specifically their interannual variability, with the goal of increasing primary and secondary students' understanding of the earth system, and engaging them in research as a way of learning science, understanding climate change, contributing to climate change studies and participating in the fourth International Polar Year. International professional development workshops have been conducted in the United States, S. Africa, Germany and most recently in Thailand. Primary and secondary teachers and teacher trainers as well as scientists from Argentina, Bahrain, Cameroon, Canada, Czech Republic, Estonia, Germany, Greenland, India, Peru, Paraguay, Mongolia, Norway, Saudi Arabia, South Africa, Switzerland, Thailand and the United States have participated in the training workshops and are working with students. Available to the Seasons and Biomes participants are the rich array of scientific protocols for investigations on atmosphere/weather, hydrology, soils, land cover biology, and phenology as well as learning activities which have been developed by the Global Learning and Observations to Benefit the Environment program (GLOBE) program (www.globe.gov). GLOBE is an international (109 countries involved) earth/environmental science and education program that brings together scientists, teachers, students and parents in inquiry-based studies and in monitoring the Earth, increasing awareness of and care of the environment, and increasing student achievement across the curriculum. Students conduct their studies at or close to their schools and submit the data they have collected to the Data Archive on the GLOBE website. Seasons and Biomes has developed additional learning activities and measurement protocols such as freshwater ice phenology protocols (freeze-up and break-up) and a frost tube (depth of freezing in soils) protocol that are being used in schools. A mosquito

  14. Projection of future temperature-related mortality due to climate and demographic changes.

    PubMed

    Lee, Jae Young; Kim, Ho

    2016-09-01

    Understanding the effects of global climate change from both environmental and human health perspectives has gained great importance. Particularly, studies on the direct effect of temperature increase on future mortality have been conducted. However, few of those studies considered population changes, and although the world population is rapidly aging, no previous study considered the effect of society aging. Here we present a projection of future temperature-related mortality due to both climate and demographic changes in seven major cities of South Korea, a fast aging country, until 2100; we used the HadGEM3-RA model under four Representative Concentration Pathway (RCP) scenarios (RCP 2.6, 4.5, 6.0, and 8.5) and the United Nations world population prospects under three fertility scenarios (high, medium, and low). The results showed markedly increased mortality in the elderly group, significantly increasing the overall future mortality. In 2090s, South Korea could experience a four- to six-time increase in temperature-related mortality compared to that during 1992-2010 under four different RCP scenarios and three different fertility variants, while the mortality is estimated to increase only by 0.5 to 1.5 times assuming no population aging. Therefore, not considering population aging may significantly underestimate temperature risks.

  15. Projection of future temperature-related mortality due to climate and demographic changes.

    PubMed

    Lee, Jae Young; Kim, Ho

    2016-09-01

    Understanding the effects of global climate change from both environmental and human health perspectives has gained great importance. Particularly, studies on the direct effect of temperature increase on future mortality have been conducted. However, few of those studies considered population changes, and although the world population is rapidly aging, no previous study considered the effect of society aging. Here we present a projection of future temperature-related mortality due to both climate and demographic changes in seven major cities of South Korea, a fast aging country, until 2100; we used the HadGEM3-RA model under four Representative Concentration Pathway (RCP) scenarios (RCP 2.6, 4.5, 6.0, and 8.5) and the United Nations world population prospects under three fertility scenarios (high, medium, and low). The results showed markedly increased mortality in the elderly group, significantly increasing the overall future mortality. In 2090s, South Korea could experience a four- to six-time increase in temperature-related mortality compared to that during 1992-2010 under four different RCP scenarios and three different fertility variants, while the mortality is estimated to increase only by 0.5 to 1.5 times assuming no population aging. Therefore, not considering population aging may significantly underestimate temperature risks. PMID:27316627

  16. Can air temperature be used to project influences of climate change on stream temperature?

    USGS Publications Warehouse

    Arismendi, Ivan; Safeeq, Mohammad; Dunham, Jason B.; Johnson, Sherri L.

    2014-01-01

    Worldwide, lack of data on stream temperature has motivated the use of regression-based statistical models to predict stream temperatures based on more widely available data on air temperatures. Such models have been widely applied to project responses of stream temperatures under climate change, but the performance of these models has not been fully evaluated. To address this knowledge gap, we examined the performance of two widely used linear and nonlinear regression models that predict stream temperatures based on air temperatures. We evaluated model performance and temporal stability of model parameters in a suite of regulated and unregulated streams with 11–44 years of stream temperature data. Although such models may have validity when predicting stream temperatures within the span of time that corresponds to the data used to develop them, model predictions did not transfer well to other time periods. Validation of model predictions of most recent stream temperatures, based on air temperature–stream temperature relationships from previous time periods often showed poor performance when compared with observed stream temperatures. Overall, model predictions were less robust in regulated streams and they frequently failed in detecting the coldest and warmest temperatures within all sites. In many cases, the magnitude of errors in these predictions falls within a range that equals or exceeds the magnitude of future projections of climate-related changes in stream temperatures reported for the region we studied (between 0.5 and 3.0 °C by 2080). The limited ability of regression-based statistical models to accurately project stream temperatures over time likely stems from the fact that underlying processes at play, namely the heat budgets of air and water, are distinctive in each medium and vary among localities and through time.

  17. A prospective project of the Chang'E Program: Engaging the Moon in the study of terrestrial climate change

    NASA Astrophysics Data System (ADS)

    Huang, S.; Li, C.; Li, J.; Wang, J.; Shi, Y.

    The 20th century global warming is well documented in the world-wide meteorological record Still under heated debate are the influences of natural forcing such as fluctuation in solar irradiance and anthropogenic forcing such as greenhouse effect Both solar irradiance and greenhouse effect affect the energy budget of the climate system of Earth Of fundamental importance to our ability to predict future climate change is to separate the contributions of these two factors However it has not been an easy task because experiments and observations on the Earth s surface are also influenced by both factors Accurate measurement of solar and terrestrial radiations was not possible until high precision and self-calibrating solar probes were lofted into orbit by spacecraft a quarter century ago But man-made satellites have very limited life spans and Earth-observing angles Reliable detection of the change in the energy budget of the terrestrial climate system requires the construction of composite records utilizing overlapping data for cross calibration of measurements from different radiometers The lack of long term continuous monitoring from a permanent observatory has made the task difficult and sometimes controversial The Moon is a unique platform for the detection and study of the radiation budget variation of the terrestrial climate system There is no complication of human activities or atmosphere in the lunar climate system Indeed important hint may already exist in the lunar surface temperature from the Apollo 15 landing site As a bonus of

  18. Projected climate change for the coastal plain region of Georgia, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climatic patterns for the Coastal Plain region of Georgia, USA, centered on Tifton, Georgia (31 28 30N, 83 31 54W) were examined for long term patterns in precipitation and air temperature. Climate projections based upon output from seven Global Circulation Models (GCMs) and three future Green Hous...

  19. Research project on CO{sub 2}-induced climate change. Progress report, March 1, 1993--February 28, 1994

    SciTech Connect

    Cess, R.D.; Hameed, S.

    1994-03-01

    This summary of current progress in the research project at SUNY Stony Brook on CO{sub 2}-induced climate change is classified into three tasks corresponding to the task categories in the US DOE/PRC CAS cooperative project on climate change. Task 1, is concerned with intercomparison of CO{sub 2} related climatic warming in contemporary general circulation models. Task 2, aims at understanding the natural variability in climatic data and comparing its significant features between observations and model simulations. Task 3, focuses on analysis of historical climate data developed at the Institute of Geography of the Chinese Academy of Sciences. A summary of current research for all tasks is presented in this paper.

  20. Using and Applying Focus Groups in Climate Change Impact Assessment Projects

    NASA Astrophysics Data System (ADS)

    DeLorme, D.; Hagen, S.

    2011-12-01

    The focus group social science research method is an efficient and flexible data collection tool with broad applicability across disciplines and contexts. Through group dynamics, this interviewing approach offers strengths in gathering candid, spontaneous comments and detailed firsthand descriptions from stakeholders' perspectives. The method, which can stand alone or be integrated with other research frameworks, has much potential for helping to manage complex issues of global change. For optimal outcomes, however, careful planning and procedures are paramount. This presentation offers guidance in this regard via examples, tips, and lessons learned from a multidisciplinary NOAA-funded project: Ecological Effects of Sea Level Rise in the Northern Gulf of Mexico (EESLR-NGOM). Focus groups are a key component of the EESLR-NGOM project as they are being used to better understand coastal resource managers' operational and information behaviors and needs regarding sea level rise (SLR), erosion, and hurricane storm surge impact; to learn how to best develop and translate the project's expected scientific results into straightforward, useful, and readily-disseminated products; and to gather outreach recommendations. As part of an EESLR-NGOM project kickoff workshop, 12 coastal resource managers participated voluntarily in a focus group. A summary of findings and illustrative participant quotations will be included in the presentation. The initial focus group was productive in gaining insights into challenges and opportunities associated with a climate change project such as the EESLR-NGOM. It highlighted the importance of considering the interrelationships of natural and built environments and new avenues for resilience and sustainability. The coastal resource managers are not only end-users but also opinion leaders in their local communities who will diffuse this information widely through their networks of other potential end-users. Engaging coastal resource managers in

  1. Project Summary (2012-2015) – Carbon Dynamics of the Greater Everglades Watershed and Implications of Climate Change

    SciTech Connect

    Hinkle, Ross; Benscoter, Brian; Comas, Xavier; Sumner, David; DeAngelis, Donald

    2015-04-07

    Carbon Dynamics of the Greater Everglades Watershed and Implications of Climate Change The objectives of this project are to: 1) quantify above- and below-ground carbon stocks of terrestrial ecosystems along a seasonal hydrologic gradient in the headwaters region of the Greater Everglades watershed; 2) develop budgets of ecosystem gaseous carbon exchange (carbon dioxide and methane) across the seasonal hydrologic gradient; 3) assess the impact of climate drivers on ecosystem carbon exchange in the Greater Everglades headwater region; and 4) integrate research findings with climate-driven terrestrial ecosystem carbon models to examine the potential influence of projected future climate change on regional carbon cycling. Note: this project receives a one-year extension past the original performance period - David Sumner (USGS) is not included in this extension.

  2. Soil organic carbon of European forest soils: current stock and projections under climate change conditions

    NASA Astrophysics Data System (ADS)

    Caddeo, Antonio; Marras, Serena; Spano, Donatella; Sirca, Costantino

    2016-04-01

    Soil organic carbon (SOC) represents the largest terrestrial carbon pool, and it is subjected to climate change impacts. In Europe, a limited number of studies makes a wide-scale comparison of SOC stock and changes under climate change conditions, and most of them are related to agricultural soils. In this work, the SOC stock of the forested areas of Europe (obtained from the CORINE 2006 Land Use Map) was assessed at 1 km resolution using the agro-ecosystem SOC model CENTURY. The results of the model were compared with independent observational datasets (i.e. LUCAS Topsoil Survey Database). In addition, climate simulations (RCPs 4.5 and 8.5) using the CMCC (Euro-Mediterranean Centre on Climate Change) and the CORDEX dataset were used to estimate the SOC changes of these areas under climate change conditions.

  3. Northern Winter Climate Change: Assessment of Uncertainty in CMIP5 Projections Related to Stratosphere-Troposphere Coupling

    NASA Technical Reports Server (NTRS)

    Manzini, E.; Karpechko, A.Yu.; Anstey, J.; Shindell, Drew Todd; Baldwin, M.P.; Black, R.X.; Cagnazzo, C.; Calvo, N.; Charlton-Perez, A.; Christiansen, B.; Davini, Paolo; Gerber, E.; Giorgetta, M.; Gray, L.; Hardiman, S.C.; Lee, Y.-Y.; Marsh, D.R.; McDaniel, B.A.; Purich, A.; Scaife, A.A.; Shindell, Drew; Son, S.-W; Watanabe, S.; Zappa, G.

    2014-01-01

    Future changes in the stratospheric circulation could have an important impact on northern winter tropospheric climate change, given that sea level pressure (SLP) responds not only to tropospheric circulation variations but also to vertically coherent variations in troposphere-stratosphere circulation. Here we assess northern winter stratospheric change and its potential to influence surface climate change in the Coupled Model Intercomparison Project-Phase 5 (CMIP5) multimodel ensemble. In the stratosphere at high latitudes, an easterly change in zonally averaged zonal wind is found for the majority of the CMIP5 models, under the Representative Concentration Pathway 8.5 scenario. Comparable results are also found in the 1% CO2 increase per year projections, indicating that the stratospheric easterly change is common feature in future climate projections. This stratospheric wind change, however, shows a significant spread among the models. By using linear regression, we quantify the impact of tropical upper troposphere warming, polar amplification, and the stratospheric wind change on SLP. We find that the intermodel spread in stratospheric wind change contributes substantially to the intermodel spread in Arctic SLP change. The role of the stratosphere in determining part of the spread in SLP change is supported by the fact that the SLP change lags the stratospheric zonally averaged wind change. Taken together, these findings provide further support for the importance of simulating the coupling between the stratosphere and the troposphere, to narrow the uncertainty in the future projection of tropospheric circulation changes.

  4. Projected impacts of 21st century climate change on diapause in Calanus finmarchicus.

    PubMed

    Wilson, Robert J; Banas, Neil S; Heath, Michael R; Speirs, Douglas C

    2016-10-01

    Diapause plays a key role in the life cycle of high latitude zooplankton. During diapause, animals avoid starving in winter by living in deep waters where metabolism is lower and met by lipid reserves. Global warming is therefore expected to shorten the maximum potential diapause duration by increasing metabolic rates and by reducing body size and lipid reserves. This will alter the phenology of zooplankton, impact higher trophic levels and disrupt biological carbon pumps. Here, we project the impacts of climate change on the key North Atlantic copepod Calanus finmarchicus under IPCC RCP 8.5. Potential diapause duration is modelled in relation to body size and overwintering temperature. The projections show pronounced geographic variations. Potential diapause duration reduces by more than 30% in the Western Atlantic, whereas in the key overwintering centre of the Norwegian Sea it changes only marginally. Surface temperature rises, which reduce body size and lipid reserves, will have a similar impact to deep-water changes on diapause in many regions. Because deep-water warming lags that at the surface, animals in the Labrador Sea could offset warming impacts by diapausing in deeper waters. However, the ability to control diapause depth may be limited.

  5. Projected impacts of 21st century climate change on diapause in Calanus finmarchicus.

    PubMed

    Wilson, Robert J; Banas, Neil S; Heath, Michael R; Speirs, Douglas C

    2016-10-01

    Diapause plays a key role in the life cycle of high latitude zooplankton. During diapause, animals avoid starving in winter by living in deep waters where metabolism is lower and met by lipid reserves. Global warming is therefore expected to shorten the maximum potential diapause duration by increasing metabolic rates and by reducing body size and lipid reserves. This will alter the phenology of zooplankton, impact higher trophic levels and disrupt biological carbon pumps. Here, we project the impacts of climate change on the key North Atlantic copepod Calanus finmarchicus under IPCC RCP 8.5. Potential diapause duration is modelled in relation to body size and overwintering temperature. The projections show pronounced geographic variations. Potential diapause duration reduces by more than 30% in the Western Atlantic, whereas in the key overwintering centre of the Norwegian Sea it changes only marginally. Surface temperature rises, which reduce body size and lipid reserves, will have a similar impact to deep-water changes on diapause in many regions. Because deep-water warming lags that at the surface, animals in the Labrador Sea could offset warming impacts by diapausing in deeper waters. However, the ability to control diapause depth may be limited. PMID:26990351

  6. Climate Change and Aedes Vectors: 21st Century Projections for Dengue Transmission in Europe.

    PubMed

    Liu-Helmersson, Jing; Quam, Mikkel; Wilder-Smith, Annelies; Stenlund, Hans; Ebi, Kristie; Massad, Eduardo; Rocklöv, Joacim

    2016-05-01

    Warming temperatures may increase the geographic spread of vector-borne diseases into temperate areas. Although a tropical mosquito-borne viral disease, a dengue outbreak occurred in Madeira, Portugal, in 2012; the first in Europe since 1920s. This outbreak emphasizes the potential for dengue re-emergence in Europe given changing climates. We present estimates of dengue epidemic potential using vectorial capacity (VC) based on historic and projected temperature (1901-2099). VC indicates the vectors' ability to spread disease among humans. We calculated temperature-dependent VC for Europe, highlighting 10 European cities and three non-European reference cities. Compared with the tropics, Europe shows pronounced seasonality and geographical heterogeneity. Although low, VC during summer is currently sufficient for dengue outbreaks in Southern Europe to commence-if sufficient vector populations (either Ae. aegypti and Ae. albopictus) were active and virus were introduced. Under various climate change scenarios, the seasonal peak and time window for dengue epidemic potential increases during the 21st century. Our study maps dengue epidemic potential in Europe and identifies seasonal time windows when major cities are most conducive for dengue transmission from 1901 to 2099. Our findings illustrate, that besides vector control, mitigating greenhouse gas emissions crucially reduces the future epidemic potential of dengue in Europe.

  7. Integrating climate change criteria in reforestation projects using a hybrid decision-support system

    NASA Astrophysics Data System (ADS)

    Curiel-Esparza, Jorge; Gonzalez-Utrillas, Nuria; Canto-Perello, Julian; Martin-Utrillas, Manuel

    2015-09-01

    The selection of appropriate species in a reforestation project has always been a complex decision-making problem in which, due mostly to government policies and other stakeholders, not only economic criteria but also other environmental issues interact. Climate change has not usually been taken into account in traditional reforestation decision-making strategies and management procedures. Moreover, there is a lack of agreement on the percentage of each one of the species in reforestation planning, which is usually calculated in a discretionary way. In this context, an effective multicriteria technique has been developed in order to improve the process of selecting species for reforestation in the Mediterranean region of Spain. A hybrid Delphi-AHP methodology is proposed, which includes a consistency analysis in order to reduce random choices. As a result, this technique provides an optimal percentage distribution of the appropriate species to be used in reforestation planning. The highest values of the weight given for each subcriteria corresponded to FR (fire forest response) and PR (pests and diseases risk), because of the increasing importance of the impact of climate change in the forest. However, CB (conservation of biodiversitiy) was in the third position in line with the aim of reforestation. Therefore, the most suitable species were Quercus faginea (19.75%) and Quercus ilex (19.35%), which offer a good balance between all the factors affecting the success and viability of reforestation.

  8. Climate Change and Aedes Vectors: 21st Century Projections for Dengue Transmission in Europe.

    PubMed

    Liu-Helmersson, Jing; Quam, Mikkel; Wilder-Smith, Annelies; Stenlund, Hans; Ebi, Kristie; Massad, Eduardo; Rocklöv, Joacim

    2016-05-01

    Warming temperatures may increase the geographic spread of vector-borne diseases into temperate areas. Although a tropical mosquito-borne viral disease, a dengue outbreak occurred in Madeira, Portugal, in 2012; the first in Europe since 1920s. This outbreak emphasizes the potential for dengue re-emergence in Europe given changing climates. We present estimates of dengue epidemic potential using vectorial capacity (VC) based on historic and projected temperature (1901-2099). VC indicates the vectors' ability to spread disease among humans. We calculated temperature-dependent VC for Europe, highlighting 10 European cities and three non-European reference cities. Compared with the tropics, Europe shows pronounced seasonality and geographical heterogeneity. Although low, VC during summer is currently sufficient for dengue outbreaks in Southern Europe to commence-if sufficient vector populations (either Ae. aegypti and Ae. albopictus) were active and virus were introduced. Under various climate change scenarios, the seasonal peak and time window for dengue epidemic potential increases during the 21st century. Our study maps dengue epidemic potential in Europe and identifies seasonal time windows when major cities are most conducive for dengue transmission from 1901 to 2099. Our findings illustrate, that besides vector control, mitigating greenhouse gas emissions crucially reduces the future epidemic potential of dengue in Europe. PMID:27322480

  9. Observed climate change hotspots

    NASA Astrophysics Data System (ADS)

    Turco, M.; Palazzi, E.; Hardenberg, J.; Provenzale, A.

    2015-05-01

    We quantify climate change hotspots from observations, taking into account the differences in precipitation and temperature statistics (mean, variability, and extremes) between 1981-2010 and 1951-1980. Areas in the Amazon, the Sahel, tropical West Africa, Indonesia, and central eastern Asia emerge as primary observed hotspots. The main contributing factors are the global increase in mean temperatures, the intensification of extreme hot-season occurrence in low-latitude regions and the decrease of precipitation over central Africa. Temperature and precipitation variability have been substantially stable over the past decades, with only a few areas showing significant changes against the background climate variability. The regions identified from the observations are remarkably similar to those defined from projections of global climate models under a "business-as-usual" scenario, indicating that climate change hotspots are robust and persistent over time. These results provide a useful background to develop global policy decisions on adaptation and mitigation priorities over near-time horizons.

  10. Projecting the impact of climate change on the transmission of Ross River virus: methodological challenges and research needs.

    PubMed

    Yu, W; Dale, P; Turner, L; Tong, S

    2014-10-01

    Ross River virus (RRV) is the most common vector-borne disease in Australia. It is vitally important to make appropriate projections on the future spread of RRV under various climate change scenarios because such information is essential for policy-makers to identify vulnerable communities and to better manage RRV epidemics. However, there are many methodological challenges in projecting the impact of climate change on the transmission of RRV disease. This study critically examined the methodological issues and proposed possible solutions. A literature search was conducted between January and October 2012, using the electronic databases Medline, Web of Science and PubMed. Nineteen relevant papers were identified. These studies demonstrate that key challenges for projecting future climate change on RRV disease include: (1) a complex ecology (e.g. many mosquito vectors, immunity, heterogeneous in both time and space); (2) unclear interactions between social and environmental factors; and (3) uncertainty in climate change modelling and socioeconomic development scenarios. Future risk assessments of climate change will ultimately need to better understand the ecology of RRV disease and to integrate climate change scenarios with local socioeconomic and environmental factors, in order to develop effective adaptation strategies to prevent or reduce RRV transmission.

  11. Projecting the impact of climate change on the transmission of Ross River virus: methodological challenges and research needs.

    PubMed

    Yu, W; Dale, P; Turner, L; Tong, S

    2014-10-01

    Ross River virus (RRV) is the most common vector-borne disease in Australia. It is vitally important to make appropriate projections on the future spread of RRV under various climate change scenarios because such information is essential for policy-makers to identify vulnerable communities and to better manage RRV epidemics. However, there are many methodological challenges in projecting the impact of climate change on the transmission of RRV disease. This study critically examined the methodological issues and proposed possible solutions. A literature search was conducted between January and October 2012, using the electronic databases Medline, Web of Science and PubMed. Nineteen relevant papers were identified. These studies demonstrate that key challenges for projecting future climate change on RRV disease include: (1) a complex ecology (e.g. many mosquito vectors, immunity, heterogeneous in both time and space); (2) unclear interactions between social and environmental factors; and (3) uncertainty in climate change modelling and socioeconomic development scenarios. Future risk assessments of climate change will ultimately need to better understand the ecology of RRV disease and to integrate climate change scenarios with local socioeconomic and environmental factors, in order to develop effective adaptation strategies to prevent or reduce RRV transmission. PMID:24612684

  12. Future global and regional climate change: From near-term prediction to long-term projections (Invited)

    NASA Astrophysics Data System (ADS)

    Knutti, R.; Collins, M.; Power, S.; Kirtman, B. P.; Christensen, J. H.; Krishna Kumar, K.

    2013-12-01

    The IPCC AR5 assessed results from a hierarchy of different climate models on how climate might change in the future from decades to millennia. The projections are based on a series of new climate models and for new scenarios. They are very consistent with projections in AR4 and confirm widespread changes in the atmosphere, ocean, sea ice and land under emission scenarios without mitigation. In the late 21st century and beyond, the warming is dominated by the total emissions of CO2, and many changes will persist for centuries even if emissions were stopped. Stabilization of global temperature at 2°C above the preindustrial value for example, requires strong emission reductions over the 21st century. In the near term and locally however, interannual and decadal climate variability remains a large and mostly irreducible component of the uncertainty in projections. Improving the quality of information on regional climate change and improving the ability of the scientific community to perform near-term climate predictions are key challenges for the future. The development of a consensus in the climate science community on (i) the major directions for future model development and (ii) the scope of future coordinated model experiments will help serve the needs of both future IPCC assessments and the wider research community.

  13. Trends and Projections of Climatic Extremes in the Black Volta Basin, West Africa: Towards Climate Change Adaptation.

    NASA Astrophysics Data System (ADS)

    Aziz, F.

    2015-12-01

    The water resources of the Black Volta Basin in West Africa constitute a major resource for the four countries (Burkina Faso, Ghana, Côte d'Ivoire, Mali) that share it. For Burkina Faso and Ghana, the river is the main natural resource around which the development of the diverse sectors of the two economies is built. Whereas Ghana relies heavily on the river for energy, land-locked Burkina Faso continuously develops the water for agricultural purposes. Such important role of the river makes it an element around which there are potential conflicts: either among riparian countries or within the individual countries themselves. This study documents the changes in temperature and precipitation extremes in the Black Volta Basin region for the past (1981-2010) and makes projections for the mid-late 21st century (2051-2080) under two emission scenarios; RCP 2.6 and RCP 8.5. The Expert Team on Climate Change Detection and Indices (ETCCDI) temperature- and precipitation-based indices are computed with the RClimdex software. Observed daily records and downscaled CORDEX data of precipitation and maximum and minimum temperatures are used for historical and future trend analysis respectively. In general low emission scenarios show increases in the cold extremes. The region shows a consistent pattern of trends in hot extremes for the 1990's. An increasing trend in hot extremes is expected in the future under RCP 8.5 while RCP 2.5 shows reductions in hot extremes. Regardless of the emission scenario, projections show more frequent hot nights in the 21st century. Generally, the region shows variability in trends for future extreme precipitation indices with only a few of the trends being statistically significant (5% level). Results obtained provide a basic and first step to understanding how climatic extremes have been changing in the Volta Basin region and gives an idea of what to expect in the future. Such studies will also help in making informed decisions on water management

  14. Conservation strategies to adapt to projected climate change impacts in Malawi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is potential for climate change to have negative effects on agricultural production via extreme events (Pruski and Nearing, 2002b; Zhang et al., 2012; Walthall 2012), and there is a need to implement conservation practices for climate change adaptation (Delgado et al. 2011; 2013). Recent repo...

  15. Climate Indicators of Pace and Perception of Projected Changes Using CMIP5 Simulations

    NASA Astrophysics Data System (ADS)

    Chavaillaz, Y.; Joussaume, S.; Braconnot, P.; Vautard, R.

    2014-12-01

    In most studies, climate change is approached by focusing on the evolution between a fixed current baseline and a future period, emphasizing stronger warming as me move further from the current climate. This long-term vision is used in order to characterize quantitatively the magnitude and expected effects of mitigation policies across the globe, but is not well suited to discuss coming generations' experience. In this study, we propose an alternative approach that considers indicators of pace and perception of changes using projections of a Global Climate Model ensemble. First, it consists in tracking changes with a running baseline over periods of 20 years, defining the time evolution of the rate at which climate changes. Then, distributions of the following and previous 20 years are compared for each year. A 20-year baseline also enables to estimate the memory that a generation can have. We are mainly interested on mean and variability of surface air temperature and daily precipitation amounts. Under the strongest emission scenario (RCP8.5), pace and perception will become far stronger over the 21st century, with a maximum reached around 2060. While northern high-latitudes will witness a higher temperature rise, southern mid-latitudes will witness the largest warming rate increase resulting in a tripling by the end of the 21st century. They will also show a 45%-increase of drying rate by that time. In the tropics, a 64%-increase of moistening rate is displayed and indicators of perception are at their highest value, especially in West Africa and South-East Asia. Drying regions being globally fewer than moistening ones and drying rate being weaker than moistening one, a continuous modification of the hydrological cycle is confirmed. Besides, their spatial fraction over the globe appears to remain unchanged (about 60% of regions are moistening). Only the strongest mitigation scenario (RCP2.6) leads to a global return to historical regime. This approach shows that

  16. Confronting Climate Change

    ERIC Educational Resources Information Center

    Roach, Ronald

    2009-01-01

    The Joint Center for Political and Economic Studies, an African-American think tank based in Washington, D.C., convenes a commission to focus on the disparate impact of climate change on minority communities and help involve historically Black institutions in clean energy projects. Launched formally in July 2008, the Commission to Engage…

  17. Use of a Weather Generator for analysis of projections of future daily temperature and its validation with climate change indices

    NASA Astrophysics Data System (ADS)

    Di Piazza, A.; Cordano, E.; Eccel, E.

    2012-04-01

    The issue of climate change detection is considered a major challenge. In particular, high temporal resolution climate change scenarios are required in the evaluation of the effects of climate change on agricultural management (crop suitability, yields, risk assessment, etc.) energy production and water management. In this work, a "Weather Generator" technique was used for downscaling climate change scenarios for temperature. An R package (RMAWGEN, Cordano and Eccel, 2011 - available on http://cran.r-project.org) was developed aiming to generate synthetic daily weather conditions by using the theory of vectorial auto-regressive models (VAR). The VAR model was chosen for its ability in maintaining the temporal and spatial correlations among variables. In particular, observed time series of daily maximum and minimum temperature are transformed into "new" normally-distributed variable time series which are used to calibrate the parameters of a VAR model by using ordinary least square methods. Therefore the implemented algorithm, applied to monthly mean climatic values downscaled by Global Climate Model predictions, can generate several stochastic daily scenarios where the statistical consistency among series is saved. Further details are present in RMAWGEN documentation. An application is presented here by using a dataset with daily temperature time series recorded in 41 different sites of Trentino region for the period 1958-2010. Temperature time series were pre-processed to fill missing values (by a site-specific calibrated Inverse Distance Weighting algorithm, corrected with elevation) and to remove inhomogeneities. Several climatic indices were taken into account, useful for several impact assessment applications, and their time trends within the time series were analyzed. The indices go from the more classical ones, as annual mean temperatures, seasonal mean temperatures and their anomalies (from the reference period 1961-1990) to the climate change indices

  18. Potential Impacts of Projected Mid-twenty-first Century Climate Change on the Hydrology of the Nasia Catchment, West Africa

    NASA Astrophysics Data System (ADS)

    Alo, C. A.; Oteng, F. M.; Bitew, M. M.; Ahmed, K. F.; Wang, G.

    2014-12-01

    In this study, the coupled surface water-groundwater model, MIKE-SHE has been calibrated to observed streamflow and groundwater heads spanning 2000-2009 for the Nasia sub-catchment in the White Volta Basin, West Africa. The calibrated model has been used to project the mid-twenty-first century hydrology of the region. Bias-correction has also been applied to daily precipitation and monthly average temperature projections for the period 2010-2050 to derive the meteorological forcing data required to drive the model. The climate projections have been drawn from ten Coupled Model Intercomparison Project phase 5 (CMIP5) relatively high resolution (less than two degrees latitude/longitude) climate models under the representative concentration pathway, RCP8.5. Here, we present simulated mid-twenty-first century hydrologic (streamflow and groundwater) changes over the Nasia sub-catchment with MIKE-SHE forced with the bias-corrected CMIP5 climate projections.

  19. The changing role of snowmelt- and rainfall dominated floods in Norway under climate change - observations, projections, and uncertainties

    NASA Astrophysics Data System (ADS)

    Vormoor, Klaus; Lawrence, Deborah; Bronstert, Axel; Heistermann, Maik; Schlichting, Lena; Wilson, Donna; Kwok Wong, Wai

    2016-04-01

    Climate change is expected to modify the hydrometeorological conditions in Norway. There is increasing evidence for gradually increasing temperatures and recent changes in the intensity and frequency of (heavy) precipitation as well as in the number of days with snow cover in many parts of Norway. Climate projections for the end of the 21st century indicate continuous warming by 2.3-4.6°C, especially during winter and in northern Norway and increasing precipitation by 5-30 % particularly during autumn and winter along the west coast. Many catchments in Norway are characterized by a mixed snowmelt/rainfall regime with prominent peak flows during spring and autumn under current conditions. Changes in the temperature and precipitation regimes will have direct implications for the snow regime in Norway, and thus, most likely also on runoff and flooding via their direct effect on the relative importance of rainfall vs. snowmelt in runoff and flood generation. In this study, we have analyzed: (i) trends in the magnitude and frequency of observed snowmelt- and rainfall driven peak flows in up to 211 catchments in Norway; (ii) projected future changes in the seasonality and generation processes of floods in six Norwegian catchments based on a multi-model/multi-parameter ensemble; (iii) the contribution of the individual ensemble components to overall uncertainty; and (iv) the transferability of calibrated hydrological model parameters under contrasting flood seasonality conditions in five catchments with mixed regimes. The major findings of our analyses are as follows: i. Trends towards increasing flood frequency are more pronounced and spatially more consistent with hydrometeorological drivers than trends in flood magnitude. Regional patterns of positive trends in flood frequency agree with the increasing importance of rainfall driven peak flows, whereas negative trends are found in areas primarily dominated by snowmelt flood generation process. ii. Autumn and early

  20. Projecting impacts of climate change on hydrological conditions and biotic responses in a chalk valley riparian wetland

    NASA Astrophysics Data System (ADS)

    House, A. R.; Thompson, J. R.; Acreman, M. C.

    2016-03-01

    Projected changes in climate are likely to substantially impact wetland hydrological conditions that will in turn have implications for wetland ecology. Assessing ecohydrological impacts of climate change requires models that can accurately simulate water levels at the fine-scale resolution to which species and communities respond. Hydrological conditions within the Lambourn Observatory at Boxford, Berkshire, UK were simulated using the physically based, distributed model MIKE SHE, calibrated to contemporary surface and groundwater levels. The site is a 10 ha lowland riparian wetland where complex geological conditions and channel management exert strong influences on the hydrological regime. Projected changes in precipitation, potential evapotranspiration, channel discharge and groundwater level were derived from the UK Climate Projections 2009 ensemble of climate models for the 2080s under different scenarios. Hydrological impacts of climate change differ through the wetland over short distances depending on the degree of groundwater/surface-water interaction. Discrete areas of groundwater upwelling are associated with an exaggerated response of water levels to climate change compared to non-upwelling areas. These are coincident with regions where a weathered chalk layer, which otherwise separates two main aquifers, is absent. Simulated water levels were linked to requirements of the MG8 plant community and Desmoulin's whorl snail (Vertigo moulinsiana) for which the site is designated. Impacts on each are shown to differ spatially and in line with hydrological impacts. Differences in water level requirements for this vegetation community and single species highlight the need for separate management strategies in distinct areas of the wetland.

  1. High-Resolution Climate Change Projections Capture the Elevation Dependence of Warming and Snow Cover Loss in California's Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Walton, D.; Hall, A. D.; Berg, N.; Schwartz, M. A.; Sun, F.

    2015-12-01

    High-resolution projections of warming and snow cover change are made for California's Sierra Nevada mountain range for the period 2081-2100 using hybrid dynamical-statistical downscaling. First, future climate change projections from five global climate models (GCMs) are downscaled dynamically. The warming signal exhibits a strong elevation dependence that is not captured by common statistical downscaling methods. Variations in the warming are attributed to snow albedo feedback and the blocking effect of the Sierra Nevada, which creates a sharp warming gradient between marine and continental air masses. These two physical processes are incorporated into a simple statistical model that mimics the dynamical model's warming patterns given GCM input. This statistical model is used to produce warming and snow cover loss projections for an ensemble of 35 GCMs. Capturing the elevation dependence is important for many applications of climate change, including surface hydrology, water resources, and ecosystems.

  2. Climate change and Arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections

    NASA Astrophysics Data System (ADS)

    Kaplan, J. O.; Bigelow, N. H.; Prentice, I. C.; Harrison, S. P.; Bartlein, P. J.; Christensen, T. R.; Cramer, W.; Matveyeva, N. V.; McGuire, A. D.; Murray, D. F.; Razzhivin, V. Y.; Smith, B.; Walker, D. A.; Anderson, P. M.; Andreev, A. A.; Brubaker, L. B.; Edwards, M. E.; Lozhkin, A. V.

    2003-10-01

    Large variations in the composition, structure, and function of Arctic ecosystems are determined by climatic gradients, especially of growing-season warmth, soil moisture, and snow cover. A unified circumpolar classification recognizing five types of tundra was developed. The geographic distributions of vegetation types north of 55°N, including the position of the forest limit and the distributions of the tundra types, could be predicted from climatology using a small set of plant functional types embedded in the biogeochemistry-biogeography model BIOME4. Several palaeoclimate simulations for the last glacial maximum (LGM) and mid-Holocene were used to explore the possibility of simulating past vegetation patterns, which are independently known based on pollen data. The broad outlines of observed changes in vegetation were captured. LGM simulations showed the major reduction of forest, the great extension of graminoid and forb tundra, and the restriction of low- and high-shrub tundra (although not all models produced sufficiently dry conditions to mimic the full observed change). Mid-Holocene simulations reproduced the contrast between northward forest extension in western and central Siberia and stability of the forest limit in Beringia. Projection of the effect of a continued exponential increase in atmospheric CO2 concentration, based on a transient ocean-atmosphere simulation including sulfate aerosol effects, suggests a potential for larger changes in Arctic ecosystems during the 21st century than have occurred between mid-Holocene and present. Simulated physiological effects of the CO2 increase (to >700 ppm) at high latitudes were slight compared with the effects of the change in climate.

  3. Climate change and Arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections

    USGS Publications Warehouse

    Kaplan, J.O.; Bigelow, N.H.; Prentice, I.C.; Harrison, S.P.; Bartlein, P.J.; Christensen, T.R.; Cramer, W.; Matveyeva, N.V.; McGuire, A.D.; Murray, D.F.; Razzhivin, V.Y.; Smith, B.; Walker, D. A.; Anderson, P.M.; Andreev, A.A.; Brubaker, L.B.; Edwards, M.E.; Lozhkin, A.V.

    2003-01-01

    Large variations in the composition, structure, and function of Arctic ecosystems are determined by climatic gradients, especially of growing-season warmth, soil moisture, and snow cover. A unified circumpolar classification recognizing five types of tundra was developed. The geographic distributions of vegetation types north of 55??N, including the position of the forest limit and the distributions of the tundra types, could be predicted from climatology using a small set of plant functional types embedded in the biogeochemistry-biogeography model BIOME4. Several palaeoclimate simulations for the last glacial maximum (LGM) and mid-Holocene were used to explore the possibility of simulating past vegetation patterns, which are independently known based on pollen data. The broad outlines of observed changes in vegetation were captured. LGM simulations showed the major reduction of forest, the great extension of graminoid and forb tundra, and the restriction of low- and high-shrub tundra (although not all models produced sufficiently dry conditions to mimic the full observed change). Mid-Holocene simulations reproduced the contrast between northward forest extension in western and central Siberia and stability of the forest limit in Beringia. Projection of the effect of a continued exponential increase in atmospheric CO2 concentration, based on a transient ocean-atmosphere simulation including sulfate aerosol effects, suggests a potential for larger changes in Arctic ecosystems during the 21st century than have occurred between mid-Holocene and present. Simulated physiological effects of the CO2 increase (to > 700 ppm) at high latitudes were slight compared with the effects of the change in climate.

  4. PMP Estimations at Sparsely Controlled Andinian Basins and Climate Change Projections

    NASA Astrophysics Data System (ADS)

    Lagos Zúñiga, M. A.; Vargas, X.

    2012-12-01

    Probable Maximum Precipitation (PMP) estimation implies an extensive review of hydrometeorological data and understandig of precipitation formation processes. There exists different methodology processes that apply for their estimations and all of them require a good spatial and temporal representation of storms. The estimation of hydrometeorological PMP on sparsely controlled basins is a difficult task, specially if the studied area has an important orographic effect due to mountains and the mixed precipitation occurrence in the most several storms time period, the main task of this study is to propose and estimate PMP in a sparsely controlled basin, affected by abrupt topography and mixed hidrology basin; also analyzing statystic uncertainties estimations and possible climate changes effects in its estimation. In this study the PMP estimation under statistical and hydrometeorological aproaches (watershed-based and traditional depth area duration analysis) was done in a semi arid zone at Puclaro dam in north Chile. Due to the lack of good spatial meteorological representation at the study zone, we propose a methodology to consider the orographic effects of Los Andes due to orographic effects patterns based in a RCM PRECIS-DGF and annual isoyetal maps. Estimations were validated with precipitation patterns for given winters, considering snow route and rainfall gauges at the preferencial wind direction, finding good results. The estimations are also compared with the highest areal storms in USA, Australia, India and China and with frequency analysis in local rain gauge stations in order to decide about the most adequate approach for the study zone. Climate change projections were evaluated with ECHAM5 GCM model, due to its good quality representation in the seasonality and the magnitude of meteorological variables. Temperature projections, for 2040-2065 period, show that there would be a rise in the catchment contributing area that would lead to an increase of the

  5. Conflict in a changing climate

    NASA Astrophysics Data System (ADS)

    Carleton, T.; Hsiang, S. M.; Burke, M.

    2016-05-01

    A growing body of research illuminates the role that changes in climate have had on violent conflict and social instability in the recent past. Across a diversity of contexts, high temperatures and irregular rainfall have been causally linked to a range of conflict outcomes. These findings can be paired with climate model output to generate projections of the impact future climate change may have on conflicts such as crime and civil war. However, there are large degrees of uncertainty in such projections, arising from (i) the statistical uncertainty involved in regression analysis, (ii) divergent climate model predictions, and (iii) the unknown ability of human societies to adapt to future climate change. In this article, we review the empirical evidence of the climate-conflict relationship, provide insight into the likely extent and feasibility of adaptation to climate change as it pertains to human conflict, and discuss new methods that can be used to provide projections that capture these three sources of uncertainty.

  6. Physically-Based Global Downscaling Climate Change Projections for a Full Century

    SciTech Connect

    Ghan, Steven J.; Shippert, Timothy R.

    2005-04-15

    A global atmosphere/land model with an embedded subgrid orography scheme is used to simulate the period 1977-2100 using ocean surface conditions and radiative constituent concentrations for a climate change scenario. Climate variables simulated for multiple elevation classes are mapping according to a high-resolution elevation dataset in ten regions with complex terrain. Analysis of changes in the simulated climate leads to the following conclusions. Changes in precipitation vary widely, with precipitation increasing more with increasing altitude in some region, decreasing more with altitude in others, and changing little in still others. In some regions the sign of the precipitation change depends on surface elevation. Changes in surface air temperature are rather uniform, with at most a two-fold difference between the largest and smallest changes within a region; in most cases the warming increases with altitude. Changes in snow water are highly dependent on altitude. Absolute changes usually increase with altitude, while relative changes decrease. In places where snow accumulates, an artificial upper bound on snow water limits the sensitivity of snow water to climate change considerably. The simulated impact of climate change on regional mean snow water varies widely, with little impact in regions in which the upper bound on snow water is the dominant snow water sink, moderate impact in regions with a mixture of seasonal and permanent snow, and profound impacts on regions with little permanent snow.

  7. Physically-Based Global Downscaling: Climate Change Projections for a Full Century

    SciTech Connect

    Ghan, Steven J.; Shippert, Timothy R.

    2006-05-01

    A global atmosphere/land model with an embedded subgrid orography scheme is used to simulate the period 1977-2100 using ocean surface conditions and radiative constituent concentrations for a climate change scenario. Climate variables simulated for multiple elevation classes are mapping according to the high-resolution of topography in ten regions with complex terrain. Analysis of changes in the simulated climate lead to the following conclusions. Changes in precipitation vary widely, with precipitation increasing more with increasing altitude in some region, decreasing more with altitude in others, and changing little in still others. In some regions the sign of the precipitation change depends on surface elevation. Changes in surface air temperature are rather uniform, with at most a two-fold difference between the largest and smallest changes within a region. In most cases the warming increases with altitude. Changes in snow water are highly dependent on altitude. Absolute changes usually increase with altitude, while relative changes decrease. In places where snow accumulates, an artificial upper bound on snow water limits the sensitivity of snow water to climate change considerably. The simulated impact of climate change on regional mean snow water varies widely, with little impact in regions in which the upper bound on snow water is the dominant snow water sink, moderate impact in regions with a mixture of seasonal and permanent snow, and profound impacts on regions with little permanent snow.

  8. Projected and Observed Aridity and Climate Change in the East Coast of South India under RCP 4.5.

    PubMed

    Ramachandran, A; Praveen, Dhanya; Jaganathan, R; Palanivelu, K

    2015-01-01

    In the purview of global warming, the present study attempts to project changes in climate and quantify the changes in aridity of two coastal districts in south India under the RCP 4.5 trajectory. Projected climate change output generated by RegCM 4.4 model, pertaining to 14 grid points located within the study area, was analyzed and processed for this purpose. The meteorological parameters temperature and precipitations were used to create De Martonne Aridity Index, to assess the spatial distribution of aridity. The original index values ranged from 13.7 to 16.4 mm/°C, characterizing this area as a semidry climate. The outcome from the changed scenario analysis under RCP 4.5 showed that, during the end of the 21st century, the aridity may be increased more as the index values tend to reduce. The increasing trend in the drying phenomenon may be attributed to the rising of mean annual temperatures.

  9. Projected shifts in fish species dominance in Wisconsin lakes under climate change

    USGS Publications Warehouse

    Hansen, Gretchen JA; Read, Jordan S.; Hansen, Jonathan F.; Winslow, Luke

    2016-01-01

    Temperate lakes may contain both coolwater fish species such as walleye (Sander vitreus) and warmwater fish species such as largemouth bass (Micropterus salmoides). Recent declining walleye and increasing largemouth bass populations have raised questions regarding the future trajectories and management actions for these species. We developed a thermodynamic model of water temperatures driven by downscaled climate data and lake-specific characteristics to estimate daily water temperature profiles for 2148 lakes in Wisconsin, US, under contemporary (1989–2014) and future (2040–2064 and 2065–2089) conditions. We correlated contemporary walleye recruitment and largemouth bass relative abundance to modeled water temperature, lake morphometry, and lake productivity, and projected lake-specific changes in each species under future climate conditions. Walleye recruitment success was negatively related and largemouth bass abundance was positively related to water temperature degree days. Both species exhibited a threshold response at the same degree day value, albeit in opposite directions. Degree days were predicted to increase in the future, although the magnitude of increase varied among lakes, time periods, and global circulation models (GCMs). Under future conditions, we predicted a loss of walleye recruitment in 33–75% of lakes where recruitment is currently supported and a 27–60% increase in the number of lakes suitable for high largemouth bass abundance. The percentage of lakes capable of supporting abundant largemouth bass but failed walleye recruitment was predicted to increase from 58% in contemporary conditions to 86% by mid-century and to 91% of lakes by late century, based on median projections across GCMs. Conversely, the percentage of lakes with successful walleye recruitment and low largemouth bass abundance was predicted to decline from 9% of lakes in contemporary conditions to only 1% of lakes in both future periods. Importantly, we identify up

  10. Projected impacts of climate change and ocean acidification on the global biogeography of planktonic Foraminifera

    NASA Astrophysics Data System (ADS)

    Roy, T.; Lombard, F.; Bopp, L.; Gehlen, M.

    2015-05-01

    Planktonic Foraminifera are a major contributor to the deep carbonate flux and their microfossil deposits form one of the richest databases for reconstructing paleoenvironments, particularly through changes in their taxonomic and shell composition. Using an empirically based planktonic foraminifer model that incorporates three known major physiological drivers of their biogeography - temperature, food and light - we investigate (i) the global redistribution of planktonic Foraminifera under anthropogenic climate change and (ii) the alteration of the carbonate chemistry of foraminiferal habitat with ocean acidification. The present-day and future (2090-2100) 3-D distributions of Foraminifera are simulated using temperature, plankton biomass and light from an Earth system model forced with a historical and a future (IPCC A2) high CO2 emission scenario. Foraminiferal abundance and diversity are projected to decrease in the tropics and subpolar regions and increase in the subtropics and around the poles. Temperature is the dominant control on the future change in the biogeography of Foraminifera. Yet food availability acts to either reinforce or counteract the temperature-driven changes. In the tropics and subtropics the largely temperature-driven shift to depth is enhanced by the increased concentration of phytoplankton at depth. In the higher latitudes the food-driven response partly offsets the temperature-driven reduction both in the subsurface and across large geographical regions. The large-scale rearrangements in foraminiferal abundance and the reduction in the carbonate ion concentrations in the habitat range of planktonic foraminifers - from 10-30 μmol kg-1 in their polar and subpolar habitats to 30-70 μmol kg-1 in their subtropical and tropical habitats - would be expected to lead to changes in the marine carbonate flux. High-latitude species are most vulnerable to anthropogenic change: their abundance and available habitat decrease and up to 10% of the

  11. Changes in DNA methylation fingerprint of Quercus ilex trees in response to experimental field drought simulating projected climate change.

    PubMed

    Rico, L; Ogaya, R; Barbeta, A; Peñuelas, J

    2014-03-01

    Rapid genetic changes in plants have been reported in response to current climate change. We assessed the capacity of trees in a natural forest to produce rapid acclimation responses based on epigenetic modifications. We analysed natural populations of Quercus ilex, the dominant tree species of Mediterranean forests, using the methylation-sensitive amplified polymorphism (MSAP) technique to assess patterns and levels of methylation in individuals from unstressed forest plots and from plots experimentally exposed to drought for 12 years at levels projected for the coming decades. The percentage of hypermethylated loci increased, and the percentage of fully methylated loci clearly decreased in plants exposed to drought. Multivariate analyses exploring the status of methylation at MSAP loci also showed clear differentiation depending on stress. The PCA scores for the MSAP profiles clearly separated the genetic from the epigenetic structure, and also significantly separated the samples within each group in response to drought. Changes in DNA methylation highlight the large capacity of plants to rapidly acclimate to changing environmental conditions, including trees with long life spans, and our results demonstrate those changes. These changes, although unable to prevent the decreased growth and higher mortality associated with this experimental drought, occurred together with a dampening in such decreases as the long-term treatment progressed.

  12. Global climate change response program. Impacts of projected climate change on urban water use. An application using the Wasatch Front water demand and supply model. Final report

    SciTech Connect

    Hughes, T.; Wang, Y.M.; Hansen, R.

    1994-02-01

    Urban water use, particularly outdoor use, responds to changes in temperature, precipitation, and other climatic parameters. The study significantly improved the capacity of an existing regional water demand model to estimate the response of both residential and commercial-industrial water demand to changes in climatic parameters. The resulting functional relationships derived from historic time-series climatic and water use data were applied to global climate scenarios for the four Wasatch Front counties of Utah.

  13. Projections of glacier change in the Altai Mountains under twenty-first century climate scenarios

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Enomoto, Hiroyuki; Ohata, Tetsuo; Kitabata, Hideyuki; Kadota, Tsutomu; Hirabayashi, Yukiko

    2016-01-01

    We project glacier surface mass balances of the Altai Mountains over the period 2006-2100 for the representative concentration pathway (RCP) 4.5 and RCP8.5 scenarios using daily near-surface air temperature and precipitation from 12 global climate models in combination with a surface mass balance model. The results indicate that the Altai glaciers will undergo sustained mass loss throughout the 21st for both RCPs and reveal the future fate of glaciers of different sizes. By 2100, glacier area in the region will shrink by 26 ± 10 % for RCP4.5, while it will shrink by 60 ± 15 % for RCP8.5. According to our simulations, most disappearing glaciers are located in the western part of the Altai Mountains. For RCP4.5, all glaciers disappearing in the twenty-first century have a present-day size smaller than 5.0 km2, while for RCP8.5, an additional ~7 % of glaciers in the initial size class of 5.0-10.0 km2 also vanish. We project different trends in the total meltwater discharge of the region for the two RCPs, which does not peak before 2100, with important consequences for regional water availability, particular for the semi-arid and arid regions. This further highlights the potential implications of change in the Altai glaciers on regional hydrology and environment.

  14. Projecting Poverty at the Household Scale to Assess the Impact of Climate Change on Poor People

    NASA Astrophysics Data System (ADS)

    Hallegatte, S.; Rozenberg, J.

    2015-12-01

    This paper quantifies the potential impacts of climate change on poverty in 2030 and 2050, in 92 countries covering 90% of the developing world population. It accounts for the deep uncertainties that characterize future socio-economic evolutions and the lack of data regarding the condition and livelihood of poor people. It also considers many impacts of climate change, another source of uncertainty. We use a micro-simulation model based on household surveys and explore a wide range of uncertainties on future structural change, productivity growth or demographic changes. This results, for each country, in the creation of several hundred scenarios for future income growth and income distribution. We then explore the resulting space of possible futures and use scenario discovery techniques to identify the main drivers of inequalities and poverty reduction. We find that redistribution and structural change are powerful drivers of poverty and inequality reduction, except in low-income countries. In the poorest countries in Africa, reducing poverty cannot rely on redistribution but requires low population growth and productivity growth in agriculture. Once we have explored the space of possible outcomes for poverty and inequalities, we choose two representative scenarios of the best and worst cases and model the impacts of climate change in each of these two scenarios. Climate change impacts are modeled through 4 channels. First, climate change has an impact on labor productivity growth for people who work outside because of higher temperatures. Second, climate change has an impact on human capital because of more severe stunting in some places. Third, climate change has an impact on physical capital via more frequent natural disasters. Fourth, climate change has an impact on consumption because of changes in food prices. Impacts are very heterogeneous across countries and are mostly concentrated in African and South-East Asian countries. For high radiative forcing (RCP8

  15. Southeast Regional Assessment Project for the National Climate Change and Wildlife Science Center, U.S. Geological Survey

    USGS Publications Warehouse

    Dalton, Melinda S.; Jones, Sonya A.

    2010-01-01

    expanded to address climate change-related impacts on all Department of the Interior (DOI) resources. The NCCWSC will establish a network of eight DOI Regional Climate Science Centers (RCSCs) that will work with a variety of partners to provide natural resource managers with tools and information that will help them anticipate and adapt conservation planning and design for projected climate change. The forecasting products produced by the RCSCs will aid fish, wildlife, and land managers in designing suitable adaptive management approaches for their programs. The DOI also is developing Landscape Conservation Cooperatives (LCCs) as science and conservation action partnerships at subregional scales. The USGS is working with the Southeast Region of the U.S. Fish and Wildlife Service (FWS) to develop science collaboration between the future Southeast RCSC and future LCCs. The NCCWSC Southeast Regional Assessment Project (SERAP) will begin to develop regional downscaled climate models, land cover change models, regional ecological models, regional watershed models, and other science tools. Models and data produced by SERAP will be used in a collaborative process between the USGS, the FWS (LCCs), State and federal partners, nongovernmental organizations, and academia to produce science at appropriate scales to answer resource management questions. The SERAP will produce an assessment of climate change, and impacts on land cover, ecosystems, and priority species in the region. The predictive tools developed by the SERAP project team will allow end users to better understand potential impacts of climate change and sea level rise on terrestrial and aquatic populations in the Southeastern United States. The SERAP capitalizes on the integration of five existing projects: (1) the Multi-State Conservation Grants Program project "Designing Sustainable Landscapes," (2) the USGS multidisciplinary Science Thrust project "Water Availability for Ecological Needs," (3) the USGS Southeast Pilot

  16. Reduction of uncertainty associated with future changes in Indian summer monsoon projected by climate models and assessment of monsoon teleconnections

    NASA Astrophysics Data System (ADS)

    Rajendran, Kavirajan; Surendran, Sajani; Kitoh, Akio; Varghese, Stella Jes

    2016-05-01

    Coupled Model Intercomparison Project phase 5 (CMIP5) coupled global climate model (CGCM) Representative Concentration Pathway (RCP) simulations project clear future temperature increase but diverse changes in Indian summer monsoon rainfall (ISMR) with substantial inter-model spread. Robust signals of projected changes are derived based on objective criteria and the physically consistent simulations with the highest reliability suggest future reduction in the frequency of light rainfall but increase in high to extreme rainfall. The role of equatorial Indian and Pacific Oceans on the projected changes in monsoon rainfall is investigated. The results of coupled model projections are also compared with the corresponding projections from high resolution AGCM time-slice, multi-physics and multi-forcing ensemble experiments.

  17. Projected impacts of climate change and ocean acidification on the global biogeography of planktonic foraminifera

    NASA Astrophysics Data System (ADS)

    Roy, T.; Lombard, F.; Bopp, L.; Gehlen, M.

    2014-06-01

    Planktonic foraminifera are a major contributor to the deep carbonate-flux and the planktonic biomass of the global ocean. Their microfossil deposits form one of the richest databases for reconstructing paleoenvironments, particularly through changes in their taxonomic and shell composition. Using an empirically-based foraminifer model that incorporates three known major physiological drivers of foraminifer biogeography - temperature, food and light - we investigate (i) the global redistribution of planktonic foraminifera under anthropogenic climate change, and (ii) the alteration of the carbonate chemistry of foraminifer habitat with ocean acidification. The present-day and future (2090-2100) 3-D distributions of foraminifera are simulated using temperature, plankton biomass, and light from an Earth system model forced with historical and a future (IPCC A2) high CO2 emission scenario. The broadscale patterns of present day foraminifer biogeography are well reproduced. Foraminifer abundance and diversity are projected to decrease in the tropics and subpolar regions and increase in the subtropics and around the poles. In the tropics, the geographical shifts are driven by temperature, while the vertical shifts are driven by both temperature and food availability. In the high-latitudes, vertical shifts are driven by food availability, while geographical shifts are driven by both food availability and temperature. Changes in the marine carbon cycle would be expected in response to (i) the large-scale rearrangements in foraminifer abundance, and (ii) the reduction of the carbonate concentration in the habitat range of planktonic foraminifers: from 10-30 μmol kg-1 in the polar/subpolar regions to 30-70 μmol kg-1 in the subtropical/tropical regions. High-latitude species are most vulnerable to anthropogenic change: their abundance and available habitat decrease and up to 10% of their habitat drops below the calcite saturation horizon.

  18. Introducing a New Concept Inventory on Climate Change to Support Undergraduate Instruction, Teacher Education, Education Research, and Project Evaluation (Invited)

    NASA Astrophysics Data System (ADS)

    Morrow, C. A.; Monsaas, J.; Katzenberger, J.; Afolabi, C. Y.

    2013-12-01

    The Concept Inventory on Climate Change (CICC) is a new research-based, multiple-choice 'test' that provides a powerful new assessment tool for undergraduate instructors, teacher educators, education researchers, and project evaluators. This presentation will describe the features and the development process of the (CICC). This includes insights about how the development team (co-authors) integrated and augmented their multi-disciplinary expertise. The CICC has been developed in the context of a popular introductory undergraduate weather and climate course at a southeastern research university (N~400-500 per semester). The CICC is not a test for a grade, but is intended to be a useful measure of how well a given teaching and learning experience has succeeded in improving understanding about climate change and related climate concepts. The science content addressed by the CICC is rooted in the national consensus document, 'Climate Literacy: The Essential Principles of Climate Science'. The CICC has been designed to support undergraduate instruction, and may be valuable in comparable contexts that teach about climate change. CICC results can help to inform decisions about the effectiveness of teaching strategies by 1) flagging conceptual issues (PRE-instruction); and 2) detecting conceptual change (POST-instruction). Specific CICC items and their answer choices are informed by the research literature on common misunderstandings about climate and climate change. Each CICC item is rated on a 3-tier scale of the cognitive sophistication the item is calling for, and there is a balance among all three tiers across the full instrument. The CICC development process has involved data-driven changes to successive versions. Data sources have included item statistics from the administration of progressively evolved versions of the CICC in the weather and climate course, group interviews with students, and expert review by climate scientists, educators, and project evaluators

  19. Projected climate and vegetation changes and potential biotic effects for Fort Benning, Georgia; Fort Hood, Texas; and Fort Irwin, California

    USGS Publications Warehouse

    Shafer, S.L.; Atkins, J.; Bancroft, B.A.; Bartlein, P.J.; Lawler, J.J.; Smith, B.; Wilsey, C.B.

    2012-01-01

    The responses of species and ecosystems to future climate changes will present challenges for conservation and natural resource managers attempting to maintain both species populations and essential habitat. This report describes projected future changes in climate and vegetation for three study areas surrounding the military installations of Fort Benning, Georgia, Fort Hood, Texas, and Fort Irwin, California. Projected climate changes are described for the time period 2070–2099 (30-year mean) as compared to 1961–1990 (30-year mean) for each study area using data simulated by the coupled atmosphere-ocean general circulation models CCSM3, CGCM3.1(T47), and UKMO-HadCM3, run under the B1, A1B, and A2 future greenhouse gas emissions scenarios. These climate data are used to simulate potential changes in important components of the vegetation for each study area using LPJ, a dynamic global vegetation model, and LPJ-GUESS, a dynamic vegetation model optimized for regional studies. The simulated vegetation results are compared with observed vegetation data for the study areas. Potential effects of the simulated future climate and vegetation changes for species and habitats of management concern are discussed in each study area, with a particular focus on federally listed threatened and endangered species.

  20. US Food Security and Climate Change: Mid-Century Projections of Commodity Crop Production by the IMPACT Model

    NASA Astrophysics Data System (ADS)

    Takle, E. S.; Gustafson, D. I.; Beachy, R.; Nelson, G. C.; Mason-D'Croz, D.; Palazzo, A.

    2013-12-01

    Agreement is developing among agricultural scientists on the emerging inability of agriculture to meet growing global food demands. The lack of additional arable land and availability of freshwater have long been constraints on agriculture. Changes in trends of weather conditions that challenge physiological limits of crops, as projected by global climate models, are expected to exacerbate the global food challenge toward the middle of the 21st century. These climate- and constraint-driven crop production challenges are interconnected within a complex global economy, where diverse factors add to price volatility and food scarcity. We use the DSSAT crop modeling suite, together with mid-century projections of four AR4 global models, as input to the International Food Policy Research Institute IMPACT model to project the impact of climate change on food security through the year 2050 for internationally traded crops. IMPACT is an iterative model that responds to endogenous and exogenous drivers to dynamically solve for the world prices that ensure global supply equals global demand. The modeling methodology reconciles the limited spatial resolution of macro-level economic models that operate through equilibrium-driven relationships at a national level with detailed models of biophysical processes at high spatial resolution. The analysis presented here suggests that climate change in the first half of the 21st century does not represent a near-term threat to food security in the US due to the availability of adaptation strategies (e.g., loss of current growing regions is balanced by gain of new growing regions). However, as climate continues to trend away from 20th century norms current adaptation measures will not be sufficient to enable agriculture to meet growing food demand. Climate scenarios from higher-level carbon emissions exacerbate the food shortfall, although uncertainty in climate model projections (particularly precipitation) is a limitation to impact

  1. Lessons Learned from Applications of a Climate Change Decision Tree toWater System Projects in Kenya and Nepal

    NASA Astrophysics Data System (ADS)

    Ray, P. A.; Bonzanigo, L.; Taner, M. U.; Wi, S.; Yang, Y. C. E.; Brown, C.

    2015-12-01

    The Decision Tree Framework developed for the World Bank's Water Partnership Program provides resource-limited project planners and program managers with a cost-effective and effort-efficient, scientifically defensible, repeatable, and clear method for demonstrating the robustness of a project to climate change. At the conclusion of this process, the project planner is empowered to confidently communicate the method by which the vulnerabilities of the project have been assessed, and how the adjustments that were made (if any were necessary) improved the project's feasibility and profitability. The framework adopts a "bottom-up" approach to risk assessment that aims at a thorough understanding of a project's vulnerabilities to climate change in the context of other nonclimate uncertainties (e.g., economic, environmental, demographic, political). It helps identify projects that perform well across a wide range of potential future climate conditions, as opposed to seeking solutions that are optimal in expected conditions but fragile to conditions deviating from the expected. Lessons learned through application of the Decision Tree to case studies in Kenya and Nepal will be presented, and aspects of the framework requiring further refinement will be described.

  2. Making climate change projections relevant to water management: opportunities and challenges in the Colorado River basin (Invited)

    NASA Astrophysics Data System (ADS)

    Vano, J. A.

    2013-12-01

    By 2007, motivated by the ongoing drought and release of new climate model projections associated with the IPCC AR4 report, multiple independent studies had made estimates of future Colorado River streamflow. Each study had a unique approach, and unique estimate for the magnitude for mid-21st century streamflow change ranging from declines of only 6% to declines of as much as 45%. The differences among studies provided for interesting scientific debates, but to many practitioners this appeared to be just a tangle of conflicting predictions, leading to the question 'why is there such a wide range of projections of impacts of future climate change on Colorado River streamflow, and how should this uncertainty be interpreted?' In response, a group of scientists from academic and federal agencies, brought together through a NOAA cross-RISA project, set forth to identify the major sources of disparities and provide actionable science and guidance for water managers and decision makers. Through this project, four major sources of disparities among modeling studies were identified that arise from both methodological and model differences. These differences, in order of importance, are: (1) the Global Climate Models (GCMs) and emission scenarios used; (2) the ability of land surface hydrology and atmospheric models to simulate properly the high elevation runoff source areas; (3) the sensitivities of land surface hydrology models to precipitation and temperature changes; and (4) the methods used to statistically downscale GCM scenarios. Additionally, reconstructions of pre-instrumental streamflows provided further insights about the greatest risk to Colorado River streamflow of a multi-decadal drought, like those observed in paleo reconstructions, exacerbated by a steady reduction in flows due to climate change. Within this talk I will provide an overview of these findings and insights into the opportunities and challenges encountered in the process of striving to make

  3. Monitoring alpine plants for climate change: The North American GLORIA Project

    USGS Publications Warehouse

    Millar, C.; Fagre, Daniel B.

    2007-01-01

    Globally, alpine environments are hotspots of biodiversity, often harboring higher diversity of plant species than corresponding areas at lower elevations. These regions are also likely to experience more severe and rapid change in climate than lowlands under conditions of anthropogenic warming (Theurillat & Guisan 2001; Halloy & Mark 2003; Pickering & Armstrong 2003). Such climatic effects are already being documented by instrumental monitoring in the few places in western North America where long-term climate stations are available at high elevations. New sites are being planned (see GCOS article, pg 15). Climate Change is augmenting concern for alpine vegetation because available habitat diminishes at increasingly higher elevations. This creates an “elevational squeeze,” whereby the geometry of mountain peaks means that escape routes to cooler environments uphill are dead ends for migrating alpine species. While monitoring and modeling efforts have begun to elucidate climate of alpine environments in North America, very little is known about corresponding responses of alpine plant species to changing climate. Indeed, for many mountain regions in the West, little information exists even about alpine plant distribution and abundance.

  4. How will organic carbon stocks in mineral soils evolve under future climate? Global projections using RothC for a range of climate change scenarios

    NASA Astrophysics Data System (ADS)

    Gottschalk, P.; Smith, J. U.; Wattenbach, M.; Bellarby, J.; Stehfest, E.; Arnell, N.; Osborn, T. J.; Smith, P.

    2012-01-01

    We use a soil carbon (C) model (RothC), driven by a range of climate models for a range of climate scenarios to examine the impacts of future climate on global soil organic carbon (SOC) stocks. The results suggest an overall global increase in global SOC stocks by 2100 under all scenarios, but with a different extent of increase among the climate model and emissions scenarios. Projected land use changes are also simulated, but have relatively small impacts at the global scale. Whether soils gain or lose SOC depends upon the balance between C inputs and decomposition. Changes in net primary production (NPP) change C inputs to the soil, whilst decomposition usually increases under warmer temperatures, but can also be slowed by decreased soil moisture. Underlying the global trend of increasing SOC under future climate is a complex pattern of regional SOC change. SOC losses are projected to occur in northern latitudes where higher SOC decomposition rates due to higher temperatures are not balanced by increased NPP, whereas in tropical regions, NPP increases override losses due to higher SOC decomposition. The spatial heterogeneity in the response of SOC to changing climate shows how delicately balanced the competing gain and loss processes are, with subtle changes in temperature, moisture, soil type and land use, interacting to determine whether SOC increases or decreases in the future. Our results suggest that we should stop asking the general question of whether SOC stocks will increase or decrease under future climate since there is no single answer. Instead, we should focus on improving our prediction of the factors that determine the size and direction of change, and the land management practices that can be implemented to protect and enhance SOC stocks.

  5. How will organic carbon stocks in mineral soils evolve under future climate? Global projections using RothC for a range of climate change scenarios

    NASA Astrophysics Data System (ADS)

    Gottschalk, P.; Smith, J. U.; Wattenbach, M.; Bellarby, J.; Stehfest, E.; Arnell, N.; Osborn, T. J.; Jones, C.; Smith, P.

    2012-08-01

    We use a soil carbon (C) model (RothC), driven by a range of climate models for a range of climate scenarios to examine the impacts of future climate on global soil organic carbon (SOC) stocks. The results suggest an overall global increase in SOC stocks by 2100 under all scenarios, but with a different extent of increase among the climate model and emissions scenarios. The impacts of projected land use changes are also simulated, but have relatively minor impacts at the global scale. Whether soils gain or lose SOC depends upon the balance between C inputs and decomposition. Changes in net primary production (NPP) change C inputs to the soil, whilst decomposition usually increases under warmer temperatures, but can also be slowed by decreased soil moisture. Underlying the global trend of increasing SOC under future climate is a complex pattern of regional SOC change. SOC losses are projected to occur in northern latitudes where higher SOC decomposition rates due to higher temperatures are not balanced by increased NPP, whereas in tropical regions, NPP increases override losses due to higher SOC decomposition. The spatial heterogeneity in the response of SOC to changing climate shows how delicately balanced the competing gain and loss processes are, with subtle changes in temperature, moisture, soil type and land use, interacting to determine whether SOC increases or decreases in the future. Our results suggest that we should stop looking for a single answer regarding whether SOC stocks will increase or decrease under future climate, since there is no single answer. Instead, we should focus on improving our prediction of the factors that determine the size and direction of change, and the land management practices that can be implemented to protect and enhance SOC stocks.

  6. Projected Evolution of California's San Francisco Bay-Delta-River System in a Century of Climate Change

    PubMed Central

    Cloern, James E.; Knowles, Noah; Brown, Larry R.; Cayan, Daniel; Dettinger, Michael D.; Morgan, Tara L.; Schoellhamer, David H.; Stacey, Mark T.; van der Wegen, Mick; Wagner, R. Wayne; Jassby, Alan D.

    2011-01-01

    Background Accumulating evidence shows that the planet is warming as a response to human emissions of greenhouse gases. Strategies of adaptation to climate change will require quantitative projections of how altered regional patterns of temperature, precipitation and sea level could cascade to provoke local impacts such as modified water supplies, increasing risks of coastal flooding, and growing challenges to sustainability of native species. Methodology/Principal Findings We linked a series of models to investigate responses of California's San Francisco Estuary-Watershed (SFEW) system to two contrasting scenarios of climate change. Model outputs for scenarios of fast and moderate warming are presented as 2010–2099 projections of nine indicators of changing climate, hydrology and habitat quality. Trends of these indicators measure rates of: increasing air and water temperatures, salinity and sea level; decreasing precipitation, runoff, snowmelt contribution to runoff, and suspended sediment concentrations; and increasing frequency of extreme environmental conditions such as water temperatures and sea level beyond the ranges of historical observations. Conclusions/Significance Most of these environmental indicators change substantially over the 21st century, and many would present challenges to natural and managed systems. Adaptations to these changes will require flexible planning to cope with growing risks to humans and the challenges of meeting demands for fresh water and sustaining native biota. Programs of ecosystem rehabilitation and biodiversity conservation in coastal landscapes will be most likely to meet their objectives if they are designed from considerations that include: (1) an integrated perspective that river-estuary systems are influenced by effects of climate change operating on both watersheds and oceans; (2) varying sensitivity among environmental indicators to the uncertainty of future climates; (3) inevitability of biological community

  7. Projected evolution of California's San Francisco bay-delta-river system in a century of climate change

    USGS Publications Warehouse

    Cloern, J.E.; Knowles, N.; Brown, L.R.; Cayan, D.; Dettinger, M.D.; Morgan, T.L.; Schoellhamer, D.H.; Stacey, M.T.; van der Wegen, M.; Wagner, R.W.; Jassby, A.D.

    2011-01-01

    Background: Accumulating evidence shows that the planet is warming as a response to human emissions of greenhouse gases. Strategies of adaptation to climate change will require quantitative projections of how altered regional patterns of temperature, precipitation and sea level could cascade to provoke local impacts such as modified water supplies, increasing risks of coastal flooding, and growing challenges to sustainability of native species. Methodology/Principal Findings: We linked a series of models to investigate responses of California's San Francisco Estuary-Watershed (SFEW) system to two contrasting scenarios of climate change. Model outputs for scenarios of fast and moderate warming are presented as 2010-2099 projections of nine indicators of changing climate, hydrology and habitat quality. Trends of these indicators measure rates of: increasing air and water temperatures, salinity and sea level; decreasing precipitation, runoff, snowmelt contribution to runoff, and suspended sediment concentrations; and increasing frequency of extreme environmental conditions such as water temperatures and sea level beyond the ranges of historical observations. Conclusions/Significance: Most of these environmental indicators change substantially over the 21st century, and many would present challenges to natural and managed systems. Adaptations to these changes will require flexible planning to cope with growing risks to humans and the challenges of meeting demands for fresh water and sustaining native biota. Programs of ecosystem rehabilitation and biodiversity conservation in coastal landscapes will be most likely to meet their objectives if they are designed from considerations that include: (1) an integrated perspective that river-estuary systems are influenced by effects of climate change operating on both watersheds and oceans; (2) varying sensitivity among environmental indicators to the uncertainty of future climates; (3) inevitability of biological community

  8. Projected evolution of California's San Francisco Bay-Delta-River System in a century of continuing climate change

    USGS Publications Warehouse

    Cloern, James E.; Knowles, Noah; Brown, Larry R.; Cayan, Daniel; Dettinger, Michael D.; Morgan, Tara L.; Schoellhamer, David H.; Stacey, Mark T.; van der Wegen, Mick; Wagner, R. Wayne; Jassby, Alan D.

    2011-01-01

    Background Accumulating evidence shows that the planet is warming as a response to human emissions of greenhouse gases. Strategies of adaptation to climate change will require quantitative projections of how altered regional patterns of temperature, precipitation and sea level could cascade to provoke local impacts such as modified water supplies, increasing risks of coastal flooding, and growing challenges to sustainability of native species. Methodology/Principal Findings We linked a series of models to investigate responses of California's San Francisco Estuary-Watershed (SFEW) system to two contrasting scenarios of climate change. Model outputs for scenarios of fast and moderate warming are presented as 2010–2099 projections of nine indicators of changing climate, hydrology and habitat quality. Trends of these indicators measure rates of: increasing air and water temperatures, salinity and sea level; decreasing precipitation, runoff, snowmelt contribution to runoff, and suspended sediment concentrations; and increasing frequency of extreme environmental conditions such as water temperatures and sea level beyond the ranges of historical observations. Conclusions/Significance Most of these environmental indicators change substantially over the 21st century, and many would present challenges to natural and managed systems. Adaptations to these changes will require flexible planning to cope with growing risks to humans and the challenges of meeting demands for fresh water and sustaining native biota. Programs of ecosystem rehabilitation and biodiversity conservation in coastal landscapes will be most likely to meet their objectives if they are designed from considerations that include: (1) an integrated perspective that river-estuary systems are influenced by effects of climate change operating on both watersheds and oceans; (2) varying sensitivity among environmental indicators to the uncertainty of future climates; (3) inevitability of biological community

  9. Projected impacts of climate change on the flow regime from Bârlad River Basin, Romania

    NASA Astrophysics Data System (ADS)

    Mic, Rodica Paula; Corbus, Ciprian; Matreata, Marius

    2015-04-01

    The paper presents the partial results, obtained within the CLIMHYDEX project (www.climhydex.meteoromania.ro), regarding the assessment of the climate change impact on flow regime from Bârlad River Basin by long term hydrological simulation. To estimate the impact of variability and climate change on monthly mean, seasonal and annual flow regime, in the Bârlad River Basin, the long-term simulations were performed, by means of CONSUL hydrological model, using as input data series of precipitation and temperature resulted from the data processing obtained from simulations of climate evolution by means of regional climate model REMO having spatial resolution of 10 km. The CONSUL model is a deterministic hydrological mathematical model which allows the simulation of flow in small as well as in large and complex basins, divided into homogeneous units (sub-basins). The model enables the computing of discharge hydrographs on sub-basins, their routing and composition on the main river and tributaries. Using of CONSUL model assumed the calibration of model parameters, an operation that was performed by the simulation of flow from the period 1975 - 2010 in the analysed river basin. Calibration of model parameters was performed in two stages: based on events and global. Calibration based on events was made considering 25 rainfall-runoff events, chosen to cover a wide range of possible situations in the case of floods formation. Global calibration of rainfall-runoff model parameters was done by simulating the flow on considered calibration period. Flow simulations using the CONSUL model, having optimal parameters derived from the calibration process, were conducted for two periods: the reference period 1971 - 2000 and the future period 2021 - 2050 respectively, at 9 hydrometric stations from the river basin analysed. For the input data in the CONSUL model, i.e. precipitation and temperature series, averaged on the sub-basins corresponding to the gauge stations, a comparative

  10. Climate Change impacts in the Drôme department (southeastern France): the GICC-DECLIC Project (2010-2012)

    NASA Astrophysics Data System (ADS)

    Rome, Sandra; Bigot, Sylvain; Dubus, Nathalie; Anquetin, Sandrine

    2010-05-01

    The national DECLIC ("Drôme: Eau, CLimat Impacts liés aux Changements") project, coordinated at LTHE (Grenoble-France) has begun in beginning of 2010 and is financed by the national GICC-2 program. This project deals with the climatic variability and the interactions in the Drôme's low mountain range. The main goal is to initiate an operational partnership between academics (three research laboratories LTHE, PACTE and ESPACE) and the involved Territorial Agencies, to define potential climate changes and future adaptations. Analyses will concern especially the climatic variations observed during the last 50 years at the administrative scale (namely the "Département" in the French organization), and their significant impacts on the current and future water resources, i.e. pluviometric regimes, quality of the snow coverage, flow stream variations, availability of the resources. The express request from the local administrators concerns mainly the variations of plant productivity (forests and agriculture), and mainly those due to isolated or recurrent drought periods (productivity, biomass, phenology, use of water resources). DECLIC project also concerns interactions between climatic variations and departmental tourist activities, in connection with water resources (consumption and quality). The final objective is to write a « green paper » about adaptation strategies on climate change for policies. The whole study will lean at first on a diagnostic study of climatic time-series and to various environmental data. One step will also use regional modelling of the impact of the climate on water resources. Besides geostatistic modelling, another methodology will use a simplified physical model that gives the benefit to take into account explicitly the topography at fine scale.

  11. Estimated Effects of Projected Climate Change on the Basic Reproductive Number of the Lyme Disease Vector Ixodes scapularis

    PubMed Central

    Radojevic´, Milka; Wu, Xiaotian; Duvvuri, Venkata R.; Leighton, Patrick A.; Wu, Jianhong

    2014-01-01

    Background: The extent to which climate change may affect human health by increasing risk from vector-borne diseases has been under considerable debate. Objectives: We quantified potential effects of future climate change on the basic reproduction number (R0) of the tick vector of Lyme disease, Ixodes scapularis, and explored their importance for Lyme disease risk, and for vector-borne diseases in general. Methods: We applied observed temperature data for North America and projected temperatures using regional climate models to drive an I. scapularis population model to hindcast recent, and project future, effects of climate warming on R0. Modeled R0 increases were compared with R0 ranges for pathogens and parasites associated with variations in key ecological and epidemiological factors (obtained by literature review) to assess their epidemiological importance. Results: R0 for I. scapularis in North America increased during the years 1971–2010 in spatio-temporal patterns consistent with observations. Increased temperatures due to projected climate change increased R0 by factors (2–5 times in Canada and 1.5–2 times in the United States), comparable to observed ranges of R0 for pathogens and parasites due to variations in strains, geographic locations, epidemics, host and vector densities, and control efforts. Conclusions: Climate warming may have co-driven the emergence of Lyme disease in northeastern North America, and in the future may drive substantial disease spread into new geographic regions and increase tick-borne disease risk where climate is currently suitable. Our findings highlight the potential for climate change to have profound effects on vectors and vector-borne diseases, and the need to refocus efforts to understand these effects. Citation: Ogden NH, Radojević M, Wu X, Duvvuri VR, Leighton PA, Wu J. 2014. Estimated effects of projected climate change on the basic reproductive number of the Lyme disease vector Ixodes scapularis. Environ Health

  12. Responses of grape berry anthocyanin and titratable acidity to the projected climate change across the Western Australian wine regions

    NASA Astrophysics Data System (ADS)

    Barnuud, Nyamdorj N.; Zerihun, Ayalsew; Mpelasoka, Freddie; Gibberd, Mark; Bates, Bryson

    2014-08-01

    More than a century of observations has established that climate influences grape berry composition. Accordingly, the projected global climate change is expected to impact on grape berry composition although the magnitude and direction of impact at regional and subregional scales are not fully known. The aim of this study was to assess potential impacts of climate change on levels of berry anthocyanin and titratable acidity (TA) of the major grapevine varieties grown across all of the Western Australian (WA) wine regions. Grape berry anthocyanin and TA responses across all WA wine regions were projected for 2030, 2050 and 2070 by utilising empirical models that link these berry attributes and climate data downscaled (to ˜5 km resolution) from the csiro_mk3_5 and miroc3_2_medres global climate model outputs under IPCC SRES A2 emissions scenario. Due to the dependence of berry composition on maturity, climate impacts on anthocyanin and TA levels were assessed at a common maturity of 22 °Brix total soluble solids (TSS), which necessitated the determination of when this maturity will be reached for each variety, region and warming scenario, and future period. The results indicate that both anthocyanin and TA levels will be affected negatively by a warming climate, but the magnitude of the impacts will differ between varieties and wine regions. Compared to 1990 levels, median anthocyanins concentrations are projected to decrease, depending on global climate model, by up to 3-12 % and 9-33 % for the northern wine regions by 2030 and 2070, respectively while 2-18 % reductions are projected in the southern wine regions for the same time periods. Patterns of reductions in the median Shiraz berry anthocyanin concentrations are similar to that of Cabernet Sauvignon; however, the magnitude is lower (up to 9-18 % in southern and northern wine regions respectively by 2070). Similarly, uneven declines in TA levels are projected across the study regions. The largest reductions

  13. Responses of grape berry anthocyanin and titratable acidity to the projected climate change across the Western Australian wine regions.

    PubMed

    Barnuud, Nyamdorj N; Zerihun, Ayalsew; Mpelasoka, Freddie; Gibberd, Mark; Bates, Bryson

    2014-08-01

    More than a century of observations has established that climate influences grape berry composition. Accordingly, the projected global climate change is expected to impact on grape berry composition although the magnitude and direction of impact at regional and subregional scales are not fully known. The aim of this study was to assess potential impacts of climate change on levels of berry anthocyanin and titratable acidity (TA) of the major grapevine varieties grown across all of the Western Australian (WA) wine regions. Grape berry anthocyanin and TA responses across all WA wine regions were projected for 2030, 2050 and 2070 by utilising empirical models that link these berry attributes and climate data downscaled (to ∼5 km resolution) from the csiro_mk3_5 and miroc3_2_medres global climate model outputs under IPCC SRES A2 emissions scenario. Due to the dependence of berry composition on maturity, climate impacts on anthocyanin and TA levels were assessed at a common maturity of 22 °Brix total soluble solids (TSS), which necessitated the determination of when this maturity will be reached for each variety, region and warming scenario, and future period. The results indicate that both anthocyanin and TA levels will be affected negatively by a warming climate, but the magnitude of the impacts will differ between varieties and wine regions. Compared to 1990 levels, median anthocyanins concentrations are projected to decrease, depending on global climate model, by up to 3-12 % and 9-33 % for the northern wine regions by 2030 and 2070, respectively while 2-18 % reductions are projected in the southern wine regions for the same time periods. Patterns of reductions in the median Shiraz berry anthocyanin concentrations are similar to that of Cabernet Sauvignon; however, the magnitude is lower (up to 9-18 % in southern and northern wine regions respectively by 2070). Similarly, uneven declines in TA levels are projected across the study regions. The largest reductions

  14. Global land cover products tailored to the needs of the climate modeling community - Land Cover project of the ESA Climate Change Initiative

    NASA Astrophysics Data System (ADS)

    Bontemps, S.; Defourny, P.; Radoux, J.; Kalogirou, V.; Arino, O.

    2012-04-01

    Improving the systematic observation of land cover, as an Essential Climate Variable, will support the United Framework Convention on Climate Change effort to reduce the uncertainties in our understanding of the climate system and to better cope with climate change. The Land Cover project of the ESA Climate Change Initiative aims at contributing to this effort by providing new global land cover products tailored to the expectations of the climate modeling community. During the first three months of the project, consultation mechanisms were established with this community to identify its specific requirements in terms of satellite-based global land cover products. This assessment highlighted specific needs in terms of land cover characterization, accuracy of products, as well as stability and consistency, needs that are currently not met or even addressed. Based on this outcome, the project revisits the current land cover representation and mapping approaches. First, the stable and dynamic components of land cover are distinguished. The stable component refers to the set of land surface features that remains stable over time and thus defines the land cover independently of any sources of temporary or natural variability. Conversely, the dynamic component is directly related to this temporary or natural variability that can induce some variation in land observation over time but without changing the land cover state in its essence (e.g. flood, snow on forest, etc.). Second, the project focuses on the possibility to generate such stable global land cover maps. Previous projects, like GlobCover and MODIS Land Cover, have indeed shown that products' stability is a key issue. In delivering successive global products derived from the same sensor, they highlighted the existence of spurious year-to-year variability in land cover labels, which were not associated with land cover change but with phenology, disturbances or landscape heterogeneity. An innovative land cover

  15. Projected Impacts of 21st Century Climate Change on Potential Habitat for Vegetation and Forest Types in Russia

    NASA Astrophysics Data System (ADS)

    Soja, A. J.; Tchebakova, N. M.; Parfenova, E. I.; Cantin, A.; Conard, S. G.

    2015-12-01

    Global GCMs have demonstrated profound potential for projections to affect the distribution of terrestrial ecosystems and individual species at all hierarchical levels. We modeled progression of potential Russian ecotones and forest-forming species as the climate changes. Large-scale bioclimatic models were developed to predict Russian zonal vegetation (RuBCliM) and forest types (ForCliM) from three bioclimatic indices (1) growing degree-days above 5 degrees C; (2) negative degree-days below 0 C ; and (3) an annual moisture index (ratio of growing degree days to annual precipitation). The presence or absence of continuous permafrost was explicitly included in the models as limiting the forests and tree species distribution. All simulations to predict vegetation change across Russia were run by coupling our bioclimatic models with bioclimatic indices and the permafrost distribution for the baseline period and for the future 2020, 2050 and 2100 simulated by 3 GCMs (CGCM3.1, HadCM3 and IPSLCM4) and 3 climate change scenarios (A1B, A2 and B1). Under these climate scenarios, it is projected the zonobiomes will shift far northward to reach equilibrium with the change in climate. Under the warmer and drier projected future climate, about half of Russia would be suitable for the forest-steppe ecotone and grasslands, rather than for forests. Water stress tolerant light-needled taiga would have an increased advantage over water-loving dark-needled taiga. Permafrost-tolerant L. dahurica taiga would remain the dominant forest across permafrost. Increases in severe fire weather would lead to increases in large, high-severity fires, especially at boundaries between forest ecotones, which can be expected to facilitate a more rapid progression of vegetation towards a new equilibrium with the climate. Adaptation to climate change may be facilitated by: assisting migration of forests by seed transfers to establish genotypes that may be more ecologically suited as climate changes

  16. Projecting the impact of climate change on the effectiveness of Controlled Drainage in the U.S. Corn Belt

    NASA Astrophysics Data System (ADS)

    Lee, C.; Bowling, L. C.; Cherkauer, K. A.

    2015-12-01

    Subsurface tile drainage systems are used to create arable conditions for agriculture in low-gradient regions with poorly drained soils, such as the U.S. Corn Belt. Traditionally these systems allow excess water to continually drain from the landscape until the water table underlying the field drops below the depth of the tile drain. These 'free draining' systems increase the volume of subsurface water, and thus increase the amount of nutrients, leaving fields. Controlled Drainage (CD) is a water conservation practice that allows farmers to decrease the volume of water leaving their field by using a control structure to manually raise the resting water table above the tile drains. In order to better understand the potential impacts of climate change on agricultural drainage in the Corn Belt, this study focuses on evaluating differences in the simulated effectiveness of CD under different climate change scenarios. The Variable Infiltration Capacity (VIC) macroscale hydrology model, with a subsurface drainage algorithm, was calibrated to nine sites across the Midwest with drainflow records from 1987 to 2012. It is used to simulate drainflow from 1980-2010 and 2035-2064 using projections for the A1B, A2 and B1 emissions scenarios from the GFDL, PCM and HadCM3 models to represent variation in the severity of projected climate change. Simulated drainflow volume, timing, and variability for both freely-drained and controlled scenarios is used to quantify projected changes in drainflow and calculate metrics of CD effectiveness in mitigating negative water quality impacts, spatially under different climate scenarios. Assessing potential changes in effectiveness of CD due to climate change is necessary to investigate potential long-term benefits and drawbacks of this best management practice.

  17. Enhancing Students' Scientific and Quantitative Literacies through an Inquiry-Based Learning Project on Climate Change

    ERIC Educational Resources Information Center

    McCright, Aaron M.

    2012-01-01

    Promoting sustainability and dealing with complex environmental problems like climate change demand a citizenry with considerable scientific and quantitative literacy. In particular, students in the STEM disciplines of (biophysical) science, technology, engineering, and mathematics need to develop interdisciplinary skills that help them understand…

  18. Estimating effects of tidal power projects and climate change on threatened and endangered marine species and their food web.

    PubMed

    Busch, D Shallin; Greene, Correigh M; Good, Thomas P

    2013-12-01

    Marine hydrokinetic power projects will operate as marine environments change in response to increased atmospheric carbon dioxide concentrations. We considered how tidal power development and stressors resulting from climate change may affect Puget Sound species listed under the U.S. Endangered Species Act (ESA) and their food web. We used risk tables to assess the singular and combined effects of tidal power development and climate change. Tidal power development and climate change posed risks to ESA-listed species, and risk increased with incorporation of the effects of these stressors on predators and prey of ESA-listed species. In contrast, results of a model of strikes on ESA-listed species from turbine blades suggested that few ESA-listed species are likely to be killed by a commercial-scale tidal turbine array. We applied scenarios to a food web model of Puget Sound to explore the effects of tidal power and climate change on ESA-listed species using more quantitative analytical techniques. To simulate development of tidal power, we applied results of the blade strike model. To simulate environmental changes over the next 50 years, we applied scenarios of change in primary production, plankton community structure, dissolved oxygen, ocean acidification, and freshwater flooding events. No effects of tidal power development on ESA-listed species were detected from the food web model output, but the effects of climate change on them and other members of the food web were large. Our analyses exemplify how natural resource managers might assess environmental effects of marine technologies in ways that explicitly incorporate climate change and consider multiple ESA-listed species in the context of their ecological community. Estimación de los Efectos de Proyectos de Energía de las Mareas y el Cambio Climático sobre Especies Marinas Amenazadas y en Peligro y su Red Alimentaria.

  19. Estimating effects of tidal power projects and climate change on threatened and endangered marine species and their food web.

    PubMed

    Busch, D Shallin; Greene, Correigh M; Good, Thomas P

    2013-12-01

    Marine hydrokinetic power projects will operate as marine environments change in response to increased atmospheric carbon dioxide concentrations. We considered how tidal power development and stressors resulting from climate change may affect Puget Sound species listed under the U.S. Endangered Species Act (ESA) and their food web. We used risk tables to assess the singular and combined effects of tidal power development and climate change. Tidal power development and climate change posed risks to ESA-listed species, and risk increased with incorporation of the effects of these stressors on predators and prey of ESA-listed species. In contrast, results of a model of strikes on ESA-listed species from turbine blades suggested that few ESA-listed species are likely to be killed by a commercial-scale tidal turbine array. We applied scenarios to a food web model of Puget Sound to explore the effects of tidal power and climate change on ESA-listed species using more quantitative analytical techniques. To simulate development of tidal power, we applied results of the blade strike model. To simulate environmental changes over the next 50 years, we applied scenarios of change in primary production, plankton community structure, dissolved oxygen, ocean acidification, and freshwater flooding events. No effects of tidal power development on ESA-listed species were detected from the food web model output, but the effects of climate change on them and other members of the food web were large. Our analyses exemplify how natural resource managers might assess environmental effects of marine technologies in ways that explicitly incorporate climate change and consider multiple ESA-listed species in the context of their ecological community. Estimación de los Efectos de Proyectos de Energía de las Mareas y el Cambio Climático sobre Especies Marinas Amenazadas y en Peligro y su Red Alimentaria. PMID:24299085

  20. Climate Change and European Water Bodies, a Review of Existing Gaps and Future Research Needs: Findings of the ClimateWater Project

    NASA Astrophysics Data System (ADS)

    Garnier, Monica; Harper, David M.; Blaskovicova, Lotta; Hancz, Gabriella; Janauer, Georg A.; Jolánkai, Zsolt; Lanz, Eva; Porto, Antonio Lo; Mándoki, Monika; Pataki, Beata; Rahuel, Jean-Luc; Robinson, Victoria J.; Stoate, Chris; Tóth, Eszter; Jolánkai, Géza

    2015-08-01

    There is general agreement among scientists that global temperatures are rising and will continue to increase in the future. It is also agreed that human activities are the most important causes of these climatic variations, and that water resources are already suffering and will continue to be greatly impaired as a consequence of these changes. In particular, it is probable that areas with limited water resources will expand and that an increase of global water demand will occur, estimated to be around 35-60 % by 2025 as a consequence of population growth and the competing needs of water uses. This will cause a growing imbalance between water demand (including the needs of nature) and supply. This urgency demands that climate change impacts on water be evaluated in different sectors using a cross-cutting approach (Contestabile in Nat Clim Chang 3:11-12, 2013). These issues were examined by the EU FP7-funded Co-ordination and support action "ClimateWater" (bridging the gap between adaptation strategies of climate change impacts and European water policies). The project studied adaptation strategies to minimize the water-related consequences of climate change and assessed how these strategies should be taken into consideration by European policies. This article emphasizes that knowledge gaps still exist about the direct effects of climate change on water bodies and their indirect impacts on production areas that employ large amounts of water (e.g., agriculture). Some sectors, such as ecohydrology and alternative sewage treatment technologies, could represent a powerful tool to mitigate climate change impacts. Research needs in these still novel fields are summarized.

  1. Climate Change and European Water Bodies, a Review of Existing Gaps and Future Research Needs: Findings of the ClimateWater Project.

    PubMed

    Garnier, Monica; Harper, David M; Blaskovicova, Lotta; Hancz, Gabriella; Janauer, Georg A; Jolánkai, Zsolt; Lanz, Eva; Lo Porto, Antonio; Mándoki, Monika; Pataki, Beata; Rahuel, Jean-Luc; Robinson, Victoria J; Stoate, Chris; Tóth, Eszter; Jolánkai, Géza

    2015-08-01

    There is general agreement among scientists that global temperatures are rising and will continue to increase in the future. It is also agreed that human activities are the most important causes of these climatic variations, and that water resources are already suffering and will continue to be greatly impaired as a consequence of these changes. In particular, it is probable that areas with limited water resources will expand and that an increase of global water demand will occur, estimated to be around 35-60% by 2025 as a consequence of population growth and the competing needs of water uses. This will cause a growing imbalance between water demand (including the needs of nature) and supply. This urgency demands that climate change impacts on water be evaluated in different sectors using a cross-cutting approach (Contestabile in Nat Clim Chang 3:11-12, 2013). These issues were examined by the EU FP7-funded Co-ordination and support action "ClimateWater" (bridging the gap between adaptation strategies of climate change impacts and European water policies). The project studied adaptation strategies to minimize the water-related consequences of climate change and assessed how these strategies should be taken into consideration by European policies. This article emphasizes that knowledge gaps still exist about the direct effects of climate change on water bodies and their indirect impacts on production areas that employ large amounts of water (e.g., agriculture). Some sectors, such as ecohydrology and alternative sewage treatment technologies, could represent a powerful tool to mitigate climate change impacts. Research needs in these still novel fields are summarized.

  2. Climate changes, shifting ranges

    USGS Publications Warehouse

    Romanach, Stephanie

    2015-01-01

    Even a fleeting mention of the Everglades conjures colorful images of alligators, panthers, flamingos, and manatees. Over the centuries, this familiar cast of characters has become synonymous with life in south Florida. But the workings of a changing climate have the potential to significantly alter the menagerie of animals that call this area home. Global projections suggest south Florida wildlife will need to contend with higher temperatures, drier conditions, and rising seas in the years ahead. Recent modeling efforts shed new light on the potential outcomes these changes may have for threatened and endangered species in the area.

  3. Concerns About Climate Change Mitigation Projects: Summary of Findings from Case Studies in Brazil, India, Mexico, and South Africa

    SciTech Connect

    Sathaye, Jayant A.; Andrasko, Kenneth; Makundi, Willy; La Rovere, Emilio Lebre; Ravinandranath, N.H.; Melli, Anandi; Rangachari, Anita; Amaz, Mireya; Gay, Carlos; Friedmann, Rafael; Goldberg, Beth; van Horen, Clive; Simmonds, Gillina; Parker, Gretchen

    1998-11-01

    The concept of joint implementation as a way to implement climate change mitigation projects in another country has been controversial ever since its inception. Developing countries have raised numerous issues at the project-specific technical level, and broader concerns having to do with equity and burden sharing. This paper summarizes the findings of studies for Brazil, India, Mexico and South Africa, four countries that have large greenhouse gas emissions and are heavily engaged in the debate on climate change projects under the Kyoto Protocol. The studies examine potential or current projects/programs to determine whether eight technical concerns about joint implementation can be adequately addressed. They conclude that about half the concerns were minor or well managed by project developers, but concerns about additionality of funds, host country institutions and guarantees of performance (including the issues of baselines and possible leakage) need much more effort to be adequately addressed. All the papers agree on the need to develop institutional arrangements for approving and monitoring such projects in each of the countries represented. The case studies illustrate that these projects have the potential to bring new technology, investment, employment and ancillary socioeconomic and environmental benefits to developing countries. These benefits are consistent with the goal of sustainable development in the four study countries. At a policy level, the studies' authors note that in their view, the Annex I countries should consider limits on the use of jointly implemented projects as a way to get credits against their own emissions at home, and stress the importance of industrialized countries developing new technologies that will benefit all countries. The authors also observe that if all countries accepted caps on their emissions (with a longer time period allowed for developing countries to do so) project-based GHG mitigation would be significantly

  4. Indicators for Assessing Climate Change Resilience Resulting from Emplacement of Green Infrastructure Projects Across an Urban Landscape

    NASA Astrophysics Data System (ADS)

    Parish, E. S.; Omitaomu, O.; Sylvester, L.; Nugent, P.

    2015-12-01

    Many U.S. cities are exploring the potential of using green infrastructure (e.g., porous pavements, green roofs, street planters) to reduce urban storm water runoff, which can be both be a nuisance and costly to treat. While tools exist to measure local runoff changes resulting from individual green infrastructure (GI) projects, most municipalities currently have no method of analyzing the collective impact of GI projects on urban stormwater systems under future rainfall scenarios and impervious surface distribution patterns. Using the mid-sized city of Knoxville, Tennessee as a case study, we propose a set of indicators that can be used to monitor and analyze the collective effects of GI emplacement on urban storm water runoff volumes as well as to quantify potential co-benefits of GI projects (e.g., urban heat island reduction, reduced stream scouring) under different climate projection ensembles and population growth scenarios. These indicators are intended to help the city prioritize GI projects as opportunities arise, as well as to track the effectiveness of GI implementation over time. We explore the aggregation of these indicators across different spatial scales (e.g., plot, neighborhood, watershed, city) in order to assess potential changes in climate change resilience resulting from the collective implementation of GI projects across an urban landscape.

  5. Final Technical Report for "Collaborative Research: Regional climate-change projections through next-generation empirical and dynamical models"

    SciTech Connect

    Robertson, A.W.; Ghil, M.; Kravtsov, K.; Smyth, P.J.

    2011-04-08

    This project was a continuation of previous work under DOE CCPP funding in which we developed a twin approach of non-homogeneous hidden Markov models (NHMMs) and coupled ocean-atmosphere (O-A) intermediate-complexity models (ICMs) to identify the potentially predictable modes of climate variability, and to investigate their impacts on the regional-scale. We have developed a family of latent-variable NHMMs to simulate historical records of daily rainfall, and used them to downscale seasonal predictions. We have also developed empirical mode reduction (EMR) models for gaining insight into the underlying dynamics in observational data and general circulation model (GCM) simulations. Using coupled O-A ICMs, we have identified a new mechanism of interdecadal climate variability, involving the midlatitude oceans mesoscale eddy field and nonlinear, persistent atmospheric response to the oceanic anomalies. A related decadal mode is also identified, associated with the oceans thermohaline circulation. The goal of the continuation was to build on these ICM results and NHMM/EMR model developments and software to strengthen two key pillars of support for the development and application of climate models for climate change projections on time scales of decades to centuries, namely: (a) dynamical and theoretical understanding of decadal-to-interdecadal oscillations and their predictability; and (b) an interface from climate models to applications, in order to inform societal adaptation strategies to climate change at the regional scale, including model calibration, correction, downscaling and, most importantly, assessment and interpretation of spread and uncertainties in multi-model ensembles. Our main results from the grant consist of extensive further development of the hidden Markov models for rainfall simulation and downscaling specifically within the non-stationary climate change context together with the development of parallelized software; application of NHMMs to

  6. Final Technical Report for "Collaborative Research. Regional climate-change projections through next-generation empirical and dynamical models"

    SciTech Connect

    Kravtsov, S.; Robertson, Andrew W.; Ghil, Michael; Smyth, Padhraic J.

    2011-04-08

    This project was a continuation of previous work under DOE CCPP funding in which we developed a twin approach of non-homogeneous hidden Markov models (NHMMs) and coupled ocean-atmosphere (O-A) intermediate-complexity models (ICMs) to identify the potentially predictable modes of climate variability, and to investigate their impacts on the regional-scale. We have developed a family of latent-variable NHMMs to simulate historical records of daily rainfall, and used them to downscale seasonal predictions. We have also developed empirical mode reduction (EMR) models for gaining insight into the underlying dynamics in observational data and general circulation model (GCM) simulations. Using coupled O-A ICMs, we have identified a new mechanism of interdecadal climate variability, involving the midlatitude oceans mesoscale eddy field and nonlinear, persistent atmospheric response to the oceanic anomalies. A related decadal mode is also identified, associated with the oceans thermohaline circulation. The goal of the continuation was to build on these ICM results and NHMM/EMR model developments and software to strengthen two key pillars of support for the development and application of climate models for climate change projections on time scales of decades to centuries, namely: (a) dynamical and theoretical understanding of decadal-to-interdecadal oscillations and their predictability; and (b) an interface from climate models to applications, in order to inform societal adaptation strategies to climate change at the regional scale, including model calibration, correction, downscaling and, most importantly, assessment and interpretation of spread and uncertainties in multi-model ensembles. Our main results from the grant consist of extensive further development of the hidden Markov models for rainfall simulation and downscaling specifically within the non-stationary climate change context together with the development of parallelized software; application of NHMMs to

  7. Realized niche width of a brackish water submerged aquatic vegetation under current environmental conditions and projected influences of climate change.

    PubMed

    Kotta, Jonne; Möller, Tiia; Orav-Kotta, Helen; Pärnoja, Merli

    2014-12-01

    Little is known about how organisms might respond to multiple climate stressors and this lack of knowledge limits our ability to manage coastal ecosystems under contemporary climate change. Ecological models provide managers and decision makers with greater certainty that the systems affected by their decisions are accurately represented. In this study Boosted Regression Trees modelling was used to relate the cover of submerged aquatic vegetation to the abiotic environment in the brackish Baltic Sea. The analyses showed that the majority of the studied submerged aquatic species are most sensitive to changes in water temperature, current velocity and winter ice scour. Surprisingly, water salinity, turbidity and eutrophication have little impact on the distributional pattern of the studied biota. Both small and large scale environmental variability contributes to the variability of submerged aquatic vegetation. When modelling species distribution under the projected influences of climate change, all of the studied submerged aquatic species appear to be very resilient to a broad range of environmental perturbation and biomass gains are expected when seawater temperature increases. This is mainly because vegetation develops faster in spring and has a longer growing season under the projected climate change scenario.

  8. Wildfire, vegetation change, and carbon: the effect of different projected climate futures on vegetation in the western United States

    NASA Astrophysics Data System (ADS)

    Sheehan, T.; Bachelet, D. M.; Ferschweiler, K.; Abatzoglou, J. T.; Hegewisch, K.

    2013-12-01

    The dynamic vegetation model MC2 simulates vegetation distribution, biogeochemical cycling, and wildfire in a highly interactive manner. It has been widely used at multiple scales (30arc sec to .5 deg) to simulate potential vegetation shifts, C fluxes and dynamic wildfires in national parks, individual states, across the nation and the continent as well as globally for a handful of climate change scenarios. In this new project, the model is using a suite of climate futures from the Coupled Model Intercomparison Project (CMIP5) downscaled using a fairly new statistical downscaling approach, Multivariate Adaptive Constructed Analogs, over the western US. The model is run on the NASA Earth Exchange (NEX) platform at 4km resolution since it requires the large-scale computing power to produce results for > 30 climate futures in a reasonable time frame. Early results show large shifts in vegetation towards warmer types (e.g. temperate to subtropical forest types, warm subtropical grasslands replacing cool temperate grasslands) and an expansion of forest types enhanced by a moderate CO2 effect on water use efficiency and production when water availability declines. While all climate models project warmer conditions, they differ in their projections of the seasonality and magnitude of rainfall. The model is sensitive to the water available for plant production and soil organic matter decomposition, fuel-build up and wildfire occurrence. Complex interactions of climate and disturbance drive the large changes the model is simulating with much geographic patchiness due to soil types as well as temporal variability due to changes in rainfall seasonality.

  9. Climate Change and Regional Agricultural Production Risk in China: A New Super-ensemble-based Probabilistic Projection

    NASA Astrophysics Data System (ADS)

    Tao, F.

    2010-05-01

    A warming trend has become pronounced since the 1980s and is projected to accelerate in the future. Concerns about the vulnerability of agricultural production to climate change are increasing. However estimates of climate change impacts are plague with uncertainties from many physical, biological, and social-economic processes. Among the urgent research priorities, more comprehensive assessments of impacts that better represent the uncertainties are needed. Here, we develop a new super-ensemble-based probabilistic projection system to account for the uncertainties from CO2 emission scenarios, climate change scenarios, and biophysical processes in impact assessment model. We demonstrate the system in addressing the probabilistic changes of maize production in the North China Plain in future. The new process-based general crop model, MCWLA [Tao, F., Yokozawa, M. Zhang, Z., 2009. Modelling the impacts of weather and climate variability on crop productivity over a large area: a new process-based model development, optimization, and uncertainties analysis. Agric. For. Meteorol. 149, 831-850], is used. MCWLA accounts for the key impact mechanisms of climate variability and is accurate over a large area. We use 10 climate scenarios consisting of the combinations of five GCMs and two emission scenarios, the corresponding atmospheric CO2 concentration range, and 60 sets of crop model parameters derived using the Bayesian probability inversion and a Markov chain Monte Carlo (MCMC) technique, representing the biophysical uncertainties from crop models. The resulting probability distributions indicate expected yield changes of -9.7% to -9.1%, -19.0% to -15.7%, and -25.5% to -24.7%, during 2020s, 2050s, and 2080s, respectively. We also investigate the temporal and spatial pattern of changes and variability in maize yield across the region. Besides the new findings on the probabilistic changes of maize productivity in the North China Plain, our study demonstrated an advanced

  10. Disentangling effects of uncertainties on population projections: climate change impact on an epixylic bryophyte.

    PubMed

    Ruete, Alejandro; Yang, Wei; Bärring, Lars; Stenseth, Nils Chr; Snäll, Tord

    2012-08-01

    Assessment of future ecosystem risks should account for the relevant uncertainty sources. This means accounting for the joint effects of climate variables and using modelling techniques that allow proper treatment of uncertainties. We investigate the influence of three of the IPCC's scenarios of greenhouse gas emissions (special report on emission scenarios (SRES)) on projections of the future abundance of a bryophyte model species. We also compare the relative importance of uncertainty sources on the population projections. The whole chain global climate model (GCM)-regional climate model-population dynamics model is addressed. The uncertainty depends on both natural- and model-related sources, in particular on GCM uncertainty. Ignoring the uncertainties gives an unwarranted impression of confidence in the results. The most likely population development of the bryophyte Buxbaumia viridis towards the end of this century is negative: even with a low-emission scenario, there is more than a 65 per cent risk for the population to be halved. The conclusion of a population decline is valid for all SRES scenarios investigated. Uncertainties are no longer an obstacle, but a mandatory aspect to include in the viability analysis of populations.

  11. Fiddling with climate change

    NASA Astrophysics Data System (ADS)

    2012-01-01

    Composer and string musician, turned award-winning environmentalist, Aubrey Meyer tells Nature Climate Change why he is campaigning for countries to adopt his 'contraction and convergence' model of global development to avoid dangerous climate change.

  12. Climate Change and Health

    MedlinePlus

    ... 2014 Fact sheets Features Commentaries 2014 Multimedia Contacts Climate change and health Fact sheet Reviewed June 2016 Key ... in improved health, particularly through reduced air pollution. Climate change Over the last 50 years, human activities – particularly ...

  13. 21st century projections of terrestrial carbon fluxes over Northern Eurasia: the role of land legacy, future land use change and future climate change

    NASA Astrophysics Data System (ADS)

    Monier, Erwan; Kicklighter, David; Sokolov, Andrei

    2015-04-01

    Northern Eurasia is a major player in the global carbon budget because of boreal forests and peatlands. Circumpolar boreal forests alone contain more than five times the amount of carbon of temperate forests and almost double the amount of carbon of the world's tropical forests. In this study, we investigate possible changes in terrestrial fluxes of carbon dioxide over Northern Eurasia over the 21st century. We estimate the contributions of land legacy, future land use change and future climate change. We present three sets of simulations of terrestrial fluxes of carbon dioxide over Northern Eurasia from 1500 to 2100 using the MBL Terrestrial Ecosystem Model (TEM), a process-based ecosystem/biogeochemistry model: (1) fixed land cover corresponding to year 2005; (2) historical land use land cover change from 1500 to 2005 and fixed land cover corresponding to year 2005 until 2100; (3) historical land use land cover change from 1500 to 2005 and RCP land use land cover change scenarios until 2100. Each set of simulations is forced by a large ensemble of climate simulations using the MIT IGSM-CAM model, which accounts for the uncertainty in projections of future climate change in order to obtain robust estimates of the contribution of land legacy, land use change and climate change. The climate ensemble consists of: two emissions scenarios, a "business as usual" unconstrained emissions scenario and a stabilization scenario, similar to, respectively, the RCP8.5 and RCP4.5 scenarios; three values of climate sensitivity (2.0°C, 2.5°C and 4.5°C corresponding to the 5th percentile, median, and 95th percentile of the marginal posterior probability density function with uniform prior) and associated net aerosol forcing chosen to best reproduce observed climate change; and five different representations of natural variability. The results of this study provide new insight on projections of future terrestrial carbon fluxes over Northern Eurasia.

  14. Downscaled climate change projections with uncertainty assessment over India using a high resolution multi-model approach.

    PubMed

    Kumar, Pankaj; Wiltshire, Andrew; Mathison, Camilla; Asharaf, Shakeel; Ahrens, Bodo; Lucas-Picher, Philippe; Christensen, Jens H; Gobiet, Andreas; Saeed, Fahad; Hagemann, Stefan; Jacob, Daniela

    2013-12-01

    This study presents the possible regional climate change over South Asia with a focus over India as simulated by three very high resolution regional climate models (RCMs). One of the most striking results is a robust increase in monsoon precipitation by the end of the 21st century but regional differences in strength. First the ability of RCMs to simulate the monsoon climate is analyzed. For this purpose all three RCMs are forced with ECMWF reanalysis data for the period 1989-2008 at a horizontal resolution of ~25 km. The results are compared against independent observations. In order to simulate future climate the models are driven by lateral boundary conditions from two global climate models (GCMs: ECHAM5-MPIOM and HadCM3) using the SRES A1B scenario, except for one RCM, which only used data from one GCM. The results are presented for the full transient simulation period 1970-2099 and also for several time slices. The analysis concentrates on precipitation and temperature over land. All models show a clear signal of gradually wide-spread warming throughout the 21st century. The ensemble-mean warming over India is 1.5°C at the end of 2050, whereas it is 3.9°C at the end of century with respect to 1970-1999. The pattern of projected precipitation changes shows considerable spatial variability, with an increase in precipitation over the peninsular of India and coastal areas and, either no change or decrease further inland. From the analysis of a larger ensemble of global climate models using the A1B scenario a wide spread warming (~3.2°C) and an overall increase (~8.5%) in mean monsoon precipitation by the end of the 21st century is very likely. The influence of the driving GCM on the projected precipitation change simulated with each RCM is as strong as the variability among the RCMs driven with one.

  15. Quantifying Uncertainties in Global and North American Regional Climate Change Projections using the Climateprediction.net Multi-Thousand Member Global Climate Model Perturbed Physics Ensemble

    NASA Astrophysics Data System (ADS)

    Rosendahl, D. H.; Karoly, D. J.

    2014-12-01

    Information on the uncertainties in projections of future climate change is vital for their effective use across a wide range of applications. A multi-thousand member perturbed-physics ensemble of global climate model simulations is being used to better estimate model uncertainties in climate change projections for the globe and North America. Ensemble members have been generated by the distributed computing project climateprediction.net at the University of Oxford, where thousands of simulations have been run on PCs across the globe, each running a different version of the Hadley Centre HadCM3L coupled atmosphere-ocean general circulation model (CMIP3 version) with perturbed physics parameters. Results from this perturbed physics ensemble will be compared to results from the CMIP3 and CMIP5 multi-model ensembles for global and North American regional temperature and precipitation variability and change across the 20th and 21st centuries. It will be shown that the uncertainty in the perturbed physics ensemble can exceed that of the multi-model ensemble. The HadCM3L model has horizontal resolution of 2.5° latitude by 3.75° longitude with 19 vertical layers in the atmosphere and 20 vertical layers in the ocean. A 30 minute dynamical integration time step is used with physics parameterization run every 3 hours. Transient climate change simulations are available from 1921 to 2080 along with matching control simulations that use flux adjustments to maintain stable climates. For the period 1921 to 2000, the model is forced by observed changes in both anthropogenic and natural climate forcing factors, including changes in greenhouse gases and aerosols, and changes in solar irradiance and volcanic aerosols. For the period 2001 to 2080, the model is forced by a range of future solar and volcanic forcing scenarios as well as projected changes in anthropogenic greenhouse gases and aerosols according to the IPCC SRES A1B emission scenario, a mid-range scenario. Model physics

  16. Bat reproduction declines when conditions mimic climate change projections for western North America.

    PubMed

    Adams, Rick A

    2010-08-01

    Climate change models predict that much of western North America is becoming significantly warmer and drier, resulting in overall reductions in availability of water for ecosystems. Herein, I demonstrate that significant declines in the reproductive success of female insectivorous bats occur in years when annual environmental conditions mimic the long-term predictions of regional climate change models. Using a data set gathered on bat populations from 1996 through 2008 along the Front Range of Colorado, I compare trends in population numbers and reproductive outcomes of six species of vespertilionid bats with data on mean annual high temperature, precipitation, snow pack, and stream discharge rates. I show that levels of precipitation and flow rates of small streams near maternity colonies is fundamentally tied to successful reproduction in female bats, particularly during the lactation phase. Across years that experienced greater than average mean temperatures with less than average precipitation and stream flow, bat populations responded by slight to profound reductions in reproductive output depending on the severity of drought conditions. In particular, reproductive outputs showed profound declines (32-51%) when discharge rates of the largest stream in the field area dropped below 7 m3/s, indicating a threshold response. Such sensitivity to environmental change portends severe impacts to regional bat populations if current scenarios for climate change in western North America are accurate. In addition, bats act as early-warning indicators of large-scale ecological effects resulting from further regional warming and drying trends currently at play in western North America.

  17. Experimental evidence for beneficial effects of projected climate change on hibernating amphibians.

    PubMed

    Üveges, Bálint; Mahr, Katharina; Szederkényi, Márk; Bókony, Veronika; Hoi, Herbert; Hettyey, Attila

    2016-05-27

    Amphibians are the most threatened vertebrates today, experiencing worldwide declines. In recent years considerable effort was invested in exposing the causes of these declines. Climate change has been identified as such a cause; however, the expectable effects of predicted milder, shorter winters on hibernation success of temperate-zone Amphibians have remained controversial, mainly due to a lack of controlled experimental studies. Here we present a laboratory experiment, testing the effects of simulated climate change on hibernating juvenile common toads (Bufo bufo). We simulated hibernation conditions by exposing toadlets to current (1.5 °C) or elevated (4.5 °C) hibernation temperatures in combination with current (91 days) or shortened (61 days) hibernation length. We found that a shorter winter and milder hibernation temperature increased survival of toads during hibernation. Furthermore, the increase in temperature and shortening of the cold period had a synergistic positive effect on body mass change during hibernation. Consequently, while climate change may pose severe challenges for amphibians of the temperate zone during their activity period, the negative effects may be dampened by shorter and milder winters experienced during hibernation.

  18. Experimental evidence for beneficial effects of projected climate change on hibernating amphibians

    PubMed Central

    Üveges, Bálint; Mahr, Katharina; Szederkényi, Márk; Bókony, Veronika; Hoi, Herbert; Hettyey, Attila

    2016-01-01

    Amphibians are the most threatened vertebrates today, experiencing worldwide declines. In recent years considerable effort was invested in exposing the causes of these declines. Climate change has been identified as such a cause; however, the expectable effects of predicted milder, shorter winters on hibernation success of temperate-zone Amphibians have remained controversial, mainly due to a lack of controlled experimental studies. Here we present a laboratory experiment, testing the effects of simulated climate change on hibernating juvenile common toads (Bufo bufo). We simulated hibernation conditions by exposing toadlets to current (1.5 °C) or elevated (4.5 °C) hibernation temperatures in combination with current (91 days) or shortened (61 days) hibernation length. We found that a shorter winter and milder hibernation temperature increased survival of toads during hibernation. Furthermore, the increase in temperature and shortening of the cold period had a synergistic positive effect on body mass change during hibernation. Consequently, while climate change may pose severe challenges for amphibians of the temperate zone during their activity period, the negative effects may be dampened by shorter and milder winters experienced during hibernation. PMID:27229882

  19. Experimental evidence for beneficial effects of projected climate change on hibernating amphibians.

    PubMed

    Üveges, Bálint; Mahr, Katharina; Szederkényi, Márk; Bókony, Veronika; Hoi, Herbert; Hettyey, Attila

    2016-01-01

    Amphibians are the most threatened vertebrates today, experiencing worldwide declines. In recent years considerable effort was invested in exposing the causes of these declines. Climate change has been identified as such a cause; however, the expectable effects of predicted milder, shorter winters on hibernation success of temperate-zone Amphibians have remained controversial, mainly due to a lack of controlled experimental studies. Here we present a laboratory experiment, testing the effects of simulated climate change on hibernating juvenile common toads (Bufo bufo). We simulated hibernation conditions by exposing toadlets to current (1.5 °C) or elevated (4.5 °C) hibernation temperatures in combination with current (91 days) or shortened (61 days) hibernation length. We found that a shorter winter and milder hibernation temperature increased survival of toads during hibernation. Furthermore, the increase in temperature and shortening of the cold period had a synergistic positive effect on body mass change during hibernation. Consequently, while climate change may pose severe challenges for amphibians of the temperate zone during their activity period, the negative effects may be dampened by shorter and milder winters experienced during hibernation. PMID:27229882

  20. Delayed climate change in the Southern Hemisphere induced by stratospheric ozone recovery, as projected by the CMIP5 models (Invited)

    NASA Astrophysics Data System (ADS)

    Polvani, L. M.; Barnes, E. A.

    2013-12-01

    Stratospheric ozone is expected to recover in the second half of this century, due to the regulation of ozone depleting substances by the Montreal Protocol. Targeted modeling studies have suggested that the climate response to ozone recovery will greatly oppose the climate response to increasing greenhouse-gases (GHG); owever, the extent of this cancellation remains unclear, as few such studies are available. Here, we analyze the much larger set of models participating in the Coupled Model Intercomparison Project, phase 5 (CMIP5), all of which include stratospheric ozone depletion and recovery. We show that the closing of the ozone hole will cause a delay in summer-time (DJF) Southern Hemisphere climate change, between now and mid-century. Specifically, we find that the position of the jet stream, the width of the subtropical dry-zones, the seasonality of surface temperatures, and sea ice concentrations all exhibit significantly reduced summer-time trends over the first half of the 21st Century as a consequence of ozone recovery. Beyond mid-century, forcing from GHG emissions begins to dominate the climate response. We also compare the relative influences of future GHG emissions and historic ozone depletion, and find that the simulated DJF tropospheric circulation changes in the Southern Hemisphere between 1965-2005 -- driven primarily by ozone depletion -- are larger than the projected changes in any future scenario over the entire 21st Century.

  1. Refining Climate Change Projections for Organisms with Low Dispersal Abilities: A Case Study of the Caspian Whip Snake

    PubMed Central

    Sahlean, Tiberiu C.; Gherghel, Iulian; Papeş, Monica; Strugariu, Alexandru; Zamfirescu, Ştefan R.

    2014-01-01

    Climate warming is one of the most important threats to biodiversity. Ectothermic organisms such as amphibians and reptiles are especially vulnerable as climatic conditions affect them directly. Ecological niche models (ENMs) are increasingly popular in ecological studies, but several drawbacks exist, including the limited ability to account for the dispersal potential of the species. In this study, we use ENMs to explore the impact of global climate change on the Caspian whip snake (Dolichophis caspius) as model for organisms with low dispersal abilities and to quantify dispersal to novel areas using GIS techniques. Models generated using Maxent 3.3.3 k and GARP for current distribution were projected on future climatic scenarios. A cost-distance analysis was run in ArcGIS 10 using geomorphological features, ecological conditions, and human footprint as “costs” to dispersal of the species to obtain a Maximum Dispersal Range (MDR) estimate. All models developed were statistically significant (P<0.05) and recovered the currently known distribution of D. caspius. Models projected on future climatic conditions using Maxent predicted a doubling of suitable climatic area, while GARP predicted a more conservative expansion. Both models agreed on an expansion of suitable area northwards, with minor decreases at the southern distribution limit. The MDR area calculated using the Maxent model represented a third of the total area of the projected model. The MDR based on GARP models recovered only about 20% of the total area of the projected model. Thus, incorporating measures of species’ dispersal abilities greatly reduced estimated area of potential future distributions. PMID:24670422

  2. The Changing Climate.

    ERIC Educational Resources Information Center

    Schneider, Stephen H.

    1989-01-01

    Discusses the global change of climate. Presents the trend of climate change with graphs. Describes mathematical climate models including expressions for the interacting components of the ocean-atmosphere system and equations representing the basic physical laws governing their behavior. Provides three possible responses on the change. (YP)

  3. Adaptation response surfaces from an ensemble of wheat projections under climate change in Europe

    NASA Astrophysics Data System (ADS)

    Ruiz-Ramos, Margarita; Ferrise, Roberto

    2016-04-01

    The uncertainty about climate change (CC) complicates impact adaptation and risk management evaluation at the regional level. Approaches for managing this uncertainty and for simulating and communicating climate change impacts and adaptation opportunities are required. Here we apply an ensemble of crop models for adapting rainfed winter wheat at Lleida (NE Spain), constructing adaptation response surfaces (ARS). Our methodology has been adapted from Pirttioja et al. (2015). Impact response surfaces (IRS) are plotted surfaces showing the response of an impact variable (here crop yield Y) to changes in two explanatory variables (here precipitation P and temperature T). By analyzing adaptation variables such as changes in crop yield (ΔY) when an adaptation option is simulated, these can be interpreted as the adaptation response to potential changes of P and T, i.e. ARS. To build these ARS, we explore the sensitivity of an ensemble of wheat models to changes in T and P. Baseline (1981-2010) T and P were modified using a delta change approach with changes in the seasonal patterns. Three levels of CO2 (representing future conditions until 2050) and two actual soil profiles are considered. Crop models were calibrated with field data from Abeledo et al. (2008) and Cartelle et al. (2006). Most promising adaptation options to be analyzed by the ARS approach are identified in a pilot stage with the models DSSAT4.5 and SiriusQuality v.2, subsequently simulating the selected adaptation combinations by the whole ensemble of 11 crop models. The adaptation options identified from pilot stage were: a cultivar with no vernalisation requirements, shortening or extending a 10 % the crop cycle of the standard cultivar, sowing 15 days earlier and 30 days later than the standard date, supplementary irrigation with 40 mm at flowering and full irrigation. These options and those of the standard cultivar and management resulted in 54 combinations and 450.000 runs per crop model. Our

  4. Detailed climate-change projections for urban land-use change and green-house gas increases for Belgium with COSMO-CLM coupled to TERRA_URB

    NASA Astrophysics Data System (ADS)

    Wouters, Hendrik; Vanden Broucke, Sam; van Lipzig, Nicole; Demuzere, Matthias

    2016-04-01

    Recent research clearly show that climate modelling at high resolution - which resolve the deep convection, the detailed orography and land-use including urbanization - leads to better modelling performance with respect to temperatures, the boundary-layer, clouds and precipitation. The increasing computational power enables the climate research community to address climate-change projections with higher accuracy and much more detail. In the framework of the CORDEX.be project aiming for coherent high-resolution micro-ensemble projections for Belgium employing different GCMs and RCMs, the KU Leuven contributes by means of the downscaling of EC-EARTH global climate model projections (provided by the Royal Meteorological Institute of the Netherlands) to the Belgian domain. The downscaling is obtained with regional climate simulations at 12.5km resolution over Europe (CORDEX-EU domain) and at 2.8km resolution over Belgium (CORDEX.be domain) using COSMO-CLM coupled to urban land-surface parametrization TERRA_URB. This is done for the present-day (1975-2005) and future (2040 → 2070 and 2070 → 2100). In these high-resolution runs, both GHG changes (in accordance to RCP8.5) and urban land-use changes (in accordance to a business-as-usual urban expansion scenario) are taken into account. Based on these simulations, it is shown how climate-change statistics are modified when going from coarse resolution modelling to high-resolution modelling. The climate-change statistics of particular interest are the changes in number of extreme precipitation events and extreme heat waves in cities. Hereby, it is futher investigated for the robustness of the signal change between the course and high-resolution and whether a (statistical) translation is possible. The different simulations also allow to address the relative impact and synergy between the urban expansion and increased GHG on the climate-change statistics. Hereby, it is investigated for which climate-change statistics the

  5. Adaptation response surfaces from an ensemble of wheat projections under climate change in Europe

    NASA Astrophysics Data System (ADS)

    Ruiz-Ramos, Margarita; Ferrise, Roberto

    2016-04-01

    The uncertainty about climate change (CC) complicates impact adaptation and risk management evaluation at the regional level. Approaches for managing this uncertainty and for simulating and communicating climate change impacts and adaptation opportunities are required. Here we apply an ensemble of crop models for adapting rainfed winter wheat at Lleida (NE Spain), constructing adaptation response surfaces (ARS). Our methodology has been adapted from Pirttioja et al. (2015). Impact response surfaces (IRS) are plotted surfaces showing the response of an impact variable (here crop yield Y) to changes in two explanatory variables (here precipitation P and temperature T). By analyzing adaptation variables such as changes in crop yield (ΔY) when an adaptation option is simulated, these can be interpreted as the adaptation response to potential changes of P and T, i.e. ARS. To build these ARS, we explore the sensitivity of an ensemble of wheat models to changes in T and P. Baseline (1981-2010) T and P were modified using a delta change approach with changes in the seasonal patterns. Three levels of CO2 (representing future conditions until 2050) and two actual soil profiles are considered. Crop models were calibrated with field data from Abeledo et al. (2008) and Cartelle et al. (2006). Most promising adaptation options to be analyzed by the ARS approach are identified in a pilot stage with the models DSSAT4.5 and SiriusQuality v.2, subsequently simulating the selected adaptation combinations by the whole ensemble of 11 crop models. The adaptation options identified from pilot stage were: a cultivar with no vernalisation requirements, shortening or extending a 10 % the crop cycle of the standard cultivar, sowing 15 days earlier and 30 days later than the standard date, supplementary irrigation with 40 mm at flowering and full irrigation. These options and those of the standard cultivar and management resulted in 54 combinations and 450.000 runs per crop model. Our

  6. Climate change projections for lake whitefish (Coregonus clupeaformis) recruitment in the 1836 Treaty Waters of the Upper Great Lakes

    USGS Publications Warehouse

    Lynch, Abigail J.; Taylor, William W.; Beard, T. Douglas; Lofgren, Brent M.

    2015-01-01

    Lake whitefish (Coregonus clupeaformis) is an ecologically, culturally, and economically important species in the Laurentian Great Lakes. Lake whitefish have been a staple food source for thousands of years and, since 1980, have supported the most economically valuable (annual catch value ≈ US$16.6 million) and productive (annual harvest ≈ 7 million kg) commercial fishery in the upper Great Lakes (Lakes Huron, Michigan, and Superior). Climate changes, specifically changes in temperature, wind, and ice cover, are expected to impact the ecology, production dynamics, and value of this fishery, because the success of recruitment to the fishery has been linked with these climatic factors. We used linear regression to determine the relationship between fall and spring air temperature indices, fall wind speed, winter ice cover, and lake whitefish recruitment in 13 management units located in the 1836 Treaty Waters of the Upper Great Lakes ceded by the Ottawa and Chippewa nations, a culturally and commercially important region for the lake whitefish fishery. In eight of 13 management units evaluated, models with climate variables explained significantly more variation in recruitment than models with only the stock-recruitment relationship, using corrected Akaike’s Information Criterion comparisons (ΔAICc > 3). Isolating the climate-recruitment relationship and projecting recruitment with the Coupled Hydrosphere-Atmosphere Research Model (CHARM) indicated the potential for increased lake whitefish recruitment in the majority of the 1836 Treaty Waters management units, given projected changes in climate. These results can inform adaptive management strategies by providing anticipated implications of climate on lake whitefish recruitment.

  7. Identification of dominant source of errors in developing streamflow and groundwater projections under near-term climate change

    NASA Astrophysics Data System (ADS)

    Seo, S. B.; Sinha, T.; Mahinthakumar, G.; Sankarasubramanian, A.; Kumar, M.

    2016-07-01

    Uncertainties in projecting the changes in hydroclimatic variables (i.e., temperature and precipitation) under climate change partly arises from the inability of global circulation models (GCMs) in explaining the observed changes in hydrologic variables. Apart from the unexplained changes by GCMs, the process of customizing GCM projections to watershed scale through a model chain—spatial downscaling, temporal disaggregation, and hydrologic model—also introduces errors, thereby limiting the ability to explain the observed changes in hydrologic variability. Toward this, we first propose metrics for quantifying the errors arising from different steps in the model chain in explaining the observed changes in hydrologic variables (streamflow and groundwater). The proposed metrics are then evaluated using a detailed retrospective analyses in projecting the changes in streamflow and groundwater attributes in four target basins that span across a diverse hydroclimatic regimes over the U.S. Sunbelt. Our analyses focused on quantifying the dominant sources of errors in projecting the changes in eight hydrologic variables—mean and variability of seasonal streamflow, mean and variability of 3 day peak seasonal streamflow, mean and variability of 7 day low seasonal streamflow, and mean and standard deviation of groundwater depth—over four target basins using an Penn state Integrated Hydrologic Model (PIHM) between the period 1956-1980 and 1981-2005. Retrospective analyses show that small/humid (large/arid) basins show increased (reduced) uncertainty in projecting the changes in hydrologic attributes. Further, changes in error due to GCMs primarily account for the unexplained changes in mean and variability of seasonal streamflow. On the other hand, the changes in error due to temporal disaggregation and hydrologic model account for the inability to explain the observed changes in mean and variability of seasonal extremes. Thus, the proposed metrics provide insights on

  8. Reducing uncertainties of local sea level projections for developing climate-change mitigation strategies

    NASA Astrophysics Data System (ADS)

    Plag, H. P.; Miller, N. L.

    2008-05-01

    Changes in Local Sea Level (LSL) may be one of the major climate change impacts requiring expensive coastal protection measures or severe adaptation strategies. In many countries, decision makers are increasingly facing decisions of whether to burden national economies with costs for coastal protection, or to risk major disasters. The decision to rebuild (e.g. New Orleans) or abandon cities or island nations (e.g. Maldives) under incrreasing risk of being devastated by a combination of storm surge and rising LSL requires an understanding of the uncertainties. Today's planning decisions will have long term implications for mitigating the potential of a slowly developing LSL rise disaster. Informed decisions will only be possible if predictions of the range of future LSL rise are made available with reliable uncertainties. State-of-the-science Earth system models cannot reliably predict climate-induced changes in LSL, hence policy- makers lack needed tools for determining best mitigation strategies. Local secular changes in LSL are the result of a location-dependent mix of various factors, including steric changes, ocean and atmospheric circulation changes, mass exchange of the ocean with terrestrial water storage and the cryosphere, and the vertical motion of the land. A major uncertainty is contributed by the uncertain response of large ice sheets on Greenland and Antarctica to climate change. Therefore, Probability Density Functions (PDF) attached to the IPCC predictions for global temperature changes over the next 100 years cannot be translated easily into PDFs for global sea level changes, and even less so for any LSL changes. We will present an observation-based approach for the prediction and probabilities of LSL changes for a wide range of scenarios needed to assess plausible future LSL trajectories at any given location. Identifying the major contributions to the uncertainties and determining their weight with respect to the overall PDF for LSL changes will

  9. Future projections of insured losses in the German private building sector following the A1B climatic change scenario

    NASA Astrophysics Data System (ADS)

    Held, H.; Gerstengarbe, F.-W.; Hattermann, F.; Pinto, J. G.; Ulbrich, U.; Böhm, U.; Born, K.; Büchner, M.; Donat, M. G.; Kücken, M.; Leckebusch, G. C.; Nissen, K.; Nocke, T.; Österle, H.; Pardowitz, T.; Werner, P. C.; Burghoff, O.; Broecker, U.; Kubik, A.

    2012-04-01

    We present an overview of a complementary-approaches impact project dealing with the consequences of climate change for the natural hazard branch of the insurance industry in Germany. The project was conducted by four academic institutions together with the German Insurance Association (GDV) and finalized in autumn 2011. A causal chain is modeled that goes from global warming projections over regional meteorological impacts to regional economic losses for private buildings, hereby fully covering the area of Germany. This presentation will focus on wind storm related losses, although the method developed had also been applied in part to hail and flood impact losses. For the first time, the GDV supplied their collected set of insurance cases, dating back for decades, for such an impact study. These data were used to calibrate and validate event-based damage functions which in turn were driven by three different types of regional climate models to generate storm loss projections. The regional models were driven by a triplet of ECHAM5 experiments following the A1B scenario which were found representative in the recent ENSEMBLES intercomparison study. In our multi-modeling approach we used two types of regional climate models that conceptually differ at maximum: a dynamical model (CCLM) and a statistical model based on the idea of biased bootstrapping (STARS). As a third option we pursued a hybrid approach (statistical-dynamical downscaling). For the assessment of climate change impacts, the buildings' infrastructure and their economic value is kept at current values. For all three approaches, a significant increase of average storm losses and extreme event return levels in the German private building sector is found for future decades assuming an A1B-scenario. However, the three projections differ somewhat in terms of magnitude and regional differentiation. We have developed a formalism that allows us to express the combined effect of multi-source uncertainty on return

  10. Changes in the world rivers' discharge projected from an updated high resolution dataset of current and future climate zones

    NASA Astrophysics Data System (ADS)

    Santini, Monia; di Paola, Arianna

    2015-12-01

    In this paper, an updated global map of the current climate zoning and of its projections, according to the Köppen-Geiger classification, is first provided. The map at high horizontal resolution (0.5° × 0.5°), representative of the current (i.e. 1961-2005) conditions, is based on the Climate Research Unit dataset holding gridded series of historical observed temperature and precipitation, while projected conditions rely on the simulated series, for the same variables, by the General Circulation Model CMCC-CM. Modeled variables were corrected for their bias and then projections of climate zoning were generated for the medium term (2006-2050) and long term (2056-2100) future periods, under RCP 4.5 and RCP 8.5 emission scenarios. Results show that Equatorial and Arid climates will spread at the expenses of Snow and Polar climates, with the Warm Temperate experiencing more moderate increase. Maps of climate zones are valuable for a wide range of studies on climate change and its impacts, especially those regarding the water cycle that is strongly regulated by the combined conditions of precipitation and temperature. As example of large scale hydrological applications, in this work we tested and implemented a spatial statistical procedure, the geographically weighted regression among climate zones' surface and mean annual discharge (MAD) at hydrographic basin level, to quantify likely changes in MAD for the main world rivers monitored through the Global Runoff Data Center database. The selected river basins are representative of more than half of both global superficial freshwater resources and world's land area. Globally, a decrease in MAD is projected both in the medium term and long term, while spatial differences highlight how some areas require efforts to avoid consequences of amplified water scarcity, while other areas call for strategies to take the opportunity from the expected increase in water availability. Also the fluctuations of trends between the

  11. Managing Climate Change Refugia for Biodiversity Conservation

    EPA Science Inventory

    Climate change threatens to create fundamental shifts in in the distributions and abundances of species. Given projected losses, increased emphasis on management for ecosystem resilience to help buffer fish and wildlife populations against climate change is emerging. Such effort...

  12. Suitability Analysis and Projected Climate Change Impact on Banana and Coffee Production Zones in Nepal

    PubMed Central

    Sujakhu, Nani M.; Merz, Juerg; Kindt, Roeland; Xu, Jianchu; Matin, Mir A.; Ali, Mostafa; Zomer, Robert J.

    2016-01-01

    The Government of Nepal has identified opportunities in agricultural commercialization, responding to a growing internal demand and expansion of export markets to reduce the immense trade deficit. Several cash crops, including coffee and bananas, have been identified in the recently approved Agriculture Development Strategy. Both of these crops have encouraged smallholder farmers to convert their subsistence farming practices to more commercial cultivation. Identification of suitable agro-ecological zones and understanding climate-related issues are important for improved production and livelihoods of smallholder farmers. Here, the suitability of coffee and banana crops is analyzed for different agro-ecological zones represented by Global Environmental Stratification (GEnS). Future shifts in these suitability zones are also predicted. Plantation sites in Nepal were geo-referenced and used as input in species distribution modelling. The multi-model ensemble model suggests that climate change will reduce the suitable growing area for coffee by about 72% across the selected emission scenarios from now to 2050. Impacts are low for banana growing, with a reduction in suitability by about 16% by 2050. Bananas show a lot of potential for playing an important role in Nepal as a sustainable crop in the context of climate change, as this study indicates that the amount of area suited to banana growing will grow by 40% by 2050. Based on our analysis we recommend possible new locations for coffee plantations and one method for mitigating climate change-related problems on existing plantations. These findings are expected to support planning and policy dialogue for mitigation and support better informed and scientifically based decision-making relating to these two crops. PMID:27689354

  13. Assessing potential impacts of climate change on hydropower generation of three reservoirs in the Tagus River Basin under ensemble of climate projections

    NASA Astrophysics Data System (ADS)

    Lobanova, Anastasia; Koch, Hagen; Hattermann, Fred F.; Krysanova, Valentina

    2015-04-01

    The Tagus River basin is an important strategic water and energy source for Portugal and Spain. With an extensive network of 40 reservoirs with more than 15 hm3 capacity and numerous abstraction channels it is ensuring water supply for domestic and industrial usage, irrigation and hydropower production in Spain and Portugal. Growing electricity and water supply demands, over-regulation and construction of new dams, and large inter-basin water transfers aggravated by strong natural variability of climate and aridity of the catchment have already imposed significant pressures on the river. The substantial reduction of discharge, dropping during some months to zero in some parts of the catchment, is observed already now, and projected climatic change is expected to alter the water budget of the catchment further. As the water inflow is a fundamental defining factor in a reservoir operation and hydropower production, the latter are highly sensitive to shifts in water balance of the catchment, and hence to changes in climate. In this study we aim to investigate the effects of projected climate change on water inflows and hydropower generation of the three large reservoirs in the Tagus River Basin, and by that to assess their ability to cover electricity power demands and provide water supply under changed conditions, assuming present management strategies; hydropower and abstraction demands. The catchment scale, process-based eco-hydrological model SWIM was set up, calibrated and validated up to the Santarem gauge at the Tagus outlet, with the implementation of a reservoir module. The reservoir module is able to represent three reservoir operation management options, simulate water abstraction and provide rates of generated hydropower. In total, fifteen largest reservoirs in the Tagus River Basin were included in the model, calibrated and validated against observed inflow, stored water and outflow water volumes. The future climate projections were selected from the

  14. Polar cloud observatory at Ny-Ålesund in GRENE Arctic Climate Change Research Project

    NASA Astrophysics Data System (ADS)

    Yamanouchi, Takashi; Takano, Toshiaki; Shiobara, Masataka; Okamoto, Hajime; Koike, Makoto; Ukita, Jinro

    2016-04-01

    Cloud is one of the main processes in the climate system and especially a large feed back agent for Arctic warming amplification (Yoshimori et al., 2014). From this reason, observation of polar cloud has been emphasized and 95 GHz cloud profiling radar in high precision was established at Ny-Ålesund, Svalbard in 2013 as one of the basic infrastructure in the GRENE (Green Network of Excellence Program) Arctic Climate Change Research Project. The radar, "FALCON-A", is a FM-CW (frequency modulated continuous wave) Doppler radar, developed for Arctic use by Chiba University (PI: T. Takano) in 2012, following its prototype, "FALCON-1" which was developed in 2006 (Takano et al., 2010). The specifications of the radar are, central frequency: 94.84 GHz; antenna power: 1 W; observation height: up to 15 km; range resolution: 48 m; beam width: 0.2 degree (15 m at 5 km); Doppler width: 3.2 m/s; time interval: 10 sec, and capable of archiving high sensitivity and high spatial and time resolution. An FM-CW type radar realizes similar sensitivity with much smaller parabolic antennas separated 1.4 m from each other used for transmitting and receiving the wave. Polarized Micro-Pulse Lidar (PMPL, Sigma Space MPL-4B-IDS), which is capable to measure the backscatter and depolarization ratio, has also been deployed to Ny-Ålesund in March 2012, and now operated to perform collocated measurements with FALCON-A. Simultaneous measurement data from collocated PMPL and FALCON-A are available for synergetic analyses of cloud microphysics. Cloud mycrophysics, such as effective radius of ice particles and ice water content, are obtained from the analysis based on algorithm, which is modified for ground-based measurements from Okamoto's retrieval algorithm for satellite based cloud profiling radar and lidar (CloudSat and CALIPSO; Okamoto et al., 2010). Results of two years will be shown in the presentation. Calibration is a point to derive radar reflectivity (dBZ) from original intensity data

  15. Projected and Observed Aridity and Climate Change in the East Coast of South India under RCP 4.5

    PubMed Central

    Ramachandran, A.; Praveen, Dhanya; Jaganathan, R.; Palanivelu, K.

    2015-01-01

    In the purview of global warming, the present study attempts to project changes in climate and quantify the changes in aridity of two coastal districts in south India under the RCP 4.5 trajectory. Projected climate change output generated by RegCM 4.4 model, pertaining to 14 grid points located within the study area, was analyzed and processed for this purpose. The meteorological parameters temperature and precipitations were used to create De Martonne Aridity Index, to assess the spatial distribution of aridity. The original index values ranged from 13.7 to 16.4 mm/°C, characterizing this area as a semidry climate. The outcome from the changed scenario analysis under RCP 4.5 showed that, during the end of the 21st century, the aridity may be increased more as the index values tend to reduce. The increasing trend in the drying phenomenon may be attributed to the rising of mean annual temperatures. PMID:26771002

  16. Vulnerability of coastal ecosystems to changes in harmful algal bloom distribution in response to climate change: projections based on model analysis.

    PubMed

    Glibert, Patricia M; Icarus Allen, J; Artioli, Yuri; Beusen, Arthur; Bouwman, Lex; Harle, James; Holmes, Robert; Holt, Jason

    2014-12-01

    Harmful algal blooms (HABs), those proliferations of algae that can cause fish kills, contaminate seafood with toxins, form unsightly scums, or detrimentally alter ecosystem function have been increasing in frequency, magnitude, and duration worldwide. Here, using a global modeling approach, we show, for three regions of the globe, the potential effects of nutrient loading and climate change for two HAB genera, pelagic Prorocentrum and Karenia, each with differing physiological characteristics for growth. The projections (end of century, 2090-2100) are based on climate change resulting from the A1B scenario of the Intergovernmental Panel on Climate Change Institut Pierre Simon Laplace Climate Model (IPCC, IPSL-CM4), applied in a coupled oceanographic-biogeochemical model, combined with a suite of assumed physiological 'rules' for genera-specific bloom development. Based on these models, an expansion in area and/or number of months annually conducive to development of these HABs along the NW European Shelf-Baltic Sea system and NE Asia was projected for both HAB genera, but no expansion (Prorocentrum spp.), or actual contraction in area and months conducive for blooms (Karenia spp.), was projected in the SE Asian domain. The implications of these projections, especially for Northern Europe, are shifts in vulnerability of coastal systems to HAB events, increased regional HAB impacts to aquaculture, increased risks to human health and ecosystems, and economic consequences of these events due to losses to fisheries and ecosystem services.

  17. Projected Changes on the Global Surface Wave Drift Climate towards the END of the Twenty-First Century

    NASA Astrophysics Data System (ADS)

    Carrasco, Ana; Semedo, Alvaro; Behrens, Arno; Weisse, Ralf; Breivik, Øyvind; Saetra, Øyvind; Håkon Christensen, Kai

    2016-04-01

    The global wave-induced current (the Stokes Drift - SD) is an important feature of the ocean surface, with mean values close to 10 cm/s along the extra-tropical storm tracks in both hemispheres. Besides the horizontal displacement of large volumes of water the SD also plays an important role in the ocean mix-layer turbulence structure, particularly in stormy or high wind speed areas. The role of the wave-induced currents in the ocean mix-layer and in the sea surface temperature (SST) is currently a hot topic of air-sea interaction research, from forecast to climate ranges. The SD is mostly driven by wind sea waves and highly sensitive to changes in the overlaying wind speed and direction. The impact of climate change in the global wave-induced current climate will be presented. The wave model WAM has been forced by the global climate model (GCM) ECHAM5 wind speed (at 10 m height) and ice, for present-day and potential future climate conditions towards the end of the end of the twenty-first century, represented by the Intergovernmental Panel for Climate Change (IPCC) CMIP3 (Coupled Model Inter-comparison Project phase 3) A1B greenhouse gas emission scenario (usually referred to as a ''medium-high emissions'' scenario). Several wave parameters were stored as output in the WAM model simulations, including the wave spectra. The 6 hourly and 0.5°×0.5°, temporal and space resolution, wave spectra were used to compute the SD global climate of two 32-yr periods, representative of the end of the twentieth (1959-1990) and twenty-first (1969-2100) centuries. Comparisons of the present climate run with the ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-40 reanalysis are used to assess the capability of the WAM-ECHAM5 runs to produce realistic SD results. This study is part of the WRCP-JCOMM COWCLIP (Coordinated Ocean Wave Climate Project) effort.

  18. Modelling runoff response from Hindukush-Karakoram-Himalaya, Upper Indus Basin under prevailing and projected climate change scenarios

    NASA Astrophysics Data System (ADS)

    Hasson, Shabeh ul; Böhner, Jürgen; Lucarini, Valerio

    2015-04-01

    We, analyzing observations from high altitude automated weather stations from the Hindukush-Karakoram-Himalaya (HKH) within upper Indus basin (UIB), assess prevailing state of climatic changes over the UIB and whether such state is consistently represented by the latest generation climate model simulations. We further assess impacts of future climate change on the hydrology of the UIB, and changes in its snow and glacier melt regimes, separately. For this, a semi-distributed watershed model (UBC - University of British Columbia) has been calibrated/validated for UIB at Besham Qila (just above the Tarbela reservoir) using daily historical climate (Tmax, Tmin and Precipitation) and river flow data for the period 1995-2012. Our results show that the UIB stands out the anthropogenic climate change signal, featuring a significant cooling (warming) during the mid-to-late (early) melt season and an enhanced influence of the westerly and monsoonal precipitation regimes. We also show that such phenomena, particularly the summer cooling is largely absent from the latest generation climate model simulations, suggesting their irrelevance for at least near-future assessment of climate change impacts on the hydrology of UIB. Therefore, we construct a hypothetical but more relevant near-future climate change scenario till 2030 based on prevailing state of climate change over UIB. We additionally obtain climate change scenario as projected by five high-resolution CMIP5 climate models under an extreme representative concentration pathway RCP8.5 for the period 2085-2100, assuming that such a scenario may only be realized in the far-future, if at all. Under the hypothetical near-future scenario, our modelling results show that the glacier melt (snowmelt) contribution will decrease (increase) due to cooling (warming) in mid-to-late (early) melt season, though the overall flows will drop. Consequently, the overall hydrological regime will experience an early snow- but a delayed glacier

  19. Navigating a Transdisciplinary Research Project with a Non-Traditional Academic Background: Climate Change, Soil Health and Sustainability

    NASA Astrophysics Data System (ADS)

    Basche, A.

    2014-12-01

    The Climate and Corn-based Cropping Systems Coordinated Agriculture Project (CSCAP) is a collaboration of 150+ team members spanning a range of scientific disciplinary backgrounds. The project goal is to produce collaborative research, education and extension aimed at mitigating and adapting Midwest cropping systems to climate variability and change. My PhD work in Agronomy and Sustainable Agriculture is a part of the CSCAP although my prior academic background was in applied climate science and biology, thus proposing a potential challenge to the new academic landscape. Further, graduate students within CSCAP are a part of a natural experiment in how the next generation of scientists operates in a transdisciplinary environment. As part of my leadership in the CSCAP, I helped to develop a "roadmap" document outlining the learning opportunities available to students. This document was meant to underscore the skills and experiences that will aid us in future collaborative research projects. Through these leadership experiences, I believe that the underpinning of any successful collaborative research project requires time: to develop relationships, earn trust and develop shared understandings and respect for different academic backgrounds.

  20. Human dimension in scientific models in high-mountain climate change and risk projects: Peruvian-Swiss experiences

    NASA Astrophysics Data System (ADS)

    Vicuña, Luis; Jurt, Christine; Minan, Fiorella; Huggel, Christian

    2014-05-01

    Models in a range of scientific disciplines are increasingly seen as indispensable for successful adaptation. Governments as well as international organizations and cooperations put their efforts in basing their adaptation projects on scientific results. Thereby, it is critical that scientific models are first put into the particular context in which they will be applied. This paper addresses the experience of the project 'Glaciers 513- Climate change adaptation and disaster risk management for glacier retreat in the Andes' conducted in the districts of Carhuaz (Ancash region) and Santa Teresa (Cusco region) in Peru. The Peruvian and the Swiss governments put their joint efforts in an adaptation project in the context of climate change and the retreat of the glaciers. The project is led by a consortium of Care Peru and the University of Zurich with additional Swiss partners and its principal aim is to improve the capacity for integral adaptation and reduce the risk of disasters from glaciers and high-mountain areas, and effects of climate change, particularly in the regions of Cusco and Ancash. The paper shows how the so called "human dimension" on the one hand, and models from a range of disciplines, including climatology, glaciology, and hydrology on the other hand, were conceptualized and perceived by the different actors involved in the project. Important aspects have been, among others, the role of local knowledge including ancestral knowledge, demographic information, socio-economic indicators as well as the social, political and cultural framework and the historical background. Here we analyze the role and context of local knowledge and the historical background. The analysis of the implications of the differences and similarities of the perceptions of a range of actors contributes to the discussion about how, and to what extent scientific models can be contextualized, what kind of information can be helpful for the contextualization and how it can be

  1. Climate response to projected changes in short-lived species under an A1B scenario from 2000-2050 in the GISS climate model

    SciTech Connect

    Menon, Surabi; Shindell, Drew T.; Faluvegi, Greg; Bauer, Susanne E.; Koch, Dorothy M.; Unger, Nadine; Menon, Surabi; Miller, Ron L.; Schmidt, Gavin A.; Streets, David G.

    2007-03-26

    We investigate the climate forcing from and response to projected changes in short-lived species and methane under the A1B scenario from 2000-2050 in the GISS climate model. We present a meta-analysis of new simulations of the full evolution of gas and aerosol species and other existing experiments with variations of the same model. The comparison highlights the importance of several physical processes in determining radiative forcing, especially the effect of climate change on stratosphere-troposphere exchange, heterogeneous sulfate-nitrate-dust chemistry, and changes in methane oxidation and natural emissions. However, the impact of these fairly uncertain physical effects is substantially less than the difference between alternative emission scenarios for all short-lived species. The net global mean annual average direct radiative forcing from the short-lived species is .02 W/m{sup 2} or less in our projections, as substantial positive ozone forcing is largely offset by negative aerosol direct forcing. Since aerosol reductions also lead to a reduced indirect effect, the global mean surface temperature warms by {approx}0.07 C by 2030 and {approx}0.13 C by 2050, adding 19% and 17%, respectively, to the warming induced by long-lived greenhouse gases. Regional direct forcings are large, up to 3.8 W/m{sup 2}. The ensemble-mean climate response shows little regional correlation with the spatial pattern of the forcing, however, suggesting that oceanic and atmospheric mixing generally overwhelms the effect of even large localized forcings. Exceptions are the polar regions, where ozone and aerosols may induce substantial seasonal climate changes.

  2. Linking climate change and groundwater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Projected global change includes groundwater systems, which are linked with changes in climate over space and time. Consequently, global change affects key aspects of subsurface hydrology (including soil water, deeper vadose zone water, and unconfined and confined aquifer waters), surface-groundwat...

  3. Agricultural water supply/demand changes under projected future climate change in the arid region of northwestern China

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Shen, Yanjun

    2016-09-01

    The water resources in the arid region of northwestern China, which are impacted by climate change, tend to be more unstable, and the environment and ecosystems will suffer from severe water shortage. In this paper, potential future climate trends were predicted based on CMIP5 simulations in this region. The water availability and agricultural water demand under future climate change scenarios were estimated. Impacted by increases in temperature, the irrigation water demand will increase by 4.27-6.15 billion m3 in this region over the next 60 years, compared to the demand of 32.75 billion m3 during 1971-2000. However, the annual runoff will only increase by 4.8-8.5 billion m3, which is equivalent to or even less than the increased irrigation water demand. In fact, the increased demand for industrial, domestic and ecological water were not considered here. Thus, the water supply/demand contradiction will result in more severe water shortages in the future. According to a comparison with simulated irrigation water demand under three adaptation strategy scenarios, we should take effective measures such as improving the efficiency of irrigation water utilization, reducing crop planting areas and adjusting crop planting structures to alleviate the impacts of future climate changes and human activities on the water supply and water use in this region.

  4. The Costs of Climate Change: Impact of Future Snow Cover Projections on Valuation of Albedo in Forest Management

    NASA Astrophysics Data System (ADS)

    Burakowski, E. A.; Lutz, D. A.

    2014-12-01

    Surface albedo provides an important climate regulating ecosystem service, particularly in the mid-latitudes where seasonal snow cover influences surface radiation budgets. In the case of substantial seasonal snow cover, the influence of albedo can equal or surpass the climatic benefits of carbon sequestration from forest growth. Climate mitigation platforms should therefore consider albedo in their framework in order to integrate these two climatic services in an economic context for the effective design and implementation of forest management projects. Over the next century, the influence of surface albedo is projected to diminish under higher emissions scenarios due to an overall decrease in snow depth and duration of snow cover in the mid-latitudes. In this study, we focus on the change in economic value of winter albedo in the northeastern United States projected through 2100 using the Special Report on Emissions Scenarios (SRES) a1 and b1 scenarios. Statistically downscaled temperature and precipitation are used as input to the Variable Infiltration Capacity (VIC) model to provide future daily snow depth fields through 2100. Using VIC projections of future snow depth, projected winter albedo fields over deforested lands were generated using an empirical logarithmic relationship between snow depth and albedo derived from a volunteer network of snow observers in New Hampshire over the period Nov 2011 through 2014. Our results show that greater reductions in snow depth and the number of winter days with snow cover in the a1 compared to the b1 scenario reduce wintertime albedo when forested lands are harvested. This result has implications on future trade-offs among albedo, carbon storage, and timber value that should be investigated in greater detail. The impacts of forest harvest on radiative forcing associated with energy redistribution (e.g., latent heat and surface roughness length) should also be considered in future work.

  5. Projected Impact of Climate Change on the Water and Salt Budgets of the Arctic Ocean by a Global Climate Model

    NASA Technical Reports Server (NTRS)

    Miller, James R.; Russell, Gary L.

    1996-01-01

    The annual flux of freshwater into the Arctic Ocean by the atmosphere and rivers is balanced by the export of sea ice and oceanic freshwater. Two 150-year simulations of a global climate model are used to examine how this balance might change if atmospheric greenhouse gases (GHGs) increase. Relative to the control, the last 50-year period of the GHG experiment indicates that the total inflow of water from the atmosphere and rivers increases by 10% primarily due to an increase in river discharge, the annual sea-ice export decreases by about half, the oceanic liquid water export increases, salinity decreases, sea-ice cover decreases, and the total mass and sea-surface height of the Arctic Ocean increase. The closed, compact, and multi-phased nature of the hydrologic cycle in the Arctic Ocean makes it an ideal test of water budgets that could be included in model intercomparisons.

  6. The response of soil organic carbon of a rich fen peatland in interior Alaska to projected climate change

    USGS Publications Warehouse

    Fan, Zhaosheng; McGuire, Anthony David; Turetsky, Merritt R.; Harden, Jennifer W.; Waddington, James Michael; Kane, Evan S.

    2013-01-01

    It is important to understand the fate of carbon in boreal peatland soils in response to climate change because a substantial change in release of this carbon as CO2 and CH4 could influence the climate system. The goal of this research was to synthesize the results of a field water table manipulation experiment conducted in a boreal rich fen into a process-based model to understand how soil organic carbon (SOC) of the rich fen might respond to projected climate change. This model, the peatland version of the dynamic organic soil Terrestrial Ecosystem Model (peatland DOS-TEM), was calibrated with data collected during 2005–2011 from the control treatment of a boreal rich fen in the Alaska Peatland Experiment (APEX). The performance of the model was validated with the experimental data measured from the raised and lowered water-table treatments of APEX during the same period. The model was then applied to simulate future SOC dynamics of the rich fen control site under various CO2 emission scenarios. The results across these emissions scenarios suggest that the rate of SOC sequestration in the rich fen will increase between year 2012 and 2061 because the effects of warming increase heterotrophic respiration less than they increase carbon inputs via production. However, after 2061, the rate of SOC sequestration will be weakened and, as a result, the rich fen will likely become a carbon source to the atmosphere between 2062 and 2099. During this period, the effects of projected warming increase respiration so that it is greater than carbon inputs via production. Although changes in precipitation alone had relatively little effect on the dynamics of SOC, changes in precipitation did interact with warming to influence SOC dynamics for some climate scenarios.

  7. Climate change signal and uncertainty in CMIP5-based projections of global ocean surface wave heights

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolan L.; Feng, Yang; Swail, Val R.

    2015-05-01

    This study uses the analysis of variance approaches to quantify the climate change signal and uncertainty in multimodel ensembles of statistical simulations of significant wave height (Hs), which are based on the CMIP5 historical, RCP4.5 and RCP8.5 forcing scenario simulations of sea level pressure. Here the signal of climate change refers to the temporal variations caused by the prescribed forcing. "Significant" means "significantly different from zero at 5% level." In a four-model ensemble of Hs simulations, the common signal—the signal that is simulated in all the four models—is found to strengthen over time. For the historical followed by RCP8.5 scenario, the common signal in annual mean Hs is found to be significant in 16.6% and 82.2% of the area by year 2005 and 2099, respectively. The global average of the variance proportion of the common signal increases from 0.75% in year 2005 to 12.0% by year 2099. The signal is strongest in the eastern tropical Pacific (ETP), featuring significant increases in both the annual mean and maximum of Hs in this region. The climate model uncertainty (i.e., intermodel variability) is significant nearly globally; its magnitude is comparable to or greater than that of the common signal in most areas, except in the ETP where the signal is much larger. In a 20-model ensemble of Hs simulations for the period 2006-2099, the model uncertainty is found to be significant globally; it is about 10 times as large as the variability between the RCP4.5 and RCP8.5 scenarios. The copyright line for this article was changed on 10 JUNE 2015 after original online publication.

  8. Projected Impact of Climate Change on Hydrological Regimes in the Philippines

    PubMed Central

    Kanamaru, Hideki; Keesstra, Saskia; Maroulis, Jerry; David, Carlos Primo C.; Ritsema, Coen J.

    2016-01-01

    The Philippines is one of the most vulnerable countries in the world to the potential impacts of climate change. To fully understand these potential impacts, especially on future hydrological regimes and water resources (2010-2050), 24 river basins located in the major agricultural provinces throughout the Philippines were assessed. Calibrated using existing historical interpolated climate data, the STREAM model was used to assess future river flows derived from three global climate models (BCM2, CNCM3 and MPEH5) under two plausible scenarios (A1B and A2) and then compared with baseline scenarios (20th century). Results predict a general increase in water availability for most parts of the country. For the A1B scenario, CNCM3 and MPEH5 models predict an overall increase in river flows and river flow variability for most basins, with higher flow magnitudes and flow variability, while an increase in peak flow return periods is predicted for the middle and southern parts of the country during the wet season. However, in the north, the prognosis is for an increase in peak flow return periods for both wet and dry seasons. These findings suggest a general increase in water availability for agriculture, however, there is also the increased threat of flooding and enhanced soil erosion throughout the country. PMID:27749908

  9. Caribbean Reef Response to Plio-Pleistocene Climate Change: Results of the Dominican Republic Drilling Project (DRDP)

    NASA Astrophysics Data System (ADS)

    Klaus, J.; McNeill, D. F.; Diaz, V.; Swart, P. K.; Pourmand, A.

    2014-12-01

    Caribbean reefs changed profoundly in taxonomic composition, diversity, and dominance structure during late Pliocene and Pleistocene climatic change. These changes coincide with protracted climatic deterioration and cooling between 2.0 to 0.8 Ma, and the onset of high amplitude sea-level fluctuations ~400 ka. The Dominican Republic Drilling Project (DRDP) was initiated to determine how climate change and global high-amplitude sea level changes influenced depositional patterns in Pliocene to Recent reef systems of the Caribbean. A transect of 7 core borings (~700 m total depth) were collected along the southern coast of the DR. New age constraints based on U/Th geochronometry and radiogenic Sr isotopes, combined with depositional lithofacies, faunal indicators, and stable isotope profiles have allowed us to correlate between wells and define the internal anatomy and stratal geometry of the individual reef sigmoids and sigmoid sets. Faunal records suggest most extinction occurred prior to ~1 Ma. Following this extinction, fringing reef margins of the Caribbean display a characteristic zonation in which Acropora palmata dominates shallow high-energy reef crests and Acropora cervicornis calmer fore-reef slopes and backreef lagoons. The dominance of acroporids across this zonation has been attributed to growth rates 5-100 times faster than other corals.

  10. Projecting climate change impacts on the stability of productivities of maize and soybean in terms of probability of concurrent failure

    NASA Astrophysics Data System (ADS)

    Yokozawa, M.; Sakurai, G.; Iizumi, T.

    2012-12-01

    The globalization of the trade of food commodities has arranged agricultural production areas in the world. Current main production areas of maize and soybean, which are major cereal crops for human food and animal diet, are localized in the United States, China and Brazil. The amounts of production of maize and soybean from these three countries reached 70% and 74% of total production in the world in 2009, respectively. These three countries are hubs for the world food supply network. Simultaneous external disturbances to the localized hubs can make the network system unstable. Here, we projected the changes in stability of the productivities of maize and soybean under climate change. We used a process-based model for evaluating crop yield at a large scale for maize and soybean. The parameters are determined based on the historical agricultural statistics issued by administrative agencies during a period of 1981 to 2006 and a reanalysis data JRA25 provided by Japan Meteorological Agency. We used the climate change scenarios from outputs of MIROC5.0 simulations. We projected the time changes in maize and soybean yields of three countries under four climate change scenarios: RCP 2.6, 4.5, 6.0 and 8.5 for a period of 2010 to 2070. The significant declining trend of maize yield with time was projected in RCP 8.5 for all countries, while the yield appeared to decrease after 2050 in other RCP scenarios. The extents to which maize yield decrease in 2060s compared to the average over 1980 to 2006 were projected to be about 20% for the United States, 10% for Brazil and China in RCP 2.6, 4.5 and 6.0; 30% for the United States and Brazil, 40% for China in RCP 8.5. On the other hand, the projected changes in soybean yield were complicated. The projected extent to which soybean yield decrease in 2060s compared to the average over 1980 to 2006 was about 30% for the United States and Brazil and 20% for China in RCP 2.6. In RCP 4.5 and 6.0, the yield was projected to be constant

  11. Mitigating methane emission from paddy soil with rice-straw biochar amendment under projected climate change

    PubMed Central

    Han, Xingguo; Sun, Xue; Wang, Cheng; Wu, Mengxiong; Dong, Da; Zhong, Ting; Thies, Janice E.; Wu, Weixiang

    2016-01-01

    Elevated global temperatures and increased concentrations of carbon dioxide (CO2) in the atmosphere associated with climate change will exert profound effects on rice cropping systems, particularly on their greenhouse gas emitting potential. Incorporating biochar into paddy soil has been shown previously to reduce methane (CH4) emission from paddy rice under ambient temperature and CO2. We examined the ability of rice straw-derived biochar to reduce CH4 emission from paddy soil under elevated temperature and CO2 concentrations expected in the future. Adding biochar to paddy soil reduced CH4 emission under ambient conditions and significantly reduced emissions by 39.5% (ranging from 185.4 mg kg−1 dry weight soil, dws season−1 to 112.2 mg kg−1 dws season−1) under simultaneously elevated temperature and CO2. Reduced CH4 release was mainly attributable to the decreased activity of methanogens along with the increased CH4 oxidation activity and pmoA gene abundance of methanotrophs. Our findings highlight the valuable services of biochar amendment for CH4 control from paddy soil in a future that will be shaped by climate change. PMID:27090814

  12. Mitigating methane emission from paddy soil with rice-straw biochar amendment under projected climate change

    NASA Astrophysics Data System (ADS)

    Han, Xingguo; Sun, Xue; Wang, Cheng; Wu, Mengxiong; Dong, Da; Zhong, Ting; Thies, Janice E.; Wu, Weixiang

    2016-04-01

    Elevated global temperatures and increased concentrations of carbon dioxide (CO2) in the atmosphere associated with climate change will exert profound effects on rice cropping systems, particularly on their greenhouse gas emitting potential. Incorporating biochar into paddy soil has been shown previously to reduce methane (CH4) emission from paddy rice under ambient temperature and CO2. We examined the ability of rice straw-derived biochar to reduce CH4 emission from paddy soil under elevated temperature and CO2 concentrations expected in the future. Adding biochar to paddy soil reduced CH4 emission under ambient conditions and significantly reduced emissions by 39.5% (ranging from 185.4 mg kg‑1 dry weight soil, dws season‑1 to 112.2 mg kg‑1 dws season‑1) under simultaneously elevated temperature and CO2. Reduced CH4 release was mainly attributable to the decreased activity of methanogens along with the increased CH4 oxidation activity and pmoA gene abundance of methanotrophs. Our findings highlight the valuable services of biochar amendment for CH4 control from paddy soil in a future that will be shaped by climate change.

  13. Mitigating methane emission from paddy soil with rice-straw biochar amendment under projected climate change.

    PubMed

    Han, Xingguo; Sun, Xue; Wang, Cheng; Wu, Mengxiong; Dong, Da; Zhong, Ting; Thies, Janice E; Wu, Weixiang

    2016-04-19

    Elevated global temperatures and increased concentrations of carbon dioxide (CO2) in the atmosphere associated with climate change will exert profound effects on rice cropping systems, particularly on their greenhouse gas emitting potential. Incorporating biochar into paddy soil has been shown previously to reduce methane (CH4) emission from paddy rice under ambient temperature and CO2. We examined the ability of rice straw-derived biochar to reduce CH4 emission from paddy soil under elevated temperature and CO2 concentrations expected in the future. Adding biochar to paddy soil reduced CH4 emission under ambient conditions and significantly reduced emissions by 39.5% (ranging from 185.4 mg kg(-1) dry weight soil, dws season(-1) to 112.2 mg kg(-1) dws season(-1)) under simultaneously elevated temperature and CO2. Reduced CH4 release was mainly attributable to the decreased activity of methanogens along with the increased CH4 oxidation activity and pmoA gene abundance of methanotrophs. Our findings highlight the valuable services of biochar amendment for CH4 control from paddy soil in a future that will be shaped by climate change.

  14. Mitigating methane emission from paddy soil with rice-straw biochar amendment under projected climate change.

    PubMed

    Han, Xingguo; Sun, Xue; Wang, Cheng; Wu, Mengxiong; Dong, Da; Zhong, Ting; Thies, Janice E; Wu, Weixiang

    2016-01-01

    Elevated global temperatures and increased concentrations of carbon dioxide (CO2) in the atmosphere associated with climate change will exert profound effects on rice cropping systems, particularly on their greenhouse gas emitting potential. Incorporating biochar into paddy soil has been shown previously to reduce methane (CH4) emission from paddy rice under ambient temperature and CO2. We examined the ability of rice straw-derived biochar to reduce CH4 emission from paddy soil under elevated temperature and CO2 concentrations expected in the future. Adding biochar to paddy soil reduced CH4 emission under ambient conditions and significantly reduced emissions by 39.5% (ranging from 185.4 mg kg(-1) dry weight soil, dws season(-1) to 112.2 mg kg(-1) dws season(-1)) under simultaneously elevated temperature and CO2. Reduced CH4 release was mainly attributable to the decreased activity of methanogens along with the increased CH4 oxidation activity and pmoA gene abundance of methanotrophs. Our findings highlight the valuable services of biochar amendment for CH4 control from paddy soil in a future that will be shaped by climate change. PMID:27090814

  15. Projected Impact of Climate Change on the Energy Budget of the Arctic Ocean by a Global Climate Model

    NASA Technical Reports Server (NTRS)

    Miller, James R.; Russell, Gary L.; Hansen, James E. (Technical Monitor)

    2001-01-01

    The annual energy budget of the Arctic Ocean is characterized by a net heat loss at the air-sea interface that is balanced by oceanic heat transport into the Arctic. The energy loss at the air-sea interface is due to the combined effects of radiative, sensible, and latent heat fluxes. The inflow of heat by the ocean can be divided into two components: the transport of water masses of different temperatures between the Arctic and the Atlantic and Pacific Oceans and the export of sea ice, primarily through Fram Strait. Two 150-year simulations (1950-2099) of a global climate model are used to examine how this balance might change if atmospheric greenhouse gases (GHGs) increase. One is a control simulation for the present climate with constant 1950 atmospheric composition, and the other is a transient experiment with observed GHGs from 1950 to 1990 and 0.5% annual compounded increases of CO2 after 1990. For the present climate the model agrees well with observations of radiative fluxes at the top of the atmosphere, atmospheric advective energy transport into the Arctic, and surface air temperature. It also simulates the seasonal cycle and summer increase of cloud cover and the seasonal cycle of sea-ice cover. In addition, the changes in high-latitude surface air temperature and sea-ice cover in the GHG experiment are consistent with observed changes during the last 40 and 20 years, respectively. Relative to the control, the last 50-year period of the GHG experiment indicates that even though the net annual incident solar radiation at the surface decreases by 4.6 W(per square meters) (because of greater cloud cover and increased cloud optical depth), the absorbed solar radiation increases by 2.8 W(per square meters) (because of less sea ice). Increased cloud cover and warmer air also cause increased downward thermal radiation at the surface so that the net radiation into the ocean increases by 5.0 Wm-2. The annual increase in radiation into the ocean, however, is

  16. Global Climate Change.

    ERIC Educational Resources Information Center

    Hall, Dorothy K.

    1989-01-01

    Discusses recent changes in the Earth's climate. Summarizes reports on changes related to carbon dioxide, temperature, rain, sea level, and glaciers in polar areas. Describes the present effort to measure the changes. Lists 16 references. (YP)

  17. Projected changes of extreme precipitation over Contiguous United States with Nested regional climate model (NRCM)

    NASA Astrophysics Data System (ADS)

    Wang, J.

    2013-12-01

    Extreme weather events have already significantly influenced North America. During 2005-2011, the extreme events have increased by 250 %, from four or fewer events occurring in 2005, while 14 events occurring in 2011 (www.ncdc.noaa.gov/billions/). In addition, extreme rainfall amounts, frequency, and intensity were all expected to increase under greenhouse warming scenarios (Wehner 2005; Kharin et al. 2007; Tebaldi et al. 2006). Global models are powerful tools to investigate the climate and climate change on large scales. However, such models do not represent local terrain and mesoscale weather systems well owing to their coarse horizontal resolution (150-300 km). To capture the fine-scale features of extreme weather events, regional climate models (RCMs) with a more realistic representation of the complex terrain and heterogeneous land surfaces are needed (Mass et al. 2002). This study uses the Nested Regional Climate model (NRCM) to perform regional scale climate simulations on a 12-km × 12-km high resolution scale over North America (including Alaska; with 600 × 515 grid cells at longitude and latitude), known as CORDEX_North America, instead of small regions as studied previously (eg., Dominguez et al. 2012; Gao et al. 2012). The performance and the biases of the NRCM extreme precipitation calculations (2000-2010) have been evaluated with PRISM precipitation (Daly et al. 1997) by Wang and Kotamarthi (2013): the NRCM replicated very well the monthly amount of extreme precipitation with less than 3% overestimation over East CONUS, and the frequency of extremes over West CONUS and upper Mississippi River Basin. The Representative Concentration Pathway (RCP) 8.5 and RCP 4.5 from the new Community Earth System Model version 1.0 (CESM v1.0) are dynamically downscaled to predict the extreme rainfall events at the end-of-century (2085-2095) and to explore the uncertainties of future extreme precipitation induced by different scenarios over distinct regions. We have

  18. Factors affecting projected Arctic surface shortwave heating and albedo change in coupled climate models

    PubMed Central

    Holland, Marika M.; Landrum, Laura

    2015-01-01

    We use a large ensemble of simulations from the Community Earth System Model to quantify simulated changes in the twentieth and twenty-first century Arctic surface shortwave heating associated with changing incoming solar radiation and changing ice conditions. For increases in shortwave absorption associated with albedo reductions, the relative influence of changing sea ice surface properties and changing sea ice areal coverage is assessed. Changes in the surface sea ice properties are associated with an earlier melt season onset, a longer snow-free season and enhanced surface ponding. Because many of these changes occur during peak solar insolation, they have a considerable influence on Arctic surface shortwave heating that is comparable to the influence of ice area loss in the early twenty-first century. As ice area loss continues through the twenty-first century, it overwhelms the influence of changes in the sea ice surface state, and is responsible for a majority of the net shortwave increases by the mid-twenty-first century. A comparison with the Arctic surface albedo and shortwave heating in CMIP5 models indicates a large spread in projected twenty-first century change. This is in part related to different ice loss rates among the models and different representations of the late twentieth century ice albedo and associated sea ice surface state. PMID:26032318

  19. Permafrost and Climate Change

    NASA Astrophysics Data System (ADS)

    Basnet, S.; Shahroudi, N.

    2012-12-01

    This paper examines the effects of climate change on Permafrost. Climate change has been shown to have a global correlation with decreased snow cover in high latitudes. In the current research station and satellite data were used to detect the location of permafrost. Permafrost is dependent on the temperature of the ground surface. Air temperature and snow cover from Integrated Surface Database (ISD) downloaded from National Climatic Data Center (NCDC) were observed for six consecutive years (1999-2004). The research was carried out over the entire globe to study the trend between fluctuating temperature and snow cover. Number of days with temperature below zero (freezing) and above zero (melting) was counted over a 6-year period. It was observed that each year the area of ice cover decreased by 0.3% in the Northern Hemisphere; a 1% increase in air temperature was also observed. Furthermore, the results from station data for snow cover and air temperature were compared with the snow cover and skin temperature from the satellite data. The skin temperature was retrieved from infrared (IR) radiance at International Satellite Cloud Climatology Project (ISCCP) and the snow cover is derived from visible satellite data at The National Environmental Satellite, Data, and Information Service (NESDIS), part of the National Oceanic and Atmospheric Administration (NOAA). Both dataset projected that the higher latitudes had the highest number of days with temperature below zero degree Celsius and these locations will be able to house permafrost. In order to improve the data quality as well as for more accurate results, in the future ISD data and satellite skin temperature will be analyzed for longer period of time (1979-2011) and (1983-2007) respectively also, two additional station data will be studied. The two datasets for future studies are Integrated Global Radiosonde Archive (IGRA) and International Comprehensive Ocean-Atmosphere Data Set (ICOADS). The results outputted by

  20. Processes for Identifying Regional Influences of and Responses to Increasing Atmospheric CO sub 2 and Climate Change --- The MINK Project

    SciTech Connect

    Easterling, W.E. III; McKenney, M.S.; Rosenberg, N.J.; Lemon, K.M.

    1991-08-01

    The second report of a series Processes for Identifying Regional Influences of and Responses to Increasing Atmospheric CO{sub 2} and Climate Change -- The MINK Project is composed of two parts. This Report (IIB) deals with agriculture at the level of farms and Major Land Resource Areas (MLRAs). The Erosion Productivity Impact Calculator (EPIC), a crop growth simulation model developed by scientists at the US Department of Agriculture, is used to study the impacts of the analog climate on yields of main crops in both the 1984/87 and the 2030 baselines. The results of this work with EPIC are the basis for the analysis of the climate change impacts on agriculture at the region-wide level undertaken in this report. Report IIA treats agriculture in MINK in terms of state and region-wide production and resource use for the main crops and animals in the baseline periods of 1984/87 and 2030. The effects of the analog climate on the industry at this level of aggregation are considered in both baseline periods. 41 refs., 40 figs., 46 tabs.

  1. A north-south divide in Europe: how projected changes in water quality differ depending on climate and land management

    NASA Astrophysics Data System (ADS)

    Wade, Andrew; Skeffington, Richard; Couture, Raoul; Erlandsson, Martin; Groot, Simon; Halliday, Sarah; Harezlak, Valesca; Hejzlar, Joseph; Jackson-Blake, Leah; Lepistö, Ahti; Papastergiadou, Eva; Riera, Joan; Rankinen, Katri; Trolle, Dennis; Whitehead, Paul; Dunn, Sarah; Bucak, Tuba

    2016-04-01

    The key results from the application of catchment-scale biophysical models to eight river-systems across Europe to assess the effects of projected environmental change (change in climate, land use, nitrogen deposition and water use) on water quantity and quality will be presented. Together the eight sites represent a sample of key climate and land management types, and those aspects related to the Water Framework Directive were modelled: river flow, river and lake nitrogen and phosphorus concentrations, and lake chlorophyll-a. The baseline period was 1981-2010 and the scenario period, 2031-2060. The robustness and uncertainty of the models was assessed. Long-term trends and seasonal variations in all the major modelled variables were simulated well in the baseline period. Dynamic models however typically produced results with lower variance than the observations. The predicted effects on water flows differed between northern and southern sites. In the north and mid-latitudes, the increased evaporation was balanced to some extent by increased precipitation, leading to relatively small effects on flows, though seasonal effects may still be important. In the south the increased temperatures and lower precipitation act to reduce water flows considerably. In general, the projected effects of climate change on nutrient concentrations were rather small. The effects of credible land use changes on nutrient concentrations were larger. However, there were exceptions and there were considerable differences in the response between sites dependent on the mixture of nutrient sources (agriculture versus wastewater). Modelled ecological changes were not generally proportional to the changes in nutrients.

  2. Coping with climate change

    USGS Publications Warehouse

    Prato, Tony; Fagre, Daniel B.

    2006-01-01

    Climate is not the only factor in the deterioration of natural systems.We are making big changes to the landscape, altering land use and land cover in major ways. These changes combined present a challenge to environmental management. Adaptive management is a scientific approach to managing the adverse impacts of climate and landscape change.

  3. Classifying climate change adaptation frameworks

    NASA Astrophysics Data System (ADS)

    Armstrong, Jennifer

    2014-05-01

    Complex socio-ecological demographics are factors that must be considered when addressing adaptation to the potential effects of climate change. As such, a suite of deployable climate change adaptation frameworks is necessary. Multiple frameworks that are required to communicate the risks of climate change and facilitate adaptation. Three principal adaptation frameworks have emerged from the literature; Scenario - Led (SL), Vulnerability - Led (VL) and Decision - Centric (DC). This study aims to identify to what extent these adaptation frameworks; either, planned or deployed are used in a neighbourhood vulnerable to climate change. This work presents a criterion that may be used as a tool for identifying the hallmarks of adaptation frameworks and thus enabling categorisation of projects. The study focussed on the coastal zone surrounding the Sizewell nuclear power plant in Suffolk in the UK. An online survey was conducted identifying climate change adaptation projects operating in the study area. This inventory was analysed to identify the hallmarks of each adaptation project; Levels of dependency on climate model information, Metrics/units of analysis utilised, Level of demographic knowledge, Level of stakeholder engagement, Adaptation implementation strategies and Scale of adaptation implementation. The study found that climate change adaptation projects could be categorised, based on the hallmarks identified, in accordance with the published literature. As such, the criterion may be used to establish the matrix of adaptation frameworks present in a given area. A comprehensive summary of the nature of adaptation frameworks in operation in a locality provides a platform for further comparative analysis. Such analysis, enabled by the criterion, may aid the selection of appropriate frameworks enhancing the efficacy of climate change adaptation.

  4. Our Changing Climate

    ERIC Educational Resources Information Center

    Newhouse, Kay Berglund

    2007-01-01

    In this article, the author discusses how global warming makes the leap from the headlines to the classroom with thought-provoking science experiments. To teach her fifth-grade students about climate change, the author starts with a discussion of the United States' local climate. They extend this idea to contrast the local climate with others,…

  5. Responses to projected changes in climate and UV-B at the species level.

    PubMed

    Callaghan, Terry V; Björn, Lars Olof; Chernov, Yuri; Chapin, Terry; Christensen, Torben R; Huntley, Brian; Ims, Rolf A; Johansson, Margareta; Jolly, Dyanna; Jonasson, Sven; Matveyeva, Nadya; Panikov, Nicolai; Oechel, Walter; Shaver, Gus; Elster, Josef; Jónsdóttir, Ingibjörg S; Laine, Kari; Taulavuori, Kari; Taulavuori, Erja; Zöckler, Christoph

    2004-11-01

    Environmental manipulation experiments showed that species respond individualistically to each environmental-change variable. The greatest responses of plants were generally to nutrient, particularly nitrogen, addition. Summer warming experiments showed that woody plant responses were dominant and that mosses and lichens became less abundant. Responses to warming were controlled by moisture availability and snow cover. Many invertebrates increased population growth in response to summer warming, as long as desiccation was not induced. CO2 and UV-B enrichment experiments showed that plant and animal responses were small. However, some microorganisms and species of fungi were sensitive to increased UV-B and some intensive mutagenic actions could, perhaps, lead to unexpected epidemic outbreaks. Tundra soil heating, CO2 enrichment and amendment with mineral nutrients generally accelerated microbial activity. Algae are likely to dominate cyanobacteria in milder climates. Expected increases in winter freeze-thaw cycles leading to ice-crust formation are likely to severely reduce winter survival rate and disrupt the population dynamics of many terrestrial animals. A deeper snow cover is likely to restrict access to winter pastures by reindeer/caribou and their ability to flee from predators while any earlier onset of the snow-free period is likely to stimulate increased plant growth. Initial species responses to climate change might occur at the sub-species level: an Arctic plant or animal species with high genetic/racial diversity has proved an ability to adapt to different environmental conditions in the past and is likely to do so also in the future. Indigenous knowledge, air photographs, satellite images and monitoring show that changes in the distributions of some species are already occurring: Arctic vegetation is becoming more shrubby and more productive, there have been recent changes in the ranges of caribou, and "new" species of insects and birds previously

  6. Weighting climate model projections using observational constraints.

    PubMed

    Gillett, Nathan P

    2015-11-13

    Projected climate change integrates the net response to multiple climate feedbacks. Whereas existing long-term climate change projections are typically based on unweighted individual climate model simulations, as observed climate change intensifies it is increasingly becoming possible to constrain the net response to feedbacks and hence projected warming directly from observed climate change. One approach scales simulated future warming based on a fit to observations over the historical period, but this approach is only accurate for near-term projections and for scenarios of continuously increasing radiative forcing. For this reason, the recent Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5) included such observationally constrained projections in its assessment of warming to 2035, but used raw model projections of longer term warming to 2100. Here a simple approach to weighting model projections based on an observational constraint is proposed which does not assume a linear relationship between past and future changes. This approach is used to weight model projections of warming in 2081-2100 relative to 1986-2005 under the Representative Concentration Pathway 4.5 forcing scenario, based on an observationally constrained estimate of the Transient Climate Response derived from a detection and attribution analysis. The resulting observationally constrained 5-95% warming range of 0.8-2.5 K is somewhat lower than the unweighted range of 1.1-2.6 K reported in the IPCC AR5.

  7. Agriculture and climate change

    SciTech Connect

    Abelson, P.H.

    1992-07-03

    How will increases in levels of CO{sub 2} and changes in temperature affect food production A recently issued report analyzes prospects for US agriculture 1990 to 2030. The report, prepared by a distinguished Task Force, first projects the evolution of agriculture assuming increased levels of CO{sub 2} but no climate change. Then it deals with effects of climate change, followed by a discussion of how greenhouse emissions might be diminished by agriculture. Economic and policy matters are also covered. How the climate would respond to more greenhouse gases is uncertain. If temperatures were higher, there would be more evaporation and more precipitation. Where would the rain fall That is a good question. Weather in a particular locality is not determined by global averages. The Dust Bowl of the 1930s could be repeated at its former site or located in another region such as the present Corn Belt. But depending on the realities at a given place, farmers have demonstrated great flexibility in choosing what they may grow. Their flexibility has been increased by the numerous varieties of seeds of major crops that are now available, each having different characteristics such as drought resistance and temperature tolerance. In past, agriculture has contributed about 5% of US greenhouse gases. Two large components have involved emissions of CO{sub 2} from farm machinery and from oxidation of organic matter in soil due to tillage. Use of diesel fuel and more efficient machinery has reduced emissions from that source by 40%. In some areas changed tillage practices are now responsible for returning carbon to the soil. The report identifies an important potential for diminishing net US emissions of CO{sub 2} by growth and utilization of biomass. Large areas are already available that could be devoted to energy crops.

  8. The creation of reasonable projections toward sustainable development considering the climate and socioeconomic changes in the Pacific Islands

    NASA Astrophysics Data System (ADS)

    Watanabe, S.; Iida, A.; Nakatani, J.; Noda, K.; Take, M.; Nakamura, S.

    2015-12-01

    The impacts of climate and socioeconomic change in the future are important factors to consider when discussing the issues of sustainable development in the Pacific Islands, since their impacts here are relatively large compared to those in other regions due to the severe limitation of internal resources and the external dependency of the life essentials. The tourism industry is the key driving force behind the economic growth in island region and it is promoted by the environmental attractions. This study constructs scenarios that foresees the effects of these changes and assesses the subsequent impact on both the local community and the tourism industry. In this study, the scenarios have been developed based on the representative concentration pathways (RCPs) and the shared socioeconomic pathways (SSPs). The progress of climate change was expected to affect the attraction of tourists as well as resources availability and food production. The difference of SSPs was expected to affect the quality of life in the local society and the quantity and/or the quality of tourism. A downscale and bias-correction using a local dataset was applied to assess the impacts of climate change, and the relationships between GDP, population, and estimated land availability in the current situation were applied to assess the impact of socioeconomic change. As case studies, the scenarios were constructed to assess the impacts in the Republic of Palau and Ishigaki Island, Japan. Both are typical islands where tourism is the main industry. The situation of environmental resources, local society, and tourism under changing climate and socioeconomic conditions was assessed using these scenarios. The creation of reasonable projections