Science.gov

Sample records for climate change response

  1. Climate change, responsibility, and justice.

    PubMed

    Jamieson, Dale

    2010-09-01

    In this paper I make the following claims. In order to see anthropogenic climate change as clearly involving moral wrongs and global injustices, we will have to revise some central concepts in these domains. Moreover, climate change threatens another value ("respect for nature") that cannot easily be taken up by concerns of global justice or moral responsibility.

  2. Climate Change: The Public Health Response

    PubMed Central

    Frumkin, Howard; Hess, Jeremy; Luber, George; Malilay, Josephine; McGeehin, Michael

    2008-01-01

    There is scientific consensus that the global climate is changing, with rising surface temperatures, melting ice and snow, rising sea levels, and increasing climate variability. These changes are expected to have substantial impacts on human health. There are known, effective public health responses for many of these impacts, but the scope, timeline, and complexity of climate change are unprecedented. We propose a public health approach to climate change, based on the essential public health services, that extends to both clinical and population health services and emphasizes the coordination of government agencies (federal, state, and local), academia, the private sector, and nongovernmental organizations. PMID:18235058

  3. Ecological response to global climatic change

    USGS Publications Warehouse

    Malanson, G.P.; Butler, D.R.; Walsh, S. J.; Janelle, Donald G.; Warf, Barney; Hansen, Kathy

    2004-01-01

    Climate change and ecological change go hand in hand. Because we value our ecological environment, any change has the potential to be a problem. Geographers have been drawn to this challenge, and have been successful in addressing it, because the primary ecological response to climate changes in the past — the waxing and waning of the great ice sheets over the past 2 million years – was the changing geographic range of the biota. Plants and animals changed their location. Geographers have been deeply involved in documenting the changing biota of the past, and today we are called upon to help assess the possible responses to ongoing and future climatic change and, thus, their impacts. Assessing the potential responses is important for policy makers to judge the outcomes of action or inaction and also sets the stage for preparation for and mitigation of change.

  4. The radiative heating response to climate change

    NASA Astrophysics Data System (ADS)

    Maycock, Amanda

    2016-04-01

    The structure and magnitude of radiative heating rates in the atmosphere can change markedly in response to climate forcings; diagnosing the causes of these changes can aid in understanding parts of the large-scale circulation response to climate change. This study separates the relative drivers of projected changes in longwave and shortwave radiative heating rates over the 21st century into contributions from radiatively active gases, such as carbon dioxide, ozone and water vapour, and from changes in atmospheric and surface temperatures. Results are shown using novel radiative diagnostics applied to timeslice experiments from the UM-UKCA chemistry-climate model; these online estimates are compared to offline radiative transfer calculations. Line-by-line calculations showing spectrally-resolved changes in heating rates due to different gases will also be presented.

  5. Urban Runoff Response due to Climate Change

    NASA Astrophysics Data System (ADS)

    Acharya, A.; Piechota, T. C.

    2009-12-01

    Climate change may produce a significant modification in the hydrological response that requires a change in overall water resources planning and management. Climate change particularly the projected change in extreme precipitation is likely to affect the runoff characteristics both regionally and temporally. The research presented here will focus on the changes in flood potential due to climate change, specifically event based storms for urban watersheds. The study site is the Flamingo-Tropicana watershed, one of the major contributors to the Las Vegas Wash in Clark County, Nevada. The output from Global Climate Models (GCMs) considers the three standard scenarios (A1B, A2, B1) for future greenhouse gas emissions. The average and maximum data derived from the entire GCM output for all scenarios will be considered. The combined climate and hydrologic modeling will follow three major steps: (1) selection of hydrological model; (2) selection of flood event and creation of climate scenarios; and (3) application of constructed scenarios to the calibrated hydrologic model. Measured flood data will be transformed to future data to represent the future climate conditions. The statistically downscaled climate projections are made available through World Climate Research Programme’s (WCRP’s) Coupled Model Intercomparison Project Phase 3 (CMIP3) multi-model dataset. The GCM output will be downscaled to simulate the real time future climate scenarios for local impact analysis. The U.S. Army Corp of Engineers ‘HEC’ software will be utilized for modeling the extreme storm event that represents the most severe historical flood event. The analysis will be carried out over future time periods that represents 2010-40, 2040-70 and 2070-2100 (mid 2030’s, 60’s and 90’s). The progressive change in runoff due to future climate trends (precipitation projections) will be used to analyze the adaptability of existing flood control facilities and further improve the design and

  6. Canadian vegetation response to climate and projected climatic change

    SciTech Connect

    Lenihan, J.M.

    1992-01-01

    The response of Canadian vegetation to climate and climatic change was modeled at three organizational levels of the vegetation mosaic. Snowpack, degree-days, minimum temperature, soil moisture deficit, and actual evapotranspiration are components of climate that physiologically constrain distribution of dominant plant life-forms and species. The rule-based Canadian Climate-Vegetation Model (CCVM) predicts the response of vegetation formations to climate. The CCVM simulation for current climatic conditions is more accurate and detailed than those of other equilibrium models. Ecological response surfaces predict the probability of dominance for eight boreal tree species in Canada with success. Variation in the probability of dominance is related to the species' individualistic response to climatic constraints within different airmass regions. A boreal forest-type classification shows a high degree of geographic correspondence with observed forest-types. Under two doubled-CO[sub 2] climatic scenarios, CCVM predicts a reduction in arctic tundra and subarctic woodland, a northward shift in the distribution of boreal evergreen forest, and an expansion of temperate forest, boreal summergreen woodland, and two prairie formations. The response surfaces predict significant changes in species dominance under both climatic scenarios. Species exhibit an individualistic responses to climatic change. Most of the boreal forest-types derived from future probabilities of dominance are analogous to extant forest-types, but fewer types are distinguished. Geographic correspondence in the simulated boreal forest regions under both the current and projected climates provides a link between the results of the two modelling approaches. Even with constraints, the realism of the vegetation scenarios in this study are arguably the most reliable and comprehensive predictions for Canada.

  7. Crop and pasture response to climate change.

    PubMed

    Tubiello, Francesco N; Soussana, Jean-François; Howden, S Mark

    2007-12-11

    We review recent research of importance to understanding crop and pasture plant species response to climate change. Topics include plant response to elevated CO(2) concentration, interactions with climate change variables and air pollutants, impacts of increased climate variability and frequency of extreme events, the role of weeds and pests, disease and animal health, issues in biodiversity, and vulnerability of soil carbon pools. We critically analyze the links between fundamental knowledge at the plant and plot level and the additional socio-economic variables that determine actual production and trade of food at regional to global scales. We conclude by making recommendations for current and future research needs, with a focus on continued and improved integration of experimental and modeling efforts.

  8. Crop and pasture response to climate change

    PubMed Central

    Tubiello, Francesco N.; Soussana, Jean-François; Howden, S. Mark

    2007-01-01

    We review recent research of importance to understanding crop and pasture plant species response to climate change. Topics include plant response to elevated CO2 concentration, interactions with climate change variables and air pollutants, impacts of increased climate variability and frequency of extreme events, the role of weeds and pests, disease and animal health, issues in biodiversity, and vulnerability of soil carbon pools. We critically analyze the links between fundamental knowledge at the plant and plot level and the additional socio-economic variables that determine actual production and trade of food at regional to global scales. We conclude by making recommendations for current and future research needs, with a focus on continued and improved integration of experimental and modeling efforts. PMID:18077401

  9. Plant developmental responses to climate change.

    PubMed

    Gray, Sharon B; Brady, Siobhan M

    2016-11-01

    Climate change is multi-faceted, and includes changing concentrations of greenhouse gases in the atmosphere, rising temperatures, changes in precipitation patterns, and increasing frequency of extreme weather events. Here, we focus on the effects of rising atmospheric CO2 concentrations, rising temperature, and drought stress and their interaction on plant developmental processes in leaves, roots, and in reproductive structures. While in some cases these responses are conserved across species, such as decreased root elongation, perturbation of root growth angle and reduced seed yield in response to drought, or an increase in root biomass in shallow soil in response to elevated CO2, most responses are variable within and between species and are dependent on developmental stage. These variable responses include species-specific thresholds that arrest development of reproductive structures, reduce root growth rate and the rate of leaf initiation and expansion in response to elevated temperature. Leaf developmental responses to elevated CO2 vary by cell type and by species. Variability also exists between C3 and C4 species in response to elevated CO2, especially in terms of growth and seed yield stimulation. At the molecular level, significantly less is understood regarding conservation and variability in molecular mechanisms underlying these traits. Abscisic acid-mediated changes in cell wall expansion likely underlie reductions in growth rate in response to drought, and changes in known regulators of flowering time likely underlie altered reproductive transitions in response to elevated temperature and CO2. Genes that underlie most other organ or tissue-level responses have largely only been identified in a single species in response to a single stress and their level of conservation is unknown. We conclude that there is a need for further research regarding the molecular mechanisms of plant developmental responses to climate change factors in general, and that this

  10. Regional climate change and national responsibilities

    NASA Astrophysics Data System (ADS)

    Hansen, James; Sato, Makiko

    2016-03-01

    Global warming over the past several decades is now large enough that regional climate change is emerging above the noise of natural variability, especially in the summer at middle latitudes and year-round at low latitudes. Despite the small magnitude of warming relative to weather fluctuations, effects of the warming already have notable social and economic impacts. Global warming of 2 °C relative to preindustrial would shift the ‘bell curve’ defining temperature anomalies a factor of three larger than observed changes since the middle of the 20th century, with highly deleterious consequences. There is striking incongruity between the global distribution of nations principally responsible for fossil fuel CO2 emissions, known to be the main cause of climate change, and the regions suffering the greatest consequences from the warming, a fact with substantial implications for global energy and climate policies.

  11. Climate Change: Ethics and Collective Responsibility

    NASA Astrophysics Data System (ADS)

    Peacock, K.; Brown, M. B.; Mann, M. E.; Lewandowsky, S.

    2014-12-01

    Climate change poses grave risks for societies and people all around the earth. Though details of the risks remain uncertain, they include accelerating sea level rise and ocean acidification, regional drought, floods and heat waves, crop failures and more: dangerous changes are already occurring, while GHG emissions continue to grow, ice melts, water expands, temperature rises, and weather patterns shift. Our roles as individuals and nations in producing the emissions of GHGs responsible for this episode of climate change, and the actions that could be taken to mitigate it, raise difficult ethical questions. When we are responsible for putting others in danger, we have a duty to mitigate that danger. But our sense of responsibility is diluted here: each individual act contributes only minutely to the overall risks, and the links between individual acts and the harms they produce are complex, indirect and involve many other agents. In these circumstances, our sense of personal responsibility is diminished and uncoordinated, individual responses to the risks become ineffective. We propose a view of the ethics of climate change that begins with the tragedy of the commons: Free use of a shared, indispensable resource can lead to catastrophe as the resource is overrun, and the destruction of the commons arises from choices that are individuallyrational, if each person's choice is made independently of others'. Finally, individuals often fail to make ethical choices when the links between individual actions and their negative outcomes are obscure, when individual choices are made separately and privately, and when special interests stand to gain from actions that are generally harmful. Philosophical work in ethics has emphasized the role of ethics in enabling cooperation between individuals and coordinating group responses to problems, while recent work on social rules has modeled them as generalized forbiddings, taught and enforced by 'blocking' behaviours which

  12. Adaptation responses of crops to climate change

    SciTech Connect

    Seino, Hiroshi

    1993-12-31

    Appreciable global climatic responses to increasing levels of atmospheric CO{sub 2} and other trace gases are expected to take place over the next 50 to 80 years. Increasing atmospheric concentrations of carbon dioxide and other greenhouse gases are producing or will produce changes in the climate of the Earth. In particular, numerous efforts of climate modeling project very substantial increase of surface air temperature. In addition to a general warming of the atmosphere, the possibility of increased summer dryness in the continental mid-latitudes has been suggested on the basis of both historical analogues and some General Circulation Model (GCM) studies. There are three types of effect of climatic change on agriculture: (1) the physiological (direct) effect of elevated levels of atmospheric CO{sub 2} on crop plants and weeds, (2) the effect of changes in parameters of climate (e.g., temperature, precipitation, and solar radiation) on plants and animals, and (3) the effects of climate-related rises in sea-level on land use. The direct effects of elevated CO{sub 2} are on photosynthesis and respiration and thereby on growth, and there are additional effects of increased CO{sub 2} on development, yield quality and stomatal aperture and water use. A doubling of CO{sub 2} increases the instantaneous photosynthetic rate by 30% to 100%, depending on the other environmental conditions, and reduce water requirements of plants by reducing transpiration (per unit leaf area) through reductions in stomatal aperture. A doubling of CO{sub 2} causes partial stomatal closure on both C{sub 3} and C{sub 4} plants (approximately a 40% decrease in aperture). In many experiments this results in reductions of transpiration of about 23% to 46%. However. there is considerable uncertainty over the magnitude of this in natural conditions.

  13. Sensitivity and rapidity of vegetational response to abrupt climate change

    NASA Technical Reports Server (NTRS)

    Peteet, D.

    2000-01-01

    Rapid climate change characterizes numerous terrestrial sediment records during and since the last glaciation. Vegetational response is best expressed in terrestrial records near ecotones, where sensitivity to climate change is greatest, and response times are as short as decades.

  14. Sensitivity and rapidity of vegetational response to abrupt climate change.

    PubMed

    Peteet, D

    2000-02-15

    Rapid climate change characterizes numerous terrestrial sediment records during and since the last glaciation. Vegetational response is best expressed in terrestrial records near ecotones, where sensitivity to climate change is greatest, and response times are as short as decades.

  15. Undocumented migration in response to climate change.

    PubMed

    Nawrotzki, Raphael J; Riosmena, Fernando; Hunter, Lori M; Runfola, Daniel M

    In the face of climate change induced economic uncertainty, households may employ migration as an adaptation strategy to diversify their livelihood portfolio through remittances. However, it is unclear whether such climate migration will be documented or undocumented. In this study we combine detailed migration histories with daily temperature and precipitation information for 214 weather stations to investigate whether climate change more strongly impacts undocumented or documented migration from 68 rural Mexican municipalities to the U.S. during the years 1986-1999. We employ two measures of climate change, the warm spell duration index (WSDI) and the precipitation during extremely wet days (R99PTOT). Results from multi-level event-history models demonstrate that climate-related international migration from rural Mexico was predominantly undocumented. We conclude that programs to facilitate climate change adaptation in rural Mexico may be more effective in reducing undocumented border crossings than increased border fortification.

  16. Undocumented migration in response to climate change

    PubMed Central

    Riosmena, Fernando; Hunter, Lori M.; Runfola, Daniel M.

    2016-01-01

    In the face of climate change induced economic uncertainty, households may employ migration as an adaptation strategy to diversify their livelihood portfolio through remittances. However, it is unclear whether such climate migration will be documented or undocumented. In this study we combine detailed migration histories with daily temperature and precipitation information for 214 weather stations to investigate whether climate change more strongly impacts undocumented or documented migration from 68 rural Mexican municipalities to the U.S. during the years 1986–1999. We employ two measures of climate change, the warm spell duration index (WSDI) and the precipitation during extremely wet days (R99PTOT). Results from multi-level event-history models demonstrate that climate-related international migration from rural Mexico was predominantly undocumented. We conclude that programs to facilitate climate change adaptation in rural Mexico may be more effective in reducing undocumented border crossings than increased border fortification. PMID:27570840

  17. Simulating rice response to climate change

    SciTech Connect

    Singh, U.; Padilla, J.L. |

    1995-12-31

    The response of rice (Oryza sativa L.) to elevated CO{sub 2} concentration and temperature increase was simulated using the CERES-rice model. CERES-rice belongs to the International Benchmark Sites Network for Agrotechnology Transfer (IBSNAT) family of crop and nutrient dynamics models. Long-term historical data from the International Rice Research Institute (IRRI) wetland site was used to quantify the climatic change effects. The model simulated such beneficial effects of CO{sub 2} enrichment as increased grain yields, reduced transpiration, increased water use efficiency, improved use of intercepted radiation, reduced N losses, and higher N use efficiency. The trends were reversed for all of the above parameters with increase in temperature. CERES-rice simulated these negative trends in low input rice production as well. Based on the model`s prediction, some of the negative effects of temperature increase in warmer regions of the world could be offset by use of rice varieties that are tolerant to high temperature-induced spikelet sterility, and planting varieties with longer growth duration, particularly, longer grain filling duration. With improved varieties and good management future impact of climate change could be capitalized to have positive effects on rice production. Although the model has been extensively tested, it is critical to validate it with field data from extreme temperature and CO{sub 2} level studies. 33 refs., 13 figs., 3 tabs.

  18. Responses of large mammals to climate change.

    PubMed

    Hetem, Robyn S; Fuller, Andrea; Maloney, Shane K; Mitchell, Duncan

    2014-01-01

    Most large terrestrial mammals, including the charismatic species so important for ecotourism, do not have the luxury of rapid micro-evolution or sufficient range shifts as strategies for adjusting to climate change. The rate of climate change is too fast for genetic adaptation to occur in mammals with longevities of decades, typical of large mammals, and landscape fragmentation and population by humans too widespread to allow spontaneous range shifts of large mammals, leaving only the expression of latent phenotypic plasticity to counter effects of climate change. The expression of phenotypic plasticity includes anatomical variation within the same species, changes in phenology, and employment of intrinsic physiological and behavioral capacity that can buffer an animal against the effects of climate change. Whether that buffer will be realized is unknown, because little is known about the efficacy of the expression of plasticity, particularly for large mammals. Future research in climate change biology requires measurement of physiological characteristics of many identified free-living individual animals for long periods, probably decades, to allow us to detect whether expression of phenotypic plasticity will be sufficient to cope with climate change.

  19. Responses of large mammals to climate change

    PubMed Central

    Hetem, Robyn S; Fuller, Andrea; Maloney, Shane K; Mitchell, Duncan

    2014-01-01

    Most large terrestrial mammals, including the charismatic species so important for ecotourism, do not have the luxury of rapid micro-evolution or sufficient range shifts as strategies for adjusting to climate change. The rate of climate change is too fast for genetic adaptation to occur in mammals with longevities of decades, typical of large mammals, and landscape fragmentation and population by humans too widespread to allow spontaneous range shifts of large mammals, leaving only the expression of latent phenotypic plasticity to counter effects of climate change. The expression of phenotypic plasticity includes anatomical variation within the same species, changes in phenology, and employment of intrinsic physiological and behavioral capacity that can buffer an animal against the effects of climate change. Whether that buffer will be realized is unknown, because little is known about the efficacy of the expression of plasticity, particularly for large mammals. Future research in climate change biology requires measurement of physiological characteristics of many identified free-living individual animals for long periods, probably decades, to allow us to detect whether expression of phenotypic plasticity will be sufficient to cope with climate change. PMID:27583293

  20. Understanding complex biogeographic responses to climate change

    PubMed Central

    Seabra, Rui; Wethey, David S.; Santos, António M.; Lima, Fernando P.

    2015-01-01

    Predicting the extent and direction of species’ range shifts is a major priority for scientists and resource managers. Seminal studies have fostered the notion that biological systems responding to climate change-impacted variables (e.g., temperature, precipitation) should exhibit poleward range shifts but shifts contrary to that expectation have been frequently reported. Understanding whether those shifts are indeed contrary to climate change predictions involves understanding the most basic mechanisms determining the distribution of species. We assessed the patterns of ecologically relevant temperature metrics (e.g., daily range, min, max) along the European Atlantic coast. Temperature metrics have contrasting geographical patterns and latitude or the grand mean are poor predictors for many of them. Our data suggest that unless the appropriate metrics are analysed, the impact of climate change in even a single metric of a single stressor may lead to range shifts in directions that would otherwise be classified as “contrary to prediction”. PMID:26245256

  1. AO/NAO Response to Climate Change. 1; Respective Influences of Stratospheric and Tropospheric Climate Changes

    NASA Technical Reports Server (NTRS)

    Rind, D.; Perlwitz, J.; Lonergan, P.

    2005-01-01

    We utilize the GISS Global Climate Middle Atmosphere Model and 8 different climate change experiments, many of them focused on stratospheric climate forcings, to assess the relative influence of tropospheric and stratospheric climate change on the extratropical circulation indices (Arctic Oscillation, AO; North Atlantic Oscillation, NAO). The experiments are run in two different ways: with variable sea surface temperatures (SSTs) to allow for a full tropospheric climate response, and with specified SSTs to minimize the tropospheric change. The results show that tropospheric warming (cooling) experiments and stratospheric cooling (warming) experiments produce more positive (negative) AO/NAO indices. For the typical magnitudes of tropospheric and stratospheric climate changes, the tropospheric response dominates; results are strongest when the tropospheric and stratospheric influences are producing similar phase changes. Both regions produce their effect primarily by altering wave propagation and angular momentum transports, but planetary wave energy changes accompanying tropospheric climate change are also important. Stratospheric forcing has a larger impact on the NAO than on the AO, and the angular momentum transport changes associated with it peak in the upper troposphere, affecting all wavenumbers. Tropospheric climate changes influence both the A0 and NAO with effects that extend throughout the troposphere. For both forcings there is often vertical consistency in the sign of the momentum transport changes, obscuring the difference between direct and indirect mechanisms for influencing the surface circulation.

  2. Climate change and evolution: disentangling environmental and genetic responses.

    PubMed

    Gienapp, P; Teplitsky, C; Alho, J S; Mills, J A; Merilä, J

    2008-01-01

    Rapid climate change is likely to impose strong selection pressures on traits important for fitness, and therefore, microevolution in response to climate-mediated selection is potentially an important mechanism mitigating negative consequences of climate change. We reviewed the empirical evidence for recent microevolutionary responses to climate change in longitudinal studies emphasizing the following three perspectives emerging from the published data. First, although signatures of climate change are clearly visible in many ecological processes, similar examples of microevolutionary responses in literature are in fact very rare. Second, the quality of evidence for microevolutionary responses to climate change is far from satisfactory as the documented responses are often - if not typically - based on nongenetic data. We reinforce the view that it is as important to make the distinction between genetic (evolutionary) and phenotypic (includes a nongenetic, plastic component) responses clear, as it is to understand the relative roles of plasticity and genetics in adaptation to climate change. Third, in order to illustrate the difficulties and their potential ubiquity in detection of microevolution in response to natural selection, we reviewed the quantitative genetic studies on microevolutionary responses to natural selection in the context of long-term studies of vertebrates. The available evidence points to the overall conclusion that many responses perceived as adaptations to changing environmental conditions could be environmentally induced plastic responses rather than microevolutionary adaptations. Hence, clear-cut evidence indicating a significant role for evolutionary adaptation to ongoing climate warming is conspicuously scarce.

  3. Urban Plantings: 'Living Laboratories' for Climate Change Response.

    PubMed

    Farrell, Claire; Szota, Christopher; Arndt, Stefan K

    2015-10-01

    Urban plantings are not only valuable resources for understanding 'urban plant physiology' but are 'living laboratories' for understanding plant response to climate change. Therefore, we encourage researchers who currently work in natural ecosystems to consider how urban plantings could enhance their research into plant physiological responses to a changing climate.

  4. Climate change effects on agriculture: economic responses to biophysical shocks.

    PubMed

    Nelson, Gerald C; Valin, Hugo; Sands, Ronald D; Havlík, Petr; Ahammad, Helal; Deryng, Delphine; Elliott, Joshua; Fujimori, Shinichiro; Hasegawa, Tomoko; Heyhoe, Edwina; Kyle, Page; Von Lampe, Martin; Lotze-Campen, Hermann; Mason d'Croz, Daniel; van Meijl, Hans; van der Mensbrugghe, Dominique; Müller, Christoph; Popp, Alexander; Robertson, Richard; Robinson, Sherman; Schmid, Erwin; Schmitz, Christoph; Tabeau, Andrzej; Willenbockel, Dirk

    2014-03-04

    Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change's representative concentration pathway with end-of-century radiative forcing of 8.5 W/m(2). The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.

  5. Climate Change Effects on Agriculture: Economic Responses to Biophysical Shocks

    NASA Technical Reports Server (NTRS)

    Nelson, Gerald C.; Valin, Hugo; Sands, Ronald D.; Havlik, Petr; Ahammad, Helal; Deryng, Delphine; Elliott, Joshua; Fujimori, Shinichiro; Hasegawa, Tomoko; Heyhoe, Edwina

    2014-01-01

    Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change's representative concentration pathway with end-of-century radiative forcing of 8.5 W/m(sup 2). The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.

  6. The physician's response to climate change.

    PubMed

    Sarfaty, Mona; Abouzaid, Safiya

    2009-05-01

    Climate change will have an effect on the health and well-being of the populations cared for by practicing physicians. The anticipated medical effects include heat- and cold-related deaths, cardiovascular illnesses, injuries and mental harms from extreme weather events, respiratory illnesses caused by poor air quality, infectious diseases that emanate from contaminated food, water, or spread of disease vectors, the injuries caused by natural disasters, and the mental harm associated with social disruption. Within several years, such medical problems are likely to reach the doorsteps of many physicians. In the face of this reality, physicians should assume their traditional roles as medical professionals, health educators, and community leaders. Clinicians provide individual health services to patients, some of whom will be especially vulnerable to the emerging health consequences of global warming. Physicians also work in academic medical institutions and hospitals that educate and provide continuing medical education to students, residents, and practitioners. The institutions also produce a measurable carbon footprint. Societies of physicians at national, state, and local levels can choose to use their well-developed avenues of communication to raise awareness of the key issues that are raised by climate change as well as other environmental concerns that have profound implications for human health and well-being.

  7. Community and ecosystem responses to recent climate change

    PubMed Central

    Walther, Gian-Reto

    2010-01-01

    There is ample evidence for ecological responses to recent climate change. Most studies to date have concentrated on the effects of climate change on individuals and species, with particular emphasis on the effects on phenology and physiology of organisms as well as changes in the distribution and range shifts of species. However, responses by individual species to climate change are not isolated; they are connected through interactions with others at the same or adjacent trophic levels. Also from this more complex perspective, recent case studies have emphasized evidence on the effects of climate change on biotic interactions and ecosystem services. This review highlights the ‘knowns’ but also ‘unknowns’ resulting from recent climate impact studies and reveals limitations of (linear) extrapolations from recent climate-induced responses of species to expected trends and magnitudes of future climate change. Hence, there is need not only to continue to focus on the impacts of climate change on the actors in ecological networks but also and more intensively to focus on the linkages between them, and to acknowledge that biotic interactions and feedback processes lead to highly complex, nonlinear and sometimes abrupt responses. PMID:20513710

  8. Shrinking body size as an ecological response to climate change

    NASA Astrophysics Data System (ADS)

    Sheridan, Jennifer A.; Bickford, David

    2011-11-01

    Determining how climate change will affect global ecology and ecosystem services is one of the next important frontiers in environmental science. Many species already exhibit smaller sizes as a result of climate change and many others are likely to shrink in response to continued climate change, following fundamental ecological and metabolic rules. This could negatively impact both crop plants and protein sources such as fish that are important for human nutrition. Furthermore, heterogeneity in response is likely to upset ecosystem balances. We discuss future research directions to better understand the trend and help ameliorate the trophic cascades and loss of biodiversity that will probably result from continued decreases in organism size.

  9. Geomorphic responses as indicators of paleoclimate and climatic change

    SciTech Connect

    1998-07-01

    There is little doubt that climate is an important parameter affecting the shape of the Earth`s surface. However absolute observance to the principles of climatic geomorphology leads us away from the study of processes because the analyses passes directly from climate to landscape form. An alternative approach is to examine the effects of climate change on the nature of the processes operating in the near surface environment. Utilizing this methodology, the climate-process relations take on greater significance, and lead to an understanding of the response(s) of geomorphic systems to shifts in climatic regime. Given that geomorphic systems respond to changes in climate regime, it should also be true that delineation of the changes in the types, rates, and magnitudes of geomorphic processes will provide insights into the timing and nature of past shifts in climate, particularly effective moisture. It is this approach that has been utilized herein. Specifically, geomorphic responses in eolian, lacustrine, and fluvial systems that have resulted in erosional and depositional events have been documented for several sites in Nevada (Figure 1), and used to infer the timing and character of climatic change in the Basin and Range Physiographic Province. The results and conclusions of the specific studies are provided.

  10. A probabilistic model of ecosystem response to climate change

    SciTech Connect

    Shevliakova, E.; Dowlatabadi, H.

    1994-12-31

    Anthropogenic activities are leading to rapid changes in land cover and emissions of greenhouse gases into the atmosphere. These changes can bring about climate change typified by average global temperatures rising by 1--5 C over the next century. Climate change of this magnitude is likely to alter the distribution of terrestrial ecosystems on a large scale. Options available for dealing with such change are abatement of emissions, adaptation, and geoengineering. The integrated assessment of climate change demands that frameworks be developed where all the elements of the climate problem are present (from economic activity to climate change and its impacts on market and non-market goods and services). Integrated climate assessment requires multiple impact metrics and multi-attribute utility functions to simulate the response of different key actors/decision-makers to the actual physical impacts (rather than a dollar value) of the climate-damage vs. policy-cost debate. This necessitates direct modeling of ecosystem impacts of climate change. The authors have developed a probabilistic model of ecosystem response to global change. This model differs from previous efforts in that it is statistically estimated using actual ecosystem and climate data yielding a joint multivariate probability of prevalence for each ecosystem, given climatic conditions. The authors expect this approach to permit simulation of inertia and competition which have, so far, been absent in transfer models of continental-scale ecosystem response to global change. Thus, although the probability of one ecotype will dominate others at a given point, others would have the possibility of establishing an early foothold.

  11. Climate change effects on agriculture: Economic responses to biophysical shocks

    PubMed Central

    Nelson, Gerald C.; Valin, Hugo; Sands, Ronald D.; Havlík, Petr; Ahammad, Helal; Deryng, Delphine; Elliott, Joshua; Fujimori, Shinichiro; Hasegawa, Tomoko; Heyhoe, Edwina; Kyle, Page; Von Lampe, Martin; Lotze-Campen, Hermann; Mason d’Croz, Daniel; van Meijl, Hans; van der Mensbrugghe, Dominique; Müller, Christoph; Popp, Alexander; Robertson, Richard; Robinson, Sherman; Schmid, Erwin; Schmitz, Christoph; Tabeau, Andrzej; Willenbockel, Dirk

    2014-01-01

    Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change’s representative concentration pathway with end-of-century radiative forcing of 8.5 W/m2. The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change. PMID:24344285

  12. Climate change effects on agriculture: Economic responses to biophysical shocks

    SciTech Connect

    Nelson, Gerald; Valin, Hugo; Sands, Ronald; Havlik, Petr; Ahammad, Helal; Deryng, Delphine; Elliott, Joshua; Fujimori, Shinichiro; Hasegawa, Tomoko; Heyhoe, Edwina; Kyle, G. Page; von Lampe, Martin; Lotze-Campen, Hermann; Mason d'Croz, Daniel; van Meijl, Hans; van der Mensbrugghe, Dominique; Mueller, C.; Popp, Alexander; Robertson, Richard; Robinson, Sherman; Schmid, E.; Schmitz, Christoph; Tabeau, Andrzej; Willenbockel, Dirk

    2013-12-16

    Agricultural production is sensitive to weather and will thus be directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the IPCC’s Representative Concentration Pathway that result in end-of-century radiative forcing of 8.5 watts per square meter. The mean biophysical impact on crop yield with no incremental CO2 fertilization is a 17 percent reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11 percent, increase area of major crops by 12 percent, and reduce consumption by 2 percent. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences includes model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.

  13. Novel competitors shape species' responses to climate change.

    PubMed

    Alexander, Jake M; Diez, Jeffrey M; Levine, Jonathan M

    2015-09-24

    Understanding how species respond to climate change is critical for forecasting the future dynamics and distribution of pests, diseases and biological diversity. Although ecologists have long acknowledged species' direct physiological and demographic responses to climate, more recent work suggests that these direct responses can be overwhelmed by indirect effects mediated via other interacting community members. Theory suggests that some of the most dramatic impacts of community change will probably arise through the assembly of novel species combinations after asynchronous migrations with climate. Empirical tests of this prediction are rare, as existing work focuses on the effects of changing interactions between competitors that co-occur today. To explore how species' responses to climate warming depend on how their competitors migrate to track climate, we transplanted alpine plant species and intact plant communities along a climate gradient in the Swiss Alps. Here we show that when alpine plants were transplanted to warmer climates to simulate a migration failure, their performance was strongly reduced by novel competitors that could migrate upwards from lower elevation; these effects generally exceeded the impact of warming on competition with current competitors. In contrast, when we grew the focal plants under their current climate to simulate climate tracking, a shift in the competitive environment to novel high-elevation competitors had little to no effect. This asymmetry in the importance of changing competitor identity at the leading versus trailing range edges is best explained by the degree of functional similarity between current and novel competitors. We conclude that accounting for novel competitive interactions may be essential to predict species' responses to climate change accurately.

  14. A Model of the Responses of Ecotones to Climate Change.

    PubMed

    Noble, Ian R

    1993-08-01

    It has been suggested that global climatic change may be detected by monitoring the positions of ecotones. I built a model of the dynamics of ecotones similar to those found in altitudinal or latitudinal treelines, where a slow tendency for the ecotone to advance is counterbalanced by disturbances such as fire or landslides. The model showed that the response of such ecotones to a wide range of simulated climate changes was slow and that the ecotone front was dissected. It would appear that such ecotones would not make suitable sites for monitoring climate change.

  15. Public health responses to climate change health impacts in Indonesia.

    PubMed

    Wirawan, I Made Ady

    2010-01-01

    Although climate change is a global concern, there are particular considerations for Indonesia as an archipelagic nation. These include the vulnerability of people living in small islands and coastal areas to rising sea levels; the expansion of the important mosquito-borne diseases, particularly malaria and dengue, into areas that lack of immunity; and the increase in water-borne diseases and malnutrition. This article proposes a set of public health responses to climate change health impacts in Indonesia. Some important principles and practices in public health are highlighted, to develop effective public health approaches to climate change in Indonesia.

  16. Climate change and mammals: evolutionary versus plastic responses.

    PubMed

    Boutin, Stan; Lane, Jeffrey E

    2014-01-01

    Phenotypic plasticity and microevolution are the two primary means by which organisms respond adaptively to local conditions. While these mechanisms are not mutually exclusive, their relative magnitudes will influence both the rate of, and ability to sustain, phenotypic responses to climate change. We review accounts of recent phenotypic changes in wild mammal populations with the purpose of critically evaluating the following: (i) whether climate change has been identified as the causal mechanism producing the observed change; (ii) whether the change is adaptive; and (iii) the relative influences of evolution and/or phenotypic plasticity underlying the change. The available data for mammals are scant. We found twelve studies that report changes in phenology, body weight or litter size. In all cases, the observed response was primarily due to plasticity. Only one study (of advancing parturition dates in American red squirrels) provided convincing evidence of contemporary evolution. Subsequently, however, climate change has been shown to not be the causal mechanism underlying this shift. We also summarize studies that have shown evolutionary potential (i.e. the trait is heritable and/or under selection) in traits with putative associations with climate change and discuss future directions that need to be undertaken before a conclusive demonstration of plastic or evolutionary responses to climate change in wild mammals can be made.

  17. Adaptive thermoregulation in endotherms may alter responses to climate change.

    PubMed

    Boyles, Justin G; Seebacher, Frank; Smit, Ben; McKechnie, Andrew E

    2011-11-01

    Climate change is one of the major issues facing natural populations and thus a focus of recent research has been to predict the responses of organisms to these changes. Models are becoming more complex and now commonly include physiological traits of the organisms of interest. However, endothermic species have received less attention than have ectotherms in these mechanistic models. Further, it is not clear whether responses of endotherms to climate change are modified by variation in thermoregulatory characteristics associated with phenotypic plasticity and/or adaptation to past selective pressures. Here, we review the empirical data on thermal adaptation and acclimatization in endotherms and discuss how those factors may be important in models of responses to climate change. We begin with a discussion of why thermoregulation and thermal sensitivity at high body temperatures should be co-adapted. Importantly, we show that there is, in fact, considerable variation in the ability of endotherms to tolerate high body temperatures and/or high environmental temperatures, but a better understanding of this variation will likely be critical for predicting responses to future climatic scenarios. Next, we discuss why variation in thermoregulatory characteristics should be considered when modeling the effects of climate change on heterothermic endotherms. Finally, we review some biophysical and biochemical factors that will limit adaptation and acclimation in endotherms. We consider both long-term, directional climate change and short-term (but increasingly common) anomalies in climate such as extreme heat waves and we suggest areas of important future research relating to both our basic understanding of endothermic thermoregulation and the responses of endotherms to climate change.

  18. Response of switchgrass yield to future climate change

    NASA Astrophysics Data System (ADS)

    Tulbure, Mirela G.; Wimberly, Michael C.; Owens, Vance N.

    2012-12-01

    A climate envelope approach was used to model the response of switchgrass, a model bioenergy species in the United States, to future climate change. The model was built using general additive models (GAMs), and switchgrass yields collected at 45 field trial locations as the response variable. The model incorporated variables previously shown to be the main determinants of switchgrass yield, and utilized current and predicted 1 km climate data from WorldClim. The models were run with current WorldClim data and compared with results of predicted yield obtained using two climate change scenarios across three global change models for three time steps. Results did not predict an increase in maximum switchgrass yield but showed an overall shift in areas of high switchgrass productivity for both cytotypes. For upland cytotypes, the shift in high yields was concentrated in northern and north-eastern areas where there were increases in average growing season temperature, whereas for lowland cultivars the areas where yields were projected to increase were associated with increases in average early growing season precipitation. These results highlight the fact that the influences of climate change on switchgrass yield are spatially heterogeneous and vary depending on cytotype. Knowledge of spatial distribution of suitable areas for switchgrass production under climate change should be incorporated into planning of current and future biofuel production. Understanding how switchgrass yields will be affected by future changes in climate is important for achieving a sustainable biofuels economy.

  19. Response surfaces for climate change impact assessments in urban areas.

    PubMed

    Semadeni-Davies, A

    2003-01-01

    Assessment of the impacts of climate change in real-world water systems, such as urban drainage networks, is a research priority for IPCC (Intergovernmental Panel of Climate Change). The usual approach is to force a hydrological transformation model with a changed climate scenario. To tackle uncertainty, the model should be run with at least high, middle and low change scenarios. This paper shows the value of response surfaces for displaying multiple simulated responses to incremental changes in air temperature and precipitation. The example given is inflow, related to sewer infiltration, at the Lycksele waste water treatment plant. The range of plausible changes in inflow is displayed for a series of runs for eight GCMs (Global Circulation Model; ACACIA; Carter, 2002, pers. comm.). These runs are summarised by climate envelopes, one for each prediction time-slice (2020, 2050, 2080). Together, the climate envelopes and response surfaces allow uncertainty to be easily seen. Winter inflows are currently sensitive to temperature, but if average temperature rises to above zero, inflow will be most sensitive to precipitation. Spring inflows are sensitive to changes in winter snow accumulation and melt. Inflow responses are highly dependent on the greenhouse gas emission scenario and GCM chosen.

  20. Predicting the Response of Electricity Load to Climate Change

    SciTech Connect

    Sullivan, Patrick; Colman, Jesse; Kalendra, Eric

    2015-07-28

    Our purpose is to develop a methodology to quantify the impact of climate change on electric loads in the United States. We perform simple linear regression, assisted by geospatial smoothing, on paired temperature and load time-series to estimate the heating- and coolinginduced sensitivity to temperature across 300 transmission zones and 16 seasonal and diurnal time periods. The estimated load sensitivities can be coupled with climate scenarios to quantify the potential impact of climate change on load, with a primary application being long-term electricity scenarios. The method allows regional and seasonal differences in climate and load response to be reflected in the electricity scenarios. While the immediate product of this analysis was designed to mesh with the spatial and temporal resolution of a specific electricity model to enable climate change scenarios and analysis with that model, we also propose that the process could be applied for other models and purposes.

  1. Fast Vegetational Responses to Late-Glacial Climate Change

    NASA Astrophysics Data System (ADS)

    Williams, J. W.; Post, D. M.; Cwynar, L. C.; Lotter, A. F.; Levesque, A. J.

    2001-12-01

    How rapidly can natural ecosystems respond to rapid climate change? This question can be addressed by studying paired paleoecological and paleoclimatological records spanning the last deglaciation. Between 16 and 10 ka, abrupt climatic oscillations (e.g. Younger Dryas, Gerzensee/Killarney Oscillations) interrupted the general warming trend. Rates of climate change during these events were as fast or faster than projected rates of change for this century. We compiled a dozen high-resolution lacustrine records in North America and Europe with a pollen record and independent climatic proxy, a clear Younger Dryas signal, and good age control. Cross-correlation analysis suggests that vegetation responded rapidly to late-glacial climate change, with significant changes in vegetation composition occurring within the lifespan of individual trees. At all sites, vegetation lagged climate by less than 200 years, and at two-thirds of the sites, the initial vegetational response occurred within 100 years. The finding of rapid vegetational responses is consistent across sites and continents, and is similar to the 100-200 year response times predicted by gap-scale forest models. Likely mechanisms include 1) increased susceptibility of mature trees to disturbances such as fire, wind, and disease, thereby opening up gaps for colonization, 2) the proximity of these sites to late-glacial treeline, where climate may directly control plant population densities and range limits, 3) the presence of herbaceous taxa with short generation times in these plant communities, and 4) rapid migration due to rare long-distance seed dispersals. Our results are consistent with reports that plant ranges are already shifting in response to recent climate change, and suggest that these shifts will persist for the next several centuries. Widespread changes in plant distributions may affect surface-atmosphere interactions and will challenge attempts to manage ecosystems and conserve biodiversity.

  2. Plastic and evolutionary responses to climate change in fish

    PubMed Central

    Crozier, Lisa G; Hutchings, Jeffrey A

    2014-01-01

    The physical and ecological ‘fingerprints’ of anthropogenic climate change over the past century are now well documented in many environments and taxa. We reviewed the evidence for phenotypic responses to recent climate change in fish. Changes in the timing of migration and reproduction, age at maturity, age at juvenile migration, growth, survival and fecundity were associated primarily with changes in temperature. Although these traits can evolve rapidly, only two studies attributed phenotypic changes formally to evolutionary mechanisms. The correlation-based methods most frequently employed point largely to ‘fine-grained’ population responses to environmental variability (i.e. rapid phenotypic changes relative to generation time), consistent with plastic mechanisms. Ultimately, many species will likely adapt to long-term warming trends overlaid on natural climate oscillations. Considering the strong plasticity in all traits studied, we recommend development and expanded use of methods capable of detecting evolutionary change, such as the long term study of selection coefficients and temporal shifts in reaction norms, and increased attention to forecasting adaptive change in response to the synergistic interactions of the multiple selection pressures likely to be associated with climate change. PMID:24454549

  3. Changes in Southeast Asian Climate: Response to and Feedback onto Global Climate Change

    NASA Astrophysics Data System (ADS)

    Yang, S.

    2015-12-01

    This study is focused on the long-term changes in the climate over Southeast Asia (SEA) and its adjacent regions. The changes in SEA climate are closely related to the changes in global climate, especially via the changes in ENSO and the large-scale Asian monsoon circulation. In the past decades, both ENSO and the monsoon have experienced remarkable long-term changes, leading to significant climate signals over Southeast Asia and its adjacent regions. This study attributes these climate signals to different factors, emphasizing the contributions from water vapor feedback to surface climate signals, and from cloud and atmospheric feedbacks to the changes in the troposphere. On the other hand, SEA and its adjacent regions also exert significant influences on the climate outside the regions. Various experiments with NCAR CESM and other earth system models are applied to investigate the impacts of the regional climate on the climate over Africa, Asian-Pacific-American regions, and the southern hemisphere.

  4. Analysing responses to climate change through the lens of reflexivity.

    PubMed

    Davidson, Debra

    2012-12-01

    Sociologists are increasingly directing attention toward social responses to climate change. As is true of any new field of inquiry, theoretical frameworks guiding the research to date have room for improvement. One advance could be achieved through closer engagement with Reflexivity Theory, particularly the work of Margaret Archer, who asks just how individuals come to give attention to certain problems, and formulate responses to them. Individuals vary significantly in regard to their understanding of and concern for anthropogenic climate change, and these standpoints in turn influence commitment to mitigation and adaptation. The emergent social interactions among all such agents in turn influence the morphogenetic trajectories through which social structures will evolve, but the role of 'meta-reflexives' is particularly crucial. Identifying pathways of individual climate change reflexivity can make a valuable contribution to our understanding of the potential for and nature of collective responses. In this paper, I explore climate change reflexivity, with particular attention to climate change meta-reflexives, through a qualitative analysis of personal interviews with residents of two small communities in Alberta, Canada. Applying Reflexivity Theory to this context articulates dimensions of reflexive processing not elaborated in current theoretical treatments, including future outlook and comfort with uncertainty, among others.

  5. A Global Framework for Monitoring Phenological Responses to Climate Change

    SciTech Connect

    White, Michael A; Hoffman, Forrest M; Hargrove, William Walter; Nemani, Ramakrishna R

    2005-01-01

    Remote sensing of vegetation phenology is an important method with which to monitor terrestrial responses to climate change, but most approaches include signals from multiple forcings, such as mixed phenological signals from multiple biomes, urbanization, political changes, shifts in agricultural practices, and disturbances. Consequently, it is difficult to extract a clear signal from the usually assumed forcing: climate change. Here, using global 8 km 1982 to 1999 Normalized Difference Vegetation Index (NDVI) data and an eight-element monthly climatology, we identified pixels whose wavelet power spectrum was consistently dominated by annual cycles and then created phenologically and climatically self-similar clusters, which we term phenoregions. We then ranked and screened each phenoregion as a function of landcover homogeneity and consistency, evidence of human impacts, and political diversity. Remaining phenoregions represented areas with a minimized probability of non-climatic forcings and form elemental units for long-term phenological monitoring.

  6. SPRUCE: Spruce and Peatland Responses under Climatic and Environmental Change

    DOE Data Explorer

    SPRUCE is an experiment to assess the response of northern peatland ecosystems to increases in temperature and exposures to elevated atmospheric CO2 concentrations. It is the primary component of the Terrestrial Ecosystem Science Scientific Focus Area of ORNL's Climate Change Program, focused on terrestrial ecosystems and the mechanisms that underlie their responses to climatic change. The experimental work is to be conducted in a Picea mariana [black spruce] - Sphagnum spp. bog forest in northern Minnesota, 40 km north of Grand Rapids, in the USDA Forest Service Marcell Experimental Forest (MEF). The site is located at the southern margin of the boreal peatland forest. It is an ecosystem considered especially vulnerable to climate change, and anticipated to be near its tipping point with respect to climate change. Responses to warming and interactions with increased atmospheric CO2 concentration are anticipated to have important feedbacks on the atmosphere and climate, because of the high carbon stocks harbored by such ecosystems.[copied from http://mnspruce.ornl.gov/] While some data files are restricted to access by project members only, others are available for public download now, even as research is being actively conducted.

  7. Choice of baseline climate data impacts projected species' responses to climate change.

    PubMed

    Baker, David J; Hartley, Andrew J; Butchart, Stuart H M; Willis, Stephen G

    2016-07-01

    Climate data created from historic climate observations are integral to most assessments of potential climate change impacts, and frequently comprise the baseline period used to infer species-climate relationships. They are often also central to downscaling coarse resolution climate simulations from General Circulation Models (GCMs) to project future climate scenarios at ecologically relevant spatial scales. Uncertainty in these baseline data can be large, particularly where weather observations are sparse and climate dynamics are complex (e.g. over mountainous or coastal regions). Yet, importantly, this uncertainty is almost universally overlooked when assessing potential responses of species to climate change. Here, we assessed the importance of historic baseline climate uncertainty for projections of species' responses to future climate change. We built species distribution models (SDMs) for 895 African bird species of conservation concern, using six different climate baselines. We projected these models to two future periods (2040-2069, 2070-2099), using downscaled climate projections, and calculated species turnover and changes in species-specific climate suitability. We found that the choice of baseline climate data constituted an important source of uncertainty in projections of both species turnover and species-specific climate suitability, often comparable with, or more important than, uncertainty arising from the choice of GCM. Importantly, the relative contribution of these factors to projection uncertainty varied spatially. Moreover, when projecting SDMs to sites of biodiversity importance (Important Bird and Biodiversity Areas), these uncertainties altered site-level impacts, which could affect conservation prioritization. Our results highlight that projections of species' responses to climate change are sensitive to uncertainty in the baseline climatology. We recommend that this should be considered routinely in such analyses.

  8. Response of seafloor ecosystems to abrupt global climate change.

    PubMed

    Moffitt, Sarah E; Hill, Tessa M; Roopnarine, Peter D; Kennett, James P

    2015-04-14

    Anthropogenic climate change is predicted to decrease oceanic oxygen (O2) concentrations, with potentially significant effects on marine ecosystems. Geologically recent episodes of abrupt climatic warming provide opportunities to assess the effects of changing oxygenation on marine communities. Thus far, this knowledge has been largely restricted to investigations using Foraminifera, with little being known about ecosystem-scale responses to abrupt, climate-forced deoxygenation. We here present high-resolution records based on the first comprehensive quantitative analysis, to our knowledge, of changes in marine metazoans (Mollusca, Echinodermata, Arthropoda, and Annelida; >5,400 fossils and trace fossils) in response to the global warming associated with the last glacial to interglacial episode. The molluscan archive is dominated by extremophile taxa, including those containing endosymbiotic sulfur-oxidizing bacteria (Lucinoma aequizonatum) and those that graze on filamentous sulfur-oxidizing benthic bacterial mats (Alia permodesta). This record, from 16,100 to 3,400 y ago, demonstrates that seafloor invertebrate communities are subject to major turnover in response to relatively minor inferred changes in oxygenation (>1.5 to <0.5 mL⋅L(-1) [O2]) associated with abrupt (<100 y) warming of the eastern Pacific. The biotic turnover and recovery events within the record expand known rates of marine biological recovery by an order of magnitude, from <100 to >1,000 y, and illustrate the crucial role of climate and oceanographic change in driving long-term successional changes in ocean ecosystems.

  9. Response of seafloor ecosystems to abrupt global climate change

    PubMed Central

    Moffitt, Sarah E.; Hill, Tessa M.; Roopnarine, Peter D.; Kennett, James P.

    2015-01-01

    Anthropogenic climate change is predicted to decrease oceanic oxygen (O2) concentrations, with potentially significant effects on marine ecosystems. Geologically recent episodes of abrupt climatic warming provide opportunities to assess the effects of changing oxygenation on marine communities. Thus far, this knowledge has been largely restricted to investigations using Foraminifera, with little being known about ecosystem-scale responses to abrupt, climate-forced deoxygenation. We here present high-resolution records based on the first comprehensive quantitative analysis, to our knowledge, of changes in marine metazoans (Mollusca, Echinodermata, Arthropoda, and Annelida; >5,400 fossils and trace fossils) in response to the global warming associated with the last glacial to interglacial episode. The molluscan archive is dominated by extremophile taxa, including those containing endosymbiotic sulfur-oxidizing bacteria (Lucinoma aequizonatum) and those that graze on filamentous sulfur-oxidizing benthic bacterial mats (Alia permodesta). This record, from 16,100 to 3,400 y ago, demonstrates that seafloor invertebrate communities are subject to major turnover in response to relatively minor inferred changes in oxygenation (>1.5 to <0.5 mL⋅L−1 [O2]) associated with abrupt (<100 y) warming of the eastern Pacific. The biotic turnover and recovery events within the record expand known rates of marine biological recovery by an order of magnitude, from <100 to >1,000 y, and illustrate the crucial role of climate and oceanographic change in driving long-term successional changes in ocean ecosystems. PMID:25825727

  10. Response of seafloor ecosystems to abrupt global climate change

    NASA Astrophysics Data System (ADS)

    Moffitt, Sarah E.; Hill, Tessa M.; Roopnarine, Peter D.; Kennett, James P.

    2015-04-01

    Anthropogenic climate change is predicted to decrease oceanic oxygen (O2) concentrations, with potentially significant effects on marine ecosystems. Geologically recent episodes of abrupt climatic warming provide opportunities to assess the effects of changing oxygenation on marine communities. Thus far, this knowledge has been largely restricted to investigations using Foraminifera, with little being known about ecosystem-scale responses to abrupt, climate-forced deoxygenation. We here present high-resolution records based on the first comprehensive quantitative analysis, to our knowledge, of changes in marine metazoans (Mollusca, Echinodermata, Arthropoda, and Annelida; >5,400 fossils and trace fossils) in response to the global warming associated with the last glacial to interglacial episode. The molluscan archive is dominated by extremophile taxa, including those containing endosymbiotic sulfur-oxidizing bacteria (Lucinoma aequizonatum) and those that graze on filamentous sulfur-oxidizing benthic bacterial mats (Alia permodesta). This record, from 16,100 to 3,400 y ago, demonstrates that seafloor invertebrate communities are subject to major turnover in response to relatively minor inferred changes in oxygenation (>1.5 to <0.5 mLṡL-1 [O2]) associated with abrupt (<100 y) warming of the eastern Pacific. The biotic turnover and recovery events within the record expand known rates of marine biological recovery by an order of magnitude, from <100 to >1,000 y, and illustrate the crucial role of climate and oceanographic change in driving long-term successional changes in ocean ecosystems.

  11. CORAL RESPONSES TO CLIMATE AND LAND USE CHANGES

    EPA Science Inventory

    Fisher, William S., Debbie L. Santavy, John E. Rogers and Richard G. Zepp. In press. Coral Responses to Climate and Land Use Changes (Abstract). To be presented at the SETAC Fourth World Congress, 14-18 November 2004, Portland, OR. 1 p. (ERL,GB R1019).

    Coral reefs have ex...

  12. Financial market response to extreme events indicating climatic change

    NASA Astrophysics Data System (ADS)

    Anttila-Hughes, J. K.

    2016-05-01

    A variety of recent extreme climatic events are considered to be strong evidence that the climate is warming, but these incremental advances in certainty often seem ignored by non-scientists. I identify two unusual types of events that are considered to be evidence of climate change, announcements by NASA that the global annual average temperature has set a new record, and the sudden collapse of major polar ice shelves, and then conduct an event study to test whether news of these events changes investors' valuation of energy companies, a subset of firms whose future performance is closely tied to climate change. I find evidence that both classes of events have influenced energy stock prices since the 1990s, with record temperature announcements on average associated with negative returns and ice shelf collapses associated with positive returns. I identify a variety of plausible mechanisms that may be driving these differential responses, discuss implications for energy markets' views on long-term regulatory risk, and conclude that investors not only pay attention to scientifically significant climate events, but discriminate between signals carrying different information about the nature of climatic change.

  13. Community-level phenological response to climate change

    PubMed Central

    Ovaskainen, Otso; Skorokhodova, Svetlana; Yakovleva, Marina; Sukhov, Alexander; Kutenkov, Anatoliy; Kutenkova, Nadezhda; Shcherbakov, Anatoliy; Meyke, Evegeniy; Delgado, Maria del Mar

    2013-01-01

    Climate change may disrupt interspecies phenological synchrony, with adverse consequences to ecosystem functioning. We present here a 40-y-long time series on 10,425 dates that were systematically collected in a single Russian locality for 97 plant, 78 bird, 10 herptile, 19 insect, and 9 fungal phenological events, as well as for 77 climatic events related to temperature, precipitation, snow, ice, and frost. We show that species are shifting their phenologies at dissimilar rates, partly because they respond to different climatic factors, which in turn are shifting at dissimilar rates. Plants have advanced their spring phenology even faster than average temperature has increased, whereas migratory birds have shown more divergent responses and shifted, on average, less than plants. Phenological events of birds and insects were mainly triggered by climate cues (variation in temperature and snow and ice cover) occurring over the course of short periods, whereas many plants, herptiles, and fungi were affected by long-term climatic averages. Year-to-year variation in plants, herptiles, and insects showed a high degree of synchrony, whereas the phenological timing of fungi did not correlate with any other taxonomic group. In many cases, species that are synchronous in their year-to-year dynamics have also shifted in congruence, suggesting that climate change may have disrupted phenological synchrony less than has been previously assumed. Our results illustrate how a multidimensional change in the physical environment has translated into a community-level change in phenology. PMID:23901098

  14. Forest vegetation dynamics and its response to climate changes

    NASA Astrophysics Data System (ADS)

    Zoran, Maria A.; Zoran, Liviu Florin V.; Dida, Adrian I.

    2016-10-01

    Forest areas are experiencing rapid land cover change caused by human-induced land degradation and extreme climatic events. Satellite remote sensing provides a useful tool to capture the temporal dynamics of forest vegetation change in response to climate shifts, at spatial resolutions fine enough to capture the spatial heterogeneity. Frequent satellite data products, for example, can provide the basis for studying time-series of biophysical parameters related to vegetation dynamics. Vegetation index time series provide a useful way to monitor forest vegetation phenological variations. In this study, we used MODIS Terra/Aqua time-series data, along with yearly and monthly net radiation, air temperature, and precipitation data to examine the feedback mechanisms between climate and forest vegetation. Have been quantitatively described Normalized Difference Vegetation Index(NDVI) /Enhanced Vegetation Index (EVI), Leaf Area Index (LAI), Evapotranspiration (ET) and Gross Primary Production (GPP) temporal changes for Cernica- Branesti forest area, a periurban zone of Bucharest city in Romania, from the perspective of vegetation phenology and its relation with climate changes and extreme climate events (summer heat waves). A time series from 2000 to 2016 of the MODIS Terra was analyzed to extract forest biophysical parameters anomalies. Forest vegetation phenology analyses were developed for diverse forest land-covers providing a useful way to analyze and understand the phenology associated to those landcovers. Correlations between NDVI/EVI , LAI, ET and GPP time series and climatic variables have been computed.

  15. Community-level phenological response to climate change.

    PubMed

    Ovaskainen, Otso; Skorokhodova, Svetlana; Yakovleva, Marina; Sukhov, Alexander; Kutenkov, Anatoliy; Kutenkova, Nadezhda; Shcherbakov, Anatoliy; Meyke, Evegeniy; Delgado, Maria del Mar

    2013-08-13

    Climate change may disrupt interspecies phenological synchrony, with adverse consequences to ecosystem functioning. We present here a 40-y-long time series on 10,425 dates that were systematically collected in a single Russian locality for 97 plant, 78 bird, 10 herptile, 19 insect, and 9 fungal phenological events, as well as for 77 climatic events related to temperature, precipitation, snow, ice, and frost. We show that species are shifting their phenologies at dissimilar rates, partly because they respond to different climatic factors, which in turn are shifting at dissimilar rates. Plants have advanced their spring phenology even faster than average temperature has increased, whereas migratory birds have shown more divergent responses and shifted, on average, less than plants. Phenological events of birds and insects were mainly triggered by climate cues (variation in temperature and snow and ice cover) occurring over the course of short periods, whereas many plants, herptiles, and fungi were affected by long-term climatic averages. Year-to-year variation in plants, herptiles, and insects showed a high degree of synchrony, whereas the phenological timing of fungi did not correlate with any other taxonomic group. In many cases, species that are synchronous in their year-to-year dynamics have also shifted in congruence, suggesting that climate change may have disrupted phenological synchrony less than has been previously assumed. Our results illustrate how a multidimensional change in the physical environment has translated into a community-level change in phenology.

  16. Key ecological responses to nitrogen are altered by climate change

    NASA Astrophysics Data System (ADS)

    Greaver, T. L.; Clark, C. M.; Compton, J. E.; Vallano, D.; Talhelm, A. F.; Weaver, C. P.; Band, L. E.; Baron, J. S.; Davidson, E. A.; Tague, C. L.; Felker-Quinn, E.; Lynch, J. A.; Herrick, J. D.; Liu, L.; Goodale, C. L.; Novak, K. J.; Haeuber, R. A.

    2016-09-01

    Climate change and anthropogenic nitrogen deposition are both important ecological threats. Evaluating their cumulative effects provides a more holistic view of ecosystem vulnerability to human activities, which would better inform policy decisions aimed to protect the sustainability of ecosystems. Our knowledge of the cumulative effects of these stressors is growing, but we lack an integrated understanding. In this Review, we describe how climate change alters key processes in terrestrial and freshwater ecosystems related to nitrogen cycling and availability, and the response of ecosystems to nitrogen addition in terms of carbon cycling, acidification and biodiversity.

  17. Climate change in the oceans: Human impacts and responses.

    PubMed

    Allison, Edward H; Bassett, Hannah R

    2015-11-13

    Although it has far-reaching consequences for humanity, attention to climate change impacts on the ocean lags behind concern for impacts on the atmosphere and land. Understanding these impacts, as well as society's diverse perspectives and multiscale responses to the changing oceans, requires a correspondingly diverse body of scholarship in the physical, biological, and social sciences and humanities. This can ensure that a plurality of values and viewpoints is reflected in the research that informs climate policy and may enable the concerns of maritime societies and economic sectors to be heard in key adaptation and mitigation discussions.

  18. Key ecological responses to nitrogen are altered by climate change

    USGS Publications Warehouse

    Greaver, T.L.; Clark, C.M.; Compton, J.E.; Vallano, D.; Talhelm, A. F.; Weaver, C.P.; Band, L.E.; Baron, J. S.; Davidson, E.A.; Tague, C.L.; Felker-Quinn, E.; Lynch, J.A.; Herrick, J.D.; Liu, L.; Goodale, C.L.; Novak, K. J.; Haeuber, R. A.

    2016-01-01

    Climate change and anthropogenic nitrogen deposition are both important ecological threats. Evaluating their cumulative effects provides a more holistic view of ecosystem vulnerability to human activities, which would better inform policy decisions aimed to protect the sustainability of ecosystems. Our knowledge of the cumulative effects of these stressors is growing, but we lack an integrated understanding. In this Review, we describe how climate change alters key processes in terrestrial and freshwater ecosystems related to nitrogen cycling and availability, and the response of ecosystems to nitrogen addition in terms of carbon cycling, acidification and biodiversity.

  19. Contrasting responses of mean and extreme snowfall to climate change.

    PubMed

    O'Gorman, Paul A

    2014-08-28

    Snowfall is an important element of the climate system, and one that is expected to change in a warming climate. Both mean snowfall and the intensity distribution of snowfall are important, with heavy snowfall events having particularly large economic and human impacts. Simulations with climate models indicate that annual mean snowfall declines with warming in most regions but increases in regions with very low surface temperatures. The response of heavy snowfall events to a changing climate, however, is unclear. Here I show that in simulations with climate models under a scenario of high emissions of greenhouse gases, by the late twenty-first century there are smaller fractional changes in the intensities of daily snowfall extremes than in mean snowfall over many Northern Hemisphere land regions. For example, for monthly climatological temperatures just below freezing and surface elevations below 1,000 metres, the 99.99th percentile of daily snowfall decreases by 8% in the multimodel median, compared to a 65% reduction in mean snowfall. Both mean and extreme snowfall must decrease for a sufficiently large warming, but the climatological temperature above which snowfall extremes decrease with warming in the simulations is as high as -9 °C, compared to -14 °C for mean snowfall. These results are supported by a physically based theory that is consistent with the observed rain-snow transition. According to the theory, snowfall extremes occur near an optimal temperature that is insensitive to climate warming, and this results in smaller fractional changes for higher percentiles of daily snowfall. The simulated changes in snowfall that I find would influence surface snow and its hazards; these changes also suggest that it may be difficult to detect a regional climate-change signal in snowfall extremes.

  20. Understanding coupled climatic, hydrological, and ecosystem responses to global climate change in the Colorado Rockies

    SciTech Connect

    Stohlgren, T.J.; Baron, J. )

    1993-06-01

    A long-term research program to assess the potential effect of global climate change on the Front Range of the Colorado Rockies, including Rocky Mountain National Park is underway. Specifically, three integrated studies are designed to: (1) project future climate change for the Colorado Rockies using a mesoscale atmospheric model to downscale general circulation model results; (2) develop an understanding of the abiotic and biotic controls on forest distribution and productivity as a basis for assessing potential vegetation change for a range of projected climate scenarios; and (3) evaluate potential responses of hydrologic and aquatic ecosystem processes to climate change at watershed, drainage basin and regional scales. The synthesis of these studies will, in addition, assess the interaction between regional vegetation distribution, mesoscale climate, and hydrology. Our goal is to develop a better understanding of regional climate and hydrologic patterns and of species-environment relationships to determine which species and ecosystem processes are most sensitive to rapid environmental change.

  1. Species' traits influenced their response to recent climate change

    NASA Astrophysics Data System (ADS)

    Pacifici, Michela; Visconti, Piero; Butchart, Stuart H. M.; Watson, James E. M.; Cassola, Francesca M.; Rondinini, Carlo

    2017-02-01

    Although it is widely accepted that future climatic change--if unabated--is likely to have major impacts on biodiversity, few studies have attempted to quantify the number of species whose populations have already been impacted by climate change. Using a systematic review of published literature, we identified mammals and birds for which there is evidence that they have already been impacted by climate change. We modelled the relationships between observed responses and intrinsic (for example, body mass) and spatial traits (for example, temperature seasonality within the geographic range). Using this model, we estimated that 47% of terrestrial non-volant threatened mammals (out of 873 species) and 23.4% of threatened birds (out of 1,272 species) may have already been negatively impacted by climate change in at least part of their distribution. Our results suggest that populations of large numbers of threatened species are likely to be already affected by climate change, and that conservation managers, planners and policy makers must take this into account in efforts to safeguard the future of biodiversity.

  2. Soil Microbial Community Responses to Multiple Experimental Climate Change Drivers

    SciTech Connect

    Castro Gonzalez, Hector F; Classen, Aimee T; Austin, Emily E; Norby, Richard J; Schadt, Christopher Warren

    2010-01-01

    Researchers agree that climate change factors such as rising atmospheric [CO{sub 2}] and warming will likely interact to modify ecosystem properties and processes. However, the response of the microbial communities that regulate ecosystem processes is less predictable. We measured the direct and interactive effects of climatic change on soil fungal and bacterial communities (abundance and composition) in a multifactor climate change experiment that exposed a constructed old-field ecosystem to different atmospheric CO{sub 2} concentration (ambient, +300 ppm), temperature (ambient, +3 C), and precipitation (wet and dry) might interact to alter soil bacterial and fungal abundance and community structure in an old-field ecosystem. We found that (i) fungal abundance increased in warmed treatments; (ii) bacterial abundance increased in warmed plots with elevated atmospheric [CO{sub 2}] but decreased in warmed plots under ambient atmospheric [CO{sub 2}]; (iii) the phylogenetic distribution of bacterial and fungal clones and their relative abundance varied among treatments, as indicated by changes in 16S rRNA and 28S rRNA genes; (iv) changes in precipitation altered the relative abundance of Proteobacteria and Acidobacteria, where Acidobacteria decreased with a concomitant increase in the Proteobacteria in wet relative to dry treatments; and (v) changes in precipitation altered fungal community composition, primarily through lineage specific changes within a recently discovered group known as soil clone group I. Taken together, our results indicate that climate change drivers and their interactions may cause changes in bacterial and fungal overall abundance; however, changes in precipitation tended to have a much greater effect on the community composition. These results illustrate the potential for complex community changes in terrestrial ecosystems under climate change scenarios that alter multiple factors simultaneously.

  3. Evolutionary responses to climate change in parasitic systems.

    PubMed

    Chaianunporn, Thotsapol; Hovestadt, Thomas

    2015-08-01

    Species may respond to climate change in many ecological and evolutionary ways. In this simulation study, we focus on the concurrent evolution of three traits in response to climate change, namely dispersal probability, temperature tolerance (or niche width), and temperature preference (optimal habitat). More specifically, we consider evolutionary responses in host species involved in different types of interaction, that is parasitism or commensalism, and for low or high costs of a temperature tolerance-fertility trade-off (cost of generalization). We find that host species potentially evolve all three traits simultaneously in response to increasing temperature but that the evolutionary response interacts and may be compensatory depending on the conditions. The evolutionary adjustment of temperature preference is slower in the parasitism than in commensalism scenario. Parasitism, in turn, selects for higher temperature tolerance and increased dispersal. High costs for temperature tolerance (i.e. generalization) restrict evolution of tolerance and thus lead to a faster response in temperature preference than that observed under low costs. These results emphasize the possible role of biotic interactions and the importance of 'multidimensional' evolutionary responses to climate change.

  4. Seasonal hydrologic responses to climate change in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Vano, Julie A.; Nijssen, Bart; Lettenmaier, Dennis P.

    2015-04-01

    Increased temperatures and changes in precipitation will result in fundamental changes in the seasonal distribution of streamflow in the Pacific Northwest and will have serious implications for water resources management. To better understand local impacts of regional climate change, we conducted model experiments to determine hydrologic sensitivities of annual, seasonal, and monthly runoff to imposed annual and seasonal changes in precipitation and temperature. We used the Variable Infiltration Capacity (VIC) land-surface hydrology model applied at 1/16° latitude-longitude spatial resolution over the Pacific Northwest (PNW), a scale sufficient to support analyses at the hydrologic unit code eight (HUC-8) basin level. These experiments resolve the spatial character of the sensitivity of future water supply to precipitation and temperature changes by identifying the seasons and locations where climate change will have the biggest impact on runoff. The PNW exhibited a diversity of responses, where transitional (intermediate elevation) watersheds experience the greatest seasonal shifts in runoff in response to cool season warming. We also developed a methodology that uses these hydrologic sensitivities as basin-specific transfer functions to estimate future changes in long-term mean monthly hydrographs directly from climate model output of precipitation and temperature. When principles of linearity and superposition apply, these transfer functions can provide feasible first-order estimates of the likely nature of future seasonal streamflow change without performing downscaling and detailed model simulations.

  5. America's Climate Choices: Informing an Effective Response to Climate Change (Invited)

    NASA Astrophysics Data System (ADS)

    Liverman, D. M.; McConnell, M. C.; Raven, P.

    2010-12-01

    At the request of Congress, the National Academy of Sciences convened a series of coordinated activities to provide advice on actions and strategies that the nation can take to respond to climate change. As part of this suite of activities, this study examines information needs and recommends ways the federal government can better inform responses by enhancing climate change and greenhouse gas information and reporting systems and by improving climate communication and education. Demand for better information to support climate-related decisions has grown rapidly as people, organizations, and governments have moved ahead with plans and actions to reduce greenhouse gas emissions and to adapt to the impacts of climate change. To meet this demand, good information systems and services are needed. Without such systems, decision makers cannot evaluate whether particular policies and actions are achieving their goals or should be modified. Although the many non-federal efforts to reduce emissions and/or adapt to future climate changes carry considerable potential to reduce risks related to climate change, there is currently no comprehensive way to assess the effectiveness of those efforts. In addition, the diverse climate change responses to date have resulted in a patchwork of regional, state, and local policies that has prompted many state and business leaders to call for the development of a more predictable and coherent policy environment at the federal level. This report demonstrates that the nation lacks comprehensive, robust, and credible information and reporting systems to inform climate choices and evaluate their effectiveness. This report also argues that decision makers can benefit from a systematic and iterative framework for responding to climate change, in which decisions and policies can be revised in light of new information and experience and that improved information and reporting systems allow for ongoing evaluation of responses to climate risks. The

  6. Crop yield response to climate change varies with cropping intensity.

    PubMed

    Challinor, Andrew J; Parkes, Ben; Ramirez-Villegas, Julian

    2015-04-01

    Projections of the response of crop yield to climate change at different spatial scales are known to vary. However, understanding of the causes of systematic differences across scale is limited. Here, we hypothesize that heterogeneous cropping intensity is one source of scale dependency. Analysis of observed global data and regional crop modelling demonstrate that areas of high vs. low cropping intensity can have systematically different yields, in both observations and simulations. Analysis of global crop data suggests that heterogeneity in cropping intensity is a likely source of scale dependency for a number of crops across the globe. Further crop modelling and a meta-analysis of projected tropical maize yields are used to assess the implications for climate change assessments. The results show that scale dependency is a potential source of systematic bias. We conclude that spatially comprehensive assessments of climate impacts based on yield alone, without accounting for cropping intensity, are prone to systematic overestimation of climate impacts. The findings therefore suggest a need for greater attention to crop suitability and land use change when assessing the impacts of climate change.

  7. High Resolution Modelling of Crop Response to Climate Change

    NASA Astrophysics Data System (ADS)

    Mirmasoudi, S. S.; Byrne, J. M.; MacDonald, R. J.; Lewis, D.

    2014-12-01

    Crop production is one of the most vulnerable sectors to climatic variability and change. Increasing atmospheric CO2 concentration and other greenhouse gases are causing increases in global temperature. In western North America, water supply is largely derived from mountain snowmelt. Climate change will have a significant impact on mountain snowpack and subsequently, the snow-derived water supply. This will strain water supplies and increase water demand in areas with substantial irrigation agriculture. Increasing temperatures may create heat stress for some crops regardless of soil water supply, and increasing surface O3 and other pollutants may damage crops and ecosystems. CO2 fertilization may or may not be an advantage in future. This work is part of a larger study that will address a series of questions based on a range of future climate scenarios for several watersheds in western North America. The key questions are: (1) how will snowmelt and rainfall runoff vary in future; (2) how will seasonal and inter-annual soil water supply vary, and how might that impacts food supplies; (3) how might heat stress impact (some) crops even with adequate soil water; (4) will CO2 fertilization alter crop yields; and (5) will pollution loads, particularly O3, cause meaningful changes to crop yields? The Generate Earth Systems Science (GENESYS) Spatial Hydrometeorological Model is an innovative, efficient, high-resolution model designed to assess climate driven changes in mountain snowpack derived water supplies. We will link GENESYS to the CROPWAT crop model system to assess climate driven changes in water requirement and associated crop productivity for a range of future climate scenarios. Literature bases studies will be utilised to develop approximate crop response functions for heat stress, CO2 fertilization and for O3 damages. The overall objective is to create modeling systems that allows meaningful assessment of agricultural productivity at a watershed scale under a

  8. Book Review: Regional Hydrological Response to Climate Change

    NASA Technical Reports Server (NTRS)

    Koster, Randal

    1998-01-01

    The book being reviewed, Regional Hydrological Response to Climate Change, addresses the effects of global climate change, particularly global warming induced by greenhouse gas emissions, on hydrological budgets at the regional scale. As noted in its preface, the book consists of peer-reviewed papers delivered at scientific meetings held by the International Geographical Union Working Group on Regional Hydrological Response to Climate Change and Global Warming, supplemented with some additional chapters that round out coverage of the topic. The editors hope that this book will serve as "not only a record of current achievements, but also a stimulus to further hydrological research as the detail and spatial resolution of Global Climate Models improves". The reviewer found the background material on regional climatology to be valuable and the methodologies presented to be of interest. The value of the book is significantly diminished, however by the dated nature of some of the material and by large uncertainties in the predictions of regional precipitation change. The book would have been improved by a much more extensive documentation of the uncertainty associated with each step of the prediction process.

  9. Coccolithophore calcification response to past ocean acidification and climate change.

    PubMed

    O'Dea, Sarah A; Gibbs, Samantha J; Bown, Paul R; Young, Jeremy R; Poulton, Alex J; Newsam, Cherry; Wilson, Paul A

    2014-11-17

    Anthropogenic carbon dioxide emissions are forcing rapid ocean chemistry changes and causing ocean acidification (OA), which is of particular significance for calcifying organisms, including planktonic coccolithophores. Detailed analysis of coccolithophore skeletons enables comparison of calcite production in modern and fossil cells in order to investigate biomineralization response of ancient coccolithophores to climate change. Here we show that the two dominant coccolithophore taxa across the Paleocene-Eocene Thermal Maximum (PETM) OA global warming event (~56 million years ago) exhibited morphological response to environmental change and both showed reduced calcification rates. However, only Coccolithus pelagicus exhibits a transient thinning of coccoliths, immediately before the PETM, that may have been OA-induced. Changing coccolith thickness may affect calcite production more significantly in the dominant modern species Emiliania huxleyi, but, overall, these PETM records indicate that the environmental factors that govern taxonomic composition and growth rate will most strongly influence coccolithophore calcification response to anthropogenic change.

  10. Shallow groundwater temperature response to climate change and urbanization

    NASA Astrophysics Data System (ADS)

    Taylor, Craig A.; Stefan, Heinz G.

    2009-09-01

    SummaryGroundwater temperatures, especially in shallow (quaternary) aquifers respond to ground surface temperatures which in turn depend on climate and land use. Groundwater temperatures, therefore, are modified by climate change and urban development. In northern temperate climate regions seasonal temperature cycles penetrate the ground to depths on the order of 10-15 m. In this paper, we develop and apply analytic heat transfer relationships for 1-D unsteady effective diffusion of heat through an unsaturated zone into a flowing aquifer a short distance below the ground surface. We estimate how changes in land use (urban development) and climate change may affect shallow groundwater temperatures. We consider both long-term trends and seasonal cycles in surface temperature changes. Our analysis indicates that a fully urbanized downtown area at the latitude of Minneapolis/St. Paul is likely to have a groundwater temperature that is nearly 3 °C warmer than an undeveloped agricultural area at the same geographic location. Pavements are the main cause of this change. Data collected by the Minnesota Pollution Control Agency (MPCA) in the St. Cloud, MN area confirm that land use influences groundwater temperatures. Ground surface temperatures are also projected to rise in response to global warming. In the extreme case of a doubling of atmospheric carbon dioxide (2 × CO 2 climate scenario), groundwater temperatures in the Minneapolis/St. Paul metropolitan area could therefore rise by up to 4 °C. Compounding a land use change from "undeveloped" to "fully urbanized" and a 2 × CO 2 climate scenario, groundwater temperatures are projected to rise by about 5 °C at the latitude of Minneapolis/St. Paul.

  11. Climate change and biological invasions: evidence, expectations, and response options.

    PubMed

    Hulme, Philip E

    2016-05-31

    integrates bioclimatic suitability and population-level demographic rates but also simulation of landscape-level processes (e.g. dispersal, land-use change, host/habitat distribution, non-climatic edaphic constraints). In terms of invasive alien species that have known economic or biodiversity impacts, the taxa that are likely to be the most responsive are plant pathogens and insect pests of agricultural crops. However, the extent to which climate adaptation strategies lead to new crops, altered rotations, and different farming practices (e.g. irrigation, fertilization) will all shape the potential agricultural impacts of alien species. The greatest uncertainty in the effects of climate change on biological invasions exists with identifying the future character of new species introductions and predicting ecosystem impacts. Two complementary strategies may work under these conditions of high uncertainty: (i) prioritise ecosystems in terms of their perceived vulnerability to climate change and prevent ingress or expansion of alien species therein that may exacerbate problems; (ii) target those ecosystem already threatened by alien species and implement management to prevent the situation deteriorating under climate change.

  12. Interdependency of tropical marine ecosystems in response to climate change

    NASA Astrophysics Data System (ADS)

    Saunders, Megan I.; Leon, Javier X.; Callaghan, David P.; Roelfsema, Chris M.; Hamylton, Sarah; Brown, Christopher J.; Baldock, Tom; Golshani, Aliasghar; Phinn, Stuart R.; Lovelock, Catherine E.; Hoegh-Guldberg, Ove; Woodroffe, Colin D.; Mumby, Peter J.

    2014-08-01

    Ecosystems are linked within landscapes by the physical and biological processes they mediate. In such connected landscapes, the response of one ecosystem to climate change could have profound consequences for neighbouring systems. Here, we report the first quantitative predictions of interdependencies between ecosystems in response to climate change. In shallow tropical marine ecosystems, coral reefs shelter lagoons from incoming waves, allowing seagrass meadows to thrive. Deepening water over coral reefs from sea-level rise results in larger, more energetic waves traversing the reef into the lagoon, potentially generating hostile conditions for seagrass. However, growth of coral reef such that the relative water depth is maintained could mitigate negative effects of sea-level rise on seagrass. Parameterizing physical and biological models for Lizard Island, Great Barrier Reef, Australia, we find negative effects of sea-level rise on seagrass before the middle of this century given reasonable rates of reef growth. Rates of vertical carbonate accretion typical of modern reef flats (up to 3 mm yr-1) will probably be insufficient to maintain suitable conditions for reef lagoon seagrass under moderate to high greenhouse gas emissions scenarios by 2100. Accounting for interdependencies in ecosystem responses to climate change is challenging, but failure to do so results in inaccurate predictions of habitat extent in the future.

  13. Wetlands Response to Climate Change across Susquehanna River Basin

    NASA Astrophysics Data System (ADS)

    Duffy, C.; Yu, X.; Bhatt, G.; Kumar, M.

    2011-12-01

    The Susquehanna River Basin (SRB) lies in the northeastern United States and contains a mosaic of wetlands that range from permanently wet to temporary embedded in a landscape matrix of natural deciduous forest and agriculture. This study explores the prospects for SRB wetlands under modified hydrologic processes induced due to climatic change. Five mesoscale watersheds: Little Juniata River (560 sq. km.), Mahantango Creek (420 sq. km.), Young Womans Creek (120 sq. km.), Muddy Creek (344 sq. km.), and Lackawanna River (860 sq. km.) were selected as representative watersheds to include variability in climate, topography, soil, geomorphology, and land cover across SRB. We explored the broad spatial and temporal patterns across these watersheds between climate and wetland health using groundwater predictions from Penn State Integrated Hydrologic Modeling System (PIHM) -- a spatially distributed fully-coupled physics-based model. Near present (2004-2010) hourly climate data (precipitation, temperature, relative humidity, vapor pressure, wind velocity and solar radiation) were obtained from Phase 2 of the North American Land Data Assimilation System (NLDAS-2), climate reanalysis product. The predicted wetland locations were validated against the National Wetland Inventory. We analyzed the effect of spatial and temporal variability in hydrologic states such as streams, groundwater, and evaporative and hydrologic fluxes on the wetland hydrology. To predict the impacts of climate change on the health of the wetland, meteorological data for two 20 year climate periods (History: 1979-1998 and Scenario: 2046-2065) from Meteorological Research Institute's GCM were used as model forcing. The scenarios output showed different responses across the wetlands in the river basin. The key to this study is that a high resolution spatial and temporal model can resolve the coupled effects of wetlands in the context of complete mesoscale watershed simulations.

  14. Complex responses of insect phenology to climate change.

    PubMed

    Forrest, Jessica Rk

    2016-10-01

    Insect phenologies are changing in response to climate warming. Shifts toward earlier seasonal activity are widespread; however, responses of insect phenology to warming are often more complex. Many species have prolonged their activity periods; others have shown delays. Furthermore, because of interspecific differences in temperature sensitivity, warming can increase or decrease synchronization between insects and their food plants and natural enemies. Here, I review recent findings in three areas-shifts in phenology, changes in voltinism, and altered species interactions-and highlight counterintuitive responses to warming caused by the particularities of insect life cycles. Throughout, I emphasize how an appreciation of the evolutionary processes shaping insect life histories is necessary to forecast changes in insect phenology and their demographic consequences.

  15. Farmer's response to changing climate in North East India

    NASA Astrophysics Data System (ADS)

    De, Utpal Kumar

    2015-02-01

    Diversification of land use in the cultivation of various crops provides an alternative way to moderate the climate risk. By choosing alternative crops that are resilient to various weather parameters, farmers can reduce the crop damage and achieve optimum output from their limited land resources. Apart from other adaptation measures, crop diversity can reflect farmers' response towards changing climate uncertainty. This paper tries to examine the changing climatic condition through spatio-temporal variation of two important weather variables (precipitation and temperature) in the largest North-East Indian state, Assam, since 1950. It is examined by the variation in crop diversification index. We have used (1) Herfindahl Index for measuring degree of diversification and (2) locational quotient for measuring the changes in the regional crop concentration. The results show that, in almost all the districts, crop specialization has been taking place slowly and that happened mostly in the last phase of our study. The hilly and backward districts recorded more diversification but towards lower value crops. It goes against the normal feature of crop diversification where farmers diversify in favour of high value crops. Employing ordinary least squares method and/or Fixed Effect model, irrigation is found to have significant impact on crop diversification; while the flood plain zones and hill zones are found to have better progress in this regard, which has been due to the survival necessity of poor farmers living the zone. Thus crop diversity does not reflect very significant response from the farmers' side towards changing weather factors (except rainfall) though they have significant impact on the productivity of various crops, and thus profitability. The study thus suggests the necessity for rapid and suitable diversification as alternative climate change mitigation in the long run.

  16. [Forest litter decomposition and its responses to global climate change].

    PubMed

    Yang, Wan-Qin; Deng, Ren-Ju; Zhang, Jian

    2007-12-01

    Litter decomposition is one of the important processes in forest ecosystem, which is controlled by both biotic and abiotic factors such as climate, litter quality, and soil organisms. Up to now, numerous studies have been made on the dynamics of aboveground litter in different forest ecosystems, nutrient release during its decomposition, and effects of biotic and abiotic factors on the decomposition, but less information has been reported on the decomposition of belowground forest litter. Recently, the responses of forest litter decomposition to global climate change characterized by elevated atmospheric CO2 concentration and temperature have got worldwide concern, but there remains uncertainty in research results. In the further study, more attention should be paid on the contribution of forest litter decomposition to soil organic carbon sequestration, the physical, chemical and biological processes of below- and above-ground litter decomposition, the responses of forest litter decomposition to the ecological factors (e.g. seasonal freeze-thaw cycle and drying-rewetting cycle) and their interactions, and the mechanisms of litter (especially belowground litter) decomposition responses to global climate change.

  17. Climate Change

    MedlinePlus

    ... in a place over a period of time. Climate change is major change in temperature, rainfall, snow, or ... by natural factors or by human activities. Today climate changes are occurring at an increasingly rapid rate. Climate ...

  18. Responses of vegetation growth to climate change in china

    NASA Astrophysics Data System (ADS)

    Li, Z.; Zhou, T.

    2015-04-01

    Global warming-related climate changes have significantly impacted the growth of terrestrial vegetation. Quantifying the spatiotemporal characteristic of the vegetation's response to climate is crucial for assessing the potential impacts of climate change on vegetation. In this study, we employed the normalized difference vegetation index (NDVI) and the standardized precipitation evapotranspiration index (SPEI) that was calculated for various time scales (1 to 12 months) from monthly records of mean temperature and precipitation totals using 511 meteorological stations in China to study the response of vegetation types to droughts. We separated the NDVI into 12 time series (one per month) and also used the SPEI of 12 droughts time scales to make the correlation. The results showed that the differences exist in various vegetation types. For needle-leaved forest, broadleaf forest and shrubland, they responded to droughts at long time scales (9 to 12 months). For grassland, meadow and cultivated vegetation, they responded to droughts at short time scales (1 to 5months). The positive correlations were mostly found in arid and sub-arid environments where soil water was a primary constraining factor for plant growth, and the negative correlations always existed in humid environments where temperature and radiation played significant roles in vegetation growth. Further spatial analysis indicated that the positive correlations were primarily found in northern China, especially in northwestern China, which is a region that always has water deficit, and the negative correlations were found in southern China, especially in southeastern China, that is a region has water surplus most of the year. The disclosed patterns of spatiotemporal responses to droughts are important for studying the impact of climate change to vegetation growth.

  19. Social responses to climate change: Political cultures and social plasticity

    SciTech Connect

    Pendergraft, C.A.

    1997-12-31

    Working Group III of the Intergovernmental Panel on Climate Change cautiously observes that {open_quotes}The value of better information about climate change processes and impacts and society`s responses to them is likely to be great.{close_quotes} Global-scale problems involve an infinite number of social complexities, so a fundamental analytic need is a metric to facilitate cross-cultural comparison of sets of attitudes or worldviews relevant to coping with climate change. Enhanced climate change is a salient example of the synergistic character of anthropogenic and natural processes, but the very fact that not everyone sees {open_quotes}anthropogenic{close_quotes} and {open_quotes}natural{close_quotes} as dichotomous, or agrees on the implications of either alternative, indicates the presence of competing worldviews. There is a consensus that a high level of environmental quality is a collective good, so a general failure to provide it needs explaining. Is the problem inherent to collective action or is it a function of the global politico-economic system? The premises of some worldviews lead to doubt that collective action problems can be resolved in a system dominated by sovereign states, and insist that nothing short of radical systemic revision is required. Other premises produce fear of concentrations of power in supranational or international organizations. What elements predispose people and groups to accept or reject one or the other of these views? This research uses cultural theory to explore socioeconomic and political implications of diverse worldviews. Responses of a sample of over 500 people to politically and environmentally relevant statements are classified, scaled and clustered. Implications for social adaptability, or plasticity, are suggested.

  20. The acceptability of climate change in agricultural communities: comparing responses across variability and change.

    PubMed

    Raymond, Christopher M; Spoehr, John

    2013-01-30

    This study examined how the terms used to describe climate change influence landholder acceptability judgements and attitudes toward climate change at the local scale. Telephone surveys were conducted with landholders from viticultural (n = 97) or cereal growing (n = 195) backgrounds in rural South Australia. A variety of descriptive and inferential statistics were used to examine the influence of human-induced climate change and winter/spring drying trend terms on adaptation responses and uncertainties surrounding climate change science. We found that the terms used to describe climate change leads to significant differences in adaptation response and levels of scepticism surrounding climate change in rural populations. For example, those respondents who accepted human induced climate change as a reality were significantly more likely to invest in technologies to sow crops earlier or increase the amount of water stored or harvested on their properties than respondents who accepted the winter/spring drying trend as a reality. The results have implications for the targeting of climate change science messages to both rural landholders and communities of practice involved in climate change adaptation planning and implementation.

  1. Landscape fragmentation affects responses of avian communities to climate change.

    PubMed

    Jarzyna, Marta A; Porter, William F; Maurer, Brian A; Zuckerberg, Benjamin; Finley, Andrew O

    2015-08-01

    Forecasting the consequences of climate change is contingent upon our understanding of the relationship between biodiversity patterns and climatic variability. While the impacts of climate change on individual species have been well-documented, there is a paucity of studies on climate-mediated changes in community dynamics. Our objectives were to investigate the relationship between temporal turnover in avian biodiversity and changes in climatic conditions and to assess the role of landscape fragmentation in affecting this relationship. We hypothesized that community turnover would be highest in regions experiencing the most pronounced changes in climate and that these patterns would be reduced in human-dominated landscapes. To test this hypothesis, we quantified temporal turnover in avian communities over a 20-year period using data from the New York State Breeding Atlases collected during 1980-1985 and 2000-2005. We applied Bayesian spatially varying intercept models to evaluate the relationship between temporal turnover and temporal trends in climatic conditions and landscape fragmentation. We found that models including interaction terms between climate change and landscape fragmentation were superior to models without the interaction terms, suggesting that the relationship between avian community turnover and changes in climatic conditions was affected by the level of landscape fragmentation. Specifically, we found weaker associations between temporal turnover and climatic change in regions with prevalent habitat fragmentation. We suggest that avian communities in fragmented landscapes are more robust to climate change than communities found in contiguous habitats because they are comprised of species with wider thermal niches and thus are less susceptible to shifts in climatic variability. We conclude that highly fragmented regions are likely to undergo less pronounced changes in composition and structure of faunal communities as a result of climate change

  2. Differentiated Response of Snowpack to Climate Change at Local Scale

    NASA Astrophysics Data System (ADS)

    Pons, M.; López Moreno, J. I.; Rosas-Casals, M.; Jover, E.

    2014-12-01

    Local factors such as topography, aspect, elevation or local wind can significantly affect the spatial distribution of snow. This study intends to understand the effect of these factors and model a differentiated response of snowpack to climate change at small scale. In order to accomplish this objective, a network of wind, temperature and humidity sensors has been deployed in two different ski areas of the Pyrenees to monitor and analyze the effect of local factors on these variables. Moreover, snow depth and density, snowmaking working and time-lapse imagery of slopes will be analyzed during a winter season in order to better understand the snowpack changes and distribution due to local factors and the technical work on the ski resorts. The main aim of this study is to better understand the differentiated response of the snowpack at small scale considering local factors in order to improve and enhance the efficiency of the present daily management for example in ski resort areas and the planning of future adaptation strategies to climate change.

  3. Warming experiments underpredict plant phenological responses to climate change.

    PubMed

    Wolkovich, E M; Cook, B I; Allen, J M; Crimmins, T M; Betancourt, J L; Travers, S E; Pau, S; Regetz, J; Davies, T J; Kraft, N J B; Ault, T R; Bolmgren, K; Mazer, S J; McCabe, G J; McGill, B J; Parmesan, C; Salamin, N; Schwartz, M D; Cleland, E E

    2012-05-02

    Warming experiments are increasingly relied on to estimate plant responses to global climate change. For experiments to provide meaningful predictions of future responses, they should reflect the empirical record of responses to temperature variability and recent warming, including advances in the timing of flowering and leafing. We compared phenology (the timing of recurring life history events) in observational studies and warming experiments spanning four continents and 1,634 plant species using a common measure of temperature sensitivity (change in days per degree Celsius). We show that warming experiments underpredict advances in the timing of flowering and leafing by 8.5-fold and 4.0-fold, respectively, compared with long-term observations. For species that were common to both study types, the experimental results did not match the observational data in sign or magnitude. The observational data also showed that species that flower earliest in the spring have the highest temperature sensitivities, but this trend was not reflected in the experimental data. These significant mismatches seem to be unrelated to the study length or to the degree of manipulated warming in experiments. The discrepancy between experiments and observations, however, could arise from complex interactions among multiple drivers in the observational data, or it could arise from remediable artefacts in the experiments that result in lower irradiance and drier soils, thus dampening the phenological responses to manipulated warming. Our results introduce uncertainty into ecosystem models that are informed solely by experiments and suggest that responses to climate change that are predicted using such models should be re-evaluated.

  4. Warming experiments underpredict plant phenological responses to climate change

    USGS Publications Warehouse

    Wolkovich, Elizabeth M.; Cook, Benjamin I.; Allen, Jenica M.; Crimmins, Theresa M.; Betancourt, Julio L.; Travers, Steven E.; Pau, Stephanie; Regetz, James; Davies, T. Jonathan; Kraft, Nathan J.B.; Ault, Toby R.; Bolmgren, Kjell; Mazer, Susan J.; McCabe, Gregory J.; McGill, Brian J.; Parmesan, Camille; Salamin, Nicolas; Schwartz, Mark D.; Cleland, Elsa E.

    2012-01-01

    Warming experiments are increasingly relied on to estimate plant responses to global climate change. For experiments to provide meaningful predictions of future responses, they should reflect the empirical record of responses to temperature variability and recent warming, including advances in the timing of flowering and leafing. We compared phenology (the timing of recurring life history events) in observational studies and warming experiments spanning four continents and 1,634 plant species using a common measure of temperature sensitivity (change in days per degree Celsius). We show that warming experiments underpredict advances in the timing of flowering and leafing by 8.5-fold and 4.0-fold, respectively, compared with long-term observations. For species that were common to both study types, the experimental results did not match the observational data in sign or magnitude. The observational data also showed that species that flower earliest in the spring have the highest temperature sensitivities, but this trend was not reflected in the experimental data. These significant mismatches seem to be unrelated to the study length or to the degree of manipulated warming in experiments. The discrepancy between experiments and observations, however, could arise from complex interactions among multiple drivers in the observational data, or it could arise from remediable artefacts in the experiments that result in lower irradiance and drier soils, thus dampening the phenological responses to manipulated warming. Our results introduce uncertainty into ecosystem models that are informed solely by experiments and suggest that responses to climate change that are predicted using such models should be re-evaluated.

  5. Warming Experiments Underpredict Plant Phenological Responses to Climate Change

    NASA Technical Reports Server (NTRS)

    Wolkovich, E. M.; Cook, B. I.; Allen, J. M.; Crimmins, T. M.; Betancourt, J. L.; Travers, S. E.; Pau, S.; Regetz, J.; Davies, T. J.; Kraft, N. J. B.; Ault, T. R.; Bolmgren, K.; Mazer, S. J.; McCabe, G. J.; McGill, B. J.; Parmesan, C.; Salamin, N.; Schwartz, M. D.; Cleland, E. E.

    2012-01-01

    Warming experiments are increasingly relied on to estimate plant responses to global climate change. For experiments to provide meaningful predictions of future responses, they should reflect the empirical record of responses to temperature variability and recent warming, including advances in the timing of flowering and leafing. We compared phenology (the timing of recurring life history events) in observational studies and warming experiments spanning four continents and 1,634 plant species using a common measure of temperature sensitivity (change in days per degree Celsius). We show that warming experiments underpredict advances in the timing of flowering and leafing by 8.5-fold and 4.0-fold, respectively, compared with long-term observations. For species that were common to both study types, the experimental results did not match the observational data in sign or magnitude. The observational data also showed that species that flower earliest in the spring have the highest temperature sensitivities, but this trend was not reflected in the experimental data. These significant mismatches seem to be unrelated to the study length or to the degree of manipulated warming in experiments. The discrepancy between experiments and observations, however, could arise from complex interactions among multiple drivers in the observational data, or it could arise from remediable artefacts in the experiments that result in lower irradiance and drier soils, thus dampening the phenological responses to manipulated warming. Our results introduce uncertainty into ecosystem models that are informed solely by experiments and suggest that responses to climate change that are predicted using such models should be re-evaluated.

  6. Stationary monitoring of glacier response to climate change in China

    NASA Astrophysics Data System (ADS)

    Ren, Jiawen; Li, Zhongqin; Qin, Xiang; He, Yuanqing; He, Xiaobo; Li, Huilin

    2016-04-01

    At present, there are about 48571 glaciers with a total area of about 51.8×103 km2 and a volume of about 5.6×103 km3 in China. They are distributed widely in the high mountains in and surrounding the Tibetan Plateau and other high mountains such as Tianshan, Altay and Pamir. In view of differences in climatic conditions and glacier types, stationary monitoring of the glacier variations has been ongoing in different regions in order to investigate the glacier response to climate change. The monitoring results show that all the monitoring glaciers have been in retreat during the past decades and especially since 1990's the retreat rate has an accelerating trend. The accumulative mass balance is much negative and has a large annual variability for the monsoonal maritime glaciers in comparison with the continental and sub-continental glaciers. Under climate warming background, the acceleration of glacier melting is mainly attributed to rise in air temperature, ice temperature augment and albedo reduction of glacier surface. Particularly, the albedo reduction has a positive feedback effect on the glacier melting. Based on long term observation of glacier variations and physical properties, a simple dynamics model is coupled with mass balance modeling to make a projection of a typical glacier change in future. The primary modeling results suggest that the glacier will continue in shrinkage until vanishing within 50-90 years.

  7. Phenotypic clines, energy balances and ecological responses to climate change.

    PubMed

    Buckley, Lauren B; Nufio, César R; Kingsolver, Joel G

    2014-01-01

    The Metabolic Theory of Ecology has renewed interest in using energetics to scale across levels of ecological organization. Can scaling from individual phenotypes to population dynamics provides insight into why species have shifted their phenologies, abundances and distributions idiosyncratically in response to recent climate change? We consider how the energetic implications of phenotypes may scale to understand population and species level responses to climate change using four focal grasshopper species along an elevation gradient in Colorado. We use a biophysical model to translate phenotypes and environmental conditions into estimates of body temperatures. We measure thermal tolerances and preferences and metabolic rates to assess rates of energy use and acquisition. Body mass declines along the elevation gradient for all species, but mass-specific metabolic rates increases only modestly. We find interspecific differences in both overall thermal tolerances and preferences and in the variation of these metrics along the elevation gradient. The more dispersive species exhibit significantly higher thermal tolerance and preference consistent with much of their range spanning hot, low elevation areas. When integrating these metrics to consider metabolic constraints, we find that energetic costs decrease along the elevation gradient due to decreasing body size and temperature. Opportunities for energy acquisition, as reflected by the proportion of time that falls within a grasshopper's thermal tolerance range, peak at mid elevations. We discuss methods for translating these energetic metrics into population dynamics. Quantifying energy balances and allocation offers a viable approach for predicting how populations will respond to climate change and the consequences for species composed of populations that may be locally adapted.

  8. Global Responses to Potential Climate Change: A Simulation.

    ERIC Educational Resources Information Center

    Williams, Mary Louise; Mowry, George

    This interdisciplinary five-day unit provides students with an understanding of the issues in the debate on global climate change. Introductory lessons enhance understanding of the "greenhouse gases" and their sources with possible global effects of climate change. Students then roleplay negotiators from 10 nations in a simulation of the…

  9. A Systems Perspective on Responses to Climate Change

    EPA Science Inventory

    The science of climate change integrates many scientific fields to explain and predict the complex effects of greenhouse gas concentrations on the planet’s energy balance, weather patterns, and ecosystems as well as economic and social systems. A changing climate requires respons...

  10. Climate Change and Societal Response: Livelihoods, Communities, and the Environment

    ERIC Educational Resources Information Center

    Molnar, Joseph J.

    2010-01-01

    Climate change may be considered a natural disaster evolving in slow motion on a global scale. Increasing storm intensities, shifting rainfall patterns, melting glaciers, rising sea levels, and other manifold alterations are being experienced around the world. Climate has never been constant in any location, but human-induced changes associated…

  11. Assessing climate change beliefs: Response effects of question wording and response alternatives.

    PubMed

    Greenhill, Murni; Leviston, Zoe; Leonard, Rosemary; Walker, Iain

    2014-11-01

    To date, there is no 'gold standard' on how to best measure public climate change beliefs. We report a study (N = 897) testing four measures of climate change causation beliefs, drawn from four sources: the CSIRO, Griffith University, the Gallup poll, and the Newspoll. We found that question wording influences the outcome of beliefs reported. Questions that did not allow respondents to choose the option of believing in an equal mix of natural and anthropogenic climate change obtained different results to those that included the option. Age and belief groups were found to be important predictors of how consistent people were in reporting their beliefs. Response consistency gave some support to past findings suggesting climate change beliefs reflect something deeper in the individual belief system. Each belief question was assessed against five criterion variables commonly used in climate change literature. Implications for future studies are discussed.

  12. Anticipated water quality changes in response to climate change and potential consequences for inland fishes

    USGS Publications Warehouse

    Chen, Yushun; Todd, Andrew S.; Murphy, Margaret H.; Lomnicky, Gregg

    2016-01-01

    Healthy freshwater ecosystems are a critical component of the world's economy, with a critical role in maintaining public health, inland biological diversity, and overall quality of life. Globally, our climate is changing, with air temperature and precipitation regimes deviating significantly from historical patterns. Healthy freshwater ecosystems are a critical component of the world's economy, with a critical role in maintaining public health, inland biological diversity, and overall quality of life. Globally, our climate is changing, with air temperature and precipitation regimes deviating significantly from historical patterns. Changes anticipated with climate change in the future are likely to have a profound effect on inland aquatic ecosystems through diverse pathways, including changes in water quality. In this brief article, we present an initial discussion of several of the water quality responses that can be anticipated to occur within inland water bodies with climate change and how those changes are likely to impact fishes.

  13. Biogeochemical responses of shallow coastal lagoons to Climate Change

    NASA Astrophysics Data System (ADS)

    Brito, A.; Newton, A.; Tett, P.; Fernandes, T.

    2009-04-01

    carefully monitored so that appropriate responses can be timely to mitigate the impacts from global change. References: Eisenreich, S.J. (2005). Climate Change and the European Water Dimension - A report to the European Water Directors. Institute for Environment and Sustainability, European Comission-Joint Research Centre. Ispra, Italy. 253pp. Kerr, R. (2008). Global warming throws some curves in the Atlantic Ocean. Science, 322, 515. IPCC (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., Miller, H. (eds.)]. Cambridge University Press. Cambridge, United Kingdom and New York, NY, USA, 996pp. Lloret, J., Marín, A., Marín-Guirao, L. (2008). Is coastal lagoon eutrophication likely to be aggravated by global climate change? Estuarine, Coastal and Shelf Science, 78, 403-412. Snoussi, M., Ouchani, T., Niazi, S. (2008). Vulnerability assessment of the impact of sea-level rise and flooding on the Moroccan coast: The case of the Mediterranean eastern zone. Estuarine, Coastal and Shelf Science, 77, 206-213.

  14. Venezuelan policies and responses on climate change and natural hazards

    NASA Astrophysics Data System (ADS)

    Caponi, Claudio; Rosales, Anibal

    1992-06-01

    Venezuela is an intertropical country which has the fortune not to suffer the severities of natural hazards which are usual in other countries of this region. It is a developing country, whose economy is heavily dependent on oil production and exports. Its greenhouse gas emissions are relatively low, but it is expected that the planned industrialization development will bring an associated increase in emissions. As a nation, Venezuela has a highly developed environmental consciousness. The Ministry of environment, the first in Latin America, was created in 1977, and has been the main contributor to the national policy of Disaster Prevention and Reduction. As in many developing countries actions and responses in this regard have been rather limited in scope, and even though legislation has been developed, many problems arise for its enforcement. Several local warning systems, civil defense procedures, and infrastructural protection measures are operational, however they have not been designed, revised, or planned taking into consideration the potential impacts of climate change. Presently Venezuela is an active participant state in the negotiation for a framework convention on climate change. That is a very difficult negotiation for our country. Here we have to conciliate enviromental principles with national economic interests. The elements of our position in this contex are presented in this statement.

  15. Adaptation responses to climate change differ between global megacities

    NASA Astrophysics Data System (ADS)

    Georgeson, Lucien; Maslin, Mark; Poessinouw, Martyn; Howard, Steve

    2016-06-01

    Urban areas are increasingly at risk from climate change, with negative impacts predicted for human health, the economy and ecosystems. These risks require responses from cities to improve their resilience. Policymakers need to understand current adaptation spend to plan comprehensively and effectively. Through the measurement of spend in the newly defined `adaptation economy', we analyse current climate change adaptation efforts in ten megacities. In all cases, the adaptation economy remains a small part of the overall economy, representing a maximum of 0.33% of a city's gross domestic product (here referred to as GDPc). Differences in total spend are significant between cities in developed, emerging and developing countries, ranging from #15 million to #1,600 million. Comparing key subsectors, we demonstrate the differences in adaptation profiles. Developing cities have higher proportional spend on health and agriculture, whereas developed cities have higher spend on energy and water. Spend per capita and percentage of GDPc comparisons more clearly show disparities between cities. Developing country cities spend half the proportion of GDPc and significantly less per capita, suggesting that adaptation spend is driven by wealth rather than the number of vulnerable people. This indicates that current adaptation activities are insufficient in major population centres in developing and emerging economies.

  16. Predicting evolutionary responses to climate change in the sea.

    PubMed

    Munday, Philip L; Warner, Robert R; Monro, Keyne; Pandolfi, John M; Marshall, Dustin J

    2013-12-01

    An increasing number of short-term experimental studies show significant effects of projected ocean warming and ocean acidification on the performance on marine organisms. Yet, it remains unclear if we can reliably predict the impact of climate change on marine populations and ecosystems, because we lack sufficient understanding of the capacity for marine organisms to adapt to rapid climate change. In this review, we emphasise why an evolutionary perspective is crucial to understanding climate change impacts in the sea and examine the approaches that may be useful for addressing this challenge. We first consider what the geological record and present-day analogues of future climate conditions can tell us about the potential for adaptation to climate change. We also examine evidence that phenotypic plasticity may assist marine species to persist in a rapidly changing climate. We then outline the various experimental approaches that can be used to estimate evolutionary potential, focusing on molecular tools, quantitative genetics, and experimental evolution, and we describe the benefits of combining different approaches to gain a deeper understanding of evolutionary potential. Our goal is to provide a platform for future research addressing the evolutionary potential for marine organisms to cope with climate change.

  17. Hydrological Responses to Land-Use Change Scenarios under Constant and Changed Climatic Conditions.

    PubMed

    Zhang, Ling; Nan, Zhuotong; Yu, Wenjun; Ge, Yingchun

    2016-02-01

    This study quantified the hydrological responses to land-use change scenarios in the upper and middle Heihe River basin (HRB), northwest China, under constant and changed climatic conditions by combining a land-use/cover change model (dynamic conversion of land use and its effects, Dyna-CLUE) and a hydrological model (soil and water assessment tool, SWAT). Five land-use change scenarios, i.e., historical trend (HT), ecological protection (EP), strict ecological protection (SEP), economic development (ED), and rapid economic development (RED) scenarios, were established. Under constant climatic condition, hydrological variations are only induced by land-use changes in different scenarios. The changes in mean streamflow at the outlets of the upper and the middle HRB are not pronounced, although the different scenarios produce different outcomes. However, more pronounced changes are observed on a subbasin level. The frequency of extreme flood is projected to decrease under the SEP scenario, while under the other scenarios, no changes can be found. Two emission scenarios (A1B and B1) of three general circulation models (HadCM3, CGCM3, and CCSM3) were employed to generate future possible climatic conditions. Under changed climatic condition, hydrological variations are induced by the combination of land-use and climatic changes. The results indicate that the impacts of land-use changes become secondary when the changed climatic conditions have been considered. The frequencies of extreme flood and drought are projected to decrease and increase, respectively, under all climate scenarios. Although some agreements can be reached, pronounced difference of hydrological responses can be observed for different climate scenarios of different GCMs.

  18. Hydrological Responses to Land-Use Change Scenarios under Constant and Changed Climatic Conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Nan, Zhuotong; Yu, Wenjun; Ge, Yingchun

    2016-02-01

    This study quantified the hydrological responses to land-use change scenarios in the upper and middle Heihe River basin (HRB), northwest China, under constant and changed climatic conditions by combining a land-use/cover change model (dynamic conversion of land use and its effects, Dyna-CLUE) and a hydrological model (soil and water assessment tool, SWAT). Five land-use change scenarios, i.e., historical trend (HT), ecological protection (EP), strict ecological protection (SEP), economic development (ED), and rapid economic development (RED) scenarios, were established. Under constant climatic condition, hydrological variations are only induced by land-use changes in different scenarios. The changes in mean streamflow at the outlets of the upper and the middle HRB are not pronounced, although the different scenarios produce different outcomes. However, more pronounced changes are observed on a subbasin level. The frequency of extreme flood is projected to decrease under the SEP scenario, while under the other scenarios, no changes can be found. Two emission scenarios (A1B and B1) of three general circulation models (HadCM3, CGCM3, and CCSM3) were employed to generate future possible climatic conditions. Under changed climatic condition, hydrological variations are induced by the combination of land-use and climatic changes. The results indicate that the impacts of land-use changes become secondary when the changed climatic conditions have been considered. The frequencies of extreme flood and drought are projected to decrease and increase, respectively, under all climate scenarios. Although some agreements can be reached, pronounced difference of hydrological responses can be observed for different climate scenarios of different GCMs.

  19. Planning and Management: Programmatic Response to Climate Change and Water

    EPA Pesticide Factsheets

    The Water program at EPA has been working to adapt to climate change for years. The 2012 Strategy sets out long-terms goals for climate action, Highlights reports track progress, and new workplans point out actions to be taken that year.

  20. Responses of vegetation distribution to climate change in China

    NASA Astrophysics Data System (ADS)

    Zhao, Dongsheng; Wu, Shaohong

    2014-07-01

    Climate plays a crucial role in controlling vegetation distribution and climate change may therefore cause extended changes. A coupled biogeography and biogeochemistry model called BIOME4 was modified by redefining the bioclimatic limits of key plant function types on the basis of the regional vegetation-climate relationships in China. Compared to existing natural vegetation distribution, BIOME4 is proven more reliable in simulating the overall vegetation distribution in China. Possible changes in vegetation distribution were simulated under climate change scenarios by using the improved model. Simulation results suggest that regional climate change would result in dramatic changes in vegetation distribution. Climate change may increase the areas covered by tropical forests, warm-temperate forests, savannahs/dry woodlands and grasslands/dry shrublands, but decrease the areas occupied by temperate forests, boreal forests, deserts, dry tundra and tundra across China. Most vegetation in east China, specifically the boreal forests and the tropical forests, may shift their boundaries northwards. The tundra and dry tundra on the Tibetan Plateau may be progressively confined to higher elevation.

  1. Climate Change Impacts and Responses: Societal Indicators for the National Climate Assessment

    NASA Technical Reports Server (NTRS)

    Kenney, Melissa A.; Chen, Robert S.; Maldonado, Julie; Quattrochi, Dale

    2011-01-01

    The Climate Change Impacts and Responses: Societal Indicators for the National Climate Assessment workshop, sponsored by the National Aeronautics and Space Administration (NASA) for the National Climate Assessment (NCA), was held on April 28-29, 2011 at The Madison Hotel in Washington, DC. A group of 56 experts (see list in Appendix B) convened to share their experiences. Participants brought to bear a wide range of disciplinary expertise in the social and natural sciences, sector experience, and knowledge about developing and implementing indicators for a range of purposes. Participants included representatives from federal and state government, non-governmental organizations, tribes, universities, and communities. The purpose of the workshop was to assist the NCA in developing a strategic framework for climate-related physical, ecological, and socioeconomic indicators that can be easily communicated with the U.S. population and that will support monitoring, assessment, prediction, evaluation, and decision-making. The NCA indicators are envisioned as a relatively small number of policy-relevant integrated indicators designed to provide a consistent, objective, and transparent overview of major variations in climate impacts, vulnerabilities, adaptation, and mitigation activities across sectors, regions, and timeframes. The workshop participants were asked to provide input on a number of topics, including: (1) categories of societal indicators for the NCA; (2) alternative approaches to constructing indicators and the better approaches for NCA to consider; (3) specific requirements and criteria for implementing the indicators; and (4) sources of data for and creators of such indicators. Socioeconomic indicators could include demographic, cultural, behavioral, economic, public health, and policy components relevant to impacts, vulnerabilities, and adaptation to climate change as well as both proactive and reactive responses to climate change. Participants provided

  2. Bioethics and Climate Change: A Response to Macpherson and Valles.

    PubMed

    Resnik, David B

    2016-10-01

    Two articles published in Bioethics recently have explored the ways that bioethics can contribute to the climate change debate. Cheryl Cox Macpherson argues that bioethicists can play an important role in the climate change debate by helping the public to better understand the values at stake and the trade-offs that must be made in individual and social choices, and Sean Valles claims that bioethicists can contribute to the debate by framing the issues in terms of the public health impacts of climate change. While Macpherson and Valles make valid points concerning a potential role for bioethics in the climate change debate, it is important to recognize that much more than ethical analysis and reflection will be needed to significantly impact public attitudes and government policies.

  3. Wildfire responses to abrupt climate change in North America.

    PubMed

    Marlon, J R; Bartlein, P J; Walsh, M K; Harrison, S P; Brown, K J; Edwards, M E; Higuera, P E; Power, M J; Anderson, R S; Briles, C; Brunelle, A; Carcaillet, C; Daniels, M; Hu, F S; Lavoie, M; Long, C; Minckley, T; Richard, P J H; Scott, A C; Shafer, D S; Tinner, W; Umbanhowar, C E; Whitlock, C

    2009-02-24

    It is widely accepted, based on data from the last few decades and on model simulations, that anthropogenic climate change will cause increased fire activity. However, less attention has been paid to the relationship between abrupt climate changes and heightened fire activity in the paleorecord. We use 35 charcoal and pollen records to assess how fire regimes in North America changed during the last glacial-interglacial transition (15 to 10 ka), a time of large and rapid climate changes. We also test the hypothesis that a comet impact initiated continental-scale wildfires at 12.9 ka; the data do not support this idea, nor are continent-wide fires indicated at any time during deglaciation. There are, however, clear links between large climate changes and fire activity. Biomass burning gradually increased from the glacial period to the beginning of the Younger Dryas. Although there are changes in biomass burning during the Younger Dryas, there is no systematic trend. There is a further increase in biomass burning after the Younger Dryas. Intervals of rapid climate change at 13.9, 13.2, and 11.7 ka are marked by large increases in fire activity. The timing of changes in fire is not coincident with changes in human population density or the timing of the extinction of the megafauna. Although these factors could have contributed to fire-regime changes at individual sites or at specific times, the charcoal data indicate an important role for climate, and particularly rapid climate change, in determining broad-scale levels of fire activity.

  4. Measured Climate Induced Volume Changes of Three Glaciers and Current Glacier-Climate Response Prediction

    NASA Astrophysics Data System (ADS)

    Trabant, D. C.; March, R. S.; Cox, L. H.; Josberger, E. G.

    2003-12-01

    Small but hydrologically significant shifts in climate have affected the rates of glacier volume change at the three U.S. Geological Survey Benchmark glaciers. Rate changes are detected as inflections in the cumulative conventional and reference-surface mass-balances of Wolverine and Gulkana Glaciers in Alaska and South Cascade Glacier in Washington. The cumulative mass balances are robust and have recently been corroborated by geodetic determinations of glacier volume change. Furthermore, the four-decade length of record is unique for the western hemisphere. Balance trends at South Cascade Glacier in Washington are generally in the opposite sense compared with Wolverine Glacier in Alaska; NCEP correlation of winter balance with local winter temperatures is positive at 0.59 for Wolverine and -0.64 for South Cascade Glacier. At Wolverine Glacier, the negative trend of cumulative mass balances, since measurements began in 1965, was replaced by a growth trend \\(positive mass balances\\) during the late 1970s and 1980s. The positive mass-balance trend was driven by increased precipitation during the 1976/77 to 1989 period. At Gulkana Glacier, the cumulative mass-balance trend has been negative throughout its measurement history, but with rate-change inflection points that coincide with the interdecadal climate-regime shifts in the North Pacific indices. At South Cascade Glacier, the mass-loss trend, observed since measurements began in 1953, was replaced by a positive trend between 1970 and 1976 then became strongly and continuously negative until 1997 when the rate of loss generally decreased. Since 1989, the trends of the glaciers in Alaska have also been strongly negative. These loss rates are the highest rates in the entire record. The strongly negative trends during the 1990s agree with climate studies that suggest that the period since the 1989 regime shift has been unusual. Volume response time and reference surface balance are the current suggested methods for

  5. Pleistocene climate, phylogeny, and climate envelope models: an integrative approach to better understand species' response to climate change.

    PubMed

    Lawing, A Michelle; Polly, P David

    2011-01-01

    Mean annual temperature reported by the Intergovernmental Panel on Climate Change increases at least 1.1°C to 6.4°C over the next 90 years. In context, a change in climate of 6°C is approximately the difference between the mean annual temperature of the Last Glacial Maximum (LGM) and our current warm interglacial. Species have been responding to changing climate throughout Earth's history and their previous biological responses can inform our expectations for future climate change. Here we synthesize geological evidence in the form of stable oxygen isotopes, general circulation paleoclimate models, species' evolutionary relatedness, and species' geographic distributions. We use the stable oxygen isotope record to develop a series of temporally high-resolution paleoclimate reconstructions spanning the Middle Pleistocene to Recent, which we use to map ancestral climatic envelope reconstructions for North American rattlesnakes. A simple linear interpolation between current climate and a general circulation paleoclimate model of the LGM using stable oxygen isotope ratios provides good estimates of paleoclimate at other time periods. We use geologically informed rates of change derived from these reconstructions to predict magnitudes and rates of change in species' suitable habitat over the next century. Our approach to modeling the past suitable habitat of species is general and can be adopted by others. We use multiple lines of evidence of past climate (isotopes and climate models), phylogenetic topology (to correct the models for long-term changes in the suitable habitat of a species), and the fossil record, however sparse, to cross check the models. Our models indicate the annual rate of displacement in a clade of rattlesnakes over the next century will be 2 to 3 orders of magnitude greater (430-2,420 m/yr) than it has been on average for the past 320 ky (2.3 m/yr).

  6. Pleistocene Climate, Phylogeny, and Climate Envelope Models: An Integrative Approach to Better Understand Species' Response to Climate Change

    PubMed Central

    Lawing, A. Michelle; Polly, P. David

    2011-01-01

    Mean annual temperature reported by the Intergovernmental Panel on Climate Change increases at least 1.1°C to 6.4°C over the next 90 years. In context, a change in climate of 6°C is approximately the difference between the mean annual temperature of the Last Glacial Maximum (LGM) and our current warm interglacial. Species have been responding to changing climate throughout Earth's history and their previous biological responses can inform our expectations for future climate change. Here we synthesize geological evidence in the form of stable oxygen isotopes, general circulation paleoclimate models, species' evolutionary relatedness, and species' geographic distributions. We use the stable oxygen isotope record to develop a series of temporally high-resolution paleoclimate reconstructions spanning the Middle Pleistocene to Recent, which we use to map ancestral climatic envelope reconstructions for North American rattlesnakes. A simple linear interpolation between current climate and a general circulation paleoclimate model of the LGM using stable oxygen isotope ratios provides good estimates of paleoclimate at other time periods. We use geologically informed rates of change derived from these reconstructions to predict magnitudes and rates of change in species' suitable habitat over the next century. Our approach to modeling the past suitable habitat of species is general and can be adopted by others. We use multiple lines of evidence of past climate (isotopes and climate models), phylogenetic topology (to correct the models for long-term changes in the suitable habitat of a species), and the fossil record, however sparse, to cross check the models. Our models indicate the annual rate of displacement in a clade of rattlesnakes over the next century will be 2 to 3 orders of magnitude greater (430-2,420 m/yr) than it has been on average for the past 320 ky (2.3 m/yr). PMID:22164305

  7. Climate change and farmers' mental health: risks and responses.

    PubMed

    Berry, Helen L; Hogan, Anthony; Owen, Jennifer; Rickwood, Debra; Fragar, Lyn

    2011-03-01

    Climate change is exacerbating climate variability, evident in more frequent and severe weather-related disasters, such as droughts, fires, and floods. Most of what is known about the possible effects of climate change on rural mental health relates to prolonged drought. But though drought is known to be a disproportionate and general stressor, evidence is mixed and inconclusive. Over time, like drought other weather-related disasters may erode the social and economic bases on which farming communities depend. Rural vulnerability to mental health problems is greatly increased by socioeconomic disadvantage. Related factors may compound this, such as reduced access to health services as communities decline and a "stoical" culture that inhibits help-seeking. Australia has the world's most variable climate and is a major global agricultural producer. Yet despite Australia's (and, especially, rural communities') dependence on farmers' well-being and success, there is very little-and inconclusive-quantitative evidence about farmers' mental health. The aim of this review is to consider, with a view to informing other countries, how climate change and related factors may affect farmers' mental health in Australia. That information is a prerequisite to identifying, selecting, and evaluating adaptive strategies, to lessen the risks of adverse mental health outcomes. The authors identify the need for a systematic epidemiology of the mental health of farmers facing increasing climate change- related weather adversity.

  8. Complex response of the forest nitrogen cycle to climate change.

    PubMed

    Bernal, Susana; Hedin, Lars O; Likens, Gene E; Gerber, Stefan; Buso, Don C

    2012-02-28

    Climate exerts a powerful influence on biological processes, but the effects of climate change on ecosystem nutrient flux and cycling are poorly resolved. Although rare, long-term records offer a unique opportunity to disentangle effects of climate from other anthropogenic influences. Here, we examine the longest and most complete record of watershed nutrient and climate dynamics available worldwide, which was collected at the Hubbard Brook Experimental Forest in the northeastern United States. We used empirical analyses and model calculations to distinguish between effects of climate change and past perturbations on the forest nitrogen (N) cycle. We find that climate alone cannot explain the occurrence of a dramatic >90% drop in watershed nitrate export over the past 46 y, despite longer growing seasons and higher soil temperatures. The strongest climate influence was an increase in soil temperature accompanied by a shift in paths of soil water flow within the watershed, but this effect explained, at best, only ∼40% of the nitrate decline. In contrast, at least 50-60% of the observed change in the N export could be explained by the long-lasting effect of forest cutting in the early 1900s on the N cycle of the soil and vegetation pools. Our analysis shows that historic events can obscure the influence of modern day stresses on the N cycle, even when analyses have the advantage of being informed by 0.5-century-long datasets. These findings raise fundamental questions about interpretations of long-term trends as a baseline for understanding how climate change influences complex ecosystems.

  9. Climate Change and Trophic Response of the Antarctic Bottom Fauna

    PubMed Central

    Aronson, Richard B.; Moody, Ryan M.; Ivany, Linda C.; Blake, Daniel B.; Werner, John E.; Glass, Alexander

    2009-01-01

    Background As Earth warms, temperate and subpolar marine species will increasingly shift their geographic ranges poleward. The endemic shelf fauna of Antarctica is especially vulnerable to climate-mediated biological invasions because cold temperatures currently exclude the durophagous (shell-breaking) predators that structure shallow-benthic communities elsewhere. Methodology/Principal Findings We used the Eocene fossil record from Seymour Island, Antarctic Peninsula, to project specifically how global warming will reorganize the nearshore benthos of Antarctica. A long-term cooling trend, which began with a sharp temperature drop ∼41 Ma (million years ago), eliminated durophagous predators—teleosts (modern bony fish), decapod crustaceans (crabs and lobsters) and almost all neoselachian elasmobranchs (modern sharks and rays)—from Antarctic nearshore waters after the Eocene. Even prior to those extinctions, durophagous predators became less active as coastal sea temperatures declined from 41 Ma to the end of the Eocene, ∼33.5 Ma. In response, dense populations of suspension-feeding ophiuroids and crinoids abruptly appeared. Dense aggregations of brachiopods transcended the cooling event with no apparent change in predation pressure, nor were there changes in the frequency of shell-drilling predation on venerid bivalves. Conclusions/Significance Rapid warming in the Southern Ocean is now removing the physiological barriers to shell-breaking predators, and crabs are returning to the Antarctic Peninsula. Over the coming decades to centuries, we predict a rapid reversal of the Eocene trends. Increasing predation will reduce or eliminate extant dense populations of suspension-feeding echinoderms from nearshore habitats along the Peninsula while brachiopods will continue to form large populations, and the intensity of shell-drilling predation on infaunal bivalves will not change appreciably. In time the ecological effects of global warming could spread to other

  10. Dynamic response of desert wetlands to abrupt climate change

    PubMed Central

    Springer, Kathleen B.; Manker, Craig R.; Pigati, Jeffrey S.

    2015-01-01

    Desert wetlands are keystone ecosystems in arid environments and are preserved in the geologic record as groundwater discharge (GWD) deposits. GWD deposits are inherently discontinuous and stratigraphically complex, which has limited our understanding of how desert wetlands responded to past episodes of rapid climate change. Previous studies have shown that wetlands responded to climate change on glacial to interglacial timescales, but their sensitivity to short-lived climate perturbations is largely unknown. Here, we show that GWD deposits in the Las Vegas Valley (southern Nevada, United States) provide a detailed and nearly complete record of dynamic hydrologic changes during the past 35 ka (thousands of calibrated 14C years before present), including cycles of wetland expansion and contraction that correlate tightly with climatic oscillations recorded in the Greenland ice cores. Cessation of discharge associated with rapid warming events resulted in the collapse of entire wetland systems in the Las Vegas Valley at multiple times during the late Quaternary. On average, drought-like conditions, as recorded by widespread erosion and the formation of desert soils, lasted for a few centuries. This record illustrates the vulnerability of desert wetland flora and fauna to abrupt climate change. It also shows that GWD deposits can be used to reconstruct paleohydrologic conditions at millennial to submillennial timescales and informs conservation efforts aimed at protecting these fragile ecosystems in the face of anthropogenic warming. PMID:26554007

  11. Response of salt-marsh carbon accumulation to climate change.

    PubMed

    Kirwan, Matthew L; Mudd, Simon M

    2012-09-27

    About half of annual marine carbon burial takes place in shallow water ecosystems where geomorphic and ecological stability is driven by interactions between the flow of water, vegetation growth and sediment transport. Although the sensitivity of terrestrial and deep marine carbon pools to climate change has been studied for decades, there is little understanding of how coastal carbon accumulation rates will change and potentially feed back on climate. Here we develop a numerical model of salt marsh evolution, informed by recent measurements of productivity and decomposition, and demonstrate that competition between mineral sediment deposition and organic-matter accumulation determines the net impact of climate change on carbon accumulation in intertidal wetlands. We find that the direct impact of warming on soil carbon accumulation rates is more subtle than the impact of warming-driven sea level rise, although the impact of warming increases with increasing rates of sea level rise. Our simulations suggest that the net impact of climate change will be to increase carbon burial rates in the first half of the twenty-first century, but that carbon-climate feedbacks are likely to diminish over time.

  12. Dynamic response of desert wetlands to abrupt climate change.

    PubMed

    Springer, Kathleen B; Manker, Craig R; Pigati, Jeffrey S

    2015-11-24

    Desert wetlands are keystone ecosystems in arid environments and are preserved in the geologic record as groundwater discharge (GWD) deposits. GWD deposits are inherently discontinuous and stratigraphically complex, which has limited our understanding of how desert wetlands responded to past episodes of rapid climate change. Previous studies have shown that wetlands responded to climate change on glacial to interglacial timescales, but their sensitivity to short-lived climate perturbations is largely unknown. Here, we show that GWD deposits in the Las Vegas Valley (southern Nevada, United States) provide a detailed and nearly complete record of dynamic hydrologic changes during the past 35 ka (thousands of calibrated (14)C years before present), including cycles of wetland expansion and contraction that correlate tightly with climatic oscillations recorded in the Greenland ice cores. Cessation of discharge associated with rapid warming events resulted in the collapse of entire wetland systems in the Las Vegas Valley at multiple times during the late Quaternary. On average, drought-like conditions, as recorded by widespread erosion and the formation of desert soils, lasted for a few centuries. This record illustrates the vulnerability of desert wetland flora and fauna to abrupt climate change. It also shows that GWD deposits can be used to reconstruct paleohydrologic conditions at millennial to submillennial timescales and informs conservation efforts aimed at protecting these fragile ecosystems in the face of anthropogenic warming.

  13. Dynamic response of desert wetlands to abrupt climate change

    USGS Publications Warehouse

    Springer, Kathleen; Manker, Craig; Pigati, Jeff

    2015-01-01

    Desert wetlands are keystone ecosystems in arid environments and are preserved in the geologic record as groundwater discharge (GWD) deposits. GWD deposits are inherently discontinuous and stratigraphically complex, which has limited our understanding of how desert wetlands responded to past episodes of rapid climate change. Previous studies have shown that wetlands responded to climate change on glacial to interglacial timescales, but their sensitivity to short-lived climate perturbations is largely unknown. Here, we show that GWD deposits in the Las Vegas Valley (southern Nevada, United States) provide a detailed and nearly complete record of dynamic hydrologic changes during the past 35 ka (thousands of calibrated 14C years before present), including cycles of wetland expansion and contraction that correlate tightly with climatic oscillations recorded in the Greenland ice cores. Cessation of discharge associated with rapid warming events resulted in the collapse of entire wetland systems in the Las Vegas Valley at multiple times during the late Quaternary. On average, drought-like conditions, as recorded by widespread erosion and the formation of desert soils, lasted for a few centuries. This record illustrates the vulnerability of desert wetland flora and fauna to abrupt climate change. It also shows that GWD deposits can be used to reconstruct paleohydrologic conditions at millennial to submillennial timescales and informs conservation efforts aimed at protecting these fragile ecosystems in the face of anthropogenic warming.

  14. California climate change, hydrologic response, and flood forecasting

    SciTech Connect

    Miller, Norman L.

    2003-11-11

    There is strong evidence that the lower atmosphere has been warming at an unprecedented rate during the last 50 years, and it is expected to further increase at least for the next 100 years. Warmer air mass implies a higher capacity to hold water vapor and an increased likelihood of an acceleration of the global water cycle. This acceleration is not validated and considerable new research has gone into understanding aspects of the water cycle (e.g. Miller et al. 2003). Several significant findings on the hydrologic response to climate change can be reported. It is well understood that the observed and expected warming is related to sea level rise. In a recent seminar at Lawrence Berkeley National Laboratory, James Hansen (Director of the Institute for Space Studies, National Aeronautics and Space Administration) stressed that a 1.25 Wm{sup -2} increase in radiative forcing will lead to an increase in the near surface air temperature by 1 C. This small increase in temperature from 2000 levels is enough to cause very significant impacts to coasts. Maury Roos (Chief Hydrologist, California Department of Water Resources) has shown that a 0.3 m rise in sea level shifts the San Francisco Bay 100-year storm surge flood event to a 10-year event. Related coastal protection costs for California based on sea level rise are shown. In addition to rising sea level, snowmelt-related streamflow represents a particular problem in California. Model studies have indicated that there will be approximately a 50% decrease in snow pack by 2100. This potential deficit must be fully recognized and plans need to be put in place well in advance. In addition, the warmer atmosphere can hold more water vapor and result in more intense warm winter-time precipitation events that result in flooding. During anticipated high flow, reservoirs need to release water to maintain their structural integrity. California is at risk of water shortages, floods, and related ecosystem stresses. More research

  15. A plant’s perspective of extremes: Terrestrial plant responses to changing climatic variability

    PubMed Central

    Reyer, C.; Leuzinger, S.; Rammig, A.; Wolf, A.; Bartholomeus, R. P.; Bonfante, A.; de Lorenzi, F.; Dury, M.; Gloning, P.; Abou Jaoudé, R.; Klein, T.; Kuster, T. M.; Martins, M.; Niedrist, G.; Riccardi, M.; Wohlfahrt, G.; de Angelis, P.; de Dato, G.; François, L.; Menzel, A.; Pereira, M.

    2013-01-01

    We review observational, experimental and model results on how plants respond to extreme climatic conditions induced by changing climatic variability. Distinguishing between impacts of changing mean climatic conditions and changing climatic variability on terrestrial ecosystems is generally underrated in current studies. The goals of our review are thus (1) to identify plant processes that are vulnerable to changes in the variability of climatic variables rather than to changes in their mean, and (2) to depict/evaluate available study designs to quantify responses of plants to changing climatic variability. We find that phenology is largely affected by changing mean climate but also that impacts of climatic variability are much less studied but potentially damaging. We note that plant water relations seem to be very vulnerable to extremes driven by changes in temperature and precipitation and that heatwaves and flooding have stronger impacts on physiological processes than changing mean climate. Moreover, interacting phenological and physiological processes are likely to further complicate plant responses to changing climatic variability. Phenological and physiological processes and their interactions culminate in even more sophisticated responses to changing mean climate and climatic variability at the species and community level. Generally, observational studies are well suited to study plant responses to changing mean climate, but less suitable to gain a mechanistic understanding of plant responses to climatic variability. Experiments seem best suited to simulate extreme events. In models, temporal resolution and model structure are crucial to capture plant responses to changing climatic variability. We highlight that a combination of experimental, observational and /or modeling studies have the potential to overcome important caveats of the respective individual approaches. PMID:23504722

  16. Researchers focus attention on coastal response to climate change

    NASA Astrophysics Data System (ADS)

    Anderson, John; Rodriguez, Antonio; Fletcher, Charles; Fitzgerald, Duncan

    The world's population has been steadily migrating toward coastal cities, resulting in severe stress on coastal environments. But the most severe human impact on coastal regions may lie ahead as the rate of global sea-level rise accelerates and the impacts of global warming on coastal climates and oceanographic dynamics increase [Varekamp and Thomas, 1998; Hinrichsen, 1999; Goodwin et al., 2000]. Little is currently being done to forecast the impact of global climate change on coasts during the next century and beyond. Indeed, there are still many politicians, and even some scientists, who doubt that global change is a real threat to society.

  17. The insect response to climate change: Perspectives from the Quaternary record

    SciTech Connect

    Ashworth, A.C.; Schwert, D.P. . Quaternary Entomology Lab.)

    1993-03-01

    Data based on museum collections of insects are generally inadequate to answer questions related to the response of insects to recent and potential changes in climate. The most important source of information for this purpose is the late Quaternary fossil record. Abundant, well-preserved, [sup 14]C-dated assemblages of insect fossils provide information with which to answer the following questions: (1) will climate change result in speciation--all evidence suggests that species are constant through the climate changes of the late Quaternary, future climate change would not be expected to result in accelerated rates of speciation; (2) will climate change result in extinction--few species became extinct as a result of the large-scale changes in climate and physical environment during the quaternary, although large-scale extirpation might occur, future climate change would not be expected to result in widespread extinction of species; (3) will climate change result in changes in geographic distribution--species survived late Quaternary climatic change through the ability of individuals to disperse into suitable habitats. The result was large changes in geographic distribution of species, as exemplified by the succession of faunal changes that occurred in response to the climatic changes of the late Wisconsinan in the midcontinent, future climate change would be expected to result in significant range changes of species.

  18. Climate change compromises the immune response of maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize is by quantity the most important C4 cereal crop in the US; however, future climate changes are expected to increase maize susceptibility to mycotoxigenic fungal pathogens and reduce productivity. While rising atmospheric [CO2] is a driving force behind the warmer temperatures and drought, whi...

  19. The History of Germany's Response to Climate Change.

    ERIC Educational Resources Information Center

    Cavender, Jeannine; Jager, Jill

    1993-01-01

    Traces the history of the German climate change debate in the last 50 years and discusses the forces and events that shaped it. Examines the way in which scientists, the government, industry, nongovernmental organizations, and the media entered into and influenced the debate. (54 references) (MDH)

  20. Soil management challenges in response to climatic change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture has tremendous potential to help solve global food, feed, fiber, and bioenergy challenges and respond to changing climatic conditions provided we do not compromise our soil, water and air resources. This presentation will examine soil management, defined by the Soil Science Society of Am...

  1. Psychological responses to the proximity of climate change

    NASA Astrophysics Data System (ADS)

    Brügger, Adrian; Dessai, Suraje; Devine-Wright, Patrick; Morton, Thomas A.; Pidgeon, Nicholas F.

    2015-12-01

    A frequent suggestion to increase individuals' willingness to take action on climate change and to support relevant policies is to highlight its proximal consequences, that is, those that are close in space and time. But previous studies that have tested this proximizing approach have not revealed the expected positive effects on individual action and support for addressing climate change. We present three lines of psychological reasoning that provide compelling arguments as to why highlighting proximal impacts of climate change might not be as effective a way to increase individual mitigation and adaptation efforts as is often assumed. Our contextualization of the proximizing approach within established psychological research suggests that, depending on the particular theoretical perspective one takes on this issue, and on specific individual characteristics suggested by these perspectives, proximizing can bring about the intended positive effects, can have no (visible) effect or can even backfire. Thus, the effects of proximizing are much more complex than is commonly assumed. Revealing this complexity contributes to a refined theoretical understanding of the role that psychological distance plays in the context of climate change and opens up further avenues for future research and for interventions.

  2. Hydrologic response of Pacific Northwest river to climate change

    NASA Astrophysics Data System (ADS)

    Su, F.; Cuo, L.; Wu, H.; Mantua, N.; Lettenmaier, D. P.

    2009-12-01

    The climate of the Pacific Northwest (PNW - which we define as the Columbia River basin and watersheds draining to the Oregon and Washington coasts) is expected to warm by approximately 0.3°C per decade in the next 100 years based on the IPCC the Fourth Assessment Report (AR4) results. PNW hydrology is particularly sensitive to a warming climate because of the dominant role of snowmelt in seasonal streamflow. Timing shifts in seasonality of flows, peak discharge, and base flows will impact water resource management, regional electrical energy production, and freshwater ecosystems. In this work we update previous studies of implications of climate change on PNW hydrology using a macroscale hydrology model driven by simulations of temperature and precipitation downscaled from runs of 20 General Circulation Models (GCMs) under two emissions scenarios (lower B1 and mid-high A1B) in the 21st century. The hydrology model is implemented at 1/16th degree spatial resolution over the entire PNW. A (statistical) bias-correction and spatial disaggregation downscaling approach is used for translating the transient monthly climate model output into continuous daily forcings for the hydrologic analysis. We evaluate projected changes in snow water equivalent, seasonal streamflow, and frequency of peak low flows over a set of case study watersheds in the region. We also compare these hydrologic projections with previous analysis based on delta downscaling method over the PNW. This research is part of a project investigating climate change impacts on the future of wild Pacific salmon, and is a pilot effort to investigate the hydrologic sensitivity of salmon bearing watersheds around the entire North Pacific Rim.

  3. Plasticity and genetic adaptation mediate amphibian and reptile responses to climate change.

    PubMed

    Urban, Mark C; Richardson, Jonathan L; Freidenfelds, Nicole A

    2014-01-01

    Phenotypic plasticity and genetic adaptation are predicted to mitigate some of the negative biotic consequences of climate change. Here, we evaluate evidence for plastic and evolutionary responses to climate variation in amphibians and reptiles via a literature review and meta-analysis. We included studies that either document phenotypic changes through time or space. Plasticity had a clear and ubiquitous role in promoting phenotypic changes in response to climate variation. For adaptive evolution, we found no direct evidence for evolution of amphibians or reptiles in response to climate change over time. However, we found many studies that documented adaptive responses to climate along spatial gradients. Plasticity provided a mixture of adaptive and maladaptive responses to climate change, highlighting that plasticity frequently, but not always, could ameliorate climate change. Based on our review, we advocate for more experiments that survey genetic changes through time in response to climate change. Overall, plastic and genetic variation in amphibians and reptiles could buffer some of the formidable threats from climate change, but large uncertainties remain owing to limited data.

  4. Plasticity and genetic adaptation mediate amphibian and reptile responses to climate change

    PubMed Central

    Urban, Mark C; Richardson, Jonathan L; Freidenfelds, Nicole A

    2014-01-01

    Phenotypic plasticity and genetic adaptation are predicted to mitigate some of the negative biotic consequences of climate change. Here, we evaluate evidence for plastic and evolutionary responses to climate variation in amphibians and reptiles via a literature review and meta-analysis. We included studies that either document phenotypic changes through time or space. Plasticity had a clear and ubiquitous role in promoting phenotypic changes in response to climate variation. For adaptive evolution, we found no direct evidence for evolution of amphibians or reptiles in response to climate change over time. However, we found many studies that documented adaptive responses to climate along spatial gradients. Plasticity provided a mixture of adaptive and maladaptive responses to climate change, highlighting that plasticity frequently, but not always, could ameliorate climate change. Based on our review, we advocate for more experiments that survey genetic changes through time in response to climate change. Overall, plastic and genetic variation in amphibians and reptiles could buffer some of the formidable threats from climate change, but large uncertainties remain owing to limited data. PMID:24454550

  5. Integrating human responses to climate change into conservation vulnerability assessments and adaptation planning.

    PubMed

    Maxwell, Sean L; Venter, Oscar; Jones, Kendall R; Watson, James E M

    2015-10-01

    The impact of climate change on biodiversity is now evident, with the direct impacts of changing temperature and rainfall patterns and increases in the magnitude and frequency of extreme events on species distribution, populations, and overall ecosystem function being increasingly publicized. Changes in the climate system are also affecting human communities, and a range of human responses across terrestrial and marine realms have been witnessed, including altered agricultural activities, shifting fishing efforts, and human migration. Failing to account for the human responses to climate change is likely to compromise climate-smart conservation efforts. Here, we use a well-established conservation planning framework to show how integrating human responses to climate change into both species- and site-based vulnerability assessments and adaptation plans is possible. By explicitly taking into account human responses, conservation practitioners will improve their evaluation of species and ecosystem vulnerability, and will be better able to deliver win-wins for human- and biodiversity-focused climate adaptation.

  6. Business Responses to Climate Change. Identifying Emergent Strategies

    SciTech Connect

    Kolk, A.; Pinkse, J.

    2005-07-01

    Companies face much uncertainty about the competitive effects of the recently adopted Kyoto Protocol on global climate change and the current and future regulations that may emerge from it. Companies have considerable discretion to explore different market strategies to address global warming and reduce greenhouse gas emissions. This article examines these strategic options by reviewing the market-oriented actions that are currently being taken by 136 large companies that are part of the Global 500. There are six different market strategies that companies use to address climate change and that consist of different combinations of the market components available to managers. Managers can choose between more emphasis on improvements in their business activities through innovation or employ compensatory approaches such as emissions trading. They can either act by themselves or work with other companies, NGOs, or (local) governments.

  7. 77 FR 76034 - National Water Program 2012 Strategy: Response to Climate Change

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ... AGENCY National Water Program 2012 Strategy: Response to Climate Change AGENCY: Environmental Protection... publishing the final ``National Water Program 2012 Strategy: Response to Climate Change'' (2012 Strategy). The Strategy describes a set of long-term visions and goals for the management of water resources...

  8. [Research advances in vulnerability assessment of natural ecosystem response to climate change].

    PubMed

    Zhao, Hui-xia; Wu, Shao-hong; Jiang, Lu-guang

    2007-02-01

    Climate change with global warming as the sign has been caught great attention by the governments, international organizations, and scientists in the world. Human society and natural ecosystem are both exposed to climate change, and more and more people are waked up by its increasing harm. Vulnerability analysis and assessment are the key and basis for adapting and mitigating climate change, being the highlight in the research fields of climate change and ecology in recent years. The vulnerability assessment of climate change is being carried out in various research fields and on different scales, and much progress has been made. This paper introduced the concept of vulnerability, and summarized the research progress in vulnerability assessment of climate change, with the focus on the frame and methodology of vulnerability assessment of natural ecosystem response to climate change. The existed problems and future prospects in this research area were also discussed.

  9. Coral Reef Habitat Response to Climate Change Scenarios

    PubMed Central

    Freeman, Lauren A.; Kleypas, Joan A.; Miller, Arthur J.

    2013-01-01

    Coral reef ecosystems are threatened by both climate change and direct anthropogenic stress. Climate change will alter the physico-chemical environment that reefs currently occupy, leaving only limited regions that are conducive to reef habitation. Identifying these regions early may aid conservation efforts and inform decisions to transplant particular coral species or groups. Here a species distribution model (Maxent) is used to describe habitat suitable for coral reef growth. Two climate change scenarios (RCP4.5, RCP8.5) from the National Center for Atmospheric Research’s Community Earth System Model were used with Maxent to determine environmental suitability for corals (order Scleractinia). Environmental input variables best at representing the limits of suitable reef growth regions were isolated using a principal component analysis. Climate-driven changes in suitable habitat depend strongly on the unique region of reefs used to train Maxent. Increased global habitat loss was predicted in both climate projections through the 21st century. A maximum habitat loss of 43% by 2100 was predicted in RCP4.5 and 82% in RCP8.5. When the model is trained solely with environmental data from the Caribbean/Atlantic, 83% of global habitat was lost by 2100 for RCP4.5 and 88% was lost for RCP8.5. Similarly, global runs trained only with Pacific Ocean reefs estimated that 60% of suitable habitat would be lost by 2100 in RCP4.5 and 90% in RCP8.5. When Maxent was trained solely with Indian Ocean reefs, suitable habitat worldwide increased by 38% in RCP4.5 by 2100 and 28% in RCP8.5 by 2050. Global habitat loss by 2100 was just 10% for RCP8.5. This projection suggests that shallow tropical sites in the Indian Ocean basin experience conditions today that are most similar to future projections of worldwide conditions. Indian Ocean reefs may thus be ideal candidate regions from which to select the best strands of coral for potential re-seeding efforts. PMID:24340025

  10. Coral reef habitat response to climate change scenarios.

    PubMed

    Freeman, Lauren A; Kleypas, Joan A; Miller, Arthur J

    2013-01-01

    Coral reef ecosystems are threatened by both climate change and direct anthropogenic stress. Climate change will alter the physico-chemical environment that reefs currently occupy, leaving only limited regions that are conducive to reef habitation. Identifying these regions early may aid conservation efforts and inform decisions to transplant particular coral species or groups. Here a species distribution model (Maxent) is used to describe habitat suitable for coral reef growth. Two climate change scenarios (RCP4.5, RCP8.5) from the National Center for Atmospheric Research's Community Earth System Model were used with Maxent to determine environmental suitability for corals (order Scleractinia). Environmental input variables best at representing the limits of suitable reef growth regions were isolated using a principal component analysis. Climate-driven changes in suitable habitat depend strongly on the unique region of reefs used to train Maxent. Increased global habitat loss was predicted in both climate projections through the 21(st) century. A maximum habitat loss of 43% by 2100 was predicted in RCP4.5 and 82% in RCP8.5. When the model is trained solely with environmental data from the Caribbean/Atlantic, 83% of global habitat was lost by 2100 for RCP4.5 and 88% was lost for RCP8.5. Similarly, global runs trained only with Pacific Ocean reefs estimated that 60% of suitable habitat would be lost by 2100 in RCP4.5 and 90% in RCP8.5. When Maxent was trained solely with Indian Ocean reefs, suitable habitat worldwide increased by 38% in RCP4.5 by 2100 and 28% in RCP8.5 by 2050. Global habitat loss by 2100 was just 10% for RCP8.5. This projection suggests that shallow tropical sites in the Indian Ocean basin experience conditions today that are most similar to future projections of worldwide conditions. Indian Ocean reefs may thus be ideal candidate regions from which to select the best strands of coral for potential re-seeding efforts.

  11. Antarctic birds breed later in response to climate change.

    PubMed

    Barbraud, Christophe; Weimerskirch, Henri

    2006-04-18

    In the northern hemisphere, there is compelling evidence for climate-related advances of spring events, but no such long-term biological time series exist for the southern hemisphere. We have studied a unique data set of dates of first arrival and laying of first eggs over a 55-year period for the entire community of Antarctic seabirds in East Antarctica. The records over this long period show a general unexpected tendency toward later arrival and laying, an inverse trend to those observed in the northern hemisphere. Overall, species now arrive at their colonies 9.1 days later, on average, and lay eggs an average of 2.1 days later than in the early 1950s. Furthermore, these delays are linked to a decrease in sea ice extent that has occurred in eastern Antarctica, which underlies the contrasted effects of global climate change on species in Antarctica.

  12. Climatic responses to tropical sea surface temperature changes on a ``greenhouse'' Earth

    NASA Astrophysics Data System (ADS)

    Huber, Matthew; Sloan, L. Cirbus

    2000-08-01

    The uncertainty associated with tropical sea surface temperatures (SSTs) during past "greenhouse" climates may have important and unaccounted for effects. We explore early Paleogene climatic sensitivity to changes in tropical-subtropical SSTs with a general circulation model. We demonstrate that tropical SST changes have local and far-field climatic effects, underscoring their importance in understanding greenhouse climates. The responses of winds, upwelling, and surface water balance to tropical SST changes are substantial. Our results indicate that current tropical SST reconstructions may have a significant cool bias despite corrections and that the existence of hot (>30°C) tropical SSTs may be realistic for greenhouse climate intervals, including the Eocene.

  13. Evolutionary and plastic responses to climate change in terrestrial plant populations.

    PubMed

    Franks, Steven J; Weber, Jennifer J; Aitken, Sally N

    2014-01-01

    As climate change progresses, we are observing widespread changes in phenotypes in many plant populations. Whether these phenotypic changes are directly caused by climate change, and whether they result from phenotypic plasticity or evolution, are active areas of investigation. Here, we review terrestrial plant studies addressing these questions. Plastic and evolutionary responses to climate change are clearly occurring. Of the 38 studies that met our criteria for inclusion, all found plastic or evolutionary responses, with 26 studies showing both. These responses, however, may be insufficient to keep pace with climate change, as indicated by eight of 12 studies that examined this directly. There is also mixed evidence for whether evolutionary responses are adaptive, and whether they are directly caused by contemporary climatic changes. We discuss factors that will likely influence the extent of plastic and evolutionary responses, including patterns of environmental changes, species' life history characteristics including generation time and breeding system, and degree and direction of gene flow. Future studies with standardized methodologies, especially those that use direct approaches assessing responses to climate change over time, and sharing of data through public databases, will facilitate better predictions of the capacity for plant populations to respond to rapid climate change.

  14. Evolutionary and plastic responses to climate change in terrestrial plant populations

    PubMed Central

    Franks, Steven J; Weber, Jennifer J; Aitken, Sally N

    2014-01-01

    As climate change progresses, we are observing widespread changes in phenotypes in many plant populations. Whether these phenotypic changes are directly caused by climate change, and whether they result from phenotypic plasticity or evolution, are active areas of investigation. Here, we review terrestrial plant studies addressing these questions. Plastic and evolutionary responses to climate change are clearly occurring. Of the 38 studies that met our criteria for inclusion, all found plastic or evolutionary responses, with 26 studies showing both. These responses, however, may be insufficient to keep pace with climate change, as indicated by eight of 12 studies that examined this directly. There is also mixed evidence for whether evolutionary responses are adaptive, and whether they are directly caused by contemporary climatic changes. We discuss factors that will likely influence the extent of plastic and evolutionary responses, including patterns of environmental changes, species’ life history characteristics including generation time and breeding system, and degree and direction of gene flow. Future studies with standardized methodologies, especially those that use direct approaches assessing responses to climate change over time, and sharing of data through public databases, will facilitate better predictions of the capacity for plant populations to respond to rapid climate change. PMID:24454552

  15. Climate Change

    NASA Astrophysics Data System (ADS)

    Cowie, Jonathan

    2001-05-01

    In recent years climate change has become recognised as the foremost environmental problem of the twenty-first century. Not only will climate change potentially affect the multibillion dollar energy strategies of countries worldwide, but it also could seriously affect many species, including our own. A fascinating introduction to the subject, this textbook provides a broad review of past, present and likely future climate change from the viewpoints of biology, ecology and human ecology. It will be of interest to a wide range of people, from students in the life sciences who need a brief overview of the basics of climate science, to atmospheric science, geography, and environmental science students who need to understand the biological and human ecological implications of climate change. It will also be a valuable reference for those involved in environmental monitoring, conservation, policy-making and policy lobbying. The first book to cover not only the human impacts on climate, but how climate change will affect humans and the species that we rely on Written in an accessible style, with specialist terms used only when necessary and thoroughly explained The author has years of experience conveying the views of biological science learned societies to policy-makers

  16. The Water Volume Changes of Lake Manas and Its Response to Climate Change and Human Activities

    NASA Astrophysics Data System (ADS)

    Xu, Suning; Yang, Jingchun; Li, Youli

    2014-05-01

    The water volume changes of the lake basin in China's arid northwest region can sensitively reflect the impact of climate change and human activities in upper stream area. Lake Manas is a terminal lake of Manas Valley, a typical Valley in Northern Xinjiang. Just like other lakes, tectonic activities, such as water conservancy projects and agriculture irrigation projects, have great impacts on its evolution and change. We have a research on the response to climate change and human activities since 1950s, taking the Lake Manas for example. Collect aerial photographs and satellite imagery in year of 1958,1964,1979,1989,1999,2001,2003, with 1:50,000 topographic maps, 1:10000 DEM and other types of Figure and data of Lake Manas, we calculate the changes of the water volume of the Lake in 7different time period. According to the analysis of weather and hydrology records in the past 50 years, this author construct the correlation curves among the flow rate of Manas River, the temperature and precipitation in its upper steam area. This study shows that the development of contemporary Lake Manas could be divided to three stages: high-water period (in late the 1950s), extinct period (between 1970s and 1990s), and recovering season (in the early 21st century). The high-water period in late 1950s and the recovering season in early 21st century are mostly the results of excessive wet climate in the drainage basin, while the extinct period between the 1970s and the 1990s is mostly the result of man-made water projects in its upper stream area.The impact of climate change mainly in: the impact of climate change on runoff upstream determine the inflows of Lake Manas; the impact of downstream climate on the combination of water and heat determine the evaporation. The impact of human activities mainly in: the water conservancy projects upstream and agriculture irrigation projects since 1954 result in the extinct period between 1970s and 1990s in Lake Manas. Key Words: Lake Manas

  17. Beyond a warming fingerprint: individualistic biogeographic responses to heterogeneous climate change in California.

    PubMed

    Rapacciuolo, Giovanni; Maher, Sean P; Schneider, Adam C; Hammond, Talisin T; Jabis, Meredith D; Walsh, Rachel E; Iknayan, Kelly J; Walden, Genevieve K; Oldfather, Meagan F; Ackerly, David D; Beissinger, Steven R

    2014-09-01

    Understanding recent biogeographic responses to climate change is fundamental for improving our predictions of likely future responses and guiding conservation planning at both local and global scales. Studies of observed biogeographic responses to 20th century climate change have principally examined effects related to ubiquitous increases in temperature - collectively termed a warming fingerprint. Although the importance of changes in other aspects of climate - particularly precipitation and water availability - is widely acknowledged from a theoretical standpoint and supported by paleontological evidence, we lack a practical understanding of how these changes interact with temperature to drive biogeographic responses. Further complicating matters, differences in life history and ecological attributes may lead species to respond differently to the same changes in climate. Here, we examine whether recent biogeographic patterns across California are consistent with a warming fingerprint. We describe how various components of climate have changed regionally in California during the 20th century and review empirical evidence of biogeographic responses to these changes, particularly elevational range shifts. Many responses to climate change do not appear to be consistent with a warming fingerprint, with downslope shifts in elevation being as common as upslope shifts across a number of taxa and many demographic and community responses being inconsistent with upslope shifts. We identify a number of potential direct and indirect mechanisms for these responses, including the influence of aspects of climate change other than temperature (e.g., the shifting seasonal balance of energy and water availability), differences in each taxon's sensitivity to climate change, trophic interactions, and land-use change. Finally, we highlight the need to move beyond a warming fingerprint in studies of biogeographic responses by considering a more multifaceted view of climate

  18. Beyond a warming fingerprint: individualistic biogeographic responses to heterogeneous climate change in California

    PubMed Central

    Rapacciuolo, Giovanni; Maher, Sean P; Schneider, Adam C; Hammond, Talisin T; Jabis, Meredith D; Walsh, Rachel E; Iknayan, Kelly J; Walden, Genevieve K; Oldfather, Meagan F; Ackerly, David D; Beissinger, Steven R

    2014-01-01

    Understanding recent biogeographic responses to climate change is fundamental for improving our predictions of likely future responses and guiding conservation planning at both local and global scales. Studies of observed biogeographic responses to 20th century climate change have principally examined effects related to ubiquitous increases in temperature – collectively termed a warming fingerprint. Although the importance of changes in other aspects of climate – particularly precipitation and water availability – is widely acknowledged from a theoretical standpoint and supported by paleontological evidence, we lack a practical understanding of how these changes interact with temperature to drive biogeographic responses. Further complicating matters, differences in life history and ecological attributes may lead species to respond differently to the same changes in climate. Here, we examine whether recent biogeographic patterns across California are consistent with a warming fingerprint. We describe how various components of climate have changed regionally in California during the 20th century and review empirical evidence of biogeographic responses to these changes, particularly elevational range shifts. Many responses to climate change do not appear to be consistent with a warming fingerprint, with downslope shifts in elevation being as common as upslope shifts across a number of taxa and many demographic and community responses being inconsistent with upslope shifts. We identify a number of potential direct and indirect mechanisms for these responses, including the influence of aspects of climate change other than temperature (e.g., the shifting seasonal balance of energy and water availability), differences in each taxon's sensitivity to climate change, trophic interactions, and land-use change. Finally, we highlight the need to move beyond a warming fingerprint in studies of biogeographic responses by considering a more multifaceted view of climate

  19. The Changing Climate.

    ERIC Educational Resources Information Center

    Schneider, Stephen H.

    1989-01-01

    Discusses the global change of climate. Presents the trend of climate change with graphs. Describes mathematical climate models including expressions for the interacting components of the ocean-atmosphere system and equations representing the basic physical laws governing their behavior. Provides three possible responses on the change. (YP)

  20. The response of Lake Tahoe to climate change

    USGS Publications Warehouse

    Sahoo, G.B.; Schladow, S.G.; Reuter, J.E.; Coats, R.; Dettinger, M.; Riverson, J.; Wolfe, B.; Costa-Cabral, M.

    2013-01-01

    Meteorology is the driving force for lake internal heating, cooling, mixing, and circulation. Thus continued global warming will affect the lake thermal properties, water level, internal nutrient loading, nutrient cycling, food-web characteristics, fish-habitat, aquatic ecosystem, and other important features of lake limnology. Using a 1-D numerical model - the Lake Clarity Model (LCM) - together with the down-scaled climatic data of the two emissions scenarios (B1 and A2) of the Geophysical Fluid Dynamics Laboratory (GFDL) Global Circulation Model, we found that Lake Tahoe will likely cease to mix to the bottom after about 2060 for A2 scenario, with an annual mixing depth of less than 200 m as the most common value. Deep mixing, which currently occurs on average every 3-4 years, will (under the GFDL B1 scenario) occur only four times during 2061 to 2098. When the lake fails to completely mix, the bottom waters are not replenished with dissolved oxygen and eventually dissolved oxygen at these depths will be depleted to zero. When this occurs, soluble reactive phosphorus (SRP) and ammonium-nitrogen (both biostimulatory) are released from the deep sediments and contribute approximately 51 % and 14 % of the total SRP and dissolved inorganic nitrogen load, respectively. The lake model suggests that climate change will drive the lake surface level down below the natural rim after 2085 for the GFDL A2 but not the GFDL B1 scenario. The results indicate that continued climate changes could pose serious threats to the characteristics of the Lake that are most highly valued. Future water quality planning must take these results into account.

  1. Sustainable occupational responses to climate change through lifestyle choices.

    PubMed

    Hocking, Clare; Kroksmark, Ulla

    2013-03-01

    Abstract Occupational therapists and occupational scientists are increasingly aware of the relationship between occupation and global climate change, with some working to raise awareness of the issues and others proposing that an occupational perspective can make a valuable contribution to understanding and addressing the issues. In this discussion paper the United Nations Global Survey on Sustainable Lifestyles ( 1 ), which reports young adults' beliefs about everyday occupations that have a substantial impact on the environment (food, housekeeping, and transportation) is introduced. The authors argue that the survey findings are a valuable resource for occupational therapists who are concerned about global climate change and work with young adults (age 18-35), providing valuable insights into their concerns and preferences in relation to sustainability. To illustrate the insights contained in the reports, findings from four countries are presented: New Zealand and Sweden, the authors' countries of origin, and the Philippines and Lebanon which have people living in New Zealand and Sweden. Application to individual and community-based interventions to promote more sustainable lifestyles is suggested, along with studies to examine the perspectives of young adults with a disability, as their concerns and sustainability preferences might differ due to the barriers that limit their participation in educational and vocational occupations.

  2. Idiosyncratic responses of grizzly bear habitat to climate change based on projected food resource changes.

    PubMed

    Roberts, David R; Nielsen, Scott E; Stenhouse, Gordon B

    2014-07-01

    Climate change vulnerability assessments for species of conservation concern often use species distribution and ecological niche modeling to project changes in habitat. One of many assumptions of these approaches is that food web dependencies are consistent in time and environmental space. Species at higher trophic levels that rely on the availability of species at lower trophic levels as food may be sensitive to extinction cascades initiated by changes in the habitat of key food resources. Here we assess climate change vulnerability for Ursus arctos (grizzly bears) in the southern Canadian Rocky Mountains using projected changes to 17 of the most commonly consumed plant food items. We used presence-absence information from 7088 field plots to estimate ecological niches and to project changes in future distributions of each species. Model projections indicated idiosyncratic responses among food items. Many food items persisted or even increased, although several species were found to be vulnerable based on declines or geographic shifts in suitable habitat. These included Hedysarum alpinum (alpine sweet vetch), a critical spring and autumn root-digging resource when little else is available. Potential habitat loss was also identified for three fruiting species of lower importance to bears: Empetrum nigrum (crowberry), Vaccinium scoparium (grouseberry), and Fragaria virginiana (strawberry). A general trend towards uphill migration of bear foods may result in higher vulnerability to bear populations at low elevations, which are also those that are most likely to have human-bear conflict problems. Regardless, a wide diet breadth of grizzly bears, as well as wide environmental niches of most food items, make climate change a much lower threat to grizzly bears than other bear species such as polar bears and panda bears. We cannot exclude, however, future alterations in human behavior and land use resulting from climate change that may reduce survival rates.

  3. Global climate change and planktic foraminiferal response in the Maastrichtian

    NASA Astrophysics Data System (ADS)

    Abramovich, Sigal; Yovel-Corem, Shlomit; Almogi-Labin, Ahuva; Benjamini, Chaim

    2010-04-01

    The lengthy warm, stable climate of the Cretaceous terminated in the Campanian with a cooling trend, interrupted in the early and latest Maastrichtian by two events of global warming, at ˜70-68 Ma and at 65.78-65.57 Ma. These climatic oscillations had a profound effect on pelagic ecosystems, especially on planktic foraminiferal populations. Here we compare biotic responses in the tropical-subtropical (Tethyan) open ocean and mesotrophic (Zin Valley, Israel) and oligotrophic (Tunisia) slopes, which correlate directly with global warming and cooling. The two warming events coincide with blooms of Guembelitria, an extreme opportunist genus best known as the main survivor of the Cretaceous-Paleogene (K-Pg) catastrophe. In the Maastrichtian, Guembelitria bloomed in the uppermost surface water above shelf and slope environments but failed to reach the open ocean as it did at K-Pg. The coldest interval of the late Maastrichtian (˜68-65.78 Ma) is marked by an acme of the otherwise rare species Gansserina gansseri, a deep-dwelling keeled globotruncanid. The G. gansseri acme event can be traced from the deep ocean even onto the Tethyan slope, marking copious production and circulation of cold intermediate water. This acme is abruptly terminated by extinction of the species, a dramatic reversal attributed to a short-term global warming episode. This extinction corresponds precisely with the second bloom of Guembelitria that began ˜300 kyr prior to the K-Pg event. The antithetical relationship between blooming of Guembelitria and the G. gansseri acme reflects planktic foraminiferal sensitivity to warm-cool-warm-cool climatic oscillations marking the end of the Cretaceous.

  4. How does complex terrain influence responses of carbon and water cycle processes to climate variability and climate change?

    EPA Science Inventory

    We are pursuing the ambitious goal of understanding how complex terrain influences the responses of carbon and water cycle processes to climate variability and climate change. Our studies take place in H.J. Andrews Experimental Forest, an LTER (Long Term Ecological Research) site...

  5. How do various maize crop models vary in their responses to climate change factors?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potential consequences of climate change on crop production can be studied using mechanistic crop simulation models. While a broad variety of maize simulation models exist, it is not known whether different models give similar grain yield responses to changes in climatic factors, or whether they agr...

  6. Effective and responsible teaching of climate change in Earth Science-related disciplines

    NASA Astrophysics Data System (ADS)

    Robinson, Z. P.; Greenhough, B. J.

    2009-04-01

    Climate change is a core topic within Earth Science-related courses. This vast topic covers a wide array of different aspects that could be covered, from past climatic change across a vast range of scales to environmental (and social and economic) impacts of future climatic change and strategies for reducing anthropogenic climate change. The Earth Science disciplines play a crucial role in our understanding of past, present and future climate change and the Earth system in addition to understanding leading to development of strategies and technological solutions to achieve sustainability. However, an increased knowledge of the occurrence and causes of past (natural) climate changes can lead to a lessened concern and sense of urgency and responsibility amongst students in relation to anthropogenic causes of climatic change. Two concepts integral to the teaching of climate change are those of scientific uncertainty and complexity, yet an emphasis on these concepts can lead to scepticism about future predictions and a further loss of sense of urgency. The requirement to understand the nature of scientific uncertainty and think and move between different scales in particular relating an increased knowledge of longer timescale climatic change to recent (industrialised) climate change, are clearly areas of troublesome knowledge that affect students' sense of responsibility towards their role in achieving a sustainable society. Study of the attitudes of university students in a UK HE institution on a range of Earth Science-related programmes highlights a range of different attitudes in the student body towards the subject of climate change. Students express varied amounts of ‘climate change saturation' resulting from both media and curriculum coverage, a range of views relating to the significance of humans to the global climate and a range of opinions about the relevance of environmental citizenship to their degree programme. Climate change is therefore a challenging

  7. Biological response to climate change on a tropical mountain

    NASA Astrophysics Data System (ADS)

    Pounds, J. Alan; Fogden, Michael P. L.; Campbell, John H.

    1999-04-01

    Recent warming has caused changes in species distribution and abundance, but the extent of the effects is unclear. Here we investigate whether such changes in highland forests at Monteverde, Costa Rica, are related to the increase in air temperatures that followed a step-like warming of tropical oceans in 1976 (refs4, 5). Twenty of 50 species of anurans (frogs and toads) in a 30-km2 study area, including the locally endemic golden toad (Bufo periglenes), disappeared following synchronous population crashes in 1987 (refs 6-8). Our results indicate that these crashes probably belong to a constellation of demographic changes that have altered communities of birds, reptiles and amphibians in the area and are linked to recent warming. The changes are all associated with patterns of dry-season mist frequency, which is negatively correlated with sea surface temperatures in the equatorial Pacific and has declined dramatically since the mid-1970s. The biological and climatic patterns suggest that atmospheric warming has raised the average altitude at the base of the orographic cloud bank, as predicted by the lifting-cloud-base hypothesis,.

  8. Rapid genetic divergence in response to 15 years of simulated climate change.

    PubMed

    Ravenscroft, Catherine H; Whitlock, Raj; Fridley, Jason D

    2015-11-01

    Genetic diversity may play an important role in allowing individual species to resist climate change, by permitting evolutionary responses. Our understanding of the potential for such responses to climate change remains limited, and very few experimental tests have been carried out within intact ecosystems. Here, we use amplified fragment length polymorphism (AFLP) data to assess genetic divergence and test for signatures of evolutionary change driven by long-term simulated climate change applied to natural grassland at Buxton Climate Change Impacts Laboratory (BCCIL). Experimental climate treatments were applied to grassland plots for 15 years using a replicated and spatially blocked design and included warming, drought and precipitation treatments. We detected significant genetic differentiation between climate change treatments and control plots in two coexisting perennial plant study species (Festuca ovina and Plantago lanceolata). Outlier analyses revealed a consistent signature of selection associated with experimental climate treatments at individual AFLP loci in P. lanceolata, but not in F. ovina. Average background differentiation at putatively neutral AFLP loci was close to zero, and genomewide genetic structure was associated neither with species abundance changes (demography) nor with plant community-level responses to long-term climate treatments. Our results demonstrate genetic divergence in response to a suite of climatic environments in reproductively mature populations of two perennial plant species and are consistent with an evolutionary response to climatic selection in P. lanceolata. These genetic changes have occurred in parallel with impacts on plant community structure and may have contributed to the persistence of individual species through 15 years of simulated climate change at BCCIL.

  9. Non-linearity dynamics in ecosystem response to climate change: Case studies and policy implications

    USGS Publications Warehouse

    Burkett, V.R.; Wilcox, D.A.; Stottlemyer, R.; Barrow, W.; Fagre, D.; Baron, J.; Nielsen, J.L.; Allen, C.D.; Peterson, D.L.; Ruggerone, G.; Doyle, T.

    2005-01-01

    Many biological, hydrological, and geological processes are interactively linked in ecosystems. These ecological phenomena normally vary within bounded ranges, but rapid, nonlinear changes to markedly different conditions can be triggered by even small differences if threshold values are exceeded. Intrinsic and extrinsic ecological thresholds can lead to effects that cascade among systems, precluding accurate modeling and prediction of system response to climate change. Ten case studies from North America illustrate how changes in climate cna lead to rapid, threshold-type responses within ecological communities; the case studies also highlight the role of human activities that alter the rate or direction of system response to climate change. Understanding and anticipating nonlinear dynamics are important aspects of adaptation planning since responses of biological resources to changes in the physical climate system are not necessarily proportional and sometimes, as in the case of complex ecological systems, inherently nonlinear.

  10. Nonlinear dynamics in ecosystem response to climatic change: Case studies and policy implications

    USGS Publications Warehouse

    Burkett, Virginia R.; Wilcox, Douglas A.; Stottlemyer, Robert; Barrow, Wylie; Fagre, Dan; Baron, Jill; Price, Jeff; Nielsen, Jennifer L.; Allen, Craig D.; Peterson, David L.; Ruggerone, Greg; Doyle, Thomas

    2005-01-01

    Many biological, hydrological, and geological processes are interactively linked in ecosystems. These ecological phenomena normally vary within bounded ranges, but rapid, nonlinear changes to markedly different conditions can be triggered by even small differences if threshold values are exceeded. Intrinsic and extrinsic ecological thresholds can lead to effects that cascade among systems, precluding accurate modeling and prediction of system response to climate change. Ten case studies from North America illustrate how changes in climate can lead to rapid, threshold-type responses within ecological communities; the case studies also highlight the role of human activities that alter the rate or direction of system response to climate change. Understanding and anticipating nonlinear dynamics are important aspects of adaptation planning since responses of biological resources to changes in the physical climate system are not necessarily proportional and sometimes, as in the case of complex ecological systems, inherently nonlinear.

  11. Responses of energy use to climate change: A climate modeling study

    NASA Astrophysics Data System (ADS)

    Hadley, Stanton W.; Erickson, David J.; Hernandez, Jose Luis; Broniak, Christine T.; Blasing, T. J.

    2006-09-01

    Using a general-circulation climate model to drive an energy-use model, we projected changes in USA energy-use and in corresponding fossil-fuel CO2 emissions through year 2025 for a low (1.2°C) and a high (3.4°C) temperature response to CO2 doubling. The low-ΔT scenario had a cumulative (2003-2025) energy increase of 1.09 quadrillion Btu (quads) for cooling/heating demand. Northeastern states had net energy reductions for cooling/heating over the entire period, but in most other regions energy increases for cooling outweighed energy decreases for heating. The high-ΔT scenario had significantly increased warming, especially in winter, so decreased heating needs led to a cumulative (2003-2025) heating/cooling energy decrease of 0.82 quads. In both scenarios, CO2 emissions increases from electricity generation outweighed CO2 emissions decreases from reduced heating needs. The results reveal the intricate energy-economy structure that must be considered in projecting consequences of climate warming for energy, economics, and fossil-fuel carbon emissions.

  12. Global reductions in seafloor biomass in response to climate change.

    PubMed

    Jones, Daniel O B; Yool, Andrew; Wei, Chih-Lin; Henson, Stephanie A; Ruhl, Henry A; Watson, Reg A; Gehlen, Marion

    2014-06-01

    Seafloor organisms are vital for healthy marine ecosystems, contributing to elemental cycling, benthic remineralization, and ultimately sequestration of carbon. Deep-sea life is primarily reliant on the export flux of particulate organic carbon from the surface ocean for food, but most ocean biogeochemistry models predict global decreases in export flux resulting from 21st century anthropogenically induced warming. Here we show that decadal-to-century scale changes in carbon export associated with climate change lead to an estimated 5.2% decrease in future (2091-2100) global open ocean benthic biomass under RCP8.5 (reduction of 5.2 Mt C) compared with contemporary conditions (2006-2015). Our projections use multi-model mean export flux estimates from eight fully coupled earth system models, which contributed to the Coupled Model Intercomparison Project Phase 5, that have been forced by high and low representative concentration pathways (RCP8.5 and 4.5, respectively). These export flux estimates are used in conjunction with published empirical relationships to predict changes in benthic biomass. The polar oceans and some upwelling areas may experience increases in benthic biomass, but most other regions show decreases, with up to 38% reductions in parts of the northeast Atlantic. Our analysis projects a future ocean with smaller sized infaunal benthos, potentially reducing energy transfer rates though benthic multicellular food webs. More than 80% of potential deep-water biodiversity hotspots known around the world, including canyons, seamounts, and cold-water coral reefs, are projected to experience negative changes in biomass. These major reductions in biomass may lead to widespread change in benthic ecosystems and the functions and services they provide.

  13. Global reductions in seafloor biomass in response to climate change

    PubMed Central

    Jones, Daniel O B; Yool, Andrew; Wei, Chih-Lin; Henson, Stephanie A; Ruhl, Henry A; Watson, Reg A; Gehlen, Marion

    2014-01-01

    Seafloor organisms are vital for healthy marine ecosystems, contributing to elemental cycling, benthic remineralization, and ultimately sequestration of carbon. Deep-sea life is primarily reliant on the export flux of particulate organic carbon from the surface ocean for food, but most ocean biogeochemistry models predict global decreases in export flux resulting from 21st century anthropogenically induced warming. Here we show that decadal-to-century scale changes in carbon export associated with climate change lead to an estimated 5.2% decrease in future (2091–2100) global open ocean benthic biomass under RCP8.5 (reduction of 5.2 Mt C) compared with contemporary conditions (2006–2015). Our projections use multi-model mean export flux estimates from eight fully coupled earth system models, which contributed to the Coupled Model Intercomparison Project Phase 5, that have been forced by high and low representative concentration pathways (RCP8.5 and 4.5, respectively). These export flux estimates are used in conjunction with published empirical relationships to predict changes in benthic biomass. The polar oceans and some upwelling areas may experience increases in benthic biomass, but most other regions show decreases, with up to 38% reductions in parts of the northeast Atlantic. Our analysis projects a future ocean with smaller sized infaunal benthos, potentially reducing energy transfer rates though benthic multicellular food webs. More than 80% of potential deep-water biodiversity hotspots known around the world, including canyons, seamounts, and cold-water coral reefs, are projected to experience negative changes in biomass. These major reductions in biomass may lead to widespread change in benthic ecosystems and the functions and services they provide. PMID:24382828

  14. Trends in Global Vegetation Activity and Climatic Drivers Indicate a Decoupled Response to Climate Change.

    PubMed

    Schut, Antonius G T; Ivits, Eva; Conijn, Jacob G; Ten Brink, Ben; Fensholt, Rasmus

    2015-01-01

    Detailed understanding of a possible decoupling between climatic drivers of plant productivity and the response of ecosystems vegetation is required. We compared trends in six NDVI metrics (1982-2010) derived from the GIMMS3g dataset with modelled biomass productivity and assessed uncertainty in trend estimates. Annual total biomass weight (TBW) was calculated with the LINPAC model. Trends were determined using a simple linear regression, a Thiel-Sen medium slope and a piecewise regression (PWR) with two segments. Values of NDVI metrics were related to Net Primary Production (MODIS-NPP) and TBW per biome and land-use type. The simple linear and Thiel-Sen trends did not differ much whereas PWR increased the fraction of explained variation, depending on the NDVI metric considered. A positive trend in TBW indicating more favorable climatic conditions was found for 24% of pixels on land, and for 5% a negative trend. A decoupled trend, indicating positive TBW trends and monotonic negative or segmented and negative NDVI trends, was observed for 17-36% of all productive areas depending on the NDVI metric used. For only 1-2% of all pixels in productive areas, a diverging and greening trend was found despite a strong negative trend in TBW. The choice of NDVI metric used strongly affected outcomes on regional scales and differences in the fraction of explained variation in MODIS-NPP between biomes were large, and a combination of NDVI metrics is recommended for global studies. We have found an increasing difference between trends in climatic drivers and observed NDVI for large parts of the globe. Our findings suggest that future scenarios must consider impacts of constraints on plant growth such as extremes in weather and nutrient availability to predict changes in NPP and CO2 sequestration capacity.

  15. Trends in Global Vegetation Activity and Climatic Drivers Indicate a Decoupled Response to Climate Change

    PubMed Central

    Schut, Antonius G. T.; Ivits, Eva; Conijn, Jacob G.; ten Brink, Ben; Fensholt, Rasmus

    2015-01-01

    Detailed understanding of a possible decoupling between climatic drivers of plant productivity and the response of ecosystems vegetation is required. We compared trends in six NDVI metrics (1982–2010) derived from the GIMMS3g dataset with modelled biomass productivity and assessed uncertainty in trend estimates. Annual total biomass weight (TBW) was calculated with the LINPAC model. Trends were determined using a simple linear regression, a Thiel-Sen medium slope and a piecewise regression (PWR) with two segments. Values of NDVI metrics were related to Net Primary Production (MODIS-NPP) and TBW per biome and land-use type. The simple linear and Thiel-Sen trends did not differ much whereas PWR increased the fraction of explained variation, depending on the NDVI metric considered. A positive trend in TBW indicating more favorable climatic conditions was found for 24% of pixels on land, and for 5% a negative trend. A decoupled trend, indicating positive TBW trends and monotonic negative or segmented and negative NDVI trends, was observed for 17–36% of all productive areas depending on the NDVI metric used. For only 1–2% of all pixels in productive areas, a diverging and greening trend was found despite a strong negative trend in TBW. The choice of NDVI metric used strongly affected outcomes on regional scales and differences in the fraction of explained variation in MODIS-NPP between biomes were large, and a combination of NDVI metrics is recommended for global studies. We have found an increasing difference between trends in climatic drivers and observed NDVI for large parts of the globe. Our findings suggest that future scenarios must consider impacts of constraints on plant growth such as extremes in weather and nutrient availability to predict changes in NPP and CO2 sequestration capacity. PMID:26466347

  16. A model of northern treeline dynamics in response to transient changes in climate

    SciTech Connect

    Stuart, C.F. III; Starfield, A.M. )

    1994-06-01

    In order to predict the future distribution of boreal vegetation, we developed what, to our knowledge, is the first model of ecosystem change in response to transient changes in climate and disturbance regime over the next 50-500 yr. The model develops scenarios of change in disturbance regime and ecosystem type in what is currently arctic tundra in response to GCM-based scenarios of climate change. Seed availability, tree growth rate, and probability of fire were the model parameters that most strongly influenced the balance between tundra and boreal forest during transitional climates. The rate of climatic warming strongly affected the time lag between climate change and the simulated ecosystem response but had less effect on the rate or pattern of ecosystem change. The model calculated that a ramped change of 3[degrees] in the next century (corresponding to average rate of warming predicted by GCMs) would lead to a 150 yr lag preceeding any change from tundra to forest, followed by rates of forestation of up to 6-12% per decade. The model predicted that tundra would first be invaded by conifer forests, but that the proportion of broad-leafed deciduous forest would increase as climate continued to warm due to increased fire frequency. The pattern of climatic warming had strong effects on simulated rates of conversion from tundra to forest. Rapid step changes in climate or increases in climatic variability both promoted more rapid ecosystem change than did ramped change in climate or climatic oscillations, particularly when oscillations were long relative to the time required for tree growth to reproductive maturity.

  17. Response of Glaciers to Climate Change in Northwest China

    NASA Astrophysics Data System (ADS)

    Li, Z.; Wang, P.

    2015-12-01

    In Northwest China, an extremely dry region, more than 20,000 mountain glaciers are developed. Glacial melt water is vital for local water resources, ecosystem in the lower reaches, peoples' living and city development there. During the past several decades, due to climate warming, the most glaciers in NW China are in a state of rapid retreating. To obtain the general idea on response of glaciers in that region, Tianshan Glaciological Station, Chinese Academy of Sciences selected more than ten glaciers in six sub-regions along Altai Mountain, Tianshan and Qilian Mountain, respectively, doing in-situ observations. Based on field observation and remote sensing technique, this study has revealed that the area reductions in different regions range between 8.8%~34.2 % during the past four decades. The potential impact of the glacier recession on water resource in future will be spatially different. For the Tarim River, the glacier runoff is estimated to maintain its current level or increase somewhat in next 30~50 years. In the north slope of Tianshan, the glaciers with a size smaller than 1 km2 are most likely to be melted away in next 20~40 years, and those larger than 5 km2 are melting intensively. In eastern Xinjiang, because the number of the glaciers is small and also because the climate is extremely dry, the glacier retreating are causing the water shortage problem. For Ili River and Irtysh River, because they are dominant by snow melt runoff, the impact of the glacier shrinkage and temperature rise would be limited on the quantity of the river runoff, but significant on the annual distribution of the river runoff. For Qilian Mountains, glaciers are quite small. The vanishing of small glacier will have significant impact on local water resources in near future.

  18. Climate change: present and future risks to health, and necessary responses.

    PubMed

    McMichael, A J; Lindgren, E

    2011-11-01

    Recent observed changes in Earth's climate, to which humans have contributed substantially, are affecting various health outcomes. These include altered distributions of some infectious disease vectors (ticks at high latitudes, malaria mosquitoes at high altitudes), and an uptrend in extreme weather events and associated deaths, injuries and other health outcomes. Future climate change, if unchecked, will have increasing, mostly adverse, health impacts - both direct and indirect. Climate change will amplify health problems in vulnerable regions, influence infectious disease emergence, affect food yields and nutrition, increase risks of climate-related disasters and impair mental health. The health sector should assist society understand the risks to health and the needed responses.

  19. Changing Climate Drives Lagging and Accelerating Glacier Responses and Accelerating Adjustments of the Hazard Regime

    NASA Astrophysics Data System (ADS)

    Kargel, Jeffrey

    2013-04-01

    It is virtually universally recognized among climate and cryospheric scientists that climate and greenhouse gas abundances are closely correlated. Disagreements mainly pertain to the fundamental triggers for large fluctuations in climate and greenhouse gases during the pre-industrial era, and exactly how coupling is achieved amongst the dynamic solid Earth, the Sun, orbital and rotational dynamics, greenhouse gas abundances, and climate. Also unsettled is the climate sensitivity defined as the absolute linkage between the magnitude of climate warming/cooling and greenhouse gas increase/decrease. Important questions concern lagging responses (either greenhouse gases lagging climate fluctuations, or vice versa) and the causes of the lags. In terms of glacier and ice sheet responses to climate change, there also exist several processes causing lagging responses to climate change inputs. The simplest parameterization giving a glacier's lagging response time, τ, is that given by Jóhanneson et al. (1989), modified slightly here as τ = b/h, where b is a measure of ablation rate and h is a measure of glacier thickness. The exact definitions of τ, b, and h are subject to some interpretive license, but for a back-of-the-envelope approximation, we may take b as the magnitude of the mean ablation rate over the whole ablation area, and h as the mean glacier thickness in the glacier ablation zone. τ remains a bit ambiguous but may be considered as an exponential time scale for a decreasing response of b to a climatic step change. For some climate changes, b and h can be taken as the values prior to the climate change, but for large climatic shifts, this parameterization must be iterated. The actual response of a glacier at any time is the sum of exponentially decreasing responses from past changes. (Several aspects of glacier dynamics cause various glacier responses to differ from this idealized glacier-response theory.) Some important details relating to the retreat (or

  20. Is Dealing with Climate Change a Corporation’s Responsibility? A Social Contract Perspective

    PubMed Central

    Unsworth, Kerrie L.; Russell, Sally V.; Davis, Matthew C.

    2016-01-01

    In this paper, we argue that individuals – as members of society – play an important role in the expectations of whether or not companies are responsible for addressing environmental issues, and whether or not governments should regulate them. From this perspective of corporate social responsibility as a social contract we report the results of a survey of 1066 individuals. The aim of the survey was to assess participants’ belief in anthropogenic climate change, free-market ideology, and beliefs around who is responsible for dealing with climate change. Results showed that both climate change views and free market ideology have a strong effect on beliefs that companies are responsible for dealing with climate change and on support for regulatory policy to that end. Furthermore, we found that free market ideology is a barrier in the support of corporate regulatory policy. The implications of these findings for research, policy, and practice are discussed. PMID:27588009

  1. Is Dealing with Climate Change a Corporation's Responsibility? A Social Contract Perspective.

    PubMed

    Unsworth, Kerrie L; Russell, Sally V; Davis, Matthew C

    2016-01-01

    In this paper, we argue that individuals - as members of society - play an important role in the expectations of whether or not companies are responsible for addressing environmental issues, and whether or not governments should regulate them. From this perspective of corporate social responsibility as a social contract we report the results of a survey of 1066 individuals. The aim of the survey was to assess participants' belief in anthropogenic climate change, free-market ideology, and beliefs around who is responsible for dealing with climate change. Results showed that both climate change views and free market ideology have a strong effect on beliefs that companies are responsible for dealing with climate change and on support for regulatory policy to that end. Furthermore, we found that free market ideology is a barrier in the support of corporate regulatory policy. The implications of these findings for research, policy, and practice are discussed.

  2. 77 FR 19661 - Draft National Water Program 2012 Strategy: Response to Climate Change

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ... AGENCY Draft National Water Program 2012 Strategy: Response to Climate Change AGENCY: Environmental... of water resource management, including how to: address risks to drinking water, wastewater and storm water infrastructure; protect quality of surface water, ground water and drinking water;...

  3. Morphological variation in salamanders and their potential response to climate change

    PubMed Central

    Ficetola, Gentile Francesco; Colleoni, Emiliano; Renaud, Julien; Scali, Stefano; Padoa-Schioppa, Emilio; Thuiller, Wilfried

    2016-01-01

    Despite the recognition that some species might quickly adapt to new conditions under climate change, demonstrating and predicting such a fundamental response is challenging. Morphological variations in response to climate may be caused by evolutionary changes or phenotypic plasticity, or both, but teasing apart these processes is difficult. Here we built on the number of thoracic vertebrae (NTV) in ectothermic vertebrates, a known genetically-based feature, to establish a link with body size and evaluate how climate change might affect the future morphological response of this group of species. First we show that in old-world salamanders, NTV variation is strongly related to changes in body size. Secondly, using 22 salamander species as a case study, we found support for relationships between the spatial variation in selected bioclimatic variables and NTV for most of species. For 44% of species, precipitation and aridity were the predominant drivers of geographical variation of the NTV. Temperature features were dominant for 31% of species, while for 19% temperature and precipitation played a comparable role. This two-step analysis demonstrates that ectothermic vertebrates may evolve in response to climate change by modifying the number of thoracic vertebrae. These findings allow to develop scenarios for potential morphological evolution under future climate change, and to identify areas and species in which the most marked evolutionary responses are expected. Resistance to climate change estimated from species distribution models was positively related to present-day species morphological response, suggesting that the ability of morphological evolution may play a role for species’ persistence under climate change. The possibility that present-day capacity for local adaptation might help the resistance response to climate change can be integrated into analyses of the impact of global changes, and should also be considered when planning management actions

  4. Morphological variation in salamanders and their potential response to climate change.

    PubMed

    Ficetola, Gentile Francesco; Colleoni, Emiliano; Renaud, Julien; Scali, Stefano; Padoa-Schioppa, Emilio; Thuiller, Wilfried

    2016-06-01

    Despite the recognition that some species might quickly adapt to new conditions under climate change, demonstrating and predicting such a fundamental response is challenging. Morphological variations in response to climate may be caused by evolutionary changes or phenotypic plasticity, or both, but teasing apart these processes is difficult. Here, we built on the number of thoracic vertebrae (NTV) in ectothermic vertebrates, a known genetically based feature, to establish a link with body size and evaluate how climate change might affect the future morphological response of this group of species. First, we show that in old-world salamanders, NTV variation is strongly related to changes in body size. Secondly, using 22 salamander species as a case study, we found support for relationships between the spatial variation in selected bioclimatic variables and NTV for most of species. For 44% of species, precipitation and aridity were the predominant drivers of geographical variation of the NTV. Temperature features were dominant for 31% of species, while for 19% temperature and precipitation played a comparable role. This two-step analysis demonstrates that ectothermic vertebrates may evolve in response to climate change by modifying the number of thoracic vertebrae. These findings allow to develop scenarios for potential morphological evolution under future climate change and to identify areas and species in which the most marked evolutionary responses are expected. Resistance to climate change estimated from species distribution models was positively related to present-day species morphological response, suggesting that the ability of morphological evolution may play a role for species' persistence under climate change. The possibility that present-day capacity for local adaptation might help the resistance response to climate change can be integrated into analyses of the impact of global changes and should also be considered when planning management actions favouring

  5. Heating up Climate Literacy Education: Understanding Teachers' and Students' Motivational and Affective Response to Climate Change

    NASA Astrophysics Data System (ADS)

    Sinatra, G. M.

    2011-12-01

    Changing students' ideas about controversial scientific issues, such as human-induced climate change, presents unique challenges for educators (Lombardi & Sinatra, 2010; Sinatra & Mason, 2008). First, climate science is complex and requires "systems thinking," or the ability to think and reason abstractly about emergent systems (Goldstone & Sakamoto, 2003). Appreciating the intricacies of complex systems and emergent processes has proven challenging for students (Chi, 2005). In addition to these challenges, there are specific misconceptions that may lead thinking astray on the issue of global climate change, such as the distinction between weather and climate (Lombardi & Sinatra, 2010). As an example, when students are asked about their views on climate change, they often recall individual storm events or very cold periods and use their personal experiences and recollections of short-term temperature fluctuations to assess whether the planet is warming. Beyond the conceptual difficulties, controversial topics offer another layer of challenge. Such topics are often embedded in complex socio-cultural and political contexts, have a high degree of uncertainty, and may be perceived by individuals as in conflict with their personal or religious beliefs (Levinson, 2006, Sinatra, Kardash, Taasoobshirazi, & Lombardi, 2011). Individuals are often committed to their own views on socio-scientific issues and this commitment may serve as a motivation to actively resist new ideas (Dole & Sinatra, 1998). Individuals may also have strong emotions associated with their misconceptions (Broughton, Pekrun, & Sinatra, 2011). Negative emotions, misconceptions, and resistance do not make a productive combination for learning. Further, teachers who find human-induced climate change implausible have been shown to hold negative emotions about having to teach about climate change (Lombardi & Sinatra, in preparation), which could affect how they present the topic to students. In this

  6. Earth's changing global atmospheric energy cycle in response to climate change

    NASA Astrophysics Data System (ADS)

    Pan, Yefeng; Li, Liming; Jiang, Xun; Li, Gan; Zhang, Wentao; Wang, Xinyue; Ingersoll, Andrew P.

    2017-01-01

    The Lorenz energy cycle is widely used to investigate atmospheres and climates on planets. However, the long-term temporal variations of such an energy cycle have not yet been explored. Here we use three independent meteorological data sets from the modern satellite era, to examine the temporal characteristics of the Lorenz energy cycle of Earth's global atmosphere in response to climate change. The total mechanical energy of the global atmosphere basically remains constant with time, but the global-average eddy energies show significant positive trends. The spatial investigations suggest that these positive trends are concentrated in the Southern Hemisphere. Significant positive trends are also found in the conversion, generation and dissipation rates of energies. The positive trends in the dissipation rates of kinetic energies suggest that the efficiency of the global atmosphere as a heat engine increased during the modern satellite era.

  7. Earth's changing global atmospheric energy cycle in response to climate change

    PubMed Central

    Pan, Yefeng; Li, Liming; Jiang, Xun; Li, Gan; Zhang, Wentao; Wang, Xinyue; Ingersoll, Andrew P.

    2017-01-01

    The Lorenz energy cycle is widely used to investigate atmospheres and climates on planets. However, the long-term temporal variations of such an energy cycle have not yet been explored. Here we use three independent meteorological data sets from the modern satellite era, to examine the temporal characteristics of the Lorenz energy cycle of Earth's global atmosphere in response to climate change. The total mechanical energy of the global atmosphere basically remains constant with time, but the global-average eddy energies show significant positive trends. The spatial investigations suggest that these positive trends are concentrated in the Southern Hemisphere. Significant positive trends are also found in the conversion, generation and dissipation rates of energies. The positive trends in the dissipation rates of kinetic energies suggest that the efficiency of the global atmosphere as a heat engine increased during the modern satellite era. PMID:28117324

  8. Earth's changing global atmospheric energy cycle in response to climate change.

    PubMed

    Pan, Yefeng; Li, Liming; Jiang, Xun; Li, Gan; Zhang, Wentao; Wang, Xinyue; Ingersoll, Andrew P

    2017-01-24

    The Lorenz energy cycle is widely used to investigate atmospheres and climates on planets. However, the long-term temporal variations of such an energy cycle have not yet been explored. Here we use three independent meteorological data sets from the modern satellite era, to examine the temporal characteristics of the Lorenz energy cycle of Earth's global atmosphere in response to climate change. The total mechanical energy of the global atmosphere basically remains constant with time, but the global-average eddy energies show significant positive trends. The spatial investigations suggest that these positive trends are concentrated in the Southern Hemisphere. Significant positive trends are also found in the conversion, generation and dissipation rates of energies. The positive trends in the dissipation rates of kinetic energies suggest that the efficiency of the global atmosphere as a heat engine increased during the modern satellite era.

  9. Contrasting urban and rural heat stress responses to climate change

    NASA Astrophysics Data System (ADS)

    Fischer, E. M.; Oleson, K. W.; Lawrence, D. M.

    2012-02-01

    Hot temperatures in combination with high humidity cause human discomfort and may increase morbidity and mortality. A global climate model with an embedded urban model is used to explore the urban-rural contrast in the wet-bulb globe temperature, a heat stress index accounting for temperature and humidity. Wet-bulb globe temperatures are calculated at each model time step to resolve the heat stress diurnal cycle. The model simulates substantially higher heat stress in urban areas compared to neighbouring rural areas. Urban humidity deficit only weakly offsets the enhanced heat stress due to the large night-time urban heat island. The urban-rural contrast in heat stress is most pronounced at night and over mid-latitudes and subtropics. During heatwaves, the urban heat stress amplification is particularly pronounced. Heat stress strongly increases with doubled CO2 concentrations over both urban and rural surfaces. The tropics experience the greatest increase in number of high-heat-stress nights, despite a relatively weak ˜2°C warming. Given the lack of a distinct annual cycle and high relative humidity, the modest tropical warming leads to exceedance of the present-day record levels during more than half of the year in tropical regions, where adaptive capacity is often low. While the absolute urban and rural heat stress response to 2 × CO2 is similar, the occurrence of nights with extremely high heat stress increases more in cities than surrounding rural areas.

  10. Separating the role of biotic interactions and climate in determining adaptive response of plants to climate change.

    PubMed

    Tomiolo, Sara; Van der Putten, Wim H; Tielbörger, Katja

    2015-05-01

    Altered rainfall regimes will greatly affect the response of plant species to climate change. However, little is known about how direct effects of changing precipitation on plant performance may depend on other abiotic factors and biotic interactions. We used reciprocal transplants between climatically very different sites with simultaneous manipulation of soil, plant population origin, and neighbor conditions to evaluate local adaptation and possible adaptive response of four Eastern Mediterranean annual plant species to climate change. The effect of site on plant performance was negligible, but soil origin had a strong effect on fecundity, most likely due to differential water retaining ability. Competition by neighbors strongly reduced fitness. We separated the effects of the abiotic and biotic soil properties on plant performance by repeating the field experiment in a greenhouse under homogenous environmental conditions and including a soil biota manipulation treatment. As in the field, plant performance differed among soil origins and neighbor treatments. Moreover, we found plant species-specific responses to soil biota that may be best explained by the differential sensitivity to negative and positive soil biota effects. Overall, under the conditions of our experiment with two contrasting sites, biotic interactions had a strong effect on plant fitness that interacted with and eventually overrode climate. Because climate and biotic interactions covary, reciprocal transplants and climate gradient studies should consider soil biotic interactions and abiotic conditions when evaluating climate change effects on plant performance.

  11. Neotropical vegetation responses to Younger Dryas climates as analogs for future climate change scenarios and lessons for conservation

    NASA Astrophysics Data System (ADS)

    Rull, V.; Vegas-Vilarrúbia, T.; Montoya, E.

    2015-05-01

    The Younger Dryas (YD) climatic reversal (12.86-11.65 cal ky BP), especially the warming initiated at ∼12.6 cal ky BP, and the associated vegetation changes have been proposed as past analogs to forecast the potential vegetation responses to future global warming. In this paper, we applied this model to highland and midland Neotropical localities. We used pollen analysis of lake sediments to record vegetation responses to YD climatic changes, which are reconstructed from independent paleoclimatic proxies such as the Mg/Ca ratio on foraminiferal tests and Equilibrium Line Altitude (ELA) for paleotemperature, and grayscale density and Titanium content for paleoprecipitation. Paleoclimatic reconstructions at both highlands and midlands showed a clear YD signal with a conspicuous warming extending into the early Holocene. A small percentage of taxa resulted to be sensitive to these YD climate changes. Response lags were negligible at the resolution of the study. However, changes in the sensitive taxa were relevant enough to determine changes in biodiversity and taxonomic composition. Highland vegetation experienced mainly intra-community reorganizations, whereas midland vegetation underwent major changes leading to community substitutions. This was explained in terms of threshold-crossing non-linear responses in which the coupling of climatic and other forcings (fire) was proposed as the main driving mechanism. Paleoecology provides meaningful insights on the responses of highland and midland Neotropical vegetation to the YD climatic reversal. Biotic responses at both individual (species) and collective (assemblage) levels showed patterns and processes of vegetation change useful to understand its ecological dynamics, as well as the mechanisms and external drivers involved. The use of paleoecological methods to document the biotic responses to the YD climate shifts can be useful to help forecasting the potential consequences of future global warming. Due to its quasi

  12. Ecological and methodological drivers of species' distribution and phenology responses to climate change.

    PubMed

    Brown, Christopher J; O'Connor, Mary I; Poloczanska, Elvira S; Schoeman, David S; Buckley, Lauren B; Burrows, Michael T; Duarte, Carlos M; Halpern, Benjamin S; Pandolfi, John M; Parmesan, Camille; Richardson, Anthony J

    2016-04-01

    Climate change is shifting species' distribution and phenology. Ecological traits, such as mobility or reproductive mode, explain variation in observed rates of shift for some taxa. However, estimates of relationships between traits and climate responses could be influenced by how responses are measured. We compiled a global data set of 651 published marine species' responses to climate change, from 47 papers on distribution shifts and 32 papers on phenology change. We assessed the relative importance of two classes of predictors of the rate of change, ecological traits of the responding taxa and methodological approaches for quantifying biological responses. Methodological differences explained 22% of the variation in range shifts, more than the 7.8% of the variation explained by ecological traits. For phenology change, methodological approaches accounted for 4% of the variation in measurements, whereas 8% of the variation was explained by ecological traits. Our ability to predict responses from traits was hindered by poor representation of species from the tropics, where temperature isotherms are moving most rapidly. Thus, the mean rate of distribution change may be underestimated by this and other global syntheses. Our analyses indicate that methodological approaches should be explicitly considered when designing, analysing and comparing results among studies. To improve climate impact studies, we recommend that (1) reanalyses of existing time series state how the existing data sets may limit the inferences about possible climate responses; (2) qualitative comparisons of species' responses across different studies be limited to studies with similar methodological approaches; (3) meta-analyses of climate responses include methodological attributes as covariates; and (4) that new time series be designed to include the detection of early warnings of change or ecologically relevant change. Greater consideration of methodological attributes will improve the accuracy

  13. Holocene Substrate Influences on Plant and Fire Response to Climate Change

    NASA Astrophysics Data System (ADS)

    Briles, C.; Whitlock, C. L.

    2011-12-01

    The role of substrates in facilitating plant responses to climate change in the past has received little attention. Ecological studies, documenting the relative role of fertile and infertile substrates in mediating the effects of climate change, lack the temporal information that paleoecological lake studies provide on how plants have responded under equal, larger and more rapid past climate events than today. In this paper, pollen and macroscopic charcoal preserved in the sediments of eight lakes surrounded by infertile ultramafic soils and more fertile soils in the Klamath Mountains of northern California were analyzed. Comparison of late-Quaternary paleoecological sites suggests that infertile and fertile substrates supported distinctly different plant communities. Trees and shrubs on infertile substrates were less responsive to climate change than those on fertile substrates, with the only major compositional change occurring at the glacial/interglacial transition (~11.5ka), when temperature rose 5oC. Trees and shrubs on fertile substrates were more responsive to climate changes, and tracked climate by moving along elevational gradients, including during more recent climate events such as the Little Ice Age and Medieval Climate Anomaly. Fire regimes were similar until 4ka on both substrate types. After 4ka, understory fuels on infertile substrates became sparse and fire activity decreased, while on fertile substrates forests became increasingly denser and fire activity increased. The complacency of plant communities on infertile sites to climate change contrasts with the individualistic and rapid adjustments of species on fertile sites. The findings differ from observations on shorter time scales that show the most change in herb cover and richness in the last 60 years on infertile substrates. Thus, the paleorecord provides unique long-term ecological data necessary to evaluate the response of plants to future climate change under different levels of soil

  14. Predicting Climate Change using Response Theory: Global Averages and Spatial Patterns

    NASA Astrophysics Data System (ADS)

    Lucarini, Valerio; Lunkeit, Frank; Ragone, Francesco

    2016-04-01

    The provision of accurate methods for predicting the climate response to anthropogenic and natural forcings is a key contemporary scientific challenge. Using a simplified and efficient open-source climate model featuring O(105) degrees of freedom, we show how it is possible to approach such a problem using nonequilibrium statistical mechanics. Using the theoretical framework of the pullback attractor and the tools of response theory we propose a simple yet efficient method for predicting - at any lead time and in an ensemble sense - the change in climate properties resulting from increase in the concentration of CO2 using test perturbation model runs. We assess strengths and limitations of the response theory in predicting the changes in the globally averaged values of surface temperature and of the yearly total precipitation, as well as their spatial patterns. We also show how it is possible to define accurately concepts like the the inertia of the climate system or to predict when climate change is detectable given a scenario of forcing. Our analysis can be extended for dealing with more complex portfolios of forcings and can be adapted to treat, in principle, any climate observable. Our conclusion is that climate change is indeed a problem that can be effectively seen through a statistical mechanical lens, and that there is great potential for optimizing the current coordinated modelling exercises run for the preparation of the subsequent reports of the Intergovernmental Panel for Climate Change.

  15. Contrasting response of South Greenland glaciers to recent climatic change

    SciTech Connect

    Warren, C.R.; Glasser, N.F. )

    1992-05-01

    A unique geographical configuration of glaciers exists in the Narsarsuaq district of South Greenland. Two large outlet glaciers divide into seven distributaries, such that each glacier system has land-terminating, tidewater-calving, and fresh-water-calving termini. Despite a similar climatic regime, these seven glaciers have exhibited strongly contrasting terminal behavior in historical time, as shown by historical records, aerial photographs, and fieldwork in 1989. The behavior of the calving glaciers cannot be accounted for with reference solely to climatic parameters. The combination of iceberg calving dynamics and topographic control has partially decoupled them from climatic forcing such that their oscillations relate more closely to glaciodynamic than glacioclimatic factors.

  16. Inbreeding and experience affect response to climate change by endangered woodpeckers.

    PubMed

    Schiegg, Karin; Pasinelli, Gilberto; Walters, Jeffrey R; Daniels, Susan J

    2002-06-07

    In recent decades, female red-cockaded woodpeckers (Picoides borealis) have laid eggs increasingly earlier in response to a changing climate, as has been observed in several other bird species breeding at north temperate latitudes. Within each year, females that lay earlier are more productive than females that lay later. However, inexperienced females, experienced females who change mates and inbred birds have not adjusted to the changing climate by laying earlier, and have suffered reproductive costs as a result. Failure to respond to global climate change may be a further example of the reduced ability of inbred animals to respond to environmental challenges.

  17. Key ecological responses to nitrogen are altered by climate change

    EPA Science Inventory

    Here we review the effects of nitrogen and climate (e.g. temperature and precipitation) on four aspects of ecosystem structure and function including hydrologic-coupled nitrogen cycling, carbon cycling, acidification and biodiversity.

  18. Threshold effects in the vegetation response to Holocene climate changes in central Asia

    NASA Astrophysics Data System (ADS)

    Zhao, Y.

    2015-12-01

    Understanding the response of ecosystems to past climate is critical for evaluating the impacts of future climate changes. A relatively abrupt vegetation shift in response to the late Holocene gradual climate changes has been well documented for the Sahara-Sahel ecosystem. However, whether such threshold shift is of universal significance remains to be further addressed. Here, we examine the vegetation-climate relationships in central Asia based on four newly recovered Holocene pollen records and a synthesis on previously published pollen data. The results show that the orbital-induced gradual climate trend during the Holocene led to two major abrupt vegetation shifts, and that the timings of these shifts are highly dependent of the local rainfall conditions. Instead, the mid-Holocene vegetation remained rather stable despite of the changing climate. These new findings demonstrate generally significant threshold and truncation effects of climate changes on vegetation, as are strongly supported by surface pollen data and LPJ-GUESS modeling. The results also imply that using pollen data to reconstruct past climate changes is not always straightforward. Our findings have important implication for understanding the potential effects of global warming on dryland ecosystem change.

  19. Forest Owners' Response to Climate Change: University Education Trumps Value Profile

    PubMed Central

    Persson, Erik; Hanewinkel, Marc

    2016-01-01

    Do forest owners’ levels of education or value profiles explain their responses to climate change? The cultural cognition thesis (CCT) has cast serious doubt on the familiar and often criticized "knowledge deficit" model, which says that laypeople are less concerned about climate change because they lack scientific knowledge. Advocates of CCT maintain that citizens with the highest degrees of scientific literacy and numeracy are not the most concerned about climate change. Rather, this is the group in which cultural polarization is greatest, and thus individuals with more limited scientific literacy and numeracy are more concerned about climate change under certain circumstances than those with higher scientific literacy and numeracy. The CCT predicts that cultural and other values will trump the positive effects of education on some forest owners' attitudes to climate change. Here, using survey data collected in 2010 from 766 private forest owners in Sweden and Germany, we provide the first evidence that perceptions of climate change risk are uncorrelated with, or sometimes positively correlated with, education level and can be explained without reference to cultural or other values. We conclude that the recent claim that advanced scientific literacy and numeracy polarizes perceptions of climate change risk is unsupported by the forest owner data. In neither of the two countries was university education found to reduce the perception of risk from climate change. Indeed in most cases university education increased the perception of risk. Even more importantly, the effect of university education was not dependent on the individuals' value profile. PMID:27223473

  20. Climate variability slows evolutionary responses of Colias butterflies to recent climate change.

    PubMed

    Kingsolver, Joel G; Buckley, Lauren B

    2015-03-07

    How does recent climate warming and climate variability alter fitness, phenotypic selection and evolution in natural populations? We combine biophysical, demographic and evolutionary models with recent climate data to address this question for the subalpine and alpine butterfly, Colias meadii, in the southern Rocky Mountains. We focus on predicting patterns of selection and evolution for a key thermoregulatory trait, melanin (solar absorptivity) on the posterior ventral hindwings, which affects patterns of body temperature, flight activity, adult and egg survival, and reproductive success in Colias. Both mean annual summer temperatures and thermal variability within summers have increased during the past 60 years at subalpine and alpine sites. At the subalpine site, predicted directional selection on wing absorptivity has shifted from generally positive (favouring increased wing melanin) to generally negative during the past 60 years, but there is substantial variation among years in the predicted magnitude and direction of selection and the optimal absorptivity. The predicted magnitude of directional selection at the alpine site declined during the past 60 years and varies substantially among years, but selection has generally been positive at this site. Predicted evolutionary responses to mean climate warming at the subalpine site since 1980 is small, because of the variability in selection and asymmetry of the fitness function. At both sites, the predicted effects of adaptive evolution on mean population fitness are much smaller than the fluctuations in mean fitness due to climate variability among years. Our analyses suggest that variation in climate within and among years may strongly limit evolutionary responses of ectotherms to mean climate warming in these habitats.

  1. Climate variability slows evolutionary responses of Colias butterflies to recent climate change

    PubMed Central

    Kingsolver, Joel G.; Buckley, Lauren B.

    2015-01-01

    How does recent climate warming and climate variability alter fitness, phenotypic selection and evolution in natural populations? We combine biophysical, demographic and evolutionary models with recent climate data to address this question for the subalpine and alpine butterfly, Colias meadii, in the southern Rocky Mountains. We focus on predicting patterns of selection and evolution for a key thermoregulatory trait, melanin (solar absorptivity) on the posterior ventral hindwings, which affects patterns of body temperature, flight activity, adult and egg survival, and reproductive success in Colias. Both mean annual summer temperatures and thermal variability within summers have increased during the past 60 years at subalpine and alpine sites. At the subalpine site, predicted directional selection on wing absorptivity has shifted from generally positive (favouring increased wing melanin) to generally negative during the past 60 years, but there is substantial variation among years in the predicted magnitude and direction of selection and the optimal absorptivity. The predicted magnitude of directional selection at the alpine site declined during the past 60 years and varies substantially among years, but selection has generally been positive at this site. Predicted evolutionary responses to mean climate warming at the subalpine site since 1980 is small, because of the variability in selection and asymmetry of the fitness function. At both sites, the predicted effects of adaptive evolution on mean population fitness are much smaller than the fluctuations in mean fitness due to climate variability among years. Our analyses suggest that variation in climate within and among years may strongly limit evolutionary responses of ectotherms to mean climate warming in these habitats. PMID:25631995

  2. Exploring the southern ocean response to climate change

    NASA Technical Reports Server (NTRS)

    Martinson, Douglas G.; Rind, David; Parkinson, Claire

    1993-01-01

    The purpose of this project was to couple a regional (Southern Ocean) ocean/sea ice model to the existing Goddard Institute for Space Science (GISS) atmospheric general circulation model (GCM). This modification recognizes: the relative isolation of the Southern Ocean; the need to account, prognostically, for the significant air/sea/ice interaction through all involved components; and the advantage of translating the atmospheric lower boundary (typically the rapidly changing ocean surface) to a level that is consistent with the physical response times governing the system evolution (that is, to the base of the fast responding ocean surface layer). The deeper ocean beneath this layer varies on time scales several orders of magnitude slower than the atmosphere and surface ocean, and therefore the boundary between the upper and deep ocean represents a more reasonable fixed boundary condition.

  3. Time-lag effects of global vegetation responses to climate change.

    PubMed

    Wu, Donghai; Zhao, Xiang; Liang, Shunlin; Zhou, Tao; Huang, Kaicheng; Tang, Bijian; Zhao, Wenqian

    2015-09-01

    Climate conditions significantly affect vegetation growth in terrestrial ecosystems. Due to the spatial heterogeneity of ecosystems, the vegetation responses to climate vary considerably with the diverse spatial patterns and the time-lag effects, which are the most important mechanism of climate-vegetation interactive effects. Extensive studies focused on large-scale vegetation-climate interactions use the simultaneous meteorological and vegetation indicators to develop models; however, the time-lag effects are less considered, which tends to increase uncertainty. In this study, we aim to quantitatively determine the time-lag effects of global vegetation responses to different climatic factors using the GIMMS3g NDVI time series and the CRU temperature, precipitation, and solar radiation datasets. First, this study analyzed the time-lag effects of global vegetation responses to different climatic factors. Then, a multiple linear regression model and partial correlation model were established to statistically analyze the roles of different climatic factors on vegetation responses, from which the primary climate-driving factors for different vegetation types were determined. The results showed that (i) both the time-lag effects of the vegetation responses and the major climate-driving factors that significantly affect vegetation growth varied significantly at the global scale, which was related to the diverse vegetation and climate characteristics; (ii) regarding the time-lag effects, the climatic factors explained 64% variation of the global vegetation growth, which was 11% relatively higher than the model ignoring the time-lag effects; (iii) for the area with a significant change trend (for the period 1982-2008) in the global GIMMS3g NDVI (P < 0.05), the primary driving factor was temperature; and (iv) at the regional scale, the variation in vegetation growth was also related to human activities and natural disturbances. Considering the time-lag effects is quite

  4. Determining the response of African biota to climate change: using the past to model the future

    PubMed Central

    Willis, K. J.; Bennett, K. D.; Burrough, S. L.; Macias-Fauria, M.; Tovar, C.

    2013-01-01

    Prediction of biotic responses to future climate change in tropical Africa tends to be based on two modelling approaches: bioclimatic species envelope models and dynamic vegetation models. Another complementary but underused approach is to examine biotic responses to similar climatic changes in the past as evidenced in fossil and historical records. This paper reviews these records and highlights the information that they provide in terms of understanding the local- and regional-scale responses of African vegetation to future climate change. A key point that emerges is that a move to warmer and wetter conditions in the past resulted in a large increase in biomass and a range distribution of woody plants up to 400–500 km north of its present location, the so-called greening of the Sahara. By contrast, a transition to warmer and drier conditions resulted in a reduction in woody vegetation in many regions and an increase in grass/savanna-dominated landscapes. The rapid rate of climate warming coming into the current interglacial resulted in a dramatic increase in community turnover, but there is little evidence for widespread extinctions. However, huge variation in biotic response in both space and time is apparent with, in some cases, totally different responses to the same climatic driver. This highlights the importance of local features such as soils, topography and also internal biotic factors in determining responses and resilience of the African biota to climate change, information that is difficult to obtain from modelling but is abundant in palaeoecological records. PMID:23878343

  5. Dealing with uncertainty: Response-resilient climate change mitigation polices for long-lived and short-lived climate pollutants

    NASA Astrophysics Data System (ADS)

    Millar, R.; Boneham, J.; Hepburn, C.; Allen, M. R.

    2015-12-01

    Climate change solutions are subject to many inherent uncertainties. One of the most important is the uncertainty over the magnitude of the physical response of the climate system to external forcing. The risk of extremely large responses to forcing, so called "fat-tail" outcomes, cannot be ruled out from the latest science and offer profound challenges when creating policies that aim to meet a specific target of global temperature change. This study offers examples of how mitigation policies can be made resilient to this uncertainty in the physical climate response via indexing policies against an attributable anthropogenic warming index (the magnitude of the observed global mean warming that is can be traced to human activities), the AWI, instead of against time directly. We show that indexing policy measures that influence the total stock of carbon in the atmosphere (such as the fraction of extracted carbon sequestered) against the AWI can largely eliminate the risk of missing the specified warming goal due to unexpectedly large climate responses as well as the risk of costly over-mitigation if the physical response turned out to be lower than expected. We offer further examples of how this methodology can be expanded to include short-lived climate pollutants as well as long-lived carbon dioxide. Indexing policies against the AWI can have important consequences for the actions of governments acting to design national climate mitigation policies as well as private sector investors looking to incentivise the transition to a climate-stable economy. We conclude with some thoughts on how these indexes can help focus attention on the long-term perspective that is consistent with the conclusions of the latest climate science on what is required to ultimately stabilise the global climate system.

  6. Asynchronous demographic responses to Pleistocene climate change in Eastern Nearctic vertebrates.

    PubMed

    Burbrink, Frank T; Chan, Yvonne L; Myers, Edward A; Ruane, Sara; Smith, Brian Tilston; Hickerson, Michael J

    2016-12-01

    Pleistocene climatic cycles altered species distributions in the Eastern Nearctic of North America, yet the degree of congruent demographic response to the Pleistocene among codistributed taxa remains unknown. We use a hierarchical approximate Bayesian computational approach to test if population sizes across lineages of snakes, lizards, turtles, mammals, birds, salamanders and frogs in this region expanded synchronously to Late Pleistocene climate changes. Expansion occurred in 75% of 74 lineages, and of these, population size trajectories across the community were partially synchronous, with coexpansion found in at least 50% of lineages in each taxonomic group. For those taxa expanding outside of these synchronous pulses, factors related to when they entered the community, ecological thresholds or biotic interactions likely condition their timing of response to Pleistocene climate change. Unified timing of population size change across communities in response to Pleistocene climate cycles is likely rare in North America.

  7. Modeling the response of plants and ecosystems to elevated CO{sub 2} and climate change

    SciTech Connect

    Reynolds, J.F.; Hilbert, D.W.; Chen, Jia-lin; Harley, P.C.; Kemp, P.R.; Leadley, P.W.

    1992-03-01

    While the exact effects of elevated CO{sub 2} on global climate are unknown, there is a growing consensus among climate modelers that global temperature and precipitation will increase, but that these changes will be non-uniform over the Earth`s surface. In addition to these potential climatic changes, CO{sub 2} also directly affects plants via photosynthesis, respiration, and stomatal closure. Global climate change, in concert with these direct effects of CO{sub 2} on plants, could have a significant impact on both natural and agricultural ecosystems. Society`s ability to prepare for, and respond to, such changes depends largely on the ability of climate and ecosystem researchers to provide predictions of regional level ecosystem responses with sufficient confidence and adequate lead time.

  8. Modeling the response of plants and ecosystems to elevated CO sub 2 and climate change

    SciTech Connect

    Reynolds, J.F.; Hilbert, D.W.; Chen, Jia-lin; Harley, P.C.; Kemp, P.R.; Leadley, P.W.

    1992-03-01

    While the exact effects of elevated CO{sub 2} on global climate are unknown, there is a growing consensus among climate modelers that global temperature and precipitation will increase, but that these changes will be non-uniform over the Earth's surface. In addition to these potential climatic changes, CO{sub 2} also directly affects plants via photosynthesis, respiration, and stomatal closure. Global climate change, in concert with these direct effects of CO{sub 2} on plants, could have a significant impact on both natural and agricultural ecosystems. Society's ability to prepare for, and respond to, such changes depends largely on the ability of climate and ecosystem researchers to provide predictions of regional level ecosystem responses with sufficient confidence and adequate lead time.

  9. The influence of cognitive processes on rural landholder responses to climate change.

    PubMed

    Rogers, Maureen; Curtis, Allan; Mazur, Nicki

    2012-11-30

    Global climate change modelling has identified south-east Australia as a 'hot spot' for more frequent climatic extremes. Rural landholders may be vulnerable to the risks climate change presents. Australia's rural landholders are considered highly adaptable, with a history of responding to climatic uncertainty and variability. Yet it is possible that some of their adaptations will not be effective in reducing vulnerability, and may have downstream impacts. Rural landholder decision making is complex, and this is one of a limited number of papers examining rural landholder responses to climate change and the factors influencing their decisions. Data were gathered using semi-structured interviews and a mail survey of rural landholders in two districts. Established socio-psychological scales were employed to measure beliefs, values and attitudes that are expected to shape landholder behaviour. Most of the rural landholders surveyed were not climate change 'deniers' with 70% agreeing that the climate is changing and that human activity is a major influence. Climate change was nominated as an influence on six adaptive behaviours by 50% or more of survey respondents. However, there were no significant relationships between belief in climate change and adaptive actions. Personal values and worldviews were found to be the most frequent factors linked to adaptive behaviour. These findings illustrate the complex nature of rural landholder decision making: suggesting that many rural landholders do not need convincing of the existence of climate change; and that efforts to motivate rural landholders to respond to climate change risks should be based on sound knowledge of their values and worldviews.

  10. The health co-benefits of climate change policies: doctors have a responsibility to future generations.

    PubMed

    Roberts, Ian

    2009-06-01

    Mitigating climate change presents unrivalled opportunities for improving public health. The policies that need to be implemented to reduce greenhouse gas emissions will also bring about substantial reductions in heart disease, cancer, obesity, diabetes, road deaths and injuries, and air pollution. The health benefits arise because climate change policies necessarily impact on two of the most important determinants of health: human nutrition and human movement. Although the health co-benefits of climate change policies are increasingly recognised by health professionals they are not widely appreciated by those responsible for policy. Because the existence of important health co-benefits will dramatically reduce the cost to society of taking strong action to mitigate climate change, failure to appreciate their importance could have serious environmental consequences. Health professionals have an urgent responsibility to ensure that the health benefits of environmental policies are understood by the public and by policymakers.

  11. Predicting responses to climate change requires all life-history stages.

    PubMed

    Zeigler, Sara

    2013-01-01

    In Focus: Radchuk, V., Turlure, C. & Schtickzelle, N. (2013) Each life stage matters: the importance of assessing response to climate change over the complete life cycle in butterflies. Journal of Animal Ecology, 82, 275-285. Population-level responses to climate change depend on many factors, including unexpected interactions among life history attributes; however, few studies examine climate change impacts over complete life cycles of focal species. Radchuk, Turlure & Schtickzelle () used experimental and modelling approaches to predict population dynamics for the bog fritillary butterfly under warming scenarios. Although they found that warming improved fertility and survival of all stages with one exception, populations were predicted to decline because overwintering larvae, whose survival declined with warming, were disproportionately important contributors to population growth. This underscores the importance of considering all life history stages in analyses of climate change's effects on population dynamics.

  12. Cold truths: how winter drives responses of terrestrial organisms to climate change.

    PubMed

    Williams, Caroline M; Henry, Hugh A L; Sinclair, Brent J

    2015-02-01

    Winter is a key driver of individual performance, community composition, and ecological interactions in terrestrial habitats. Although climate change research tends to focus on performance in the growing season, climate change is also modifying winter conditions rapidly. Changes to winter temperatures, the variability of winter conditions, and winter snow cover can interact to induce cold injury, alter energy and water balance, advance or retard phenology, and modify community interactions. Species vary in their susceptibility to these winter drivers, hampering efforts to predict biological responses to climate change. Existing frameworks for predicting the impacts of climate change do not incorporate the complexity of organismal responses to winter. Here, we synthesise organismal responses to winter climate change, and use this synthesis to build a framework to predict exposure and sensitivity to negative impacts. This framework can be used to estimate the vulnerability of species to winter climate change. We describe the importance of relationships between winter conditions and performance during the growing season in determining fitness, and demonstrate how summer and winter processes are linked. Incorporating winter into current models will require concerted effort from theoreticians and empiricists, and the expansion of current growing-season studies to incorporate winter.

  13. Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change

    PubMed Central

    Anderson, Jill T.; Inouye, David W.; McKinney, Amy M.; Colautti, Robert I.; Mitchell-Olds, Tom

    2012-01-01

    Anthropogenic climate change has already altered the timing of major life-history transitions, such as the initiation of reproduction. Both phenotypic plasticity and adaptive evolution can underlie rapid phenological shifts in response to climate change, but their relative contributions are poorly understood. Here, we combine a continuous 38 year field survey with quantitative genetic field experiments to assess adaptation in the context of climate change. We focused on Boechera stricta (Brassicaeae), a mustard native to the US Rocky Mountains. Flowering phenology advanced significantly from 1973 to 2011, and was strongly associated with warmer temperatures and earlier snowmelt dates. Strong directional selection favoured earlier flowering in contemporary environments (2010–2011). Climate change could drive this directional selection, and promote even earlier flowering as temperatures continue to increase. Our quantitative genetic analyses predict a response to selection of 0.2 to 0.5 days acceleration in flowering per generation, which could account for more than 20 per cent of the phenological change observed in the long-term dataset. However, the strength of directional selection and the predicted evolutionary response are likely much greater now than even 30 years ago because of rapidly changing climatic conditions. We predict that adaptation will likely be necessary for long-term in situ persistence in the context of climate change. PMID:22787021

  14. Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change.

    PubMed

    Anderson, Jill T; Inouye, David W; McKinney, Amy M; Colautti, Robert I; Mitchell-Olds, Tom

    2012-09-22

    Anthropogenic climate change has already altered the timing of major life-history transitions, such as the initiation of reproduction. Both phenotypic plasticity and adaptive evolution can underlie rapid phenological shifts in response to climate change, but their relative contributions are poorly understood. Here, we combine a continuous 38 year field survey with quantitative genetic field experiments to assess adaptation in the context of climate change. We focused on Boechera stricta (Brassicaeae), a mustard native to the US Rocky Mountains. Flowering phenology advanced significantly from 1973 to 2011, and was strongly associated with warmer temperatures and earlier snowmelt dates. Strong directional selection favoured earlier flowering in contemporary environments (2010-2011). Climate change could drive this directional selection, and promote even earlier flowering as temperatures continue to increase. Our quantitative genetic analyses predict a response to selection of 0.2 to 0.5 days acceleration in flowering per generation, which could account for more than 20 per cent of the phenological change observed in the long-term dataset. However, the strength of directional selection and the predicted evolutionary response are likely much greater now than even 30 years ago because of rapidly changing climatic conditions. We predict that adaptation will likely be necessary for long-term in situ persistence in the context of climate change.

  15. Watershed response and land energy feedbacks under climate change depend upon groundwater.

    SciTech Connect

    Maxwell, R M; Kollet, S J

    2008-06-10

    Human induced climate change will have a significant impact on the hydrologic cycle, creating changes in fresh water resources, land cover, and feedbacks that are difficult to characterize, which makes it an issue of global importance. Previous studies have not included subsurface storage in climate change simulations and feedbacks. A variably-saturated groundwater flow model with integrated overland flow and land surface model processes is used to examine the interplay between coupled water and energy processes under climate change conditions. A case study from the Southern Great Plains (SGP) USA, an important agricultural region that is susceptible to drought, is used as the basis for three scenarios simulations using a modified atmospheric forcing dataset to reflect predicted effects due to human-induced climate change. These scenarios include an increase in the atmospheric temperature and variations in rainfall amount and are compared to the present-day climate case. Changes in shallow soil saturation and groundwater levels are quantified as well as the corresponding energy fluxes at the land surface. Here we show that groundwater and subsurface lateral flow processes are critical in understanding hydrologic response and energy feedbacks to climate change and that certain regions are more susceptible to changes in temperature, while others to changes in precipitation. This groundwater control is critical for understanding recharge and drought processes, possible under future climate conditions.

  16. The transient response of land and ocean precipitation in changing climates

    NASA Astrophysics Data System (ADS)

    Mcinerney, D. J.; Moyer, E. J.

    2011-12-01

    Although much attention in climate modeling is focused on fine-scale regional predictions, we suggest that diagnostics based on near-global characteristics of climate models provide insight into the underlying physics that differentiates general circulation models (GCMs) and in understanding the robustness of climate forecasts in conditions of changing radiative forcing. We show that certain aspects of the response of precipitation in transient climates are robust across models, including models with very different convective parameterization schemes, suggesting that they reflect some fundamental aspect of the climate system. Climate models are in broad agreement that the hydrological cycle is enhanced in conditions of higher atmospheric CO2 concentration, i.e. that global precipitation increases with surface temperature, but recent studies have shown that in transient climates the change in precipitation per warming is suppressed relative to its equilibrium value (ΔP/ΔT<ΔPeq/ΔTeq). This suppression, which we term the "disequilibrium precipitation response", manifests within days to months of a change in radiative forcing and has been cited as important for impacts assessments. We show that the disequilibrium precipitation response occurs over the ocean but is not present over land (and so has minimal effect on human welfare). This distinction is robust across 12 of 13 climate models in the CMIP3 archive. These findings are consistent with the previously proposed mechanism for this effect: that ocean heat burial reduces transient warming at the ocean surface relative to the mid-troposphere, increasing atmospheric stability and thereby inhibiting convection. This lapse rate change appears to be a common feature of climate models, although the size of the disequilibrium precipitation effect varies between them. We show that the most common representation of the disequilibrium precipitation response in the literature can be reduced to a simple statement that

  17. Body size and activity times mediate mammalian responses to climate change.

    PubMed

    McCain, Christy M; King, Sarah R B

    2014-06-01

    Model predictions of extinction risks from anthropogenic climate change are dire, but still overly simplistic. To reliably predict at-risk species we need to know which species are currently responding, which are not, and what traits are mediating the responses. For mammals, we have yet to identify overarching physiological, behavioral, or biogeographic traits determining species' responses to climate change, but they must exist. To date, 73 mammal species in North America and eight additional species worldwide have been assessed for responses to climate change, including local extirpations, range contractions and shifts, decreased abundance, phenological shifts, morphological or genetic changes. Only 52% of those species have responded as expected, 7% responded opposite to expectations, and the remaining 41% have not responded. Which mammals are and are not responding to climate change is mediated predominantly by body size and activity times (phylogenetic multivariate logistic regressions, P < 0.0001). Large mammals respond more, for example, an elk is 27 times more likely to respond to climate change than a shrew. Obligate diurnal and nocturnal mammals are more than twice as likely to respond as mammals with flexible activity times (P < 0.0001). Among the other traits examined, species with higher latitudinal and elevational ranges were more likely to respond to climate change in some analyses, whereas hibernation, heterothermy, burrowing, nesting, and study location did not influence responses. These results indicate that some mammal species can behaviorally escape climate change whereas others cannot, analogous to paleontology's climate sheltering hypothesis. Including body size and activity flexibility traits into future extinction risk forecasts should substantially improve their predictive utility for conservation and management.

  18. Changes in Climate over the South China Sea and Adjacent Regions: Response to and Feedback on Global Climate Change

    NASA Astrophysics Data System (ADS)

    Yang, Song

    2016-04-01

    El Niño-Southern Oscillation and the Asian monsoon have experienced significant long-term changes in the past decades. These changes, together with other factors, have in turn led to large climate change signals over the South China Sea and adjacent regions including Southeast Asia, the western Pacific, and the tropical Indian Ocean. An attribution analysis of the feedback processes of these signals indicate the predominant importance of water vapor and cloud radiative feedbacks. Experiments with multiple earth system models also show that these regional climate change signals exert significant influences on global climate. The increases in atmospheric heating over Southeast Asia and sea surface temperature in the adjacent oceans in the past decades have weakened the Indian and African monsoons, led to a drying effect over East Asia, and generated wave-train patterns in both the northern and southern hemispheres, explaining several prominent climate features in and outside Southeast Asia.

  19. Evolutionary and plastic responses of freshwater invertebrates to climate change: realized patterns and future potential.

    PubMed

    Stoks, Robby; Geerts, Aurora N; De Meester, Luc

    2014-01-01

    We integrated the evidence for evolutionary and plastic trait changes in situ in response to climate change in freshwater invertebrates (aquatic insects and zooplankton). The synthesis on the trait changes in response to the expected reductions in hydroperiod and increases in salinity indicated little evidence for adaptive, plastic, and genetic trait changes and for local adaptation. With respect to responses to temperature, there are many studies on temporal trait changes in phenology and body size in the wild that are believed to be driven by temperature increases, but there is a general lack of rigorous demonstration whether these trait changes are genetically based, adaptive, and causally driven by climate change. Current proof for genetic trait changes under climate change in freshwater invertebrates stems from a limited set of common garden experiments replicated in time. Experimental thermal evolution experiments and common garden warming experiments associated with space-for-time substitutions along latitudinal gradients indicate that besides genetic changes, also phenotypic plasticity and evolution of plasticity are likely to contribute to the observed phenotypic changes under climate change in aquatic invertebrates. Apart from plastic and genetic thermal adjustments, also genetic photoperiod adjustments are widespread and may even dominate the observed phenological shifts.

  20. Responses of terrestrial ecosystems' net primary productivity to future regional climate change in China.

    PubMed

    Zhao, Dongsheng; Wu, Shaohong; Yin, Yunhe

    2013-01-01

    The impact of regional climate change on net primary productivity (NPP) is an important aspect in the study of ecosystems' response to global climate change. China's ecosystems are very sensitive to climate change owing to the influence of the East Asian monsoon. The Lund-Potsdam-Jena Dynamic Global Vegetation Model for China (LPJ-CN), a global dynamical vegetation model developed for China's terrestrial ecosystems, was applied in this study to simulate the NPP changes affected by future climate change. As the LPJ-CN model is based on natural vegetation, the simulation in this study did not consider the influence of anthropogenic activities. Results suggest that future climate change would have adverse effects on natural ecosystems, with NPP tending to decrease in eastern China, particularly in the temperate and warm temperate regions. NPP would increase in western China, with a concentration in the Tibetan Plateau and the northwest arid regions. The increasing trend in NPP in western China and the decreasing trend in eastern China would be further enhanced by the warming climate. The spatial distribution of NPP, which declines from the southeast coast to the northwest inland, would have minimal variation under scenarios of climate change.

  1. Evolution of plant–pollinator mutualisms in response to climate change

    PubMed Central

    Gilman, R Tucker; Fabina, Nicholas S; Abbott, Karen C; Rafferty, Nicole E

    2012-01-01

    Climate change has the potential to desynchronize the phenologies of interdependent species, with potentially catastrophic effects on mutualist populations. Phenologies can evolve, but the role of evolution in the response of mutualisms to climate change is poorly understood. We developed a model that explicitly considers both the evolution and the population dynamics of a plant–pollinator mutualism under climate change. How the populations evolve, and thus whether the populations and the mutualism persist, depends not only on the rate of climate change but also on the densities and phenologies of other species in the community. Abundant alternative mutualist partners with broad temporal distributions can make a mutualism more robust to climate change, while abundant alternative partners with narrow temporal distributions can make a mutualism less robust. How community composition and the rate of climate change affect the persistence of mutualisms is mediated by two-species Allee thresholds. Understanding these thresholds will help researchers to identify those mutualisms at highest risk owing to climate change. PMID:25568025

  2. Responses of Terrestrial Ecosystems’ Net Primary Productivity to Future Regional Climate Change in China

    PubMed Central

    Zhao, Dongsheng; Wu, Shaohong; Yin, Yunhe

    2013-01-01

    The impact of regional climate change on net primary productivity (NPP) is an important aspect in the study of ecosystems’ response to global climate change. China’s ecosystems are very sensitive to climate change owing to the influence of the East Asian monsoon. The Lund–Potsdam–Jena Dynamic Global Vegetation Model for China (LPJ-CN), a global dynamical vegetation model developed for China’s terrestrial ecosystems, was applied in this study to simulate the NPP changes affected by future climate change. As the LPJ-CN model is based on natural vegetation, the simulation in this study did not consider the influence of anthropogenic activities. Results suggest that future climate change would have adverse effects on natural ecosystems, with NPP tending to decrease in eastern China, particularly in the temperate and warm temperate regions. NPP would increase in western China, with a concentration in the Tibetan Plateau and the northwest arid regions. The increasing trend in NPP in western China and the decreasing trend in eastern China would be further enhanced by the warming climate. The spatial distribution of NPP, which declines from the southeast coast to the northwest inland, would have minimal variation under scenarios of climate change. PMID:23593325

  3. Projecting boreal bird responses to climate change: the signal exceeds the noise.

    PubMed

    Stralberg, D; Matsuoka, S M; Hamann, A; Bayne, E M; Sólymos, P; Schmiegelow, F K A; Wang, X; Cumming, S G; Song, S J

    2015-01-01

    For climate change projections to be useful, the magnitude of change must be understood relative to the magnitude of uncertainty in model predictions. We quantified the signal-to-noise ratio in projected distributional responses of boreal birds to climate change, and compared sources of uncertainty. Boosted regression tree models of abundance were generated for 80 boreal-breeding bird species using a comprehensive data set of standardized avian point counts (349,629 surveys at 122,202 unique locations) and 4-km climate, land use, and topographic data. For projected changes in abundance, we calculated signal-to-noise ratios and examined variance components related to choice of global climate model (GCM) and two sources of species distribution model (SDM) uncertainty: sampling error and variable selection. We also evaluated spatial, temporal, and interspecific variation in these sources of uncertainty. The mean signal-to-noise ratio across species increased over time to 2.87 by the end of the 21st century, with the signal greater than the noise for 88% of species. Across species, climate change represented the largest component (0.44) of variance in projected abundance change. Among sources of uncertainty evaluated, choice of GCM (mean variance component = 0.17) was most important for 66% of species, sampling error (mean= 0.12) for 29% of species, and variable selection (mean =0.05) for 5% of species. Increasing the number of GCMs from four to 19 had minor effects on these results. The range of projected changes and uncertainty characteristics across species differed markedly, reinforcing the individuality of species' responses to climate change and the challenges of one-size-fits-all approaches to climate change adaptation. We discuss the usefulness of different conservation approaches depending on the strength of the climate change signal relative to the noise, as well as the dominant source of prediction uncertainty.

  4. Simulating the response of glacial ice-sheets to past abrupt climate changes

    NASA Astrophysics Data System (ADS)

    Banderas, Rubén; Álvarez-Solas, Jorge; Robinson, Alexander; Montoya, Marisa

    2016-04-01

    Dansgaard-Oeschger (D/O) events were recurrent glacial abrupt climatic transitions between cold and warm conditions over Greenland with an approximate characteristic time of a thousand years. The uncertainties among the available sea level reconstructions hinder our understanding of the interactions between climate and global ice volume. In addition, only limited highly-resolved and continuous sea level records exist. Thus, the millennial time-scale response of glacial ice-sheets to past abrupt climate changes is not well known. Here, we use a hybrid ice sheet-ice shelf model in order to investigate the response of glacial ice-sheets to the influence of millennial-scale climate variability. An ensemble of simulations is performed by forcing the model with a wide range of time-varying climatologies derived from proxy data and from some of the currently available climate model simulations. The assessment of the resulting suite of transient simulations will contribute to constrain the inadequacies of sea level reconstructions in terms of amplitude and timing and will help to understand the implications of glacial abrupt climate changes in past sea level variability. Furthermore, our experiments could be useful to elucidate the mechanisms that involve the interactions between climate and ice sheets on millennial time scales, including future climate change.

  5. Assessing insect responses to climate change: What are we testing for? Where should we be heading?

    PubMed

    Andrew, Nigel R; Hill, Sarah J; Binns, Matthew; Bahar, Md Habibullah; Ridley, Emma V; Jung, Myung-Pyo; Fyfe, Chris; Yates, Michelle; Khusro, Mohammad

    2013-01-01

    To understand how researchers are tackling globally important issues, it is crucial to identify whether current research is comprehensive enough to make substantive predictions about general responses. We examined how research on climate change affecting insects is being assessed, what factors are being tested and the localities of studies, from 1703 papers published between 1985 and August 2012. Most published research (64%) is generated from Europe and North America and being dedicated to core data analysis, with 29% of the studies analysed dedicated to Lepidoptera and 22% Diptera: which are well above their contribution to the currently identified insect species richness (estimated at 13% and 17% respectively). Research publications on Coleoptera fall well short of their proportional contribution (19% of publications but 39% of insect species identified), and to a lesser extent so do Hemiptera, and Hymenoptera. Species specific responses to changes in temperature by assessing distribution/range shifts or changes in abundance were the most commonly used methods of assessing the impact of climate change on insects. Research on insects and climate change to date is dominated by manuscripts assessing butterflies in Europe, insects of economic and/or environmental concern in forestry, agriculture, and model organisms. The research on understanding how insects will respond to a rapidly changing climate is still in its infancy, but the current trends of publications give a good basis for how we are attempting to assess insect responses. In particular, there is a crucial need for broader studies of ecological, behavioural, physiological and life history responses to be addressed across a greater range of geographic locations, particularly Asia, Africa and Australasia, and in areas of high human population growth and habitat modification. It is still too early in our understanding of taxa responses to climate change to know if charismatic taxa, such as butterflies, or

  6. Gender differences in farmers' responses to climate change adaptation in Yongqiao District, China.

    PubMed

    Jin, Jianjun; Wang, Xiaomin; Gao, Yiwei

    2015-12-15

    This study examines the gender differences in farmers' responses to climate change adaption in Yongqiao District, China. A random sampling technique was used to select 220 household heads, while descriptive statistics and binary logit models were used to analyze the data obtained from the households. We determine that male and female respondents are not significantly different in their knowledge and perceptions of climate change, but there is a gender difference in adopting climate change adaptation measures. Male-headed households are more likely to adopt new technology for water conservation and to increase investment in irrigation infrastructure. The research also indicates that the adaptation decisions of male and female heads are influenced by different sets of factors. The findings of this research help to elucidate the determinants of climate change adaptation decisions for male and female-headed households and the strategic interventions necessary for effective adaptation.

  7. Climate Change: Basic Information

    MedlinePlus

    ... EPA United States Environmental Protection Agency Search Search Climate Change Share Facebook Twitter Google+ Pinterest Contact Us Climate Change: Basic Information On This Page Climate change is ...

  8. The Response of Vegetation Zonation in Rocky Mountain Ecotones to Climate Change

    NASA Astrophysics Data System (ADS)

    Foster, A.; Shuman, J. K.; Shugart, H. H., Jr.

    2014-12-01

    Mean annual temperatures in the western United States have increased in the last few decades, and during the 21st century, it is predicted that this warming trend will continue. This change in climate may create shifts in the optimal ranges of vegetation within the Rocky Mountains, requiring species migration. For a species at the top of a mountain there may be little room for upward migration. These forests are a crucial part of the US's carbon budget, thus it is important to analyze how climate change will affect the zonation and species composition of vegetation in Rocky Mountain landscapes. UVAFME is an individual-based gap model that simulates biomass and species composition of a forest. Originally developed for northeast China and applied across all of Russia, this model has accurately simulated diverse forests in a range of climates, as well as the response of these forests to climate change. UVAFME is first calibrated to several sites along the Colorado and Wyoming Rocky Mountains using species, soil, and climate data from the US Forest Service. The initial model output of biomass and species composition is tested against forest inventory data and expected forest type ecotone along an elevational gradient. The model is then run with a linear increase in temperature of 3°C over 200 years, corresponding to the A1B IPPC climate scenario. These results are compared to current forest inventory data and to model runs without climate change. We project that with climate change species ranges will shift up the mountain, leading to an increase in the deciduous species Populus tremuloides, and a decrease in coniferous species at high elevations. These results are an important step in evaluating the response of Rocky Mountain vegetation to climate change and will help predict the future of these crucial ecosystems.

  9. The response of vegetation on the Andean flank in western Amazonia to Pleistocene climate change.

    PubMed

    Cárdenas, Macarena L; Gosling, William D; Sherlock, Sarah C; Poole, Imogen; Pennington, R Toby; Mothes, Patricia

    2011-02-25

    A reconstruction of past environmental change from Ecuador reveals the response of lower montane forest on the Andean flank in western Amazonia to glacial-interglacial global climate change. Radiometric dating of volcanic ash indicates that deposition occurred ~324,000 to 193,000 years ago during parts of Marine Isotope Stages 9, 7, and 6. Fossil pollen and wood preserved within organic sediments suggest that the composition of the forest altered radically in response to glacial-interglacial climate change. The presence of Podocarpus macrofossils ~1000 meters below the lower limit of their modern distribution indicates a relative cooling of at least 5°C during glacials and persistence of wet conditions. Interglacial deposits contain thermophilic palms suggesting warm and wet climates. Hence, global temperature change can radically alter vegetation communities and biodiversity in this region.

  10. Agroecology: Implications for plant response to climate change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural ecosystems (agroecosystems) represent the balance between the physiological responses of plants and plant canopies and the energy exchanges. Rising temperature and increasing CO2 coupled with an increase in variability of precipitation will create a complex set of interactions on plant ...

  11. Modeling phenological responses of Inner Mongolia grassland species to regional climate change

    NASA Astrophysics Data System (ADS)

    Li, Qiuyue; Xu, Lin; Pan, Xuebiao; Zhang, Lizhen; Li, Chao; Yang, Ning; Qi, Jiaguo

    2016-01-01

    Plant phenology is an important indicator of ecosystem dynamics and services. However, little is understood of its responses to climate change, particularly in ecologically sensitive regions such as arid and semi-arid grasslands. In this study, we analyzed a long-term climate and plant phenology dataset of thirteen grassland species in the Inner Mongolia of China, collected during 1981-2011 time period, to understand temporal patterns of plant phenology and then developed a simple chilling-adjusted physiological model to simulate phenological responses of each plant species to climate change. The results of regional climate analysis suggested that the minimum temperature was increasing at a greater rate than mean and maximum temperatures in the region and the climate variability had significant impacts on vegetation phenology. Chilling from an early stage in spring in general slowed down the phenological development in most plant species, although there were some inconsistencies among sites and years. Specifically, we found lower precipitation during green-up resulted in delayed flowering, which may attribute to plant self-adjustment strategy to respond changes in climate. These climate dependent phenologies were characterized by a simple physiological model. Scenario analysis suggested that by 2071-2100 significant shifts in plant phenology are expected in Inner Mongolia, including as much as 6-11 days earlier in green-up time and 8-11 days shorter in growing season due to earlier senescence.

  12. Widespread rapid reductions in body size of adult salamanders in response to climate change.

    PubMed

    Caruso, Nicholas M; Sears, Michael W; Adams, Dean C; Lips, Karen R

    2014-06-01

    Reduction in body size is a major response to climate change, yet evidence in globally imperiled amphibians is lacking. Shifts in average population body size could indicate either plasticity in the growth response to changing climates through changes in allocation and energetics, or through selection for decreased size where energy is limiting. We compared historic and contemporary size measurements in 15 Plethodon species from 102 populations (9450 individuals) and found that six species exhibited significant reductions in body size over 55 years. Biophysical models, accounting for actual changes in moisture and air temperature over that period, showed a 7.1-7.9% increase in metabolic expenditure at three latitudes but showed no change in annual duration of activity. Reduced size was greatest at southern latitudes in regions experiencing the greatest drying and warming. Our results are consistent with a plastic response of body size to climate change through reductions in body size as mediated through increased metabolism. These rapid reductions in body size over the past few decades have significance for the susceptibility of amphibians to environmental change, and relevance for whether adaptation can keep pace with climate change in the future.

  13. Corticosterone responses and personality in birds: Individual variation and the ability to cope with environmental changes due to climate change.

    PubMed

    Cockrem, John F

    2013-09-01

    Birds can respond to an internal or external stimulus with activation of the HPA axis and secretion of corticosterone. There is considerable individual variation in corticosterone responses, and individual responses can be very different from the mean response for a group of birds. Corticosterone responses and behavioural responses to environmental stimuli are determined by individual characteristics called personality. It is proposed that birds with low corticosterone responses and proactive personalities are likely to be more successful (have greater fitness) in constant or predictable conditions, whilst birds with reactive personalities and high corticosterone responses will be more successful in changing or unpredictable conditions. The relationship between corticosterone responses and fitness thus depends on the prevailing environmental conditions, so birds with either low or high corticosterone responses can have the greatest fitness and be most successful, but in different situations. It is also proposed that birds with reactive personalities and high corticosterone responses will be better able to cope with environmental changes due to climate change than birds with proactive personalities and relatively low corticosterone responses. Phenotypic plasticity in corticosterone responses can be quantified using a reaction norm approach, and reaction norms can be used to determine the degree of plasticity in corticosterone responses of individual birds, and mean levels of plasticity in responses of species of birds. Individual corticosterone responses and personality, and reaction norms for corticosterone responses, can in future be used to predict the ability of birds to cope with environmental changes due to climate change.

  14. Predicting Climate Change Using Response Theory: Global Averages and Spatial Patterns

    NASA Astrophysics Data System (ADS)

    Lucarini, Valerio; Ragone, Francesco; Lunkeit, Frank

    2016-04-01

    The provision of accurate methods for predicting the climate response to anthropogenic and natural forcings is a key contemporary scientific challenge. Using a simplified and efficient open-source general circulation model of the atmosphere featuring O(10^5 ) degrees of freedom, we show how it is possible to approach such a problem using nonequilibrium statistical mechanics. Response theory allows one to practically compute the time-dependent measure supported on the pullback attractor of the climate system, whose dynamics is non-autonomous as a result of time-dependent forcings. We propose a simple yet efficient method for predicting—at any lead time and in an ensemble sense—the change in climate properties resulting from increase in the concentration of CO_2 using test perturbation model runs. We assess strengths and limitations of the response theory in predicting the changes in the globally averaged values of surface temperature and of the yearly total precipitation, as well as in their spatial patterns. The quality of the predictions obtained for the surface temperature fields is rather good, while in the case of precipitation a good skill is observed only for the global average. We also show how it is possible to define accurately concepts like the inertia of the climate system or to predict when climate change is detectable given a scenario of forcing. Our analysis can be extended for dealing with more complex portfolios of forcings and can be adapted to treat, in principle, any climate observable. Our conclusion is that climate change is indeed a problem that can be effectively seen through a statistical mechanical lens, and that there is great potential for optimizing the current coordinated modelling exercises run for the preparation of the subsequent reports of the Intergovernmental Panel for Climate Change.

  15. Predicting Climate Change Using Response Theory: Global Averages and Spatial Patterns

    NASA Astrophysics Data System (ADS)

    Lucarini, Valerio; Ragone, Francesco; Lunkeit, Frank

    2017-02-01

    The provision of accurate methods for predicting the climate response to anthropogenic and natural forcings is a key contemporary scientific challenge. Using a simplified and efficient open-source general circulation model of the atmosphere featuring O(10^5) degrees of freedom, we show how it is possible to approach such a problem using nonequilibrium statistical mechanics. Response theory allows one to practically compute the time-dependent measure supported on the pullback attractor of the climate system, whose dynamics is non-autonomous as a result of time-dependent forcings. We propose a simple yet efficient method for predicting—at any lead time and in an ensemble sense—the change in climate properties resulting from increase in the concentration of CO_2 using test perturbation model runs. We assess strengths and limitations of the response theory in predicting the changes in the globally averaged values of surface temperature and of the yearly total precipitation, as well as in their spatial patterns. The quality of the predictions obtained for the surface temperature fields is rather good, while in the case of precipitation a good skill is observed only for the global average. We also show how it is possible to define accurately concepts like the inertia of the climate system or to predict when climate change is detectable given a scenario of forcing. Our analysis can be extended for dealing with more complex portfolios of forcings and can be adapted to treat, in principle, any climate observable. Our conclusion is that climate change is indeed a problem that can be effectively seen through a statistical mechanical lens, and that there is great potential for optimizing the current coordinated modelling exercises run for the preparation of the subsequent reports of the Intergovernmental Panel for Climate Change.

  16. The atmospheric heat engine response to climate change

    NASA Astrophysics Data System (ADS)

    Pauluis, O. M.

    2014-12-01

    Moist convection is characterized by complex interactions between dynamics and thermodynamics. As air parcels within the atmosphere, they experience multiple thermodynamic transformations, such as compression and expansion, diabatic heating and cooling, condensation and mixing. These transformations correspond to those of a heat engine that produces kinetic energy while transporting energy from a warm source to a colder sink. This atmospheric heat engine is however directly affected by moist processes. First, falling precipitation acts as a break on the circulation by dissipating a significant amount of kinetic energy. Second, evaporation of unsaturated water and diffusion of water vapor are irrevesible processes that also reduce the amount of work that can be produced. An important challenge is to quantify the impacts that these two effects have on the generation of kinetic energy. Here, I will introduce a new technique - the Mean Air Flow As Lagragian Dynamics Approximation (MAFALDA) - that can be used to systematically analyze the thermodynamic behavior of complex atmospheric flows. This approach relies on sorting the upward mass transport in terms of the equivalent potential temperature of the air parcels to obtain an isentropic streamfunction. This streamfunction is then used to determine the thermodynamic evolution of air parcels as they move through the atmosphere. This approach is applied to analyze how convective systems would behave in a warmer climate. It is shown that an increase in atmospheric temperature lead to a significant increase of the amount of kinetic energy that is produced per unit of mass of air transported. At the same time, the total generation of kinetic energy is only slightly affected. Taken together, these findings imply that, in a warming atmosphere, the number of intense convective events will be reduced, while their intensity should increase. I will also discuss the new possibility of systematically studying the thermodynamic

  17. U.S. and Chinese Scientists Discuss the Ocean's Response to Climate Change

    NASA Astrophysics Data System (ADS)

    DiMarco, Steven F.; Wu, Dexing

    2009-04-01

    Climate Change and Coastal Oceans Workshop; Qingdao, China, 26-28 October 2008; A 3-day workshop was held in China to discuss coastal ocean processes, the biogeochemistry of large river-dominated ocean margins (RiOMars), and climate change and variability studies; to formulate a strategy for a joint venture to assess how climate change has affected coastal oceans; and to predict the ocean's response to future change scenarios. The workshop, which brought together experts from Texas A&M University (TAMU) and five Chinese universities and institutes—Ocean University of China (OUC), Institute of Oceanology of the Chinese Academy of Sciences (IOCAS), Xiamen University (XU), Tianjin University of Science and Technology (TUST), and East China Normal University (ECNU), highlighted the similarities in topics important to North America and Asia. As indicated by the 2007 Intergovernmental Panel on Climate Change report, climate change imposes far-reaching challenges on society. This workshop focused on two large, river-dominated coastal environments: the Mississippi-Atchafalaya system and the Changjiang estuary. Numerous parallels exist between the impacts of the Changjiang on the East China Sea and the Mississippi on the Gulf of Mexico. These RiOMars are ideal for examining the impacts of climate change because they are characterized by large, heavily populated watersheds in two countries that are important in determining the human carbon footprint. The hydrology, biodiversity, and geochemical characteristics of these systems have been greatly influenced by land use and regional-scale climate change. Workshop participants reviewed current progress in understanding physical and biogeochemical processes controlling the two RiOMars, brainstormed challenges in developing a multidisciplinary system capable of assessing and predicting impacts of global climate change on these RiOMars, and identified a multifaceted approach to address these challenges.

  18. Holocene Climate and Catchment-Specific Responses to Climate Change, Recorded in a Transect of Icelandic Lakes

    NASA Astrophysics Data System (ADS)

    Geirsdottir, A.; Axford, Y.; Florian, C. R.; Miller, G. H.; Crump, S. E.; Larsen, D. J.; Olafsdóttir, S.; Thordarson, T.; Blair, C.

    2015-12-01

    Holocene paleoclimate reconstructions from the northern North Atlantic landmasses exhibit greater responses to climate forcings than other Arctic regions presumably tied to changes in North Atlantic ocean-atmosphere circulation. Here we present an overview of high-resolution, precisely dated and PSV synchronized Holocene lake sediment records on Iceland, where we employ diverse proxies at sites spanning a broad modern climate gradient, from the presently glaciated highlands to the coastal lowlands. Despite substantial differences in catchment specific processes that influence each lake record, the multi-proxy reconstructions over the last 10 ka show remarkably consistent trends, especially throughout the mid to late Holocene cooling related to the slow decrease in summer insolation. Of particular note are highly non-linear abrupt departures of centennial scale summer cold periods such as at 5.5 ka, ~4.2 ka; ~3.0 ka, ~1.5 ka, 0.7 ka, and 0.2 ka. Some of the abrupt shifts may be related to Icelandic volcanism influencing catchment stability, but the lack of a full recovery to pre-existing values after the perturbation suggests increased periglacial activity, decreased vegetation cover, and glacier growth in Iceland. That these shifts reflect regional climate changes is also supported by contemporaneous shifts documented elsewhere in the northern North Atlantic region. Although timing and abruptness of these shifts is similar between our Icelandic lake records, their magnitude can differ substantially. Regional-scale factors such as volcanism likely modulate climatic responses to radiative forcing; and at the same time, local watershed characteristics like vegetation cover and soil properties produce site-specific environmental responses to climate change. Our Icelandic lake records provide opportunities to observe the precise timing of local climate shifts and corresponding environmental responses, and thus to disentangle these effects.

  19. Responses to historical climate change identify contemporary threats to diversity in Dodecatheon.

    PubMed

    Oberle, Brad; Schaal, Barbara A

    2011-04-05

    Anthropogenic climate change may threaten many species with extinction. However, species at risk today survived global climate change in recent geological history. Describing how habitat tracking and adaptation allowed species to survive warming since the end of the Pleistocene can indicate the relative importance of dispersal and natural selection during climate change. By taking this historical perspective, we can identify how contemporary climate change could interfere with these mechanisms and threaten the most vulnerable species. We focused on a group of closely related plant species in the genus Dodecatheon (Primulaceae) in eastern North America. Two rare species (Dodecatheon amethystinum and Dodecatheon frenchii) that are endemic to patchy cool cliffs may be glacial relicts whose ranges constricted following the last glacial maximum. Alternatively, these species may be extreme ecotypes of a single widespread species (Dodecatheon meadia) that quickly adapted to microclimatic differences among habitats. We test support for these alternative scenarios by combining ecophysiological and population genetic data at a regional scale. An important ecophysiological trait distinguishes rare species from D. meadia, but only a few northern populations of D. amethystinum are genetically distinctive. These relict populations indicate that habitat tracking did occur with historical climate change. However, relatively stronger evidence for isolation by distance and admixture suggests that local adaptation and genetic introgression have been at least as important. The complex response of Dodecatheon to historical climate change suggests that contemporary conservation efforts should accommodate evolutionary processes, in some cases by restoring genetic connectivity between ecologically differentiated populations.

  20. Central European vegetation response to abrupt climate change at 8.2 ka

    NASA Astrophysics Data System (ADS)

    Tinner, Willy; Lotter, André F.

    2001-06-01

    Oxygen isotope records show a major climatic reversal at 8.2 ka in Greenland and Europe. Annually laminated sediments from two lakes in Switzerland and Germany were sampled contiguously to assess the response of European vegetation to climate change ca. 8.2 ka with time resolution and precision comparable to those of the Greenland ice cores. The pollen assemblages show pronounced and immediate responses (0 20 yr) of terrestrial vegetation to the climatic change at 8.2 ka. A sudden collapse of Corylus avellana (hazel) was accompanied by the rapid expansion of Pinus (pine), Betula (birch), and Tilia (linden), and by the invasion of Fagus silvatica (beech) and Abies alba (fir). Vegetational changes suggest that climatic cooling reduced drought stress, allowing more drought-sensitive and taller growing species to out-compete Corylus avellana by forming denser forest canopies. Climate cooling at 8.2 ka and the immediate reorganization of terrestrial ecosystems has gone unrecognized by previous pollen studies. On the basis of our data we conclude that the early Holocene high abundance of C. avellana in Europe was climatically caused, and we question the conventional opinion that postglacial expansions of F. silvatica and A. alba were controlled by low migration rates rather than by climate. The close connection between climatic change and vegetational response at a subcontinental scale implies that forecasted global warming may trigger rapid collapses, expansions, and invasions of tree species.

  1. Functional foods and urban agriculture: two responses to climate change-related food insecurity.

    PubMed

    Dixon, Jane M; Donati, Kelly J; Pike, Lucy L; Hattersley, Libby

    2009-01-01

    Affluent diets have negative effects on the health of the population and the environment. Moreover, the ability of industrialised agricultural ecosystems to continue to supply these diets is threatened by the anticipated consequences of climate change. By challenging the ongoing supply the diets of affluent countries, climate change provides a population and environmental health opportunity. This paper contrasts two strategies for dealing with climate change-related food insecurity. Functional foods are being positioned as one response because they are considered a hyper-efficient mechanism for supplying essential micronutrients. An alternative response is civic and urban agriculture. Rather than emphasising increased economic or nutritional efficiencies, civic agriculture presents a holistic approach to food security that is more directly connected to the economic, environmental and social factors that affect diet and health.

  2. Response of a rocky intertidal ecosystem engineer and community dominant to climate change.

    PubMed

    Menge, Bruce A; Chan, Francis; Lubchenco, Jane

    2008-02-01

    To evaluate how climate change might impact a competitively dominant ecological engineer, we analysed the growth response of the mussel Mytilus californianus to climate patterns [El Niño-Southern Oscillation, Pacific Decadal Oscillation (PDO)]. Mussels grew faster during warmer climatic events. Growth was initially faster on a more productive cape compared to a less productive cape. Growth rates at the two capes merged in 2002, coincidentally with a several year-long shift from warm to cool PDO conditions. To determine the mechanism underlying this response, we examined growth responses to intertidal sea and air temperatures, phytoplankton, sea level and tide height. Together, water temperature (32%) and food (12.5%) explained 44.5% of the variance in mussel growth; contributions of other factors were not significant. In turn, water temperature and food respond to climate-driven variation in upwelling and other, unknown factors. Understanding responses of ecosystem engineers to climate change will require knowing direct thermal effects and indirect effects of factors altered by temperature change.

  3. Mangroves Response to Climate Change: A Review of Recent Findings on Mangrove Extension and Distribution.

    PubMed

    Godoy, Mario D P; de Lacerda, Luiz D

    2015-01-01

    Mangroves function as a natural coastline protection for erosion and inundation, providing important environmental services. Due to their geographical distribution at the continent-ocean interface, the mangrove habitat may suffer heavy impacts from global climate change, maximized by local human activities occurring in a given coastal region. This review analyzed the literature published over the last 25 years, on the documented response of mangroves to environmental change caused by global climate change, taking into consideration 104 case studies and predictive modeling, worldwide. Most studies appeared after the year 2000, as a response to the 1997 IPCC report. Although many reports showed that the world's mangrove area is decreasing due to direct anthropogenic pressure, several others, however, showed that in a variety of habitats mangroves are expanding as a response to global climate change. Worldwide, pole ward migration is extending the latitudinal limits of mangroves due to warmer winters and decreasing the frequency of extreme low temperatures, whereas in low-lying coastal plains, mangroves are migrating landward due to sea level rise, as demonstrated for the NE Brazilian coast. Taking into consideration climate change alone, mangroves in most areas will display a positive response. In some areas however, such as low-lying oceanic islands, such as in the Pacific and the Caribbean, and constrained coastlines, such as the SE Brazilian coast, mangroves will most probably not survive.

  4. Stream nitrate responses to hydrological forcing and climate change in northern forests of the USA (Invited)

    NASA Astrophysics Data System (ADS)

    Sebestyen, S. D.; Campbell, J. L.; Shanley, J. B.; Pourmokhtarian, A.; Driscoll, C. T.; Boyer, E. W.

    2009-12-01

    There is a need to understand how climate variability and change affect nutrient delivery to surface waters. We analyzed long-term records of hydrochemical data to explore how the forms, concentrations, and loadings of nitrogen in forest streams throughout the northern USA vary with catchment wetness. We considered projected changes in growing season length and precipitation patterns to simulate future climate scenarios and to assess how stream nitrate loading responds to hydrological forcing under different climate change scenarios. At the Sleepers River Research Watershed in northeastern Vermont, model results suggest that stream nutrient loadings over the next century will respond to hydrological forcing during climate change that affects the amount of water that flows through the landscape. For example, growing season stream water yield (+20%) and nitrate loadings (+57%) increase in response to greater amounts of precipitation (+28%) during a warmer climate with a longer growing season (+43 days). We further explore these findings by presenting model results from a biogeochemical process model (PnET-BGC) to separate changes that are due to biogeochemical cycling and the effects of hydrological forcing. Our findings suggest that nitrogen cycling and transport will intensify during anthropogenic climate forcing, thereby affecting the timing and magnitude of annual stream nutrient loadings in northern forests of the USA.

  5. Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change.

    PubMed

    Ernakovich, Jessica G; Hopping, Kelly A; Berdanier, Aaron B; Simpson, Rodney T; Kachergis, Emily J; Steltzer, Heidi; Wallenstein, Matthew D

    2014-10-01

    Global climate change is already having significant impacts on arctic and alpine ecosystems, and ongoing increases in temperature and altered precipitation patterns will affect the strong seasonal patterns that characterize these temperature-limited systems. The length of the potential growing season in these tundra environments is increasing due to warmer temperatures and earlier spring snow melt. Here, we compare current and projected climate and ecological data from 20 Northern Hemisphere sites to identify how seasonal changes in the physical environment due to climate change will alter the seasonality of arctic and alpine ecosystems. We find that although arctic and alpine ecosystems appear similar under historical climate conditions, climate change will lead to divergent responses, particularly in the spring and fall shoulder seasons. As seasonality changes in the Arctic, plants will advance the timing of spring phenological events, which could increase plant nutrient uptake, production, and ecosystem carbon (C) gain. In alpine regions, photoperiod will constrain spring plant phenology, limiting the extent to which the growing season can lengthen, especially if decreased water availability from earlier snow melt and warmer summer temperatures lead to earlier senescence. The result could be a shorter growing season with decreased production and increased nutrient loss. These contrasting alpine and arctic ecosystem responses will have cascading effects on ecosystems, affecting community structure, biotic interactions, and biogeochemistry.

  6. Plant response to climate change varies with topography, interactions with neighbors, and ecotype.

    PubMed

    Liancourt, Pierre; Spence, Laura A; Song, Daniel S; Lkhagva, Ariuntsetseg; Sharkhuu, Anarmaa; Boldgiv, Bazartseren; Helliker, Brent R; Petraitis, Peter S; Casper, Brenda B

    2013-02-01

    Predicting the future of any given species represents an unprecedented challenge in light of the many environmental and biological factors that affect organismal performance and that also interact with drivers of global change. In a three-year experiment set in the Mongolian steppe, we examined the response of the common grass Festuca lenensis to manipulated temperature and water while controlling for topographic variation, plant-plant interactions, and ecotypic differentiation. Plant survival and growth responses to a warmer, drier climate varied within the landscape. Response to simulated increased precipitation occurred only in the absence of neighbors, demonstrating that plant-plant interactions can supersede the effects of climate change. F. lenensis also showed evidence of local adaptation in populations that were only 300 m apart. Individuals from the steep and dry upper slope showed a higher stress/drought tolerance, whereas those from the more productive lower slope showed a higher biomass production and a greater ability to cope with competition. Moreover, the response of this species to increased precipitation was ecotype specific, with water addition benefiting only the least stress-tolerant ecotype from the lower slope origin. This multifaceted approach illustrates the importance of placing climate change experiments within a realistic ecological and evolutionary framework. Existing sources of variation impacting plant performance may buffer or obscure climate change effects.

  7. An Investigation of Science Educators' View of Roles and Responsibilities for Climate Change Education

    ERIC Educational Resources Information Center

    McGinnis, J. Randy; McDonald, Chris; Hestness, Emily; Breslyn, Wayne

    2016-01-01

    This exploratory study investigates what science educators from differing groups (outside of higher education--informal and formal (K-12) and inside of higher education--content and pedagogy experts) believe are the roles and responsibilities (and what actions these might involve) in climate change education for: 1) their group of educators, and…

  8. Decreasing litter size of marmots over time: a life history response to climate change?

    PubMed

    Tafani, Marion; Cohas, Aurélie; Bonenfant, Christophe; Gaillard, Jean-Michel; Allainé, Dominique

    2013-03-01

    The way that plants and animals respond to climate change varies widely among species, but the biological features underlying their actual response remains largely unknown. Here, from a 20-year monitoring study, we document a continuous decrease in litter size of the Alpine marmot (Marmota marmota) since 1990. To cope with harsh winters, Alpine marmots hibernate in burrows and their reproductive output should depend more on spring conditions compared to animals that are active year-round. However, we show that litter size decreased over time because of the general thinning of winter snow cover that has been repeatedly reported to occur in the Alps over the same period, despite a positive effect of an earlier snowmelt in spring. Our results contrast markedly with a recent study on North American yellow-bellied marmots, suggesting that between-species differences in life histories can lead to opposite responses to climate change, even between closely related species. Our case study therefore demonstrates the idiosyncratic nature of the response to climate change and emphasizes, even for related species with similar ecological niches, that it may be hazardous to extrapolate life history responses to climate change from one species to another.

  9. Response of grassland biomass production to simulated climate change and clipping along an elevation gradient.

    PubMed

    Carlyle, Cameron N; Fraser, Lauchlan H; Turkington, Roy

    2014-03-01

    Changes in rainfall and temperature regimes are altering plant productivity in grasslands worldwide, and these climate change factors are likely to interact with grassland disturbances, particularly grazing. Understanding how plant production responds to both climate change and defoliation, and how this response varies among grassland types, is important for the long-term sustainability of grasslands. For 4 years, we manipulated temperature [ambient and increased using open-top chambers (OTC)], water (ambient, reduced using rainout shelters and increased using hand watering) and defoliation (clipped, and unclipped) in three grassland types along an elevation gradient. We monitored plant cover and biomass and found that OTC reduced biomass by 15%, but clipping and water treatments interacted with each other and their effects varied in different grassland types. For example, total biomass did not decline in the higher elevation grasslands due to clipping, and water addition mitigated the effects of clipping on subordinate grasses in the lower grasslands. The response of total biomass was driven by dominant plant species while subordinate grasses and forbs showed more variable responses. Overall, our results demonstrate that biomass in the highest elevation grassland was least effected by the treatments and the response of biomass tended to be dependent on interactions between climate change treatments and defoliation. Together, the results suggest that ecosystem function of these grasslands under altered climate patterns will be dependent on site-specific management.

  10. Genetic response to rapid climate change: it's seasonal timing that matters.

    PubMed

    Bradshaw, W E; Holzapfel, C M

    2008-01-01

    The primary nonbiological result of recent rapid climate change is warming winter temperatures, particularly at northern latitudes, leading to longer growing seasons and new seasonal exigencies and opportunities. Biological responses reflect selection due to the earlier arrival of spring, the later arrival of fall, or the increasing length of the growing season. Animals from rotifers to rodents use the high reliability of day length to time the seasonal transitions in their life histories that are crucial to fitness in temperate and polar environments: when to begin developing in the spring, when to reproduce, when to enter dormancy or when to migrate, thereby exploiting favourable temperatures and avoiding unfavourable temperatures. In documented cases of evolutionary (genetic) response to recent, rapid climate change, the role of day length (photoperiodism) ranges from causal to inhibitory; in no case has there been demonstrated a genetic shift in thermal optima or thermal tolerance. More effort should be made to explore the role of photoperiodism in genetic responses to climate change and to rule out the role of photoperiod in the timing of seasonal life histories before thermal adaptation is assumed to be the major evolutionary response to climate change.

  11. Climate sensitivity runs and regional hydrologic modeling for predicting the response of the greater Florida Everglades ecosystem to climate change.

    PubMed

    Obeysekera, Jayantha; Barnes, Jenifer; Nungesser, Martha

    2015-04-01

    It is important to understand the vulnerability of the water management system in south Florida and to determine the resilience and robustness of greater Everglades restoration plans under future climate change. The current climate models, at both global and regional scales, are not ready to deliver specific climatic datasets for water resources investigations involving future plans and therefore a scenario based approach was adopted for this first study in restoration planning. We focused on the general implications of potential changes in future temperature and associated changes in evapotranspiration, precipitation, and sea levels at the regional boundary. From these, we developed a set of six climate and sea level scenarios, used them to simulate the hydrologic response of the greater Everglades region including agricultural, urban, and natural areas, and compared the results to those from a base run of current conditions. The scenarios included a 1.5 °C increase in temperature, ±10 % change in precipitation, and a 0.46 m (1.5 feet) increase in sea level for the 50-year planning horizon. The results suggested that, depending on the rainfall and temperature scenario, there would be significant changes in water budgets, ecosystem performance, and in water supply demands met. The increased sea level scenarios also show that the ground water levels would increase significantly with associated implications for flood protection in the urbanized areas of southeastern Florida.

  12. Complex life cycles and the responses of insects to climate change.

    PubMed

    Kingsolver, Joel G; Woods, H Arthur; Buckley, Lauren B; Potter, Kristen A; MacLean, Heidi J; Higgins, Jessica K

    2011-11-01

    Many organisms have complex life cycles with distinct life stages that experience different environmental conditions. How does the complexity of life cycles affect the ecological and evolutionary responses of organisms to climate change? We address this question by exploring several recent case studies and synthetic analyses of insects. First, different life stages may inhabit different microhabitats, and may differ in their thermal sensitivities and other traits that are important for responses to climate. For example, the life stages of Manduca experience different patterns of thermal and hydric variability, and differ in tolerance to high temperatures. Second, life stages may differ in their mechanisms for adaptation to local climatic conditions. For example, in Colias, larvae in different geographic populations and species adapt to local climate via differences in optimal and maximal temperatures for feeding and growth, whereas adults adapt via differences in melanin of the wings and in other morphological traits. Third, we extend a recent analysis of the temperature-dependence of insect population growth to demonstrate how changes in temperature can differently impact juvenile survival and adult reproduction. In both temperate and tropical regions, high rates of adult reproduction in a given environment may not be realized if occasional, high temperatures prevent survival to maturity. This suggests that considering the differing responses of multiple life stages is essential to understand the ecological and evolutionary consequences of climate change.

  13. Elevation-dependent responses of tree mast seeding to climate change over 45 years

    PubMed Central

    Allen, Robert B; Hurst, Jennifer M; Portier, Jeanne; Richardson, Sarah J

    2014-01-01

    We use seed count data from a New Zealand mono-specific mountain beech forest to test for decadal trends in seed production along an elevation gradient in relation to changes in climate. Seedfall was collected (1965 to 2009) from seed trays located on transect lines at fixed elevations along an elevation gradient (1020 to 1370 m). We counted the number of seeds in the catch of each tray, for each year, and determined the number of viable seeds. Climate variables were obtained from a nearby (<2 km) climate station (914-m elevation). Variables were the sum or mean of daily measurements, using periods within each year known to correlate with subsequent interannual variation in seed production. To determine trends in mean seed production, at each elevation, and climate variables, we used generalized least squares (GLS) regression. We demonstrate a trend of increasing total and viable seed production, particularly at higher elevations, which emerged from marked interannual variation. Significant changes in four seasonal climate variables had GLS regression coefficients consistent with predictions of increased seed production. These variables subsumed the effect of year in GLS regressions with a greater influence on seed production with increasing elevation. Regression models enforce a view that the sequence of climate variables was additive in their influence on seed production throughout a reproductive cycle spanning more than 2 years and including three summers. Models with the most support always included summer precipitation as the earliest variable in the sequence followed by summer maximum daily temperatures. We interpret this as reflecting precipitation driven increases in soil nutrient availability enhancing seed production at higher elevations rather than the direct effects of climate, stand development or rising atmospheric CO2 partial pressures. Greater sensitivity of tree seeding at higher elevations to changes in climate reveals how ecosystem responses to

  14. Effects of local adaptation and interspecific competition on species' responses to climate change.

    PubMed

    Bocedi, Greta; Atkins, Katherine E; Liao, Jishan; Henry, Roslyn C; Travis, Justin M J; Hellmann, Jessica J

    2013-09-01

    Local adaptation and species interactions have been shown to affect geographic ranges; therefore, we need models of climate impact that include both factors. To identify possible dynamics of species when including these factors, we ran simulations of two competing species using an individual-based, coupled map-lattice model using a linear climatic gradient that varies across latitude and is warmed over time. Reproductive success is governed by an individual's adaptation to local climate as well as its location relative to global constraints. In exploratory experiments varying the strength of adaptation and competition, competition reduces genetic diversity and slows range change, although the two species can coexist in the absence of climate change and shift in the absence of competitors. We also found that one species can drive the other to extinction, sometimes long after climate change ends. Weak selection on local adaptation and poor dispersal ability also caused surfing of cooler-adapted phenotypes from the expanding margin backwards, causing loss of warmer-adapted phenotypes. Finally, geographic ranges can become disjointed, losing centrally-adapted genotypes. These initial results suggest that the interplay between local adaptation and interspecific competition can significantly influence species' responses to climate change, in a way that demands future research.

  15. Uncertainty of the hydrological response to climate change conditions; 605 basins, 3 hydrological models, 5 climate models, 5 hydrological variables

    NASA Astrophysics Data System (ADS)

    Melsen, Lieke; Mizukami, Naoki; Newman, Andrew; Clark, Martyn; Teuling, Adriaan

    2016-04-01

    Many studies investigated the effect of a changing climate on the hydrological response of a catchment and uncertainty of the effect coming from hydrologic modelling (e.g., forcing, hydrologic model structures, and parameters). However, most past studies used only a single or a small number of catchments. To go beyond the case-study, and to assess the uncertainty involved in modelling the hydrological impact of climate change more comprehensively, we studied 605 basins over a wide range of climate regimes throughout the contiguous USA. We used three different widely-used hydrological models (VIC, HBV, SAC), which we forced with five distinct climate model outputs. The hydrological models have been run for a base period (1986-2008) for which observations were available, and for a future period (2070-2099). Instead of calibrating each hydrological model for each basin, the model has been run with a parameter sample (varying from 1600 to 1900 samples dependent on the number of free parameters in the model). Five hydrological states and fluxes were stored; discharge, evapotranspiration, soil moisture, SWE and snow melt, and 15 different metrics and signatures have been obtained for each model run. With the results, we conduct a sensitivity analysis over the change in signatures from the future period compared to the base period. In this way, we can identify the parameters that are responsible for certain projected changes, and identify the processes responsible for this change. By using three different models, in which VIC is most distinctive in including explicit vegetation parameters, we can compare different process representations and the effect on the projected hydrological change.

  16. Climate change as a three-part ethical problem: a response to Jamieson and Gardiner.

    PubMed

    Kingston, Ewan

    2014-12-01

    Dale Jamieson has claimed that conventional human-directed ethical concepts are an inadequate means for accurately understanding our duty to respond to climate change. Furthermore, he suggests that a responsibility to respect nature can instead provide the appropriate framework with which to understand such a duty. Stephen Gardiner has responded by claiming that climate change is a clear case of ethical responsibility, but the failure of institutions to respond to it creates a (not unprecedented) political problem. In assessing the debate between Gardiner and Jamieson, I develop an analysis which shows a three-part structure to the problem of climate change, in which the problem Gardiner identifies is only one of three sub-problems of climate change. This analysis highlights difficulties with Jamieson's argument that the duty of respect for nature is necessary for a full understanding of climate ethics, and suggests how a human-directed approach based on the three-part analysis can avoid Jamieson's charge of inadequacy.

  17. Unexpected patterns of vegetation distribution response and climate change velocities in cold ecosystems

    NASA Astrophysics Data System (ADS)

    Macias-Fauria, M.; Johnson, E. A.; Forbes, B. C.; Willis, K. J.

    2013-12-01

    In cold ecosystems such as sub-alpine forests and forest-tundra, vegetation geographical ranges are expected to expand upward/northward in a warmer world. Such moving fronts have been predicted to 1) decrease the remaining alpine area in mountain systems, increasing fragmentation and extinction risk of many alpine taxa, and 2) fundamentally modify the energy budget of newly afforested areas, enhancing further regional warming due to a reduction in albedo. The latter is particularly significant in the forest-tundra, where changes over large regions can have regional-to-global effects on climate. An integral part of the expected range shifts is their velocity. Whereas range shifts across thermal gradients can theoretically be fast in an elevation gradient relative to climate velocity (i.e. rate of climate change) due to the short distances involved, large lags are expected over the flat forest-tundra. Mountain regions have thus been identified as buffer areas where species can track climate change, in opposition to flat terrain where climate velocity is faster. Thus, much shorter time-to-equilibrium are expected for advancing upslope sub-alpine forest than for advancing northern boreal forest. We contribute to this discussion by showing two mechanisms that might largely alter the above predictions in opposite directions: 1) In mountain regions, terrain heterogeneity not only allows for slower climate velocities, but slope processes largely affect the advance of vegetation. Indeed, such mechanisms can potentially reduce the climatic signal in vegetation distribution limits (e.g. treeline), precluding it from migrating to climatically favourable areas - since these areas occur in geologically unfavourable ones. Such seemingly local control to species range shifts was found to reduce the climate-sensitive treeline areas in the sub-alpine forest of the Canadian Rocky Mountains to ~5% at a landscape scale, fundamentally altering the predictions of vegetation response to

  18. Dynamic response of land use and river nutrient concentration to long-term climatic changes.

    PubMed

    Bussi, Gianbattista; Janes, Victoria; Whitehead, Paul G; Dadson, Simon J; Holman, Ian P

    2017-07-15

    The combined indirect and direct impacts of land use change and climate change on river water quality were assessed. A land use allocation model was used to evaluate the response of the catchment land use to long-term climatic changes. Its results were used to drive a water quality model and assess the impact of climatic alterations on freshwater nitrate and phosphorus concentrations. Climatic projections were employed to estimate the likelihood of such response. The River Thames catchment (UK) was used as a case-study. If land use is considered as static parameter, according to the model results, climate change alone should reduce the average nitrate concentration, although just by a small amount, by the 2050s in the Lower Thames, due to reduced runoff (and lower export of nitrate from agricultural soils) and increased instream denitrification, and should increase the average phosphorus concentration by 12% by the 2050s in the Lower Thames, due to a reduction of the effluent dilution capacity of the river flow. However, the results of this study also show that these long-term climatic alterations are likely to lead to a reduction in the arable land in the Thames, replaced by improved grassland, due to a decrease in agriculture profitability in the UK. Taking into account the dynamic co-evolution of land use with climate, the average nitrate concentration is expected to be decreased by around 6% by the 2050s in both the upper and the lower Thames, following the model results, and the average phosphorus concentration increased by 13% in the upper Thames and 5% in the lower Thames. On the long term (2080s), nitrate is expected to decrease by 9% and 8% (upper and lower Thames respectively) and phosphorus not to change in the upper thames and increase by 5% in the lower Thames.

  19. Global climatic change

    SciTech Connect

    Houghton, R.A.; Woodwell, G.M.

    1989-04-01

    This paper reviews the climatic effects of trace gases such as carbon dioxide and methane. It discusses the expected changes from the increases in trace gases and the extent to which the expected changes can be found in the climate record and in the retreat of glaciers. The use of ice cores in correlating atmospheric composition and climate is discussed. The response of terrestrial ecosystems as a biotic feedback is discussed. Possible responses are discussed, including reduction in fossil-fuel use, controls on deforestation, and reforestation. International aspects, such as the implications for developing nations, are addressed.

  20. The dependence of wintertime Mediterranean precipitation on the atmospheric circulation response to climate change

    NASA Astrophysics Data System (ADS)

    Zappa, Giuseppe; Hoskins, Brian; Shepherd, Ted

    2016-04-01

    Climate models indicate a future wintertime precipitation reduction in the Mediterranean region which may have large socio-economic impacts. However, there is large uncertainty in the amplitude of the projected precipitation reduction and this limits the possibility to inform effective adaptation planning. We analyse CMIP5 climate model output to quantify the role of atmospheric circulation in the precipitation change and the time of emergence of the Mediterranean precipitation response. It is found that a simple circulation index, i.e. the 850 hPa zonal wind (U850) in North Africa, well describes the year to year fluctuations in the area-averaged Mediterranean precipitation, with positive (i.e. westerly) U850 anomalies in North Africa being associated with positive precipitation anomalies. Under climate change, U850 in North Africa and the Mediterranean precipitation are both projected to decrease consistently with the relationship found in the inter-annual variability. This enables us to estimate that about 85% of the CMIP5 mean precipitation response and 80% of the variance in the inter-model spread are related to changes in the atmospheric circulation. In contrast, there is no significant correlation between the mean precipitation response and the global-mean surface warming across the models. We also find that the precipitation response to climate change might already emerge from internal variability by 2025 relative to 1960-1990 according to the climate models with a large circulation response. This implies that it might soon be possible to test model projections using observations. Finally, some of the mechanisms which are important for the Mediterranean circulation response in the CMIP5 models are discussed.

  1. Soil respiration response to climate change in Pacific Northwest prairies is mediated by a regional Mediterranean climate gradient.

    PubMed

    Reynolds, Lorien L; Johnson, Bart R; Pfeifer-Meister, Laurel; Bridgham, Scott D

    2015-01-01

    Soil respiration is expected to increase with rising global temperatures but the degree of response may depend on soil moisture and other local factors. Experimental climate change studies from single sites cannot discern whether an observed response is site-dependent or generalizable. To deconvolve site-specific vs. regional climatic controls, we examined soil respiration for 18 months along a 520 km climate gradient in three Pacific Northwest, USA prairies that represents increasingly severe Mediterranean conditions from north to south. At each site we implemented a fully factorial combination of 2.5-3 °C warming and 20% added precipitation intensity. The response of soil respiration to warming was driven primarily by the latitudinal climate gradient and not site-specific factors. Warming increased respiration at all sites during months when soil moisture was not limiting. However, these gains were offset by reductions in respiration during seasonal transitions and summer drought due to lengthened periods of soil moisture limitation. The degree of this offset varied along the north-south climate gradient such that in 2011 warming increased cumulative annual soil respiration 28.6% in the northern site, 13.5% in the central site, and not at all in the southern site. Precipitation also stimulated soil respiration more frequently in the south, consistent with an increased duration of moisture limitation. The best predictors of soil respiration in nonlinear models were the Normalized Difference Vegetation Index (NDVI), antecedent soil moisture, and temperature but these models provided biased results at high and low soil respiration. NDVI was an effective integrator of climate and site differences in plant productivity in terms of their combined effects on soil respiration. Our results suggest that soil moisture limitation can offset the effect of warming on soil respiration, and that greater growing-season moisture limitation would constrain cumulative annual

  2. Modelling climate change responses in tropical forests: similar productivity estimates across five models, but different mechanisms and responses

    NASA Astrophysics Data System (ADS)

    Rowland, L.; Harper, A.; Christoffersen, B. O.; Galbraith, D. R.; Imbuzeiro, H. M. A.; Powell, T. L.; Doughty, C.; Levine, N. M.; Malhi, Y.; Saleska, S. R.; Moorcroft, P. R.; Meir, P.; Williams, M.

    2014-11-01

    Accurately predicting the response of Amazonia to climate change is important for predicting changes across the globe. However, changes in multiple climatic factors simultaneously may result in complex non-linear responses, which are difficult to predict using vegetation models. Using leaf and canopy scale observations, this study evaluated the capability of five vegetation models (CLM3.5, ED2, JULES, SiB3, and SPA) to simulate the responses of canopy and leaf scale productivity to changes in temperature and drought in an Amazonian forest. The models did not agree as to whether gross primary productivity (GPP) was more sensitive to changes in temperature or precipitation. There was greater model-data consistency in the response of net ecosystem exchange to changes in temperature, than in the response to temperature of leaf area index (LAI), net photosynthesis (An) and stomatal conductance (gs). Modelled canopy scale fluxes are calculated by scaling leaf scale fluxes to LAI, and therefore in this study similarities in modelled ecosystem scale responses to drought and temperature were the result of inconsistent leaf scale and LAI responses among models. Across the models, the response of An to temperature was more closely linked to stomatal behaviour than biochemical processes. Consequently all the models predicted that GPP would be higher if tropical forests were 5 °C colder, closer to the model optima for gs. There was however no model consistency in the response of the An-gs relationship when temperature changes and drought were introduced simultaneously. The inconsistencies in the An-gs relationships amongst models were caused by to non-linear model responses induced by simultaneous drought and temperature change. To improve the reliability of simulations of the response of Amazonian rainforest to climate change the mechanistic underpinnings of vegetation models need more complete validation to improve accuracy and consistency in the scaling of processes from

  3. Limited hydrologic response to Pleistocene climate change in deep vadose zones — Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Paces, James B.; Neymark, Leonid A.; Whelan, Joseph F.; Wooden, Joseph L.; Lund, Steven P.; Marshall, Brian D.

    2010-12-01

    Understanding the movement of water through thick vadose zones, especially on time scales encompassing long-term climate change, is increasingly important as societies utilize semi-arid environments for both water resources and sites viewed as favorable for long-term disposal or storage of hazardous waste. Hydrologic responses to Pleistocene climate change within a deep vadose zone in the eastern Mojave Desert at Yucca Mountain, Nevada, were evaluated by uranium-series dating of finely layered hyalitic opal using secondary ion mass spectrometry. Opal is present within cm-thick secondary hydrogenic mineral crusts coating floors of lithophysal cavities in fractured volcanic rocks at depths of 200 to 300 m below land surface. Uranium concentrations in opal fluctuate systematically between 5 and 550 μg/g. Age-calibrated profiles of uranium concentration correlate with regional climate records over the last 300,000 years and produce time-series spectral peaks that have distinct periodicities of 100- and 41-ka, consistent with planetary orbital parameters. These results indicate that the chemical compositions of percolating solutions varied in response to near-surface, climate-driven processes. However, slow (micrometers per thousand years), relatively uniform growth rates of secondary opal and calcite deposition spanning several glacial-interglacial climate cycles imply that water fluxes in the deep vadose zone remained low and generally buffered from the large fluctuations in available surface moisture during different climates.

  4. Limited hydrologic response to Pleistocene climate change in deep vadose zones - Yucca Mountain, Nevada

    USGS Publications Warehouse

    Paces, J.B.; Neymark, L.A.; Whelan, J.F.; Wooden, J.L.; Lund, S.P.; Marshall, B.D.

    2010-01-01

    Understanding the movement of water through thick vadose zones, especially on time scales encompassing long-term climate change, is increasingly important as societies utilize semi-arid environments for both water resources and sites viewed as favorable for long-term disposal or storage of hazardous waste. Hydrologic responses to Pleistocene climate change within a deep vadose zone in the eastern Mojave Desert at Yucca Mountain, Nevada, were evaluated by uranium-series dating of finely layered hyalitic opal using secondary ion mass spectrometry. Opal is present within cm-thick secondary hydrogenic mineral crusts coating floors of lithophysal cavities in fractured volcanic rocks at depths of 200 to 300 m below land surface. Uranium concentrations in opal fluctuate systematically between 5 and 550 μg/g. Age-calibrated profiles of uranium concentration correlate with regional climate records over the last 300,000 years and produce time-series spectral peaks that have distinct periodicities of 100- and 41-ka, consistent with planetary orbital parameters. These results indicate that the chemical compositions of percolating solutions varied in response to near-surface, climate-driven processes. However, slow (micrometers per thousand years), relatively uniform growth rates of secondary opal and calcite deposition spanning several glacial–interglacial climate cycles imply that water fluxes in the deep vadose zone remained low and generally buffered from the large fluctuations in available surface moisture during different climates.

  5. Catchment Sensitivity to Changing Climate Conditions: Does the Landscape Control Hydrological Responses?

    NASA Astrophysics Data System (ADS)

    Quesada Montano, B.; Teutschbein, C.; Grabs, T.; Karlsen, R.; Laudon, H.; Bishop, K. H.

    2015-12-01

    It has long been recognized that streamflow-generating processes are not only dependent on climatic conditions, but also affected by physical catchment properties such as topography, geology, soils and land cover. We hypothesize that these landscape characteristics do not only lead to highly variable hydrologic behavior of rather similar catchments under the same stationary climate conditions, but that they also play a fundamental role for the sensitivity of a catchment to a changing climate. A multi-model ensemble based on 15 regional climate models was combined with a multi-catchment approach to explore the hydrologic sensitivity of 14 partially nested and rather similar catchments in Northern Sweden to changing climate conditions and the importance of small-scale spatial variability. Current (1981-2010) and future (2061-2090) streamflow was simulated with the HBV model. As expected, projected increases in temperature and precipitation resulted in increased total available streamflow, with lower spring and summer flows, but substantially higher winter streamflow. Furthermore, significant changes in flow durations with lower chances of both high and low flows can be expected in boreal Sweden in the future. This overall trend in projected streamflow pattern changes was comparable among the analyzed catchments while the magnitude of change differed considerably. This suggests that catchments belonging to the same region can show distinctly different degrees of hydrological responses to the same external climate change signal. We reason that differences in spatially distributed physical catchment properties at smaller scales are not only of great importance for current streamflow behavior, but also play a major role as first-order control for the sensitivity of catchments to changing climate conditions.

  6. Quantifying the hydrological responses to climate change in an intact forested small watershed in southern China

    USGS Publications Warehouse

    Zhou, Guo-Yi; Wei, Xiaohua; Wu, Yiping; Liu, Shu-Guang; Huang, Yuhui; Yan, Junhua; Zhang, Deqiang; Zhang, Qianmei; Liu, Juxiu; Meng, Ze; Wang, Chunlin; Chu, Guowei; Liu, Shizhong; Tang, Xu-Li; Liu, Xiaodong

    2011-01-01

    Responses of hydrological processes to climate change are key components in the Intergovernmental Panel for Climate Change (IPCC) assessment. Understanding these responses is critical for developing appropriate mitigation and adaptation strategies for sustainable water resources management and protection of public safety. However, these responses are not well understood and little long-term evidence exists. Herein, we show how climate change, specifically increased air temperature and storm intensity, can affect soil moisture dynamics and hydrological variables based on both long-term observation and model simulations using the Soil and Water Assessment Tool (SWAT) in an intact forested watershed (the Dinghushan Biosphere Reserve) in Southern China. Our results show that, although total annual precipitation changed little from 1950 to 2009, soil moisture decreased significantly. A significant decline was also found in the monthly 7-day low flow from 2000 to 2009. However, the maximum daily streamflow in the wet season and unconfined groundwater tables have significantly increased during the same 10-year period. The significant decreasing trends on soil moisture and low flow variables suggest that the study watershed is moving towards drought-like condition. Our analysis indicates that the intensification of rainfall storms and the increasing number of annual no-rain days were responsible for the increasing chance of both droughts and floods. We conclude that climate change has indeed induced more extreme hydrological events (e.g. droughts and floods) in this watershed and perhaps other areas of Southern China. This study also demonstrated usefulness of our research methodology and its possible applications on quantifying the impacts of climate change on hydrology in any other watersheds where long-term data are available and human disturbance is negligible.

  7. Quantifying the hydrological responses to climate change in an intact forested small watershed in Southern China

    USGS Publications Warehouse

    Zhou, G.; Wei, X.; Wu, Y.; Huang, Y.; Yan, J.; Zhang, Dongxiao; Zhang, Q.; Liu, J.; Meng, Z.; Wang, C.; Chu, G.; Liu, S.; Tang, X.; Liu, Xiuying

    2011-01-01

    Responses of hydrological processes to climate change are key components in the Intergovernmental Panel for Climate Change (IPCC) assessment. Understanding these responses is critical for developing appropriate mitigation and adaptation strategies for sustainable water resources management and protection of public safety. However, these responses are not well understood and little long-term evidence exists. Herein, we show how climate change, specifically increased air temperature and storm intensity, can affect soil moisture dynamics and hydrological variables based on both long-term observation and model simulations using the Soil and Water Assessment Tool (SWAT) in an intact forested watershed (the Dinghushan Biosphere Reserve) in Southern China. Our results show that, although total annual precipitation changed little from 1950 to 2009, soil moisture decreased significantly. A significant decline was also found in the monthly 7-day low flow from 2000 to 2009. However, the maximum daily streamflow in the wet season and unconfined groundwater tables have significantly increased during the same 10-year period. The significant decreasing trends on soil moisture and low flow variables suggest that the study watershed is moving towards drought-like condition. Our analysis indicates that the intensification of rainfall storms and the increasing number of annual no-rain days were responsible for the increasing chance of both droughts and floods. We conclude that climate change has indeed induced more extreme hydrological events (e.g. droughts and floods) in this watershed and perhaps other areas of Southern China. This study also demonstrated usefulness of our research methodology and its possible applications on quantifying the impacts of climate change on hydrology in any other watersheds where long-term data are available and human disturbance is negligible. ?? 2011 Blackwell Publishing Ltd.

  8. Change in atmospheric mineral aerosols in response to climate: Last glacial period, preindustrial, modern, and doubled carbon dioxide climates

    USGS Publications Warehouse

    Mahowald, N.M.; Muhs, D.R.; Levis, S.; Rasch, P.J.; Yoshioka, M.; Zender, C.S.; Luo, C.

    2006-01-01

    Desert dust simulations generated by the National Center for Atmospheric Research's Community Climate System Model for the current climate are shown to be consistent with present day satellite and deposition data. The response of the dust cycle to last glacial maximum, preindustrial, modern, and doubled-carbon dioxide climates is analyzed. Only natural (non-land use related) dust sources are included in this simulation. Similar to some previous studies, dust production mainly responds to changes in the source areas from vegetation changes, not from winds or soil moisture changes alone. This model simulates a +92%, +33%, and -60% change in dust loading for the last glacial maximum, preindustrial, and doubled-carbon dioxide climate, respectively, when impacts of carbon dioxide fertilization on vegetation are included in the model. Terrestrial sediment records from the last glacial maximum compiled here indicate a large underestimate of deposition in continental regions, probably due to the lack of simulation of glaciogenic dust sources. In order to include the glaciogenic dust sources as a first approximation, we designate the location of these sources, and infer the size of the sources using an inversion method that best matches the available data. The inclusion of these inferred glaciogenic dust sources increases our dust flux in the last glacial maximum from 2.1 to 3.3 times current deposition. Copyright 2006 by the American Geophysical Union.

  9. Consistent response of vegetation dynamics to recent climate change in tropical mountain regions.

    PubMed

    Krishnaswamy, Jagdish; John, Robert; Joseph, Shijo

    2014-01-01

    Global climate change has emerged as a major driver of ecosystem change. Here, we present evidence for globally consistent responses in vegetation dynamics to recent climate change in the world's mountain ecosystems located in the pan-tropical belt (30°N-30°S). We analyzed decadal-scale trends and seasonal cycles of vegetation greenness using monthly time series of satellite greenness (Normalized Difference Vegetation Index) and climate data for the period 1982-2006 for 47 mountain protected areas in five biodiversity hotspots. The time series of annual maximum NDVI for each of five continental regions shows mild greening trends followed by reversal to stronger browning trends around the mid-1990s. During the same period we found increasing trends in temperature but only marginal change in precipitation. The amplitude of the annual greenness cycle increased with time, and was strongly associated with the observed increase in temperature amplitude. We applied dynamic models with time-dependent regression parameters to study the time evolution of NDVI-climate relationships. We found that the relationship between vegetation greenness and temperature weakened over time or was negative. Such loss of positive temperature sensitivity has been documented in other regions as a response to temperature-induced moisture stress. We also used dynamic models to extract the trends in vegetation greenness that remain after accounting for the effects of temperature and precipitation. We found residual browning and greening trends in all regions, which indicate that factors other than temperature and precipitation also influence vegetation dynamics. Browning rates became progressively weaker with increase in elevation as indicated by quantile regression models. Tropical mountain vegetation is considered sensitive to climatic changes, so these consistent vegetation responses across widespread regions indicate persistent global-scale effects of climate warming and associated moisture

  10. Climate Change Responses of Hydrologic Flowpaths in Mountainous and Polar Regions

    NASA Astrophysics Data System (ADS)

    Godsey, S.; Gooseff, M. N.; Kirchner, J. W.; Tague, C.

    2009-12-01

    Hydrologic processes in mountainous and polar regions may respond differently to changes in the catchment energy budget that are anticipated to occur as climate changes. In the Sierra Nevada Mountains of California, warmer winter temperatures are expected to shift the phase of precipitation from snow to rain across a range of elevations. We examine whether this phase change will alter subsequent low flow regimes during the dry Mediterranean summers of this region. We show that changes in the phase of precipitation as well as changes in evapotranspiration losses from vegetation are key drivers in the hydrologic response of these mountains to climate change. In northern Alaska, the depth of the active layer above permafrost evolves over space and time, affecting subsurface flowpaths. Large changes in water or energy flows may lead to catastrophic loss of ground ice, known as thermokarst development. Thermokarst features can deliver large pulses of sediment and nutrients to lakes and streams, and further alter the hydrology because they expose previously insulated permafrost to the ground surface, and thus higher heat fluxes. Here we show the spatial and temporal development of the active layer inside of and outside of thermokarst features over the course of the warming season. We explore the importance of changes in subsurface topography as a driver of hydrologic response to climate change in arctic tundra catchments.

  11. Changing crops in response to climate: virtual Nang Rong, Thailand in an agent based simulation.

    PubMed

    Malanson, George P; Verdery, Ashton M; Walsh, Stephen J; Sawangdee, Yothin; Heumann, Benjamin W; McDaniel, Philip M; Frizzelle, Brian G; Williams, Nathalie E; Yao, Xiaozheng; Entwisle, Barbara; Rindfuss, Ronald R

    2014-09-01

    The effects of extended climatic variability on agricultural land use were explored for the type of system found in villages of northeastern Thailand. An agent based model developed for the Nang Rong district was used to simulate land allotted to jasmine rice, heavy rice, cassava, and sugar cane. The land use choices in the model depended on likely economic outcomes, but included elements of bounded rationality in dependence on household demography. The socioeconomic dynamics are endogenous in the system, and climate changes were added as exogenous drivers. Villages changed their agricultural effort in many different ways. Most villages reduced the amount of land under cultivation, primarily with reduction in jasmine rice, but others did not. The variation in responses to climate change indicates potential sensitivity to initial conditions and path dependence for this type of system. The differences between our virtual villages and the real villages of the region indicate effects of bounded rationality and limits on model applications.

  12. Changing crops in response to climate: virtual Nang Rong, Thailand in an agent based simulation

    PubMed Central

    Malanson, George P.; Verdery, Ashton M.; Walsh, Stephen J.; Sawangdee, Yothin; Heumann, Benjamin W.; McDaniel, Philip M.; Frizzelle, Brian G.; Williams, Nathalie E.; Yao, Xiaozheng; Entwisle, Barbara; Rindfuss, Ronald R.

    2014-01-01

    The effects of extended climatic variability on agricultural land use were explored for the type of system found in villages of northeastern Thailand. An agent based model developed for the Nang Rong district was used to simulate land allotted to jasmine rice, heavy rice, cassava, and sugar cane. The land use choices in the model depended on likely economic outcomes, but included elements of bounded rationality in dependence on household demography. The socioeconomic dynamics are endogenous in the system, and climate changes were added as exogenous drivers. Villages changed their agricultural effort in many different ways. Most villages reduced the amount of land under cultivation, primarily with reduction in jasmine rice, but others did not. The variation in responses to climate change indicates potential sensitivity to initial conditions and path dependence for this type of system. The differences between our virtual villages and the real villages of the region indicate effects of bounded rationality and limits on model applications. PMID:25061240

  13. Potential Changes in Disease Patterns and Pharmaceutical Use in Response to Climate Change

    PubMed Central

    Redshaw, Clare H.; Stahl-Timmins, Will M.; Fleming, Lora E.; Davidson, Iain; Depledge, Michael H.

    2013-01-01

    As climate change alters environmental conditions, the incidence and global patterns of human diseases are changing. These modifications to disease profiles and the effects upon human pharmaceutical usage are discussed. Climate-related environmental changes are associated with a rise in the incidence of chronic diseases already prevalent in the Northern Hemisphere, for example, cardiovascular disease and mental illness, leading to greater use of associated heavily used Western medications. Sufferers of respiratory diseases may exhibit exacerbated symptoms due to altered environmental conditions (e.g., pollen). Respiratory, water-borne, and food-borne toxicants and infections, including those that are vector borne, may become more common in Western countries, central and eastern Asia, and across North America. As new disease threats emerge, substantially higher pharmaceutical use appears inevitable, especially of pharmaceuticals not commonly employed at present (e.g., antiprotozoals). The use of medications for the treatment of general symptoms (e.g., analgesics) will also rise. These developments need to be viewed in the context of other major environmental changes (e.g., industrial chemical pollution, biodiversity loss, reduced water and food security) as well as marked shifts in human demographics, including aging of the population. To identify, prevent, mitigate, and adapt to potential threats, one needs to be aware of the major factors underlying changes in the use of pharmaceuticals and their subsequent release, deliberately or unintentionally, into the environment. This review explores the likely consequences of climate change upon the use of medical pharmaceuticals in the Northern Hemisphere. PMID:23909463

  14. What Is a Mild Winter? Regional Differences in Within-Species Responses to Climate Change.

    PubMed

    Vetter, Sebastian G; Ruf, Thomas; Bieber, Claudia; Arnold, Walter

    2015-01-01

    Climate change is known to affect ecosystems globally, but our knowledge of its impact on large and widespread mammals, and possibly population-specific responses is still sparse. We investigated large-scale and long-term effects of climate change on local population dynamics using the wild boar (Sus scrofa L.) as a model species. Our results show that population increases across Europe are strongly associated with increasingly mild winters, yet with region-specific threshold temperatures for the onset of exponential growth. Additionally, we found that abundant availability of critical food resources, e.g. beech nuts, can outweigh the negative effects of cold winters on population growth of wild boar. Availability of beech nuts is highly variable and highest in years of beech mast which increased in frequency since 1980, according to our data. We conclude that climate change drives population growth of wild boar directly by relaxing the negative effect of cold winters on survival and reproduction, and indirectly by increasing food availability. However, region-specific responses need to be considered in order to fully understand a species' demographic response to climate change.

  15. What Is a Mild Winter? Regional Differences in Within-Species Responses to Climate Change

    PubMed Central

    Vetter, Sebastian G.; Ruf, Thomas; Bieber, Claudia; Arnold, Walter

    2015-01-01

    Climate change is known to affect ecosystems globally, but our knowledge of its impact on large and widespread mammals, and possibly population-specific responses is still sparse. We investigated large-scale and long-term effects of climate change on local population dynamics using the wild boar (Sus scrofa L.) as a model species. Our results show that population increases across Europe are strongly associated with increasingly mild winters, yet with region-specific threshold temperatures for the onset of exponential growth. Additionally, we found that abundant availability of critical food resources, e.g. beech nuts, can outweigh the negative effects of cold winters on population growth of wild boar. Availability of beech nuts is highly variable and highest in years of beech mast which increased in frequency since 1980, according to our data. We conclude that climate change drives population growth of wild boar directly by relaxing the negative effect of cold winters on survival and reproduction, and indirectly by increasing food availability. However, region-specific responses need to be considered in order to fully understand a species’ demographic response to climate change. PMID:26158846

  16. Regional and seasonal response of a West Nile virus vector to climate change

    PubMed Central

    Morin, Cory W.; Comrie, Andrew C.

    2013-01-01

    Climate change will affect the abundance and seasonality of West Nile virus (WNV) vectors, altering the risk of virus transmission to humans. Using downscaled general circulation model output, we calculate a WNV vector's response to climate change across the southern United States using process-based modeling. In the eastern United States, Culex quinquefasciatus response to projected climate change displays a latitudinal and elevational gradient. Projected summer population depressions as a result of increased immature mortality and habitat drying are most severe in the south and almost absent further north; extended spring and fall survival is ubiquitous. Much of California also exhibits a bimodal pattern. Projected onset of mosquito season is delayed in the southwestern United States because of extremely dry and hot spring and summers; however, increased temperature and late summer and fall rains extend the mosquito season. These results are unique in being a broad-scale calculation of the projected impacts of climate change on a WNV vector. The results show that, despite projected widespread future warming, the future seasonal response of C. quinquefasciatus populations across the southern United States will not be homogeneous, and will depend on specific combinations of local and regional conditions. PMID:24019459

  17. Regional and seasonal response of a West Nile virus vector to climate change.

    PubMed

    Morin, Cory W; Comrie, Andrew C

    2013-09-24

    Climate change will affect the abundance and seasonality of West Nile virus (WNV) vectors, altering the risk of virus transmission to humans. Using downscaled general circulation model output, we calculate a WNV vector's response to climate change across the southern United States using process-based modeling. In the eastern United States, Culex quinquefasciatus response to projected climate change displays a latitudinal and elevational gradient. Projected summer population depressions as a result of increased immature mortality and habitat drying are most severe in the south and almost absent further north; extended spring and fall survival is ubiquitous. Much of California also exhibits a bimodal pattern. Projected onset of mosquito season is delayed in the southwestern United States because of extremely dry and hot spring and summers; however, increased temperature and late summer and fall rains extend the mosquito season. These results are unique in being a broad-scale calculation of the projected impacts of climate change on a WNV vector. The results show that, despite projected widespread future warming, the future seasonal response of C. quinquefasciatus populations across the southern United States will not be homogeneous, and will depend on specific combinations of local and regional conditions.

  18. Assessing Forest Carbon Response to Climate Change and Disturbances Using Long-term Hydro-climatic Observations and Simulations

    NASA Astrophysics Data System (ADS)

    Trettin, C.; Dai, Z.; Amatya, D. M.

    2014-12-01

    Long-term climatic and hydrologic observations on the Santee Experimental Forest in the lower coastal plain of South Carolina were used to estimate long-term changes in hydrology and forest carbon dynamics for a pair of first-order watersheds. Over 70 years of climate data indicated that warming in this forest area in the last decades was faster than the global mean; 35+ years of hydrologic records showed that forest ecosystem succession three years following Hurricane Hugo caused a substantial change in the ratio of runoff to precipitation. The change in this relationship between the paired watersheds was attributed to altered evapotranspiration processes caused by greater abundance of pine in the treatment watershed and regeneration of the mixed hardwood-pine forest on the reference watershed. The long-term records and anomalous observations are highly valuable for reliable calibration and validation of hydrological and biogeochemical models capturing the effects of climate variability. We applied the hydrological model MIKESHE that showed that runoff and water table level are sensitive to global warming, and that the sustained warming trends can be expected to decrease stream discharge and lower the mean water table depth. The spatially-explicit biogeochemical model Forest-DNDC, validated using biomass measurements from the watersheds, was used to assess carbon dynamics in response to high resolution hydrologic observation data and simulation results. The simulations showed that the long-term spatiotemporal carbon dynamics, including biomass and fluxes of soil carbon dioxide and methane were highly regulated by disturbance regimes, climatic conditions and water table depth. The utility of linked-modeling framework demonstrated here to assess biogeochemical responses at the watershed scale suggests applications for assessing the consequences of climate change within an urbanizing forested landscape. The approach may also be applicable for validating large

  19. Soil Microbial Community Responses to Multiple Experimental Climate Change Drivers ▿ †

    PubMed Central

    Castro, Hector F.; Classen, Aimée T.; Austin, Emily E.; Norby, Richard J.; Schadt, Christopher W.

    2010-01-01

    Researchers agree that climate change factors such as rising atmospheric [CO2] and warming will likely interact to modify ecosystem properties and processes. However, the response of the microbial communities that regulate ecosystem processes is less predictable. We measured the direct and interactive effects of climatic change on soil fungal and bacterial communities (abundance and composition) in a multifactor climate change experiment that exposed a constructed old-field ecosystem to different atmospheric CO2 concentration (ambient, +300 ppm), temperature (ambient, +3°C), and precipitation (wet and dry) might interact to alter soil bacterial and fungal abundance and community structure in an old-field ecosystem. We found that (i) fungal abundance increased in warmed treatments; (ii) bacterial abundance increased in warmed plots with elevated atmospheric [CO2] but decreased in warmed plots under ambient atmospheric [CO2]; (iii) the phylogenetic distribution of bacterial and fungal clones and their relative abundance varied among treatments, as indicated by changes in 16S rRNA and 28S rRNA genes; (iv) changes in precipitation altered the relative abundance of Proteobacteria and Acidobacteria, where Acidobacteria decreased with a concomitant increase in the Proteobacteria in wet relative to dry treatments; and (v) changes in precipitation altered fungal community composition, primarily through lineage specific changes within a recently discovered group known as soil clone group I. Taken together, our results indicate that climate change drivers and their interactions may cause changes in bacterial and fungal overall abundance; however, changes in precipitation tended to have a much greater effect on the community composition. These results illustrate the potential for complex community changes in terrestrial ecosystems under climate change scenarios that alter multiple factors simultaneously. PMID:20023089

  20. Compensation and climate: Latitudinal variation in ecototherm response to environmental change

    SciTech Connect

    Curtin, C.G.

    1995-06-01

    Thermal preference measured in a laboratory thermal gradient, and field body temperatures in a field enclosure, contrast the fundamental and realized thermal niches of ornate box turtles (Terrapene ornata) from northern, central, and southern locations. The relatively warmer thermal preference of southern turtles appears to result in lower body temperatures and relatively shorter activity periods. Variation in thermal constraints are input into computer simulations of ectotherm response to climate to assess latitudinal variation in turtle response to microclimate cooling (4{degrees} C), current climate (1970-1990), and climatic warming (3-5{degrees} C). Climatic warming is calculated to lead to a northward shift in turtle range and distribution with increases in northern and declines in southern populations. Microclimate cooling is estimated to result in declines in northern areas and in the core of the box turtle range. The local changes in microclimate, such as can result from shifts in land-use, can be greater than those resulting from large scale changes in climate. Suggesting that land managers and conservation biologists need to focus greater attention on the impact of changes in within patch structure of plant associations and its implications for alteration of microclimate and species life history.

  1. Soil erosion under climate change: simulatingthe response of temperature and rainfall changes in three UK catchments

    NASA Astrophysics Data System (ADS)

    Ciampalini, Rossano; Walker-Springett, Kate J.; Constantine, José Antonio; Hales, Tristram C.

    2015-04-01

    Soil erosion by water cost in environmental damages across the Great Britain is estimated in over £200m (2014 GBP) each year and could increase for the effect of climate change. Assessing the potential for increased climate-driven soil erosion, due to the several water processes involved (e.g., infiltration excess, return flow, direct precipitation onto saturated soil),is recognizedas a complex task. Climate change can have a positive and direct effect on soil erosionsuch the case of increasing rainfall in amount and intensity, or an indirect effect through the variation of the atmospheric CO2 level, which can improve plant productivityandwater infiltration capacity of soil reducing the likelihood of soil erosion. Changes in vegetation patterns and typologies with a different protection effect can lead also the soil system to dramatic changes in soil erosion rates, potentially amplifying or ameliorating the direct effects of climate change.Climate, vegetation and soil erosion are thus connected and several feedback effects could be accounted in the study of global change. Understanding these interactions may be a primary goal for clarifying the impact of global change on soil erosion and its consequences on related soil functions such as water and organic carbon storage support to vegetation and agricultural production. In this research, focused on three UK catchments (i.e. Conwy, 627 km2, Wales; Ehen, 225 km2, England; and Dee, 2100 km2, Scotland), we simulated soil erosionapplying SRES climatic scenarios(IPCC, 2000) for different CO2 emission levels. We modelled using Pesera "The Pan European Soil Erosion Risk Assessment" (Kirkby et al., 2004), a model for vegetation growing and soil erosion evaluation at regional scale. For each catchment,we realised a sensitivity - analysis - like test investigating different increments in temperature and rainfall, then, we compared the results of the SRES scenarios with the issues of the parametric sensitivity analysis. The

  2. Responses of tropical root crops to climate change: implications for Pacific food security

    NASA Astrophysics Data System (ADS)

    Gleadow, R.; Webber, B.; Macness, N.; Lisson, S.; Nauluvula, P.; Hargraves, J.; Crimp, S. J.

    2013-12-01

    Cassava and taro are an important source of calories in many parts of the developing world and hold much promise for meeting the need for food security in equatorial regions. Communities in the Pacific Island countries reliant on agriculture-based livelihood systems have been identified as particularly at risk from climate change, due to likely increases in crop failure, new patterns of pests and diseases, lack of appropriate seed and plant material, loss of livestock and potential loss of arable land. Recent shortfalls in agricultural production resulting from changing export markets, commodity prices, climatic variation, and population growth and urbanisation, have contributed further to regional food insecurity concerns. Cassava and taro contain herbivore defense chemicals that are detrimental to human health (cyanogenic glucosides and calcium oxalate). Unprocessed cassava can cause acute cyanide intoxication, paralysis and even death, especially during droughts. A number of activities are already underway in the Pacific region to identify ways to ameliorate existing climate risk and enhance current agricultural production. Whilst these activities are important to ensure long-term agricultural sustainability, there remains a significant degree of uncertainty as to how effective these strategies may be in the face of a changing and increasingly variable future climate. We present our current understanding of the impact of climate change on key Pacific production systems - specifically those based on the staple root crops, taro and cassava. This includes (1) Our understanding of the responses of cassava and taro crops to existing environmental drivers (climate, soil and nutrient interactions); (2) The responses of cassava and taro crops to enhanced CO2 conditions; and (3) Efforts to model productivity responses (within the APSIM framework) and results for locations in the Pacific.

  3. Phenological behaviour of early spring flowering trees in Spain in response to recent climate changes

    NASA Astrophysics Data System (ADS)

    Hidalgo-Galvez, M. D.; García-Mozo, H.; Oteros, J.; Mestre, A.; Botey, R.; Galán, C.

    2017-03-01

    This research reports the phenological trends of four early spring and late winter flowering trees in Spain (south Europe) from a recent period (1986-2012). The studied species were deciduous trees growing in different climatic areas: hazel (Corylus avellana L.), willow (Salix alba L.), ash (Fraxinus angustifolia Vahl.) and white mulberry (Morus alba L.). We analysed the response to climate and the trends of the following phenophases observed at the field: budburst, leaf unfolding, flowering, fruit ripening, fruit harvesting, leaf colour change and leaf-fall. The study was carried out in 17 sampling sites in the country with the aim of detecting the recent phenological response to the climate of these species, and the possible effect of climate change. We have observed differences in the phenological response to climate depending on each species. Sixty-one percent of studied sites suffered an advance of early spring phenophases, especially budburst on average by -0.67 days and flowering on average by -0.15 days during the studied period, and also in the subsequent fruit ripening and harvesting phases on average by -1.06 days. By contrast, it has been detected that 63% of sampling sites showed a delay in autumn vegetative phases, especially leaf-fall events on average by +1.15 days. The statistic correlation analysis shows in the 55% of the studied localities that phenological advances are the consequence of the increasing trend detected for temperature—being minimum temperature the most influential factor—and in the 52% of them, phenological advances occurred by rainfall variations. In general, leaf unfolding and flowering from these species showed negative correlations in relation to temperature and rainfall, whereas that leaf colour change and leaf-fall presented positive correlations. The results obtained have a great relevance due to the fact that they can be considered as reliable bio-indicators of the impact of the recent climate changes in southern

  4. Wood production response to climate change will depend critically on forest composition and structure.

    PubMed

    Coomes, David A; Flores, Olivier; Holdaway, Robert; Jucker, Tommaso; Lines, Emily R; Vanderwel, Mark C

    2014-12-01

    Established forests currently function as a major carbon sink, sequestering as woody biomass about 26% of global fossil fuel emissions. Whether forests continue to act as a global sink will depend on many factors, including the response of aboveground wood production (AWP; MgC ha(-1 ) yr(-1) ) to climate change. Here, we explore how AWP in New Zealand's natural forests is likely to change. We start by statistically modelling the present-day growth of 97 199 individual trees within 1070 permanently marked inventory plots as a function of tree size, competitive neighbourhood and climate. We then use these growth models to identify the factors that most influence present-day AWP and to predict responses to medium-term climate change under different assumptions. We find that if the composition and structure of New Zealand's forests were to remain unchanged over the next 30 years, then AWP would increase by 6-23%, primarily as a result of physiological responses to warmer temperatures (with no appreciable effect of changing rainfall). However, if warmth-requiring trees were able to migrate into currently cooler areas and if denser canopies were able to form, then a different AWP response is likely: forests growing in the cool mountain environments would show a 30% increase in AWP, while those in the lowland would hardly respond (on average, -3% when mean annual temperature exceeds 8.0 °C). We conclude that response of wood production to anthropogenic climate change is not only dependent on the physiological responses of individual trees, but is highly contingent on whether forests adjust in composition and structure.

  5. Engaging Storm Spotters and Community College Students in Regional Responses to Climate Change

    NASA Astrophysics Data System (ADS)

    Mooney, M. E.; Ackerman, S. A.; Buhr, S. M.

    2012-12-01

    Resiliency to natural hazards includes climate literacy. With a record number of billion dollar weather disasters in 2011, each one enhanced by a warmer atmosphere, our nation needs new strategies to respond, mitigate, communicate and adapt to the impacts of climate change. We know that actions we take today matter, but finding ways to mobilize our citizenry remains largely elusive. One way to galvanize a meaningful response to climate change could involve National Weather Service (NWS) storm spotters and Community College students. Dedicated storm spotters represent decades of NOAA NWS efforts to engage and enlist public participation in community safety. Why not leverage this wealth of human capital to cultivate a similar mitigation and stewardship response? The Cooperative Institute for Meteorological Satellite Studies (CIMSS) at the University of Wisconsin-Madison conducted a pilot project with NWS storm spotters in the spring of 2011 via a web seminar on climate change, climate mitigation and emerging applications to access weather and climate data with mobile devices. Nineteen storm spotters participated and eleven provided feedback via a follow-up survey. A third of the respondents indicated that they had taken actions to minimize their carbon footprint; a majority (90%) indicated their likelihood to take action in the near future and more than two-thirds said they wanted to learn more about climate mitigation and sustainability. One attendee commented "Thank-you for putting together this web seminar. As a weather spotter, I found the information helpful, even humbling, to know climate change is already happening." CIMSS is also collaborating with the Cooperative Institute for Research in Environmental Sciences (CIRES) and Madison Area Technical College (MATC) on a climate education project where community college students take an on-line climate change course followed by the opportunity to apply for a summer internship. Through this program, two students

  6. Sundangrass reproductive biomass responses under climate change scenarios in oak savannah and mesic prairie mesocosm communities

    EPA Science Inventory

    Potential climate change effects include shifts in the distribution of plant species and changes in reproductive output. We tested the hypothesis that environmental stressors such as elevated temperature and drought that are associated with climate change would increase the repr...

  7. Understanding the varied response of the extratropical storm tracks to climate change.

    PubMed

    O'Gorman, Paul A

    2010-11-09

    Transient eddies in the extratropical storm tracks are a primary mechanism for the transport of momentum, energy, and water in the atmosphere, and as such are a major component of the climate system. Changes in the extratropical storm tracks under global warming would impact these transports, the ocean circulation and carbon cycle, and society through changing weather patterns. I show that the southern storm track intensifies in the multimodel mean of simulations of 21st century climate change, and that the seasonal cycle of storm-track intensity increases in amplitude in both hemispheres. I use observations of the present-day seasonal cycle to confirm the relationship between storm-track intensity and the mean available potential energy of the atmosphere, and show how this quantitative relationship can be used to account for much of the varied response in storm-track intensity to global warming, including substantially different responses in simulations with different climate models. The results suggest that storm-track intensity is not related in a simple way to global-mean surface temperature, so that, for example, a stronger southern storm track in response to present-day global warming does not imply it was also stronger in hothouse climates of the past.

  8. Using temporal coherence to determine the response to climate change in Boreal Shield lakes.

    PubMed

    Arnott, Shelley E; Keller, Bill; Dillon, Peter J; Yan, Norman; Paterson, Michael; Findlay, David

    2003-01-01

    Climate change is expected to have important impacts on aquatic ecosystems. On the Boreal Shield, mean annual air temperatures are expected to increase 2 to 4 degrees C over the next 50 years. An important challenge is to predict how changes in climate and climate variability will impact natural systems so that sustainable management policies can be implemented. To predict responses to complex ecosystem changes associated with climate change, we used long-term biotic databases to evaluate how important elements of the biota in Boreal Shield lakes have responded to past fluctuations in climate. Our long-term records span a two decade period where there have been unusually cold years and unusually warm years. We used coherence analyses to test for regionally operating controls on climate, water temperature, pH, and plankton richness and abundance in three regions across Ontario: the Experimental Lakes Area, Sudbury, and Dorset. Inter-annual variation in air temperature was similar among regions, but there was a weak relationship among regions for precipitation. While air temperature was closely related to lake surface temperatures in each of the regions, there were weak relationships between lake surface temperature and richness or abundance of the plankton. However, inter-annual changes in lake chemistry (i.e., pH) were correlated with some biotic variables. In some lakes in Sudbury and Dorset, pH was dependent on extreme events. For example, El Nino related droughts resulted in acidification pulses in some lakes that influenced phytoplankton and zooplankton richness. These results suggest that there can be strong heterogeneity in lake ecosystem responses within and across regions.

  9. Policy strategies to address sustainability of Alaskan boreal forests in response to a directionally changing climate.

    PubMed

    Chapin, F Stuart; Lovecraft, Amy L; Zavaleta, Erika S; Nelson, Joanna; Robards, Martin D; Kofinas, Gary P; Trainor, Sarah F; Peterson, Garry D; Huntington, Henry P; Naylor, Rosamond L

    2006-11-07

    Human activities are altering many factors that determine the fundamental properties of ecological and social systems. Is sustainability a realistic goal in a world in which many key process controls are directionally changing? To address this issue, we integrate several disparate sources of theory to address sustainability in directionally changing social-ecological systems, apply this framework to climate-warming impacts in Interior Alaska, and describe a suite of policy strategies that emerge from these analyses. Climate warming in Interior Alaska has profoundly affected factors that influence landscape processes (climate regulation and disturbance spread) and natural hazards, but has only indirectly influenced ecosystem goods such as food, water, and wood that receive most management attention. Warming has reduced cultural services provided by ecosystems, leading to some of the few institutional responses that directly address the causes of climate warming, e.g., indigenous initiatives to the Arctic Council. Four broad policy strategies emerge: (i) enhancing human adaptability through learning and innovation in the context of changes occurring at multiple scales; (ii) increasing resilience by strengthening negative (stabilizing) feedbacks that buffer the system from change and increasing options for adaptation through biological, cultural, and economic diversity; (iii) reducing vulnerability by strengthening institutions that link the high-latitude impacts of climate warming to their low-latitude causes; and (iv) facilitating transformation to new, potentially more beneficial states by taking advantage of opportunities created by crisis. Each strategy provides societal benefits, and we suggest that all of them be pursued simultaneously.

  10. Policy strategies to address sustainability of Alaskan boreal forests in response to a directionally changing climate

    PubMed Central

    Chapin, F. Stuart; Lovecraft, Amy L.; Zavaleta, Erika S.; Nelson, Joanna; Robards, Martin D.; Kofinas, Gary P.; Trainor, Sarah F.; Peterson, Garry D.; Huntington, Henry P.; Naylor, Rosamond L.

    2006-01-01

    Human activities are altering many factors that determine the fundamental properties of ecological and social systems. Is sustainability a realistic goal in a world in which many key process controls are directionally changing? To address this issue, we integrate several disparate sources of theory to address sustainability in directionally changing social–ecological systems, apply this framework to climate-warming impacts in Interior Alaska, and describe a suite of policy strategies that emerge from these analyses. Climate warming in Interior Alaska has profoundly affected factors that influence landscape processes (climate regulation and disturbance spread) and natural hazards, but has only indirectly influenced ecosystem goods such as food, water, and wood that receive most management attention. Warming has reduced cultural services provided by ecosystems, leading to some of the few institutional responses that directly address the causes of climate warming, e.g., indigenous initiatives to the Arctic Council. Four broad policy strategies emerge: (i) enhancing human adaptability through learning and innovation in the context of changes occurring at multiple scales; (ii) increasing resilience by strengthening negative (stabilizing) feedbacks that buffer the system from change and increasing options for adaptation through biological, cultural, and economic diversity; (iii) reducing vulnerability by strengthening institutions that link the high-latitude impacts of climate warming to their low-latitude causes; and (iv) facilitating transformation to new, potentially more beneficial states by taking advantage of opportunities created by crisis. Each strategy provides societal benefits, and we suggest that all of them be pursued simultaneously. PMID:17008403

  11. Sensitivity of health sector indicators' response to climate change in Ghana.

    PubMed

    Dovie, Delali B K; Dzodzomenyo, Mawuli; Ogunseitan, Oladele A

    2017-01-01

    There is accumulating evidence that the emerging burden of global climate change threatens the fidelity of routine indicators for disease detection and management of risks to public health. The threat partially reflects the conservative character of the health sector and the reluctance to adopt new indicators, despite the growing awareness that existing environmental health indicators were developed to respond to risks that may no longer be relevant, and are too simplistic to also act as indicators for newer global-scale risk factors. This study sought to understand the scope of existing health indicators, while aiming to discover new indicators for building resilience against three climate sensitive diseases (cerebro spinal meningitis, malaria and diarrhea). Therefore, new potential indicators derived from human and biophysical origins were developed to complement existing health indicators, thereby creating climate-sensitive battery of robust composite indices of resilience in health planning. Using Ghana's health sector as a case study systematic international literature review, national expert consultation, and focus group outcomes yielded insights into the relevance, sensitivity and impacts of 45 indicators in 11 categories in responding to climate change. In total, 65% of the indicators were sensitive to health impacts of climate change; 24% acted directly; 31% synergistically; and 45% indirectly, with indicator relevance strongly associated with type of health response. Epidemiological indicators (e.g. morbidity) and health demographic indicators (e.g. population structure) require adjustments with external indicators (e.g. biophysical, policy) to be resilient to climate change. Therefore, selective integration of social and ecological indicators with existing public health indicators improves the fidelity of the health sector to adopt more robust planning of interdependent systems to build resilience. The study highlights growing uncertainties in

  12. Temperature tracking by North Sea benthic invertebrates in response to climate change.

    PubMed

    Hiddink, Jan G; Burrows, Michael T; García Molinos, Jorge

    2015-01-01

    Climate change is a major threat to biodiversity and distributions shifts are one of the most significant threats to global warming, but the extent to which these shifts keep pace with a changing climate is yet uncertain. Understanding the factors governing range shifts is crucial for conservation management to anticipate patterns of biodiversity distribution under future anthropogenic climate change. Soft-sediment invertebrates are a key faunal group because of their role in marine biogeochemistry and as a food source for commercial fish species. However, little information exists on their response to climate change. Here, we evaluate changes in the distribution of 65 North Sea benthic invertebrate species between 1986 and 2000 by examining their geographic, bathymetric and thermal niche shifts and test whether species are tracking their thermal niche as defined by minimum, mean or maximum sea bottom (SBT) and surface (SST) temperatures. Temperatures increased in the whole North Sea with many benthic invertebrates showing north-westerly range shifts (leading/trailing edges as well as distribution centroids) and deepening. Nevertheless, distribution shifts for most species (3.8-7.3 km yr(-1) interquantile range) lagged behind shifts in both SBT and SST (mean 8.1 km yr(-1)), resulting in many species experiencing increasing temperatures. The velocity of climate change (VoCC) of mean SST accurately predicted both the direction and magnitude of distribution centroid shifts, while maximum SST did the same for contraction of the trailing edge. The VoCC of SBT was not a good predictor of range shifts. No good predictor of expansions of the leading edge was found. Our results show that invertebrates need to shift at different rates and directions to track the climate velocities of different temperature measures, and are therefore lagging behind most temperature measures. If these species cannot withstand a change in thermal habitat, this could ultimately lead to a drop in

  13. Hydrological response to changing climate conditions: Spatial streamflow variability in the boreal region

    NASA Astrophysics Data System (ADS)

    Teutschbein, Claudia; Grabs, Thomas; Karlsen, Reinert H.; Laudon, Hjalmar; Bishop, Kevin

    2016-04-01

    It has long been recognized that streamflow-generating processes are not only dependent on climatic conditions, but also affected by physical catchment properties such as topography, geology, soils and land cover. We hypothesize that these landscape characteristics do not only lead to highly variable hydrologic behavior of rather similar catchments under the same stationary climate conditions (Karlsen et al., 2014), but that they also play a fundamental role for the sensitivity of a catchment to a changing climate (Teutschbein et al., 2015). A multi-model ensemble based on 15 regional climate models was combined with a multi-catchment approach to explore the hydrologic sensitivity of 14 partially nested and rather similar catchments in Northern Sweden to changing climate conditions and the importance of small-scale spatial variability. Current (1981-2010) and future (2061-2090) streamflow was simulated with the HBV model. As expected, projected increases in temperature and precipitation resulted in increased total available streamflow, with lower spring and summer flows, but substantially higher winter streamflow. Furthermore, significant changes in flow durations with lower chances of both high and low flows can be expected in boreal Sweden in the future. This overall trend in projected streamflow pattern changes was comparable among the analyzed catchments while the magnitude of change differed considerably. This suggests that catchments belonging to the same region can show distinctly different degrees of hydrological responses to the same external climate change signal. We reason that differences in spatially distributed physical catchment properties at smaller scales are not only of great importance for current streamflow behavior, but also play a major role as first-order control for the sensitivity of catchments to changing climate conditions. References Karlsen, R.H., T. Grabs, K. Bishop, H. Laudon, and J. Seibert (2014). Landscape controls on

  14. Hydrological response to changing climate conditions: Spatial streamflow variability in the boreal region

    NASA Astrophysics Data System (ADS)

    Teutschbein, C.; Grabs, T.; Karlsen, R. H.; Laudon, H.; Bishop, K.

    2015-12-01

    In this paper we combined a multimodel ensemble based on 15 regional climate models with a multicatchment approach to explore the hydrologic sensitivity of 14 neighboring and rather similar catchments to changing climate conditions. Current (1982-2010) and future (2062-2090) streamflow was simulated with the HBV model. A diagnostic approach was used, which considered major behavioral catchment functions by using hydrologically relevant signatures related to overall water balance, flow duration curves and hydrograph attributes. Projected increases in temperature and precipitation resulted in increased total available streamflow, with lower spring and summer flows, but substantially higher winter streamflow. Furthermore, significant changes in flow durations with lower chances of both high and low flows can be expected in boreal Sweden in the future. This overall trend in projected streamflow pattern changes was comparable among the analyzed catchments but the magnitude of change differed considerably. This suggests that catchments belonging to the same region can show distinctly different degrees of hydrological responses to the same external climate change signal. We reason that differences in spatially distributed physical catchment properties within catchments are not only of great importance for current streamflow behavior, but also play a major role in the sensitivity of catchments to changing climate conditions.

  15. Exploring the universal ecological responses to climate change in a univoltine butterfly.

    PubMed

    Fenberg, Phillip B; Self, Angela; Stewart, John R; Wilson, Rebecca J; Brooks, Stephen J

    2016-05-01

    Animals with distinct life stages are often exposed to different temperatures during each stage. Thus, how temperature affects these life stages should be considered for broadly understanding the ecological consequences of climate warming on such species. For example, temperature variation during particular life stages may affect respective change in body size, phenology and geographic range, which have been identified as the "universal" ecological responses to climate change. While each of these responses has been separately documented across a number of species, it is not known whether each response occurs together within a species. The influence of temperature during particular life stages may help explain each of these ecological responses to climate change. Our goal was to determine if monthly temperature variation during particular life stages of a butterfly species can predict respective changes in body size and phenology. We also refer to the literature to assess if temperature variability during the adult stage influences range change over time. Using historical museum collections paired with monthly temperature records, we show that changes in body size and phenology of the univoltine butterfly, Hesperia comma, are partly dependent upon temporal variation in summer temperatures during key stages of their life cycle. June temperatures, which are likely to affect growth rate of the final larval instar, are important for predicting adult body size (for males only; showing a positive relationship with temperature). July temperatures, which are likely to influence the pupal stage, are important for predicting the timing of adult emergence (showing a negative relationship with temperature). Previous studies show that August temperatures, which act on the adult stage, are linked to range change. Our study highlights the importance of considering temperature variation during each life stage over historic time-scales for understanding intraspecific response to

  16. Climate Change and Professional Responsibility: A Declaration of Helsinki for Engineers.

    PubMed

    Lawlor, Rob; Morley, Helen

    2017-03-09

    In this paper, we argue that the professional engineering institutions ought to develop a Declaration of Climate Action. Climate change is a serious global problem, and the majority of greenhouse gas emissions come from industries that are enabled by engineers and represented by the engineering professional institutions. If the professional institutions take seriously the claim that a profession should be self-regulating, with codes of ethics that go beyond mere obedience to the law, and if they take their own ethical codes seriously, recognising their responsibility to the public and to future generations (and also recognising a duty of "responsible leadership"), the professional institutions ought to develop a declaration for engineers, addressing climate change. Our argument here is largely inspired by the history of the Declaration of Helsinki. The Declaration of Helsinki was created by the medical profession for the profession, and it held physicians to a higher standard of ethical conduct than was found in the legal framework of individual countries. Although it was not originally a legal document, the influence of the Declaration can be seen in the fact that it is now enshrined in law in a number of different countries. Thus, we argue that the engineering profession could, and should, play a significant role in the abatement of climate change by making changes within the profession. If the engineering profession sets strict standards for professional engineers, with sanctions for those who refuse to comply, this could have a significant impact in relation to our efforts to develop a coordinated response to climate change.

  17. 'Tales of Symphonia': extinction dynamics in response to past climate change in Madagascan rainforests.

    PubMed

    Virah-Sawmy, Malika; Bonsall, Michael B; Willis, Katherine J

    2009-12-23

    Madagascar's rainforests are among the most biodiverse in the world. Understanding the population dynamics of important species within these forests in response to past climatic variability provides valuable insight into current and future species composition. Here, we use a population-level approach to analyse palaeoecological records over the last 5300 years to understand how populations of Symphonia cf. verrucosa became locally extinct in some rainforest fragments along the southeast coast of Madagascar in response to rapid climate change, yet persisted in others. Our results indicate that regional (climate) variability contributed to synchronous decline of S. cf. verrucosa populations in these forests. Superimposed on regional fluctuations were local processes that could have contributed or mitigated extinction. Specifically, in the forest with low soil nutrients, population model predictions indicated that there was coexistence between S. cf. verrucosa and Erica spp., but in the nutrient-rich forest, interspecific effects between Symphonia and Erica spp. may have pushed Symphonia to extinction at the peak of climatic change. We also demonstrate that Symphonia is a good indicator of a threshold event, exhibiting erratic fluctuations prior to and long after the critical climatic point has passed.

  18. Does an understanding of ecosystems responses to rainfall pulses improve predictions of responses of drylands to climate change?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drylands will experience more intense and frequent droughts and floods. Ten-year field experiments manipulating the amount and variability of precipitation suggest that we cannot predict responses of drylands to climate change based on pulse experimentation. Long-term drought experiments showed no e...

  19. Modeling the Response of Glaciers to Climate Change in the Upper North Saskatchewan River Basin

    NASA Astrophysics Data System (ADS)

    Booth, E.; Byrne, J. M.; Jiskoot, H.; MacDonald, R. J.

    2011-12-01

    Alpine glaciers act as barometers of climatic change, responding directly to longterm changes in temperature and precipitation with changes in mass balance, resulting in volume and length modifications. The heavily glaciated Upper North Saskatchewan River Basin (UNSRB), Alberta, Canada, represents a crucial portion of the headwaters for the Saskatchewan-Nelson watershed that spans the northern interior of the continent and drains into Hudson's Bay over 1500 km away. Historically, glacier melt runoff provides a significant percentage of late-summer streamflow in the UNSRB. Evidence suggests that recent warming has caused a change in glacier mass balance in the UNSRB that is unprecedented during the Holocene. Analysis of projected climate indices shows that the longterm negative mass balance of glaciers in the region will likely continue to decline over the next century. The effect of recent historical climate change on the glaciers in UNSRB is simulated using a modified version of the physically based Generate Earth SYstems Science (GENESYS) hydromet model. GENESYS has previously been employed to watersheds on the eastern slopes of the Rocky Mountains to simulate daily hydro-met processes at a high resolution over complex terrain, focusing on modeling snow water equivalent and the timing of the spring melt. A mass balance glacier routine is incorporated into GENESYS to more accurately gauge the effects of climate change on the glaciers located in the UNSRB. GENESYS daily micrometeorological data is used to drive a series of glacial ice and snow algorithms that include accumulation, ablation and ice redistribution over the glacier. GCM future ensembles were downscaled and applied to the model to predict changes in the mass balance of glaciers in the UNSRB under a range of likely climate scenarios. Results include time series of changes in glacier mass balance, length, and hydrologic response to changing ice volumes up to the year 2100.

  20. Simulating hydrologic response to climate change scenarios in four selected watersheds of New Hampshire

    USGS Publications Warehouse

    Bjerklie, David M.; Ayotte, Joseph D.; Cahillane, Matthew J.

    2015-01-01

    The effects of hydrologic change on human health and well-being could be most readily apparent with respect to changes in streamflow and the subsequent increase in the frequency of minor flooding and the frequency of summer and fall low streamflows. These changes could require the development of plans to adapt, protect, and upgrade infrastructure, such as bridges, culverts, roads, and other structures. The precipitation runoff modeling shows that rivers and watersheds in New Hampshire will likely change in response to climate change, and that this response varies with season and latitude. Although four representative areas were simulated in this study, additional models could be used to predict the response over the entire State.

  1. Vegetation response to climate change in Alaska: examples from the fossil record

    USGS Publications Warehouse

    Ager, Thomas A.

    2007-01-01

    Preface: This report was presented as an invited paper at the Fish & Wildlife Service Climate Forum held in Anchorage, Alaska on February 21-23, 2007. The purpose of the talk was to provide some examples of past climate changes that appear to have caused significant responses in Alaskan vegetation. These examples are based on interpretations of dated fossil assemblages (pollen, spores and plant macrofossils) collected and interpreted by U.S. Geological Survey and collaborating scientists from other scientific organizations during the past several decades.

  2. Modeling the Hydrological Response to Climate Change in an Arid Inland River Basin

    NASA Astrophysics Data System (ADS)

    Zheng, C.; Zhang, A.; Tian, Y.; Zheng, Y.; Liu, J.

    2014-12-01

    Located deep in the hinterlands of Eurasia, the Heihe River Basin (HRB) is an arid inland river basin in northwest China where the hydrologic regime responds sensitively to climate change. From the headwater region to terminal lakes, the HRB can be roughly divided into three sections, i.e., the upstream Qilian Mountains, the midstream oases and the downstream Gobi Desert. Runoff generated in the upstream mountainous terrains, dominated by climate variations, is the critical water resource for the whole river basin. With increasing intensification of climate change, there is an urgent need to understand future changes of water resources and water-related disasters to support regional water management. This study investigates the potential impact of climate change on hydrologic processes in the upper HRB for the future period of 2021~2150. Downscaled temperature and precipitation projections from six General Circulation Models under two emission scenarios (RCP4.5 and RCP8.5) are adopted to drive a commonly used flow model, Soil Water Assessment Tool (SWAT), for the upper HRB. The impacts of climate change on the total runoff and its components are quantified based on the future climate scenario analysis and the results of SWAT simulation. To understand how the climate change affects the availability and distribution of water resources in the middle and lower HRB where irrigated agriculture and ecosystem conservation compete for water resources, runoffs from the upper HRB are used as the boundary conditions for an integrated groundwater-surface water model based on the USGS GSFLOW for the middle and lower HRB. The integrated model assimilated multiple types of data including groundwater levels at monitoring wells, streamflow at gaging stations, and evapotranspiration (ET) derived from remote sensing data. The calibrated model was able to adequately reproduce the observed hydrological variables. The integrated model was then used to assess the potential response of the

  3. Beyond Adapting to Climate Change: Embedding Adaptation in Responses to Multiple Threats and Stresses

    SciTech Connect

    Wilbanks, Thomas J; Kates, Dr. Robert W.

    2010-01-01

    Climate change impacts are already being experienced in every region of the United States and every part of the world most severely in Arctic regions and adaptation is needed now. Although climate change adaptation research is still in its infancy, significant adaptation planning in the United States has already begun in a number of localities. This article seeks to broaden the adaptation effort by integrating it with broader frameworks of hazards research, sustainability science, and community and regional resilience. To extend the range of experience, we draw from ongoing case studies in the Southeastern United States and the environmental history of New Orleans to consider the multiple threats and stresses that all communities and regions experience. Embedding climate adaptation in responses to multiple threats and stresses helps us to understand climate change impacts, themselves often products of multiple stresses, to achieve community acceptance of needed adaptations as co-benefits of addressing multiple threats, and to mainstream the process of climate adaptation through the larger envelope of social relationships, communication channels, and broad-based awareness of needs for risk management that accompany community resilience.

  4. Transient Ecotone Response to Climatic Change: Some Conceptual and Modelling Approaches.

    PubMed

    Neilson, Ronald P

    1993-08-01

    Accurate prediction of the ecological impacts of climatic change is a pressing challenge to the science of ecology. The current state of the art for broad-scale estimates of change in biomes and ecotones between biomes is limited to equilibrium estimates of ecological change under some future equilibrium climate. Uncertainties in these estimates abound, ranging from uncertainties in future climate scenarios to uncertainties in our ecological models and finally to uncertainties in modelling the feedbacks between the climate and the biosphere. Ecologists and policymakers need to go beyond equilibrium estimates of biosphere change to transient responses of the biosphere as the climate changes. Ecotones between biomes have been suggested as sensitive areas of change that could be effectively modelled and monitored for future change. Ecotones are also important in influencing local and regional biodiversity patterns and ecological flows. The ecological processes that could affect change at ecotones and within biomes are discussed; they include internal ecosystem processes, such as competition, and external abiotic processes, most notably drought and related disturbances. Drought followed by infestations and fire appears to be the most likely process that could mediate ecological change under a rapidly changing climate. The impacts would be apparent all across biomes, not just at ecotones. However, specific predictions about the dynamics of ecotones can be made qualitatively, based on a theory of patch scaling and diversity in relation to abiotic stressors. Under current conditions, the size of homogeneous patches is expected to be small at ecotones, but to enlarge with distance from the ecotone. Directional climatic change should promote a coalescence of patches on one side of the ecotone and increased fragmentation on the other side. Ecotones should begin to blur as viewed from a satellite only to re-form at some later date in a new location. This view is in contrast

  5. Plant population differentiation and climate change: responses of grassland species along an elevational gradient.

    PubMed

    Frei, Esther R; Ghazoul, Jaboury; Matter, Philippe; Heggli, Martin; Pluess, Andrea R

    2014-02-01

    Mountain ecosystems are particularly susceptible to climate change. Characterizing intraspecific variation of alpine plants along elevational gradients is crucial for estimating their vulnerability to predicted changes. Environmental conditions vary with elevation, which might influence plastic responses and affect selection pressures that lead to local adaptation. Thus, local adaptation and phenotypic plasticity among low and high elevation plant populations in response to climate, soil and other factors associated with elevational gradients might underlie different responses of these populations to climate warming. Using a transplant experiment along an elevational gradient, we investigated reproductive phenology, growth and reproduction of the nutrient-poor grassland species Ranunculus bulbosus, Trifolium montanum and Briza media. Seeds were collected from low and high elevation source populations across the Swiss Alps and grown in nine common gardens at three different elevations with two different soil depths. Despite genetic differentiation in some traits, the results revealed no indication of local adaptation to the elevation of population origin. Reproductive phenology was advanced at lower elevation in low and high elevation populations of all three species. Growth and reproduction of T. montanum and B. media were hardly affected by garden elevation and soil depth. In R. bulbosus, however, growth decreased and reproductive investment increased at higher elevation. Furthermore, soil depth influenced growth and reproduction of low elevation R. bulbosus populations. We found no evidence for local adaptation to elevation of origin and hardly any differences in the responses of low and high elevation populations. However, the consistent advanced reproductive phenology observed in all three species shows that they have the potential to plastically respond to environmental variation. We conclude that populations might not be forced to migrate to higher elevations

  6. How long can fisheries management delay action in response to ecosystem and climate change?

    PubMed

    Brown, Christopher J; Fulton, Elizabeth A; Possingham, Hugh P; Richardson, Anthony J

    2012-01-01

    Sustainable management of fisheries is often compromised by management delaying implementation of regulations that reduce harvest, in order to maintain higher catches in the short-term. Decreases or increases in fish population growth rate driven by environmental change, including ecosystem and climate change, affect the harvest that can be taken sustainably. If not acted on rapidly, environmental change could result in unsustainable fishing or missed opportunity for higher catches. Using simulation models of harvested fish populations influenced by environmental change, we explore how long fisheries managers can afford to wait before changing harvest regulations in response to changes in population growth. If environmental change causes population declines, delays greater than five years increase the probability of population collapse. Species with fast and highly variable population growth rates are more susceptible to collapse under delays and should be a priority for revised management where delays occur. Generally, the long-term cost of delay, in terms of lost fishing opportunity, exceeds the short-term benefits of overfishing. Lowering harvest limits and monitoring for environmental change can alleviate the impact of delays; however, these measures may be more costly than reducing delays. We recommend that management systems that allow rapid responses to population growth changes be enacted for fisheries management to adapt to ecosystem and climate change.

  7. Imbedding dynamic responses with imperfect information into static portraits of the regional impact of climate change

    SciTech Connect

    Yohe, G.W. )

    1990-11-01

    It is becoming increasingly clear, at least on a theoretical level, that modelers of the potential impacts of climate change must impose that change upon the world as it will be configured sometime in the future rather than confine their attention to considerations of what would happen to the world as it looks now. Initial baselines which focus on current circumstances are certainly worthwhile points of departure in any study, of course, but the truth is that social, economic, and political systems will evolve as the future unfolds; and careful analysis of that evolution across a globe experiencing changes in its climate must be undertaken, as well. In the vernacular of the analysts' workroom, while it may be interesting to try to see what would happen to dumb farmers'' who continue to do things as they always have regardless of what happens, it is critically important to evaluate the need for any sort of policy response to climate change in a world of smart farmers'' who will have observed the ramifications of climate change and responded in their own best interest. 9 refs., 2 figs.

  8. Climate change, phenological shifts, eco-evolutionary responses and population viability: toward a unifying predictive approach.

    PubMed

    Jenouvrier, Stéphanie; Visser, Marcel E

    2011-11-01

    The debate on emission targets of greenhouse gasses designed to limit global climate change has to take into account the ecological consequences. One of the clearest ecological consequences is shifts in phenology. Linking these shifts to changes in population viability under various greenhouse gasses emission scenarios requires a unifying framework. We propose a box-in-a-box modeling approach that couples population models to phenological change. This approach unifies population modeling with both ecological responses to climate change as well as evolutionary processes. We advocate a mechanistic embedded correlative approach, where the link from genes to population is established using a periodic matrix population model. This periodic model has several major advantages: (1) it can include complex seasonal behaviors allowing an easy link with phenological shifts; (2) it provides the structure of the population at each phase, including the distribution of genotypes and phenotypes, allowing a link with evolutionary processes; and (3) it can incorporate the effect of climate at different time periods. We believe that the way climatologists have approached the problem, using atmosphere-ocean coupled circulation models in which components are gradually included and linked to each other, can provide a valuable example to ecologists. We hope that ecologists will take up this challenge and that our preliminary modeling framework will stimulate research toward a unifying predictive model of the ecological consequences of climate change.

  9. The spatial pattern of leaf phenology and its response to climate change in China

    NASA Astrophysics Data System (ADS)

    Dai, Junhu; Wang, Huanjiong; Ge, Quansheng

    2014-05-01

    Leaf phenology has been shown to be one of the most important indicators of the effects of climate change on biological systems. Few such studies have, however, been published detailing the relationship between phenology and climate change in Asian contexts. With the aim of quantifying species' phenological responsiveness to temperature and deepening understandings of spatial patterns of phenological and climate change in China, this study analyzes the first leaf date (FLD) and the leaf coloring date (LCD) from datasets of four woody plant species, Robinia pseudoacacia, Ulmus pumila, Salix babylonica, and Melia azedarach, collected from 1963 to 2009 at 47 Chinese Phenological Observation Network (CPON) stations spread across China (from 21° to 50° N). The results of this study show that changes in temperatures in the range of 39-43 days preceding the date of FLD of these plants affected annual variations in FLD, while annual variations in temperature in the range of 71-85 days preceding LCD of these plants affected the date of LCD. Average temperature sensitivity of FLD and LCD for these plants was -3.93 to 3.30 days °C-1 and 2.11 to 4.43 days °C-1, respectively. Temperature sensitivity of FLD was found to be stronger at lower latitudes or altitude as well as in more continental climates, while the response of LCD showed no consistent pattern. Within the context of significant warming across China during the study period, FLD was found to have advanced by 5.44 days from 1960 to 2009; over the same period, LCD was found to have been delayed by 4.56 days. These findings indicate that the length of the growing season of the four plant species studied was extended by a total of 10.00 days from 1960 to 2009. They also indicate that phenological response to climate is highly heterogeneous spatially.

  10. The spatial pattern of leaf phenology and its response to climate change in China.

    PubMed

    Dai, Junhu; Wang, Huanjiong; Ge, Quansheng

    2014-05-01

    Leaf phenology has been shown to be one of the most important indicators of the effects of climate change on biological systems. Few such studies have, however, been published detailing the relationship between phenology and climate change in Asian contexts. With the aim of quantifying species' phenological responsiveness to temperature and deepening understandings of spatial patterns of phenological and climate change in China, this study analyzes the first leaf date (FLD) and the leaf coloring date (LCD) from datasets of four woody plant species, Robinia pseudoacacia, Ulmus pumila, Salix babylonica, and Melia azedarach, collected from 1963 to 2009 at 47 Chinese Phenological Observation Network (CPON) stations spread across China (from 21° to 50° N). The results of this study show that changes in temperatures in the range of 39-43 days preceding the date of FLD of these plants affected annual variations in FLD, while annual variations in temperature in the range of 71-85 days preceding LCD of these plants affected the date of LCD. Average temperature sensitivity of FLD and LCD for these plants was -3.93 to 3.30 days °C(-1) and 2.11 to 4.43 days °C⁻¹, respectively. Temperature sensitivity of FLD was found to be stronger at lower latitudes or altitude as well as in more continental climates, while the response of LCD showed no consistent pattern. Within the context of significant warming across China during the study period, FLD was found to have advanced by 5.44 days from 1960 to 2009; over the same period, LCD was found to have been delayed by 4.56 days. These findings indicate that the length of the growing season of the four plant species studied was extended by a total of 10.00 days from 1960 to 2009. They also indicate that phenological response to climate is highly heterogeneous spatially.

  11. Understanding land surface response to changing South Asian monsoon in a warming climate

    NASA Astrophysics Data System (ADS)

    Ramarao, M. V. S.; Krishnan, R.; Sanjay, J.; Sabin, T. P.

    2015-05-01

    Recent studies have drawn attention to a significant weakening trend of the South Asian monsoon circulation and an associated decrease in regional rainfall during the last few decades. While surface temperatures over the region have steadily risen during this period, most of the CMIP (Coupled Model Intercomparison Project) global climate models have difficulties in capturing the observed decrease of monsoon precipitation, thus limiting our understanding of the regional land surface response to monsoonal changes. This problem is investigated by performing two long-term simulation experiments, with and without anthropogenic forcing, using a variable resolution global climate model having high-resolution zooming over the South Asian region. The present results indicate that anthropogenic effects have considerably influenced the recent weakening of the monsoon circulation and decline of precipitation. It is seen that the simulated increase of surface temperature over the Indian region during the post-1950s is accompanied by a significant decrease of monsoon precipitation and soil moisture. Our analysis further reveals that the land surface response to decrease of soil moisture is associated with significant reduction in evapotranspiration over the Indian land region. A future projection, based on the representative concentration pathway 4.5 (RCP4.5) scenario of the Intergovernmental panel on Climate Change (IPCC), using the same high-resolution model indicates the possibility for detecting the summer-time soil drying signal over the Indian region during the 21st century, in response to climate change. While these monsoon hydrological changes have profound socioeconomic implications, the robustness of the high-resolution simulations provides deeper insights and enhances our understanding of the regional land surface response to the changing South Asian monsoon.

  12. Understanding land surface response to changing South Asian monsoon in a warming climate

    NASA Astrophysics Data System (ADS)

    Ramarao, M. V. S.; Krishnan, R.; Sanjay, J.; Sabin, T. P.

    2015-09-01

    Recent studies have drawn attention to a significant weakening trend of the South Asian monsoon circulation and an associated decrease in regional rainfall during the last few decades. While surface temperatures over the region have steadily risen during this period, most of the CMIP (Coupled Model Intercomparison Project) global climate models have difficulties in capturing the observed decrease of monsoon precipitation, thus limiting our understanding of the regional land surface response to monsoonal changes. This problem is investigated by performing two long-term simulation experiments, with and without anthropogenic forcing, using a variable resolution global climate model having high-resolution zooming over the South Asian region. The present results indicate that anthropogenic effects have considerably influenced the recent weakening of the monsoon circulation and decline of precipitation. It is seen that the simulated increase of surface temperature over the Indian region during the post-1950s is accompanied by a significant decrease of monsoon precipitation and soil moisture. Our analysis further reveals that the land surface response to decrease of soil moisture is associated with significant reduction in evapotranspiration over the Indian land region. A future projection, based on the representative concentration pathway 4.5 (RCP4.5) scenario of the Intergovernmental Panel on Climate Change (IPCC), using the same high-resolution model indicates the possibility for detecting the summer-time soil drying signal over the Indian region during the 21st century in response to climate change. Given that these monsoon hydrological changes have profound socio-economic implications the present findings provide deeper insights and enhance our understanding of the regional land surface response to the changing South Asian monsoon. While this study is based on a single model realization, it is highly desirable to have multiple realizations to establish the robustness

  13. Rapid Vegetational Change in Coastal North America: The Response to Climate Since the LGM

    NASA Technical Reports Server (NTRS)

    Peteet, Dorothy; Kneller, Margaret

    1999-01-01

    The late-glacial interval provided rapid shifts in climate which are mirrored by dramatic vegetational changes in North America. Through a transect of lake and mire sites from Connecticut to Virginia on the east coast and Kodiak Island on the western coast, we trace the warming following the LGM with the response of forests and tundra. A brief cold reversal in Virginia is seen from 12,260 to 12,200. The subsequent longer and extreme Younger Dryas event is marked in the southern New England - New Jersey region by dramatic boreal and deciduous forest changes. In the southeastern US, forests also change rapidly, with hemlock forest expansion suggesting increased moisture. In Kodiak Island, the warm, moist tundra of the Bolling/Allerod is replaced by colder, windswept Empetrum-dominated tundra during the Younger Dryas. The Pleistocene/Holocene shift in vegetation is remarkably pronounced in eastern North America as well as the Alaskan coastline. Response time of vegetation to climate change appears to be on the order of decades throughout these coastal locations, probably because of the proximity of sites to important ecotonal boundaries, and the magnitude of the events. Even in Virginia's Holocene record, a cold reversal inferred from increases in spruce and fir is noted at 7500 C14 yr BP. This response of the forests to a short-lived cooling shows the sensitivity of the biosphere to a rapid climate shifts.

  14. Simulated annual changes in plant functional types and their responses to climate change on the northern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Cuo, Lan; Zhang, Yongxin; Piao, Shilong; Gao, Yanhong

    2016-06-01

    Changes in plant functional types (PFTs) have important implications for both climate and water resources. Still, little is known about whether and how PFTs have changed over the past decades on the northern Tibetan Plateau (NTP) where several of the top largest rivers in the world are originated. Also, the relative importance of atmospheric conditions vs. soil physical conditions in affecting PFTs is unknown on the NTP. In this study, we used the improved Lund-Potsdam-Jena Dynamic Global Vegetation Model to investigate PFT changes through examining the changes in foliar projective coverages (FPCs) during 1957-2009 and their responses to changes in root zone soil temperature, soil moisture, air temperature, precipitation and CO2 concentrations. The results show spatially heterogeneous changes in FPCs across the NTP during 1957-2009, with 34 % (13 %) of the region showing increasing (decreasing) trends. Dominant drivers responsible for the observed FPC changes vary with regions and vegetation types, but overall, precipitation is the major factor in determining FPC changes on the NTP with positive impacts. Soil temperature increase exhibits small but negative impacts on FPCs. Different responses of individual FPCs to regionally varying climate change result in spatially heterogeneous patterns of vegetation changes on the NTP. The implication of the study is that fresh water resources in one of the world's largest and most important headwater basins and the onset and intensity of Asian monsoon circulations could be affected because of the changes in FPCs on the NTP.

  15. Biomass allocation of montane and desert Pondersoa Pine: An analog for response to climate change

    SciTech Connect

    Callaway, R.M.; DeLucia, E.H. ); Schlesinger, W.H. )

    1994-07-01

    Aboveground biomass allocation of Pinus ponderosa on hydrothermally altered andesite in montane and desert climates was measured. Trees from montane climates had higher leaf mass per unit cross-sectional area of sapwood than trees from desert climates, suggesting a function response to differences in climate. Results also indicate that sapwood mass:leaf mass ratios of P. ponderosa may increase [approx]50% with a 5[degrees]C change in mean growing-season temperature. High proportional allocation of biomass to sapwood may improve water relations of P. ponderosa, but because sapwood contains living parenchyma, respiratory costs may be high. Simulated montane trees were 46-52% taller than desert trees, and montane trees 10 cm in dbh had twice the total aboveground mass of desert counterparts. Simulated 50-cm montane and desert trees were almost identical in total mass, even though the montane tree was 46% taller. The predicted proportion of biomass allocated to bole sapwood increased with size for both montane and desert models; however, the 50-cm desert model contained 8% more total sapwood mass than the taller montane model. Biomass of primary and secondary branches differed considerably. The 50-cm desert model had twice as much biomass in primary branches, whereas the montane model had 3 times more biomass in secondary branches than the desert model. For 10-cm trees of the desert and montane models 29 and 33% of the biomass were leaves, respectively. In larger trees, leaf allocation decreased to 5 and 7% for desert and montane models, respectively. The effects of climate on biomass allocation such as reported here, and corresponding changes in whole-plant assimilation rates must be incorporated into growth-response models used to predict future fluctuations in forest productivity due to global climate change. 35 refs., 3 figs., 3 tabs.

  16. Changes in the taste and textural attributes of apples in response to climate change.

    PubMed

    Sugiura, Toshihiko; Ogawa, Hidekazu; Fukuda, Noriaki; Moriguchi, Takaya

    2013-01-01

    The effects of climate change on the taste and textural attributes of foods remain largely unknown, despite much public interest. On the basis of 30-40 years of records, we provide evidence that the taste and textural attributes of apples have changed as a result of recent global warming. Decreases in both acid concentration, fruit firmness and watercore development were observed regardless of the maturity index used for harvest date (e.g., calendar date, number of days after full bloom, peel colour and starch concentration), whereas in some cases the soluble-solids concentration increased; all such changes may have resulted from earlier blooming and higher temperatures during the maturation period. These results suggest that the qualities of apples in the market are undergoing long-term changes.

  17. Hydrologic response to forest cover changes following a Mountain Pine Beetle outbreak in the context of a changing climate

    NASA Astrophysics Data System (ADS)

    Moore, Dan; Jost, Georg; Nelson, Harry; Smith, Russell

    2013-04-01

    Over the last 15 years, there has been extensive mortality of pine forests in western North America associated with an outbreak of Mountain Pine Beetle, often followed by salvage logging. The objective of this study was to quantify the separate and combined effects of forest recovery and climate change over the 21st century on catchment hydrology in the San Jose watershed, located in the semi-arid Interior Plateau of British Columbia. Forest cover changes were simulated using a dynamic spatial model that uses a decentralized planning approach. We implemented management strategies representing current timber management objectives around achieving targeted harvest levels and incorporating existing management constraints under two different scenarios, one with no climate change and one under climate change, using climate-adjusted growth and yield curves. In addition, higher rates of fire disturbance were modelled under climate change. Under climate change, while productivity improves for some species (mainly Douglas-fir on better quality sites), on drier and poorer quality sites most species, especially Lodgepole Pine, become significantly less productive, and stocking is reduced to the point that those sites transition into grasslands. The combined effect of initial age classes (where the forest has been severely impacted by MPB), increased fire, and reduced stocking results in a greater proportion of the forest in younger age classes compared to a "Business As Usual" scenario with no climate change. The hydrologic responses to changes in vegetation cover and climate were evaluated with the flexible Hydrology Emulator and Modelling Platform (HEMP) developed at the University of British Columbia. HEMP allows a flexible discretization of the landscape. Water is moved vertically within landscape units by processes such as precipitation, canopy interception and soil infiltration, and routed laterally between units as a function of local soil and groundwater storage. The

  18. Bergmann's rule and climate change revisited: disentangling environmental and genetic responses in a wild bird population.

    PubMed

    Teplitsky, Céline; Mills, James A; Alho, Jussi S; Yarrall, John W; Merilä, Juha

    2008-09-09

    Ecological responses to on-going climate change are numerous, diverse, and taxonomically widespread. However, with one exception, the relative roles of phenotypic plasticity and microevolution as mechanisms in explaining these responses are largely unknown. Several recent studies have uncovered evidence for temporal declines in mean body sizes of birds and mammals, and these responses have been interpreted as evidence for microevolution in the context of Bergmann's rule-an ecogeographic rule predicting an inverse correlation between temperature and mean body size in endothermic animals. We used a dataset of individually marked red-billed gulls (Larus novaehollandiae scopulinus) from New Zealand to document phenotypic and genetic changes in mean body mass over a 47-year (1958-2004) period. We found that, whereas the mean body mass had decreased over time as ambient temperatures increased, analyses of breeding values estimated with an "animal model" approach showed no evidence for any genetic change. These results indicate that the frequently observed climate-change-related responses in mean body size of animal populations might be due to phenotypic plasticity, rather than to genetic microevolutionary responses.

  19. Nonlinear, interacting responses to climate limit grassland production under global change.

    PubMed

    Zhu, Kai; Chiariello, Nona R; Tobeck, Todd; Fukami, Tadashi; Field, Christopher B

    2016-09-20

    Global changes in climate, atmospheric composition, and pollutants are altering ecosystems and the goods and services they provide. Among approaches for predicting ecosystem responses, long-term observations and manipulative experiments can be powerful approaches for resolving single-factor and interactive effects of global changes on key metrics such as net primary production (NPP). Here we combine both approaches, developing multidimensional response surfaces for NPP based on the longest-running, best-replicated, most-multifactor global-change experiment at the ecosystem scale-a 17-y study of California grassland exposed to full-factorial warming, added precipitation, elevated CO2, and nitrogen deposition. Single-factor and interactive effects were not time-dependent, enabling us to analyze each year as a separate realization of the experiment and extract NPP as a continuous function of global-change factors. We found a ridge-shaped response surface in which NPP is humped (unimodal) in response to temperature and precipitation when CO2 and nitrogen are ambient, with peak NPP rising under elevated CO2 or nitrogen but also shifting to lower temperatures. Our results suggest that future climate change will push this ecosystem away from conditions that maximize NPP, but with large year-to-year variability.

  20. Nonlinear flowering responses to climate: are species approaching their limits of phenological change?

    PubMed Central

    Iler, Amy M.; Høye, Toke T.; Inouye, David W.; Schmidt, Niels M.

    2013-01-01

    Many alpine and subalpine plant species exhibit phenological advancements in association with earlier snowmelt. While the phenology of some plant species does not advance beyond a threshold snowmelt date, the prevalence of such threshold phenological responses within plant communities is largely unknown. We therefore examined the shape of flowering phenology responses (linear versus nonlinear) to climate using two long-term datasets from plant communities in snow-dominated environments: Gothic, CO, USA (1974–2011) and Zackenberg, Greenland (1996–2011). For a total of 64 species, we determined whether a linear or nonlinear regression model best explained interannual variation in flowering phenology in response to increasing temperatures and advancing snowmelt dates. The most common nonlinear trend was for species to flower earlier as snowmelt advanced, with either no change or a slower rate of change when snowmelt was early (average 20% of cases). By contrast, some species advanced their flowering at a faster rate over the warmest temperatures relative to cooler temperatures (average 5% of cases). Thus, some species seem to be approaching their limits of phenological change in response to snowmelt but not temperature. Such phenological thresholds could either be a result of minimum springtime photoperiod cues for flowering or a slower rate of adaptive change in flowering time relative to changing climatic conditions. PMID:23836793

  1. Nonlinear, interacting responses to climate limit grassland production under global change

    PubMed Central

    Zhu, Kai; Chiariello, Nona R.; Tobeck, Todd; Fukami, Tadashi; Field, Christopher B.

    2016-01-01

    Global changes in climate, atmospheric composition, and pollutants are altering ecosystems and the goods and services they provide. Among approaches for predicting ecosystem responses, long-term observations and manipulative experiments can be powerful approaches for resolving single-factor and interactive effects of global changes on key metrics such as net primary production (NPP). Here we combine both approaches, developing multidimensional response surfaces for NPP based on the longest-running, best-replicated, most-multifactor global-change experiment at the ecosystem scale—a 17-y study of California grassland exposed to full-factorial warming, added precipitation, elevated CO2, and nitrogen deposition. Single-factor and interactive effects were not time-dependent, enabling us to analyze each year as a separate realization of the experiment and extract NPP as a continuous function of global-change factors. We found a ridge-shaped response surface in which NPP is humped (unimodal) in response to temperature and precipitation when CO2 and nitrogen are ambient, with peak NPP rising under elevated CO2 or nitrogen but also shifting to lower temperatures. Our results suggest that future climate change will push this ecosystem away from conditions that maximize NPP, but with large year-to-year variability. PMID:27601643

  2. Adaptive Governance, Uncertainty, and Risk: Policy Framing and Responses to Climate Change, Drought, and Flood.

    PubMed

    Hurlbert, Margot; Gupta, Joyeeta

    2016-02-01

    As climate change impacts result in more extreme events (such as droughts and floods), the need to understand which policies facilitate effective climate change adaptation becomes crucial. Hence, this article answers the question: How do governments and policymakers frame policy in relation to climate change, droughts, and floods and what governance structures facilitate adaptation? This research interrogates and analyzes through content analysis, supplemented by semi-structured qualitative interviews, the policy response to climate change, drought, and flood in relation to agricultural producers in four case studies in river basins in Chile, Argentina, and Canada. First, an epistemological explanation of risk and uncertainty underscores a brief literature review of adaptive governance, followed by policy framing in relation to risk and uncertainty, and an analytical model is developed. Pertinent findings of the four cases are recounted, followed by a comparative analysis. In conclusion, recommendations are made to improve policies and expand adaptive governance to better account for uncertainty and risk. This article is innovative in that it proposes an expanded model of adaptive governance in relation to "risk" that can help bridge the barrier of uncertainty in science and policy.

  3. Moving forward: dispersal and species interactions determine biotic responses to climate change.

    PubMed

    Urban, Mark C; Zarnetske, Phoebe L; Skelly, David K

    2013-09-01

    We need accurate predictions about how climate change will alter species distributions and abundances around the world. Most predictions assume simplistic dispersal scenarios and ignore biotic interactions. We argue for incorporating the complexities of dispersal and species interactions. Range expansions depend not just on mean dispersal, but also on the shape of the dispersal kernel and the population's growth rate. We show how models using species-specific dispersal can produce more accurate predictions than models applying all-or-nothing dispersal scenarios. Models that additionally include species interactions can generate distinct outcomes. For example, species interactions can slow climate tracking and produce more extinctions than models assuming no interactions. We conclude that (1) just knowing mean dispersal is insufficient to predict biotic responses to climate change, and (2) considering interspecific dispersal variation and species interactions jointly will be necessary to anticipate future changes to biological diversity. We advocate for collecting key information on interspecific dispersal differences and strong biotic interactions so that we can build the more robust predictive models that will be necessary to inform conservation efforts as climates continue to change.

  4. Persistence and diversification of the Holarctic shrew, Sorex tundrensis (Family Soricidae), in response to climate change

    USGS Publications Warehouse

    Hope, A.G.; Waltari, Eric; Fedorov, V.B.; Goropashnaya, A.V.; Talbot, S.L.; Cook, J.A.

    2011-01-01

    Environmental processes govern demography, species movements, community turnover and diversification and yet in many respects these dynamics are still poorly understood at high latitudes. We investigate the combined effects of climate change and geography through time for a widespread Holarctic shrew, Sorex tundrensis. We include a comprehensive suite of closely related outgroup taxa and three independent loci to explore phylogeographic structure and historical demography. We then explore the implications of these findings for other members of boreal communities. The tundra shrew and its sister species, the Tien Shan shrew (Sorex asper), exhibit strong geographic population structure across Siberia and into Beringia illustrating local centres of endemism that correspond to Late Pleistocene refugia. Ecological niche predictions for both current and historical distributions indicate a model of persistence through time despite dramatic climate change. Species tree estimation under a coalescent process suggests that isolation between populations has been maintained across timeframes deeper than the periodicity of Pleistocene glacial cycling. That some species such as the tundra shrew have a history of persistence largely independent of changing climate, whereas other boreal species shifted their ranges in response to climate change, highlights the dynamic processes of community assembly at high latitudes. ?? 2011 Blackwell Publishing Ltd.

  5. Persistence and diversification of the Holarctic shrew, Sorex tundrensis (Family Soricidae), in response to climate change

    USGS Publications Warehouse

    Hope, Andrew G.; Waltari, Eric; Fedorov, V.B.; Goropashnaya, A.V.; Talbot, Sandra; Cook, Joseph A.

    2014-01-01

    Environmental processes govern demography, species movements, community turnover and diversification and yet in many respects these dynamics are still poorly understood at high latitudes. We investigate the combined effects of climate change and geography through time for a widespread Holarctic shrew, Sorex tundrensis. We include a comprehensive suite of closely related outgroup taxa and three independent loci to explore phylogeographic structure and historical demography. We then explore the implications of these findings for other members of boreal communities. The tundra shrew and its sister species, the Tien Shan shrew (Sorex asper), exhibit strong geographic population structure across Siberia and into Beringia illustrating local centres of endemism that correspond to Late Pleistocene refugia. Ecological niche predictions for both current and historical distributions indicate a model of persistence through time despite dramatic climate change. Species tree estimation under a coalescent process suggests that isolation between populations has been maintained across timeframes deeper than the periodicity of Pleistocene glacial cycling. That some species such as the tundra shrew have a history of persistence largely independent of changing climate, whereas other boreal species shifted their ranges in response to climate change, highlights the dynamic processes of community assembly at high latitudes.

  6. Persistence and diversification of the Holarctic shrew, Sorex tundrensis (Family Soricidae), in response to climate change.

    PubMed

    Hope, Andrew G; Waltari, Eric; Fedorov, Vadim B; Goropashnaya, Anna V; Talbot, Sandra L; Cook, Joseph A

    2011-10-01

    Environmental processes govern demography, species movements, community turnover and diversification and yet in many respects these dynamics are still poorly understood at high latitudes. We investigate the combined effects of climate change and geography through time for a widespread Holarctic shrew, Sorex tundrensis. We include a comprehensive suite of closely related outgroup taxa and three independent loci to explore phylogeographic structure and historical demography. We then explore the implications of these findings for other members of boreal communities. The tundra shrew and its sister species, the Tien Shan shrew (Sorex asper), exhibit strong geographic population structure across Siberia and into Beringia illustrating local centres of endemism that correspond to Late Pleistocene refugia. Ecological niche predictions for both current and historical distributions indicate a model of persistence through time despite dramatic climate change. Species tree estimation under a coalescent process suggests that isolation between populations has been maintained across timeframes deeper than the periodicity of Pleistocene glacial cycling. That some species such as the tundra shrew have a history of persistence largely independent of changing climate, whereas other boreal species shifted their ranges in response to climate change, highlights the dynamic processes of community assembly at high latitudes.

  7. Microbial models with data-driven parameters predict stronger soil carbon responses to climate change.

    PubMed

    Hararuk, Oleksandra; Smith, Matthew J; Luo, Yiqi

    2015-06-01

    Long-term carbon (C) cycle feedbacks to climate depend on the future dynamics of soil organic carbon (SOC). Current models show low predictive accuracy at simulating contemporary SOC pools, which can be improved through parameter estimation. However, major uncertainty remains in global soil responses to climate change, particularly uncertainty in how the activity of soil microbial communities will respond. To date, the role of microbes in SOC dynamics has been implicitly described by decay rate constants in most conventional global carbon cycle models. Explicitly including microbial biomass dynamics into C cycle model formulations has shown potential to improve model predictive performance when assessed against global SOC databases. This study aimed to data-constrained parameters of two soil microbial models, evaluate the improvements in performance of those calibrated models in predicting contemporary carbon stocks, and compare the SOC responses to climate change and their uncertainties between microbial and conventional models. Microbial models with calibrated parameters explained 51% of variability in the observed total SOC, whereas a calibrated conventional model explained 41%. The microbial models, when forced with climate and soil carbon input predictions from the 5th Coupled Model Intercomparison Project (CMIP5), produced stronger soil C responses to 95 years of climate change than any of the 11 CMIP5 models. The calibrated microbial models predicted between 8% (2-pool model) and 11% (4-pool model) soil C losses compared with CMIP5 model projections which ranged from a 7% loss to a 22.6% gain. Lastly, we observed unrealistic oscillatory SOC dynamics in the 2-pool microbial model. The 4-pool model also produced oscillations, but they were less prominent and could be avoided, depending on the parameter values.

  8. How does complex terrain influence responses of carbon and water cycle processes to climate variability and climate change? (Invited)

    NASA Astrophysics Data System (ADS)

    Bond, B. J.; Peterson, K.; McKane, R.; Lajtha, K.; Quandt, D. J.; Allen, S. T.; Sell, S.; Daly, C.; Harmon, M. E.; Johnson, S. L.; Spies, T.; Sollins, P.; Abdelnour, A. G.; Stieglitz, M.

    2010-12-01

    We are pursuing the ambitious goal of understanding how complex terrain influences the responses of carbon and water cycle processes to climate variability and climate change. Our studies take place in H.J. Andrews Experimental Forest, an LTER (Long Term Ecological Research) site situated in Oregon’s central-western Cascade Range. Decades of long-term measurements and intensive research have revealed influences of topography on vegetation patterns, disturbance history, and hydrology. More recent research has shown surprising interactions between microclimates and synoptic weather patterns due to cold air drainage and pooling in mountain valleys. Using these data and insights, in addition to a recent LiDAR (Light Detection and Ranging) reconnaissance and a small sensor network, we are employing process-based models, including “SPA” (Soil-Plant-Atmosphere, developed by Mathew Williams of the University of Edinburgh), and “VELMA” (Visualizing Ecosystems for Land Management Alternatives, developed by Marc Stieglitz and colleagues of the Georgia Institute of Technology) to focus on two important features of mountainous landscapes: heterogeneity (both spatial and temporal) and connectivity (atmosphere-canopy-hillslope-stream). Our research questions include: 1) Do fine-scale spatial and temporal heterogeneity result in emergent properties at the basin scale, and if so, what are they? 2) How does connectivity across ecosystem components affect system responses to climate variability and change? Initial results show that for environmental drivers that elicit non-linear ecosystem responses on the plot scale, such as solar radiation, soil depth and soil water content, fine-scale spatial heterogeneity may produce unexpected emergent properties at larger scales. The results from such modeling experiments are necessarily a function of the supporting algorithms. However, comparisons based on models such as SPA and VELMA that operate at much different spatial scales

  9. Agriculture: Climate Change

    EPA Pesticide Factsheets

    Climate change affects agricultural producers because agriculture and fisheries depend on specific climate conditions. Temperature changes can cause crop planting dates to shift. Droughts and floods due to climate change may hinder farming practices.

  10. Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios

    NASA Astrophysics Data System (ADS)

    Adloff, Fanny; Somot, Samuel; Sevault, Florence; Jordà, Gabriel; Aznar, Roland; Déqué, Michel; Herrmann, Marine; Marcos, Marta; Dubois, Clotilde; Padorno, Elena; Alvarez-Fanjul, Enrique; Gomis, Damià

    2015-11-01

    The Mediterranean climate is expected to become warmer and drier during the twenty-first century. Mediterranean Sea response to climate change could be modulated by the choice of the socio-economic scenario as well as the choice of the boundary conditions mainly the Atlantic hydrography, the river runoff and the atmospheric fluxes. To assess and quantify the sensitivity of the Mediterranean Sea to the twenty-first century climate change, a set of numerical experiments was carried out with the regional ocean model NEMOMED8 set up for the Mediterranean Sea. The model is forced by air-sea fluxes derived from the regional climate model ARPEGE-Climate at a 50-km horizontal resolution. Historical simulations representing the climate of the period 1961-2000 were run to obtain a reference state. From this baseline, various sensitivity experiments were performed for the period 2001-2099, following different socio-economic scenarios based on the Special Report on Emissions Scenarios. For the A2 scenario, the main three boundary forcings (river runoff, near-Atlantic water hydrography and air-sea fluxes) were changed one by one to better identify the role of each forcing in the way the ocean responds to climate change. In two additional simulations (A1B, B1), the scenario is changed, allowing to quantify the socio-economic uncertainty. Our 6-member scenario simulations display a warming and saltening of the Mediterranean. For the 2070-2099 period compared to 1961-1990, the sea surface temperature anomalies range from +1.73 to +2.97 °C and the SSS anomalies spread from +0.48 to +0.89. In most of the cases, we found that the future Mediterranean thermohaline circulation (MTHC) tends to reach a situation similar to the eastern Mediterranean Transient. However, this response is varying depending on the chosen boundary conditions and socio-economic scenarios. Our numerical experiments suggest that the choice of the near-Atlantic surface water evolution, which is very uncertain in

  11. Land-use and carbon cycle responses to moderate climate change: implications for land-based mitigation?

    PubMed

    Humpenöder, Florian; Popp, Alexander; Stevanovic, Miodrag; Müller, Christoph; Bodirsky, Benjamin Leon; Bonsch, Markus; Dietrich, Jan Philipp; Lotze-Campen, Hermann; Weindl, Isabelle; Biewald, Anne; Rolinski, Susanne

    2015-06-02

    Climate change has impacts on agricultural yields, which could alter cropland requirements and hence deforestation rates. Thus, land-use responses to climate change might influence terrestrial carbon stocks. Moreover, climate change could alter the carbon storage capacity of the terrestrial biosphere and hence the land-based mitigation potential. We use a global spatially explicit economic land-use optimization model to (a) estimate the mitigation potential of a climate policy that provides economic incentives for carbon stock conservation and enhancement, (b) simulate land-use and carbon cycle responses to moderate climate change (RCP2.6), and (c) investigate the combined effects throughout the 21st century. The climate policy immediately stops deforestation and strongly increases afforestation, resulting in a global mitigation potential of 191 GtC in 2100. Climate change increases terrestrial carbon stocks not only directly through enhanced carbon sequestration (62 GtC by 2100) but also indirectly through less deforestation due to higher crop yields (16 GtC by 2100). However, such beneficial climate impacts increase the potential of the climate policy only marginally, as the potential is already large under static climatic conditions. In the broader picture, this study highlights the importance of land-use dynamics for modeling carbon cycle responses to climate change in integrated assessment modeling.

  12. NDVI-based vegetation responses to climate change in an arid area of China

    NASA Astrophysics Data System (ADS)

    Xu, Yufeng; Yang, Jing; Chen, Yaning

    2016-10-01

    Warming of the climate system is unequivocal, and the change of climate variables will eventually have a great impact on vegetation cover and agricultural practices, especially in the arid area Xinjiang in China, whose agriculture and ecosystems are heavily vulnerable to climate change. In this paper, normalized difference vegetation index (NDVI) was used to study the vegetation growth and its response to climate change in Xinjiang. Firstly, two NDVI datasets (Global Inventory Modeling and Mapping Studies (GIMMS) and Moderate Resolution Imaging Spectroradiometer (MODIS)) were merged through a pixel-wise regression analysis to obtain a long time series of NDVI data, and then, relationships between yearly NDVI and yearly climate variables, and monthly NDVI and monthly climate variables were extensively investigated for grassland and cropland in northern and southern Xinjiang, respectively. Results show the following: (1) there was an increasing trend in NDVI for both grassland and cropland in both northern and southern Xinjiang over the past decades and trends were significant except that for grassland in northern Xinjiang; (2) precipitation and evaporation were more important than temperature for grassland in northern Xinjiang, while precipitation and temperature were more important than evaporation for grassland in southern Xinjiang and cropland in both northern and southern Xinjiang; (3) NDVI was highly correlated with accumulated monthly precipitation instead of monthly precipitation, and there was a lagged effect of precipitation, temperature, and evaporation on NDVI change. However, lagged effects were only significant in specific months. The results could be helpful to agricultural practices; e.g., based on lagged effect of precipitation, irrigation in July is very important for crop growth.

  13. Soil Microbial Community Responses to Short-term Multiple Experimental Climate Change Drivers

    NASA Astrophysics Data System (ADS)

    Li, Guanlin; Lee, Jongyeol; Lee, Sohye; Roh, Yujin; Son, Yowhan

    2016-04-01

    It is agreed that soil microbial communities are responsible for the cycling of carbon and nutrients in ecosystems; however, the response of these microbial communities to climate change has not been clearly understood. In this study, we measured the direct and interactive effects of climate change drivers on soil bacterial and fungal communities (abundance and composition) in an open-field multifactor climate change experiment. The experimental treatment system was established with two-year-old Pinus densiflora seedlings at Korea University in April 2013, and consisted of six different treatments with three replicates: two levels of air temperature warming (control and +3° C) were crossed with three levels of precipitation manipulation (control, -30% and +30%). After 2.5 years of treatments, in August, 2015, soil samples were collected from the topsoil (0-15cm) of all plots (n=18). High-throughput sequencing technology was used to assess the abundance and composition of soil bacterial and fungal community. Analysis of variance for a blocked split-plot design was used to detect the effects of climate change drivers and their interaction on the abundance and composition of soil bacterial and fungal community. Our results showed that 1) only the significant effect of warming on fungal community abundance was observed (P <0.05); 2) on average, warming decreased both bacterial and fungal community abundance by 20.90% and 32.30%, 6.69% and 45.89%, 14.71% and 19.56% in control, decreased, and increased precipitation plots, respectively; 3) however, warming increased the relative bacterium/fungus ratio on average by 14.03%, 37.03% and 14.31% in control, decreased, and increased precipitation plots, respectively; 4) the phylogenetic distribution of bacterial and fungal groups and their relative abundance varied among treatments; 5) treatments altered the relative abundance of Ascomycota and Basidiomycota, where Ascomycota decreased with a concomitant increase in the

  14. Potential for a hazardous geospheric response to projected future climate changes.

    PubMed

    McGuire, B

    2010-05-28

    Periods of exceptional climate change in Earth history are associated with a dynamic response from the geosphere, involving enhanced levels of potentially hazardous geological and geomorphological activity. The response is expressed through the adjustment, modulation or triggering of a broad range of surface and crustal phenomena, including volcanic and seismic activity, submarine and subaerial landslides, tsunamis and landslide 'splash' waves, glacial outburst and rock-dam failure floods, debris flows and gas-hydrate destabilization. In relation to anthropogenic climate change, modelling studies and projection of current trends point towards increased risk in relation to a spectrum of geological and geomorphological hazards in a warmer world, while observations suggest that the ongoing rise in global average temperatures may already be eliciting a hazardous response from the geosphere. Here, the potential influences of anthropogenic warming are reviewed in relation to an array of geological and geomorphological hazards across a range of environmental settings. A programme of focused research is advocated in order to: (i) understand better those mechanisms by which contemporary climate change may drive hazardous geological and geomorphological activity; (ii) delineate those parts of the world that are most susceptible; and (iii) provide a more robust appreciation of potential impacts for society and infrastructure.

  15. Population differentiation in tree-ring growth response of white fir (Abies concolor) to climate: Implications for predicting forest responses to climate change

    SciTech Connect

    Jensen, Deborah Bowne

    1993-01-01

    Forest succession models and correlative models have predicted 200--650 kilometer shifts in the geographic range of temperate forests and forest species as one response to global climate change. Few studies have investigated whether population differences may effect the response of forest species to climate change. This study examines differences in tree-ring growth, and in the phenotypic plasticity of tree-ring growth in 16-year old white fir, Abies concolor, from ten populations grown in four common gardens in the Sierra Nevada of California. For each population, tree-ring growth was modelled as a function of precipitation and degree-day sums. Tree-ring growth under three scenarios of doubled CO2 climates was estimated.

  16. Do cities simulate climate change? A comparison of herbivore response to urban and global warming

    USGS Publications Warehouse

    Youngsteadt, Elsa; Dale, Adam G.; Terando, Adam; Dunn, Robert R.; Frank, Steven D.

    2014-01-01

    Cities experience elevated temperature, CO2, and nitrogen deposition decades ahead of the global average, such that biological response to urbanization may predict response to future climate change. This hypothesis remains untested due to a lack of complementary urban and long-term observations. Here, we examine the response of an herbivore, the scale insect Melanaspis tenebricosa, to temperature in the context of an urban heat island, a series of historical temperature fluctuations, and recent climate warming. We survey M. tenebricosa on 55 urban street trees in Raleigh, NC, 342 herbarium specimens collected in the rural southeastern United States from 1895 to 2011, and at 20 rural forest sites represented by both modern (2013) and historical samples. We relate scale insect abundance to August temperatures and find that M. tenebricosa is most common in the hottest parts of the city, on historical specimens collected during warm time periods, and in present-day rural forests compared to the same sites when they were cooler. Scale insects reached their highest densities in the city, but abundance peaked at similar temperatures in urban and historical datasets and tracked temperature on a decadal scale. Although urban habitats are highly modified, species response to a key abiotic factor, temperature, was consistent across urban and rural-forest ecosystems. Cities may be an appropriate but underused system for developing and testing hypotheses about biological effects of climate change. Future work should test the applicability of this model to other groups of organisms.

  17. Do cities simulate climate change? A comparison of herbivore response to urban and global warming.

    PubMed

    Youngsteadt, Elsa; Dale, Adam G; Terando, Adam J; Dunn, Robert R; Frank, Steven D

    2015-01-01

    Cities experience elevated temperature, CO2 , and nitrogen deposition decades ahead of the global average, such that biological response to urbanization may predict response to future climate change. This hypothesis remains untested due to a lack of complementary urban and long-term observations. Here, we examine the response of an herbivore, the scale insect Melanaspis tenebricosa, to temperature in the context of an urban heat island, a series of historical temperature fluctuations, and recent climate warming. We survey M. tenebricosa on 55 urban street trees in Raleigh, NC, 342 herbarium specimens collected in the rural southeastern United States from 1895 to 2011, and at 20 rural forest sites represented by both modern (2013) and historical samples. We relate scale insect abundance to August temperatures and find that M. tenebricosa is most common in the hottest parts of the city, on historical specimens collected during warm time periods, and in present-day rural forests compared to the same sites when they were cooler. Scale insects reached their highest densities in the city, but abundance peaked at similar temperatures in urban and historical datasets and tracked temperature on a decadal scale. Although urban habitats are highly modified, species response to a key abiotic factor, temperature, was consistent across urban and rural-forest ecosystems. Cities may be an appropriate but underused system for developing and testing hypotheses about biological effects of climate change. Future work should test the applicability of this model to other groups of organisms.

  18. Climate change and apple farming in Indian Himalayas: a study of local perceptions and responses.

    PubMed

    Basannagari, Basavaraj; Kala, Chandra Prakash

    2013-01-01

    Apple farming is an important activity and profession of farmer communities in the Himalayan states of India. At present, the traditional apple farming is under stress due to changes in climate. The present study was undertaken in an Indian Himalayan state, Himachal Pradesh, with the major aim of studying perceptions of farmers on the effects of climate change on apple farming along the altitudinal gradient. Through questionnaire survey, the perceptions of farmers were recorded at low hills (<2500 m), mid-hills (2500-3000 m), and upper hills (>3000 m). At all elevation range the majority of farmers reported that there was increase in atmospheric temperature, and hence at low hills 72% farmers believed that this increase in temperature was responsible for decline in fruit size and so that the quality. Thirty five percent farmers at high hills and 30% at mid hills perceived frost as a major cause for damaging apple farming whereas at low hills 24% farmers perceived hailstorm as the major deterrent for apple farming. The majority of farmers, along the altitude (92% at high hills, 79% at mid hills and 83% at low hills), reported decrease in snowfall. The majority of farmers at low altitude and mid altitude reported decline in apple farming whereas 71% farmers at high hill areas refused decline in apple farming. About 73-83% farmers admitted delay in apple's harvesting period. At mid hills apple scab and at low hills pest attack on apple crops are considered as the indicators of climate change. The change in land use practices was attributed to climate change and in many areas the land under apple farming was replaced for production of coarse grains, seasonal vegetables and other horticulture species. Scientific investigation claiming changes in Indian Himalayan climate corroborates perceptions of farmers, as examined during the present study.

  19. Predicted response of stem respiration in ponderosa pine to global climate change

    SciTech Connect

    Carey, E.V.; DeLucia, E.H.; Callaway, R.M. )

    1994-06-01

    We measured woody tissue respiration on boles of desert and montane populations of Pinus ponderosa growing in the Great Basin Desert and on the east-slope of the Sierra Nevada as part of a study of responses of P. ponderosa to global climate change. The differences in temperature and precipitation between desert and montane populations match changes in climate predicted from a doubling of atmospheric CO[sub 2]; therefore, these naturally occurring populations represent the difference between present and future climatic conditions for these trees. Allometric relationships derived previously, indicate that for trees of equal diameter, desert trees predicted that desert trees would have lower Q[sub 10] responses for respiration (increase in respiration with a 10[degrees] increase in temperature) volume was not different between populations (Desert: 3.24; Montane: 3.13 moles m[sup [minus]3] sec[sup [minus]1]). Moreover, between population differences in Q[sub 10] for respiration were not statistically significant (Desert: 2.27; Montane: 2.39). Results suggest that under predicted future climatic conditions increased respiratory losses from woody tissue resulting from increased allocation to sapwood may offset increases in carbon uptake due to enhanced photosynthesis from elevated CO[sub 2].

  20. Independent Demographic Responses to Climate Change among Temperate and Tropical Milksnakes (Colubridae: Genus Lampropeltis)

    PubMed Central

    Ruane, Sara; Torres-Carvajal, Omar; Burbrink, Frank T.

    2015-01-01

    The effects of Late Quaternary climate change have been examined for many temperate New World taxa, but the impact of Pleistocene glacial cycles on Neotropical taxa is less well understood, specifically with respect to changes in population demography. Here, we examine historical demographic trends for six species of milksnake with representatives in both the temperate and tropical Americas to determine if species share responses to climate change as a taxon or by area (i.e., temperate versus tropical environments). Using a multilocus dataset, we test for the demographic signature of population expansion and decline using non-genealogical summary statistics, as well as coalescent-based methods. In addition, we determine whether range sizes are correlated with effective population sizes for milksnakes. Results indicate that there are no identifiable trends with respect to demographic response based on location, and that species responded to changing climates independently, with tropical taxa showing greater instability. There is also no correlation between range size and effective population size, with the largest population size belonging to the species with the smallest geographic distribution. Our study highlights the importance of not generalizing the demographic histories of taxa by region and further illustrates that the New World tropics may not have been a stable refuge during the Pleistocene. PMID:26083467

  1. Lifestyle and Ice: The Relationship between Ecological Specialization and Response to Pleistocene Climate Change.

    PubMed

    Kašparová, Eva; Van de Putte, Anton P; Marshall, Craig; Janko, Karel

    2015-01-01

    Major climatic changes in the Pleistocene had significant effects on marine organisms and the environments in which they lived. The presence of divergent patterns of demographic history even among phylogenetically closely-related species sharing climatic changes raises questions as to the respective influence of species-specific traits on population structure. In this work we tested whether the lifestyle of Antarctic notothenioid benthic and pelagic fish species from the Southern Ocean influenced the concerted population response to Pleistocene climatic fluctuations. This was done by a comparative analysis of sequence variation at the cyt b and S7 loci in nine newly sequenced and four re-analysed species. We found that all species underwent more or less intensive changes in population size but we also found consistent differences between demographic histories of pelagic and benthic species. Contemporary pelagic populations are significantly more genetically diverse and bear traces of older demographic expansions than less diverse benthic species that show evidence of more recent population expansions. Our findings suggest that the lifestyles of different species have strong influences on their responses to the same environmental events. Our data, in conjunction with previous studies showing a constant diversification tempo of these species during the Pleistocene, support the hypothesis that Pleistocene glaciations had a smaller effect on pelagic species than on benthic species whose survival may have relied upon ephemeral refugia in shallow shelf waters. These findings suggest that the interaction between lifestyle and environmental changes should be considered in genetic analyses.

  2. Lifestyle and Ice: The Relationship between Ecological Specialization and Response to Pleistocene Climate Change

    PubMed Central

    Kašparová, Eva; Van de Putte, Anton P.; Marshall, Craig; Janko, Karel

    2015-01-01

    Major climatic changes in the Pleistocene had significant effects on marine organisms and the environments in which they lived. The presence of divergent patterns of demographic history even among phylogenetically closely-related species sharing climatic changes raises questions as to the respective influence of species-specific traits on population structure. In this work we tested whether the lifestyle of Antarctic notothenioid benthic and pelagic fish species from the Southern Ocean influenced the concerted population response to Pleistocene climatic fluctuations. This was done by a comparative analysis of sequence variation at the cyt b and S7 loci in nine newly sequenced and four re-analysed species. We found that all species underwent more or less intensive changes in population size but we also found consistent differences between demographic histories of pelagic and benthic species. Contemporary pelagic populations are significantly more genetically diverse and bear traces of older demographic expansions than less diverse benthic species that show evidence of more recent population expansions. Our findings suggest that the lifestyles of different species have strong influences on their responses to the same environmental events. Our data, in conjunction with previous studies showing a constant diversification tempo of these species during the Pleistocene, support the hypothesis that Pleistocene glaciations had a smaller effect on pelagic species than on benthic species whose survival may have relied upon ephemeral refugia in shallow shelf waters. These findings suggest that the interaction between lifestyle and environmental changes should be considered in genetic analyses. PMID:26535569

  3. Size matters: plasticity in metabolic scaling shows body-size may modulate responses to climate change

    PubMed Central

    Carey, Nicholas; Sigwart, Julia D.

    2014-01-01

    Variability in metabolic scaling in animals, the relationship between metabolic rate (R) and body mass (M), has been a source of debate and controversy for decades. R is proportional to Mb, the precise value of b much debated, but historically considered equal in all organisms. Recent metabolic theory, however, predicts b to vary among species with ecology and metabolic level, and may also vary within species under different abiotic conditions. Under climate change, most species will experience increased temperatures, and marine organisms will experience the additional stressor of decreased seawater pH (‘ocean acidification’). Responses to these environmental changes are modulated by myriad species-specific factors. Body-size is a fundamental biological parameter, but its modulating role is relatively unexplored. Here, we show that changes to metabolic scaling reveal asymmetric responses to stressors across body-size ranges; b is systematically decreased under increasing temperature in three grazing molluscs, indicating smaller individuals were more responsive to warming. Larger individuals were, however, more responsive to reduced seawater pH in low temperatures. These alterations to the allometry of metabolism highlight abiotic control of metabolic scaling, and indicate that responses to climate warming and ocean acidification may be modulated by body-size. PMID:25122741

  4. Size matters: plasticity in metabolic scaling shows body-size may modulate responses to climate change.

    PubMed

    Carey, Nicholas; Sigwart, Julia D

    2014-08-01

    Variability in metabolic scaling in animals, the relationship between metabolic rate ( R: ) and body mass ( M: ), has been a source of debate and controversy for decades. R: is proportional to MB: , the precise value of B: much debated, but historically considered equal in all organisms. Recent metabolic theory, however, predicts B: to vary among species with ecology and metabolic level, and may also vary within species under different abiotic conditions. Under climate change, most species will experience increased temperatures, and marine organisms will experience the additional stressor of decreased seawater pH ('ocean acidification'). Responses to these environmental changes are modulated by myriad species-specific factors. Body-size is a fundamental biological parameter, but its modulating role is relatively unexplored. Here, we show that changes to metabolic scaling reveal asymmetric responses to stressors across body-size ranges; B: is systematically decreased under increasing temperature in three grazing molluscs, indicating smaller individuals were more responsive to warming. Larger individuals were, however, more responsive to reduced seawater pH in low temperatures. These alterations to the allometry of metabolism highlight abiotic control of metabolic scaling, and indicate that responses to climate warming and ocean acidification may be modulated by body-size.

  5. Evolutionary response of landraces to climate change in centers of crop diversity.

    PubMed

    Mercer, Kristin L; Perales, Hugo R

    2010-09-01

    Landraces cultivated in centers of crop diversity result from past and contemporary patterns of natural and farmer-mediated evolutionary forces. Successful in situ conservation of crop genetic resources depends on continuity of these evolutionary processes. Climate change is projected to affect agricultural production, yet analyses of impacts on in situ conservation of crop genetic diversity and farmers who conserve it have been absent. How will crop landraces respond to alterations in climate? We review the roles that phenotypic plasticity, evolution, and gene flow might play in sustaining production, although we might expect erosion of genetic diversity if landrace populations or entire races lose productivity. For example, highland maize landraces in southern Mexico do not express the plasticity necessary to sustain productivity under climate change, but may evolve in response to altered conditions. The outcome for any given crop in a given region will depend on the distribution of genetic variation that affects fitness and patterns of climate change. Understanding patterns of neutral and adaptive diversity from the population to the landscape scale is essential to clarify how landraces conserved in situ will continue to evolve and how to minimize genetic erosion of this essential natural resource.

  6. Evolutionary response of landraces to climate change in centers of crop diversity

    PubMed Central

    Mercer, Kristin L; Perales, Hugo R

    2010-01-01

    Landraces cultivated in centers of crop diversity result from past and contemporary patterns of natural and farmer-mediated evolutionary forces. Successful in situ conservation of crop genetic resources depends on continuity of these evolutionary processes. Climate change is projected to affect agricultural production, yet analyses of impacts on in situ conservation of crop genetic diversity and farmers who conserve it have been absent. How will crop landraces respond to alterations in climate? We review the roles that phenotypic plasticity, evolution, and gene flow might play in sustaining production, although we might expect erosion of genetic diversity if landrace populations or entire races lose productivity. For example, highland maize landraces in southern Mexico do not express the plasticity necessary to sustain productivity under climate change, but may evolve in response to altered conditions. The outcome for any given crop in a given region will depend on the distribution of genetic variation that affects fitness and patterns of climate change. Understanding patterns of neutral and adaptive diversity from the population to the landscape scale is essential to clarify how landraces conserved in situ will continue to evolve and how to minimize genetic erosion of this essential natural resource. PMID:25567941

  7. Seasonal blood chemistry response of sub-tropical nearshore fishes to climate change

    PubMed Central

    Shultz, Aaron D.; Zuckerman, Zachary C.; Stewart, Heather A.; Suski, Cory D.

    2014-01-01

    Climate change due to anthropogenic activity will continue to alter the chemistry of the oceans. Future climate scenarios indicate that sub-tropical oceans will become more acidic, and the temperature and salinity will increase relative to current conditions. A large portion of previous work has focused on how future climate scenarios may impact shell-forming organisms and coral reef fish, with little attention given to fish that inhabit nearshore habitats; few studies have examined multiple challenges concurrently. The purpose of this study was to quantify the blood-based physiological response of nearshore fishes to a suite of seawater conditions associated with future climate change. Fish were exposed to an acute (30 min) increase in salinity (50 ppt), acidity (decrease in pH by 0.5 units) or temperature (7–10°C), or temperature and acidity combined, and held in these conditions for 6 h. Their physiological responses were compared across seasons (i.e. summer vs. winter). Bonefish (Albula vulpes) exposed to environmental challenges in the summer experienced a suite of blood-based osmotic and ionic disturbances relative to fish held in ambient conditions, with thermal challenges (particularly in the summer) being the most challenging. Conversely, no significant treatment effects were observed for yellowfin mojarra (Gerres cinereus) or checkered puffer (Sphoeroides testudineus) in either season. Together, results from this study demonstrate that acute climate-induced changes to thermal habitat will be the most challenging for sub-tropical fishes (particularly in the summer) relative to salinity and pH stressors, but significant variation across species exists. PMID:27293649

  8. Seasonal blood chemistry response of sub-tropical nearshore fishes to climate change.

    PubMed

    Shultz, Aaron D; Zuckerman, Zachary C; Stewart, Heather A; Suski, Cory D

    2014-01-01

    Climate change due to anthropogenic activity will continue to alter the chemistry of the oceans. Future climate scenarios indicate that sub-tropical oceans will become more acidic, and the temperature and salinity will increase relative to current conditions. A large portion of previous work has focused on how future climate scenarios may impact shell-forming organisms and coral reef fish, with little attention given to fish that inhabit nearshore habitats; few studies have examined multiple challenges concurrently. The purpose of this study was to quantify the blood-based physiological response of nearshore fishes to a suite of seawater conditions associated with future climate change. Fish were exposed to an acute (30 min) increase in salinity (50 ppt), acidity (decrease in pH by 0.5 units) or temperature (7-10°C), or temperature and acidity combined, and held in these conditions for 6 h. Their physiological responses were compared across seasons (i.e. summer vs. winter). Bonefish (Albula vulpes) exposed to environmental challenges in the summer experienced a suite of blood-based osmotic and ionic disturbances relative to fish held in ambient conditions, with thermal challenges (particularly in the summer) being the most challenging. Conversely, no significant treatment effects were observed for yellowfin mojarra (Gerres cinereus) or checkered puffer (Sphoeroides testudineus) in either season. Together, results from this study demonstrate that acute climate-induced changes to thermal habitat will be the most challenging for sub-tropical fishes (particularly in the summer) relative to salinity and pH stressors, but significant variation across species exists.

  9. On the brink of change: plant responses to climate on the Colorado Plateau

    USGS Publications Warehouse

    Munson, Seth M.; Belnap, Jayne; Schelz, Charles D.; Moran, Mary; Carolin, Tara W.

    2011-01-01

    The intensification of aridity due to anthropogenic climate change in the southwestern U.S. is likely to have a large impact on the growth and survival of plant species that may already be vulnerable to water stress. To make accurate predictions of plant responses to climate change, it is essential to determine the long-term dynamics of plant species associated with past climate conditions. Here we show how the plant species and functional types across a wide range of environmental conditions in Colorado Plateau national parks have changed with climate variability over the last twenty years. During this time, regional mean annual temperature increased by 0.18°C per year from 1989–1995, 0.06°C per year from 1995–2003, declined by 0.14°C from 2003–2008, and there was high interannual variability in precipitation. Non-metric multidimensional scaling of plant species at long-term monitoring sites indicated five distinct plant communities. In many of the communities, canopy cover of perennial plants was sensitive to mean annual temperature occurring in the previous year, whereas canopy cover of annual plants responded to cool season precipitation. In the perennial grasslands, there was an overall decline of C3 perennial grasses, no change of C4 perennial grasses, and an increase of shrubs with increasing temperature. In the shrublands, shrubs generally showed no change or slightly increased with increasing temperature. However, certain shrub species declined where soil and physical characteristics of a site limited water availability. In the higher elevation woodlands, Juniperus osteosperma and shrub canopy cover increased with increasing temperature, while Pinus edulis at the highest elevation sites was unresponsive to interannual temperature variability. These results from well-protected national parks highlight the importance of temperature to plant responses in a water-limited region and suggest that projected increases in aridity are likely to promote

  10. Climate change and disaster management.

    PubMed

    O'Brien, Geoff; O'Keefe, Phil; Rose, Joanne; Wisner, Ben

    2006-03-01

    Climate change, although a natural phenomenon, is accelerated by human activities. Disaster policy response to climate change is dependent on a number of factors, such as readiness to accept the reality of climate change, institutions and capacity, as well as willingness to embed climate change risk assessment and management in development strategies. These conditions do not yet exist universally. A focus that neglects to enhance capacity-building and resilience as a prerequisite for managing climate change risks will, in all likelihood, do little to reduce vulnerability to those risks. Reducing vulnerability is a key aspect of reducing climate change risk. To do so requires a new approach to climate change risk and a change in institutional structures and relationships. A focus on development that neglects to enhance governance and resilience as a prerequisite for managing climate change risks will, in all likelihood, do little to reduce vulnerability to those risks.

  11. Modeling the biogeomorphic evolution of coastal dunes in response to climate change

    NASA Astrophysics Data System (ADS)

    Keijsers, J. G. S.; De Groot, A. V.; Riksen, M. J. P. M.

    2016-06-01

    Coastal dunes form in many parts of the world the first flood defense line against the sea. To study effects of climate change on coastal dune evolution, we used a cellular model of dune, beach, and vegetation development. The model was calibrated and validated against field measurements of the Dutch coast, showing good performance for 10 year simulations. A sensitivity analysis showed that dune size and morphology are most sensitive to the rate of aeolian input and wave dissipation. Finally, 100 year climate change scenarios were run to establish the impacts of sea level rise and changes in vegetation growth rate on dune evolution. The results are in good agreement with conceptual models of dune evolution. Sea level rise largely determines the direction of dune evolution: the rate of rising controls whether dunes are able to preserve their height or sand volume while migrating landward. The effect of changing vegetation growth rates, resulting from climate change, is most manifest in dune response to large disturbances. If vegetation is removed halfway into the simulation, vegetation growth rate determines whether a foredune will revegetate and recover its height. Low vegetation growth rates result in mobile dunes that lose sand. The good agreement between observations and predictions indicates that the model successfully incorporates the suite of biogeomorphic and marine processes involved in dune building.

  12. Role of Soils in Hydrologic Response to Climate Extremes and Land Use Change

    NASA Astrophysics Data System (ADS)

    Scanlon, B. R.; Zhang, Z.; Save, H.; Reedy, R. C.; Faunt, C. C.

    2015-12-01

    Increasing demand for water in response to growing global population underscores the need to better understand linkages and feedbacks between land surface processes and water resources to manage water resources more sustainably. Here we examine the role of soils on hydrologic response to climate extremes and land use change using field scale and remote sensing data at point to basin scales in the U.S. High Plains and California Central Valley. In the U.S. High Plains, soil-textural variations make the difference between sustainable water resources related to coarse-grained soils in the northern High Plains and groundwater mining associated with fine-grained soils in much of the central and southern High Plains. Field data show dynamic response of water resources to droughts and land use change in the northern High Plains with limited response in much of the central and southern High Plains. Soil profiles provide a key to the past by archiving system response to environmental changes in subsurface soil physics and environmental tracer data. Areas with coarse-grained soils are vulnerable to reduced recharge during droughts and increased recharge with land use change from perennial to annual vegetation whereas fine-grained soils are generally insensitive to these stresses. GRACE satellite monitoring of total water storage variations in response to recent droughts is consistent with these spatial variations in soils across the High Plains and hydrologic response to droughts.In the California Central Valley, coarse grained soils in alluvial basins result in dynamic hydrologic responses to climate extremes. GRACE satellite data show marked depletion in total water storage in response to recent droughts reflecting groundwater and surface reservoir storage declines consistent with regional groundwater modeling and monitoring data. The coarse alluvial soils typical of much of the region facilitate managed aquifer recharge in depleted aquifers to complement surface reservoir

  13. Modelling the response of fresh groundwater to climate and vegetation changes in coral islands

    NASA Astrophysics Data System (ADS)

    Comte, Jean-Christophe; Join, Jean-Lambert; Banton, Olivier; Nicolini, Eric

    2014-12-01

    In coral islands, groundwater is a crucial freshwater resource for terrestrial life, including human water supply. Response of the freshwater lens to expected climate changes and subsequent vegetation alterations is quantified for Grande Glorieuse, a low-lying coral island in the Western Indian Ocean. Distributed models of recharge, evapotranspiration and saltwater phytotoxicity are integrated into a variable-density groundwater model to simulate the evolution of groundwater salinity. Model results are assessed against field observations including groundwater and geophysical measurements. Simulations show the major control currently exerted by the vegetation with regards to the lens morphology and the high sensitivity of the lens to climate alterations, impacting both quantity and salinity. Long-term changes in mean sea level and climatic conditions (rainfall and evapotranspiration) are predicted to be responsible for an average increase in salinity approaching 140 % (+8 kg m-3) when combined. In low-lying areas with high vegetation density, these changes top +300 % (+10 kg m-3). However, due to salinity increase and its phytotoxicity, it is shown that a corollary drop in vegetation activity can buffer the alteration of fresh groundwater. This illustrates the importance of accounting for vegetation dynamics to study groundwater in coral islands.

  14. Simulated Vegetation Response to Climate Change in California: The Importance of Seasonal Production Patterns

    NASA Astrophysics Data System (ADS)

    Kim, J. B.; Pitts, B.

    2013-12-01

    MC1 dynamic global vegetation model simulates vegetation response to climate change by simulating vegetation production, soil biogeochemistry, plant biogeography and fire. It has been applied at a wide range of spatial scales, yet the spatio-temporal patterns of simulated vegetation production, which drives the model's response to climate change, has not been examined in detail. We ran MC1 for California at a relatively fine scale, 30 arc-seconds, for the historical period (1895-2006) and for the future (2007-2100), using downscaled data from four CMIP3-based climate projections: A2 and B1 GHG emissions scenarios simulated by PCM and GFDL GCMs. The use of these four climate projections aligns our work with a body of climate change research work commissioned by the California Public Interest Energy Research (PIER) Program. The four climate projections vary not only in terms of changes in their annual means, but in the seasonality of projected climate change. We calibrated MC1 using MODIS NPP data for 2000-2011 as a guide, and adapting a published technique for adjusting simulated vegetation production by increasing the simulated plant rooting depths. We evaluated the simulation results by comparing the model output for the historical period with several benchmark datasets, summarizing by EPA Level 3 Ecoregions. Multi-year summary statistics of model predictions compare moderately well with Kuchler's potential natural vegetation map, National Biomass and Carbon Dataset, Leenhouts' compilation of fire return intervals, and, of course, the MODIS NPP data for 2000-2011. When we compared MC1's monthly NPP values with MODIS monthly GPP data (2000-2011), however, the seasonal patterns compared very poorly, with NPP/GPP ratio for spring (Mar-Apr-May) often exceeding 1, and the NPP/GPP ratio for summer (Jun-Jul-Aug) often flattening to zero. This suggests MC1's vegetation production algorithms are overly biased for spring production at the cost of summer production. We

  15. Assessing Land Management Changes and Population Dynamics in Central Burkina Faso in Response to Climate Change.

    NASA Astrophysics Data System (ADS)

    Kabore Bontogho, P. E.; Boubacar, I.; Afouda, A.; Joerg, H.

    2015-12-01

    Assessing landscape and population's dynamics at watershed level contribute to address anthropogenic aspect of climate change issue owing to the close link between LULC and climate changes. The objective of this study is to explore the dependencies of population to land management changes in Massili basin (2612 km²) located in central Burkina Faso. A set of three satellite scenes was acquired for the years 1990 (Landsat 7 ETM), 2002 (Landsat 7 ETM+) and 2013 (Landsat 8 OLI/TIRS) from the Global Land Cover Facility's (GLCF) website. Census data were provided by the National institute of statistics and demographic (INSD). The satellites images were classified using object-oriented classification method which was supported by historic maps and field data. Those were collected in order to allow for class definition, verification and accuracy assessments. Based on the developed land use maps, change analysis was carried out using post classification comparison in GIS. Finally, derived land use changes were compared with census data in order to explore links between population dynamics and the land use changes. It was found in 1990 that Massili watershed LULC was dominated by Tree/shrub savannah (69%, 1802.28 km2 ), Farm/Fallow was representing 22%, Gallery forest (4%), Settlement (3%), Barre soil (1%), Water bodies (1%). In 2002, the major landscape was Farm (54%). Tree/Shrub savannas were reduced to 36% while the Gallery Forest was decreased to1% of the basin area. The situation has also slightly changed in 2013 with an increase of the area devoted to farm/fallow and settlement at a rate of 3% and Gallery forest has increased to 4%. The changes in land use are in agreement with a notable increase in population. The analysis of census data showed that the number of inhabitants increased from 338 inhabitants per km2 in 1990 to 1150 inhabitants per km2 in 2013. As shown by statistical analysis (Kendall correlation tau=0.9), there is a close relation between both dynamics.

  16. Detecting mismatches of bird migration stopover and tree phenology in response to changing climate.

    PubMed

    Kellermann, Jherime L; van Riper, Charles

    2015-08-01

    Migratory birds exploit seasonal variation in resources across latitudes, timing migration to coincide with the phenology of food at stopover sites. Differential responses to climate in phenology across trophic levels can result in phenological mismatch; however, detecting mismatch is sensitive to methodology. We examined patterns of migrant abundance and tree flowering, phenological mismatch, and the influence of climate during spring migration from 2009 to 2011 across five habitat types of the Madrean Sky Islands in southeastern Arizona, USA. We used two metrics to assess phenological mismatch: synchrony and overlap. We also examined whether phenological overlap declined with increasing difference in mean event date of phenophases. Migrant abundance and tree flowering generally increased with minimum spring temperature but depended on annual climate by habitat interactions. Migrant abundance was lowest and flowering was highest under cold, snowy conditions in high elevation montane conifer habitat while bird abundance was greatest and flowering was lowest in low elevation riparian habitat under the driest conditions. Phenological synchrony and overlap were unique and complementary metrics and should both be used when assessing mismatch. Overlap declined due to asynchronous phenologies but also due to reduced migrant abundance or flowering when synchrony was actually maintained. Overlap declined with increasing difference in event date and this trend was strongest in riparian areas. Montane habitat specialists may be at greatest risk of mismatch while riparian habitat could provide refugia during dry years for phenotypically plastic species. Interannual climate patterns that we observed match climate change projections for the arid southwest, altering stopover habitat condition.

  17. Detecting mismatches of bird migration stopover and tree phenology in response to changing climate

    USGS Publications Warehouse

    Kellermann, Jherime L.; Van Riper, Charles

    2015-01-01

    Migratory birds exploit seasonal variation in resources across latitudes, timing migration to coincide with the phenology of food at stopover sites. Differential responses to climate in phenology across trophic levels can result in phenological mismatch; however, detecting mismatch is sensitive to methodology. We examined patterns of migrant abundance and tree flowering, phenological mismatch, and the influence of climate during spring migration from 2009 to 2011 across five habitat types of the Madrean Sky Islands in southeastern Arizona, USA. We used two metrics to assess phenological mismatch: synchrony and overlap. We also examined whether phenological overlap declined with increasing difference in mean event date of phenophases. Migrant abundance and tree flowering generally increased with minimum spring temperature but depended on annual climate by habitat interactions. Migrant abundance was lowest and flowering was highest under cold, snowy conditions in high elevation montane conifer habitat while bird abundance was greatest and flowering was lowest in low elevation riparian habitat under the driest conditions. Phenological synchrony and overlap were unique and complementary metrics and should both be used when assessing mismatch. Overlap declined due to asynchronous phenologies but also due to reduced migrant abundance or flowering when synchrony was actually maintained. Overlap declined with increasing difference in event date and this trend was strongest in riparian areas. Montane habitat specialists may be at greatest risk of mismatch while riparian habitat could provide refugia during dry years for phenotypically plastic species. Interannual climate patterns that we observed match climate change projections for the arid southwest, altering stopover habitat condition.

  18. Differential Responses of Neotropical Mountain Forests to Climate Change during the Last Millenium

    NASA Astrophysics Data System (ADS)

    Figueroa-Rangel, B. L.; Olvera Vargas, M.

    2013-05-01

    The long-term perspective in the conservation of mountain ecosystems using palaeoecological and paleoclimatological techniques are providing with crucial information for the understanding of the temporal range and variability of ecological pattern and processes. This perception is contributing with means to anticipate future conditions of these ecosystems, especially their response to climate change. Neotropical mountain forests, created by a particular geological and climatic history in the Americas, represent one of the most distinctive ecosystems in the tropics which are constantly subject to disturbances included climate change. Mexico due to its geographical location between the convergence of temperate and tropical elements, its diverse physiography and climatic heterogeneity, contains neotropical ecosystems with high biodiversity and endemicity whose structure and taxonomical composition have changed along centurial to millennial scales. Different neotropical forests expand along the mountain chains of Mexico with particular responses along spatial and temporal scales. Therefore in order to capture these scales at fine resolution, sedimentary sequences from forest hollows were retrieved from three forest at different altitudes within 10 km; Pine forest (PF), Transitional forest (TF) and Cloud forest (CF). Ordination techniques were used to relate changes in vegetation with the environment every ~60 years. The three forests experience the effect of the dry stage ~AD 800-1200 related to the Medieval Warm Period reported for several regions of the world. CF contracted, PF expanded while the TF evolved from CF to a community dominated by dry-resistant epiphytes. Dry periods in PF and TF overlapped with the increase in fire occurrences while a dissimilar pattern took place in CF. Maize, Asteraceae and Poaceae were higher during dry intervals while epiphytes decreased. A humid period ~1200-1450 AD was associated with an expansion and a high taxa turnover in CF

  19. Plant Functional Variability in Response to Late-Quaternary Climate Change Recorded in Ancient Packrat Middens

    NASA Astrophysics Data System (ADS)

    Holmgren, C. A.; Potts, D. L.

    2006-12-01

    Responses of plant functional traits to environmental variability are of enduring interest because they constrain organism performance and ecosystem function. However, most inferences regarding plant functional trait response to climatic variability have been limited to the modern period. To better understand plant functional response to long-term climate variability and how adjustments in leaf morphology may contribute to patterns of species establishment, persistence, or extirpation, we measured specific leaf area (SLA) from macrofossils preserved in ancient packrat middens collected along the Arizona/New Mexico border, USA. Our record spanned more than 32,000 years and included six woodland and Chihuahuan Desert species: Berberis cf. haematocarpa, Juniperus cf. coahuilensis, Juniperus osteosperma, Larrea tridentata, Prosopis glandulosa and Parthenium incanum. We predicted that regional climatic warming and drying since the late Pleistocene would result in intraspecific decreases in SLA. As predicted, SLA was positively correlated with midden age for three of the six species (L. tridentata, J. osteosperma, B. cf. haematocarpa). SLA was also negatively correlated with December (L. tridentata, J. cf. coahuilensis) or June (B. cf. haematocarpa, J. osteosperma) insolation. A unique record of vegetation community dynamics, plant macrofossils preserved in packrat middens also represent a rich and largely untapped source of information on long-term trends in species functional response to environmental change.

  20. Modelling climate change responses in tropical forests: similar productivity estimates across five models, but different mechanisms and responses

    NASA Astrophysics Data System (ADS)

    Rowland, L.; Harper, A.; Christoffersen, B. O.; Galbraith, D. R.; Imbuzeiro, H. M. A.; Powell, T. L.; Doughty, C.; Levine, N. M.; Malhi, Y.; Saleska, S. R.; Moorcroft, P. R.; Meir, P.; Williams, M.

    2015-04-01

    Accurately predicting the response of Amazonia to climate change is important for predicting climate change across the globe. Changes in multiple climatic factors simultaneously result in complex non-linear ecosystem responses, which are difficult to predict using vegetation models. Using leaf- and canopy-scale observations, this study evaluated the capability of five vegetation models (Community Land Model version 3.5 coupled to the Dynamic Global Vegetation model - CLM3.5-DGVM; Ecosystem Demography model version 2 - ED2; the Joint UK Land Environment Simulator version 2.1 - JULES; Simple Biosphere model version 3 - SiB3; and the soil-plant-atmosphere model - SPA) to simulate the responses of leaf- and canopy-scale productivity to changes in temperature and drought in an Amazonian forest. The models did not agree as to whether gross primary productivity (GPP) was more sensitive to changes in temperature or precipitation, but all the models were consistent with the prediction that GPP would be higher if tropical forests were 5 °C cooler than current ambient temperatures. There was greater model-data consistency in the response of net ecosystem exchange (NEE) to changes in temperature than in the response to temperature by net photosynthesis (An), stomatal conductance (gs) and leaf area index (LAI). Modelled canopy-scale fluxes are calculated by scaling leaf-scale fluxes using LAI. At the leaf-scale, the models did not agree on the temperature or magnitude of the optimum points of An, Vcmax or gs, and model variation in these parameters was compensated for by variations in the absolute magnitude of simulated LAI and how it altered with temperature. Across the models, there was, however, consistency in two leaf-scale responses: (1) change in An with temperature was more closely linked to stomatal behaviour than biochemical processes; and (2) intrinsic water use efficiency (IWUE) increased with temperature, especially when combined with drought. These results suggest

  1. Estimating the regional climate responses over river basins to changes in tropical sea surface temperature patterns

    NASA Astrophysics Data System (ADS)

    Tsai, Chii-Yun; Forest, Chris E.; Wagener, Thorsten

    2015-10-01

    We investigate how to identify and assess teleconnection signals between anomalous patterns of sea surface temperature (SST) changes and climate variables related to hydrologic impacts over different river basins. The regional climate sensitivity to tropical SST anomaly patterns is examined through a linear relationship given by the global teleconnection operator (GTO, also generally called a sensitivity matrix or an empirical Green's function). We assume that the GTO defines a multilinear relation between SST forcing and regional climate response of a target area. The sensitivities are computed based on data from a large ensemble of simulations using the NCAR Community Atmospheric Model version 3.1 (CAM 3.1). The linear approximation is evaluated by comparing the linearly reconstructed response with both the results from the full non-linear atmospheric model and observational data. The results show that the linear approximation can capture regional climate variability that the CAM 3.1 AMIP-style simulations produce at seasonal scales for multiple river basins. The linear method can be used potentially for estimating drought conditions, river flow forecasting, and agricultural water management problems.

  2. Evolution in response to climate change: in pursuit of the missing evidence.

    PubMed

    Merilä, Juha

    2012-09-01

    Climate change is imposing intensified and novel selection pressures on organisms by altering abiotic and biotic environmental conditions on Earth, but studies demonstrating genetic adaptation to climate change mediated selection are still scarce. Evidence is accumulating to indicate that both genetic and ecological constrains may often limit populations' abilities to adapt to large scale effects of climate warming. These constraints may predispose many organisms to respond to climate change with range shifts and phenotypic plasticity, rather than through evolutionary adaptation. In general, broad conclusions about the role of evolutionary adaptation in mitigating climate change induced fitness loss in the wild are as yet difficult to make.

  3. Delayed Response of Lake Area Change to Climate Change in Siling Co Lake, Tibetan Plateau, from 2003 to 2013

    PubMed Central

    Yi, Guihua; Zhang, Tingbin

    2015-01-01

    The Tibetan Plateau is a key area for research on global environmental changes. During the past 50 years, the climate in the Siling Co lake area has become continuously warmer and wetter, which may have further caused the increase in Siling Co lake area. Based on the Siling Co lake area (2003 to 2013) and climate data acquired from the Xainza and Baingoin meteorological stations (covering 1966 to 2013), we analyzed the delayed responses of lake area changes to climate changes through grey relational analysis. The following results were obtained: (1) The Siling Co lake area exhibited a rapid expansion trend from 2003 to 2013. The lake area increased to 2318 km2, with a growth ratio of 14.6% and an annual growth rate of 26.84 km2·year−1; (2) The rate of air temperature increase was different in the different seasons. The rate in the cold season was about 0.41 °C per ten years and 0.32 °C in hot season. Precipitation evidently increased, with a change rate of 17.70 mm per ten years in the hot season and a slight increase with a change rate of 2.36 mm per ten years in the cold season. Pan evaporation exhibited evidently decreasing trends in both the hot and cold seasons, with rates of −33.35 and −14.84 mm per ten years, respectively; (3) An evident delayed response of lake area change to climate change is observed, with a delay time of approximately one to two years. PMID:26528996

  4. Delayed Response of Lake Area Change to Climate Change in Siling Co Lake, Tibetan Plateau, from 2003 to 2013.

    PubMed

    Yi, Guihua; Zhang, Tingbin

    2015-10-30

    The Tibetan Plateau is a key area for research on global environmental changes. During the past 50 years, the climate in the Siling Co lake area has become continuously warmer and wetter, which may have further caused the increase in Siling Co lake area. Based on the Siling Co lake area (2003 to 2013) and climate data acquired from the Xainza and Baingoin meteorological stations (covering 1966 to 2013), we analyzed the delayed responses of lake area changes to climate changes through grey relational analysis. The following results were obtained: (1) The Siling Co lake area exhibited a rapid expansion trend from 2003 to 2013. The lake area increased to 2318 km², with a growth ratio of 14.6% and an annual growth rate of 26.84 km²·year(-1); (2) The rate of air temperature increase was different in the different seasons. The rate in the cold season was about 0.41 °C per ten years and 0.32 °C in hot season. Precipitation evidently increased, with a change rate of 17.70 mm per ten years in the hot season and a slight increase with a change rate of 2.36 mm per ten years in the cold season. Pan evaporation exhibited evidently decreasing trends in both the hot and cold seasons, with rates of -33.35 and -14.84 mm per ten years, respectively; (3) An evident delayed response of lake area change to climate change is observed, with a delay time of approximately one to two years.

  5. Multiple phenological responses to climate change among 42 plant species in Xi'an, China

    NASA Astrophysics Data System (ADS)

    Dai, Junhu; Wang, Huanjiong; Ge, Quansheng

    2013-09-01

    Phenological data of 42 woody plants in a temperate deciduous forest from the Chinese Phenological Observation Network (CPON) and the corresponding meteorological data from 1963 to 2011 in Xi'an, Shaanxi Province, China were collected and analyzed. The first leaf date (FLD), leaf coloring date (LCD) and first flower date (FFD) are revealed as strong biological signals of climatic change. The FLD, LCD and FFD of most species are sensitive to average temperature during a certain period before phenophase onset. Regional precipitation also has a significant impact on phenophases of about half of the species investigated. Affected by climate change, the FLD and FFD of these species have advanced by 5.54 days and 10.20 days on average during 2003-2011 compared with the period 1963-1996, respectively. Meanwhile, the LCD has delayed by 10.59 days, and growing season length has extended 16.13 days. Diverse responses of phenology commonly exist among different species and functional groups during the study period. Especially for FFD, the deviations between the above two periods ranged from -20.68 to -2.79 days; biotic pollination species showed a significantly greater advance than abiotic pollination species. These results were conducive to the understanding of possible changes in both the structure of plant communities and interspecific relationships in the context of climate change.

  6. The transient response of ice volume to orbital-driven climate changes of the Late Pliocene

    NASA Astrophysics Data System (ADS)

    de Boer, Bas; Hunter, Stephen; Dolan, Aisling; Haywood, Alan

    2016-04-01

    The contribution to sea-level rise of the Antarctic and Greenland ice sheets in a warming climate is uncertain. A better understanding is evidently needed to make more rigorous projections of the impact of regional sea-level rise. A warm interval within the Late Pliocene (3.264 to 3.025 million years before present) can be used to gain a better understanding of the response of the ice sheets to a warming climate with CO2 levels close to or higher than present. Here, we will use a unique ice-sheet - sea-level model, ANICE-SELEN and couple this to the full-complexity intermediate-resolution FAMOUS climate model for the Late Pliocene interval. A first approach is presented here with a one-way coupling, using FAMOUS to force the ice-sheet models in a transient mode. The FAMOUS simulation is driven by PRISM3 boundary conditions (which were also used in PlioMIP phase 1), where we apply a changing orbit, with and without dynamic vegetation. This 40 kyr simulation is centred on the warm interglacial peak, MIS KM5c (3.225 to 3.185 Myr ago). This experiment will give a first indication of the response of the Greenland and Antarctic ice sheets to the climate of the Late Pliocene. The results are compared with the equilibrated response of the ice sheet on Greenland and Antarctica to the PlioMIP phase 1 climate model output, as done so for the PLISMIP experiments.

  7. Alluvial fan response to climatic change: Insights from numerical modeling (Invited)

    NASA Astrophysics Data System (ADS)

    Pelletier, J. D.

    2009-12-01

    Alluvial fans in the western U.S. exhibit a regionally correlative sequence of Plio-Quaternary deposits. Cosmogenic and U-series dating has greatly improved the age control on these deposits and their associated terraces and generally strengthened the case for aggradation during humid-to-arid transitions. Still, the linkages between climate change, upland basin response, and alluvial fan response are not well constrained. Fans may fill and cut as a result of autogenetic processes/internal adjustments, changes in regional temperature (which controls snowmelt-induced flooding), changes in the frequency-size distribution of rainfall events, and/or changes in upslope vegetation. Here I describe the results of a numerical modeling study designed to better constrain the relationships between different end-member forcing mechanisms and the geologic record of alluvial fan deposits and terraces. The model solves the evolution of the fan topography using Exner's equation (conservation of mass) coupled with a nonlinear, threshold-controlled transport relation for sand and gravel. Bank retreat is modeled using an advection equation with a rate proportional to bank shear stress. I begin by considering the building of a fan under conditions of constant water and sediment supply. This simple system exhibits all of the complexity of fans developed under experimental conditions, and it provides insights into the mechanisms that control avulsions and it provides a baseline estimate for the within-fan relief that can result from autogenetic processes. Relationships between the magnitude and period of variations in the sediment-to-water ratio and the geomorphic response of fans are then discussed. I also consider the response of a coupled drainage basin-fan system to changes in climate, including the hydrologic and vegetation response of upland hillslopes. Fans can aggrade or incise in response to the same climatic event depending on the relief of the upstream drainage basin, which

  8. Responses of coral reef fishes to past climate changes are related to life-history traits.

    PubMed

    Ottimofiore, Eduardo; Albouy, Camille; Leprieur, Fabien; Descombes, Patrice; Kulbicki, Michel; Mouillot, David; Parravicini, Valeriano; Pellissier, Loïc

    2017-03-01

    Coral reefs and their associated fauna are largely impacted by ongoing climate change. Unravelling species responses to past climatic variations might provide clues on the consequence of ongoing changes. Here, we tested the relationship between changes in sea surface temperature and sea levels during the Quaternary and present-day distributions of coral reef fish species. We investigated whether species-specific responses are associated with life-history traits. We collected a database of coral reef fish distribution together with life-history traits for the Indo-Pacific Ocean. We ran species distribution models (SDMs) on 3,725 tropical reef fish species using contemporary environmental factors together with a variable describing isolation from stable coral reef areas during the Quaternary. We quantified the variance explained independently by isolation from stable areas in the SDMs and related it to a set of species traits including body size and mobility. The variance purely explained by isolation from stable coral reef areas on the distribution of extant coral reef fish species largely varied across species. We observed a triangular relationship between the contribution of isolation from stable areas in the SDMs and body size. Species, whose distribution is more associated with historical changes, occurred predominantly in the Indo-Australian archipelago, where the mean size of fish assemblages is the lowest. Our results suggest that the legacy of habitat changes of the Quaternary is still detectable in the extant distribution of many fish species, especially those with small body size and the most sedentary. Because they were the least able to colonize distant habitats in the past, fish species with smaller body size might have the most pronounced lags in tracking ongoing climate change.

  9. Global N2 fixation and its response to global climate change and increasing CO2 level

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Houlton, B. Z.; Field, C. B.; Vitousek, P. M.

    2007-12-01

    Biological nitrogen fixation is the largest nitrogen input to many natural terrestrial ecosystems, particularly tropical ecosystems, thereby influencing primary production, CO2 uptake, and responses to climate change. However, our understanding of biological nitrogen fixation is still very limited, and the dominant plant family capable of fixing N2 symbiotically, the Leguminasae, exhibits considerable geographic variation in the terrestrial biosphere. Based on the principles of resource optimization, we developed a new model to constrain our understanding of the geographic distribution of N fixation globally. Our model treats N fixation according to the C cost of fixing N, coupled with the N cost associated with acquiring P from the soil for plant growth. The model was used to estimate the rate of global symbiotic N2 fixation and the response of symbiotic N2 fixers to changes in climate and rising atmospheric CO2. We shall discuss global N limitation of terrestrial carbon uptake and its implications for climate-carbon cycle feedbacks from present to year 2100.

  10. Antarctic climate change: extreme events disrupt plastic phenotypic response in Adélie penguins.

    PubMed

    Lescroël, Amélie; Ballard, Grant; Grémillet, David; Authier, Matthieu; Ainley, David G

    2014-01-01

    In the context of predicted alteration of sea ice cover and increased frequency of extreme events, it is especially timely to investigate plasticity within Antarctic species responding to a key environmental aspect of their ecology: sea ice variability. Using 13 years of longitudinal data, we investigated the effect of sea ice concentration (SIC) on the foraging efficiency of Adélie penguins (Pygoscelis adeliae) breeding in the Ross Sea. A 'natural experiment' brought by the exceptional presence of giant icebergs during 5 consecutive years provided unprecedented habitat variation for testing the effects of extreme events on the relationship between SIC and foraging efficiency in this sea-ice dependent species. Significant levels of phenotypic plasticity were evident in response to changes in SIC in normal environmental conditions. Maximum foraging efficiency occurred at relatively low SIC, peaking at 6.1% and decreasing with higher SIC. The 'natural experiment' uncoupled efficiency levels from SIC variations. Our study suggests that lower summer SIC than currently observed would benefit the foraging performance of Adélie penguins in their southernmost breeding area. Importantly, it also provides evidence that extreme climatic events can disrupt response plasticity in a wild seabird population. This questions the predictive power of relationships built on past observations, when not only the average climatic conditions are changing but the frequency of extreme climatic anomalies is also on the rise.

  11. How light competition between plants affects their response to climate change.

    PubMed

    van Loon, Marloes P; Schieving, Feike; Rietkerk, Max; Dekker, Stefan C; Sterck, Frank; Anten, Niels P R

    2014-09-01

    How plants respond to climate change is of major concern, as plants will strongly impact future ecosystem functioning, food production and climate. Here, we investigated how vegetation structure and functioning may be influenced by predicted increases in annual temperatures and atmospheric CO2 concentration, and modeled the extent to which local plant-plant interactions may modify these effects. A canopy model was developed, which calculates photosynthesis as a function of light, nitrogen, temperature, CO2 and water availability, and considers different degrees of light competition between neighboring plants through canopy mixing; soybean (Glycine max) was used as a reference system. The model predicts increased net photosynthesis and reduced stomatal conductance and transpiration under atmospheric CO2 increase. When CO2 elevation is combined with warming, photosynthesis is increased more, but transpiration is reduced less. Intriguingly, when competition is considered, the optimal response shifts to producing larger leaf areas, but with lower stomatal conductance and associated vegetation transpiration than when competition is not considered. Furthermore, only when competition is considered are the predicted effects of elevated CO2 on leaf area index (LAI) well within the range of observed effects obtained by Free air CO2 enrichment (FACE) experiments. Together, our results illustrate how competition between plants may modify vegetation responses to climate change.

  12. Antarctic Climate Change: Extreme Events Disrupt Plastic Phenotypic Response in Adélie Penguins

    PubMed Central

    Lescroël, Amélie; Ballard, Grant; Grémillet, David; Authier, Matthieu; Ainley, David G.

    2014-01-01

    In the context of predicted alteration of sea ice cover and increased frequency of extreme events, it is especially timely to investigate plasticity within Antarctic species responding to a key environmental aspect of their ecology: sea ice variability. Using 13 years of longitudinal data, we investigated the effect of sea ice concentration (SIC) on the foraging efficiency of Adélie penguins (Pygoscelis adeliae) breeding in the Ross Sea. A ‘natural experiment’ brought by the exceptional presence of giant icebergs during 5 consecutive years provided unprecedented habitat variation for testing the effects of extreme events on the relationship between SIC and foraging efficiency in this sea-ice dependent species. Significant levels of phenotypic plasticity were evident in response to changes in SIC in normal environmental conditions. Maximum foraging efficiency occurred at relatively low SIC, peaking at 6.1% and decreasing with higher SIC. The ‘natural experiment’ uncoupled efficiency levels from SIC variations. Our study suggests that lower summer SIC than currently observed would benefit the foraging performance of Adélie penguins in their southernmost breeding area. Importantly, it also provides evidence that extreme climatic events can disrupt response plasticity in a wild seabird population. This questions the predictive power of relationships built on past observations, when not only the average climatic conditions are changing but the frequency of extreme climatic anomalies is also on the rise. PMID:24489657

  13. Grassland/atmosphere response to changing climate: Coupling regional and local scales. Final report

    SciTech Connect

    Coughenour, M.B.; Kittel, T.G.F.; Pielke, R.A.; Eastman, J.

    1993-10-01

    The objectives of the study were: to evaluate the response of grassland ecosystems to atmospheric change at regional and site scales, and to develop multiscaled modeling systems to relate ecological and atmospheric models with different spatial and temporal resolutions. A menu-driven shell was developed to facilitate use of models at different temporal scales and to facilitate exchange information between models at different temporal scales. A detailed ecosystem model predicted that C{sub 3} temperate grasslands wig respond more strongly to elevated CO{sub 2} than temperate C{sub 4} grasslands in the short-term while a large positive N-PP response was predicted for a C{sub 4} Kenyan grassland. Long-term climate change scenarios produced either decreases or increases in Colorado plant productivity (NPP) depending on rainfall, but uniform increases in N-PP were predicted in Kenya. Elevated CO{sub 2} is likely to have little effect on ecosystem carbon storage in Colorado while it will increase carbon storage in Kenya. A synoptic climate classification processor (SCP) was developed to evaluate results of GCM climate sensitivity experiments. Roughly 80% agreement was achieved with manual classifications. Comparison of lx and 2xCO{sub 2} GCM Simulations revealed relatively small differences.

  14. Microbial community responses to temperature increase the potential for soil carbon losses under climate change.

    NASA Astrophysics Data System (ADS)

    Hartley, Iain; Karhu, Kristiina; Auffret, Marc; Hopkins, David; Prosser, Jim; Singh, Brajesh; Subke, Jens-Arne; Wookey, Philip; Ågren, Göran

    2014-05-01

    There are concerns that global warming may stimulate decomposition rates in soils, with the extra CO2 released representing a positive feedback to climate change. However, there is growing recognition that adaptation of soil microbial communities to temperature changes may alter the potential rate of carbon release. Critically, recent studies have produced conflicting results in terms of whether the medium-term soil microbial community response to temperature reduces (compensatory thermal adaptation) or enhances (enhancing thermal adaptation) the instantaneous direct positive effects of temperature on microbial activity. This lack of understanding adds considerably to uncertainty in predictions of the magnitude and direction of carbon-cycle feedbacks to climate change. In this talk, I present results from one of the most extensive investigations ever undertaken into the role that microbial adaptation plays in controlling the temperature sensitivity of decomposition. Soils were collected from a range of ecosystem types, representing a thermal gradient from the Arctic to the Amazon. Our novel soil-cooling approach minimises issues associated with substrate depletion in warming studies, but still tests whether adaptation enhances or reduces the direct impact of temperature changes on microbial activity. We also investigated the mechanisms underlying changes in microbial respiration by quantifying changes in microbial community composition, microbial biomass, mass-specific activity, carbon-use efficiency, and enzyme activities. Our results indicate that enhancing responses are much more common than compensatory thermal acclimation, with the latter being observed in less than 10% of cases. However, identifying the mechanisms underlying enhancing and compensatory adaptation remained elusive. No consistent changes were observed in terms of mass-specific activity, biomass or enzyme activity, indicating that current theory is inadequate in explaining observed patterns

  15. Climate Change Schools Project...

    ERIC Educational Resources Information Center

    McKinzey, Krista

    2010-01-01

    This article features the award-winning Climate Change Schools Project which aims to: (1) help schools to embed climate change throughout the national curriculum; and (2) showcase schools as "beacons" for climate change teaching, learning, and positive action in their local communities. Operating since 2007, the Climate Change Schools…

  16. Potential for evolutionary responses to climate change – evidence from tree populations

    PubMed Central

    Alberto, Florian J; Aitken, Sally N; Alía, Ricardo; González-Martínez, Santiago C; Hänninen, Heikki; Kremer, Antoine; Lefèvre, François; Lenormand, Thomas; Yeaman, Sam; Whetten, Ross; Savolainen, Outi

    2013-01-01

    Evolutionary responses are required for tree populations to be able to track climate change. Results of 250 years of common garden experiments show that most forest trees have evolved local adaptation, as evidenced by the adaptive differentiation of populations in quantitative traits, reflecting environmental conditions of population origins. On the basis of the patterns of quantitative variation for 19 adaptation-related traits studied in 59 tree species (mostly temperate and boreal species from the Northern hemisphere), we found that genetic differentiation between populations and clinal variation along environmental gradients were very common (respectively, 90% and 78% of cases). Thus, responding to climate change will likely require that the quantitative traits of populations again match their environments. We examine what kind of information is needed for evaluating the potential to respond, and what information is already available. We review the genetic models related to selection responses, and what is known currently about the genetic basis of the traits. We address special problems to be found at the range margins, and highlight the need for more modeling to understand specific issues at southern and northern margins. We need new common garden experiments for less known species. For extensively studied species, new experiments are needed outside the current ranges. Improving genomic information will allow better prediction of responses. Competitive and other interactions within species and interactions between species deserve more consideration. Despite the long generation times, the strong background in quantitative genetics and growing genomic resources make forest trees useful species for climate change research. The greatest adaptive response is expected when populations are large, have high genetic variability, selection is strong, and there is ecological opportunity for establishment of better adapted genotypes. PMID:23505261

  17. Assessing the implications of human land-use change for the transient climate response to cumulative carbon emissions

    NASA Astrophysics Data System (ADS)

    Simmons, C. T.; Matthews, H. D.

    2016-03-01

    Recent research has shown evidence of a linear climate response to cumulative CO2 emissions, which implies that the source, timing, and amount of emissions does not significantly influence the climate response per unit emission. Furthermore, these analyses have generally assumed that the climate response to land-use CO2 emissions is equivalent to that of fossil fuels under the assumption that, once in the atmosphere, the radiative forcing induced by CO2 is not sensitive to the emissions source. However, land-cover change also affects surface albedo and the strength of terrestrial carbon sinks, both of which have an additional climate effect. In this study, we use a coupled climate-carbon cycle model to assess the climate response to historical and future cumulative land-use CO2 emissions, in order to compare it to the response to fossil fuel CO2. We find that when we isolate the CO2-induced (biogeochemical) temperature changes associated with land-use change, then the climate response to cumulative land-use emissions is equivalent to that of fossil fuel CO2. We show further that the globally-averaged albedo-induced biophysical cooling from land-use change is non-negligible and may be of comparable magnitude to the biogeochemical warming, with the result that the net climate response to land-use change is substantially different from a linear response to cumulative emissions. However, our new simulations suggest that the biophysical cooling from land-use change follows its own independent (negative) linear response to cumulative net land-use CO2 emissions, which may provide a useful scaling factor for certain applications when evaluating the full transient climate response to emissions.

  18. Integrated watershed-scale response to climate change for selected basins across the United States

    USGS Publications Warehouse

    Markstrom, Steven L.; Hay, Lauren E.; Ward-Garrison, D. Christian; Risley, John C.; Battaglin, William A.; Bjerklie, David M.; Chase, Katherine J.; Christiansen, Daniel E.; Dudley, Robert W.; Hunt, Randall J.; Koczot, Kathryn M.; Mastin, Mark C.; Regan, R. Steven; Viger, Roland J.; Vining, Kevin C.; Walker, John F.

    2012-01-01

    A study by the U.S. Geological Survey (USGS) evaluated the hydrologic response to different projected carbon emission scenarios of the 21st century using a hydrologic simulation model. This study involved five major steps: (1) setup, calibrate and evaluated the Precipitation Runoff Modeling System (PRMS) model in 14 basins across the United States by local USGS personnel; (2) acquire selected simulated carbon emission scenarios from the World Climate Research Programme's Coupled Model Intercomparison Project; (3) statistical downscaling of these scenarios to create PRMS input files which reflect the future climatic conditions of these scenarios; (4) generate PRMS projections for the carbon emission scenarios for the 14 basins; and (5) analyze the modeled hydrologic response. This report presents an overview of this study, details of the methodology, results from the 14 basin simulations, and interpretation of these results. A key finding is that the hydrological response of the different geographical regions of the United States to potential climate change may be different, depending on the dominant physical processes of that particular region. Also considered is the tremendous amount of uncertainty present in the carbon emission scenarios and how this uncertainty propagates through the hydrologic simulations.

  19. Functional trade-offs in succulent stems predict responses to climate change in columnar cacti.

    PubMed

    Williams, David G; Hultine, Kevin R; Dettman, David L

    2014-07-01

    Columnar cacti occur naturally in many habitats and environments in the Americas but are conspicuously dominant in very dry desert regions. These majestic plants are widely regarded for their cultural, economic, and ecological value and, in many ecosystems, support highly diverse communities of pollinators, seed dispersers, and frugivores. Massive amounts of water and other resources stored in the succulent photosynthetic stems of these species confer a remarkable ability to grow and reproduce during intensely hot and dry periods. Yet many columnar cacti are potentially under severe threat from environmental global changes, including climate change and loss of habitat. Stems in columnar cacti and other cylindrical-stemmed cacti are morphologically diverse; stem volume-to-surface area ratio (V:S) across these taxa varies by almost two orders of magnitude. Intrinsic functional trade-offs are examined here across a broad range of V:S in species of columnar cacti. It is proposed that variation in photosynthetic gas exchange, growth, and response to stress is highly constrained by stem V:S, establishing a mechanistic framework for understanding the sensitivity of columnar cacti to climate change and drought. Specifically, species that develop stems with low V:S, and thus have little storage capacity, are expected to express high mass specific photosynthesis and growth rates under favourable conditions compared with species with high V:S. But the trade-off of having little storage capacity is that low V:S species are likely to be less tolerant of intense or long-duration drought compared with high V:S species. The application of stable isotope measurements of cactus spines as recorders of growth, water relations, and metabolic responses to the environment across species of columnar cacti that vary in V:S is also reviewed. Taken together, our approach provides a coherent theory and required set of observations needed for predicting the responses of columnar cacti to

  20. Shorebird Migration Patterns in Response to Climate Change: A Modeling Approach

    NASA Technical Reports Server (NTRS)

    Smith, James A.

    2010-01-01

    The availability of satellite remote sensing observations at multiple spatial and temporal scales, coupled with advances in climate modeling and information technologies offer new opportunities for the application of mechanistic models to predict how continental scale bird migration patterns may change in response to environmental change. In earlier studies, we explored the phenotypic plasticity of a migratory population of Pectoral sandpipers by simulating the movement patterns of an ensemble of 10,000 individual birds in response to changes in stopover locations as an indicator of the impacts of wetland loss and inter-annual variability on the fitness of migratory shorebirds. We used an individual based, biophysical migration model, driven by remotely sensed land surface data, climate data, and biological field data. Mean stop-over durations and stop-over frequency with latitude predicted from our model for nominal cases were consistent with results reported in the literature and available field data. In this study, we take advantage of new computing capabilities enabled by recent GP-GPU computing paradigms and commodity hardware (general purchase computing on graphics processing units). Several aspects of our individual based (agent modeling) approach lend themselves well to GP-GPU computing. We have been able to allocate compute-intensive tasks to the graphics processing units, and now simulate ensembles of 400,000 birds at varying spatial resolutions along the central North American flyway. We are incorporating additional, species specific, mechanistic processes to better reflect the processes underlying bird phenotypic plasticity responses to different climate change scenarios in the central U.S.

  1. Response of plants and ecosystems to CO{sub 2} and climate change. Final technical report

    SciTech Connect

    Reynolds, J.F.

    1993-12-31

    In recognition of the important role of vegetation in the bio-geosphere carbon cycle, the Carbon Dioxide Research Program of the US Department of Energy established the research program: Direct Effects of increasing Carbon Dioxide on Vegetation. The ultimate goal is to develop a general ecosystem model to investigate, via hypothesis testing, the potential responses of different terrestrial ecosystems to changes in the global environment over the next century. The approach involves the parallel development of models at several hierarchical levels, from the leaf to the ecosystem. At the plant level, mechanism and the direct effects of CO{sub 2} in the development of a general plant growth model, GEPSI - GEneral Plant SImulator has been stressed. At the ecosystem level, we have stressed the translation Of CO{sub 2} effects and other aspects of climate change throughout the ecosystem, including feedbacks and constraints to system response, in the development of a mechanistic, general ecosystem model SERECO - Simulation of Ecosystem Response to Elevated CO{sub 2} and Climate Change has been stressed.

  2. Highly contrasted responses of Mediterranean octocorals to climate change along a depth gradient

    PubMed Central

    Pivotto, I. D.; Nerini, D.; Masmoudi, M.; Kara, H.; Chaoui, L.; Aurelle, D.

    2015-01-01

    Climate change has a strong impact on marine ecosystems, including temperate species. Analysing the diversity of thermotolerance levels within species along with their genetic structure enables a better understanding of their potential response to climate change. We performed this integrative study on the Mediterranean octocoral Eunicella cavolini, with samples from different depths and by means of a common garden experiment. This species does not host photosynthetic Symbiodinium, enabling us to focus on the cnidarian response. We compared the thermotolerance of individuals from 20 m and 40 m depths from the same site and with replicates from the same colony. On the basis of an innovative statistical analysis of necrosis kinetics and risk, we demonstrated the occurrence of a very different response between depths at this local scale, with lower thermotolerance of deep individuals. Strongly thermotolerant individuals were observed at 20 m with necrosis appearing at higher temperatures than observed in situ. On the basis of nine microsatellite loci, we showed that these marked thermotolerance differences occur within a single population. This suggests the importance of acclimatization processes in adaptation to these different depths. In addition, differences between replicates demonstrated the occurrence of a variability of response between fragments from the same colony with the possibility of an interaction with a tank effect. Our results provide a basis for studying adaptation and acclimatization in Mediterranean octocorals in a heterogeneous environment. PMID:26064654

  3. Water Demands with Two Adaptation Responses to Climate Change in a Mexican Irrigation District

    NASA Astrophysics Data System (ADS)

    Ojeda, W.; Iñiguez-Covarrubias, M.; Rojano, A.

    2012-12-01

    It is well documented that climate change is inevitable and that farmers need to adapt to changes in projected climate. Changes in water demands for a Mexican irrigation district were assessed using an irrigation scheduling model. The impact of two adaptations actions on water demands were estimated and compared with a baseline scenario. Wet and dry cropping plans were selected from the last 15 water years with actual climatology (1961-1990) taken as reference and three A1B climate change projection periods P1, P2 and P3 (2011-2040, 2041-2070, and 2071-2098). Projected precipitation and air temperature (medium, maximum and minimum) data were obtained through weighted averages of the best CGCM projections for Mexico, available at the IPCC data distribution center, using the Reliability Ensemble Averaging method (REA). Two adaptation farmers' responses were analyzed: use of longer season varieties and reduction of planting dates toward colder season as warming intensifies in the future. An annual accumulated ETo value of 1554 mm was estimated for the base period P0. Cumulative and Daily irrigations demands were generated for each agricultural season using the four climate projection series and considering adaptations actions. Figure 1 integrates in a unique net flow curve for the Fall-Winter season under selected adaptations actions. The simulation results indicated that for mid century (Period P2), the use of longer-season cultivars (AV) will have more pronounced effect in daily net flow based than the reduction of planting season (APS) as climate change intensifies during present century. Without adaptation (WA), the increase in temperature will shorten the growing season of all annual crops, generating a peak shift with respect to reference case (WA-P0). Combined adoptions of adaptation actions (AP+V) can generate higher, peak and cumulative, crop water requirements than actual values as Figure 1 shows. There are clear trends that without adaptations, water

  4. Recruitment limitation of long-lived conifers: implications for climate change responses.

    PubMed

    Kroiss, Steve J; Hillerslambers, Janneke

    2015-05-01

    Seed availability and suitable microsites for germination are likely to severely constrain the responses of plant species to climate change, especially at and beyond range edges. For example, range shifts may be slow if seed availability is low at range edges due to low parent-tree abundance or reduced fecundity. Even when seeds are available, climatic and biotic factors may further limit the availability of suitable microsites for recruitment. Unfortunately, the importance of seed and microsite limitation during range shifts remains unknown, since few studies have examined both factors simultaneously, particularly across species' ranges. To address this issue, we assessed seed availability and the factors influencing germination for six conifer species across a large environmental gradient encompassing their elevational ranges. Specifically, we assessed (1) how parent-tree abundance influences annual seed availability; (2) how seed limitation varies across species' ranges; (3) how climatic and biotic factors affect germination; and (4) how seed and suitable microsite availability covary annually within and among species. We found that seed availability declined toward species' upper range edges for most species, primarily due to low parent-tree abundance rather than declining fecundity. Range expansions are thus likely to be lagged with respect to climate change, as long generation times preclude rapid increases in tree density. Negative impacts of canopy cover on germination rates suggest range shifts will further be slowed by competition with existing vegetation. Moreover, years of high seed production were generally correlated among species, but not correlated with the availability of suitable microsites, implying that seedling competition and the interaction between seed and microsite limitation will further constrain recruitment. However, the nature of microsite limitation varied strongly between treeline and low-elevation species due to differing responses

  5. Spatial and ecological variation in dryland ecohydrological responses to climate change: implications for management

    USGS Publications Warehouse

    Palmquist, Kyle A.; Schlaepfer, Daniel R.; Bradford, John B.; Lauenroth, William K.

    2016-01-01

    Ecohydrological responses to climate change will exhibit spatial variability and understanding the spatial pattern of ecological impacts is critical from a land management perspective. To quantify climate change impacts on spatial patterns of ecohydrology across shrub steppe ecosystems in North America, we asked the following question: How will climate change impacts on ecohydrology differ in magnitude and variability across climatic gradients, among three big sagebrush ecosystems (SB-Shrubland, SB-Steppe, SB-Montane), and among Sage-grouse Management Zones? We explored these potential changes for mid-century for RCP8.5 using a process-based water balance model (SOILWAT) for 898 big sagebrush sites using site- and scenario-specific inputs. We summarize changes in available soil water (ASW) and dry days, as these ecohydrological variables may be helpful in guiding land management decisions about where to geographically concentrate climate change mitigation and adaptation resources. Our results suggest that during spring, soils will be wetter in the future across the western United States, while soils will be drier in the summer. The magnitude of those predictions differed depending on geographic position and the ecosystem in question: Larger increases in mean daily spring ASW were expected for high-elevation SB-Montane sites and the eastern and central portions of our study area. The largest decreases in mean daily summer ASW were projected for warm, dry, mid-elevation SB-Montane sites in the central and west-central portions of our study area (decreases of up to 50%). Consistent with declining summer ASW, the number of dry days was projected to increase rangewide, but particularly for SB-Montane and SB-Steppe sites in the eastern and northern regions. Collectively, these results suggest that most sites will be drier in the future during the summer, but changes were especially large for mid- to high-elevation sites in the northern half of our study area. Drier

  6. Eolian sediment responses to late Quaternary climate changes: Temporal and spatial patterns in the Sahara

    USGS Publications Warehouse

    Swezey, C.

    2001-01-01

    This paper presents a compilation of eolian-based records of late Quaternary climate changes in the Sahara. Although the data are relatively sparse, when viewed as a whole, they reveal a general pattern of widespread eolian sediment mobilization prior to 11,000 cal. years BP, eolian sediment stabilization from 11,000 to 5000 cal. years BP, and a return to widespread eolian sediment mobilization after 5000 cal. years BP. Furthermore, an eolian-based record from southern Tunisia reveals the existence of millennial-scale changes in eolian sediment behavior. These millennial-scale variations provide examples of eolian sediment responses to climate changes at a scale intermediate between seasonal and orbital ('Milankovitch') changes, and they are also coincident with abrupt atmospheric and oceanic changes. The general synchroneity of the eolian stratigraphic records and their coincidence with various oceanic and atmospheric changes suggest that global forcing mechanisms have influenced late Quaternary eolian sediment behavior in the Sahara. ?? 2001 Elsevier Science B.V.

  7. Tibetan alpine tundra responses to simulated changes in climate: Aboveground biomass and community responses

    SciTech Connect

    Yanqing Zhang; Welker, J.M.

    1996-05-01

    High-elevation ecosystems are predicted to be some of the terrestrial habitats most sensitive to changing climates. The ecological consequences of changes in alpine tundra environmental conditions are still unclear especially for habitats in Asia. In this study we report findings from a field experiment where an alpine tundra grassland on the Tibetan plateau (37{degrees}N, 101{degrees}E) was exposed to experimental warming, irradiance was lowered, and wind speed reduced to simulate a suite of potential changes in environmental conditions. Our warming treatment increased air temperatures by 5{degrees}C on average and soil temperatures were elevated by 3{degrees}C at 5 cm depth. Aboveground biomass of grasses responded rapidly to the warmer conditions whereby biomass was 25% greater than that of controls after only 5 wk of experimental warming. This increase was accompanied by a simultaneous decrease in forb biomass, resulting in almost no net change in community biomass after 5 wk. Lower irradiance reduced grass biomass during the same period. Under ambient conditions total aboveground community biomass increased seasonally from 161 g m{sup -2} in July to a maximum of 351 g m{sup -2} in September, declining to 285 g m{sup -2} in October. However, under warmed conditions, peak community biomass was extended into October due in part to continued growth of grasses and the postponement of senescence. Our finding indicate that while alpine grasses respond favorably to altered conditions, others may not. And, while peak community biomass may actually change very little under warmer summers, the duration of peak biomass may be extended having feedback effects on net ecosystem CO{sub 2} balances, nutrient cycling, and forage availability. 47 refs., 3 figs., 3 tabs.

  8. Climate response to changes in orbital forcing around the first Pliocene Time Slice

    NASA Astrophysics Data System (ADS)

    Prescott, Caroline; Haywood, Alan; Tindall, Julia; Dolan, Aisling; Hunter, Stephen; Pope, James; Pickering, Steven

    2013-04-01

    used to perform a series of orbital forcing sensitivity tests around the identified time slice at MIS KM5c. Simulations every 2 Kyr either side of the time slice to a range +/- 20 kyr have been performed. The model results indicate that +/- 10 kyr either side of the time slice, orbital forcing exerts a less than 1°C change on global MAT. Seasonally, temperature variations exceed this value locally. One exception to this relative stability in climate to modest changes in orbital configuration is seen in the North Atlantic (a region noted for disagreement in existing Pliocene data/model comparisons). Here ocean surface temperature variations of up to 6°C are predicted by the model. These model responses are currently under investigation but appear related to variations in the strength of the Atlantic Meridional Overturning Circulation over relatively short timescales (geologically). Given that other components of the climate system (ice sheets and vegetation) may also respond to any predicted change in surface temperatures generated through orbital forcing, we have completed additional simulations 10 and 20 kyr either side of the KM5c time slice. These include dynamic predictions of vegetation and therefore facilitate a quantification of the degree to which changing vegetation distributions in response to orbital forcing feedback and influence local climate.

  9. Topographically driven predictions for river food webs: responses to land cover and climate change

    NASA Astrophysics Data System (ADS)

    Power, M. E.; Dietrich, W. E.; Finlay, J. C.; Bode, C. A.; Hondzo, M.; Limm, M.; National CenterEarth Surface Dynamics

    2011-12-01

    Fluxes of materials and energy, as well as the performances and interactions of organisms in food webs are strongly influenced by topography and vegetation. We have been using a "predictive mapping" approach to investigate how resource fluxes and food web interactions change down the Eel River drainage network in Northwestern California. In this talk, I will focus on hydrologic and food web controls on the production and fate of dominant primary producers in the river (macroalgae, diatoms and cyanobacteria). Algal mediated processes (e.g. nitrogen-fixation) and processes that limit algal abundance (e.g. grazer control) change abruptly through the season and down drainage networks. Field surveys and mensurative experiments that map the drainage network positions of these changes, and manipulative field experiments that uncover their causes, set the stage for predictive mapping, which is necessary if not sufficient for forecasts of river ecosystem response to changes in climate, land use, or biota.

  10. The trophic responses of two different rodent–vector–plague systems to climate change

    PubMed Central

    Xu, Lei; Schmid, Boris V.; Liu, Jun; Si, Xiaoyan; Stenseth, Nils Chr.; Zhang, Zhibin

    2015-01-01

    Plague, the causative agent of three devastating pandemics in history, is currently a re-emerging disease, probably due to climate change and other anthropogenic changes. Without understanding the response of plague systems to anthropogenic or climate changes in their trophic web, it is unfeasible to effectively predict years with high risks of plague outbreak, hampering our ability for effective prevention and control of the disease. Here, by using surveillance data, we apply structural equation modelling to reveal the drivers of plague prevalence in two very different rodent systems: those of the solitary Daurian ground squirrel and the social Mongolian gerbil. We show that plague prevalence in the Daurian ground squirrel is not detectably related to its trophic web, and that therefore surveillance efforts should focus on detecting plague directly in this ecosystem. On the other hand, plague in the Mongolian gerbil is strongly embedded in a complex, yet understandable trophic web of climate, vegetation, and rodent and flea densities, making the ecosystem suitable for more sophisticated low-cost surveillance practices, such as remote sensing. As for the trophic webs of the two rodent species, we find that increased vegetation is positively associated with higher temperatures and precipitation for both ecosystems. We furthermore find a positive association between vegetation and ground squirrel density, yet a negative association between vegetation and gerbil density. Our study thus shows how past surveillance records can be used to design and improve existing plague prevention and control measures, by tailoring them to individual plague foci. Such measures are indeed highly needed under present conditions with prevailing climate change. PMID:25540277

  11. The trophic responses of two different rodent-vector-plague systems to climate change.

    PubMed

    Xu, Lei; Schmid, Boris V; Liu, Jun; Si, Xiaoyan; Stenseth, Nils Chr; Zhang, Zhibin

    2015-02-07

    Plague, the causative agent of three devastating pandemics in history, is currently a re-emerging disease, probably due to climate change and other anthropogenic changes. Without understanding the response of plague systems to anthropogenic or climate changes in their trophic web, it is unfeasible to effectively predict years with high risks of plague outbreak, hampering our ability for effective prevention and control of the disease. Here, by using surveillance data, we apply structural equation modelling to reveal the drivers of plague prevalence in two very different rodent systems: those of the solitary Daurian ground squirrel and the social Mongolian gerbil. We show that plague prevalence in the Daurian ground squirrel is not detectably related to its trophic web, and that therefore surveillance efforts should focus on detecting plague directly in this ecosystem. On the other hand, plague in the Mongolian gerbil is strongly embedded in a complex, yet understandable trophic web of climate, vegetation, and rodent and flea densities, making the ecosystem suitable for more sophisticated low-cost surveillance practices, such as remote sensing. As for the trophic webs of the two rodent species, we find that increased vegetation is positively associated with higher temperatures and precipitation for both ecosystems. We furthermore find a positive association between vegetation and ground squirrel density, yet a negative association between vegetation and gerbil density. Our study thus shows how past surveillance records can be used to design and improve existing plague prevention and control measures, by tailoring them to individual plague foci. Such measures are indeed highly needed under present conditions with prevailing climate change.

  12. Response of deciduous trees spring phenology to recent and projected climate change in Central Lithuania

    NASA Astrophysics Data System (ADS)

    Juknys, Romualdas; Kanapickas, Arvydas; Šveikauskaitė, Irma; Sujetovienė, Gintarė

    2016-10-01

    The analysis of long-term time series of spring phenology for different deciduous trees species has shown that leaf unfolding for all the investigated species is the most sensitive to temperatures in March and April and illustrates that forcing temperature is the main driver of the advancement of leaf unfolding. Available chilling amount has increased by 22.5 % over the last 90 years, indicating that in the investigated geographical region there is no threat of chilling shortage. The projection of climatic parameters for Central Lithuania on the basis of three global circulation models has shown that under the optimistic climate change scenario (RCP 2.6) the mean temperature tends to increase by 1.28 °C and under the pessimistic scenario (RCP 8.5) by 5.03 °C until the end of the current century. Recently, different statistical models are used not only to analyze but also to project the changes in spring phenology. Our study has shown that when the data of long-term phenological observations are available, multiple regression models are suitable for the projection of the advancement of leaf unfolding under the changing climate. According to the RCP 8.5 scenario, the projected advancement in leaf unfolding for early-season species birch consists of almost 15 days as an average of all three used GSMs. Markedly less response to the projected far future (2071-2100), climate change is foreseen for other investigated climax species: -9 days for lime, 10 days for oak, and 11 days for maple.

  13. The Response of Different Audiences to Place-based Communication about the Role of Climate Change in Extreme Weather Events

    NASA Astrophysics Data System (ADS)

    Halperin, A.; Walton, P.

    2015-12-01

    As the science of extreme event attribution grows, there is an increasing need to understand how the public responds to this type of climate change communication. Extreme event attribution has the unprecedented potential to locate the effects of climate change in the here and now, but there is little information about how different facets of the public might respond to these local framings of climate change. Drawing on theories of place attachment and psychological distance, this paper explores how people with different beliefs and values shift their willingness to mitigate and adapt to climate change in response to local or global communication of climate change impacts. Results will be presented from a recent survey of over 600 Californians who were each presented with one of three experimental conditions: 1) a local framing of the role of climate change in the California drought 2) a global framing of climate change and droughts worldwide, or 3) a control condition of no text. Participants were categorized into groups based on their prior beliefs about climate change according to the Six Americas classification scheme (Leiserowitz et al., 2011). The results from the survey in conjunction with qualitative results from follow-up interviews shed insight into the importance of place in communicating climate change for people in each of the Six Americas. Additional results examine the role of gender and political affiliation in mediating responses to climate change communication. Despite research that advocates unequivocally for local framing of climate change, this study offers a more nuanced perspective of under which circumstances extreme event attribution might be an effective tool for changing behaviors. These results could be useful for scientists who wish to gain a better understanding of how their event attribution research is perceived or for educators who want to target their message to audiences where it could have the most impact.

  14. Changes in biocrust cover drive carbon cycle responses to climate change in drylands

    PubMed Central

    Maestre, Fernando T.; Escolar, Cristina; de Guevara, Mónica Ladrón; Quero, José L.; Lázaro, Roberto; Delgado-Baquerizo, Manuel; Ochoa, Victoria; Berdugo, Miguel; Gozalo, Beatriz; Gallardo, Antonio

    2013-01-01

    Dryland ecosystems account for ~27% of global soil organic carbon (C) reserves, yet it is largely unknown how climate change will impact C cycling and storage in these areas. In drylands, soil C concentrates at the surface, making it particularly sensitive to the activity of organisms inhabiting the soil uppermost levels, such as communities dominated by lichens, mosses, bacteria and fungi (biocrusts). We conducted a full factorial warming and rainfall exclusion experiment at two semiarid sites in Spain to show how an average increase of air temperature of 2–3°C promoted a drastic reduction in biocrust cover (~ 44% in four years). Warming significantly increased soil CO2 efflux, and reduced soil net CO2 uptake, in biocrust-dominated microsites. Losses of biocrust cover with warming through time were paralleled by increases in recalcitrant C sources, such as aromatic compounds, and in the abundance of fungi relative to bacteria. The dramatic reduction in biocrust cover with warming will lessen the capacity of drylands to sequester atmospheric CO2. This decrease may act synergistically with other warming-induced effects, such as the increase in soil CO2 efflux and the changes in microbial communities, to alter C cycling in drylands, and to reduce soil C stocks in the mid to long term. PMID:23818331

  15. Changes in biocrust cover drive carbon cycle responses to climate change in drylands.

    PubMed

    Maestre, Fernando T; Escolar, Cristina; de Guevara, Mónica Ladrón; Quero, José L; Lázaro, Roberto; Delgado-Baquerizo, Manuel; Ochoa, Victoria; Berdugo, Miguel; Gozalo, Beatriz; Gallardo, Antonio

    2013-12-01

    Dryland ecosystems account for ca. 27% of global soil organic carbon (C) reserves, yet it is largely unknown how climate change will impact C cycling and storage in these areas. In drylands, soil C concentrates at the surface, making it particularly sensitive to the activity of organisms inhabiting the soil uppermost levels, such as communities dominated by lichens, mosses, bacteria and fungi (biocrusts). We conducted a full factorial warming and rainfall exclusion experiment at two semiarid sites in Spain to show how an average increase of air temperature of 2-3 °C promoted a drastic reduction in biocrust cover (ca. 44% in 4 years). Warming significantly increased soil CO2 efflux, and reduced soil net CO2 uptake, in biocrust-dominated microsites. Losses of biocrust cover with warming through time were paralleled by increases in recalcitrant C sources, such as aromatic compounds, and in the abundance of fungi relative to bacteria. The dramatic reduction in biocrust cover with warming will lessen the capacity of drylands to sequester atmospheric CO2 . This decrease may act synergistically with other warming-induced effects, such as the increase in soil CO2 efflux and the changes in microbial communities to alter C cycling in drylands, and to reduce soil C stocks in the mid to long term.

  16. Electricity for groundwater use: constraints and opportunities for adaptive response to climate change

    NASA Astrophysics Data System (ADS)

    Scott, Christopher A.

    2013-09-01

    Globally, groundwater use is intensifying to meet demands for irrigation, urban supply, industrialization, and, in some instances, electrical power generation. In response to hydroclimatic variability, surface water is being substituted with groundwater, which must be viewed as a strategic resource for climate adaptation. In this sense, the supply of electricity for pumping is an adaptation policy tool. Additionally, planning for climate-change mitigation must consider CO2 emissions resulting from pumping. This paper examines the influence of electricity supply and pricing on groundwater irrigation and resulting emissions, with specific reference to Mexico—a climate-water-energy ‘perfect storm’. Night-time power supply at tariffs below the already-subsidized rates for agricultural groundwater use has caused Mexican farmers to increase pumping, reversing important water and electricity conservation gains achieved. Indiscriminate groundwater pumping, including for virtual water exports of agricultural produce, threatens the long-term sustainability of aquifers, non-agricultural water uses, and stream-aquifer interactions that sustain riparian ecosystems. Emissions resulting from agricultural groundwater pumping in Mexico are estimated to be 3.6% of total national emissions and are equivalent to emissions from transporting the same agricultural produce to market. The paper concludes with an assessment of energy, water, and climate trends coupled with policy futures to address these challenges.

  17. Response of a warm temperate peatland to Holocene climate change in northeastern Pennsylvania

    NASA Astrophysics Data System (ADS)

    Cai, Shanshan; Yu, Zicheng

    2011-05-01

    Studying boreal-type peatlands near the edge of their southern limit can provide insight into responses of boreal and sub-arctic peatlands to warmer climates. In this study, we investigated peatland history using multi-proxy records of sediment composition, plant macrofossil, pollen, and diatom analysis from a 14C-dated sediment core at Tannersville Bog in northeastern Pennsylvania, USA. Our results indicate that peat accumulation began with lake infilling of a glacial lake at ~ 9 ka as a rich fen dominated by brown mosses. It changed to a poor fen dominated by Cyperaceae (sedges) and Sphagnum (peat mosses) at ~ 1.4 ka and to a Sphagnum-dominated poor fen at ~ 200 cal yr BP (~ AD 1750). Apparent carbon accumulation rates increased from 13.4 to 101.2 g C m - 2 yr - 1 during the last 8000 yr, with a time-averaged mean of 27.3 g C m - 2 yr - 1 . This relatively high accumulation rate, compared to many northern peatlands, was likely caused by high primary production associated with a warmer and wetter temperate climate. This study implies that some northern peatlands can continue to serve as carbon sinks under a warmer and wetter climate, providing a negative feedback to climate warming.

  18. Modeling nonbreeding distributions of shorebirds and waterfowl in response to climate change.

    PubMed

    Reese, Gordon C; Skagen, Susan K

    2017-03-01

    To identify areas on the landscape that may contribute to a robust network of conservation areas, we modeled the probabilities of occurrence of several en route migratory shorebirds and wintering waterfowl in the southern Great Plains of North America, including responses to changing climate. We predominantly used data from the eBird citizen-science project to model probabilities of occurrence relative to land-use patterns, spatial distribution of wetlands, and climate. We projected models to potential future climate conditions using five representative general circulation models of the Coupled Model Intercomparison Project 5 (CMIP5). We used Random Forests to model probabilities of occurrence and compared the time periods 1981-2010 (hindcast) and 2041-2070 (forecast) in "model space." Projected changes in shorebird probabilities of occurrence varied with species-specific general distribution pattern, migration distance, and spatial extent. Species using the western and northern portion of the study area exhibited the greatest likelihoods of decline, whereas species with more easterly occurrences, mostly long-distance migrants, had the greatest projected increases in probability of occurrence. At an ecoregional extent, differences in probabilities of shorebird occurrence ranged from -0.015 to 0.045 when averaged across climate models, with the largest increases occurring early in migration. Spatial shifts are predicted for several shorebird species. Probabilities of occurrence of wintering Mallards and Northern Pintail are predicted to increase by 0.046 and 0.061, respectively, with northward shifts projected for both species. When incorporated into partner land management decision tools, results at ecoregional extents can be used to identify wetland complexes with the greatest potential to support birds in the nonbreeding season under a wide range of future climate scenarios.

  19. Modeling nonbreeding distributions of shorebirds and waterfowl in response to climate change

    USGS Publications Warehouse

    Reese, Gordon; Skagen, Susan

    2017-01-01

    To identify areas on the landscape that may contribute to a robust network of conservation areas, we modeled the probabilities of occurrence of several en route migratory shorebirds and wintering waterfowl in the southern Great Plains of North America, including responses to changing climate. We predominantly used data from the eBird citizen-science project to model probabilities of occurrence relative to land-use patterns, spatial distribution of wetlands, and climate. We projected models to potential future climate conditions using five representative general circulation models of the Coupled Model Intercomparison Project 5 (CMIP5). We used Random Forests to model probabilities of occurrence and compared the time periods 1981–2010 (hindcast) and 2041–2070 (forecast) in “model space.” Projected changes in shorebird probabilities of occurrence varied with species-specific general distribution pattern, migration distance, and spatial extent. Species using the western and northern portion of the study area exhibited the greatest likelihoods of decline, whereas species with more easterly occurrences, mostly long-distance migrants, had the greatest projected increases in probability of occurrence. At an ecoregional extent, differences in probabilities of shorebird occurrence ranged from −0.015 to 0.045 when averaged across climate models, with the largest increases occurring early in migration. Spatial shifts are predicted for several shorebird species. Probabilities of occurrence of wintering Mallards and Northern Pintail are predicted to increase by 0.046 and 0.061, respectively, with northward shifts projected for both species. When incorporated into partner land management decision tools, results at ecoregional extents can be used to identify wetland complexes with the greatest potential to support birds in the nonbreeding season under a wide range of future climate scenarios.

  20. Surface elevation change and vegetation distribution dynamics in a subtropical coastal wetland: Implications for coastal wetland response to climate change

    NASA Astrophysics Data System (ADS)

    Rogers, Kerrylee; Saintilan, Neil; Woodroffe, Colin D.

    2014-08-01

    The response of coastal wetlands to sea-level rise is receiving global attention and observed changes in the distribution of mangrove and salt marsh are increasingly associated with global climate change, particularly sea-level and temperature rise, and potentially elevated carbon dioxide. Processes operating over smaller-spatial scales, such as rainfall variability and nutrient enrichment are also proposed as possible short-term drivers of changes in the distribution of mangrove and salt marsh. We consider the response of mangrove and salt marsh in a subtropical estuary to changes in environmental variables over a 12 year period by comparing rates of surface elevation change and vegetation distribution dynamics to hydrological and climatic variables, specifically water level and rainfall. This period of analysis captured inter-annual variability in sea level and rainfall associated with different phases of the El Niño Southern Oscillation (ENSO). We found that the mangrove and salt marsh trend of increasing elevation was primarily controlled by position within the tidal prism, in this case defined by inundation depth and distance to the tidal channel. Rainfall was not a primary driver of elevation trends in mangrove and salt marsh, but rainfall and water level variability did influence variability in elevation over the study period, though cross-correlation of these factors confounds identification of a single process driving this variability. These results highlight the scale-dependence of coastal wetland vegetation distribution dynamics; the longer-term trend of surface elevation increase and mangrove encroachment of salt marsh correlated with global sea-level trends, while short-term variability in surface elevation was related to local variability in water level and rainfall. Rates of surface elevation increase were found to lag behind rates of water level change within the Tweed River, which may facilitate further expansion of mangrove into salt marsh. This

  1. Population and species differences in treeline tree species germination in response to climate change

    NASA Astrophysics Data System (ADS)

    Kueppers, L. M.; Faist, A.; Castanha, C.

    2009-12-01

    The ability of plant species to recruit within and beyond their current geographic ranges in response to climate warming may be constrained by population differences in response. A number of studies have highlighted the degree to which genotype and environment are strongly linked in forest trees (i.e., provenances), but few studies have examined whether these local adaptations are at all predictive of population or species response to change. We report the results of lab germination experiments using high and low elevation populations of both limber pine (Pinus flexilis) and Engelmann spruce (Picea engelmannii), which are important treeline species in the Rocky Mountains. Seeds collected in 2008 were germinated under two different temperature regimes (ambient and +5°C) and two different moisture regimes, and followed for 17 weeks. For both species and source elevations, warmer temperatures advanced the timing of emergence by up to 20 days, whereas the effects of moisture were less consistent. At harvest, high elevation limber pine had less root and shoot biomass, and a slightly lower root:shoot ratio, under the +5°C treatment, whereas low elevation limber pine seedling mass was not sensitive to temperature. Whether these differences persist under field conditions will be tested in a field experiment now established at Niwot Ridge, CO. The ability to accurately predict tree seedling recruitment and ultimately shifts in treeline position with climate change will improve our ability to model changes in surface albedo, water cycling and carbon cycling, all of which can generate feedbacks to regional and global climate.

  2. Response of wheat restricted-tillering and vigorous growth traits to variables of climate change.

    PubMed

    Dias de Oliveira, Eduardo A; Siddique, Kadambot H M; Bramley, Helen; Stefanova, Katia; Palta, Jairo A

    2015-02-01

    The response of wheat to the variables of climate change includes elevated CO2, high temperature, and drought which vary according to the levels of each variable and genotype. Independently, elevated CO2, high temperature, and terminal drought affect wheat biomass and grain yield, but the interactive effects of these three variables are not well known. The aim of this study was to determine the effects of elevated CO2 when combined with high temperature and terminal drought on the high-yielding traits of restricted-tillering and vigorous growth. It was hypothesized that elevated CO2 alone, rather than combined with high temperature, ameliorates the effects of terminal drought on wheat biomass and grain yield. It was also hypothesized that wheat genotypes with more sink capacity (e.g. high-tillering capacity and leaf area) have more grain yield under combined elevated CO2, high temperature, and terminal drought. Two pairs of sister lines with contrasting tillering and vigorous growth were grown in poly-tunnels in a four-factor completely randomized split-plot design with elevated CO2 (700 µL L(-1)), high day time temperature (3 °C above ambient), and drought (induced from anthesis) in all combinations to test whether elevated CO2 ameliorates the effects of high temperature and terminal drought on biomass accumulation and grain yield. For biomass and grain yield, only main effects for climate change variables were significant. Elevated CO2 significantly increased grain yield by 24-35% in all four lines and terminal drought significantly reduced grain yield by 16-17% in all four lines, while high temperature (3 °C above the ambient) had no significant effect. A trade-off between yield components limited grain yield in lines with greater sink capacity (free-tillering lines). This response suggests that any positive response to predicted changes in climate will not overcome the limitations imposed by the trade-off in yield components.

  3. Climate Change Indicators

    EPA Pesticide Factsheets

    Presents information, charts and graphs showing measured climate changes across 40 indicators related to greenhouse gases, weather and climate, oceans, snow and ice, heath and society, and ecosystems.

  4. Debating Climate Change

    SciTech Connect

    Malone, Elizabeth L.

    2009-11-01

    Debating Climate Change explores, both theoretically and empirically, how people argue about climate change and link to each other through various elements in their arguments. As science is a central issue in the debate, the arguments of scientists and the interpretations and responses of non-scientists are important aspects of the analysis. The book first assesses current thinking about the climate change debate and current participants in the debates surrounding the issue, as well as a brief history of various groups’ involvements. Chapters 2 and 3 distill and organize various ways of framing the climate change issue. Beginning in Chapter 4, a modified classical analysis of the elements carried in an argument is used to identify areas and degrees of disagreement and agreement. One hundred documents, drawn from a wide spectrum of sources, map the topic and debate space of the climate change issue. Five elements of each argument are distilled: the authority of the writer, the evidence presented, the formulation of the argument, the worldview presented, and the actions proposed. Then a social network analysis identifies elements of the arguments that point to potential agreements. Finally, the book suggests mechanisms by which participants in the debate can build more general agreements on elements of existing agreement.

  5. How is the River Water Quality Response to Climate Change Impacts?

    NASA Astrophysics Data System (ADS)

    Nguyen, T. T.; Willems, P.

    2015-12-01

    Water quality and its response to climate change have been become one of the most important issues of our society, which catches the attention of many scientists, environmental activists and policy makers. Climate change influences the river water quality directly and indirectly via rainfall and air temperature. For example, low flow decreases the volume of water for dilution and increases the residence time of the pollutants. By contrast, high flow leads to increases in the amount of pollutants and sediment loads from catchments to rivers. The changes in hydraulic characteristics, i.e. water depth and velocity, affect the transportation and biochemical transformation of pollutants in the river water body. The high air temperature leads to increasing water temperature, shorter growing periods of different crops and water demands from domestic households and industries, which eventually effects the level of river pollution. This study demonstrates the quantification of the variation of the water temperature and pollutant concentrations along the Molse Neet river in the North East of Belgium as a result of the changes in the catchment rainfall-runoff, air temperature and nutrient loads. Firstly, four climate change scenarios were generated based on a large ensemble of available global and regional climate models and statistical downscaling based on a quantile perturbation method. Secondly, the climatic changes to rainfall and temperature were transformed to changes in the evapotranspiration and runoff flow through the conceptual hydrological model PDM. Thirdly, the adjustment in nutrient loads from agriculture due to rainfall and growing periods of crops were calculated by means of the semi-empirical SENTWA model. Water temperature was estimated from air temperature by a stochastic model separating the temperature into long-term annual and short-term residual components. Next, hydrodynamic and water quality models of the river, implemented in InfoWorks RS, were

  6. Introduction to the symposium: responses of organisms to climate change: a synthetic approach to the role of thermal adaptation.

    PubMed

    Sears, Michael W; Angilletta, Michael J

    2011-11-01

    On a global scale, changing climates are affecting ecological systems across multiple levels of biological organization. Moreover, climates are changing at rates unprecedented in recent geological history. Thus, one of the most pressing concerns of the modern era is to understand the biological responses to climate such that society can both adapt and implement measures that attempt to offset the negative impacts of a rapidly changing climate. One crucial question, to understand organismal responses to climate, is whether the ability of organisms to adapt can keep pace with quickly changing environments. To address this question, a syntheses of knowledge from a broad set of biological disciplines will be needed that integrates information from the fields of ecology, behavior, physiology, genetics, and evolution. This symposium assembled a diverse group of scientists from these subdisciplines to present their perspectives regarding the ability of organisms to adapt to changing climates. Specifically, the goals of this symposia were to (1) highlight what each discipline brings to a discussion of organismal responses to climate, (2) to initiate and foster a discussion to break barriers in the transfer of knowledge across disciplines, and (3) to synthesize an approach to address ongoing issues concerning biological responses to climate.

  7. Principals' Response to Change in Schools and Its Effect on School Climate

    ERIC Educational Resources Information Center

    Busch, Steve; Johnson, Shirley; Robles-Piña, Rebecca; Slate, John R.

    2009-01-01

    In this study, the researchers examined principal behaviors related with change in school climate. That is, the manner in which principals managed change within their schools and the impact of these change behaviors on the school climate was investigated. Through use of the Leadership Profile (Johnson, 2003) and the Organizational Health Inventory…

  8. Mitigation/adaptation and health: health policymaking in the global response to climate change and implications for other upstream determinants.

    PubMed

    Wiley, Lindsay F

    2010-01-01

    The time is ripe for innovation in global health governance if we are to achieve global health and development objectives in the face of formidable challenges. Integration of global health concerns into the law and governance of other, related disciplines should be given high priority. This article explores opportunities for health policymaking in the global response to climate change. Climate change and environmental degradation will affect weather disasters, food and water security, infectious disease patterns, and air pollution. Although scientific research has pointed to the interdependence of the global environment and human health, policymakers have been slow to integrate their approaches to environmental and health concerns. A robust response to climate change will require improved integration on two fronts: health concerns must be given higher priority in the response to climate change and threats associated with climate change and environmental degradation must be more adequately addressed by global health law and governance. The mitigation/adaptation response paradigm developing within and beyond the United Nations Framework Convention on Climate Change provides a useful framework for thinking about global health law and governance with respect to climate change, environmental degradation, and possibly other upstream determinants of health as well.

  9. Managing the global commons decision making and conflict resolution in response to climate change

    SciTech Connect

    Rayner, S. ); Naegeli, W.; Lund, P. )

    1990-07-01

    A workshop was convened to develop a better understanding of decision-making matters concerning management of the global commons and to resolve conflicts in response to climate change. This workshop report does not provide a narrative of the proceedings. The workshop program is included, as are the abstracts of the papers that were presented. Only the introductory paper on social science research by William Riebsame and the closing summary by Richard Rockwell are reprinted here. This brief report focuses instead on the deliberations of the working groups that developed during the workshop. 4 figs., 1 tab.

  10. Response of Florida shelf ecosystems to climate change: from macro to micro scales

    USGS Publications Warehouse

    Robbins, Lisa; Raabe, Ellen

    2010-01-01

    U.S. Geological Survey (USGS) research in St. Petersburg, Fla., is focusing attention on marine environments of the Florida shelf at three levels, from regional to estuarine to the individual organism. The USGS is partnering on this project with the Florida Department of Agriculture and Consumer Services (DACS), National Oceanic and Atmospheric Administration (NOAA), and the University of South Florida (USF) in marine studies. The specific goals of these combined efforts are an improved understanding of the effects of ocean acidification on regional carbonate processes, changes in individual estuaries, and organism-level response. This understanding will assist in developing appropriate Federal, State, and local management responses to climate change in coastal areas.

  11. Vertebrate records in polar sediments: Biological responses to past climate change and human activities

    NASA Astrophysics Data System (ADS)

    Sun, L. G.; Emslie, S. D.; Huang, T.; Blais, J. M.; Xie, Z. Q.; Liu, X. D.; Yin, X. B.; Wang, Y. H.; Huang, W.; Hodgson, D. A.; Smol, J. P.

    2013-11-01

    Biological responses to climate and environmental changes in remote polar regions are of increasing interest in global change research. Terrestrial and marine polar ecosystems have suffered from impacts of both rapid climate change and intense human activities, and large fluctuations in the population sizes of seabirds, seals, and Antarctic krill have been observed in the past decades. To understand the mechanisms driving these regime shifts in polar ecosystems, it is important to first distinguish the influences of natural forcing from anthropogenic activities. Therefore, investigations of past changes of polar ecosystems prior to human contact are relevant for placing recent human-induced changes within a long-term historical context. Here we focus our review on the fossil, sub-fossil, archaeological, and biogeochemical remains of marine vertebrates in polar sediments. These remains include well-preserved tissues such as bones, hairs and feathers, and biogeochemical markers and other proxy indicators, including deposits of guano and excrement, which can accumulate in lake and terrestrial sediments over thousands of years. Analyses of these remains have provided insight into both natural and anthropogenic impacts on marine vertebrates over millennia and have helped identify the causal agents for these impacts. Furthermore, land-based seabirds and marine mammals have been shown to play an important role as bio-vectors in polar environments as they transport significant amounts of nutrients and anthropogenic contaminants between ocean and terrestrial ecosystems.

  12. Small mammal diversity loss in response to late-Pleistocene climatic change.

    PubMed

    Blois, Jessica L; McGuire, Jenny L; Hadly, Elizabeth A

    2010-06-10

    Communities have been shaped in numerous ways by past climatic change; this process continues today. At the end of the Pleistocene epoch about 11,700 years ago, North American communities were substantially altered by the interplay of two events. The climate shifted from the cold, arid Last Glacial Maximum to the warm, mesic Holocene interglacial, causing many mammal species to shift their geographic distributions substantially. Populations were further stressed as humans arrived on the continent. The resulting megafaunal extinction event, in which 70 of the roughly 220 largest mammals in North America (32%) became extinct, has received much attention. However, responses of small mammals to events at the end of the Pleistocene have been much less studied, despite the sensitivity of these animals to current and future environmental change. Here we examine community changes in small mammals in northern California during the last 'natural' global warming event at the Pleistocene-Holocene transition and show that even though no small mammals in the local community became extinct, species losses and gains, combined with changes in abundance, caused declines in both the evenness and richness of communities. Modern mammalian communities are thus depauperate not only as a result of megafaunal extinctions at the end of the Pleistocene but also because of diversity loss among small mammals. Our results suggest that across future landscapes there will be some unanticipated effects of global change on diversity: restructuring of small mammal communities, significant loss of richness, and perhaps the rising dominance of native 'weedy' species.

  13. What plant hydraulics can tell us about responses to climate-change droughts.

    PubMed

    Sperry, John S; Love, David M

    2015-07-01

    Climate change exposes vegetation to unusual drought, causing declines in productivity and increased mortality. Drought responses are hard to anticipate because canopy transpiration and diffusive conductance (G) respond to drying soil and vapor pressure deficit (D) in complex ways. A growing database of hydraulic traits, combined with a parsimonious theory of tree water transport and its regulation, may improve predictions of at-risk vegetation. The theory uses the physics of flow through soil and xylem to quantify how canopy water supply declines with drought and ceases by hydraulic failure. This transpiration 'supply function' is used to predict a water 'loss function' by assuming that stomatal regulation exploits transport capacity while avoiding failure. Supply-loss theory incorporates root distribution, hydraulic redistribution, cavitation vulnerability, and cavitation reversal. The theory efficiently defines stomatal responses to D, drying soil, and hydraulic vulnerability. Driving the theory with climate predicts drought-induced loss of plant hydraulic conductance (k), canopy G, carbon assimilation, and productivity. Data lead to the 'chronic stress hypothesis' wherein > 60% loss of k increases mortality by multiple mechanisms. Supply-loss theory predicts the climatic conditions that push vegetation over this risk threshold. The theory's simplicity and predictive power encourage testing and application in large-scale modeling.

  14. "As-If" the Climate Has Changed; What We Can Expect in Hydrologic Response

    NASA Astrophysics Data System (ADS)

    Vieux, B. E.; Looper, J.

    2015-12-01

    Predicting the effects of climate change through hydrologic modeling with hydrologic forcing representative of historic and future climates. Understanding the hydrologic impacts of various climate scenarios and pathways is accomplished with a physics-based distributed hydrologic model with historic and future precipitation and evapotranspiration inputs. Vflo is a gridded hydrologic model setup for the 71,009 sq.-km. study area, the Canadian River, extending from arid areas in eastern New Mexico, across the Texas Panhandle to Lake Eufaula in sub-humid eastern Oklahoma. This model uses merged radar and rain gauge data to generate hydrographs at gauged and ungauged locations. Vflo is calibrated to observed stream gauge data minimizing Nash-Sutcliffe error function for volume and discharge. Streamflow characteristics at ungauged locations, for both historic and future scenarios, are used to develop ecological relationships between water quality, discharge, and fish species. Testing the change in hydrologic response from future potential evapotranspiration (PET) and future precipitation is accomplished using observed rainfall. Historical rainfall is perturbed to represent future climate scenarios. Model-based simulations are used to test various scenarios comprising: 1) warmer and drier, 2) warmer and status quo precipitation, and 3) status quo PET but drier. Bias corrected and spatially down-sampled CMIP3 datasets are used to create perturbations for the latter portion of the 21st Century, 2070-2099. The change in precipitation and PET between 1970-1999 and 2070-2099 is applied to radar data from the observed period, 1995-2010. Then GCM-predicted changes in precipitation under the perturbation of historic rainfall accomplishes an important feature, i.e. preserving realistic spatial, temporal, and convective patterns of rainfall typical of the southern plains, which adds confidence to the model-based simulation of future climate impacts. Simulation of the perturbed

  15. Modeled ecohydrological responses to climate change at seven small watersheds in the northeastern United States.

    PubMed

    Pourmokhtarian, Afshin; Driscoll, Charles T; Campbell, John L; Hayhoe, Katharine; Stoner, Anne M K; Adams, Mary Beth; Burns, Douglas; Fernandez, Ivan; Mitchell, Myron J; Shanley, James B

    2017-02-01

    challenge to water resource management in the northeastern United States. Our analyses suggest that dominant vegetation type and soil type are important attributes in determining future hydrological responses to climate change.

  16. Microbial control of soil organic matter mineralization responses to labile carbon in subarctic climate change treatments.

    PubMed

    Rousk, Kathrin; Michelsen, Anders; Rousk, Johannes

    2016-12-01

    Half the global soil carbon (C) is held in high-latitude systems. Climate change will expose these to warming and a shift towards plant communities with more labile C input. Labile C can also increase the rate of loss of native soil organic matter (SOM); a phenomenon termed 'priming'. We investigated how warming (+1.1 °C over ambient using open top chambers) and litter addition (90 g m(-2)  yr(-1) ) treatments in the subarctic influenced the susceptibility of SOM mineralization to priming, and its microbial underpinnings. Labile C appeared to inhibit the mineralization of C from SOM by up to 60% within hours. In contrast, the mineralization of N from SOM was stimulated by up to 300%. These responses occurred rapidly and were unrelated to microbial successional dynamics, suggesting catabolic responses. Considered separately, the labile C inhibited C mineralization is compatible with previously reported findings termed 'preferential substrate utilization' or 'negative apparent priming', while the stimulated N mineralization responses echo recent reports of 'real priming' of SOM mineralization. However, C and N mineralization responses derived from the same SOM source must be interpreted together: This suggested that the microbial SOM-use decreased in magnitude and shifted to components richer in N. This finding highlights that only considering SOM in terms of C may be simplistic, and will not capture all changes in SOM decomposition. The selective mining for N increased in climate change treatments with higher fungal dominance. In conclusion, labile C appeared to trigger catabolic responses of the resident microbial community that shifted the SOM mining to N-rich components; an effect that increased with higher fungal dominance. Extrapolating from these findings, the predicted shrub expansion in the subarctic could result in an altered microbial use of SOM, selectively mining it for N-rich components, and leading to a reduced total SOM-use.

  17. Evaluating the Contribution of Natural Variability and Climate Model Response to Uncertainty in Projections of Climate Change Impacts on U.S. Air Quality

    EPA Science Inventory

    We examine the effects of internal variability and model response in projections of climate impacts on U.S. ground-level ozone across the 21st century using integrated global system modeling and global atmospheric chemistry simulations. The impact of climate change on air polluti...

  18. Hydrologic response of the Crow Wing Watershed, Minnesota, to mid-Holocene climate change

    USGS Publications Warehouse

    Person, M.; Roy, P.; Wright, H.; Gutowski, W.; Ito, E.; Winter, T.; Rosenberry, D.; Cohen, D.

    2007-01-01

    In this study, we have integrated a suite of Holocene paleoclimatic proxies with mathematical modeling in an attempt to obtain a comprehensive picture of how watersheds respond to past climate change. A three-dimensional surface-water-groundwater model was developed to assess the effects of mid-Holocene climate change on water resources within the Crow Wing Watershed, Upper Mississippi Basin in north central Minnesota. The model was first calibrated to a 50 yr historical record of average annual surface-water discharge, monthly groundwater levels, and lake-level fluctuations. The model was able to reproduce reasonably well long-term historical records (1949-1999) of water-table and lake-level fluctuations across the watershed as well as stream discharge near the watershed outlet. The calibrated model was then used to reproduce paleogroundwater and lake levels using climate reconstructions based on pollen-transfer functions from Williams Lake just outside the watershed. Computed declines in mid-Holocene lake levels for two lakes at opposite ends of the watershed were between 6 and 18 m. Simulated streamflow near the outlet of the watershed decreased to 70% of modern average annual discharge after ???200 yr. The area covered by wetlands for the entire watershed was reduced by ???16%. The mid-Holocene hydrologic changes indicated by these model results and corroborated by several lake-core records across the Crow Wing Watershed may serve as a useful proxy of the hydrologic response to future warm, dry climatic forecasts (ca. 2050) made by some atmospheric general-circulation models for the glaciated Midwestern United States. ?? 2007 Geological Society of America.

  19. Deep-sea ostracode species diversity: Response to late Quaternary climate change

    USGS Publications Warehouse

    Cronin, T. M.; DeMartino, D.M.; Dwyer, G.S.; Rodriguez-Lazaro, J.

    1999-01-01

    Late Quaternary ostracode assemblages from the North Atlantic Ocean were studied to establish the effect of climatic changes of the past 210,000 yr (marine oxygen isotope stages 7-1) on deep-sea benthic biodiversity and faunal composition. Two-hundred and twenty five samples from the Chain 82-24 Core 4PC (41??43'N, 32??51'W, 3427 m water depth) on the western Mid-Atlantic Ridge revealed high amplitude fluctuations in ostracode abundance and diversity coincident with orbital and suborbital scale climate oscillations measured by several paleoceanographic proxy records. During the past 210,000 yr, ostracode biodiversity as measured by species number (S) and the Shannon-Weaver index, H(S), oscillated from H(S) = 0.4 during glacial periods (marine isotope stages 6, 5d, 5b, 4, and 2) to H(S) = 1.1 during interglacial and interstadial periods (stages 7, 5e, 5c, 5a, 3 and 1). A total of 23 diversity peaks could be recognized. Eleven of these signify major periods of high diversity [H(S) > 0.8, S = 10-21] occurring every 15-20 ka. Twelve were minor peaks which may represent millennial-scale diversity oscillations. The composition of ostracode assemblages varies with Krithe-dominated assemblages characterizing glacial intervals, and Argilloecia-Cytheropteron characterizing deglacials, and trachyleberid genera (Poseidonamicus, Echinocythereis, Henryhowella, Oxycythereis) abundant during interglacials. Diversity and faunal composition changes can be matched to independent deep-sea paleoceanographic tracers such as benthic foraminiferal carbon isotopes, Krithe trace elements (Mg/Ca ratios), and to North Atlantic region climate records such as Greenland ice cores. When interpreted in light of ostracode species' ecology, these faunal and diversity patterns provide evidence that deep-sea benthic ecosystems experience significant reorganization in response to climate changes over orbital to millennial timescales.

  20. Using Rapid-Response Scenario-Building Methodology for Climate Change Adaptation Planning

    NASA Astrophysics Data System (ADS)

    Ludwig, K. A.; Stoepler, T. M.; Schuster, R.

    2015-12-01

    Rapid-response scenario-building methodology can be modified to develop scenarios for slow-onset disasters associated with climate change such as drought. Results of a collaboration between the Department of the Interior (DOI) Strategic Sciences Group (SSG) and the Southwest Colorado Social-Ecological Climate Resilience Project are presented in which SSG scenario-building methods were revised and applied to climate change adaptation planning in Colorado's Gunnison Basin, United States. The SSG provides the DOI with the capacity to rapidly assemble multidisciplinary teams of experts to develop scenarios of the potential environmental, social, and economic cascading consequences of environmental crises, and to analyze these chains to determine actionable intervention points. By design, the SSG responds to acute events of a relatively defined duration. As a capacity-building exercise, the SSG explored how its scenario-building methodology could be applied to outlining the cascading consequences of slow-onset events related to climate change. SSG staff facilitated two workshops to analyze the impacts of drought, wildfire, and insect outbreak in the sagebrush and spruce-fir ecosystems. Participants included local land managers, natural and social scientists, ranchers, and other stakeholders. Key findings were: 1) scenario framing must be adjusted to accommodate the multiple, synergistic components and longer time frames of slow-onset events; 2) the development of slow-onset event scenarios is likely influenced by participants having had more time to consider potential consequences, relative to acute events; 3) participants who are from the affected area may have a more vested interest in the outcome and/or may be able to directly implement interventions.

  1. Responses of wind erosion to climate-induced vegetation changes on the Colorado Plateau

    PubMed Central

    Munson, Seth M.; Belnap, Jayne; Okin, Gregory S.

    2011-01-01

    Projected increases in aridity throughout the southwestern United States due to anthropogenic climate change will likely cause reductions in perennial vegetation cover, which leaves soil surfaces exposed to erosion. Accelerated rates of dust emission from wind erosion have large implications for ecosystems and human well-being, yet there is poor understanding of the sources and magnitude of dust emission in a hotter and drier climate. Here we use a two-stage approach to compare the susceptibility of grasslands and three different shrublands to wind erosion on the Colorado Plateau and demonstrate how climate can indirectly moderate the magnitude of aeolian sediment flux through different responses of dominant plants in these communities. First, using results from 20 y of vegetation monitoring, we found perennial grass cover in grasslands declined with increasing mean annual temperature in the previous year, whereas shrub cover in shrublands either showed no change or declined as temperature increased, depending on the species. Second, we used these vegetation monitoring results and measurements of soil stability as inputs into a field-validated wind erosion model and found that declines in perennial vegetation cover coupled with disturbance to biological soil crust resulted in an exponential increase in modeled aeolian sediment flux. Thus the effects of increased temperature on perennial plant cover and the correlation of declining plant cover with increased aeolian flux strongly suggest that sustained drought conditions across the southwest will accelerate the likelihood of dust production in the future on disturbed soil surfaces. PMID:21368143

  2. Fluctuations of a Temperate Mountain Glacier in Response to Climate Change

    NASA Astrophysics Data System (ADS)

    Bachmann, M.; Bidlake, W.

    2012-12-01

    Glacier mass balance is a fundamental parameter for understanding and predicting the evolution of glaciers on the landscape in response to climate change. The USGS Ice and Climate Project (ICP) continues to extend the longest-running USGS benchmark glacier mass-balance record at South Cascade Glacier, Washington. Due to the importance of South Cascade Glacier data sets for glaciological and climate research, ICP is releasing decades-old previously unpublished glacier surface and bed maps, mass balance data at individual sites, ice velocity data, and an updated ice inventory for the surrounding basin. The complete record includes a pre-Industrial Revolution reconstruction of the glacier and seasonal mass balance measurements for the past 54 years (1958-2012). Since 2000, the glacier has experienced four of the five most negative summer balances and two of the largest positive accumulation years, indicating that the glacier is continuing to respond to recent warming and precipitation changes. Recently, ICP has developed a temperature-index glacier melt model that extrapolates daily accumulation and melt rates from intermittent field observations based on regional meteorological data, and an expert system for mass balance that captures the strengths of both measurement and modeling for assessing mass balance. The models have been successfully calibrated at South Cascade Glacier, where ample observations are available, but are designed to be used with as few or as many glaciological field data as are available for a given ice mass.

  3. Responses of wind erosion to climate-induced vegetation changes on the Colorado Plateau

    USGS Publications Warehouse

    Munson, Seth M.; Belnap, Jayne; Okin, Gregory S.

    2011-01-01

    Projected increases in aridity throughout the southwestern United States due to anthropogenic climate change will likely cause reductions in perennial vegetation cover, which leaves soil surfaces exposed to erosion. Accelerated rates of dust emission from wind erosion have large implications for ecosystems and human well-being, yet there is poor understanding of the sources and magnitude of dust emission in a hotter and drier climate. Here we use a two-stage approach to compare the susceptibility of grasslands and three different shrublands to wind erosion on the Colorado Plateau and demonstrate how climate can indirectly moderate the magnitude of aeolian sediment flux through different responses of dominant plants in these communities. First, using results from 20 y of vegetation monitoring, we found perennial grass cover in grasslands declined with increasing mean annual temperature in the previous year, whereas shrub cover in shrublands either showed no change or declined as temperature increased, depending on the species. Second, we used these vegetation monitoring results and measurements of soil stability as inputs into a field-validated wind erosion model and found that declines in perennial vegetation cover coupled with disturbance to biological soil crust resulted in an exponential increase in modeled aeolian sediment flux. Thus the effects of increased temperature on perennial plant cover and the correlation of declining plant cover with increased aeolian flux strongly suggest that sustained drought conditions across the southwest will accelerate the likelihood of dust production in the future on disturbed soil surfaces.

  4. Modeling responses of large-river fish populations to global climate change through downscaling and incorporation of predictive uncertainty

    USGS Publications Warehouse

    Wildhaber, Mark L.; Wikle, Christopher K.; Anderson, Christopher J.; Franz, Kristie J.; Moran, Edward H.; Dey, Rima; Mader, Helmut; Kraml, Julia

    2012-01-01

    Climate change operates over a broad range of spatial and temporal scales. Understanding its effects on ecosystems requires multi-scale models. For understanding effects on fish populations of riverine ecosystems, climate predicted by coarse-resolution Global Climate Models must be downscaled to Regional Climate Models to watersheds to river hydrology to population response. An additional challenge is quantifying sources of uncertainty given the highly nonlinear nature of interactions between climate variables and community level processes. We present a modeling approach for understanding and accomodating uncertainty by applying multi-scale climate models and a hierarchical Bayesian modeling framework to Midwest fish population dynamics and by linking models for system components together by formal rules of probability. The proposed hierarchical modeling approach will account for sources of uncertainty in forecasts of community or population response. The goal is to evaluate the potential distributional changes in an ecological system, given distributional changes implied by a series of linked climate and system models under various emissions/use scenarios. This understanding will aid evaluation of management options for coping with global climate change. In our initial analyses, we found that predicted pallid sturgeon population responses were dependent on the climate scenario considered.

  5. Climate change matters.

    PubMed

    Macpherson, Cheryl Cox

    2014-04-01

    One manifestation of climate change is the increasingly severe extreme weather that causes injury, illness and death through heat stress, air pollution, infectious disease and other means. Leading health organisations around the world are responding to the related water and food shortages and volatility of energy and agriculture prices that threaten health and health economics. Environmental and climate ethics highlight the associated challenges to human rights and distributive justice but rarely address health or encompass bioethical methods or analyses. Public health ethics and its broader umbrella, bioethics, remain relatively silent on climate change. Meanwhile global population growth creates more people who aspire to Western lifestyles and unrestrained socioeconomic growth. Fulfilling these aspirations generates more emissions; worsens climate change; and undermines virtues and values that engender appreciation of, and protections for, natural resources. Greater understanding of how virtues and values are evolving in different contexts, and the associated consequences, might nudge the individual and collective priorities that inform public policy toward embracing stewardship and responsibility for environmental resources necessary to health. Instead of neglecting climate change and related policy, public health ethics and bioethics should explore these issues; bring transparency to the tradeoffs that permit emissions to continue at current rates; and offer deeper understanding about what is at stake and what it means to live a good life in today's world.

  6. Evaluating the Effects of Climate Change on Summertime Ozone using a Relative Response Factor approach for Policy Makers

    EPA Science Inventory

    The impact of climate change on surface level ozone is examined through a multi-scale modeling effort that linked global and regional climate models to drive air quality model simulations. Results are quantified in terms of the Relative Response Factor (RRFE), which es...

  7. Deciduous forest responses to temperature, precipitation, and drought imply complex climate change impacts

    PubMed Central

    Xie, Yingying; Wang, Xiaojing; Silander, John A.

    2015-01-01

    Changes in spring and autumn phenology of temperate plants in recent decades have become iconic bio-indicators of rapid climate change. These changes have substantial ecological and economic impacts. However, autumn phenology remains surprisingly little studied. Although the effects of unfavorable environmental conditions (e.g., frost, heat, wetness, and drought) on autumn phenology have been observed for over 60 y, how these factors interact to influence autumn phenological events remain poorly understood. Using remotely sensed phe