2011-10-01
Propulsion Laboratory Dr. Diane Evans Jet Propulsion Laboratory CAPT Tim Gallaudet US Navy Task Force on Climate Change Mr. David Goldwyn State...Ashley Moran Strauss Center, University of Texas, Austin DOD’s (Minerva) Climate Change and African Political Stability Project CAPT Timothy ... Gallaudet Office of the Oceanographer of the Navy Navy’s Climate Change Task Force Dr. Sherri Goodman, Dr. Ralph Espach and Mr. Peter MacKenzie CNA
Trends and Implications of Climate Change for National and International Security
2011-10-01
Timothy Gallaudet Office of the Oceanographer of the Navy Navy’s Climate Change Task Force Dr. Sherri Goodman, Dr. Ralph Espach and Mr. Peter...Duren Jet Propulsion Laboratory Dr. Diane Evans Jet Propulsion Laboratory CAPT Tim Gallaudet US Navy Task Force on Climate Change Mr. David Goldwyn
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-27
... DEPARTMENT OF DEFENSE Office of the Secretary Defense Science Board; Task Force on Trends and Implications of Climate Change for National and International Security AGENCY: Department of Defense (DoD... and Implications of Climate Change for National and International Security will meet in closed session...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-17
... DEPARTMENT OF DEFENSE Office of the Secretary Defense Science Board Task Force on Trends and Implications of Climate Change for National and International Security AGENCY: Department of Defense (DoD... and Implications of Climate Change for National and International Security will meet in closed session...
New Congressional Climate Change Task Force Calls on President to Use Administrative Authority
NASA Astrophysics Data System (ADS)
Showstack, Randy
2013-02-01
Spurred by U.S. congressional inaction on climate change and by President Barack Obama's comments on the topic in his 21 January inaugural address, several Democratic members of Congress announced at a Capitol Hill briefing the formation of a bicameral task force on climate change. In addition, they have called on the president to use his administrative authority to deal with the issue.
U.S. Navy Task Force Climate Change
NASA Astrophysics Data System (ADS)
Miller, T.; McBride, B.; St. John, C.
2011-12-01
In May 2009, the Chief of Naval Operations established Task Force Climate Change (TFCC) to develop Navy policy, plans, and recommendations regarding future investments to adapt to the world's changing climate. With a near-term focus on the changing Arctic ocean and consequent increase in access to the region, TFCC has adopted a science-based approach in collaboration with other U.S. government agencies, international partners, industry, and academia. TFCC has developed two roadmaps that provide 5-year action plans for the Navy to address the Arctic and global climate change. Critical elements of both roadmaps are assessments of: (1) current and projected climate change, (2) resulting impacts to Naval missions and infrastructure, and (3) associated risks of not taking adaptation actions that are operationally, environmentally, and ecologically sustainable. Through TFCC, the Navy acknowledges the link between climate change and national security, and engages in extensive outreach and strategic communication to remain informed on the best climate science and promote public understanding and support regarding the Navy's climate change efforts.
DOT National Transportation Integrated Search
2012-09-01
Despite increasing confidence in global climate change projections in recent years, projections of : climate effects at local scales remains scarce. Location-specific risks to transportation systems : imposed by changes in climate are not yet well kn...
Linking Federal, State, and Local Adaptation Strategies in New York (Invited)
NASA Astrophysics Data System (ADS)
Rosenzweig, C.
2010-12-01
New York City and New York State are leaders in adaptation in the U.S. In 2008 Mayor Bloomberg convened the NYC Climate Change Adaptation Task Force and the New York City Panel on Climate Change (NPCC). Also in 2008, the New York State Energy Research and Development Authority (NYSERDA) initiated the Integrated Assessment for Effective Climate Change Adaptation Strategies (ClimAID), to provide New York State decision-makers with cutting-edge information on its vulnerability to climate change and to facilitate the development of adaptation strategies informed by both local experience and scientific knowledge. The two efforts are working together to develop effective adaptation strategies across multiple jurisdictions. The New York Task Force consists of approximate 40 city, state, and federal agencies, regional public authorities, and private companies that operate, maintain, or regulate critical infrastructure in the region. The NPCC consisted of climate change and impacts scientists, and legal, insurance, and risk-management experts and served as the technical advisory body for the Mayor and the Task Force on issues related to climate change, impacts, and adaptation. In its 2010 report, the NPCC recommended adoption of a risk-based approach to climate change; creation of a monitoring program to track and analyze key climate change factors, impacts, and adaptation indicators; review of relevant standards and codes; inclusion of multiple layers of government and a wide range of public and private stakeholder experts to build buy-in; and formation of crucial partnerships for development of coordinated adaptation strategies. The task now is for these partnerships to create pilot programs that move adaptation from the planning phase to implementation; urban areas can provide critical ‘test-beds’ for such efforts.
DOT National Transportation Integrated Search
2010-10-05
The scope, severity, and pace of : future climate change impacts are : difficult to predict. However, : observations and long-term scientific : trends indicate that the potential : impacts of a changing climate on : society and the environment will b...
Using Web GIS "Climate" for Adaptation to Climate Change
NASA Astrophysics Data System (ADS)
Gordova, Yulia; Martynova, Yulia; Shulgina, Tamara
2015-04-01
A work is devoted to the application of an information-computational Web GIS "Climate" developed by joint team of the Institute of Monitoring of Climatic and Ecological Systems SB RAS and Tomsk State University to raise awareness about current and future climate change as a basis for further adaptation. Web-GIS "Climate» (http://climate.scert.ru/) based on modern concepts of Web 2.0 provides opportunities to study regional climate change and its consequences by providing access to climate and weather models, a large set of geophysical data and means of processing and visualization. Also, the system is used for the joint development of software applications by distributed research teams, research based on these applications and undergraduate and graduate students training. In addition, the system capabilities allow creating information resources to raise public awareness about climate change, its causes and consequences, which is a necessary step for the subsequent adaptation to these changes. Basic information course on climate change is placed in the public domain and is aimed at local population. Basic concepts and problems of modern climate change and its possible consequences are set out and illustrated in accessible language. Particular attention is paid to regional climate changes. In addition to the information part, the course also includes a selection of links to popular science network resources on current issues in Earth Sciences and a number of practical tasks to consolidate the material. These tasks are performed for a particular territory. Within the tasks users need to analyze the prepared within the "Climate" map layers and answer questions of direct interest to the public: "How did the minimum value of winter temperatures change in your area?", "What are the dynamics of maximum summer temperatures?", etc. Carrying out the analysis of the dynamics of climate change contributes to a better understanding of climate processes and further adaptation. Passing this course raises awareness of the general public, as well as prepares the user for subsequent registration in the system and work with its tools in conducting independent research. This work is partially supported by SB RAS project VIII.80.2.1, RFBR grants 13-05-12034 and 14-05-00502.
Understanding impacts of climate change on hydrodynamic processes and ecosystem response within the Great Lakes is an important and challenging task. Variability in future climate conditions, uncertainty in rainfall-runoff model forecasts, the potential for land use change, and t...
Climate Change to the Year 2000: A Survey of Expert Opinion.
ERIC Educational Resources Information Center
Institute for the Future, Menlo Park, CA.
This survey of expert opinion was conducted by the National Defense University, Washington, D.C. to quantify the likelihood of significant changes in climate and their practical consequences. The major objectives of the study are embodied in four tasks. This publication presents the results of the first task only: the definition and estimation of…
Climate@Home: Crowdsourcing Climate Change Research
NASA Astrophysics Data System (ADS)
Xu, C.; Yang, C.; Li, J.; Sun, M.; Bambacus, M.
2011-12-01
Climate change deeply impacts human wellbeing. Significant amounts of resources have been invested in building super-computers that are capable of running advanced climate models, which help scientists understand climate change mechanisms, and predict its trend. Although climate change influences all human beings, the general public is largely excluded from the research. On the other hand, scientists are eagerly seeking communication mediums for effectively enlightening the public on climate change and its consequences. The Climate@Home project is devoted to connect the two ends with an innovative solution: crowdsourcing climate computing to the general public by harvesting volunteered computing resources from the participants. A distributed web-based computing platform will be built to support climate computing, and the general public can 'plug-in' their personal computers to participate in the research. People contribute the spare computing power of their computers to run a computer model, which is used by scientists to predict climate change. Traditionally, only super-computers could handle such a large computing processing load. By orchestrating massive amounts of personal computers to perform atomized data processing tasks, investments on new super-computers, energy consumed by super-computers, and carbon release from super-computers are reduced. Meanwhile, the platform forms a social network of climate researchers and the general public, which may be leveraged to raise climate awareness among the participants. A portal is to be built as the gateway to the climate@home project. Three types of roles and the corresponding functionalities are designed and supported. The end users include the citizen participants, climate scientists, and project managers. Citizen participants connect their computing resources to the platform by downloading and installing a computing engine on their personal computers. Computer climate models are defined at the server side. Climate scientists configure computer model parameters through the portal user interface. After model configuration, scientists then launch the computing task. Next, data is atomized and distributed to computing engines that are running on citizen participants' computers. Scientists will receive notifications on the completion of computing tasks, and examine modeling results via visualization modules of the portal. Computing tasks, computing resources, and participants are managed by project managers via portal tools. A portal prototype has been built for proof of concept. Three forums have been setup for different groups of users to share information on science aspect, technology aspect, and educational outreach aspect. A facebook account has been setup to distribute messages via the most popular social networking platform. New treads are synchronized from the forums to facebook. A mapping tool displays geographic locations of the participants and the status of tasks on each client node. A group of users have been invited to test functions such as forums, blogs, and computing resource monitoring.
DOT National Transportation Integrated Search
2014-05-01
The purpose of this report is to illustrate how planning decisions made today will affect central New Mexicos resilience to climate change impacts in 2040. This report first describes climate change impacts in central New Mexico. This report then ...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-23
... responsibilities is seeking public review and comment on a draft report to Congress titled ``Strengthening the... report reviews key issues related to freshwater resource data and climate change and identifies next... Sustainability (CENRS) and the Interagency Climate Change Adaptation Task Force and its Water Resources Workgroup...
Linking climate change and fish conservation efforts using spatially explicit decision support tools
Douglas P. Peterson; Seth J. Wenger; Bruce E. Rieman; Daniel J. Isaak
2013-01-01
Fisheries professionals are increasingly tasked with incorporating climate change projections into their decisions. Here we demonstrate how a structured decision framework, coupled with analytical tools and spatial data sets, can help integrate climate and biological information to evaluate management alternatives. We present examples that link downscaled climate...
75 FR 69698 - Invasive Species Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-15
... consider a white paper entitled, Invasive Species and Climate Change, as drafted by the ISAC Task Team on Climate Change. DATES: Meeting of the Invasive Species Advisory Committee: Tuesday, December 7, 2010...
Signal Trees: Communicating Attribution of Climate Change Impacts Through Causal Chain Illustrations
NASA Astrophysics Data System (ADS)
Cutting, H.
2016-12-01
Communicating the attribution of current climate change impacts is a key task for engagment with the general public, news media and policy makers, particularly as climate events unfold in real time. The IPCC WGII in AR5 validated the use of causal chain illustrations to depict attribution of individual climate change impacts. Climate Signals, an online digital platform for mapping and cataloging climate change impacts (launched in May of 2016), explores the use of such illustrations for communicating attribution. The Climate Signals project has developed semi-automated graphing software to produce custom attribution trees for numerous climate change events. This effort offers lessons for engagement of the general public and policy makers in the attribution of climate change impacts.
NASA Astrophysics Data System (ADS)
Brigham, L. W.; Nelson, F. E.
2003-12-01
During 2002 the U.S. Arctic Research Commission chartered a task force on climate change, permafrost and infrastructure impacts. The task force was asked to identify key issues and research needs to foster a greater understanding of global change impacts on permafrost in the Arctic and their importance to natural and human systems. Permafrost was found to play three key roles in the context of climatic change: as a record keeper by functioning as a temperature archive; as a translator of climate change through subsidence and related impacts; and, as a facilitator of further change through its impacts on the global carbon cycle. Evidence of widespread warming of permafrost and observations of thawing have serious implications for Alaska's transportation network, for the trans-Alaska pipeline, and for nearly 100,000 Alaskans living in areas of permafrost. These impacts resulting from changing permafrost must be met by a timely, well-informed, and coordinated response by a host of federal and state organizations. Key task force findings include: requirements for a dedicated U.S. federal permafrost research program; data management needs; baseline permafrost mapping in Alaska; basic permafrost research focusing on process studies and modeling; and, applied permafrost research on design criteria and contaminants in permafrost environments. This report to the Commissioners makes specific recommendations to seven federal agencies, the State of Alaska, and the National Research Council. These recommendations will be incorporated in future Arctic research planning documents of the U.S. Arctic Research Commission.
Enhancing the Communication of Climate Change Science
NASA Astrophysics Data System (ADS)
Somerville, R. C.; Hassol, S. J.
2011-12-01
Climate scientists have an important role to play in the critical task of informing the public, media and policymakers. Scientists can help in publicizing and illuminating climate science. However, this task requires combining climate science expertise with advanced communication skills. For example, it is entirely possible to convey scientific information accurately without using jargon or technical concepts unfamiliar to non-scientists. However, making this translation into everyday language is a job that few scientists have been trained to do. In this talk, we give examples from our recent experience working with scientists to enhance their ability to communicate well. Our work includes providing training, technical assistance, and communications tools to climate scientists and universities, government agencies, and research centers. Our experience ranges from preparing Congressional testimony to writing major climate science reports to appearing on television. We have also aided journalists in gathering reliable scientific information and identifying trustworthy experts. Additionally, we are involved in developing resources freely available online at climatecommunication.org. These include a feature on the links between climate change and extreme weather, a climate science primer, and graphics and video explaining key developments in climate change science.
Final Report: Demographic Tools for Climate Change and Environmental Assessments
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Neill, Brian
2017-01-24
This report summarizes work over the course of a three-year project (2012-2015, with one year no-cost extension to 2016). The full proposal detailed six tasks: Task 1: Population projection model Task 2: Household model Task 3: Spatial population model Task 4: Integrated model development Task 5: Population projections for Shared Socio-economic Pathways (SSPs) Task 6: Population exposure to climate extremes We report on all six tasks, provide details on papers that have appeared or been submitted as a result of this project, and list selected key presentations that have been made within the university community and at professional meetings.
Climate-induced changes in vulnerability to biological threats in the southern United States
Rabiu Olatinwo; Qinfeng Guo; Songlin Fei; William Otrosina; Kier Klepzig; Douglas Streett
2014-01-01
Forest land managers face the challenges of preparing their forests for the impacts of climate change. However, climate change adds a new dimension to the task of developing and testing science-based management options to deal with the effects of stressors on forest ecosystems in the southern United States. The large spatial scale and complex interactions make...
Climate Ocean Modeling on Parallel Computers
NASA Technical Reports Server (NTRS)
Wang, P.; Cheng, B. N.; Chao, Y.
1998-01-01
Ocean modeling plays an important role in both understanding the current climatic conditions and predicting future climate change. However, modeling the ocean circulation at various spatial and temporal scales is a very challenging computational task.
Social controversy belongs in the climate science classroom
NASA Astrophysics Data System (ADS)
Walsh, Elizabeth M.; Tsurusaki, Blakely K.
2014-04-01
Scientists, educators and stakeholders are grappling with how to best approach climate change education for diverse audiences, a task made difficult due to persistent social controversy. This Perspective examines how sociocultural learning theories can inform the design and implementation of climate change education experiences for learners with varied understandings of and attitudes towards climate change. The literature demonstrates that explicitly addressing learners' social and community experiences, values and knowledge supports understandings of and increased concern about climate change. Science learning environments that situate climate change in its social context can support conceptual understandings, shift attitudes and increase the participation of diverse communities in responding to climate change. Examples are provided of successful programmes that attend to social dimensions and learners' previous experiences, including experiences of social controversy.
Code of Federal Regulations, 2011 CFR
2011-01-01
... climate change, sustain safe seafood and clean water, provide recreational and cultural opportunities... climate change. (c) “Gulf State” means any of the States of Texas, Louisiana, Mississippi, Alabama, and...
Toward Equity: Starting to Thaw the Chilly Campus Climate for Women.
ERIC Educational Resources Information Center
Thorner, Prudence M.
1989-01-01
Describes efforts at the University of Virginia to change climate for women within the institution. Describes the process of organizing women, forming a task force, identifying barriers, and producing changes. Concludes that partnership between an association of faculty and staff, and a supportive senior administration has enabled change to come…
NASA Astrophysics Data System (ADS)
Harcourt, P.
2017-12-01
Addressing the urgent issue of climate change requires mitigation and adaptation actions on individual to global scales, and appropriate action must be based upon geoscience literacy across population sectors. The NSF-funded MADE CLEAR (Maryland and Delaware Climate Change Education, Assessment, and Research) project provides a coordinated approach to embed climate change into education programs at the university level, in formal K12 classrooms, and among informal educators. We have worked with state agencies, university systems, non-profit organizations, and community groups to establish and support research-based education about climate change. In this panel I will describe how MADE CLEAR approached the task of infusing climate change education across sectors in the highly diverse states of Delaware and Maryland. I will share the characteristics of our strongest alliances, an analysis of significant barriers to climate change education, and our perspective on the outlook for the future of climate change education.
DOT National Transportation Integrated Search
2014-12-01
This report summarizes potential climate change effects on the availability of water, land use, transportation infrastructure, and key natural resources in central New Mexico. This work is being done as part of the Interagency Transportation, Land Us...
ARS NP212 Climate change, soils and emissions program update
USDA-ARS?s Scientific Manuscript database
The Agricultural Research Service National Program 212 (Climate Change, Soils, and Emissions) has a significant component focused on air quality studies. Presented here for the Agricultural Air Quality Task Force is an update on the status of ARS programs with focus on air quality. National Program ...
Andersen, Louise K; Davis, Mark D P
2017-03-01
Climate change refers to variation in the climate of a specific region or globally over time. A change has been reported in the epidemiology of tick- and mosquito-borne diseases in recent decades. Investigators have postulated that this effect may be associated with climate change. We reviewed the English-language literature describing changes in the epidemiology of specific tick- and mosquito-borne diseases, including the tick-borne diseases of Lyme disease, tularemia, Crimean-Congo hemorrhagic fever, Mediterranean spotted fever, and Rocky Mountain spotted fever and the mosquito-borne diseases of dengue, malaria, West Nile virus infection, Ross River virus disease, and Barmah Forest virus disease. We postulate that the changing epidemiology of tick- and mosquito-borne diseases is related to climate change. © 2016 The International Society of Dermatology.
Fight Swack, Adapt to Climate Change or How to Use Humor to Engage the Public in Climate Issues
NASA Astrophysics Data System (ADS)
Ellis, R.; Elinich, K.; Johnson, R.; Fink, J.; Crawford, J.
2014-12-01
We are carefully considering how a humor-based campaign can help us communicate important climate change messages. Using pilot campaign strategies, we have engaged local residents in focus groups and interviews to understand how effective the approach can be. Growing educational research suggests learning about climate change can lead to feelings of depression, fear and inaction. Climate change seems too big of a task to take on. But with sweaty back (or "swack" as it's known in some circles), there's a public enemy that can be defeated. As only one piece of an innovative model for informal climate change education, the Climate and Urban Systems Partnership repositions the war on climate change by declaring a war on swack instead. This way, we can talk about climate change in a way it has never been talked about before that will certainly get people's attention. It also answers the common question of, "Yeah, but how does it affect me?" We're educating about responses to climate change because heat waves, floods, and excessive back sweat all kinda suck a lot.
NASA Astrophysics Data System (ADS)
Shulgina, T. M.; Gordova, Y. E.; Martynova, Y. V.
2014-12-01
A problem of making education relevant to the workplace tasks is a key problem of higher education in the professional field of environmental sciences. To answer this challenge several new courses for students of "Climatology" and "Meteorology" specialties were developed and implemented at the Tomsk State University, which comprises theoretical knowledge from up-to-date environmental sciences with computational tasks. To organize the educational process we use an open-source course management system Moodle (www.moodle.org). It gave us an opportunity to combine text and multimedia in a theoretical part of educational courses. The hands-on approach is realized through development of innovative trainings which are performed within the information-computational web GIS platform "Climate" (http://climate.scert.ru/). The platform has a set of tools and data bases allowing a researcher to perform climate changes analysis on the selected territory. The tools are also used for students' trainings, which contain practical tasks on climate modeling and climate changes assessment and analysis. Laboratory exercises are covering three topics: "Analysis of regional climate changes"; "Analysis of climate extreme indices on the regional scale"; and "Analysis of future climate". They designed to consolidate students' knowledge of discipline, to instill in them the skills to work independently with large amounts of geophysical data using modern processing and analysis tools of web-GIS platform "Climate" and to train them to present results obtained on laboratory work as reports with the statement of the problem, the results of calculations and logically justified conclusion. Thus, students are engaged in n the use of modern tools of the geophysical data analysis and it cultivates dynamic of their professional learning. The approach can help us to fill in this gap because it is the only approach that offers experience, increases students involvement, advance the use of modern information and communication tools. Financial support for this research from the RFBR (13-05-12034, 14-05-00502), SB RAS project VIII.80.2.1 and grant of the President of RF (№ 181) is acknowledged.
75 FR 62313 - Establishing the Gulf Coast Ecosystem Restoration Task Force
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-08
... impact from storms and climate change, sustain safe seafood and clean water, provide recreational and... disasters, support robust economies, and assist in mitigating and adapting to the impacts of climate change... percent of the Nation's offshore oil and gas is produced in the Gulf, and it is where nearly one-third of...
The potential roles of science centers in climate change adaptation
NASA Astrophysics Data System (ADS)
Hamilton, P.
2012-12-01
The overwhelming consensus amongst climatologists is that anthropogenic climate change is underway, but leading climate scientists also anticipate that over the next 20 years research may only modestly reduce the uncertainty about where, when and by how much climate will change. Uncertainty presents not only scientific challenges but social, political and economic quandaries as well. Both scientific and educational communities understand that climate change will test the resilience of societies especially because of the uncertainties regarding the timing, nature and severity of climate change. Thus the need is great for civic conversations regarding climate change adaptation. What roles might science centers play in helping their audiences and communities make decisions about climate change adaptation despite less-than-perfect knowledge? And how might informal and formal education work together on this task? This session will begin with a review of some initial efforts by selected science centers and their partners to engage their audiences in and help their communities grapple with climate change adaptation. It then will conclude with an audience discussion about potential future efforts by science centers both individually and in collaboration with formal education institutions to elevate public and policymaker awareness and appreciation of the need for climate change adaptation.
[The climate debate: the facts].
van den Broeke, Michiel R
2009-01-01
The first report by the Intergovernmental Panel on Climate Change (IPCC) appeared almost 20 years ago. Environmental contamination has a negative effect on the environment in which we live. However, the public at large is confused about the ins and outs of climate change. Managers, politicians, various kinds of advisors, scientists, so-called experts, sceptics and journalists have all taken it upon themselves to lead the debate. Whose task is it to ensure a sound discussion? Surely it is the IPCC's task. However, most politicians and many journalists, and even many scientists, do not take the trouble to read the entire IPCC report or parts of it. As a consequence, much nonsense is published and broadcast. An effective procedure to deal with the climate problem starts with a fair discussion of the scientific evidence. My advice is: just read the free IPCC report: http://www.ipcc.ch/ and click on 'WG I The Physical Science Basis'.
Sage, Luke D; Kavussanu, Maria
2008-05-01
In this study, we examined the temporal stability and reciprocal relationships among task and ego orientation, task- and ego-involving climates, and prosocial and antisocial behaviour in youth football. Male (n = 156) and female (n = 24) footballers (mean age 14.1 years, s = 1.8) completed questionnaires towards the beginning and end of a regular season. Questionnaires measured goal orientation, perceived motivational climate, and frequency of prosocial and antisocial behaviours. Structural equation modelling indicated moderate covariance stability between the beginning and end of the season. Subsequent analyses revealed a significant decrease only in perceptions of task-involving climate. In the cross-lagged analyses, prosocial behaviour at the beginning of the season positively predicted task-involving climate at the end of the season. Antisocial behaviour at the beginning of the season positively predicted both ego orientation and ego-involving climate at the end of the season and a reciprocal relationship was revealed whereby ego orientation at the beginning of the season positively predicted antisocial behaviour at the end of the season. Task orientation at the beginning of the season negatively predicted ego-involving climate at the end of the season. All cross-lagged relationships were weak. This exploratory study offers limited support for bi-directional relationships between personal, environmental, and behavioural variables but provides useful insight into the covariance stability, change, and interrelationships between motivational and moral constructs over a competitive season.
Climate Change Toolkit-Case study: Switzerland
NASA Astrophysics Data System (ADS)
Ashraf Vaghefi, Saeid
2017-04-01
This paper describes the development of a Climate Change Toolkit (CCT) to rapidly perform tasks needed in a climate change study. CCT consists of five modules: data extraction, global climate data management, bias correction, spatial interpolation, and critical consecutive day analyzer to calculate extreme events. CCT is linked to an archive of big dataset consisting of daily global historic (CRU, 1970-2005), and global GCM data (1960-2099) from 5 models and 4 carbon scenarios. Application of CCT in Switzerland using ensemble results of scenario RCP8.5 showed an increase in Max temperature, and a wide change in precipitation. Frequency of dry periods will likely increase. The frequency of wet periods suggests higher risk of flooding in the country.
Public understanding of climate change in the United States.
Weber, Elke U; Stern, Paul C
2011-01-01
This article considers scientific and public understandings of climate change and addresses the following question: Why is it that while scientific evidence has accumulated to document global climate change and scientific opinion has solidified about its existence and causes, U.S. public opinion has not and has instead become more polarized? Our review supports a constructivist account of human judgment. Public understanding is affected by the inherent difficulty of understanding climate change, the mismatch between people's usual modes of understanding and the task, and, particularly in the United States, a continuing societal struggle to shape the frames and mental models people use to understand the phenomena. We conclude by discussing ways in which psychology can help to improve public understanding of climate change and link a better understanding to action. (PsycINFO Database Record (c) 2011 APA, all rights reserved).
An interactive web application for visualizing climate data
Alder, J.; Hostetler, S.; Williams, D.
2013-01-01
Massive volumes of data are being created as modeling centers from around the world finalize their submission of climate simulations for the Coupled Model Intercomparison Project, phase 5 (CMIP5), in preparation for the forthcoming Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). Scientists, resource managers, and other potential users of climate data are faced with the daunting task of analyzing, distilling, and summarizing this unprecedented wealth of climate information.
An Interactive Web Application for Visualizing Climate Data
NASA Astrophysics Data System (ADS)
Alder, J.; Hostetler, S.; Williams, D.
2013-05-01
Massive volumes of data are being created as modeling centers from around the world finalize their submission of climate simulations for the Coupled Model Intercomparison Project, phase 5 (CMIP5), in preparation for the forthcoming Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). Scientists, resource managers, and other potential users of climate data are faced with the daunting task of analyzing, distilling, and summarizing this unprecedented wealth of climate information.
Study of phase clustering method for analyzing large volumes of meteorological observation data
NASA Astrophysics Data System (ADS)
Volkov, Yu. V.; Krutikov, V. A.; Botygin, I. A.; Sherstnev, V. S.; Sherstneva, A. I.
2017-11-01
The article describes an iterative parallel phase grouping algorithm for temperature field classification. The algorithm is based on modified method of structure forming by using analytic signal. The developed method allows to solve tasks of climate classification as well as climatic zoning for any time or spatial scale. When used to surface temperature measurement series, the developed algorithm allows to find climatic structures with correlated changes of temperature field, to make conclusion on climate uniformity in a given area and to overview climate changes over time by analyzing offset in type groups. The information on climate type groups specific for selected geographical areas is expanded by genetic scheme of class distribution depending on change in mutual correlation level between ground temperature monthly average.
ERIC Educational Resources Information Center
Pharo, E. J.; Davison, A.; Warr, K.; Nursey-Bray, M.; Beswick, K.; Wapstra, E.; Jones, C.
2012-01-01
A teacher network was formed at an Australian university in order to better promote interdisciplinary student learning on the complex social-environmental problem of climate change. Rather than leaving it to students to piece together disciplinary responses, eight teaching academics collaborated on the task of exposing students to different types…
Overview of Climate Confluence Security Issues
NASA Astrophysics Data System (ADS)
Reisman, J. P.
2011-12-01
Presentation will focus on an overview of the security perspectives based on the confluence considerations including energy, economics and climate change. This will include perspectives from reports generated by the Quadrennial Defense Review, Joint Forces Command, the Center for Strategic International Studies, MIT, the Inter-agency Climate Change Adaptation Task Force, the Central Intelligence Agency, the Center for Naval Analysis, and other relevant reports. The presentation will highlight the connections between resource issues and climate change which can be interpreted into security concerns. General discussion of global issues, contextual review of AR4 WGII may be included and any other report updates as applicable. The purpose of this presentation is to give a rounded view of the general qualitative and quantitative perspectives regarding climate related security considerations.
State Roles in the Global Climate Change Issue.
NASA Astrophysics Data System (ADS)
Changnon, Stanley A.
1995-02-01
Events in 1988 helped focus the attention of several states on the global climate change issue. Consequently, the National Governors' Association conducted an assessment in 1989 and recommended various actions. By 1994, 22 states have enacted laws or regulations and/or established research programs addressing climate change. Most of these "no regrets" actions are set up to conserve energy or improve energy efficiency and also to reduce greenhouse gas emissions. Illinois has adopted an even broader program by 1) establishing a Global Climate Change Office to foster research and provide information and 2) forming a task force to address a wide array of issues including state input to federal policies such as the Clinton administration's 1993 Climate Change Action Plan and to the research dimensions of the U.S. Global Climate Change Research Program. The Illinois program calls for increased attention to studies of regional impacts, including integrated assessments, and to research addressing means to adapt to future climate change. These various state efforts to date help show the direction of policy development and should be useful to those grappling with these issues.
Susceptibility of the Batoka Gorge hydroelectric scheme to climate change
NASA Astrophysics Data System (ADS)
Harrison, Gareth P.; Whittington, H.(Bert) W.
2002-07-01
The continuing and increased use of renewable energy sources, including hydropower, is a key strategy to limit the extent of future climate change. Paradoxically, climate change itself may alter the availability of this natural resource, adversely affecting the financial viability of both existing and potential schemes. Here, a model is described that enables the assessment of the relationship between changes in climate and the viability, technical and financial, of hydro development. The planned Batoka Gorge scheme on the Zambezi River is used as a case study to validate the model and to predict the impact of climate change on river flows, electricity production and scheme financial performance. The model was found to perform well, given the inherent difficulties in the task, although there is concern regarding the ability of the hydrological model to reproduce the historic flow conditions of the upper Zambezi Basin. Simulations with climate change scenarios illustrate the sensitivity of the Batoka Gorge scheme to changes in climate. They suggest significant reductions in river flows, declining power production, reductions in electricity sales revenue and consequently an adverse impact on a range of investment measures.
Atmospheric, climatic and environmental research
NASA Technical Reports Server (NTRS)
Broecker, Wallace S.; Gornitz, Vivien M.
1992-01-01
Work performed on the three tasks during the report period is summarized. The climate and atmospheric modeling studies included work on climate model development and applications, paleoclimate studies, climate change applications, and SAGE II. Climate applications of Earth and planetary observations included studies on cloud climatology and planetary studies. Studies on the chemistry of the Earth and the environment are briefly described. Publications based on the above research are listed; two of these papers are included in the appendices.
Teaching Earth System Science Using Climate Educational Modules Based on NASA and NOAA Resources
NASA Astrophysics Data System (ADS)
Ramirez, P. C.; LaDochy, S.; Patzert, W. C.; Willis, J. K.
2011-12-01
The Earth System Science Education Alliance (ESSEA) recently developed a set of climate related educational modules to be used by K-12 teachers. These modules incorporate recent NASA and NOAA resources in Earth Science education. In the summer of 2011, these modules were tested by in-service teachers in courses held at several college campuses. At California State University, Los Angeles, we reviewed two climate modules: The Great Ocean Conveyer Belt and Abrupt Climate Change (http://essea.strategies.org/module.php?module_id=148) and Sulfur Dioxide: Its Role in Climate Change (http://essea.strategies.org/module.php?module_id=168). For each module, 4-6 teachers formed a cohort to complete assignments and unit assessments and to evaluate the effectiveness of the module for use in their classroom. Each module presented the teachers with a task that enabled them to research and better understand the science behind the climate related topic. For The Great Ocean Conveyer Belt, teachers are tasked with evaluating the impacts of the slowing or stopping of the thermohaline circulation on climate. In the same module teachers are charged with determining the possibilities of an abrupt climate shift during this century such as happened in the past. For the Sulfur Dioxide module teachers investigated the climate implications of the occurrence of several major volcanic eruptions within a short time period, as well as the feasibility of using sulfates to geoengineer climate change. In completing module assignments, teachers must list what they already know about the topic as well as formulate questions that still need to be addressed. Teachers then model the related interactions between spheres comprising the earth system (atmosphere-lithosphere, for example) to evaluate possible environmental impacts. Finally, teachers applied their research results to create lesson plans for their students. At a time when climate change and global warming are important topics in science education, these climate modules provide valuable learning experiences and resources for K-12 teachers.
Teaching About Climate Change in Medical Education: An Opportunity
Maxwell, Janie; Blashki, Grant
2016-01-01
Climate change threatens many of the gains in development and health over the last century. However, it could also be a catalyst for a necessary societal transformation to a sustainable and healthy future. Doctors have a crucial role in climate change mitigation and health system adaptation to prepare for emergent health threats and a carbon-constrained future. This paper argues that climate change should be integrated into medical education for three reasons: first, to prepare students for clinical practice in a climate-changing world; secondly, to promote public health and eco-health literacy; and finally, to deepen existing learning and strengthen graduate attributes. This paper builds on existing literature and the authors’ experience to outline potential learning objectives, teaching methods and assessment tasks. In the wake of recent progress at the United Nations climate change conference, COP-21, it is hoped that this paper will assist universities to integrate teaching about climate change into medical education. Significance for public health There is a strong case for teaching about climate change in medical education. Anthropogenic climate change is accepted by scientists, governments and health authorities internationally. Given the dire implications for human health, climate change is of fundamental relevance to future doctors. Integrating climate change into medical education offers an opportunity for future doctors to develop skills and insights essential for clinical practice and a public health role in a climate-changing world. This echoes a broader call for improved public health literacy among medical graduates. This paper provides medical schools with a rationale and an outline for teaching on climate change. PMID:27190980
Teaching About Climate Change in Medical Education: An Opportunity.
Maxwell, Janie; Blashki, Grant
2016-04-26
Climate change threatens many of the gains in development and health over the last century. However, it could also be a catalyst for a necessary societal transformation to a sustainable and healthy future. Doctors have a crucial role in climate change mitigation and health system adaptation to prepare for emergent health threats and a carbon-constrained future. This paper argues that climate change should be integrated into medical education for three reasons: first, to prepare students for clinical practice in a climate-changing world; secondly, to promote public health and eco-health literacy; and finally, to deepen existing learning and strengthen graduate attributes. This paper builds on existing literature and the authors' experience to outline potential learning objectives, teaching methods and assessment tasks. In the wake of recent progress at the United Nations climate change conference, COP-21, it is hoped that this paper will assist universities to integrate teaching about climate change into medical education. Significance for public healthThere is a strong case for teaching about climate change in medical education. Anthropogenic climate change is accepted by scientists, governments and health authorities internationally. Given the dire implications for human health, climate change is of fundamental relevance to future doctors. Integrating climate change into medical education offers an opportunity for future doctors to develop skills and insights essential for clinical practice and a public health role in a climate-changing world. This echoes a broader call for improved public health literacy among medical graduates. This paper provides medical schools with a rationale and an outline for teaching on climate change.
Making Climate Hot: Preparing Scientists and Teachers for Climate Change Communication and Education
NASA Astrophysics Data System (ADS)
Buhr, S. M.; Wise, S. B.
2008-05-01
Anyone having anything to do with climate change science (or even geosciences) is increasingly asked to communicate about climate change with friends and family, media, the general public, and students. But, we have often not had the training to communicate with simplicity and clarity about such a complex topic. Furthermore, the need to know how to accommodate controversy, common misconceptions, and contrarian arguments complicates the task. The CIRES Education and Outreach group has developed a short professional development workshop "Making Climate Hot: How to Communicate Effectively about Climate Change". The goals of the workshop are to make scientists and educators aware of best practices in climate change communications, provide some tools for crafting messages, and allow participants to practice skills in a supportive, low-risk environment. The "Making Climate Hot" workshop has been piloted with scientists and university communicators, teachers and environmental educators and college students anxious to communicate with family and roommates. The most and least effective aspects of the workshop will be described, along with the lessons learned and next steps.
Sparks, Paul; Jessop, Donna C; Chapman, James; Holmes, Katherine
2010-09-01
Social concerns with the imperative of environmentally sustainable life-styles sit rather awkwardly with ideas about the widespread denial of global environmental problems. Given the very obvious threat and denial dimensions to these issues, we conducted two studies assessing the impact of self-affirmation manipulations on people's beliefs and motives regarding pro-environmental actions. In Study 1, participants (N=125) completed a self-affirmation task and read information on the threat of climate change. Results showed that the self-affirmation manipulation resulted in lower levels of denial and greater perceptions of personal involvement in relation to climate change. In Study 2, participants (N=90) completed a self-affirmation task and read some information on recycling. Findings showed a beneficial effect of a self-affirmation manipulation on intentions to increase recycling behaviour (among lower recyclers). The results are discussed in relation to the potential benefits of self-affirmation manipulations for promoting pro-environmental actions.
Modelling Climate/Global Change and Assessing Environmental Risks for Siberia
NASA Astrophysics Data System (ADS)
Lykosov, V. N.; Kabanov, M. V.; Heimann, M.; Gordov, E. P.
2009-04-01
The state-of-the-art climate models are based on a combined atmosphere-ocean general circulation model. A central direction of their development is associated with an increasingly accurate description of all physical processes participating in climate formation. In modeling global climate, it is necessary to reconstruct seasonal and monthly mean values, seasonal variability (monsoon cycle, parameters of storm-tracks, etc.), climatic variability (its dominating modes, such as El Niño or Arctic Oscillation), etc. At the same time, it is quite urgent now to use modern mathematical models in studying regional climate and ecological peculiarities, in particular, that of Northern Eurasia. It is related with the fact that, according to modern ideas, natural environment in mid- and high latitudes of the Northern hemisphere is most sensitive to the observed global climate changes. One should consider such tasks of modeling regional climate as detailed reconstruction of its characteristics, investigation of the peculiarities of hydrological cycle, estimation of the possibility of extreme phenomena to occur, and investigation of the consequences of the regional climate changes for the environment and socio-economic relations as its basic tasks. Changes in nature and climate in Siberia are of special interest in view of the global change in the Earth system. The vast continental territory of Siberia is undoubtedly a ponderable natural territorial region of Eurasian continent, which is characterized by the various combinations of climate-forming factors. Forests, water, and wetland areas are situated on a significant part of Siberia. They play planetary important regulating role due to the processes of emission and accumulation of the main greenhouse gases (carbon dioxide, methane, etc.). Evidence of the enhanced rates of the warming observed in the region and the consequences of such warming for natural environment are undoubtedly important reason for integrated regional investigations in this region of the planet. Reported is an overview of some risk consequences of Climate/Global Change for Siberia environment as follows from results of current scientific activity in climate monitoring and modelling. At present, the challenge facing the weather and climate scientists is to improve the prediction of interactions between weather/climate and Earth system. Taking into account significantly increased computing capacity, a special attention in the report is paid to perspectives of the Earth system modelling.
Early effects of climate change: do they include changes in vector-borne disease?
Kovats, R S; Campbell-Lendrum, D H; McMichael, A J; Woodward, A; Cox, J S
2001-01-01
The world's climate appears now to be changing at an unprecedented rate. Shifts in the distribution and behaviour of insect and bird species indicate that biological systems are already responding to this change. It is well established that climate is an important determinant of the spatial and temporal distribution of vectors and pathogens. In theory, a change in climate would be expected to cause changes in the geographical range, seasonality (intra-annual variability), and in the incidence rate (with or without changes in geographical or seasonal patterns). The detection and then attribution of such changes to climate change is an emerging task for scientists. We discuss the evidence required to attribute changes in disease and vectors to the early effects of anthropogenic climate change. The literature to date indicates that there is a lack of strong evidence of the impact of climate change on vector-borne diseases (i.e. malaria, dengue, leishmaniasis, tick-borne diseases). New approaches to monitoring, such as frequent and long-term sampling along transects to monitor the full latitudinal and altitudinal range of specific vector species, are necessary in order to provide convincing direct evidence of climate change effects. There is a need to reassess the appropriate levels of evidence, including dealing with the uncertainties attached to detecting the health impacts of global change. PMID:11516383
Global and Regional Sea Level Rise Scenarios for the United States
NASA Technical Reports Server (NTRS)
Sweet, William V.; Kopp, Robert E.; Weaver, Christopher P.; Obeysekera, Jayantha; Horton, Radley M.; Thieler, E. Robert; Zervas, Chris
2017-01-01
The Sea Level Rise and Coastal Flood Hazard Scenarios and Tools Interagency Task Force, jointly convened by the U.S. Global Change Research Program (USGCRP) and the National Ocean Council (NOC), began its work in August 2015. The Task Force has focused its efforts on three primary tasks: 1) updating scenarios of global mean sea level (GMSL) rise, 2) integrating the global scenarios with regional factors contributing to sea level change for the entire U.S. coastline, and 3) incorporating these regionally appropriate scenarios within coastal risk management tools and capabilities deployed by individual agencies in support of the needs of specific stakeholder groups and user communities. This technical report focuses on the first two of these tasks and reports on the production of gridded relative sea level (RSL, which includes both ocean-level change and vertical land motion) projections for the United States associated with an updated set of GMSL scenarios. In addition to supporting the longer-term Task Force effort, this new product will be an important input into the USGCRP Sustained Assessment process and upcoming Fourth National Climate Assessment (NCA4) due in 2018. This report also serves as a key technical input into the in-progress USGCRP Climate Science Special Report (CSSR).
NASA Astrophysics Data System (ADS)
Emmer, Adam; Krkoška Lorencová, Eliška; Vačkář, David
2017-04-01
The municipalities of the Czech Republic have been facing negative impacts of changing climate in the past decades - especially floods (1997, 2002, 2010, 2013), droughts and heat waves (2013, 2015), claiming lives, material damages and economic losses up to several % of GDP. Reflecting these events, climate change adaptation should represent major issue in strategical planning on all administrative levels, which is actually not fully met nowadays. Sectoral National Adaptation Strategy (NAS) was approved by the Government of the Czech Republic in autumn 2015 and the implementation action plan is currently being approved. Adaptation strategies on lower administrative level (adaptation strategies of individual municipalities) are, however, still quite rare. In this contribution, we analyse barriers and challenges for: (i) the development of climate change adaptation strategies on administrative level of individual municipalities in the Northwest region, Czech Republic; and (ii) implementation of adaptation measures into the decision-making processes. Based on participatory seminars with key stakeholders organised in pilot municipalities, it was shown that municipalities are (at least partly) able to cope with existing risks such as floods, but are not well-prepared for expected regionally "new" risks such as long lasting heat waves, insufficient water retention and flash floods. Linking the goals of adaptation strategy with urban planning seems to be challenging task but also potentially powerfull tool to implement specific adaptation measures. It emerged, that complicated ownership relations often cause obstacles for implementation of adaptation measures, highlighting the potential of stimulation and motivation tools from the side of the municipality. On the other hand, it was also shown that despite experiencing its negative impacts, climate change is often neglected or percepted as a marginal issue by some municipalities and developing adaptation strategy is considered needless, referring to another burning issues such as socioeconomic situation. The role of information campaigns and education of stakeholders as well as public regarding climate change and possible future climate change impacts is, therefore, considered highly important task.
Jaakkola, Timo; Wang, C K John; Soini, Markus; Liukkonen, Jarmo
2015-09-01
The purpose of this study was to identify student clusters with homogenous profiles in perceptions of task- and ego-involving, autonomy, and social relatedness supporting motivational climate in school physical education. Additionally, we investigated whether different motivational climate groups differed in their enjoyment in PE. Participants of the study were 2 594 girls and 1 803 boys, aged 14-15 years. Students responded to questionnaires assessing their perception of motivational climate and enjoyment in physical education. Latent profile analyses produced a five-cluster solution labeled 1) 'low autonomy, relatedness, task, and moderate ego climate' group', 2) 'low autonomy, relatedness, and high task and ego climate, 3) 'moderate autonomy, relatedness, task and ego climate' group 4) 'high autonomy, relatedness, task, and moderate ego climate' group, and 5) 'high relatedness and task but moderate autonomy and ego climate' group. Analyses of variance showed that students in clusters 4 and 5 perceived the highest level of enjoyment whereas students in cluster 1 experienced the lowest level of enjoyment. The results showed that the students' perceptions of various motivational climates created differential levels of enjoyment in PE classes. Key pointsLatent profile analyses produced a five-cluster solution labeled 1) 'low autonomy, relatedness, task, and moderate ego climate' group', 2) 'low autonomy, relatedness, and high task and ego climate, 3) 'moderate autonomy, relatedness, task and ego climate' group 4) 'high autonomy, relatedness, task, and moderate ego climate' group, and 5) 'high relatedness and task but moderate autonomy and ego climate' group.Analyses of variance showed that clusters 4 and 5 perceived the highest level of enjoyment whereas cluster 1 experienced the lowest level of enjoyment. The results showed that the students' perceptions of motivational climate create differential levels of enjoyment in PE classes.
Managing United States public lands in response to climate change: a view from the ground up.
Ellenwood, Mikaela S; Dilling, Lisa; Milford, Jana B
2012-05-01
Federal land managers are faced with the task of balancing multiple uses and goals when making decisions about land use and the activities that occur on public lands. Though climate change is now well recognized by federal agencies and their local land and resource managers, it is not yet clear how issues related to climate change will be incorporated into on-the-ground decision making within the framework of multiple use objectives. We conducted a case study of a federal land management agency field office, the San Juan Public Lands Center in Durango, CO, U.S.A., to understand from their perspective how decisions are currently made, and how climate change and carbon management are being factored into decision making. We evaluated three major management sectors in which climate change or carbon management may intersect other use goals: forests, biofuels, and grazing. While land managers are aware of climate change and eager to understand more about how it might affect land resources, the incorporation of climate change considerations into everyday decision making is currently quite limited. Climate change is therefore on the radar screen, but remains a lower priority than other issues. To assist the office in making decisions that are based on sound scientific information, further research is needed into how management activities influence carbon storage and resilience of the landscape under climate change.
LeDee, Olivia E.; Karasov, W.H.; Martin, Karl J.; Meyer, Michael W.; Ribic, Christine; Van Deelen, Timothy R.
2011-01-01
Natural resource managers are tasked with assessing the impacts of climate change on conservation targets and developing adaptation strategies to meet agency goals. The complex, transboundary nature of climate change demands the collaboration of scientists, managers, and stakeholders in this effort. To share, integrate, and apply knowledge from these diverse perspectives, we must engage in social learning. In 2009, we initiated a process to engage university researchers and agency scientists and managers in collaborative learning to assess the impacts of climate change on terrestrial fauna in the state of Wisconsin, USA. We constructed conceptual Bayesian networks to depict the influence of climate change, key biotic and abiotic factors, and existing stressors on the distribution and abundance of 3 species: greater prairie-chicken (Tympanuchus cupido), wood frog (Lithobates sylvaticus), and Karner blue butterfly (Plebejus melissa samuelis). For each species, we completed a 2-stage expert review that elicited dialogue on information gaps, management opportunities, and research priorities. From our experience, collaborative network modeling proved to be a powerful tool to develop a common vision of the potential impacts of climate change on conservation targets.
NASA Astrophysics Data System (ADS)
Clifford, K. R.; Travis, W.; Rangwala, I.; Rondeau, R.; Young, L.
2016-12-01
Resource managers in the western U.S. are increasingly tasked to incorporate climate change into management decisions and long-term planning, but this task is complicated by multiple challenges, among them the need to bridge between the differing perspectives and prerogatives of scientists and resource managers. As part of a larger, iterative, interdisciplinary, multi-landscape research project that built on a prior climate vulnerability research, we conducted more than 50 semi-structured interviews and four focus groups with resource managers in the Gunnison Basin in western Colorado. The interviews addressed the managers' risk perceptions and knowledge about the resources and landscapes, while the focus groups asked resource managers to reflect on their own resource decision-making in light of three narrative future climate scenarios created by scientists on the research team. While time-intensive, the interviews and focus groups produced important insights into the managers' understanding of both the resources in question and the future climate scenarios. We found that the managers' mental models of their systems, and their conceptions of landscape changes and future threats, were diverse and sometimes in conflict with those held by the research team. The managers' responses to the climate scenarios reflected divergent and nuanced perceptions of risk, adaptation and uncertainty, heavily shaped by personal experience—which could be a constraint under rapidly changing future conditions. Our deployment of social science methodologies facilitated the co-production of climate adaptation strategies and a bridge between and among scientists and managers. The participants found the focus groups helpful since they (1) provided space to focus on decision-making under climate change, rather than fixate on details of the science, and (2) facilitated interaction with colleagues from other agencies. Climate scientists used participant feedback to inform future scenario development. The use of small focus groups to engage with climate scenarios could add value to other ongoing efforts to promote landscape-scale adaptation.
Advancing NOAA NWS Arctic Program Development
NASA Astrophysics Data System (ADS)
Timofeyeva-Livezey, M. M.; Horsfall, F. M. C.; Meyers, J. C.; Churma, M.; Thoman, R.
2016-12-01
Environmental changes in the Arctic require changes in the way the National Oceanic and Atmospheric Administration (NOAA) delivers hydrological and meteorological information to prepare the region's societies and indigenous population for emerging challenges. These challenges include changing weather patterns, changes in the timing and extent of sea ice, accelerated soil erosion due to permafrost decline, increasing coastal vulnerably, and changes in the traditional food supply. The decline in Arctic sea ice is opening new opportunities for exploitation of natural resources, commerce, tourism, and military interest. These societal challenges and economic opportunities call for a NOAA integrated approach for delivery of environmental information including climate, water, and weather data, forecasts, and warnings. Presently the NOAA Arctic Task Force provides leadership in programmatic coordination across NOAA line offices. National Weather Service (NWS) Alaska Region and the National Centers for Environmental Prediction (NCEP) provide the foundational operational hydro-meteorological products and services in the Arctic. Starting in 2016, NOAA's NWS will work toward improving its role in programmatic coordination and development through assembling an NWS Arctic Task Team. The team will foster ties in the Arctic between the 11 NWS national service programs in climate, water, and weather information, as well as between Arctic programs in NWS and other NOAA line offices and external partners. One of the team outcomes is improving decision support tools for the Arctic. The Local Climate Analysis Tool (LCAT) currently has more than 1100 registered users, including NOAA staff and technical partners. The tool has been available online since 2013 (http://nws.weather.gov/lcat/ ). The tool links trusted, recommended NOAA data and analytical capabilities to assess impacts of climate variability and climate change at local levels. A new capability currently being developed will enable analysis of sea ice changes in different parts of the Arctic, and allow users to link those change to phases of climate variability such as El Nino Southern Oscillation Arctic Oscillation, etc.
Water resources vulnerability assessment in the Adriatic Sea region: the case of Corfu Island.
Kanakoudis, Vasilis; Tsitsifli, Stavroula; Papadopoulou, Anastasia; Cencur Curk, Barbara; Karleusa, Barbara
2017-09-01
Cross-border water resources management and protection is a complicated task to achieve, lacking a common methodological framework. Especially in the Adriatic region, water used for drinking water supply purposes pass from many different countries, turning its management into a hard task to achieve. During the DRINKADRIA project, a common methodological framework has been developed, for efficient and effective cross-border water supply and resources management, taking into consideration different resources types (surface and groundwater) emphasizing in drinking water supply intake. The common methodology for water resources management is based on four pillars: climate characteristics and climate change, water resources availability, quality, and security. The present paper assesses both present and future vulnerability of water resources in the Adriatic region, with special focus on Corfu Island, Greece. The results showed that climate change is expected to impact negatively on water resources availability while at the same time, water demand is expected to increase. Water quality problems will be intensified especially due to land use changes and salt water intrusion. The analysis identified areas where water resources are more vulnerable, allowing decision makers develop management strategies.
Climatically-mediated landcover change: impacts on Brazilian territory.
Zanin, Marina; Tessarolo, Geiziane; Machado, Nathália; Albernaz, Ana Luisa M
2017-01-01
In the face of climate change threats, governments are drawing attention to policies for mitigating its effects on biodiversity. However, the lack of distribution data makes predictions at species level a difficult task, mainly in regions of higher biodiversity. To overcome this problem, we use native landcover as a surrogate biodiversity, because it can represent specialized habitat for species, and investigate the effects of future climate change on Brazilian biomes. We characterize the climatic niches of native landcover and use ecological niche modeling to predict the potential distribution under current and future climate scenarios. Our results highlight expansion of the distribution of open vegetation and the contraction of closed forests. Drier Brazilian biomes, like Caatinga and Cerrado, are predicted to expand their distributions, being the most resistant to climate change impacts. However, these would also be affected by losses of their closed forest enclaves and their habitat-specific or endemic species. Replacement by open vegetation and overall reductions are a considerable risk for closed forest, threatening Amazon and Atlantic forest biomes. Here, we evidence the impacts of climate change on Brazilian biomes, and draw attention to the necessity for management and attenuation plans to guarantee the future of Brazilian biodiversity.
The Effect of Occupational Growth on Labor Force Task Characteristics.
ERIC Educational Resources Information Center
Szafran, Robert F.
1996-01-01
Examination of changes in 495 occupations from 1950-1990 shows an increased likelihood of tasks with high levels of complexity and social interaction, decreased likelihood of fine or gross motor skills or harsh climatic conditions. There is evidence that jobs have become polarized on the need for fine motor skills and level of social interaction.…
NASA Astrophysics Data System (ADS)
Larson, E. K.; Li, J.; Zycherman, A.
2017-12-01
Integration of social science into climate and global change assessments is fundamental for improving understanding of the drivers, impacts and vulnerability of climate change, and the social, cultural and behavioral challenges related to climate change responses. This requires disciplinary and interdisciplinary knowledge as well as integrational and translational tools for linking this knowledge with the natural and physical sciences. The USGCRP's Social Science Coordinating Committee (SSCC) is tasked with this challenge and is working to integrate relevant social, economic and behavioral knowledge into processes like sustained assessments. This presentation will discuss outcomes from a recent SSCC workshop, "Social Science Perspectives on Climate Change" and their applications to sustained assessments. The workshop brought academic social scientists from four disciplines - anthropology, sociology, geography and archaeology - together with federal scientists and program managers to discuss three major research areas relevant to the USGCRP and climate assessments: (1) innovative tools, methods, and analyses to clarify the interactions of human and natural systems under climate change, (2) understanding of factors contributing to differences in social vulnerability between and within communities under climate change, and (3) social science perspectives on drivers of global climate change. These disciplines, collectively, emphasize the need to consider socio-cultural, political, economic, geographic, and historic factors, and their dynamic interactions, to understand climate change drivers, social vulnerability, and mitigation and adaptation responses. They also highlight the importance of mixed quantitative and qualitative methods to explain impacts, vulnerability, and responses at different time and spatial scales. This presentation will focus on major contributions of the social sciences to climate and global change research. We will discuss future directions for sustained assessments that integrate and reflect the social science understanding of the complex relationships between social and natural worlds in a changing climate, and factors that impact effective mitigation and adaptation strategies that address risks and vulnerabilities of climate change.
NASA Astrophysics Data System (ADS)
Huffman, L. T.; Blythe, D.; Dahlman, L. E.; Fischbein, S.; Johnson, K.; Kontar, Y.; Rack, F. R.; Kulhanek, D. K.; Pennycook, J.; Reed, J.; Youngman, B.; Reeves, M.; Thomas, R.
2010-12-01
The challenges of communicating climate change science to non-technical audiences present a daunting task, but one that is recognized in the science community as urgent and essential. ANDRILL's (ANtarctic geological DRILLing) international network of scientists, engineers, technicians and educators work together to convey a deeper understanding of current geoscience research as well as the process of science to non-technical audiences. One roadblock for educators who recognize the need to teach climate change has been the lack of a comprehensive, integrated set of resources and activities that are related to the National Science Education Standards. Pieces of the climate change puzzle can be found in the excellent work of the groups of science and education professionals who wrote the Essential Principles of Ocean Sciences, Climate Literacy: The Essential Principles of Climate Science, Earth Science Literacy Principles: The Big Ideas and Supporting Concepts of Earth Science, and Essential Principals and Fundamental Concepts for Atmospheric Science Literacy, but teachers have precious little time to search out the climate change goals and objectives in those frameworks and then find the resources to teach them. Through NOAA funding, ANDRILL has created a new framework, The Environmental Literacy Framework with a Focus on Climate Change (ELF), drawing on the works of the aforementioned groups, and promoting an Earth Systems approach to teaching climate change through five units: Atmosphere, Biosphere, Geosphere, Hydrosphere/Cryosphere, and Energy as the driver of interactions within and between the “spheres.” Each key concept in the framework has a hands-on, inquiry activity and matching NOAA resources for teaching the objectives. In its present form, we present a ‘road map’ for teaching climate change and a set of resources intended to continue to evolve over time.
Pyroconvection and Climate Change
2007-01-01
Climate Change 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Research Laboratory,4555 Overlook Avenue SW,Washington,DC,20375 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited
Projected 2050 Model Simulations for the Chesapeake Bay Program
The Chesapeake Bay Program as has been tasked with assessing how changes in climate systems are expected to alter key variables and processes within the Watershed in concurrence with land use changes. EPA’s Office of Research and Development will be conducting historic and...
Putting Climate Change on the Map: A Translation from Time to Space
NASA Astrophysics Data System (ADS)
Marzeion, B.; Bethke, I.; Drange, H.
2009-04-01
By increasing the concentrations of atmospheric greenhouses gases, man is changing the physical geography of planet Earth. This message is often given to the public in form of rather abstract numbers, such as changes in the annual mean surface temperature. Therefore, one of the difficulties to overcome when educating the public about climate change is to translate these abstract numbers into everyday experiences - a task that is not easy given the statistical and thereby abstract definition of the term 'climate' itself. However, climate does not only vary with time, but also with space, and people generally have a better idea of what it would be like to live in another place, than to experience an annual mean temperature rise of e.g. 3 K. We used the model calculations from the fourth assessment report of the Intergovernmental Panel on Climate Change to translate the projected temperature change into a change of location: Each point on a geographical map is shifted to the closest location that in the year 2000 has the annual mean temperature that the point is projected to have at some time in the future. With this method, it is possible to create a new kind of accessible and visually appealing illustration of climate change, answering the question: Where do I have to go today to experience tomorrow's climate? Similarly, it is possible to answer a related question: Where would I have to move if I want to continue living in today's climate?
Brown, Helen; Spickett, Jeffery; Katscherian, Dianne
2014-01-01
This paper presents a detailed description of an approach designed to investigate the application of the Health Impact Assessment (HIA) framework to assess the potential health impacts of climate change. A HIA framework has been combined with key climate change terminology and concepts. The fundamental premise of this framework is an understanding of the interactions between people, the environment and climate. The diversity and complexity of these interactions can hinder much needed action on the critical health issue of climate change. The objectives of the framework are to improve the methodology for understanding and assessing the risks associated with potential health impacts of climate change, and to provide decision-makers with information that can facilitate the development of effective adaptation plans. While the process presented here provides guidance with respect to this task it is not intended to be prescriptive. As such, aspects of the process can be amended to suit the scope and available resources of each project. A series of working tables has been developed to assist in the collation of evidence throughout the process. The framework has been tested in a number of locations including Western Australia, Solomon Islands, Vanuatu and Nauru. PMID:25514146
Brown, Helen; Spickett, Jeffery; Katscherian, Dianne
2014-12-01
This paper presents a detailed description of an approach designed to investigate the application of the Health Impact Assessment (HIA) framework to assess the potential health impacts of climate change. A HIA framework has been combined with key climate change terminology and concepts. The fundamental premise of this framework is an understanding of the interactions between people, the environment and climate. The diversity and complexity of these interactions can hinder much needed action on the critical health issue of climate change. The objectives of the framework are to improve the methodology for understanding and assessing the risks associated with potential health impacts of climate change, and to provide decision-makers with information that can facilitate the development of effective adaptation plans. While the process presented here provides guidance with respect to this task it is not intended to be prescriptive. As such, aspects of the process can be amended to suit the scope and available resources of each project. A series of working tables has been developed to assist in the collation of evidence throughout the process. The framework has been tested in a number of locations including Western Australia, Solomon Islands, Vanuatu and Nauru.
Predicting shifting sustainability trade-offs in marine finfish aquaculture under climate change.
Sarà, Gianluca; Gouhier, Tarik C; Brigolin, Daniele; Porporato, Erika M D; Mangano, Maria Cristina; Mirto, Simone; Mazzola, Antonio; Pastres, Roberto
2018-05-03
Defining sustainability goals is a crucial but difficult task because it often involves the quantification of multiple interrelated and sometimes conflicting components. This complexity may be exacerbated by climate change, which will increase environmental vulnerability in aquaculture and potentially compromise the ability to meet the needs of a growing human population. Here, we developed an approach to inform sustainable aquaculture by quantifying spatio-temporal shifts in critical trade-offs between environmental costs and benefits using the time to reach the commercial size as a possible proxy of economic implications of aquaculture under climate change. Our results indicate that optimizing aquaculture practices by minimizing impact (this study considers as impact a benthic carbon deposition ≥ 1 g C m -2 day -1 ) will become increasingly difficult under climate change. Moreover, an increasing temperature will produce a poleward shift in sustainability trade-offs. These findings suggest that future sustainable management strategies and plans will need to account for the effects of climate change across scales. Overall, our results highlight the importance of integrating environmental factors in order to sustainably manage critical natural resources under shifting climatic conditions. © 2018 John Wiley & Sons Ltd.
Devendra Amatya; S. Tian; Z. Dai; Ge Sun
2016-01-01
A reliable estimate of potential evapotranspiration (PET) for a forest ecosystem is critical in ecohydrologic modeling related with water supply, vegetation dynamics, and climate change and yet is a challenging task due to its complexity. Based on long-term on-site measured hydro-climatic data and predictions from earlier validated hydrologic modeling studies...
ERIC Educational Resources Information Center
Hagen, Åste M.; Braasch, Jason L. G.; Bråten, Ivar
2014-01-01
This study investigated note-taking during multiple-text reading across two different task conditions in relation to comprehension performance and self-reports of strategy use. Forty-four undergraduates read multiple texts about climate change to write an argument or a summary. Analysis of students' spontaneous note-taking during reading…
NASA Astrophysics Data System (ADS)
Komaladara, A. A. S. P.; Budiasa, I. W.; Ambarawati, I. G. A. A.
2015-12-01
Rice remains to be a major crop and staple food in Indonesia. The task to ensure that rice production meets the demand of a growing population continues to engage the attention of national planners and policy makers. However, the adverse effects of climate change on agriculture production have presented Indonesia with yet another significant challenge. The exposure of rice crops to climate-related hazards such as temperature stress, floods, and drought, may lead to lower yield and self-sufficiency rate. This study explores the vulnerability of rice production to the effects of climate change in Indonesia. Considering the vast geographical span of the country and varying exposure, sensitivity, and adaptive capacity to climate change at regional level, this study emphasize the importance of community-based adaptation. Results from a simulation based on production and climate data from 1984 to 2014 indicates that rice production is sensitive to variation in growing season temperature and precipitation. A projection of these climate factors in 2050 has a significant impact on the major rice crop. To manage the impact of climate change, this study turns to the potential roles of farmer organizations, such as Subak, in adaptation strategies. The Subak in Bali is recognized for its cultural and organizational framework that highlights the sharing of knowledge and local wisdom in rice production. This is demonstrated by its efficient community-based irrigation management system, leading to sustainable rice production. Keywords: rice production, climate change, community-based adaptation, Indonesia
Incorporating climate change into ecosystem service assessments and decisions: a review.
Runting, Rebecca K; Bryan, Brett A; Dee, Laura E; Maseyk, Fleur J F; Mandle, Lisa; Hamel, Perrine; Wilson, Kerrie A; Yetka, Kathleen; Possingham, Hugh P; Rhodes, Jonathan R
2017-01-01
Climate change is having a significant impact on ecosystem services and is likely to become increasingly important as this phenomenon intensifies. Future impacts can be difficult to assess as they often involve long timescales, dynamic systems with high uncertainties, and are typically confounded by other drivers of change. Despite a growing literature on climate change impacts on ecosystem services, no quantitative syntheses exist. Hence, we lack an overarching understanding of the impacts of climate change, how they are being assessed, and the extent to which other drivers, uncertainties, and decision making are incorporated. To address this, we systematically reviewed the peer-reviewed literature that assesses climate change impacts on ecosystem services at subglobal scales. We found that the impact of climate change on most types of services was predominantly negative (59% negative, 24% mixed, 4% neutral, 13% positive), but varied across services, drivers, and assessment methods. Although uncertainty was usually incorporated, there were substantial gaps in the sources of uncertainty included, along with the methods used to incorporate them. We found that relatively few studies integrated decision making, and even fewer studies aimed to identify solutions that were robust to uncertainty. For management or policy to ensure the delivery of ecosystem services, integrated approaches that incorporate multiple drivers of change and account for multiple sources of uncertainty are needed. This is undoubtedly a challenging task, but ignoring these complexities can result in misleading assessments of the impacts of climate change, suboptimal management outcomes, and the inefficient allocation of resources for climate adaptation. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Gordova, Yulia; Gorbatenko, Valentina; Martynova, Yulia; Shulgina, Tamara
2014-05-01
A problem of making education relevant to the workplace tasks is a key problem of higher education because old-school training programs are not keeping pace with the rapidly changing situation in the professional field of environmental sciences. A joint group of specialists from Tomsk State University and Siberian center for Environmental research and Training/IMCES SB RAS developed several new courses for students of "Climatology" and "Meteorology" specialties, which comprises theoretical knowledge from up-to-date environmental sciences with practical tasks. To organize the educational process we use an open-source course management system Moodle (www.moodle.org). It gave us an opportunity to combine text and multimedia in a theoretical part of educational courses. The hands-on approach is realized through development of innovative trainings which are performed within the information-computational platform "Climate" (http://climate.scert.ru/) using web GIS tools. These trainings contain practical tasks on climate modeling and climate changes assessment and analysis and should be performed using typical tools which are usually used by scientists performing such kind of research. Thus, students are engaged in n the use of modern tools of the geophysical data analysis and it cultivates dynamic of their professional learning. The hands-on approach can help us to fill in this gap because it is the only approach that offers experience, increases students involvement, advance the use of modern information and communication tools. The courses are implemented at Tomsk State University and help forming modern curriculum in Earth system science area. This work is partially supported by SB RAS project VIII.80.2.1, RFBR grants numbers 13-05-12034 and 14-05-00502.
Impacts of climate change on water quantity and quality in Rhineland-Palatinate/Germany
NASA Astrophysics Data System (ADS)
Casper, M. C.; Grigoryan, G. V.
2009-04-01
The Ministry of the Environment of Rhineland-Palatinate, Germany, launched an interdisciplinary research project dealing with "climate and land use change in Rhineland-Palatinate" (KlimLandRP). The aim of KlimLandRP is to specify adaptation strategies and to find current research gaps. The University of Trier/Germany undertakes the task of quantifying the impact of climate change on hydrological cycle and on water quality. In the first phase of the project (2008/2009) the models STOFFBILANZ and WaSiM-ETH are applied. WETTREG projections (2050/2100) and newly high resolution CCLM (2015-2024) projections for Rhineland-Palatinate are used to indicate the spectrum of climate change. Possible land use scenarios for agricultural regions are furthermore adopted. Using STOFFBILANZ it is possible to get approximate spatial information about present and future distribution of water, nitrate and phosphor balance in Rhineland-Palatinate and to identify sensitive regions. Based on achieved results, regions which are vulnerable to water economy are identified and adaptations proposed. With the application of WaSiM-ETH the impact of climate change on water balance of forest sites is quantified. The relation between climate parameters and tree growth indices is applied in forest management planning, particularly for forest site mapping. In the future, also the rainfall-runoff model LARSIM will be applied to quantify the impacts of climate change on the hydrological cycle of mesoscale catchment basins.
Haines, Andy; McMichael, Anthony J; Smith, Kirk R; Roberts, Ian; Woodcock, James; Markandya, Anil; Armstrong, Ben G; Campbell-Lendrum, Diarmid; Dangour, Alan D; Davies, Michael; Bruce, Nigel; Tonne, Cathryn; Barrett, Mark; Wilkinson, Paul
2009-12-19
This Series has examined the health implications of policies aimed at tackling climate change. Assessments of mitigation strategies in four domains-household energy, transport, food and agriculture, and electricity generation-suggest an important message: that actions to reduce greenhouse-gas emissions often, although not always, entail net benefits for health. In some cases, the potential benefits seem to be substantial. This evidence provides an additional and immediate rationale for reductions in greenhouse-gas emissions beyond that of climate change mitigation alone. Climate change is an increasing and evolving threat to the health of populations worldwide. At the same time, major public health burdens remain in many regions. Climate change therefore adds further urgency to the task of addressing international health priorities, such as the UN Millennium Development Goals. Recognition that mitigation strategies can have substantial benefits for both health and climate protection offers the possibility of policy choices that are potentially both more cost effective and socially attractive than are those that address these priorities independently. Copyright 2009 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Okladnikov, Igor; Gordov, Evgeny; Titov, Alexander; Fazliev, Alexander
2017-04-01
Description and the first results of the Russian Science Foundation project "Virtual computational information environment for analysis, evaluation and prediction of the impacts of global climate change on the environment and climate of a selected region" is presented. The project is aimed at development of an Internet-accessible computation and information environment providing unskilled in numerical modelling and software design specialists, decision-makers and stakeholders with reliable and easy-used tools for in-depth statistical analysis of climatic characteristics, and instruments for detailed analysis, assessment and prediction of impacts of global climate change on the environment and climate of the targeted region. In the framework of the project, approaches of "cloud" processing and analysis of large geospatial datasets will be developed on the technical platform of the Russian leading institution involved in research of climate change and its consequences. Anticipated results will create a pathway for development and deployment of thematic international virtual research laboratory focused on interdisciplinary environmental studies. VRE under development will comprise best features and functionality of earlier developed information and computing system CLIMATE (http://climate.scert.ru/), which is widely used in Northern Eurasia environment studies. The Project includes several major directions of research listed below. 1. Preparation of geo-referenced data sets, describing the dynamics of the current and possible future climate and environmental changes in detail. 2. Improvement of methods of analysis of climate change. 3. Enhancing the functionality of the VRE prototype in order to create a convenient and reliable tool for the study of regional social, economic and political consequences of climate change. 4. Using the output of the first three tasks, compilation of the VRE prototype, its validation, preparation of applicable detailed description of climate change in Western Siberia, and dissemination of the Project results. Results of the first stage of the Project implementation are presented. This work is supported by the Russian Science Foundation grant No16-19-10257.
AATSR: global-change and surface-temperature measurements from Envisat
NASA Astrophysics Data System (ADS)
Llewellyn-Jones, D.; Edwards, M. C.; Mutlow, C. T.; Birks, A. R.; Barton, I. J.; Tait, H.
2001-02-01
The Advanced Along-Track Scanning Radiometer (AATSR) onboard ESA's Envisat spacecraft is designed to meet the challenging task of monitoring and detecting climate change. It builds on the success of its predecessor instruments on the ERS-1 and ERS-2 satellites, and will lead to a 15+ year record of precise and accurate global Sea-Surface Temperature (SST) measurements, thereby making a valuable contribution to the long-term climate record. With its high-accuracy, high-quality imagery and channels in the visible, near-infrared and thermal wavelengths, AATSR data will support many applications in addition to oceanographic and climate research, including a wide range of land-surface, cryosphere and atmospheric studies.
Moreno Murcia, Juan Antonio; Cervelló Gimeno, Eduardo; González-Cutre Coll, David
2008-05-01
The purpose of this investigation was to examine the relationships among perceived motivational climate, individuals' goal orientations, and dispositional flow, with attention to possible gender differences. A sample of 413 young athletes, ages 12 to 16 years, completed the Perceived Motivational Climate in Sport Questionnaire-2 (PMCSQ-2) and Perception of Success Questionnaire (POSQ), as well as the Dispositional Flow Scale. Task orientation was positively and significantly related to a perceived task-involving motivational climate and to the disposition to experience flow in the sport. Ego orientation was positively and significantly associated with a perceived ego-involving motivational climate and with dispositional flow. The perceptions of task-involving and ego-involving motivational climates were positively and significantly linked to general dispositional flow. Multiple regression analysis indicated that both task and ego goal orientations and perceived task- and ego-oriented climates predicted dispositional flow. Males displayed a stronger ego orientation, and were more likely to report that they participated in an ego-oriented climate, than did females. To the contrary, the females were more likely to perceive a task-oriented climate than did the males. No meaningful differences were found between males and females in general dispositional flow.
Science Goals of the U.S. Department of the Interior Southeast Climate Science Center
Dalton, Melinda S.
2011-01-01
In 2011, the U.S. Department of the Interior Southeast Climate Science Center (CSC) finalized the first draft of its goals for research needed to address the needs of natural and cultural partners for climate science in the Southeastern United States. The science themes described in this draft plan were established to address the information needs of ecoregion conservation partnerships, such as the Landscape Conservation Cooperatives (LCCs) and other regional conservation-science and resource-management partners. These themes were developed using priorities defined by partners and stakeholders in the Southeast and on a large-scale, multidisciplinary project-the Southeast Regional Assessment Project (SERAP)-developed in concert with those partners. Science products developed under these themes will provide models of potential future conditions, assessments of likely impacts, and tools that can be used to inform the conservation management decisions of LCCs and other partners. This information will be critical as managers try to anticipate and adapt to climate change. Resource managers in the Southeast are requesting this type of information, in many cases as a result of observed climate change effects. The Southeast CSC draft science plan identifies six science themes and frames the activities (tasks, with examples of recommended near-term work for each task included herein) related to each theme that are needed to achieve the objectives of the Southeast CSC.
Climatic Impact of a Change in North Atlantic Deep Water Formation
NASA Technical Reports Server (NTRS)
Rind, D.
1984-01-01
The response of the ocean to climate changes is one of the most uncertain questions regarding the impact of increasing CO2 on climate and society. North Atlantic deep water (NADW) formation apparently depends on a complex confluence of different water masses originating in different areas, all of which will presumably be affected by changes in wind, evaporation, etc., as the atmosphere warms. To analyze from first principles what the effect will be on NADW formation is a task which requires an ocean modeling capability not yet available. As a substitute, past climates can be investigated to see if there is any evidence for alterations in NADW formation. In addition, the possible impact of such changes on climate can be explored. An estimate of NADW sensitivity (at least in the past) and of the climate consequences can be studied. The North Atlantic surface water temperatures can be reconstructed to indicate a substantial cooling between 11,000 and 10,000 years B.P. Were NADW formation to have ceased, it would have resulted in cooler surface waters; whether the reconstructed temperatures were due to this or some other effect cannot be determined at this time. Nevertheless, it was decided that it would be useful to see what the effect these colder temperatures would have had on the climate.
Factorial validity and internal consistency of the motivational climate in physical education scale.
Soini, Markus; Liukkonen, Jarmo; Watt, Anthony; Yli-Piipari, Sami; Jaakkola, Timo
2014-01-01
The aim of the study was to examine the construct validity and internal consistency of the Motivational Climate in Physical Education Scale (MCPES). A key element of the development process of the scale was establishing a theoretical framework that integrated the dimensions of task- and ego involving climates in conjunction with autonomy, and social relatedness supporting climates. These constructs were adopted from the self-determination and achievement goal theories. A sample of Finnish Grade 9 students, comprising 2,594 girls and 1,803 boys, completed the 18-item MCPES during one physical education class. The results of the study demonstrated that participants had highest mean in task-involving climate and the lowest in autonomy climate and ego-involving climate. Additionally, autonomy, social relatedness, and task- involving climates were significantly and strongly correlated with each other, whereas the ego- involving climate had low or negligible correlations with the other climate dimensions.The construct validity of the MCPES was analyzed using confirmatory factor analysis. The statistical fit of the four-factor model consisting of motivational climate factors supporting perceived autonomy, social relatedness, task-involvement, and ego-involvement was satisfactory. The results of the reliability analysis showed acceptable internal consistencies for all four dimensions. The Motivational Climate in Physical Education Scale can be considered as psychometrically valid tool to measure motivational climate in Finnish Grade 9 students. Key PointsThis study developed Motivational Climate in School Physical Education Scale (MCPES). During the development process of the scale, the theoretical framework using dimensions of task- and ego involving as well as autonomy, and social relatedness supporting climates was constructed. These constructs were adopted from the self-determination and achievement goal theories.The statistical fit of the four-factor model of the MCPES consisting of motivational climate factors supporting perceived autonomy, social relatedness, task-involvement, and ego-involvement was satisfactory. Additionally, the results of the reliability analysis showed acceptable internal consistencies for all four dimensions.The results of the study demonstrated that participants had highest mean in task-involving climate and the lowest in autonomy climate.Autonomy, social relatedness, and task climate were significantly and strongly correlated with each other, whereas the ego climate factor had low or negligible correlations with the other three factors.
Factorial Validity and Internal Consistency of the Motivational Climate in Physical Education Scale
Soini, Markus; Liukkonen, Jarmo; Watt, Anthony; Yli-Piipari, Sami; Jaakkola, Timo
2014-01-01
The aim of the study was to examine the construct validity and internal consistency of the Motivational Climate in Physical Education Scale (MCPES). A key element of the development process of the scale was establishing a theoretical framework that integrated the dimensions of task- and ego involving climates in conjunction with autonomy, and social relatedness supporting climates. These constructs were adopted from the self-determination and achievement goal theories. A sample of Finnish Grade 9 students, comprising 2,594 girls and 1,803 boys, completed the 18-item MCPES during one physical education class. The results of the study demonstrated that participants had highest mean in task-involving climate and the lowest in autonomy climate and ego-involving climate. Additionally, autonomy, social relatedness, and task- involving climates were significantly and strongly correlated with each other, whereas the ego- involving climate had low or negligible correlations with the other climate dimensions.The construct validity of the MCPES was analyzed using confirmatory factor analysis. The statistical fit of the four-factor model consisting of motivational climate factors supporting perceived autonomy, social relatedness, task-involvement, and ego-involvement was satisfactory. The results of the reliability analysis showed acceptable internal consistencies for all four dimensions. The Motivational Climate in Physical Education Scale can be considered as psychometrically valid tool to measure motivational climate in Finnish Grade 9 students. Key Points This study developed Motivational Climate in School Physical Education Scale (MCPES). During the development process of the scale, the theoretical framework using dimensions of task- and ego involving as well as autonomy, and social relatedness supporting climates was constructed. These constructs were adopted from the self-determination and achievement goal theories. The statistical fit of the four-factor model of the MCPES consisting of motivational climate factors supporting perceived autonomy, social relatedness, task-involvement, and ego-involvement was satisfactory. Additionally, the results of the reliability analysis showed acceptable internal consistencies for all four dimensions. The results of the study demonstrated that participants had highest mean in task-involving climate and the lowest in autonomy climate. Autonomy, social relatedness, and task climate were significantly and strongly correlated with each other, whereas the ego climate factor had low or negligible correlations with the other three factors. PMID:24570617
Populations of concern: Chapter 9
Gamble, Janet; Balbus, John; Berger, Martha; Bouye, Karen; Campbell, Vince; Chief, Karletta; Conlon, K.; Crimmins, Allison; Flanagan, Barry; Gonzalez-Maddux, C.; Hallisey, E.; Hutchins, S.; Jantarasami, L.; Khoury, S.; Kiefer, M.; Kolling, J.; Lynn, K.; Manangan, A.; McDonald, M.; Morello-Frosch, R.; Hiza, Margaret; Sheffield, P.; Thigpen Tart, K.; Watson, J.; Whyte, K.P.; Wolkin, A.F.
2016-01-01
Climate change is already causing, and is expected to continue to cause, a range of health impacts that vary across different population groups in the United States. The vulnerability of any given group is a function of its sensitivity to climate change related health risks, its exposure to those risks, and its capacity for responding to or coping with climate variability and change. Vulnerable groups of people, described here as populations of concern, include those with low income, some communities of color, immigrant groups (including those with limited English proficiency), Indigenous peoples, children and pregnant women, older adults, vulnerable occupational groups, persons with disabilities, and persons with preexisting or chronic medical conditions. Planners and public health officials, politicians and physicians, scientists and social service providers are tasked with understanding and responding to the health impacts of climate change. Collectively, their characterization of vulnerability should consider how populations of concern experience disproportionate, multiple, and complex risks to their health and well-being in response to climate change. Some groups face a number of stressors related to both climate and non-climate factors. For example, people living in impoverished urban or isolated rural areas, floodplains, coastlines, and other at-risk locations are more vulnerable not only to extreme weather and persistent climate change but also to social and economic stressors. Many of these stressors can occur simultaneously or consecutively. Over time, this “accumulation” of multiple, complex stressors is expected to become more evident1 as climate impacts interact with stressors associated with existing mental and physical health conditions and with other socioeconomic and demographic factors.
The planetary water drama: Dual task of feeding humanity and curbing climate change
NASA Astrophysics Data System (ADS)
Rockström, J.; Falkenmark, M.; Lannerstad, M.; Karlberg, L.
2012-08-01
This paper analyses the potential conflict between resilience of the Earth system and global freshwater requirements for the dual task of carbon sequestration to reduce CO2 in the atmosphere, and food production to feed humanity by 2050. It makes an attempt to assess the order of magnitude of the increased consumptive water use involved and analyses the implications as seen from two parallel perspectives; the global perspective of human development within a “safe operating space” with regard to the definition of the Planetary Boundary for freshwater; and the social-ecological implications at the regional river basin scale in terms of sharpening water shortages and threats to aquatic ecosystems. The paper shows that the consumptive water use involved in the dual task would both transgress the proposed planetary boundary range for global consumptive freshwater use and would further exacerbate already severe river depletion, causing societal problems related to water shortage and water allocation. Thus, strategies to rely on sequestration of CO2 as a mitigation strategy must recognize the high freshwater costs involved, implying that the key climate mitigation strategy must be to reduce emissions. The paper finally highlights the need to analyze both water and carbon tradeoffs from anticipated large scale biofuel production climate change mitigation strategy, to reveal gains and impact of this in contrast to carbon sequestration strategies.
NASA Astrophysics Data System (ADS)
Gordov, Evgeny; Shiklomanov, Alexander; Okladinikov, Igor; Prusevich, Alex; Titov, Alexander
2016-04-01
Description and first results of the cooperative project "Development of Distributed Research Center for monitoring and projecting of regional climatic and environmental changes" recently started by SCERT IMCES and ESRC UNH are reported. The project is aimed at development of hardware and software platform prototype of Distributed Research Center (DRC) for monitoring and projecting regional climatic and environmental changes over the areas of mutual interest and demonstration the benefits of such collaboration that complements skills and regional knowledge across the northern extratropics. In the framework of the project, innovative approaches of "cloud" processing and analysis of large geospatial datasets will be developed on the technical platforms of two U.S. and Russian leading institutions involved in research of climate change and its consequences. Anticipated results will create a pathway for development and deployment of thematic international virtual research centers focused on interdisciplinary environmental studies by international research teams. DRC under development will comprise best features and functionality of earlier developed by the cooperating teams' information-computational systems RIMS (http://rims.unh.edu) and CLIMATE(http://climate.scert.ru/), which are widely used in Northern Eurasia environment studies. The project includes several major directions of research (Tasks) listed below. 1. Development of architecture and defining major hardware and software components of DRC for monitoring and projecting of regional environmental changes. 2. Development of an information database and computing software suite for distributed processing and analysis of large geospatial data hosted at ESRC and IMCES SB RAS. 3. Development of geoportal, thematic web client and web services providing international research teams with an access to "cloud" computing resources at DRC; two options will be executed: access through a basic graphical web browser and using geographic information systems - (GIS). 4. Using the output of the first three tasks, compilation of the DRC prototype, its validation, and testing the DRC feasibility for analyses of the recent regional environmental changes over Northern Eurasia and North America. Results of the first stage of the Project implementation are presented. This work is supported by the Ministry of Education and Science of the Russian Federation, Agreement № 14.613.21.0037.
NASA Astrophysics Data System (ADS)
White, D.; Trainor, S.; Walsh, J.; Gerlach, C.
2008-12-01
The Alaska Center for Climate Assessment and Policy (ACCAP; www.uaf.edu/accap) is one of several, NOAA funded, Regional Integrated Science and Policy (RISA) programs nation-wide (http://www.climate.noaa.gov/cpo_pa/risa/). Our mission is to assess the socio-economic and biophysical impacts of climate variability in Alaska, make this information available to local and regional decision-makers, and improve the ability of Alaskans to adapt to a changing climate. We partner with the University of Alaska?s Scenario Network for Alaska Planning (SNAP; http://www.snap.uaf.edu/), state and local government, state and federal agencies, industry, and non-profit organizations to communicate accurate and up-to-date climate science and assist in formulating adaptation and mitigation plans. ACCAP and SNAP scientists are members of the Governor?s Climate Change Sub-Cabinet Adaptation and Mitigation Advisory and Technical Working Groups (http://www.climatechange.alaska.gov/), and apply their scientific expertise to provide down-scaled, state-wide maps of temperature and precipitation projections for these groups. An ACCAP scientist also serves as co-chair for the Fairbanks North Star Borough Climate Change Task Force, assisting this group as they work through the five-step model for climate change planning put forward by the International Council for Local Environmental Initiatives (http://www.investfairbanks.com/Taskforces/climate.php). ACCAP scientists work closely with federal resource managers in on a range of projects including: partnering with the U.S. Fish and Wildlife Service to analyze hydrologic changes associated with climate change and related ecological impacts and wildlife management and development issues on Alaska?s North Slope; partnering with members of the Alaska Interagency Wildland Fire Coordinating Group in statistical modeling to predict seasonal wildfire activity and coordinate fire suppression resources state-wide; and working with Alaska Native Elders and resource managers to document traditional ecological knowledge (TEK) and integrate this knowledge with Western science for crafting adaptation response to climate impacts in rural Native Alaska.
Science Support for Climate Change Adaptation in South Florida
Early, Laura M.; Harvey, Rebecca G.
2010-01-01
Earth's changing climate is among the foremost conservation challenges of the 21st century, threatening to permanently alter entire ecosystems and contribute to extinctions of species. Lying only a few feet above sea level and already suffering effects of anthropogenic stressors, south Florida's ecosystems are particularly vulnerable to negative impacts of climate change. Recent research accounting for the gravitational effects of melting ice sheets predicts that sea level rise on U.S. coastlines will be much higher than global averages (Gomez et al. 2010), and the Miami-Dade Climate Change Advisory Task Force predicts that local sea level rise will be at least 3 to 5 ft. (0.9 m to 1.5 m) by 2100 (MDCCATF 2008). In a 5 ft. scenario, up to 873 additional square miles of the Everglades would be inundated with saltwater (see maps below). Accelerated sea level rise is likely to be accompanied by increasing temperatures (IPCC 2007a) and more intense tropical storms and hurricanes (Webster et al. 2005). In addition, changes in amount, timing, and distribution of rainfall in south Florida may lead to more severe droughts and floods (SFWMD 2009).
Assessing, understanding, and conveying the state of the Arctic sea ice cover
NASA Astrophysics Data System (ADS)
Perovich, D. K.; Richter-Menge, J. A.; Rigor, I.; Parkinson, C. L.; Weatherly, J. W.; Nghiem, S. V.; Proshutinsky, A.; Overland, J. E.
2003-12-01
Recent studies indicate that the Arctic sea ice cover is undergoing significant climate-induced changes, affecting both its extent and thickness. Satellite-derived estimates of Arctic sea ice extent suggest a reduction of about 3% per decade since 1978. Ice thickness data from submarines suggest a net thinning of the sea ice cover since 1958. Changes (including oscillatory changes) in atmospheric circulation and the thermohaline properties of the upper ocean have also been observed. These changes impact not only the Arctic, but the global climate system and are likely accelerated by such processes as the ice-albedo feedback. It is important to continue and expand long-term observations of these changes to (a) improve the fundamental understanding of the role of the sea ice cover in the global climate system and (b) use the changes in the sea ice cover as an early indicator of climate change. This is a formidable task that spans a range of temporal and spatial scales. Fortunately, there are numerous tools that can be brought to bear on this task, including satellite remote sensing, autonomous buoys, ocean moorings, field campaigns and numerical models. We suggest the integrated and coordinated use of these tools during the International Polar Year to monitor the state of the Arctic sea ice cover and investigate its governing processes. For example, satellite remote sensing provides the large-scale snapshots of such basic parameters as ice distribution, melt zone, and cloud fraction at intervals of half a day to a week. Buoys and moorings can contribute high temporal resolution and can measure parameters currently unavailable from space including ice thickness, internal ice temperature, and ocean temperature and salinity. Field campaigns can be used to explore, in detail, the processes that govern the ice cover. Numerical models can be used to assess the character of the changes in the ice cover and predict their impacts on the rest of the climate system. This work affords extraordinary opportunities for outreach activities, because of the public interest in both the Arctic and climate change. Data can be streamed to public web sites in near real time, as can photographs and commentaries from field camps. The breadth of activities affords considerable opportunities to engage the next generation of researchers in such diverse fields as computer science, engineering, and geophysics.
Harmonizing Access to Federal Data - Lessons Learned Through the Climate Data Initiative
NASA Astrophysics Data System (ADS)
Bugbee, K.; Pinheiro Privette, A. C.; Meyer, D. J.; Ramachandran, R.
2016-12-01
The Climate Data Initiative (CDI), launched by the Obama Administration in March of 2014, is an effort to leverage the extensive open Federal data to spur innovation and private-sector entrepreneurship in order to advance awareness of and preparedness for the impacts of climate change (see the White House fact sheet). The project includes an online catalog of climate-related datasets and data products in key areas of climate change risk and vulnerability from across the U.S. federal government through http://Climate.Data.gov. NASA was tasked with the implementation and management of the project and has been working closely with Subject Matter Experts (SMEs) and Data Curators (DCs) from across the Federal Government to identify and catalog federal datasets relevant for assessing climate risks and impacts. These datasets are organized around key themes and are framed by key climate questions. The current themes within CDI include: Arctic, Coastal Flooding, Ecosystem Vulnerability, Energy Infrastructure, Food Resilience, Human Health, Transportation, Tribal Nations and Water. This paper summarizes the main lessons learned from the last 2.5 years of CDI implementation.
NASA Astrophysics Data System (ADS)
Gordova, Yulia; Gordov, Evgeny; Okladnikov, Igor; Titov, Alexander
2017-04-01
Due to a global climate change the following consequences are predicted: rise in sea level due to melting glaciers and polar ice, changes in precipitation, changes in the hydrological regime, impact on ecosystems, agriculture and forestry. In Russia's vast territory these effects will be most dramatic. According to Hydrometeorological Center of Russian Federation report there is an increase in the magnitude and frequency of extreme weather events, as well as in their damage to ecosystems and infrastructure. In the framework of adaptation to climate change and mitigation of its consequences it is necessary to promote and support activities aimed at reducing possible risks. Adaptation methods include among others improving seasonal weather forecasts, systems of early warning and systems of management of risks. But there is a problem of insufficient awareness among decision-makers, as well a lack of scientific background. Those responsible for making decisions, stakeholders and the public do not have the skills and knowledge to work with the accumulated climate data to development an adaptation and sustainable development strategy. The goal is to provide these groups with tools, skills, thematic information for understanding climate processes occurring in the region. We believe that the preparation of both the persons responsible for decision-making, and the future specialist in environmental sciences shouldn't be realized artificial learning environment, but on the basis of actual operating computational and information systems used in climate research. Such kind of a system was developed by a team of the Institute of Monitoring of Climatic and Ecological Systems SB RAS. The information-computational Web GIS "Climate" (http://climate.climate.scert.ru) provides opportunities to study regional climate change and its consequences providing access to climate and weather models, a large set of geophysical data and means of processing and visualization. Also, the system is used for undergraduate and graduate students training. In addition, the system capabilities allow creating information resources to raise public awareness about climate change, its causes and consequences, which is a necessary step for the subsequent adaptation to these changes. "Climate" allows climatologists, specialists in related fields, decision-makers, stakeholders and the public use a variety of geographically distributed spatially-referenced data, resources and processing services via a web-browser. Currently, an interactive System User Manual for decision-makers is developed. It contains not only the information needed to use the system and perform practical tasks, but also the basic concepts explained in detail. The knowledge necessary for understanding the causes and possible consequences of the processes is given. The results of implementation of practical tasks are available not only in the form of color surface maps, but also on the Internet and in the form of layers for most GIS. Thus these layers can be used in usual desktop GIS which is a common software for most of decision-makers. Thus, this manual helps to prepare qualified users, which in the future will be able to determine the policy of the region to adapt to climate change impacts and hazards. The work is supported by Russian Science Foundation grant № 16-19-10257.
NASA Technical Reports Server (NTRS)
Jagge, Amy
2016-01-01
With ever changing landscapes and environmental conditions due to human induced climate change, adaptability is imperative for the long-term success of facilities and Federal agency missions. To mitigate the effects of climate change, indicators such as above-ground biomass change must be identified to establish a comprehensive monitoring effort. Researching the varying effects of climate change on ecosystems can provide a scientific framework that will help produce informative, strategic and tactical policies for environmental adaptation. As a proactive approach to climate change mitigation, NASA tasked the Climate Change Adaptation Science Investigators Workgroup (CASI) to provide climate change expertise and data to Center facility managers and planners in order to ensure sustainability based on predictive models and current research. Generation of historical datasets that will be used in an agency-wide effort to establish strategies for climate change mitigation and adaptation at NASA facilities is part of the CASI strategy. Using time series of historical remotely sensed data is well-established means of measuring change over time. CASI investigators have acquired multispectral and hyperspectral optical and LiDAR remotely sensed datasets from NASA Earth Observation Satellites (including the International Space Station), airborne sensors, and astronaut photography using hand held digital cameras to create a historical dataset for the Johnson Space Center, as well as the Houston and Galveston area. The raster imagery within each dataset has been georectified, and the multispectral and hyperspectral imagery has been atmospherically corrected. Using ArcGIS for Server, the CASI-Regional Remote Sensing data has been published as an image service, and can be visualized through a basic web mapping application. Future work will include a customized web mapping application created using a JavaScript Application Programming Interface (API), and inclusion of the CASI data for the NASA Johnson Space Center into a NASA-Wide GIS Institutional Portal.
TECA: Petascale pattern recognition for climate science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabhat, .; Byna, Surendra; Vishwanath, Venkatram
Climate Change is one of the most pressing challenges facing humanity in the 21st century. Climate simulations provide us with a unique opportunity to examine effects of anthropogenic emissions. Highresolution climate simulations produce “Big Data”: contemporary climate archives are ≈ 5PB in size and we expect future archives to measure on the order of Exa-Bytes. In this work, we present the successful application of TECA (Toolkit for Extreme Climate Analysis) framework, for extracting extreme weather patterns such as Tropical Cyclones, Atmospheric Rivers and Extra-Tropical Cyclones from TB-sized simulation datasets. TECA has been run at full-scale on Cray XE6 and IBMmore » BG/Q systems, and has reduced the runtime for pattern detection tasks from years to hours. TECA has been utilized to evaluate the performance of various computational models in reproducing the statistics of extreme weather events, and for characterizing the change in frequency of storm systems in the future.« less
NASA Astrophysics Data System (ADS)
Koutroulis, Aristeidis; Papadimitriou, Lamprini; Grillakis, Manolis; Tsanis, Ioannis
2017-04-01
Recent developments could postpone climate actions in the frame of the global climate deal of the Paris Agreement, making higher-end global warming increasingly plausible. Although not clear in the COP21 water security is fundamental to achieving low-carbon ambitions, thus climate and water policies are closely related. The projection of the relationship between global warming, water availability and water stress through their complex interactions among different sectors, along with the synergies and trade-offs between adaptation and mitigation actions, is a rather challenging task under the prism of climate change. Here we try to develop and apply a simple, transparent conceptual framework describing European vulnerability to hydrological drought of current hydro-climatic and socioeconomic status as well as projected vulnerability at specific levels of global warming (1.5oC, 2oC and 4oC) following highly rates of climatic change (RCP8.5) and considering different levels of adaptation associated to specific socioeconomic pathways (SSP2, SSP3 and SSP5).
Presentation of uncertainties on web platforms for climate change information
NASA Astrophysics Data System (ADS)
Nocke, Thomas; Wrobel, Markus; Reusser, Dominik
2014-05-01
Climate research has a long tradition, however there is still uncertainty about the specific effects of climate change. One of the key tasks is - beyond discussing climate change and its impacts in specialist groups - to present these to a wider audience. In that respect, decision-makers in the public sector as well as directly affected professional groups require to obtain easy-to-understand information. These groups are not made up of specialist scientists. This gives rise to the challenge that the scientific information must be presented such that it is commonly understood, however, the complexity of the science behind needs to be incorporated. In particular, this requires the explicit representation of spatial and temporal uncertainty information to lay people. Within this talk/poster we survey how climate change and climate impact uncertainty information is presented on various climate service web-based platforms. We outline how the specifics of this medium make it challenging to find adequate and readable representations of uncertainties. First, we introduce a multi-step approach in communicating the uncertainty basing on a typology of uncertainty distinguishing between epistemic, natural stochastic, and human reflexive uncertainty. Then, we compare existing concepts and representations for uncertainty communication with current practices on web-based platforms, including own solutions within our web platforms ClimateImpactsOnline and ci:grasp. Finally, we review surveys on how spatial uncertainty visualization techniques are conceived by untrainded users.
Lens on Climate Change (LOCC) - Engaging Secondary Students in Climate Science through Videography
NASA Astrophysics Data System (ADS)
Gold, A. U.; Oonk, D. J.; Smith, L. K.; Sullivan, S. B.; Boykoff, M.; Osnes, B.
2014-12-01
The impact of climate change is often discussed using examples from Polar Regions such as decreasing polar bear populations but significant changes are happening to local climates around the world. Climate change is often perceived as happening elsewhere, evoking a sense that others have to take action to mitigate climate change. Learning about climate change is very tangible for students when it addresses impacts they can observe close to their home. The Lens on Climate Change (LOCC) program engaged Colorado middle and high school students in producing short videos about climate change topics in Colorado, specifically ones that are impacting students' lives and their local community. Participating schools were located in rural, suburban and urban Colorado many of which have diverse student populations and high Free and Reduced Lunch rates. Project staff recruited university graduate and undergraduate student to mentor the students in their research and video production. With the help of these mentors, ten student groups selected and researched climate topics, interviewed science experts from local research institutes and produced short videos. The program aimed at engaging students in self-motivated researching and learning about a climate topic. Furthermore, it served as a way to spark students' interest in a career in science by matching them with college students for the program duration and bringing them to the University of Colorado campus for a final screening event, for many of students their first visit to a college campus. The LOCC middle and high school student groups were in addition paired with undergraduate student groups enrolled in a college course that explores climate change through artistic compositions. The undergraduate students were tasked to develop a companion video based only on a brief prompt from the secondary students. Both student videos were screened back-to-back at a final screening. The LOCC project's goal was to connect secondary students, who would otherwise not have the opportunity, with college life and the scientific community. Our evaluation results showed that the process of video production was a powerful tool for the students to explore and learn about climate change topics. Students and teachers appreciated the unique approach to learning.
González-Romá, Vicente; Hernández, Ana
2014-11-01
We investigated whether climate uniformity (the pattern of climate perceptions of organizational support within the team) is related to task conflict, team communication quality, and team performance. We used a sample composed of 141 bank branches and collected data at 3 time points. The results obtained showed that, after controlling for aggregate team climate, climate strength, and their interaction, a type of nonuniform climate pattern (weak dissimilarity) was directly related to task conflict and team communication quality. Teams with weak dissimilarity nonuniform patterns tended to show higher levels of task conflict and lower levels of team communication quality than teams with uniform climate patterns. The relationship between weak dissimilarity patterns and team performance was fully mediated by team communication quality. (PsycINFO Database Record (c) 2014 APA, all rights reserved).
Future heat stress arising from climate change on Iran's population health.
Modarres, Reza; Ghadami, Mohammad; Naderi, Sohrab; Naderi, Mohammad
2018-04-05
Climate change-induced extreme heat events are becoming a major issue in different parts of the world, especially in developing countries. The assessment of regional and temporal past and future change in heat waves is a crucial task for public health strategies and managements. The historical and future heat index (HI) time series are investigated for temporal change across Iran to study the impact of global warming on public health. The heat index is calculated, and the nonparametric trend assessment is carried out for historical time series (1981-2010). The future change in heat index is also projected for 2020-2049 and 2070-2099 periods. A rise in the historical heat index and extreme caution conditions for summer and spring seasons for major parts of Iran are notable for historical (1981-2010) series in this study. Using different climate change scenarios shows that heat index will exceed the critical threshold for human adaptability in the future in the country. The impact of climate change on heat index risk in Iran is significant in the future. To cope with this crucial situation, developing early warning systems and health care strategies to deal with population growth and remarkable socio-economic features in future is essential.
Future heat stress arising from climate change on Iran's population health
NASA Astrophysics Data System (ADS)
Modarres, Reza; Ghadami, Mohammad; Naderi, Sohrab; Naderi, Mohammad
2018-04-01
Climate change-induced extreme heat events are becoming a major issue in different parts of the world, especially in developing countries. The assessment of regional and temporal past and future change in heat waves is a crucial task for public health strategies and managements. The historical and future heat index (HI) time series are investigated for temporal change across Iran to study the impact of global warming on public health. The heat index is calculated, and the nonparametric trend assessment is carried out for historical time series (1981-2010). The future change in heat index is also projected for 2020-2049 and 2070-2099 periods. A rise in the historical heat index and extreme caution conditions for summer and spring seasons for major parts of Iran are notable for historical (1981-2010) series in this study. Using different climate change scenarios shows that heat index will exceed the critical threshold for human adaptability in the future in the country. The impact of climate change on heat index risk in Iran is significant in the future. To cope with this crucial situation, developing early warning systems and health care strategies to deal with population growth and remarkable socio-economic features in future is essential.
Bortoli, Laura; Bertollo, Maurizio; Vitali, Francesca; Filho, Edson; Robazza, Claudio
2015-06-01
The purpose of this study was to examine the effects of task- and ego-involving climate manipulations on students' climate perception and psychobiosocial (PBS) states in a physical education setting. Two subsamples of female students (N = 108, 14-15 years of age) participated in 12 lessons on either a task- or an ego-involving climate intervention as grounded in the TARGET (tasks, authority, recognition, grouping, evaluation, and time) model. At the end of the treatment, the participants of the ego-involved group reported lower scores in the perceived task-involving climate and higher scores in the perceived ego-involving climate compared with their peers in the task-involved group. Lower scores in pleasant/functional PBS states and higher scores in unpleasant/dysfunctional PBS states were also observed in the ego-involved group as a consequence of the intervention. Findings suggested that teachers' induced achievement motivational climates can influence students' perceptions and prompt PBS states consistent with the motivational atmosphere.
NASA Astrophysics Data System (ADS)
Howard, E. M.; Moore, T.; Hale, S. R.; Hayden, L. B.; Johnson, D.
2014-12-01
The preservice teachers enrolled in the EDUC 203 Introduction to Computer Instructional Technology course, primarily for elementary-level had created climate change educational lessons based upon their use of the NASA Data-enhanced Investigations for Climate Change Education (DICCE). NASA climate education datasets and tools were introduced to faculty of Minority Serving Institutions through a grant from the NASA Innovations in Climate Education program. These lessons were developed to study various ocean processes involving phytoplankton's chlorophyll production over time for specific geographic areas using the Giovanni NASA software tool. The pre-service teachers had designed the climate change content that will assist K-4 learners to identify and predict phytoplankton sources attributed to sea surface temperatures, nutrient levels, sunlight, and atmospheric carbon dioxide associated with annual chlorophyll production. From the EDUC 203 course content, the preservice teachers applied the three phases of the technology integration planning (TIP) model in developing their lessons. The Zunal website (http://www.zunal.com) served as a hypermedia tool for online instructional delivery in presenting the climate change content, the NASA climate datasets, and the visualization tools used for the production of elementary learning units. A rubric was developed to assess students' development of their webquests to meet the overall learning objectives and specific climate education objectives. Accompanying each webquest is a rubric with a defined table of criteria, for a teacher to assess students completing each of the required tasks for each lesson. Two primary challenges of technology integration for elementary pre-service teachers were 1) motivating pre-service teachers to be interested in climate education and 2) aligning elementary learning objectives with the Next Generation science standards of climate education that are non-existent in the Common Core State Standards.
NASA Technical Reports Server (NTRS)
Ohring, G.; Wielicki, B.; Spencer, R.; Emery, B.; Datla, R.
2004-01-01
Measuring the small changes associated with long-term global climate change from space is a daunting task. To address these problems and recommend directions for improvements in satellite instrument calibration some 75 scientists, including researchers who develop and analyze long-term data sets from satellites, experts in the field of satellite instrument calibration, and physicists working on state of the art calibration sources and standards met November 12 - 14, 2002 and discussed the issues. The workshop defined the absolute accuracies and long-term stabilities of global climate data sets that are needed to detect expected trends, translated these data set accuracies and stabilities to required satellite instrument accuracies and stabilities, and evaluated the ability of current observing systems to meet these requirements. The workshop's recommendations include a set of basic axioms or overarching principles that must guide high quality climate observations in general, and a roadmap for improving satellite instrument characterization, calibration, inter-calibration, and associated activities to meet the challenge of measuring global climate change. It is also recommended that a follow-up workshop be conducted to discuss implementation of the roadmap developed at this workshop.
Vulnerability Assessment, Climate Change Impacts and Adaptation Measures in Slovenia
NASA Astrophysics Data System (ADS)
Cegnar, T.
2010-09-01
In relation to the priority tasks of the climate change measures, the Republic of Slovenia estimates that special attention needs to be devoted to the following sectors in general: - sectors that currently indicate a strong vulnerability for the current climate variability (for instance, agriculture), - sectors where the vulnerability for climate change is increased by current trends (for instance, urban development, use of space), - sectors where the adaptation time is the longest and the subsequent development changes are connected with the highest costs (for instance, use of space, infrastructural objects, forestry, urban development, building stock). Considering the views of Slovenia to the climate change problem in Europe and Slovenia, priority measures and emphasis on future adaptation to climate change, the Republic of Slovenia has especially exposed the following action areas: - sustainable and integrated management of water sources for water power production, prevention of floods, provision of water for the enrichment of low flow rates, and preservation of environmental function as well as provision of water for other needs; - sustainable management of forest ecosystems, adjusted to changes, for the provision of their environmental function as well as being a source of biomass, wood for products for the conservation of carbon, and carbon sinks; - spatial planning as one of the important preventive instruments for the adaptation to climate change through the processes of integral planning of spatial and urban development; - sustainable use and preservation of natural wealth and the preservation of biodiversity as well as ecosystem services with measures and policies that enable an enhanced resistance of ecosystems to climate change, and the role of biological diversity in integral adaptation measures; - informing and awareness on the consequences of climate change and adaptation possibilities. For years, the most endangered sectors have been agriculture and forestry; therefore, they are also the only sectors for which a national adaptation strategy was adopted.
Wang, Tongli; Hamann, Andreas; Spittlehouse, Dave; Carroll, Carlos
2016-01-01
Large volumes of gridded climate data have become available in recent years including interpolated historical data from weather stations and future predictions from general circulation models. These datasets, however, are at various spatial resolutions that need to be converted to scales meaningful for applications such as climate change risk and impact assessments or sample-based ecological research. Extracting climate data for specific locations from large datasets is not a trivial task and typically requires advanced GIS and data management skills. In this study, we developed a software package, ClimateNA, that facilitates this task and provides a user-friendly interface suitable for resource managers and decision makers as well as scientists. The software locally downscales historical and future monthly climate data layers into scale-free point estimates of climate values for the entire North American continent. The software also calculates a large number of biologically relevant climate variables that are usually derived from daily weather data. ClimateNA covers 1) 104 years of historical data (1901–2014) in monthly, annual, decadal and 30-year time steps; 2) three paleoclimatic periods (Last Glacial Maximum, Mid Holocene and Last Millennium); 3) three future periods (2020s, 2050s and 2080s); and 4) annual time-series of model projections for 2011–2100. Multiple general circulation models (GCMs) were included for both paleo and future periods, and two representative concentration pathways (RCP4.5 and 8.5) were chosen for future climate data. PMID:27275583
Wang, Tongli; Hamann, Andreas; Spittlehouse, Dave; Carroll, Carlos
2016-01-01
Large volumes of gridded climate data have become available in recent years including interpolated historical data from weather stations and future predictions from general circulation models. These datasets, however, are at various spatial resolutions that need to be converted to scales meaningful for applications such as climate change risk and impact assessments or sample-based ecological research. Extracting climate data for specific locations from large datasets is not a trivial task and typically requires advanced GIS and data management skills. In this study, we developed a software package, ClimateNA, that facilitates this task and provides a user-friendly interface suitable for resource managers and decision makers as well as scientists. The software locally downscales historical and future monthly climate data layers into scale-free point estimates of climate values for the entire North American continent. The software also calculates a large number of biologically relevant climate variables that are usually derived from daily weather data. ClimateNA covers 1) 104 years of historical data (1901-2014) in monthly, annual, decadal and 30-year time steps; 2) three paleoclimatic periods (Last Glacial Maximum, Mid Holocene and Last Millennium); 3) three future periods (2020s, 2050s and 2080s); and 4) annual time-series of model projections for 2011-2100. Multiple general circulation models (GCMs) were included for both paleo and future periods, and two representative concentration pathways (RCP4.5 and 8.5) were chosen for future climate data.
Global partnerships for climate change
USDA-ARS?s Scientific Manuscript database
In a position paper published by the ASABE Global Engagement Task Force (Resource Magazine, ASABE, Spring 2015 Issue), authors outlined the goals for the Agricultural and Biological Engineering Global Initiative. This brief document is intended to represent the first action in this global partnersh...
Variations in the perceptions of peer and coach motivational climate.
Vazou, Spiridoula
2010-06-01
This study examined (a) variations in the perceptions of peer- and coach-generated motivational climate within and between teams and (b) individual- and group-level factors that can account for these variations. Participants were 483 athletes between 12 and 16 years old. The results showed that perceptions of both peer- and coach-generated climate varied as a function of group-level variables, namely team success, coach's gender (except for peer ego-involving climate), and team type (only for coach ego-involving climate). Perceptions of peer- and coach-generated climate also varied as a function of individual-level variables, namely athletes' task and ego orientations, gender, and age (only for coach task-involving and peer ego-involving climate). Moreover, within-team variations in perceptions of peer- and coach-generated climate as a function of task and ego orientation levels were identified. Identifying and controlling the factors that influence perceptions of peer- and coach-generated climate may be important in strengthening task-involving motivational cues.
NASA Astrophysics Data System (ADS)
Adams, P. E.; Heinrichs, J. F.
2010-12-01
One of the greatest challenges facing the world is climate change. Coupled with this challenge is an under-informed population that has not received a rigorous education about climate change other than what is available through the media. Fort Hays State University is in a second year of piloting a course on climate change targeted to students early in their academic careers. The course is modeled after our past work (NSF DUE-0088818) of integrating content knowledge instruction and student-driven research where there was a positive correlation between student research engagement and student knowledge gains. The second pilot offering utilizes a mix of inquiry-based instruction, problem-based learning, and student-driven research to educate and engage the students in understanding climate change. The course was collaboratively developed by a geoscientist and science educator both of whom are active in citizen science programs. The course model is unique in that 50% of the course is dedicated to developing core knowledge and technical skills (e.g. global climate change, critical analysis, writing, data acquisition, data representation, and research design), and 50% to conducting a research project using available data sets from federal agencies and research groups. A key element of the course is a focus on data sets to make climate change relevant to the students. The research serves as a means of civic engagement by the students as they are tasked to understand their role in communicating their research findings to the community and coping with the local and regional changes they find through their research. The impacts of course changes from the first offering to the second offering of the course will be reported, as well as the structure of the course.
Brown, Theresa C; Fry, Mary D
2013-01-01
The aim of this study was to examine the relationship between female college students' perceptions of the motivational climate in their aerobics classes to their adaptive exercise responses. Data were collected from university group exercise classes in spring 2008. The participants (N = 213) responded to a questionnaire measuring perceptions of the climate (i.e., caring, task-, and ego-involving), correlates of intrinsic motivation (i.e., interest/enjoyment, perceived competence, effort/importance, and tension/pressure), commitment to exercise, and reasons for exercising. Canonical correlation analyses revealed that participants who perceived a predominately caring, task-involving climate reported higher interest/enjoyment, perceived competence, effort/importance, and commitment to exercise, as well as lower tension/pressure. Further, those who perceived a high caring, task-involving, and low ego-involving climate were also more likely to report more health-related reasons for exercise versus appearance-focused reasons. Results suggested that important motivational benefits might exist when women perceive caring, task-involving climates in their aerobics class settings. Aerobics class instructors who intentionally create caring, task-involving climates may promote more adaptive motivational responses among their female participants.
NASA Astrophysics Data System (ADS)
Goldenberg, R.; Vigouroux, G.; Chen, Y.; Bring, A.; Kalantari, Z.; Prieto, C.; Destouni, G.
2017-12-01
The Baltic Sea, located in Northern Europe, is one of the world's largest body of brackish water, enclosed and surrounded by nine different countries. The magnitude of climate change may be particularly large in northern regions, and identifying its impacts on vulnerable inland waters and their runoff and nutrient loading to the Baltic Sea is an important and complex task. Exploration of such hydro-climatic impacts is needed to understand potential future changes in physical, ecological and water quality conditions in the regional coastal and marine waters. In this study, we investigate hydro-climatic changes and impacts on the Baltic Sea by synthesizing multi-model climate projection data from the CORDEX regional downscaling initiative (EURO- and Arctic- CORDEX domains, http://www.cordex.org/). We identify key hydro-climatic variable outputs of these models and assess model performance with regard to their projected temporal and spatial change behavior and impacts on different scales and coastal-marine parts, up to the whole Baltic Sea. Model spreading, robustness and impact implications for the Baltic Sea system are investigated for and through further use in simulations of coastal-marine hydrodynamics and water quality based on these key output variables and their change projections. Climate model robustness in this context is assessed by inter-model spreading analysis and observation data comparisons, while projected change implications are assessed by forcing of linked hydrodynamic and water quality modeling of the Baltic Sea based on relevant hydro-climatic outputs for inland water runoff and waterborne nutrient loading to the Baltic sea, as well as for conditions in the sea itself. This focused synthesis and analysis of hydro-climatically relevant output data of regional climate models facilitates assessment of reliability and uncertainty in projections of driver-impact changes of key importance for Baltic Sea physical, water quality and ecological conditions and their future evolution.
Chadee, Dave D; Martinez, Raymond
2016-04-01
Within Latin America and the Caribbean region the impact of climate change has been associated with the effects of rainfall and temperature on seasonal outbreaks of dengue but few studies have been conducted on the impacts of climate on the behaviour and ecology of Aedes aegypti mosquitoes.This study was conducted to examine the adaptive behaviours currently being employed by A. aegypti mosquitoes exposed to the force of climate change in LAC countries. The literature on the association between climate and dengue incidence is small and sometimes speculative. Few laboratory and field studies have identified research gaps. Laboratory and field experiments were designed and conducted to better understand the container preferences, climate-associated-adaptive behaviour, ecology and the effects of different temperatures and light regimens on the life history of A. aegypti mosquitoes. A. aegypti adaptive behaviours and changes in container preferences demonstrate how complex dengue transmission dynamics is, in different ecosystems. The use of underground drains and septic tanks represents a major behaviour change identified and compounds an already difficult task to control A. aegypti populations. A business as usual approach will exacerbate the problem and lead to more frequent outbreaks of dengue and chikungunya in LAC countries unless both area-wide and targeted vector control approaches are adopted. The current evidence and the results from proposed transdisciplinary research on dengue within different ecosystems will help guide the development of new vector control strategies and foster a better understanding of climate change impacts on vector-borne disease transmission. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Miller, M. K.; MacKenzie, S.
2011-12-01
Many aquariums, zoos, museums, and other informal science education (ISE) centers across the country want to connect their visitors with the important issue of climate change. Communicating climate change and the science it embodies is no easy task though, and ISE institutions are seeking creative and collaborative ways to best interpret the issue with their audiences. Some of these institutions, particularly aquariums and zoos, have live specimens on exhibit that stand to be severely impacted by climate change. Others see it as an educational and moral imperative to address such an important issue affecting the world today, especially one so close to the core mission of their institution. Regardless, informal science educators have noticed that the public is increasingly coming to them with questions related to climate change, and they want to be able to respond as effectively as they can. The Monterey Bay Aquarium is one partner in a coalition of aquariums, zoos, museums and informal science education institutions that are working together to present climate change to its visitors. These institutions hold enormous public trust as sources of sound scientific information. Whether it is through exhibitions like the Aquarium's Hot Pink Flamingos: Stories of Hope in a Changing Sea, interpretive and communication techniques to navigate challenging climate change discussions, or with sustainability planning and operational greening efforts, there is a concerted movement to improve the capacity of these institutions to respond to the issue. Ultimately, their goal is to inspire visitors in a way that positively impacts the country's discourse surrounding climate change, and helps steer our dialog toward a focus on solutions. In addition to the Hot Pink Flamingos exhibit, the Aquarium is also working with the coalition to build a website, www.climateinterpreter.org, that can serve as an online platform for sharing the experiences of what different partners have learned at their respective locations, and a clearinghouse for resources related to effectively communicating climate change. While the website was built for informal science educators, its content and information will be a valuable resource for everyone in the science and education community. There is a broad need for a better way to present climate change to a variety of audiences, whether it is the public, students, or just a colleague and peer.
Coach-initiated motivational climate and cohesion in youth sport.
Eys, Mark A; Jewitt, Eryn; Evans, M Blair; Wolf, Svenja; Bruner, Mark W; Loughead, Todd M
2013-09-01
The general purpose of the present study was to examine the link between cohesion and motivational climate in youth sport. The first specific objective was to determine if relationships demonstrated in previous research with adult basketball and handball participants would be replicated in a younger sample and with a more heterogeneous set of sports. The second specific objective was to examine whether sources of athlete enjoyment moderate the relationships between motivational climate and cohesion. Athletes (N = 997; 532 girls and 465 boys; Mage = 15.26 +/- 1.20 years) completed measures pertaining to coach-initiated motivational climate, cohesion, and sources of enjoyment. Bivariate and canonical correlations revealed positive correlations between perceptions of a task-involving motivational climate and both task and social cohesion, while ego-involving motivational climate was negatively related. Cluster analyses suggested that individuals perceiving a low task-involving climate and high ego-involving climate perceived their teams as less cohesive. Finally, the degree to which participants derived enjoyment through other-referenced competency served as a moderator in the motivational climate-task cohesion relationship. Specifically, the relationship between task cohesion and motivational climate was more pronounced for those individuals who were less likely to derive enjoyment through other-referenced competency. Youth athletes' perceptions of coach-initiated motivational climate are related to cohesion. This relationship is, however, moderated by the degree to which athletes derive enjoyment through other-referenced competency. Motivational climate is an important variable to consider within team-building protocols intent on developing cohesion.
ERIC Educational Resources Information Center
Blaum, Dylan; Griffin, Thomas D.; Wiley, Jennifer; Britt, M. Anne
2017-01-01
We examined students' understanding of the causes of a scientific phenomenon from a multiple-document-inquiry unit. Students read several documents that each described causal factors that could be integrated to address the given writing task of explaining the causes of change in average global temperature. We manipulated whether the document set…
NASA Astrophysics Data System (ADS)
Halversen, C.; Weiss, E. L.; Pedemonte, S.
2016-02-01
Today's youth have been tasked with the overwhelming job of addressing the world's climate future. The students who will become the scientists, policy makers, and citizens of tomorrow must gain a robust understanding of the causes and effects of climate change, as well as possible adaptation strategies. Currently, few high quality curriculum materials exist that address climate change in a developmentally appropriate manner. The NOAA-funded Ocean Sciences Sequence for Grades 6-8: The Ocean-Atmosphere Connection and Climate Change (OSS) addresses this gap by providing teachers with scientifically accurate climate change curriculum that hits on some of the most salient points in climate science, while simultaneously developing students' science process skills. OSS was developed through a collaboration between some of the nation's leading ocean and climate scientists and the Lawrence Hall of Science's highly qualified curriculum development team. Scientists were active partners throughout the entire development process, from initial brainstorming of key concepts and creating the conceptual storyline for the curriculum to final review of the content and activities. The goal was to focus strategically and effectively on core concepts within ocean and climate sciences that students should understand. OSS was designed in accordance with the latest research from the learning sciences and provides numerous opportunities for students to develop facility with science practices by "doing" science.Through hands-on activities, technology, informational readings, and embedded assessments, OSS deeply addresses a significant number of standards from the Next Generation Science Standards and is being used by many teachers as they explore the shifts required by NGSS. It also aligns with the Ocean Literacy and Climate Literacy Frameworks. OSS comprises 33 45-minute sessions organized into three thematic units, each driven by an exploratory question: (1) How do the ocean and atmosphere interact?; (2) How does carbon flow through the ocean, land, and atmosphere?; and (3) What are the causes and effects of climate change? The curriculum deliberately explores the ocean and climate as global systems and challenges students to use scientific evidence to make explanations about climate change.
The origin of climate changes.
Delecluse, P
2008-08-01
Investigation on climate change is coordinated by the Intergovernmental Panel on Climate Change (IPCC), which has the delicate task of collecting recent knowledge on climate change and the related impacts of the observed changes, and then developing a consensus statement from these findings. The IPCC's last review, published at the end of 2007, summarised major findings on the present climate situation. The observations show a clear increase in the temperature of the Earth's surface and the oceans, a reduction in the land snow cover, and melting of the sea ice and glaciers. Numerical modelling combined with statistical analysis has shown that this warming trend is very likely the signature of increasing emissions of greenhouse gases linked with human activities. Given the continuing social and economic development around the world, the IPCC emission scenarios forecast an increasing greenhouse effect, at least until 2050 according to the most optimistic models. The model ensemble predicts a rising temperature that will reach dangerous levels for the biosphere and ecosystems within this century. Hydrological systems and the potential significant impacts of these systems on the environment are also discussed. Facing this challenging future, societies must take measures to reduce emissions and work on adapting to an inexorably changing environment. Present knowledge is sufficientto start taking action, but a stronger foundation is needed to ensure that pertinent long-term choices are made that will meet the demands of an interactive and rapidly evolving world.
Modeling human-climate interaction
NASA Astrophysics Data System (ADS)
Jacoby, Henry D.
If policymakers and the public are to be adequately informed about the climate change threat, climate modeling needs to include components far outside its conventional boundaries. An integration of climate chemistry and meteorology, oceanography, and terrestrial biology has been achieved over the past few decades. More recently the scope of these studies has been expanded to include the human systems that influence the planet, the social and ecological consequences of potential change, and the political processes that lead to attempts at mitigation and adaptation. For example, key issues—like the relative seriousness of climate change risk, the choice of long-term goals for policy, and the analysis of today's decisions when uncertainty may be reduced tomorrow—cannot be correctly understood without joint application of the natural science of the climate system and social and behavioral science aspects of human response. Though integration efforts have made significant contributions to understanding of the climate issue, daunting intellectual and institutional barriers stand in the way of needed progress. Deciding appropriate policies will be a continuing task over the long term, however, so efforts to extend the boundaries of climate modeling and assessment merit long-term attention as well. Components of the effort include development of a variety of approaches to analysis, the maintenance of a clear a division between close-in decision support and science/policy research, and the development of funding institutions that can sustain integrated research over the long haul.
NASA Astrophysics Data System (ADS)
Gordova, Yulia; Okladnikov, Igor; Titov, Alexander; Gordov, Evgeny
2016-04-01
While there is a strong demand for innovation in digital learning, available training programs in the environmental sciences have no time to adapt to rapid changes in the domain content. A joint group of scientists and university teachers develops and implements an educational environment for new learning experiences in basics of climatic science and its applications. This so-called virtual learning laboratory "Climate" contains educational materials and interactive training courses developed to provide undergraduate and graduate students with profound understanding of changes in regional climate and environment. The main feature of this Laboratory is that students perform their computational tasks on climate modeling and evaluation and assessment of climate change using the typical tools of the "Climate" information-computational system, which are usually used by real-life practitioners performing such kind of research. Students have an opportunity to perform computational laboratory works using information-computational tools of the system and improve skills of their usage simultaneously with mastering the subject. We did not create an artificial learning environment to pass the trainings. On the contrary, the main purpose of association of the educational block and computational information system was to familiarize students with the real existing technologies for monitoring and analysis of data on the state of the climate. Trainings are based on technologies and procedures which are typical for Earth system sciences. Educational courses are designed to permit students to conduct their own investigations of ongoing and future climate changes in a manner that is essentially identical to the techniques used by national and international climate research organizations. All trainings are supported by lectures, devoted to the basic aspects of modern climatology, including analysis of current climate change and its possible impacts ensuring effective links between theory and practice. Along with its usage in graduate and postgraduate education, "Climate" is used as a framework for a developed basic information course on climate change for common public. In this course basic concepts and problems of modern climate change and its possible consequences are described for non-specialists. The course will also include links to relevant information resources on topical issues of Earth Sciences and a number of case studies, which are carried out for a selected region to consolidate the received knowledge.
The climate crisis: An introductory guide to climate change
NASA Astrophysics Data System (ADS)
Trenberth, Kevin E.
2011-06-01
Human-induced climate change, sometimes called “global warming,” has, unfortunately, become a “hot” topic, embroiled in controversy, misinformation, and claims and counterclaims. It should not be this way, because there are many scientific facts that provide solid information on which to base policy. There is a very strong observational, theoretical, and modeling base in physical science that underpins current understanding of what has happened to Earth's climate and why and what the prospects are for the future under certain assumptions. Moreover, these changes have impacts, which are apt to grow, on the environment and human society. To avoid or reduce these impacts and the economic and human effects of undesirable future climate change requires actions that are strongly opposed by those with vested interests in the status quo, some of whom have funded misinformation campaigns that have successfully confused the public and some politicians, leading to paralysis in political action. Without mitigation of climate change, one would suppose that at least society would plan sensibly for the changes already happening and projected, but such future adaptation plans are also largely in limbo. The implication is that we will suffer the consequences. All of these aspects are addressed in this informative and attractive book, which is written for a fairly general but technically informed audience. The book is strongly based upon the 2007 Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) and therefore has a solid scientific basis. Many figures, graphs, and maps come from the three IPCC working group reports, although the captions often do not explain the detail shown. Given that the IPCC reports totaled nearly 3000 pages, to distill the complex material down to 249 pages is no mean task, and the authors have succeeded quite well.
NASA Astrophysics Data System (ADS)
Karsten, J. L.; Niepold, F.; Wei, M.; Waple, A. M.
2008-12-01
Thirteen Federal agencies in the United States invest in research, communication, and education activities related to climate and global change. The U.S. Climate Change Science Program (CCSP) works to integrate the research activities of these different agencies, with oversight from the Office of Science and Technology Policy, the Council on Environmental Quality, the National Economic Council and the Office of Management and Budget. The CCSP is the result of a Presidential initative in 2001 to build on the Global Change Research Program, which exists as a result of the Global Change Research Act of 1990. This initiative was to shift the focus of the Program from 'discovery and characterization' to 'differentiation and strategy investigation.' With this shift, CCSP's focus is now on evaluating optimal strategies for addressing climate change risks, improving coordination among the Federal agencies, communicating research results to all stakeholders (including national policy leaders and local resource managers), and improving public debate and decision-making related to global change. Implicit to these activities is the need to educate the general public about the science of climate change and its consequences, as well as coordinate Federal investments related to climate change education. This is no small task, given the variety of missions and approaches of the participating agencies. Recognizing that its Communications Interagency Working Group (CIWG) does not have the expertise or focus to adequately address issues related to science education, the CCSP recently established an ad-hoc Education Interagency Working Group (EIWG), comprising representatives from all 13 agencies, that will work closely with the CIWG to enhance education goals. Its mission is to advance literacy in climate and related sciences and increase informed decision making for the Nation. The EIWG envisions that its primary activities in the near-term will be focused on establishing: (1) a consensus framework to define climate literacy; (2) a protocol and process for vetting, reviewing, and assuring scientific quality of educational materials related to climate change; (3) a Federal network of professionals who can share, access, and identify complementary educational materials; (4) a suite of evaluation tools to gauge effectiveness of interagency programs related to climate change education; (5) a clearinghouse or central repository of climate change education resources and expertise; and (6) professional development resources for educators seeking to improve their understanding of climate change and related Earth system science principles.
Appenzeller receives 2005 Walter Sullivan Award for Excellence in Science Journalism
NASA Astrophysics Data System (ADS)
Addison, Lynn; Appenzeller, Tim
When National Geographic began plans to address the issue of global climate change, we asked Tim Appenzeller to write the keystone piece for a series of articles that would document the most recent scientific consensus. His description of the carbon cycle in “The Case of the Missing Carbon” would be a fundamental part of the entire package. To explain that complex, finely calibrated global mechanism to six million readers was the task we set before him.A daunting task perhaps, but not for Tim Appenzeller, a science journalist with great talent for precise thinking and elegant writing. “The Case of the Missing Carbon” lays it all out, tracing the circulation of carbon between air, land, and water that sustains life on Earth and controls its climate.
Global and regional sea level rise scenarios for the United States
Sweet, W.; Kopp, R.E.; Weaver, C.P.; Obeysekera, J; Horton, Radley M.; Thieler, E. Robert; Zervas, C.
2017-01-01
level (RSL, which includes both ocean-level change and vertical land motion) projections for the United States associated with an updated set of GMSL scenarios. In addition to supporting the longer-term Task Force effort, this new product will be an important input into the USGCRP Sustained Assessment process and upcoming Fourth National Climate Assessment (NCA4) due in 2018. This report also serves as a keytechnical input into the in-progress USGCRP Climate Science Special Report (CSSR).
Why "Working Smarter" Isn't Working: White-Collar Productivity Improvement.
ERIC Educational Resources Information Center
Shaw, Edward
2001-01-01
Discusses the productivity and work days of white collar workers. Topics include productivity improvement; task analysis; the amount of time spent reading, and how to reduce it by improving writing skills; time spent in meetings; empowered time management; and sustaining a climate for change. (LRW)
DOT National Transportation Integrated Search
2014-06-01
As part of Gulf Coast Study Phase 2, the U.S. Department of Transportation (U.S. DOT) sought to improve its understanding of how a metropolitan transportation systemincluding highways, ports, airports, rail, transit, and pipelinescould be affec...
U.S. Federal Investments in Climate Change Education: They're Warming Up! (Invited)
NASA Astrophysics Data System (ADS)
Karsten, J. L.; Niepold, F.; Wei, M.; Usgcrp Education Interagency Working Group
2010-12-01
Many similarities exist between the U.S. federal government and the climate system, in terms of their complexity. Government operates through a dynamic interplay of sub-systems (different agencies), pressure gradients (political interests), energy transformations (converting dollars into activity through Congressional appropriations, grants and contracts), and non-linear positive and negative feedback mechanisms (MOU’s, competing agency missions). ‘Viscosity’ in the system makes progress difficult. The good news is that, like the climate, federal investments in climate change education are heating up, due to man-made inputs. Individual agency investments in projects to improve and monitor public understanding of climate change and its impacts are rapidly becoming more coupled and coherent. This paper will discuss several efforts now underway. In FY 2009, dedicated, multi-million dollar funding led to creation of NSF’s Climate Change Education (CCE) and NASA’s Global Climate Change Education (GCCE) grant programs, which are funding a projects to develop pedagogically-sound learning resources, professional development strategies, tool kits, and web-based clearinghouses offering scientifically accurate information about climate change to different learner audiences. NOAA has been able to firmly establish their Environmental Literacy Grant (ELG) program because of the America COMPETES Act. Related programs are being developed within the EPA and USDA’s NIFA and U.S. Forest Service. Several other agencies have revamped their strategic plans to increase focus on communicating with and educating teachers, students, policymakers, and the general public about climate change, adaptation, and mitigation issues. To foster larger networks of scientists and educators, minimize duplication, and encourage synergy and scale-up, NSF, NOAA, and NASA have initiated joint meetings of their CCE, GCCE, and ELG Principal Investigators and shared evaluations. Additional cross-agency linkages are being encouraged through NSF’s new Climate Change Education Partnership (CCEP) program, which launched 15 Phase I Partnerships focused around specific geographic regions or scientific themes unified by common climate change impacts. When fully implemented in Phase II, CCEP expects to increase the adoption of high quality educational resources and their impact on public climate literacy. Phase I strategic planning efforts will identify and engage relevant stakeholders, inventory existing climate change education resources for that theme or region, conduct a needs analysis, and develop a robust strategic plan for implementation in Phase II. The U.S. Global Change Research Program (USGCRP) is the primary organizational structure through which the 13 federal agencies that conduct climate-related research, education, and outreach are coordinating their efforts. The Climate Literacy framework is one example of the constructive collaboration that has been achieved through the USGCRP Education Interagency Working Group. Additional efforts are being planned through a new Interagency Climate Communication and Education Task Force.
Climate-Smart Design for Ecosystem Management: A Test Application for Coral Reefs.
West, Jordan M; Courtney, Catherine A; Hamilton, Anna T; Parker, Britt A; Julius, Susan H; Hoffman, Jennie; Koltes, Karen H; MacGowan, Petra
2017-01-01
The interactive and cumulative impacts of climate change on natural resources such as coral reefs present numerous challenges for conservation planning and management. Climate change adaptation is complex due to climate-stressor interactions across multiple spatial and temporal scales. This leaves decision makers worldwide faced with local, regional, and global-scale threats to ecosystem processes and services, occurring over time frames that require both near-term and long-term planning. Thus there is a need for structured approaches to adaptation planning that integrate existing methods for vulnerability assessment with design and evaluation of effective adaptation responses. The Corals and Climate Adaptation Planning project of the U.S. Coral Reef Task Force seeks to develop guidance for improving coral reef management through tailored application of a climate-smart approach. This approach is based on principles from a recently-published guide which provides a framework for adopting forward-looking goals, based on assessing vulnerabilities to climate change and applying a structured process to design effective adaptation strategies. Work presented in this paper includes: (1) examination of the climate-smart management cycle as it relates to coral reefs; (2) a compilation of adaptation strategies for coral reefs drawn from a comprehensive review of the literature; (3) in-depth demonstration of climate-smart design for place-based crafting of robust adaptation actions; and (4) feedback from stakeholders on the perceived usefulness of the approach. We conclude with a discussion of lessons-learned on integrating climate-smart design into real-world management planning processes and a call from stakeholders for an "adaptation design tool" that is now under development.
Bradley, Bret H; Postlethwaite, Bennett E; Klotz, Anthony C; Hamdani, Maria R; Brown, Kenneth G
2012-01-01
Past research suggests that task conflict may improve team performance under certain conditions; however, we know little about these specific conditions. On the basis of prior theory and research on conflict in teams, we argue that a climate of psychological safety is one specific context under which task conflict will improve team performance. Using evidence from 117 project teams, the present research found that psychological safety climate moderates the relationship between task conflict and performance. Specifically, task conflict and team performance were positively associated under conditions of high psychological safety. The results support the conclusion that psychological safety facilitates the performance benefits of task conflict in teams. Theoretical implications and suggestions for future research are discussed.
Providing rapid climate risk assessments to support cities (Invited)
NASA Astrophysics Data System (ADS)
Rosenzweig, C.; Solecki, W.; Horton, R. M.; Bader, D.; Ali, S.
2013-12-01
Hurricane Sandy struck the East Coast of the United States on October 29, 2012 and brought the issue of urban resilience to the forefront of public discussion not only in New York City, but in cities around the world. While Hurricane Sandy as an individual extreme climate event cannot be attributed to climate change, it can serve as a warning for cities regarding disaster risks, focus attention on the importance of reducing climate vulnerability, and the need to include increasing climate risks and resilience into rebuilding programs. As severe as Sandy was, the the storm could have been much worse. The science behind potential impacts was ';in place' and ';in time,' i.e., climate risks were well understood before the storm, due to work by scientists in the region starting in the late 1990s. In the wake of this transformative storm, the rebuilding process in New York is being informed by the potential for a changing climate. The $20 billion Special Initiative for Rebuilding and Resiliency (SIRR) Plan for New York is grounded upon climate risk information provided by the New York City Panel on Climate Change (NPCC). This expert panel, tasked with advising on the City on climate-related issues, completed a 'rapid response' climate assessment with updated climate projections and coastal flood maps. Cities are emerging as the ';first responders' to climate change in both adaptation and mitigation. Their efforts are playing a role in catalyzing national and international responses as well. New York City's actions in the wake of Hurricane Sandy are an example of a positive tipping-point response. The Urban Climate Change Research Network, a consortium of over 450 scholars and practitioners in developing and developed country cities around the world, was established in 2007 to enhance science-based decision-making on climate and other sustainability related issues in urban areas around the world. The UCCRN's first major publication is the First UCCRN Assessment Report on Climate Change and Cities (ARC3), which represents a four-year effort by 110 authors from 50+ cities around the world, and is the first ever global, interdisciplinary, science-based assessment to address climate risks, adaptation, mitigation, and policy mechanisms relevant to cities. The UCCRN has initiated the process of developing the Second UCCRN Report on Climate Change and Cities (ARC3-2), to facilitate ongoing and active learning and to continue providing practical, evidence-based guidance for city decision-makers.
NASA Astrophysics Data System (ADS)
Kabanov, Mikhail V.
2002-02-01
Peculiarity of nature and climate changes in middle latitudes of the Northern Hemisphere and in Siberia is that the temporal variability of meteorological quantities here has a wide range and their spatial variability has a complicated zone structure. Therefore, regional monitoring of modern nature and climate changes in Siberia is of scientific interest from the viewpoint of the global changes observed. Another Siberian peculiarity is associated with the fact that there are many unique objects that have global importance both as natural complexes (boreal forests, water- bog systems, Baikal lake, etc.) And as technogenic objects (oil and gas production, coal mining, metallurgy, transport, etc.). Therefore monitoring and modeling of regional nature and climate changes in Siberia have great practical importance, which is underestimated now, for industrial development of Siberia. Taking into account the above peculiarities and tendencies on investigation of global and regional environmental and climate changes, the multidisciplinary project on Climate and Ecological Monitoring of Siberia (CEMS) was accepted to the research and development program Sibir' since 1993. To realize this project, the Climate and Ecological Observatory was established in Tomsk at the Institute for Optical Monitoring (IOM) SB RAS. At the present time the stations (the basic and background ones) of this observatory are in a progress and theory and instruments for monitoring are being developed as well. In this paper we discuss some results obtained in the framework of CEMS project that were partially published in the monographs, in scientific journals, and will be published in the Proceedings of the 8th Joint International Symposium on Atmospheric and Ocean Optics and Atmosphere Physics. This review has a purpose not only to discuss the obtained regularities but also to formulate scientific and technical tasks for further investigations into the regional changes of technogenic, natural, and climate systems.
The influence of climate on peatland extent in Western Siberia since the Last Glacial Maximum
Alexandrov, G. A.; Brovkin, V. A.; Kleinen, T.
2016-01-01
Boreal and subarctic peatlands are an important dynamical component of the earth system. They are sensitive to climate change, and could either continue to serve as a carbon sink or become a carbon source. Climatic thresholds for switching peatlands from sink to source are not well defined, and therefore, incorporating peatlands into Earth system models is a challenging task. Here we introduce a climatic index, warm precipitation excess, to delineate the potential geographic distribution of boreal peatlands for a given climate and landscape morphology. This allows us to explain the present-day distribution of peatlands in Western Siberia, their absence during the Last Glacial Maximum, their expansion during the mid-Holocene, and to form a working hypothesis about the trend to peatland degradation in the southern taiga belt of Western Siberia under an RCP 8.5 scenario for the projected climate in year 2100. PMID:27095029
The influence of climate on peatland extent in Western Siberia since the Last Glacial Maximum.
Alexandrov, G A; Brovkin, V A; Kleinen, T
2016-04-20
Boreal and subarctic peatlands are an important dynamical component of the earth system. They are sensitive to climate change, and could either continue to serve as a carbon sink or become a carbon source. Climatic thresholds for switching peatlands from sink to source are not well defined, and therefore, incorporating peatlands into Earth system models is a challenging task. Here we introduce a climatic index, warm precipitation excess, to delineate the potential geographic distribution of boreal peatlands for a given climate and landscape morphology. This allows us to explain the present-day distribution of peatlands in Western Siberia, their absence during the Last Glacial Maximum, their expansion during the mid-Holocene, and to form a working hypothesis about the trend to peatland degradation in the southern taiga belt of Western Siberia under an RCP 8.5 scenario for the projected climate in year 2100.
Anthropogenic and Natural Changes in the Climate of China: Can we Separate Them ?
NASA Astrophysics Data System (ADS)
Li, Z.; Yang, X.
2015-12-01
Climate changes result from all forces, natural and anthropogenic. Among various anthropogenic factors, greenhouse gases, aerosol and urbanization are arguably the most significant ones whose effects are often hard to differentiate, as they often intertwined together. It is, however, extremely, important to separate their effects for the sake of both science (e.g. accounting for them in GCMs) and for making sound policy in light of their diverse implications. Few places in the world are more affected by all three factors than China where decades of fast development have drastically altered atmospheric and terrestrial environment with huge greenhouse emissions. Such changes have left deep footprints in the climate system. While the anthropogenic impact is substantial, it is a nontrivial task to detangle them. In this talk, I will present a pilot study showing how changes in temperature and precipitation are linked with these factors with a particular focus on temperature and precipitation. From their long-term observations, we are able to see the contributions of increasing air pollution to mean, maximum and minimum temperatures, and rainfall of varying intensity from drizzle to thunderstorms. By means of analysis of long-term meteorological records and model simulations, we have tried to differentiate natural and anthropogenic changes in the climate of China.
Jaakkola, T; Ntoumanis, N; Liukkonen, J
2016-01-01
The aim of this study was to investigate the relations among situational motivational climate, dispositional approach and avoidance achievement goals, perceived sport ability, and enjoyment in Finnish male junior ice hockey players. The sample comprised 265 junior B-level male players with a mean age of 17.03 years (SD = 0.63). Players filled questionnaires tapping their perceptions of coach motivational climate, achievement goals, perceived sport ability, and enjoyment. For the statistical analysis, players were divided into high and low perceived sport ability groups. Multigroup structural equation modeling (SEM) revealed an indirect path from task-involving motivational climate via task-approach goal to enjoyment. Additionally, SEM demonstrated four other direct associations, which existed in both perceived ability groups: from ego-involving motivational climate to ego-approach and ego-avoidance goals; from ego-approach goal to ego-avoidance goal; and from task-avoidance goal to ego-avoidance goal. Additionally, in the high perceived sport ability group, there was an association from task-involving motivational climate to enjoyment. The results of this study reveal that motivational climate emphasizing effort, personal development and improvement, and achievement goal mastering tasks are significant elements of enjoyment in junior ice hockey. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Müller, M. F.; Thompson, S. E.
2015-09-01
The prediction of flow duration curves (FDCs) in ungauged basins remains an important task for hydrologists given the practical relevance of FDCs for water management and infrastructure design. Predicting FDCs in ungauged basins typically requires spatial interpolation of statistical or model parameters. This task is complicated if climate becomes non-stationary, as the prediction challenge now also requires extrapolation through time. In this context, process-based models for FDCs that mechanistically link the streamflow distribution to climate and landscape factors may have an advantage over purely statistical methods to predict FDCs. This study compares a stochastic (process-based) and statistical method for FDC prediction in both stationary and non-stationary contexts, using Nepal as a case study. Under contemporary conditions, both models perform well in predicting FDCs, with Nash-Sutcliffe coefficients above 0.80 in 75 % of the tested catchments. The main drives of uncertainty differ between the models: parameter interpolation was the main source of error for the statistical model, while violations of the assumptions of the process-based model represented the main source of its error. The process-based approach performed better than the statistical approach in numerical simulations with non-stationary climate drivers. The predictions of the statistical method under non-stationary rainfall conditions were poor if (i) local runoff coefficients were not accurately determined from the gauge network, or (ii) streamflow variability was strongly affected by changes in rainfall. A Monte Carlo analysis shows that the streamflow regimes in catchments characterized by a strong wet-season runoff and a rapid, strongly non-linear hydrologic response are particularly sensitive to changes in rainfall statistics. In these cases, process-based prediction approaches are strongly favored over statistical models.
NASA Astrophysics Data System (ADS)
Adams, P. E.; Heinrichs, J. F.
2009-12-01
One of the greatest challenges facing the world is climate change. Coupled with this challenge is an under-informed population that has not received a rigorous education about climate change other than what is available through the media. Fort Hays State University is piloting a course on climate change targeted to students early in their academic careers. The course is modeled after our past work (NSF DUE-0088818) of integrating content knowledge instruction and student-driven research where there was a positive correlation between student research engagement and student knowledge gains. The current course, based on prior findings, utilizes a mix of inquiry-based instruction, problem-based learning, and student-driven research to educate and engage the students in understanding climate change. The course was collaboratively developed by a geoscientist and science educator both of whom are active in citizen science programs. The emphasis on civic engagement by students is reflected in the course structure. The course model is unique in that 50% of the course is dedicated to developing core knowledge and technical skills (e.g. critical analysis, writing, data acquisition, data representation, and research design), and 50% to conducting a research project using available data sets from federal agencies and research groups. A key element of the course is a focus on local and regional data sets to make climate change relevant to the students. The research serves as a means of civic engagement by the students as they are tasked to understand their role in communicating their research findings to the community and coping with the local and regional changes they find through their research.
Constructing Scientific Arguments Using Evidence from Dynamic Computational Climate Models
NASA Astrophysics Data System (ADS)
Pallant, Amy; Lee, Hee-Sun
2015-04-01
Modeling and argumentation are two important scientific practices students need to develop throughout school years. In this paper, we investigated how middle and high school students ( N = 512) construct a scientific argument based on evidence from computational models with which they simulated climate change. We designed scientific argumentation tasks with three increasingly complex dynamic climate models. Each scientific argumentation task consisted of four parts: multiple-choice claim, openended explanation, five-point Likert scale uncertainty rating, and open-ended uncertainty rationale. We coded 1,294 scientific arguments in terms of a claim's consistency with current scientific consensus, whether explanations were model based or knowledge based and categorized the sources of uncertainty (personal vs. scientific). We used chi-square and ANOVA tests to identify significant patterns. Results indicate that (1) a majority of students incorporated models as evidence to support their claims, (2) most students used model output results shown on graphs to confirm their claim rather than to explain simulated molecular processes, (3) students' dependence on model results and their uncertainty rating diminished as the dynamic climate models became more and more complex, (4) some students' misconceptions interfered with observing and interpreting model results or simulated processes, and (5) students' uncertainty sources reflected more frequently on their assessment of personal knowledge or abilities related to the tasks than on their critical examination of scientific evidence resulting from models. These findings have implications for teaching and research related to the integration of scientific argumentation and modeling practices to address complex Earth systems.
The Ophidia Stack: Toward Large Scale, Big Data Analytics Experiments for Climate Change
NASA Astrophysics Data System (ADS)
Fiore, S.; Williams, D. N.; D'Anca, A.; Nassisi, P.; Aloisio, G.
2015-12-01
The Ophidia project is a research effort on big data analytics facing scientific data analysis challenges in multiple domains (e.g. climate change). It provides a "datacube-oriented" framework responsible for atomically processing and manipulating scientific datasets, by providing a common way to run distributive tasks on large set of data fragments (chunks). Ophidia provides declarative, server-side, and parallel data analysis, jointly with an internal storage model able to efficiently deal with multidimensional data and a hierarchical data organization to manage large data volumes. The project relies on a strong background on high performance database management and On-Line Analytical Processing (OLAP) systems to manage large scientific datasets. The Ophidia analytics platform provides several data operators to manipulate datacubes (about 50), and array-based primitives (more than 100) to perform data analysis on large scientific data arrays. To address interoperability, Ophidia provides multiple server interfaces (e.g. OGC-WPS). From a client standpoint, a Python interface enables the exploitation of the framework into Python-based eco-systems/applications (e.g. IPython) and the straightforward adoption of a strong set of related libraries (e.g. SciPy, NumPy). The talk will highlight a key feature of the Ophidia framework stack: the "Analytics Workflow Management System" (AWfMS). The Ophidia AWfMS coordinates, orchestrates, optimises and monitors the execution of multiple scientific data analytics and visualization tasks, thus supporting "complex analytics experiments". Some real use cases related to the CMIP5 experiment will be discussed. In particular, with regard to the "Climate models intercomparison data analysis" case study proposed in the EU H2020 INDIGO-DataCloud project, workflows related to (i) anomalies, (ii) trend, and (iii) climate change signal analysis will be presented. Such workflows will be distributed across multiple sites - according to the datasets distribution - and will include intercomparison, ensemble, and outlier analysis. The two-level workflow solution envisioned in INDIGO (coarse grain for distributed tasks orchestration, and fine grain, at the level of a single data analytics cluster instance) will be presented and discussed.
Motivational predictors of prosocial and antisocial behaviour in football.
Kavussanu, Maria
2006-06-01
This study examined (a) the main and interactive effects of goal orientations and perceived motivational climate on prosocial and antisocial behaviour, and (b) whether number of seasons one has played for the team interacts with motivational climate in predicting prosocial and antisocial behaviour in association football. Participants were 325 male association football players, whose age ranged from 12 to 17 years. Athletes completed questionnaires measuring frequency of prosocial and antisocial behaviours in football, goal orientation, motivational climate and social desirability, and indicated the number of seasons they had played for their current team. Regression analyses revealed that task orientation and mastery climate were positive predictors of prosocial behaviour, whereas ego orientation and performance climate were positive predictors of antisocial behaviour. In addition, task orientation negatively predicted antisocial behaviour, while ego orientation negatively predicted prosocial behaviour. No significant interactions between task and ego orientation and mastery and performance motivational climate were found. Finally, mastery climate negatively predicted antisocial behaviour for those who had played many seasons for the team. In conclusion, strengthening task orientation and mastery climate and weakening ego orientation may enhance prosocial behaviour. However, for antisocial conduct to be eliminated from the context of association football, ego orientation and performance climate need to be tempered, as these constructs exert unique independent effects on antisocial behaviour.
Exploring Undergraduate Engagement With The Consequences of Climate Change
NASA Astrophysics Data System (ADS)
Young, N.; Danielson, R.; Lombardi, D.
2013-12-01
Engendering conceptual change from naive to scientifically sophisticated beliefs is a difficult task. One factor that fosters conceptual change is greater engagement with a topic. Yet if one asks about a topic in the wrong way, one may fail to find engagement where it exists or assume it exists where it does not. Climate change is an immense topic with consequences across many domains and people may be more concerned with specific consequences than with the topic generally. Therefore, it may be helpful to disambiguate the various risks to see which consequences people find especially engaging and which they do not. We asked 188 undergraduate students at a large university in California to rate twenty-five potential consequences of climate change on several questions. The questions were drawn from constructs that lead to greater engagement with a topic according to the Cognitive Reconstruction of Knowledge Model (Dole & Sinatra, 1998). Scores were then combined to create engagement scores. We found that two potential consequences of climate change were rated as more engaging than climate change generally: air pollution and increases in the price of food. Many consequences were rated as less engaging, including floods, stronger hurricanes, and melting permafrost. This implies that some consequences that scientists consider potentially worthy of concern are nonetheless not considered engaging by many. We also asked participants several open-ended questions about their perceptions of climate change and what consequences they especially cared about. Results were broadly similar but demonstrated many misconceptions about the mechanics and consequences of climate change. Several participants expressed concerns about increases in earthquakes, changes to the ozone layer, and dangerous changes to the density of the atmosphere. We asked participants about the relationship between the terms climate change and global warming. There was considerable disagreement on how these two terms were related. This is problematic if educators assume that people are using the terms synonymously. Finally, we asked participants about whether humanity would be able to solve climate change before catastrophic consequences occurred. To our surprise, only one out of five participants believed we would do so. Some participants were unsure whether we would solve it or believed that we would only address it after some catastrophic consequences had already occurred, but the majority of participants believed that we would fail to solve it. Climate science educators have often tried to avoid portraying climate change as unavoidable and hopeless, yet many people have nonetheless come to this conclusion. Relying on positive messages about solving climate change in the hope of forestalling hopelessness may be insufficient and we may need to help people deal with feelings of hopelessness directly.
Orlandini, Simone; Nejedlik, Pavol; Eitzinger, Josef; Alexandrov, Vesselin; Toulios, Leonidas; Calanca, Pierluigi; Trnka, Miroslav; Olesen, Jørgen E
2008-12-01
Climate plays a fundamental role in agriculture because of to its influence on production. All processes are regulated by specific climatic requirements. Furthermore, European agriculture, based on highly developed farming techniques, is mainly oriented to high quality food production that is more susceptible to meteorological hazards. These hazards can modify environment-genotype interactions, which can affect the quality of production. The COST 734 Action (Impacts of Climate Change and Variability on European Agriculture), launched in 2006, is composed of 28 signature countries and is funded by the European Commission. The main objective of the Action is the evaluation of possible impacts arising from climate change and variability on agriculture and the assessment of critical thresholds for various European areas. The Action will concentrate on four different tasks: agroclimatic indices and simulation models, including review and assessment of tools used to relate climate and agricultural processes; evaluation of the current trends of agroclimatic indices and model outputs, including remote sensing; developing and assessing future regional and local scenarios of agroclimatic conditions; and risk assessment and foreseen impacts on agriculture. The work will be carried out by respective Working Groups. This paper presents the results of the analysis of the first phase of inventory activity. Specific questionnaires were disseminated among COST 734 countries to collect information on climate change analysis, studies, and impact at the European level. The results were discussed with respect to their spatial distribution in Europe and to identify possible common long- and short-term strategies for adaptation.
Nurses' perceptions of climate and environmental issues: a qualitative study.
Anåker, Anna; Nilsson, Maria; Holmner, Åsa; Elf, Marie
2015-08-01
The aim of this study was to explore nurses' perceptions of climate and environmental issues and examine how nurses perceive their role in contributing to the process of sustainable development. Climate change and its implications for human health represent an increasingly important issue for the healthcare sector. According to the International Council of Nurses Code of Ethics, nurses have a responsibility to be involved and support climate change mitigation and adaptation to protect human health. This is a descriptive, explorative qualitative study. Nurses (n = 18) were recruited from hospitals, primary care and emergency medical services; eight participated in semi-structured, in-depth individual interviews and 10 participated in two focus groups. Data were collected from April-October 2013 in Sweden; interviews were transcribed verbatim and analysed using content analysis. Two main themes were identified from the interviews: (i) an incongruence between climate and environmental issues and nurses' daily work; and (ii) public health work is regarded as a health co-benefit of climate change mitigation. While being green is not the primary task in a lifesaving, hectic and economically challenging context, nurses' perceived their profession as entailing responsibility, opportunities and a sense of individual commitment to influence the environment in a positive direction. This study argues there is a need for increased awareness of issues and methods that are crucial for the healthcare sector to respond to climate change. Efforts to develop interventions should explore how nurses should be able to contribute to the healthcare sector's preparedness for and contributions to sustainable development. © 2015 The Authors. Journal of Advanced Nursing published by John Wiley & Sons Ltd.
Managing protected areas under climate change: challenges and priorities.
Rannow, Sven; Macgregor, Nicholas A; Albrecht, Juliane; Crick, Humphrey Q P; Förster, Michael; Heiland, Stefan; Janauer, Georg; Morecroft, Mike D; Neubert, Marco; Sarbu, Anca; Sienkiewicz, Jadwiga
2014-10-01
The implementation of adaptation actions in local conservation management is a new and complex task with multiple facets, influenced by factors differing from site to site. A transdisciplinary perspective is therefore required to identify and implement effective solutions. To address this, the International Conference on Managing Protected Areas under Climate Change brought together international scientists, conservation managers, and decision-makers to discuss current experiences with local adaptation of conservation management. This paper summarizes the main issues for implementing adaptation that emerged from the conference. These include a series of conclusions and recommendations on monitoring, sensitivity assessment, current and future management practices, and legal and policy aspects. A range of spatial and temporal scales must be considered in the implementation of climate-adapted management. The adaptation process must be area-specific and consider the ecosystem and the social and economic conditions within and beyond protected area boundaries. However, a strategic overview is also needed: management at each site should be informed by conservation priorities and likely impacts of climate change at regional or even wider scales. Acting across these levels will be a long and continuous process, requiring coordination with actors outside the "traditional" conservation sector. To achieve this, a range of research, communication, and policy/legal actions is required. We identify a series of important actions that need to be taken at different scales to enable managers of protected sites to adapt successfully to a changing climate.
Assessment of impacts of climate change on gender in the context of Nepal
NASA Astrophysics Data System (ADS)
Paudel, R.; Acharya, A.
2016-12-01
Climate change and its impact on gender in the context of Nepal has not been clearly understood due to lack of proper scientific research in terms of gender and climate change. Climate induced disasters such as droughts, floods, GLOFs, and landslides affect men and women differently. This study is conducted to analyze the scenario of gender equality, and impacts of climate change on gender in Nepal. This study also identifies gender based adaptation approaches through the use of observed climate data, and projected and modeled demographic data such as Adolescent Fertility Rate, Labor Force Participation Rate, and Maternal Mortality Ratio. The major tasks of this project include the calculation of Gender Inequality Index (GII), trend analysis and correlation between GII and temperature, that helps to evaluate the women vulnerability and identify the gender based adaptation interventions in Nepal. The required data on gender and temperature are obtained from World Bank and Department of Hydrology and Meteorology, Nepal. GII is calculated for almost 26 years starting from the year 1990 by utilizing a tool "Calculating the Indices using Excel" provided through the UNDP. The Reproductive Health Index (RHI), Empowerment Index (EI), and Labor Market Index (LMI) that are required to determine GII are also calculated through the use of same tool. The trend analysis shows that GII follows a decreasing trend indicating higher gender equality. The correlation analysis shows the temperature positively correlated with RHI (r=0.64), EI Female (r=0.61), and EI Male (r=0.73). In case of LMI, temperature is positively correlated with female (r=0.14) and negatively correlated with male (r=-0.57). The analysis depicts negative correlation (r=-0.68) between climate change and GII. This research will provide some valuable insights in the research relating to gender and climate change that could help gender advocates and policymakers in developing further plans for women empowerment.
Hydrological alteration of the Upper Nakdong river under AR5 climate change scenarios
NASA Astrophysics Data System (ADS)
Kim, S.; Park, Y.; Cha, W. Y.; Okjeong, L.; Choi, J.; Lee, J.
2016-12-01
One of the tasks faced to water engineers is how to consider the climate change impact in our water resources management. Especially in South Korea, where almost all drinking water is taken from major rivers, the public attention is focused on their eco-hydrologic status. In this study, the effect of climate change on eco-hydrologic regime in the Upper Nakdong river which is one of major rivers in South Korea is investigated using SWAT. The simulation results are measured using the indicators of hydrological alteration (IHA) established by U.S. Nature Conservancy. Future climate information is obtained by scaling historical series, provided by Korean Meteorological Administration RCM (KMA RCM) and four RCP scenarios. KMA RCM has 12.5-km spatial resolution in Korean Peninsula and is produced by UK Hedley Centre regional climate model HadGEM3-RA. The RCM bias is corrected by the Kernel density distribution mapping (KDDM) method. The KDDM estimates the cumulative probability density function (CDF) of each dataset using kernel density estimation, and is implemented by quantile-mapping the CDF of a present climate variable obtained from the RCM onto that of the corresponding observed climate variable. Although the simulation results from different RCP scenarios show diverse hydrologic responses in our watershed, the mainstream of future simulation results indicate that there will be more river flow in southeast Korea. The predicted impacts of hydrological alteration caused by climate change on the aquatic ecosystem in the Upper Nakdong river will be presented. Acknowledgement This research was supported by a grant(14AWMP-B082564-01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.
NASA Astrophysics Data System (ADS)
Ferguson, I. M.; McGuire, M.; Broman, D.; Gangopadhyay, S.
2017-12-01
The Bureau of Reclamation is a Federal agency tasked with developing and managing water supply and hydropower projects in the Western U.S. Climate and hydrologic variability and change significantly impact management actions and outcomes across Reclamation's programs and initiatives, including water resource planning and operations, infrastructure design and maintenance, hydropower generation, and ecosystem restoration, among others. Planning, design, and implementation of these programs therefore requires consideration of future climate and hydrologic conditions will impact program objectives. Over the past decade, Reclamation and other Federal agencies have adopted new guidelines, directives, and mandates that require consideration of climate change in water resources planning and decision making. Meanwhile, the scientific community has developed a large number of climate projections, along with an array of models, methods, and tools to facilitate consideration of climate projections in planning and decision making. However, water resources engineers, planners, and decision makers continue to face challenges regarding how best to use the available data and tools to support major decisions, including decisions regarding infrastructure investments and long-term operating criteria. This presentation will discuss recent and ongoing research towards understanding, improving, and expanding consideration of climate projections and related uncertainties in Federal water resources planning and decision making. These research efforts address a variety of challenges, including: How to choose between available climate projection datasets and related methods, models, and tools—many of which are considered experimental or research tools? How to select an appropriate decision framework when design or operating alternatives may differ between climate scenarios? How to effectively communicate results of a climate impacts analysis to decision makers? And, how to improve robustness and resilience of water resources systems in the face of significant uncertainty? Discussion will focus on the intersection between technical challenges and decision making paradigms and the need for improved scientist-decision maker engagement through the lens of this Federal water management agency.
Using a Global Climate Model in an On-line Climate Change Course
NASA Astrophysics Data System (ADS)
Randle, D. E.; Chandler, M. A.; Sohl, L. E.
2012-12-01
Seminars on Science: Climate Change is an on-line, graduate-level teacher professional development course offered by the American Museum of Natural History. It is an intensive 6-week course covering a broad range of global climate topics, from the fundamentals of the climate system, to the causes of climate change, the role of paleoclimate investigations, and a discussion of potential consequences and risks. The instructional method blends essays, videos, textbooks, and linked websites, with required participation in electronic discussion forums that are moderated by an experienced educator and a course scientist. Most weeks include additional assignments. Three of these assignments employ computer models, including two weeks spent working with a full-fledged 3D global climate model (GCM). The global climate modeling environment is supplied through a partnership with Columbia University's Educational Global Climate Modeling Project (EdGCM). The objective is to have participants gain hands-on experience with one of the most important, yet misunderstood, aspects of climate change research. Participants in the course are supplied with a USB drive that includes installers for the software and sample data. The EdGCM software includes a version of NASA's global climate model fitted with a graphical user interface and pre-loaded with several climate change simulations. Step-by-step assignments and video tutorials help walk people through these challenging exercises and the course incorporates a special assignment discussion forum to help with technical problems and questions about the NASA GCM. There are several takeaways from our first year and a half of offering this course, which has become one of the most popular out of the twelve courses offered by the Museum. Participants report a high level of satisfaction in using EdGCM. Some report frustration at the initial steps, but overwhelmingly claim that the assignments are worth the effort. Many of the difficulties that arise are due to a lack of computer literacy amongst participants and we have found, through iterative improvements in the materials, that breaking assignments into discrete, well-supported tasks has been key to the success.
NASA Astrophysics Data System (ADS)
Salzmann, N.; Huggel, C.; Calanca, P.; Diaz, A.; Jonas, T.; Konzelmann, T.; Lagos, P.; Rohrer, M.; Silverio, W.; Zappa, M.
2009-04-01
Changes in the availability of fresh water caused by climatic changes will become a major issue in the coming years and decades. In this context, regions presently depending on water from retreating mountain glaciers are particularly vulnerable. In many parts of the Andes for example, people already suffer from the impacts of reduced glacier run off. Therefore, the development and implementation of adequate adaptation measures is an urgent need. To better understand the impact of climate change on water resources in the Andean region, a new research program (PACC - Programa de Adaptación al Cambio Climático en el Perú) between Peru and Switzerland has recently been launched by SDC (Swiss Agency for Development and Cooperation). As a first step, a scientific baseline relative to climatology, hydrology, agriculture and natural disasters will be developed on a regional scale for the Departments of Cusco and Apurimac in close cooperation with partners from Universities and governmental institutions as well as NGOs in Peru. A reliable data baseline is a must for the development of adaptation measures that can effectively cope with the risks induced by climate change. The realization of this task in remote mountain regions, where observational data are generally sparse, however, is challenging. Temporal and spatial gaps must be filled using indirect methods such as re-analyses, remote sensing and interpolation techniques. For future scenarios, the use of climate model output along with statistical and dynamical downscaling is indicated. This contribution will present and discuss approaches and possible concepts to tackle the challenges in a Peruvian context. In addition, first experiences will be reported particularly on cross-disciplinary issues that naturally emerge from the integrative perspective needed in climate change impact assessments and the development of adaptation strategies.
The relationship between organizational climate and quality of chronic disease management.
Benzer, Justin K; Young, Gary; Stolzmann, Kelly; Osatuke, Katerine; Meterko, Mark; Caso, Allison; White, Bert; Mohr, David C
2011-06-01
To test the utility of a two-dimensional model of organizational climate for explaining variation in diabetes care between primary care clinics. Secondary data were obtained from 223 primary care clinics in the Department of Veterans Affairs health care system. Organizational climate was defined using the dimensions of task and relational climate. The association between primary care organizational climate and diabetes processes and intermediate outcomes were estimated for 4,539 patients in a cross-sectional study. All data were collected from administrative datasets. The climate data were drawn from the 2007 VA All Employee Survey, and the outcomes data were collected as part of the VA External Peer Review Program. Climate data were aggregated to the facility level of analysis and merged with patient-level data. Relational climate was related to an increased likelihood of diabetes care process adherence, with significant but small effects for adherence to intermediate outcomes. Task climate was generally not shown to be related to adherence. The role of relational climate in predicting the quality of chronic care was supported. Future research should examine the mediators and moderators of relational climate and further investigate task climate. © Health Research and Educational Trust.
Climate change, cranes, and temperate floodplain ecosystems
King, Sammy L.
2010-01-01
Floodplain ecosystems provide important habitat to cranes globally. Lateral, longitudinal, vertical, and temporal hydrologic connectivity in rivers is essential to maintaining the functions and values of these systems. Agricultural development, flood control, water diversions, dams, and other anthropogenic activities have greatly affected hydrologic connectivity of river systems worldwide and altered the functional capacity of these systems. Although the specific effects of climate change in any given area are unknown, increased intensity and frequency of flooding and droughts and increased air and water temperatures are among many potential effects that can act synergistically with existing human modifications in these systems to create even greater challenges in maintaining ecosystem productivity. In this paper, I review basic hydrologic and geomorphic processes of river systems and use three North American rivers (Guadalupe, Platte, and Rio Grande) that are important to cranes as case studies to illustrate the challenges facing managers tasked with balancing the needs of cranes and people in the face of an uncertain climatic future. Each river system has unique natural and anthropogenic characteristics that will affect conservation strategies. Mitigating the effects of climate change on river systems necessitates an understanding of river/floodplain/landscape linkages, which include people and their laws as well as existing floodplain ecosystem conditions.
Future changes of temperature and heat waves in Ontario, Canada
NASA Astrophysics Data System (ADS)
Li, Zhong; Huang, Guohe; Huang, Wendy; Lin, Qianguo; Liao, Renfei; Fan, Yurui
2018-05-01
Apparent changes in the temperature patterns in recent years brought many challenges to the province of Ontario, Canada. As the need for adapting to climate change challenges increases, the development of reliable climate projections becomes a crucial task. In this study, a regional climate modeling system, Providing Regional Climates for Impacts Studies (PRECIS), is used to simulate the temperature patterns in Ontario. Three PRECIS runs with a resolution of 25 km × 25 km are carried out to simulate the present (1961-1990) temperature variations. There is a good match between the simulated and observed data, which validates the performance of PRECIS in reproducing temperature changes in Ontario. Future changes of daily maximum, mean, and minimum temperatures during the period 2071-2100 are then projected under the IPCC SRES A2 and B2 emission scenarios using PRECIS. Spatial variations of annual mean temperature, mean diurnal range, and temperature seasonality are generated. Furthermore, heat waves defined based on the exceedance of local climatology and their temporal and spatial characteristics are analyzed. The results indicate that the highest temperature and the most intensive heat waves are most likely to occur at the Toronto-Windsor corridor in Southern Ontario. The Northern Ontario, in spite of the relatively low projected temperature, would be under the risk of long-lasting heat waves, and thus needs effective measures to enhance its climate resilience in the future. This study can assist the decision makers in better understanding the future temperature changes in Ontario and provide decision support for mitigating heat-related loss.
Climate vulnerability of drinking water supplies
NASA Astrophysics Data System (ADS)
Selmeczi, Pál; Homolya, Emese; Rotárné Szalkai, Ágnes
2016-04-01
Extreme weather conditions in Hungary led to difficulties in drinking water management on diverse occasions in the past. Due to reduced water resources and the coexisting high demand for drinking water in dry summer periods the availability of a number of water supplies became insufficient therefore causing limitations in water access. In some other cases, as a result of floods and flash floods over karstic areas evolving in consequence of excessive precipitation, several water supplies had to be excluded in order to avoid the risk of infections. More frequent occurrence of extreme weather conditions and further possible changes in the future induce the necessity for an analysis of the vulnerability of drinking water resources to climate change. Since 95% of the total drinking water supply in Hungary originates from subsurface layers, significance of groundwater resources is outstanding. The aim of our work carried out in the frames of the NAGiS (National Adaptation Geo-information System) project was to build up a methodology for the study and determination of the vulnerability of drinking water supplies to climate. The task covered analyses of climatic parameters influencing drinking water supplies principally and hydrogeological characteristics of the geological media that significantly determines vulnerability. Effects on drinking water resources and their reduction or exclusion may imply societal and economic consequences therefore we extended the analyses to the investigation of possibilities concerning the adaptation capacity to changed conditions. We applied the CIVAS (Climate Impact and Vulnerability Assessment Scheme) model developed in the frames of the international climate research project CLAVIER (Climate Change and Variability: Impact on Central and Eastern Europe) to characterize climate vulnerability of drinking water supplies. The CIVAS model, being based on the combined evaluation of exposure, sensitivity and adaptability, provides a unified methodical scheme to quantitative climatic impact assessment. We investigate the effects of climate change in the integrated context of exposure, sensitivity, impact, adaptive capacity and vulnerability, thus apart from the expected environmental changes societal and economic processes are also taken into account. Climate vulnerability has been determined on the basis of the distribution and categorisation of the chosen indicators. Further effects, independent of climate change and caused by anthropogenic activity, result in similar phenomena. It is often difficult to differentiate between natural and anthropogenic effects that occur simultaneously therefore in the analyses of vulnerability anthropogenic activity is needed to be taken into account. We determined climate vulnerability using data of two different climate models and for two separate future time periods. Results on the basis of both climate model projections suggest that a considerable number of regions in the area under investigation appear to be vulnerable to climate change to a certain extent and vulnerability intensifies to the end of the 21th century.
NASA Astrophysics Data System (ADS)
Ring, Christoph; Pollinger, Felix; Kaspar-Ott, Irena; Hertig, Elke; Jacobeit, Jucundus; Paeth, Heiko
2018-03-01
A major task of climate science are reliable projections of climate change for the future. To enable more solid statements and to decrease the range of uncertainty, global general circulation models and regional climate models are evaluated based on a 2 × 2 contingency table approach to generate model weights. These weights are compared among different methodologies and their impact on probabilistic projections of temperature and precipitation changes is investigated. Simulated seasonal precipitation and temperature for both 50-year trends and climatological means are assessed at two spatial scales: in seven study regions around the globe and in eight sub-regions of the Mediterranean area. Overall, 24 models of phase 3 and 38 models of phase 5 of the Coupled Model Intercomparison Project altogether 159 transient simulations of precipitation and 119 of temperature from four emissions scenarios are evaluated against the ERA-20C reanalysis over the 20th century. The results show high conformity with previous model evaluation studies. The metrics reveal that mean of precipitation and both temperature mean and trend agree well with the reference dataset and indicate improvement for the more recent ensemble mean, especially for temperature. The method is highly transferrable to a variety of further applications in climate science. Overall, there are regional differences of simulation quality, however, these are less pronounced than those between the results for 50-year mean and trend. The trend results are suitable for assigning weighting factors to climate models. Yet, the implications for probabilistic climate projections is strictly dependent on the region and season.
NASA Astrophysics Data System (ADS)
Matyas, Cs.; Berki, I.; Drüszler, A.; Eredics, A.; Galos, B.; Moricz, N.; Rasztovits, E.
2012-04-01
In whole Central Europe agricultural production is highly vulnerable and sensitive to impacts of projected climatic changes. The low-elevation regions of the Carpathian Basin (most of the territory of Hungary), where precipitation is the minimum factor of production, are especially exposed to climatic extremes, especially to droughts. Rainfed agriculture, animal husbandry on nature-close pastures and nature-close forestry are the most sensitive sectors due to limited possibilities to counterbalance moisture supply constraints. These sectors have to be best prepared to frequency increase of extreme events, disasters and economic losses. So far, there is a lack of information about the middle and long term consequences on regional and local level. Therefore the importance of complex, long term management planning and of land use optimation is increasing. The aim of the initiative is to set up a fine-scale, GIS-based, complex, integrated system for the definition of the most important regional and local challenges and tasks of climate change adaptation and mitigation in agriculture, forestry, animal husbandry and also nature protection. The Service Center for Climate Change Adaptation in Agriculture is planned to provide the following services: § Complex, GIS-supported database, which integrates the basic information about present and projected climates, extremes, hydrology and soil conditions; § Evaluation of existing satellite-based and earth-based monitoring systems; § GIS-supported information about the future trends of climate change impacts on the agroecological potential and sensitivity status on regional and local level (e.g. land cover/use and expectable changes, production, water and carbon cycle, biodiversity and other ecosystem services, potential pests and diseases, tolerance limits etc.) in fine-scale horizontal resolution, based first of all on natural produce, including also social and economic consequences; § Complex decision supporting system on regional and local scale for middle- and long term adaptation and mitigation strategies, providing information on optimum technologies and energy balances. Cooperation with already existing Climate Service Centres and national and international collaboration in monitoring and research are important elements of the activity of the Centre. In the future, the Centre is planned to form part of a national information system on climate change adaptation and mitigation, supported by the Ministry of Development. Keywords: climate change impacts, forestry, rainfed agriculture, animal husbandry
Climate and Cryosphere (CliC) Project and its Interest in Arctic Hydrology Research
NASA Astrophysics Data System (ADS)
Yang, D.; Prowse, T. D.; Steffen, K.; Ryabinin, V.
2009-12-01
The cryosphere is an important and dynamic component of the global climate system. The global cryosphere is changing rapidly, with changes in the Polar Regions receiving particular attention during the International Polar Year 2007-2008. The Climate and Cryosphere (CliC) Project is a core project of the World Climate Research Programme (WCRP) and is co-sponsored by WCRP, SCAR (Scientific Committee for Antarctic Research) and IASC (International Committee for Antarctic Research). The principal goal of CliC is to assess and quantify the impacts that climatic variability and change have on components of the cryosphere and the consequences of these impacts for the climate system. To achieve its objectives, CliC coordinates international and regional projects, partners with other organizations in joint initiatives, and organizes panels and working groups to lead and coordinate advanced research aimed at closing identified gaps in scientific knowledge about climate and cryosphere. The terrestrial cryosphere includes land areas where snow cover, lake- and river-ice, glaciers and ice caps, permafrost and seasonally frozen ground and solid precipitation occur. The main task of this theme is to improve estimates and quantify the uncertainty of water balance and related energy flux components in cold climate regions. This includes precipitation (both solid and liquid) distribution, properties of snow, snow melt, evapotranspiration, sublimation, water movement through frozen and unfrozen ground, water storage in watersheds, river- and lake-ice properties and processes, and river runoff. The focus of this theme includes two specific issues: the role of permafrost and frozen ground in the carbon balance, and precipitation in cold climates. Hydrological studies of cold regions will provide a key contribution to the new theme crosscut, which focuses on the cryospheric input to the freshwater balance of the Arctic. This presentation will provide an overview and update of recent developments of cold region hydrometeorology research activities and future challenges in arctic hydrology and climate change investigations.
Brown, Theresa C; Fry, Mary D
2014-06-01
The purpose of this study was to examine the association between members' perceptions of staffs behaviors, motivational climate, their own behaviors, commitment to future exercise, and life satisfaction in a group-fitness setting. The theory-driven hypothesized mediating role of perceptions of the climate was also tested. Members (N = 5,541) of a national group-fitness studio franchise completed a survey regarding their class experiences. The survey included questions that measured participants' perceptions of the motivational climate (caring, task-involving, ego-involving), perceptions of staff's behaviors, their own behaviors, commitment to exercise, and life satisfaction. Structural equation modeling was used to assess both the association between variables and the theoretically driven predictive relationships. The participants perceived the environment as highly caring and task-involving and low ego-involving. They reported high exercise commitment and moderately high life satisfaction and perceived that the staffs and their own behaviors reflected caring, task-involving characteristics. Structural equation modeling demonstrated that those who perceived a higher caring, task-involving climate and lower ego-involving climate were more likely to report more task-involving, caring behaviors among the staff and themselves as well as greater commitment to exercise. In addition, a theory-driven mediational model suggested that staff behaviors may be an antecedent to members' exercise experiences by impacting their perceptions of the climate. The results of this study give direction to specific behaviors in which staff of group-fitness programs might engage to positively influence members' exercise experiences.
The CARIPANDA project: Climate change and water resources in the Adamello Natural Park of Italy
NASA Astrophysics Data System (ADS)
Bocchiola, D.
2009-04-01
The three years (2007-2009) CARIPANDA project funded by the Cariplo Foundation of Italy is aimed to evaluate scenarios for water resources in the Adamello natural Park of Italy in a window of 50 years or so (until 2050). The project is led by Ente Parco Adamello and involves Politecnico di Milano, Università Statale di Milano, Università di Brescia, and ARPA Lombardia as scientific partners, while ENEL hydropower Company of Italy joins the project as stake holder. The Adamello Natural Park is a noteworthy resource in the Italian Alps. The Adamello Group is made of several glacierized areas (c. 24 km2), of both debris covered and free ice types, including the widest Italian Glacier, named Adamello, spreading on an area of about c. 18 km2. Also the Adamello Natural Reserve, covering 217 km2 inside the Adamello Park and including the Adamello glaciers, hosts a number of high altitude safeguarded vegetal and animal species, the safety of which is a primary task of the Reserve. Project's activity involves analysis of local climate trend, field campaigns on glaciers, hydrological modelling and remote sensing of snow and ice covered areas, aimed to build a consistent model of the present hydrological conditions and of the areas. Then, properly tailored climate change projections for the area, obtained using local data driven downscaling of climate change projections from GCMs model, are used to infer the likely response to expected climate change conditions. With two years in the project now some preliminary findings can be highlighted and some preliminary trend analysis carried out. The proposed poster provides a resume of the main results of the project insofar, of interest as a benchmark for similar ongoing and foregoing projects about climate change impact on European mountainous natural areas.
Thinking outside the Clocks: The Effect of Layered-Task Time on the Creative Climate of Meetings
ERIC Educational Resources Information Center
Agypt, Brett; Rubin, Beth A.; Spivack, April J.
2012-01-01
The turbulence of the new economy puts demands on organizations to respond rapidly, flexibly and creatively to changing environments. Meetings are one of the organizational sites in which organizational actors "do" creativity; interaction in groups can be an important site for generating creative ideas and brainstorming. Additionally, Blount…
The Effects of Organizational Climate Factors on Industrial Training Outcomes.
ERIC Educational Resources Information Center
Richey, Rita C.
An extensive evaluation was conducted of a training program on industrial safety that was designed to change employee attitudes and behaviors in relation to energy control and power lockout (ECPL), i.e., closing down an assembly line while completing diagnostic or repair tasks. The research question was aimed at determining the effects of entry…
Impact of the Climate Change on Cultural Heritage Sites in Cyprus
NASA Astrophysics Data System (ADS)
Cuca, Branka; Agapiou, Athos; Lysandrou, Vasiliki; Themistocleous, Kyriacos; Nisantzi, Argyro; Michaelides, Silas; Hadjimitsis, Diofantos G.
2016-04-01
Climate change is one of the main factors with a significant impact on changes of cultural heritage and landscapes. Exposed and buried archaeological remains are particularly endangered by effects of climate change processes hence it is of great importance to understand the type of risks and the degree of their impact on such assets. Some of the potential risks for cultural heritage and landscape include flooding, intense rainfall, increase in time of wetness, extreme events in temperature change, coastal flooding, drought, wind driven/transported agents (sand, rain or salt) and so forth. From the geo-science perspective, the topic of climate change and the risks it causes is of crucial importance for environmental monitoring in general and it is one of the main applications of the European program on Earth Observation Copernicus. The activities performed in CLIMA project - "Cultural Landscape risk Identification, Management and Assessment" have as one of the main tasks to combining the fields of remote sensing technologies, including the Sentinel data, and cultural heritage monitoring. Such interdisciplinary approach was undertaken in order to identify major climate change risks affecting archaeological heritage in rural areas in Cyprus and to identify the most suitable Earth Observation (EO) and ground-based methods that might be effective in the mapping, diagnostics and monitoring of such risks. This thorough analysis will support the overall design of the CLIMA platform based in EO data analysis, risk models and ground-based methods to provide integrated information for specialists in remote sensing but also to archeologists and policy makers engaged in heritage preservation and management. The case study selected for Cyprus is the awarded Nea Paphos archeological site and historical center of Paphos that is surrounding this UNSECO World Heritage site.
The Relationship between Organizational Climate and Quality of Chronic Disease Management
Benzer, Justin K; Young, Gary; Stolzmann, Kelly; Osatuke, Katerine; Meterko, Mark; Caso, Allison; White, Bert; Mohr, David C
2011-01-01
Objective To test the utility of a two-dimensional model of organizational climate for explaining variation in diabetes care between primary care clinics. Data Sources/Study Setting Secondary data were obtained from 223 primary care clinics in the Department of Veterans Affairs health care system. Study Design Organizational climate was defined using the dimensions of task and relational climate. The association between primary care organizational climate and diabetes processes and intermediate outcomes were estimated for 4,539 patients in a cross-sectional study. Data Collection/Extraction Methods All data were collected from administrative datasets. The climate data were drawn from the 2007 VA All Employee Survey, and the outcomes data were collected as part of the VA External Peer Review Program. Climate data were aggregated to the facility level of analysis and merged with patient-level data. Principal Findings Relational climate was related to an increased likelihood of diabetes care process adherence, with significant but small effects for adherence to intermediate outcomes. Task climate was generally not shown to be related to adherence. Conclusions The role of relational climate in predicting the quality of chronic care was supported. Future research should examine the mediators and moderators of relational climate and further investigate task climate. PMID:21210799
Evolving the US Climate Resilience Toolkit to Support a Climate-Smart Nation
NASA Astrophysics Data System (ADS)
Tilmes, C.; Niepold, F., III; Fox, J. F.; Herring, D.; Dahlman, L. E.; Hall, N.; Gardiner, N.
2015-12-01
Communities, businesses, resource managers, and decision-makers at all levels of government need information to understand and ameliorate climate-related risks. Likewise, climate information can expose latent opportunities. Moving from climate science to social and economic decisions raises complex questions about how to communicate the causes and impacts of climate variability and change; how to characterize and quantify vulnerabilities, risks, and opportunities faced by communities and businesses; and how to make and implement "win-win" adaptation plans at local, regional, and national scales. A broad coalition of federal agencies launched the U.S. Climate Resilience Toolkit (toolkit.climate.gov) in November 2014 to help our nation build resilience to climate-related extreme events. The site's primary audience is planners and decision makers in business, resource management, and government (at all levels) who seek science-based climate information and tools to help them in their near- and long-term planning. The Executive Office of the President assembled a task force of dozens of subject experts from across the 13 agencies of the U.S. Global Change Research Program to guide the site's development. The site's ongoing evolution is driven by feedback from the target audience. For example, based on feedback, climate projections will soon play a more prominent role in the site's "Climate Explorer" tool and case studies. The site's five-step adaptation planning process is being improved to better facilitate people getting started and to provide clear benchmarks for evaluating progress along the way. In this session, we will share lessons learned from a series of user engagements around the nation and evidence that the Toolkit couples climate information with actionable decision-making processes in ways that are helping Americans build resilience to climate-related stressors.
Dalton, Melinda S.; Jones, Sonya A.
2010-01-01
The Southeastern United States spans a broad range of physiographic settings and maintains exceptionally high levels of faunal diversity. Unfortunately, many of these ecosystems are increasingly under threat due to rapid human development, and management agencies are increasingly aware of the potential effects that climate change will have on these ecosystems. Natural resource managers and conservation planners can be effective at preserving ecosystems in the face of these stressors only if they can adapt current conservation efforts to increase the overall resilience of the system. Climate change, in particular, challenges many of the basic assumptions used by conservation planners and managers. Previous conservation planning efforts identified and prioritized areas for conservation based on the current environmental conditions, such as habitat quality, and assumed that conditions in conservation lands would be largely controlled by management actions (including no action). Climate change, however, will likely alter important system drivers (temperature, precipitation, and sea-level rise) and make it difficult, if not impossible, to maintain recent historic conditions in conservation lands into the future. Climate change will also influence the future conservation potential of non-conservation lands, further complicating conservation planning. Therefore, there is a need to develop and adapt effective conservation strategies to cope with the effects of climate and landscape change on future environmental conditions. Congress recognized this important issue and authorized the U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC; http://nccw.usgs.gov/) in the Fiscal Year 2008. The NCCWSC will produce science that will help resource management agencies anticipate and adapt to climate change impacts to fish, wildlife, and their habitats. With the release of Secretarial Order 3289 on September 14, 2009, the mandate of the NCCWSC was expanded to address climate change-related impacts on all Department of the Interior (DOI) resources. The NCCWSC will establish a network of eight DOI Regional Climate Science Centers (RCSCs) that will work with a variety of partners to provide natural resource managers with tools and information that will help them anticipate and adapt conservation planning and design for projected climate change. The forecasting products produced by the RCSCs will aid fish, wildlife, and land managers in designing suitable adaptive management approaches for their programs. The DOI also is developing Landscape Conservation Cooperatives (LCCs) as science and conservation action partnerships at subregional scales. The USGS is working with the Southeast Region of the U.S. Fish and Wildlife Service (FWS) to develop science collaboration between the future Southeast RCSC and future LCCs. The NCCWSC Southeast Regional Assessment Project (SERAP) will begin to develop regional downscaled climate models, land cover change models, regional ecological models, regional watershed models, and other science tools. Models and data produced by SERAP will be used in a collaborative process between the USGS, the FWS (LCCs), State and federal partners, nongovernmental organizations, and academia to produce science at appropriate scales to answer resource management questions. The SERAP will produce an assessment of climate change, and impacts on land cover, ecosystems, and priority species in the region. The predictive tools developed by the SERAP project team will allow end users to better understand potential impacts of climate change and sea level rise on terrestrial and aquatic populations in the Southeastern United States. The SERAP capitalizes on the integration of five existing projects: (1) the Multi-State Conservation Grants Program project "Designing Sustainable Landscapes," (2) the USGS multidisciplinary Science Thrust project "Water Availability for Ecological Needs," (3) the USGS Southeast Pilot Project "Climate Change in the Southeastern U.S. and its Impacts on Bird Distributions and Habitats," (4) a sea-level rise impacts study envisioned jointly with the National Oceanic and Atmospheric Administration (NOAA), and (5) two USGS sea-level rise impact assessment projects that address inundation hazards and provide probabilistic forecasts of coastal geomorphic change. The SERAP will expand on these existing projects and include the following tasks, which were initiated in summer 2009: * Regionally downscaled probabilistic climate-change projections * Integrated coastal assessment * Integrated terrestrial assessment * Multi-resolution assessment of potential climate change effects on biological resources: aquatic and hydrologic dynamics * Optimal conservation strategies to cope with climate change The SERAP seeks to formally integrate these tasks to aid conservation planning and design so that ecosystem management decisions can be optimized for providing desirable outcomes across a range of species and environments. The following chapters detail SERAP's efforts in providing a suite of regional climate, watershed, and landscape-change analyses and develop the interdisciplinary framework required for the biological planning phases of adaptive management and strategic conservation. The planning phase will include the identification of conservation alternatives, development of predictive models and decision support tools, and development of a template to address similar challenges and goals in other regions. The project teams will explore and develop ways to link the various ecological models arising from each component. The SERAP project team also will work closely with members of the LCCs and other partnerships throughout the life of the project to ensure that the objectives of the project meet resources mangers needs in the Southeast.
On the distortion of elevation dependent warming signals by quantile mapping
NASA Astrophysics Data System (ADS)
Jury, Martin W.; Mendlik, Thomas; Maraun, Douglas
2017-04-01
Elevation dependent warming (EDW), the amplification of warming under climate change with elevation, is likely to accelerate changes in e.g. cryospheric and hydrological systems. Responsible for EDW is a mixture of processes including snow albedo feedback, cloud formations or the location of aerosols. The degree of incorporation of this processes varies across state of the art climate models. In a recent study we were preparing bias corrected model output of CMIP5 GCMs and CORDEX RCMs over the Himalayan region for the glacier modelling community. In a first attempt we used quantile mapping (QM) to generate this data. A beforehand model evaluation showed that more than two third of the 49 included climate models were able to reproduce positive trend differences between areas of higher and lower elevations in winter, clearly visible in all of our five observational datasets used. Regrettably, we noticed that height dependent trend signals provided by models were distorted, most of the time in the direction of less EDW, sometimes even reversing EDW signals present in the models before the bias correction. As a consequence, we refrained from using quantile mapping for our task, as EDW poses one important factor influencing the climate in high altitudes for the nearer and more distant future, and used a climate change signal preserving bias correction approach. Here we present our findings of the distortion of the EDW temperature change by QM and discuss the influence of QM on different statistical properties as well as their modifications.
Moreno-Murcia, Juan A.; Sicilia, Alvaro; Cervelló, Eduardo; Huéscar, Elisa; Dumitru, Delia C.
2011-01-01
The purpose of this study was to test a motivational model on the links between situational and dispositional motivation and self-reported indiscipline/discipline based on the achievement goals theory. The model postulates that a task-involving motivational climate facilitates self-reported discipline, either directly or mediated by task orientation. In contrast, an ego-involving motivational climate favors self-reported indiscipline, either directly or by means of ego orientation. An additional purpose was to examine gender differences according to the motivational model proposed. Children (n = 565) from a large Spanish metropolitan school district were participants in this study and completed questionnaires assessing goal orientations, motivational climates and self-reported discipline. The results from the analysis of structural equation model showed the direct effect of motivational climates on self-reported discipline and provided support to the model. Furthermore, the gender differences found in self-reported discipline were associated with the differences found in the students’ dispositional and situational motivation pursuant to the model tested. The implications of these results with regard to teaching instructional actions in physical education classes are discussed. Key points A task-involving motivational climate predicts self-reported discipline behaviors, either directly or mediated by task orientation. An ego-involving motivational climate favors self-reported undisciplined, either directly or mediated by ego orientation. A significant gender difference was found in the motivational disposition perceived climate and self-reported discipline. PMID:24149304
Place in Pacific Islands Climate Education
NASA Astrophysics Data System (ADS)
Barros, C.; Koh, M. W.
2015-12-01
Understanding place, including both the environment and its people, is essential to understanding our climate, climate change, and its impacts. For us to develop a sense of our place, we need to engage in multiple ways of learning: observation, experimentation, and opportunities to apply new knowledge (Orr, 1992). This approach allows us to access different sources of knowledge and then create local solutions for local issues. It is especially powerful when we rely on experts and elders in our own community along with information from the global community.The Pacific islands Climate Education Partnership (PCEP) is a collaboration of partners—school systems, nongovernmental organizations, and government agencies—working to support learning and teaching about climate in the Pacific. Since 2009, PCEP partners have been working together to develop and implement classroom resources, curriculum standards, and teacher professional learning opportunities in which learners approach climate change and its impacts first through the lens of their own place. Such an approach to putting place central to teaching and learning about climate requires partnership and opportunities for learners to explore solutions for and with their communities. In this presentation, we will share the work unfolding in the Republic of the Marshall Islands (RMI) as one example of PCEP's approach to place-based climate education. Three weeklong K-12 teacher professional learning workshops took place during June-July 2015 in Majuro, RMI on learning gardens, climate science, and project-based learning. Each workshop was co-taught with local partners and supports educators in teaching climate-related curriculum standards through tasks that can foster sense of place through observation, experimentation, and application of new knowledge. Additionally, we will also share PCEP's next steps in place-based climate education, specifically around emerging conversations about the importance of highlighting stories of place to generate local solutions for local issues, as well as further global awareness about climate change impacts in the Pacific.
2011-01-01
Over the past two decades there has been increasing interest in studies regarding effects on human health of climate changes and urban air pollution. Climate change induced by anthropogenic warming of the earth's atmosphere is a daunting problem and there are several observations about the role of urbanization, with its high levels of vehicle emissions and other pollutants, and westernized lifestyle with respect to the rising frequency of respiratory allergic diseases observed in most industrialized countries. There is also evidence that asthmatic subjects are at increased risk of developing exacerbations of bronchial obstruction with exposure to gaseous (ozone, nitrogen dioxide, sulfur dioxide) and particulate inhalable components of air pollution. A change in the genetic predisposition is an unlikely cause of the increasing frequency in allergic diseases because genetic changes in a population require several generations. Consequently, environmental factors such as climate change and indoor and outdoor air pollution may contribute to explain the increasing frequency of respiratory allergy and asthma. Since concentrations of airborne allergens and air pollutants are frequently increased contemporaneously, an enhanced IgE-mediated response to aeroallergens and enhanced airway inflammation could account for the increasing frequency of allergic respiratory diseases and bronchial asthma. Scientific societies such as the European Academy of Allergy and Clinical Immunology, European Respiratory Society and the World Allergy Organization have set up committees and task forces to produce documents to focalize attention on this topic, calling for prevention measures. PMID:22958620
D'Amato, Gennaro
2011-02-28
Over the past two decades there has been increasing interest in studies regarding effects on human health of climate changes and urban air pollution. Climate change induced by anthropogenic warming of the earth's atmosphere is a daunting problem and there are several observations about the role of urbanization, with its high levels of vehicle emissions and other pollutants, and westernized lifestyle with respect to the rising frequency of respiratory allergic diseases observed in most industrialized countries.There is also evidence that asthmatic subjects are at increased risk of developing exacerbations of bronchial obstruction with exposure to gaseous (ozone, nitrogen dioxide, sulfur dioxide) and particulate inhalable components of air pollution.A change in the genetic predisposition is an unlikely cause of the increasing frequency in allergic diseases because genetic changes in a population require several generations. Consequently, environmental factors such as climate change and indoor and outdoor air pollution may contribute to explain the increasing frequency of respiratory allergy and asthma. Since concentrations of airborne allergens and air pollutants are frequently increased contemporaneously, an enhanced IgE-mediated response to aeroallergens and enhanced airway inflammation could account for the increasing frequency of allergic respiratory diseases and bronchial asthma.Scientific societies such as the European Academy of Allergy and Clinical Immunology, European Respiratory Society and the World Allergy Organization have set up committees and task forces to produce documents to focalize attention on this topic, calling for prevention measures.
Monthly means of selected climate variables for 1985 - 1989
NASA Technical Reports Server (NTRS)
Schubert, S.; Wu, C.-Y.; Zero, J.; Schemm, J.-K.; Park, C.-K.; Suarez, M.
1992-01-01
Meteorologists are accustomed to viewing instantaneous weather maps, since these contain the most relevant information for the task of producing short-range weather forecasts. Climatologists, on the other hand, tend to deal with long-term means, which portray the average climate. The recent emphasis on dynamical extended-range forecasting and, in particular measuring and predicting short term climate change makes it important that we become accustomed to looking at variations on monthly and longer time scales. A convenient toll for researchers to familiarize themselves with the variability which occurs in selected parameters on these time scales is provided. The format of the document was chosen to help facilitate the intercomparison of various parameters and highlight the year-to-year variability in monthly means.
ERIC Educational Resources Information Center
Bortoli, Laura; Bertollo, Maurizio; Vitali, Francesca; Filho, Edson; Robazza, Claudio
2015-01-01
Purpose: The purpose of this study was to examine the effects of task- and ego-involving climate manipulations on students' climate perception and psychobiosocial (PBS) states in a physical education setting. Method: Two subsamples of female students (N = 108, 14-15 years of age) participated in 12 lessons on either a task-or an ego-involving…
ERIC Educational Resources Information Center
Bradley, Bret H.; Postlethwaite, Bennett E.; Klotz, Anthony C.; Hamdani, Maria R.; Brown, Kenneth G.
2012-01-01
Past research suggests that task conflict may improve team performance under certain conditions; however, we know little about these specific conditions. On the basis of prior theory and research on conflict in teams, we argue that a climate of psychological safety is one specific context under which task conflict will improve team performance.…
The British Climate Change Act: a critical evaluation and proposed alternative approach
NASA Astrophysics Data System (ADS)
Pielke, Roger A., Jr.
2009-04-01
This paper evaluates the United Kingdom's Climate Change Act of 2008 in terms of the implied rates of decarbonization of the UK economy for a short-term and a long-term target established in law. The paper uses the Kaya identity to structure the evaluation, employing both a bottom up approach (based on projections of future UK population, economic growth, and technology) and a top down approach (deriving implied rates of decarbonization consistent with the targets and various rates of projected economic growth). Both approaches indicate that the UK economy would have to achieve annual rates of decarbonization in excess of 4 or 5%. To place these numbers in context, the UK would have to achieve the 2006 carbon efficiency of France by about 2015, a level of effort comparable to the building of about 30 new nuclear power plants, displacing an equivalent amount of fossil energy. The paper argues that the magnitude of the task implied by the UK Climate Change Act strongly suggests that it is on course to fail, and discusses implications.
The Role of Belief, Trust and Values in Climate Change Science Education Efforts
NASA Astrophysics Data System (ADS)
Anderson, S. W.; Hatheway, B.
2011-12-01
At a recent Tri-Agency PI meeting of NSF-, NASA- and NOAA-funded climate change education projects, we asked nearly 20 of our colleagues the following question, "If you had to choose just one of the following, which would it be: you would like the general public to believe that climate change is occurring, or you would like the general public to know that climate change is occurring?" We were a bit surprised when every person canvassed chose that they wanted the public to believe that climate change is occurring. When we inquired why, they all answered something along the lines that "beliefs lead to actions". However, when we looked at the funded efforts of the NASA, NOAA and NSF climate education community we came to the troubling conclusion that the vast majority were designed primarily with knowledge in mind, and that as a community we were perhaps not tackling some important non-scientific issues related to belief, trust and values. It is not surprising, nor unreasonable, that we have taken an approach to climate change education that largely focuses on increasing the knowledge base of the public. First of all, our fundamental task as science researchers is to create new knowledge, so we are typically comfortable discussing it. Secondly, knowledge may serve as a foundation for belief and ultimately lead to changes in behavior. However, this second line of reasoning clearly has limits, and we believe we are seeing these limits manifested in some of the poll numbers related to the general public's position on this topic. When the value of science is pitted against other things that people value, such as family, religion, and jobs, we are faced with the likelihood that it is not going to be as highly regarded by the general public as it is by scientists. Climate change science opponents understand the importance of value and belief, and directly capitalize on it by using two main strategies. First, they effectively minimize the value of climate science by casting doubt on the science itself, orchestrating controversy among scientists where little, if any, exists. Second, they pit the values held in the highest esteem by the public (religion, economy, family) directly against the value of climate change science, and in doing so give the public the impression that they must choose between climate science and their core principles. It is therefore easy to understand why less than half of American citizens believe climate change is worth changing behavior over. Nationwide polls show that scientists are highly trusted and believed, with values of trustworthiness exceeding 80%, suggesting that the public finds that we share common values. However, for some reason there is a glaring disconnected when this is applied to climate science, as less than half of the US population agrees with the consensus scientific view on climate change. A majority of people are currently putting their trust in other sources, and given the fact that climate scientists have the best knowledge and credentials suggests that the general public is aligning more with the values of those who deny or minimize the consensus scientific view.
Variability of extreme climate events in the territory and water area of Russia
NASA Astrophysics Data System (ADS)
Serykh, Ilya; Kostianoy, Andrey
2016-04-01
The Fourth (2007) and Fifth (2014) Assessment Reports on Climate Change of the Intergovernmental Panel on Climate Change (IPCC) state that in the XXI century, climate change will be accompanied by an increase in the frequency, intensity and duration of extreme nature events such as: extreme precipitation and extreme high and low air temperatures. All these will lead to floods, droughts, fires, shallowing of rivers, lakes and water reservoirs, desertification, dust storms, melting of glaciers and permafrost, algal bloom events in the seas, lakes and water reservoirs. In its turn, these events will lead to chemical and biological contamination of water, land and air. These events will result in a deterioration of quality of life, significant financial loss due to damage to the houses, businesses, roads, agriculture, forestry, tourism, and in many cases they end in loss of life. These predictions are confirmed by the results of the studies presented in the RosHydromet First (2008) and Second (2014) Assessment Reports on Climate Change and its Consequences in Russian Federation. Scientists predictions have been repeatedly confirmed in the last 15 years - floods in Novorossiysk (2002), Krymsk and Gelendzhik (2012), the Far East (2013), heat waves in 2010, unusually cold winter (February) of 2012 and unusually warm winter of 2013/2014 in the European territory of Russia. In this regard, analysis and forecasting of extreme climate events associated with climate change in the territory of Russia are an extremely important task. This task is complicated by the fact that modern atmospheric models used by IPCC and RosHydromet badly reproduce and predict the intensity of precipitation. We are analyzing meteorological reanalysis data (NCEP/NCAR, 20th Century Reanalysis, ERA-20C, JRA-55) and satellite data (NASA and AVISO) on air, water and land temperature, rainfall, wind speed and cloud cover, water levels in seas and lakes, index of vegetation over the past 30-60 years (depending on the parameters) in the territory and water area of Russia for determining and mapping of the observed characteristics and trends in the extreme climate events and statistical forecast of these events for the next decades. Determination of a frequency, intensity and duration of extreme climate events in the territory and water area of Russia was done for the first time. It was found that the interannual-scale dynamics of ENSO is actually reflected in the climate features of different regions of the Earth, including the Russian Arctic. In particular, when the boreal winter season coincides with an El Niño event it is indicative by a negative anomaly of near-surface temperature (about -1°C) and a positive anomaly of sea level pressure over the Russian Western Arctic Basin. In contrary, significant (about +1°C) positive anomaly of near-surface temperature along with reduced sea level pressure over the regions of the Barents, White and Kara Seas is typical for any La Niña event (up to 95% significance of Student's t-test). The study was carried out with a support of the Russian Science Foundation Grant (Project N 14-50-00095).
Forecasting Impacts of Climate Change on Indicators of British Columbia's Biodiversity
NASA Astrophysics Data System (ADS)
Holmes, Keith Richard
Understanding the relationships between biodiversity and climate is essential for predicting the impact of climate change on broad-scale landscape processes. Utilizing indirect indicators of biodiversity derived from remotely sensed imagery, we present an approach to forecast shifts in the spatial distribution of biodiversity. Indirect indicators, such as remotely sensed plant productivity metrics, representing landscape seasonality, minimum growth, and total greenness have been linked to species richness over broad spatial scales, providing unique capacity for biodiversity modeling. Our goal is to map future spatial distributions of plant productivity metrics based on expected climate change and to quantify anticipated change to park habitat in British Columbia. Using an archival dataset sourced from the Advanced Very High Resolution Radiometer (AVHRR) satellite from the years 1987 to 2007 at 1km spatial resolution, corresponding historical climate data, and regression tree modeling, we developed regional models of the relationships between climate and annual productivity growth. Historical interconnections between climate and annual productivity were coupled with three climate change scenarios modeled by the Canadian Centre for Climate Modeling and Analysis (CCCma) to predict and map productivity components to the year 2065. Results indicate we can expect a warmer and wetter environment, which may lead to increased productivity in the north and higher elevations. Overall, seasonality is expected to decrease and greenness productivity metrics are expected to increase. The Coastal Mountains and high elevation edge habitats across British Columbia are forecasted to experience the greatest amount of change. In the future, protected areas may have potential higher greenness and lower seasonality as represented by indirect biodiversity indicators. The predictive model highlights potential gaps in protection along the central interior and Rocky Mountains. Protected areas are expected to experience the greatest change with indirect indicators located along mountainous elevations of British Columbia. Our indirect indicator approach to predict change in biodiversity provides resource managers with information to mitigate and adapt to future habitat dynamics. Spatially specific recommendations from our dataset provide information necessary for management. For instance, knowing there is a projected depletion of habitat representation in the East Rocky Mountains, sensitive species in the threatened Mountain Hemlock ecozone, or preservation of rare habitats in the decreasing greenness of the southern interior region is essential information for managers tasked with long term biodiversity conservation. Forecasting productivity levels, linked to the distribution of species richness, presents a novel approach for understanding the future implications of climate change on broad scale biodiversity.
NASA Astrophysics Data System (ADS)
Cheng, L.; Zhu, J.
2016-02-01
Ocean heat content (OHC) change contributes substantially to global sea level rise, also is a key metric of the ocean/global energy budget, so it is a vital task for the climate research community to estimate historical OHC. While there are large uncertainties regarding its value, here we review the OHC calculation by using the historical global subsurface temperature dataset, and discuss the sources of its uncertainty. The presentation briefly introduces how to correct to the systematic biases in expendable bathythermograph (XBT) data, a alternative way of filling data gaps (which is main focus of this talk), and how to choose a proper climatology. A new reconstruction of historical upper (0-700 m) OHC change will be presented, which is the Institute of Atmospheric Physics (IAP) version of historical upper OHC assessment. The authors also want to highlight the impact of observation system change on OHC calculation, which could lead to bias in OHC estimates. Furthermore, we will compare the updated observational-based estimates on ocean heat content change since 1970s with CMIP5 results. This comparison shows good agreement, increasing the confidence of the climate models in representing the climate history.
Primary, secondary and tertiary effects of eco-climatic change: the medical response.
Butler, Colin D; Harley, David
2010-04-01
Climatic and ecological change threaten human health globally. Manifestations include lost species, vanishing glaciers and more frequent heavy rain. In the second half of this century, accelerating sea level rise is likely to cause crop loss, and population dislocation. These problems may be magnified by dysfunctional human responses, including conflict. The population health consequences of these events can be classified as primary, secondary and tertiary. Primary signs include the acute and chronic stress of heat waves, and trauma from increased bush fires and flooding. Secondary signs are indirect, such as an altered distribution of arthropod vectors, intermediate hosts and pathogens that will produce changes in the epidemiology of many infectious diseases. More severe future health consequences of climate change are classified here as tertiary effects. If moderate or severe climate change scenarios prove accurate then these manifestations will occur over large areas, and could include famine, war and significant population displacement. Such effects would threaten governance and health. The health professions must respond to these challenges, especially the task of recognising and seeking to minimise tertiary health consequences. The gap between what we know and what we need to know concerning these issues can be narrowed by a new field of medical practice. The framework for this emerging discipline includes climate change, ecology and global health. Combined, these dimensions may be called ecomedicine. Actions to reduce individual emissions, to promote active transport (with its 'co-benefit' of preventing chronic disease), and involvement in group action to protect the environment and to prevent war, informed by understanding of the health of individual patients and populations, will be central to the practice of ecomedicine.
NASA Astrophysics Data System (ADS)
Mudelsee, Manfred
2015-04-01
The Big Data era has begun also in the climate sciences, not only in economics or molecular biology. We measure climate at increasing spatial resolution by means of satellites and look farther back in time at increasing temporal resolution by means of natural archives and proxy data. We use powerful supercomputers to run climate models. The model output of the calculations made for the IPCC's Fifth Assessment Report amounts to ~650 TB. The 'scientific evolution' of grid computing has started, and the 'scientific revolution' of quantum computing is being prepared. This will increase computing power, and data amount, by several orders of magnitude in the future. However, more data does not automatically mean more knowledge. We need statisticians, who are at the core of transforming data into knowledge. Statisticians notably also explore the limits of our knowledge (uncertainties, that is, confidence intervals and P-values). Mudelsee (2014 Climate Time Series Analysis: Classical Statistical and Bootstrap Methods. Second edition. Springer, Cham, xxxii + 454 pp.) coined the term 'optimal estimation'. Consider the hyperspace of climate estimation. It has many, but not infinite, dimensions. It consists of the three subspaces Monte Carlo design, method and measure. The Monte Carlo design describes the data generating process. The method subspace describes the estimation and confidence interval construction. The measure subspace describes how to detect the optimal estimation method for the Monte Carlo experiment. The envisaged large increase in computing power may bring the following idea of optimal climate estimation into existence. Given a data sample, some prior information (e.g. measurement standard errors) and a set of questions (parameters to be estimated), the first task is simple: perform an initial estimation on basis of existing knowledge and experience with such types of estimation problems. The second task requires the computing power: explore the hyperspace to find the suitable method, that is, the mode of estimation and uncertainty-measure determination that optimizes a selected measure for prescribed values close to the initial estimates. Also here, intelligent exploration methods (gradient, Brent, etc.) are useful. The third task is to apply the optimal estimation method to the climate dataset. This conference paper illustrates by means of three examples that optimal estimation has the potential to shape future big climate data analysis. First, we consider various hypothesis tests to study whether climate extremes are increasing in their occurrence. Second, we compare Pearson's and Spearman's correlation measures. Third, we introduce a novel estimator of the tail index, which helps to better quantify climate-change related risks.
Dissemination of Climate Model Output to the Public and Commercial Sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert Stockwell, PhD
2010-09-23
Climate is defined by the Glossary of Meteorology as the mean of atmospheric variables over a period of time ranging from as short as a few months to multiple years and longer. Although the term climate is often used to refer to long-term weather statistics, the broader definition of climate is the time evolution of a system consisting of the atmosphere, hydrosphere, lithosphere, and biosphere. Physical, chemical, and biological processes are involved in interactions among the components of the climate system. Vegetation, soil moisture, and glaciers are part of the climate system in addition to the usually considered temperature andmore » precipitation (Pielke, 2008). Climate change refers to any systematic change in the long-term statistics of climate elements (such as temperature, pressure, or winds) sustained over several decades or longer. Climate change can be initiated by external forces, such as cyclical variations in the Earth's solar orbit that are thought to have caused glacial and interglacial periods within the last 2 million years (Milankovitch, 1941). However, a linear response to astronomical forcing does not explain many other observed glacial and interglacial cycles (Petit et al., 1999). It is now understood that climate is influenced by the interaction of solar radiation with atmospheric greenhouse gasses (e.g., carbon dioxide, chlorofluorocarbons, methane, nitrous oxide, etc.), aerosols (airborne particles), and Earth's surface. A significant aspect of climate are the interannual cycles, such as the El Nino La Nina cycle which profoundly affects the weather in North America but is outside the scope of weather forecasts. Some of the most significant advances in understanding climate change have evolved from the recognition of the influence of ocean circulations upon the atmosphere (IPCC, 2007). Human activity can affect the climate system through increasing concentrations of atmospheric greenhouse gases, air pollution, increasing concentrations of aerosol, and land alteration. A particular concern is that atmospheric levels of CO{sub 2} may be rising faster than at any time in Earth's history, except possibly following rare events like impacts from large extraterrestrial objects (AMS, 2007). Atmospheric CO{sub 2} concentrations have increased since the mid-1700s through fossil fuel burning and changes in land use, with more than 80% of this increase occurring since 1900. The increased levels of CO{sub 2} will remain in the atmosphere for hundreds to thousands of years. The complexity of the climate system makes it difficult to predict specific aspects of human-induced climate change, such as exactly how and where changes will occur, and their magnitude. The Intergovernmental Panel for Climate Change (IPCC) was established by World Meteorological Organization (WMO) and the United Nations in 1988. The IPCC was tasked with assessing the scientific, technical and socioeconomic information needed to understand the risk of human-induced climate change, its observed and projected impacts, and options for adaptation and mitigation. The IPCC concluded in its Fourth Assessment Report (AR4) that warming of the climate system is unequivocal, and that most of the observed increase in globally averaged temperatures since the mid-20th century is very likely due to the observed increased in anthropogenic greenhouse gas concentrations (IPCC, 2007).« less
NASA Astrophysics Data System (ADS)
Georgievski, Goran; Keuler, Klaus
2013-04-01
Water supply and its potential to increase social, economic and environmental risks are among the most critical challenges for the upcoming decades. Therefore, the assessment of the reliability of regional climate models (RCMs) to represent present-day hydrological balance of river basins is one of the most challenging tasks with high priority for climate modelling in order to estimate range of possible socio-economic impacts of the climate change. However, previous work in the frame of 4th IPCC AR and corresponding regional downscaling experiments (with focus on Europe and Danube river basin) showed that even the meteorological re-analyses provide unreliable data set for evaluations of climate model performance. Furthermore, large discrepancies among the RCMs are caused by internal model deficiencies (for example: systematic errors in dynamics, land-soil parameterizations, large-scale condensation and convection schemes), and in spite of higher resolution RCMs do not always improve much the results from GCMs, but even deteriorate it in some cases. All that has a consequence that capturing impact of climate change on hydrological cycle is not an easy task. Here we present state of the art of RCMs in the frame of the CORDEX project for Europe. First analysis shows again that even the up to date ERA-INTERIM re-analysis is not reliable for evaluation of hydrological cycle in major European midlatitude river basins (Seine, Rhine, Elbe, Oder, Vistula, Danube, Po, Rhone, Garonne and Ebro). Therefore, terrestrial water storage, a quasi observed parameter which is a combination of river discharge (from Global River Discharge Centre data set) and atmospheric moisture fluxes from ERA-INTERIM re-analysis, is used for verification. It shows qualitatively good agreement with COSMO-CLM (CCLM) regional climate simulation (abbreviated CCLM_eval) at 0.11 degrees horizontal resolution forced by ERA-INTERIM re-analysis. Furthermore, intercomparison of terrestrial water storage seasonal cycle averaged in Danube river basin for the ten years (1990-1999) overlapping period between CCLM historical experiment (abbreviated CCLM_hist), its forcing GCM (MPI-ESM-LR, here abbreviated MPI_hist) and CCLM_eval is performed. It reveals that CCLM_hist simulation is in better agreement with quasi observed terrestrial water storage than MPI_hist and CCLM_eval. This result seems promising for the assessment of impact of climate change on hydrological cycle. However, evaluation of the whole ensemble of regional climate downscaling experiments participated in CORDEX-Europe project would provide a more robust estimate.
Assessing Flood Risk at Nuclear Power Plants with an Uncertain Climate
NASA Astrophysics Data System (ADS)
Wigmosta, M. S.; Vail, L. W.
2011-12-01
In 2010 a tsunami severely damaged the Fukushima Dai-ichi Nuclear Power Plant in Japan. As a result, the U.S. Nuclear Regulatory Commission directed that a systematic and methodical review of Commission processes and regulations be performed to determine whether the agency should make additional improvements to its regulatory system and to make recommendations to the Commission. Two of the recommendations of the Task Force created to inform the Commission were: establish a logical, systematic, and coherent regulatory framework for adequate protection that appropriately balances defense-in-depth and risk considerations and that the NRC require licensees to reevaluate and upgrade as necessary the design-basis flooding protection of structures, systems, and components for each operating reactor. These recommendations came at the same time as technical discussions about updating approaches to evaluate flood hazard were underway. These discussions included: consideration of climate nonstationarity in flood assessments; transitioning from PMP/PMF assessments to probabilistic flood analyses to better align with risk-informed decision making; and systematic consideration of combined events in flood risk analysis. There is no scientific basis to assume that shifts in long-term mean precipitation and temperature (such as is commonly derived from climate models) relate to flood probability. Flood mechanisms are often more complex and reflect climate pattern anomalies more than mean annual shifts. Instead of discounting historical data due to climatic nonstationarity, it is important to better understand the climate patterns that have triggered floods in the past and to look to climate forecasts to understand the likely changes in the frequency of those historical climate patterns with climate change. It is equally important to have a better understanding of whether climate change will result in flood-generating climate systems heretofore unknown in the particular locale. This presentation will provide a roadmap to ensuring that the flood hazards of existing and future nuclear power plants are well defined.
EVALUATING SHORT-TERM CLIMATE VARIABILITY IN THE LATE HOLOCENE OF THE NORTHERN GREAT PLAINS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joseph H. Hartman
1999-09-01
This literature study investigated methods and areas to deduce climate change and climate patterns, looking for short-term cycle phenomena and the means to interpret them. Many groups are actively engaged in intensive climate-related research. Ongoing research might be (overly) simplified into three categories: (1) historic data on weather that can be used for trend analysis and modeling; (2) detailed geological, biological (subfossil), and analytical (geochemical, radiocarbon, etc.) studies covering the last 10,000 years (about since last glaciation); and (3) geological, paleontological, and analytical (geochemical, radiometric, etc.) studies over millions of years. Of importance is our ultimate ability to join thesemore » various lines of inquiry into an effective means of interpretation. At this point, the process of integration is fraught with methodological troubles and misconceptions about what each group can contribute. This project has met its goals to the extent that it provided an opportunity to study resource materials and consider options for future effort toward the goal of understanding the natural climate variation that has shaped our current civilization. A further outcome of this project is a proposed methodology based on ''climate sections'' that provides spatial and temporal correlation within a region. The method would integrate cultural and climate data to establish the climate history of a region with increasing accuracy with progressive study and scientific advancement (e. g., better integration of regional and global models). The goal of this project is to better understand natural climatic variations in the recent past (last 5000 years). The information generated by this work is intended to provide better context within which to examine global climate change. The ongoing project will help to establish a basis upon which to interpret late Holocene short-term climate variability as evidenced in various studies in the northern Great Plains, northern hemisphere, and elsewhere. Finally these data can be integrated into a history of climate change and predictive climate models. This is not a small undertaking. The goals of researchers and the methods used vary considerably. The primary task of this project was literature research to (1) evaluate existing methodologies used in geologic climate change studies and evidence for short-term cycles produced by these methodologies and (2) evaluate late Holocene climate patterns and their interpretations.« less
NASA Astrophysics Data System (ADS)
Aerenson, Travis; Tebaldi, Claudia; Sanderson, Ben; Lamarque, Jean-François
2018-03-01
Following the 2015 Paris agreement, the Intergovernmental Panel on Climate Change was tasked with assessing climate change impacts and mitigation options for a world that limits warming to 1.5 °C in a special report. To aid the scientific assessment process three low-warming ensembles were generated over the 21st century based on the Paris targets using NCAR-DOE community model, CESM1-CAM5. This study used those simulation results and computed ten extreme climate indices, from definitions created by the Expert Team on Climate Change Detection and Indices, to determine if the three different scenarios cause different intensity and frequency of extreme precipitation or temperature over the 21st century. After computing the indices, statistical tests were used to determine if significant changes affect their characteristics. It was found that at the grid point level significant changes emerge in all scenarios, for nearly all indices. The temperature indices show widespread significant change, while the behavior of precipitation indices reflects the larger role that internal variability plays, even by the end of the century. Nonetheless differences can be assessed, in substantial measure for many of these indices: changes in nearly all indices have a strong correlation to global mean temperature, so that scenarios and times with greater temperature change experience greater index changes for many regions. This is particularly true of the temperature-related indices, but can be assessed for some regions also for the indices related to precipitation intensity. These results thus show that even for scenarios that are separated by only half of a degree in global average temperature, the statistics of extremes are significantly different.
Temperature Effects on Labor in Latin America
NASA Astrophysics Data System (ADS)
Foreman, T.
2016-12-01
It has long been known that environmental conditions can affect humans' performance of various tasks, both physical and mental. In light of projected climate change, heat's impact on performance is of particular concern. While there is evidence that performance suffers, from an economic standpoint, how this performance effect changes a worker's ability or willingness to work is of particular concern. Workers' decisions to supply less labor may be a key channel for economic losses due to climate change, especially in developing countries that experience high temperatures and humidity. In a study of worker behavior in Guatemala, Mexico, and Nicaragua, increasing temperatures by 1°C was found to reduce labor supplied by up to an hour per day for each worker on average in the poorest and hottest places. This result holds across different levels of risk exposure to heat, indicating little evidence of potential adaptation measures.
Conifer radial growth response to recent seasonal warming and drought from the southwestern USA
Charles Truettner; William R. L. Anderegg; Franco Biondi; George W. Koch; Kiona Ogle; Christopher Schwalm; Marcy E. Litvak; John D. Shaw; Emanuele Ziaco
2018-01-01
Future droughts are expected to become more severe and frequent under future climate change scenarios, likely causing widespread tree mortality in the western USA. Coping with an uncertain future requires an understanding of long-term ecosystem responses in areas where prolonged drought is projected to increase. Tree-ring records are ideally suited for this task. We...
USDA-ARS?s Scientific Manuscript database
Modelling the water and energy balance at the land surface is a crucial task for many applications related to crop production, water resources management, climate change studies, weather forecasting, and natural hazards assessment. To improve the modelling of evapotranspiration (ET) over structurall...
ERIC Educational Resources Information Center
Braten, Ivar; Stromso, Helge I.
2010-01-01
In this study, law students (n = 49) read multiple authentic documents presenting conflicting information on the topic of climate change and responded to verification tasks assessing their superficial as well as their deeper-level within- and across-documents comprehension. Hierarchical multiple regression analyses showed that even after variance…
NASA Astrophysics Data System (ADS)
Medvigy, D.; Levy, J.; Xu, X.; Batterman, S. A.; Hedin, L.
2013-12-01
Ecosystems, by definition, involve a community of organisms. These communities generally exhibit heterogeneity in their structure and composition as a result of local variations in climate, soil, topography, disturbance history, and other factors. Climate-driven shifts in ecosystems will likely include an internal re-organization of community structure and composition and as well as the introduction of novel species. In terms of vegetation, this ecosystem heterogeneity can occur at relatively small scales, sometimes of the order of tens of meters or even less. Because this heterogeneous landscape generally has a variable and nonlinear response to environmental perturbations, it is necessary to carefully aggregate the local competitive dynamics between individual plants to the large scales of tens or hundreds of kilometers represented in climate models. Accomplishing this aggregation in a computationally efficient way has proven to be an extremely challenging task. To meet this challenge, the Ecosystem Demography 2 (ED2) model statistically characterizes a distribution of local resource environments, and then simulates the competition between individuals of different sizes and species (or functional groupings). Within this framework, it is possible to explicitly simulate the impacts of climate change on ecosystem structure and composition, including both internal re-organization and the introduction of novel species or functional groups. This presentation will include several illustrative applications of the evolution of ecosystem structure and composition under climate change. One application pertains to the role of nitrogen-fixing species in tropical forests. Will increasing CO2 concentrations increase the demand for nutrients and perhaps give a competitive edge to nitrogen-fixing species? Will potentially warmer and drier conditions make some tropical forests more water-limited, reducing the demand for nitrogen, thereby giving a competitive advantage to non-nitrogen-fixing species? Will the response of nitrogen-fixing species to climate change be sensitive to local disturbance histories?
NASA Astrophysics Data System (ADS)
Lazrus, H.; Done, J.; Morss, R. E.
2017-12-01
A new branch of climate science, known as decadal prediction, seeks to predict the time-varying trajectory of climate over the next 3-30 years and not just the longer-term trends. Decadal predictions bring climate information into the time horizon of decision makers, particularly those tasked with managing water resources and floods whose master planning is often on the timescale of decades. Information from decadal predictions may help alleviate some aspects of vulnerability by helping to inform decisions that reduce drought and flood exposure and increase adaptive capacities including preparedness, response, and recovery. This presentation will highlight an interdisciplinary project - involving atmospheric and social scientists - on the development of decadal climate information and its use in decision making. The presentation will explore the skill and utility of decadal drought and flood prediction along Colorado's Front Range, an area experiencing rapid population growth and uncertain climate variability and climate change impacts. Innovative statistical and dynamical atmospheric modeling techniques explore the extent to which Colorado precipitation can be predicted on decadal scales using remote Pacific Ocean surface temperature patterns. Concurrently, stakeholder interviews with flood managers in Colorado are being used to explore the potential utility of decadal climate information. Combining the modeling results with results from the stakeholder interviews shows that while there is still significant uncertainty surrounding precipitation on decadal time scales, relevant and well communicated decadal information has potential to be useful for drought and flood management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sathaye, Jayant A.; Price, Lynn; Kumar, Satish
Development and poverty eradication are urgent andoverriding goals internationally. The World Summit on SustainableDevelopment made clear the need for increased access to affordable,reliable and cleaner energy and the international community agreed in theDelhi Declaration on Climate Change and Sustainable Development on theimportance of the development agenda in considering any climate changeapproach. To this end, six countries (Australia, China, India, Japan,Republic of Korea and the United States) have come together to form theAsia Pacific Partnership in accordance with their respective nationalcircumstances, to develop, deploy and transfer cleaner, more efficienttechnologies and to meet national pollution reduction, energy securityand climate change concerns consistentmore » with the principles of the U.N.Framework Convention on Climate Change (UNFCCC). The APP builds on thefoundation of existing bilateral and multilateral initiativescomplements.APP has established eight public-private sector Task Forcescovering: (1) cleaner fossil energy; (2) renewable energy and distributedgeneration; (3) power generation and transmission; (4) steel; (5)aluminium; (6) cement; (7) coal mining; and (8) buildings and appliances.As a priority, each Task Force will formulate detailed action plansoutlining both immediate and medium-term specific actions, includingpossible "flagship" projects and relevant indicators of progress by 31August 2006. The partnership will help the partners build human andinstitutional capacity to strengthen cooperative efforts, and will seekopportunities to engage the private sector. The APP organized An OutreachWorkshop: Business&Technology Cooperation Opportunities forIndustry on August 26, 2006, New Delhi. This paper was prepared toprovide background information for participants of the Conference. Ithighlights energy efficiency, renewable energy, and climate technologies,barriers, and partnerships that are being implemented in the US, Indiaand other selected countries. The paper discusses the lessons to belearned from these partnerships, and ways by which the APP could fostercooperation between India and the other member countries. It highlightsthe types of technologies that Indian public sector and private industrycould access from US national laboratories and also be able to leveragecurrent and planned USAID/India activities. The paper builds on anearlier background paper that was prepared for the US-India EnergyDialogue Working Group on Energy Efficiency.« less
NASA Astrophysics Data System (ADS)
Molina-Perez, Edmundo
It is widely recognized that international environmental technological change is key to reduce the rapidly rising greenhouse gas emissions of emerging nations. In 2010, the United Nations Framework Convention on Climate Change (UNFCCC) Conference of the Parties (COP) agreed to the creation of the Green Climate Fund (GCF). This new multilateral organization has been created with the collective contributions of COP members, and has been tasked with directing over USD 100 billion per year towards investments that can enhance the development and diffusion of clean energy technologies in both advanced and emerging nations (Helm and Pichler, 2015). The landmark agreement arrived at the COP 21 has reaffirmed the key role that the GCF plays in enabling climate mitigation as it is now necessary to align large scale climate financing efforts with the long-term goals agreed at Paris 2015. This study argues that because of the incomplete understanding of the mechanics of international technological change, the multiplicity of policy options and ultimately the presence of climate and technological change deep uncertainty, climate financing institutions such as the GCF, require new analytical methods for designing long-term robust investment plans. Motivated by these challenges, this dissertation shows that the application of new analytical methods, such as Robust Decision Making (RDM) and Exploratory Modeling (Lempert, Popper and Bankes, 2003) to the study of international technological change and climate policy provides useful insights that can be used for designing a robust architecture of international technological cooperation for climate change mitigation. For this study I developed an exploratory dynamic integrated assessment model (EDIAM) which is used as the scenario generator in a large computational experiment. The scope of the experimental design considers an ample set of climate and technological scenarios. These scenarios combine five sources of uncertainty: climate change, elasticity of substitution between renewable and fossil energy and three different sources of technological uncertainty (i.e. R&D returns, innovation propensity and technological transferability). The performance of eight different GCF and non-GCF based policy regimes is evaluated in light of various end-of-century climate policy targets. Then I combine traditional scenario discovery data mining methods (Bryant and Lempert, 2010) with high dimensional stacking methods (Suzuki, Stem and Manzocchi, 2015; Taylor et al., 2006; LeBlanc, Ward and Wittels, 1990) to quantitatively characterize the conditions under which it is possible to stabilize greenhouse gas emissions and keep temperature rise below 2°C before the end of the century. Finally, I describe a method by which it is possible to combine the results of scenario discovery with high-dimensional stacking to construct a dynamic architecture of low cost technological cooperation. This dynamic architecture consists of adaptive pathways (Kwakkel, Haasnoot and Walker, 2014; Haasnoot et al., 2013) which begin with carbon taxation across both regions as a critical near term action. Then in subsequent phases different forms of cooperation are triggered depending on the unfolding climate and technological conditions. I show that there is no single policy regime that dominates over the entire uncertainty space. Instead I find that it is possible to combine these different architectures into a dynamic framework for technological cooperation across regions that can be adapted to unfolding climate and technological conditions which can lead to a greater rate of success and to lower costs in meeting the end-of-century climate change objectives agreed at the 2015 Paris Conference of the Parties. Keywords: international technological change, emerging nations, climate change, technological uncertainties, Green Climate Fund.
NASA Astrophysics Data System (ADS)
Ogorodov, Stanislav; Arkhipov, Vasily; Kokin, Osip; Natalia, Shabanova
2016-04-01
Sea ice as a zonal factor is an important passive and active relief-forming agent in the coastal-shelf zone of the Arctic and other freezing seas. The most dangerous process in relation to the hydrotechnical facilities is ice gouging - destructive mechanical impact of the ice of the ground, connected with the dynamics of the ice cover, formation of hummocks and stamukhas under the influence of hydrometeorologic factors and of the relief of the coastal-shelf zone. Underestimation of the ice gouging intensity can lead to damage of the engineering facilities, while excessive deepening increases the expenses of the construction. Finding the optimal variant and, by this, decreasing the risks of extreme situations is a relevant task of the science and practice. This task is complicated by the fact that the oil and gas infrastructure within the coastal and shelf areas of the freezing seas is currently being developed in the conditions of global climate change. In the present work, several results of the repeated sounding of bottom ice gouging microrelief within the area of the underwater pipeline crossing of the Baydaratskaya Bay, Kara Sea, are presented. Based on the results of the monitoring, as well as the analysis of literature sources and modeling it has been established that under the conditions of climate warming and sea ice reduction, the zone of the most intensive ice gouging is shifted landwards, on shallower water areas.
NASA Astrophysics Data System (ADS)
Mullendore, G. L.; Munski, L.; Kirilenko, A.; Remer, F.; Baker, M.
2012-12-01
In summer 2010, the University of North Dakota (UND) hosted an internship for undergraduates to learn about climate change in both the classroom and group research projects. As a final project, the undergraduates were tasked to present their findings about different aspects of climate change in webcasts that would be later used in middle school classrooms in the region. Interns indicated that participation significantly improved their own confidence in future scholarly pursuits. Also, communicating about climate change, both during the project and afterwards, helped the interns feel more confident in their own learning. Use of webcasts widened the impact of student projects (e.g. YouTube dissemination), and multiple methods of student communication should continue to be an important piece of climate change education initiatives. Other key aspects of the internship were student journaling and group building. Challenges faced included media accessibility and diverse recruiting. Best practices from the UND internship will be discussed as a model for implementation at other universities. Lesson plans that complement the student-produced webcasts and adhere to regional and national standards were created during 2011. Communication between scientists and K-12 education researchers was found to be a challenge, but improved over the course of the project. These lesson plans have been reviewed both during a teacher workshop in January 2012 and by several Master teachers. Although select middle school educators have expressed enthusiasm for testing of these modules, very little hands-on testing with students has occurred. Wide-ranging roadblocks to implementation exist, including the need for adherence to state standards and texts, inadequate access to technology, and generally negative attitudes toward climate change in the region. Feedback from regional educators will be presented, and possible solutions will be discussed. Although some challenges are specific to the Northern Great Plains region, understanding these challenges are important for agencies and universities with goals of national dissemination.
A big data approach for climate change indicators processing in the CLIP-C project
NASA Astrophysics Data System (ADS)
D'Anca, Alessandro; Conte, Laura; Palazzo, Cosimo; Fiore, Sandro; Aloisio, Giovanni
2016-04-01
Defining and implementing processing chains with multiple (e.g. tens or hundreds of) data analytics operators can be a real challenge in many practical scientific use cases such as climate change indicators. This is usually done via scripts (e.g. bash) on the client side and requires climate scientists to take care of, implement and replicate workflow-like control logic aspects (which may be error-prone too) in their scripts, along with the expected application-level part. Moreover, the big amount of data and the strong I/O demand pose additional challenges related to the performance. In this regard, production-level tools for climate data analysis are mostly sequential and there is a lack of big data analytics solutions implementing fine-grain data parallelism or adopting stronger parallel I/O strategies, data locality, workflow optimization, etc. High-level solutions leveraging on workflow-enabled big data analytics frameworks for eScience could help scientists in defining and implementing the workflows related to their experiments by exploiting a more declarative, efficient and powerful approach. This talk will start introducing the main needs and challenges regarding big data analytics workflow management for eScience and will then provide some insights about the implementation of some real use cases related to some climate change indicators on large datasets produced in the context of the CLIP-C project - a EU FP7 project aiming at providing access to climate information of direct relevance to a wide variety of users, from scientists to policy makers and private sector decision makers. All the proposed use cases have been implemented exploiting the Ophidia big data analytics framework. The software stack includes an internal workflow management system, which coordinates, orchestrates, and optimises the execution of multiple scientific data analytics and visualization tasks. Real-time workflow monitoring execution is also supported through a graphical user interface. In order to address the challenges of the use cases, the implemented data analytics workflows include parallel data analysis, metadata management, virtual file system tasks, maps generation, rolling of datasets, and import/export of datasets in NetCDF format. The use cases have been implemented on a HPC cluster of 8-nodes (16-cores/node) of the Athena Cluster available at the CMCC Supercomputing Centre. Benchmark results will be also presented during the talk.
NASA Astrophysics Data System (ADS)
Müller, M. F.; Thompson, S. E.
2016-02-01
The prediction of flow duration curves (FDCs) in ungauged basins remains an important task for hydrologists given the practical relevance of FDCs for water management and infrastructure design. Predicting FDCs in ungauged basins typically requires spatial interpolation of statistical or model parameters. This task is complicated if climate becomes non-stationary, as the prediction challenge now also requires extrapolation through time. In this context, process-based models for FDCs that mechanistically link the streamflow distribution to climate and landscape factors may have an advantage over purely statistical methods to predict FDCs. This study compares a stochastic (process-based) and statistical method for FDC prediction in both stationary and non-stationary contexts, using Nepal as a case study. Under contemporary conditions, both models perform well in predicting FDCs, with Nash-Sutcliffe coefficients above 0.80 in 75 % of the tested catchments. The main drivers of uncertainty differ between the models: parameter interpolation was the main source of error for the statistical model, while violations of the assumptions of the process-based model represented the main source of its error. The process-based approach performed better than the statistical approach in numerical simulations with non-stationary climate drivers. The predictions of the statistical method under non-stationary rainfall conditions were poor if (i) local runoff coefficients were not accurately determined from the gauge network, or (ii) streamflow variability was strongly affected by changes in rainfall. A Monte Carlo analysis shows that the streamflow regimes in catchments characterized by frequent wet-season runoff and a rapid, strongly non-linear hydrologic response are particularly sensitive to changes in rainfall statistics. In these cases, process-based prediction approaches are favored over statistical models.
NASA Astrophysics Data System (ADS)
Goderniaux, Pascal; Brouyère, Serge; Blenkinsop, Stephen; Burton, Aidan; Fowler, Hayley; Dassargues, Alain
2010-05-01
The evaluation of climate change impact on groundwater reserves represents a difficult task because both hydrological and climatic processes are complex and difficult to model. In this study, we present an innovative methodology that combines the use of integrated surface - subsurface hydrological models with advanced stochastic transient climate change scenarios. This methodology is applied to the Geer basin (480 km²) in Belgium, which is intensively exploited to supply the city of Liège (Belgium) with drinking water. The physically-based, spatially-distributed, surface-subsurface flow model has been developed with the finite element model HydroGeoSphere . The simultaneous solution of surface and subsurface flow equations in HydroGeoSphere, as well as the internal calculation of the actual evapotranspiration as a function of the soil moisture at each node of the evaporative zone, enables a better representation of interconnected processes in all domains of the catchment (fully saturated zone, partially saturated zone, surface). Additionally, the use of both surface and subsurface observed data to calibrate the model better constrains the calibration of the different water balance terms. Crucially, in the context of climate change impacts on groundwater resources, the evaluation of groundwater recharge is improved. . This surface-subsurface flow model is combined with advanced climate change scenarios for the Geer basin. Climate change simulations were obtained from six regional climate model (RCM) scenarios assuming the SRES A2 greenhouse gases emission (medium-high) scenario. These RCM scenarios were statistically downscaled using a transient stochastic weather generator technique, combining 'RainSim' and the 'CRU weather generator' for temperature and evapotranspiration time series. This downscaling technique exhibits three advantages compared with the 'delta change' method usually used in groundwater impact studies. (1) Corrections to climate model output are applied not only to the mean of climatic variables, but also across the statistical distributions of these variables. This is important as these distributions are expected to change in the future, with more extreme rainfall events, separated by longer dry periods. (2) The novel approach used in this study can simulate transient climate change from 2010 to 2085, rather than time series representative of a stationary climate for the period 2071-2100. (3) The weather generator is used to generate a large number of equiprobable climate change scenarios for each RCM, representative of the natural variability of the weather. All of these scenarios are applied as input to the Geer basin model to assess the projected impact of climate change on groundwater levels, the uncertainty arising for different RCM projections and the uncertainty linked to natural climatic variability. Using the output results from all scenarios, 95% confidence intervals are calculated for each year and month between 2010 and 2085. The climate change scenarios for the Geer basin model predict hotter and drier summers and warmer and wetter winters. Considering the results of this study, it is very likely that groundwater levels and surface flow rates in the Geer basin will decrease by the end of the century. This is of concern because it also means that groundwater quantities available for abstraction will also decrease. However, this study also shows that the uncertainty of these projections is relatively large compared to the projected changes so that it remains difficult to confidently determine the magnitude of the decrease. The use and combination of an integrated surface - subsurface model and stochastic climate change scenarios has never been used in previous climate change impact studies on groundwater resources. It constitutes an innovation and is an important tool for helping water managers to take decisions.
Demographic compensation and tipping points in climate-induced range shifts.
Doak, Daniel F; Morris, William F
2010-10-21
To persist, species are expected to shift their geographical ranges polewards or to higher elevations as the Earth's climate warms. However, although many species' ranges have shifted in historical times, many others have not, or have shifted only at the high-latitude or high-elevation limits, leading to range expansions rather than contractions. Given these idiosyncratic responses to climate warming, and their varied implications for species' vulnerability to climate change, a critical task is to understand why some species have not shifted their ranges, particularly at the equatorial or low-elevation limits, and whether such resilience will last as warming continues. Here we show that compensatory changes in demographic rates are buffering southern populations of two North American tundra plants against the negative effects of a warming climate, slowing their northward range shifts, but that this buffering is unlikely to continue indefinitely. Southern populations of both species showed lower survival and recruitment but higher growth of individual plants, possibly owing to longer, warmer growing seasons. Because of these and other compensatory changes, the population growth rates of southern populations are not at present lower than those of northern ones. However, continued warming may yet prove detrimental, as most demographic rates that improved in moderately warmer years declined in the warmest years, with the potential to drive future population declines. Our results emphasize the need for long-term, range-wide measurement of all population processes to detect demographic compensation and to identify nonlinear responses that may lead to sudden range shifts as climatic tipping points are exceeded.
ERIC Educational Resources Information Center
DeSchryver, Michael
2012-01-01
This dissertation utilized a multiple case study design to explore how advanced learners synthesize information about ill-structured topics when reading-to-learn and reading-to-do on the Web. Eight graduate students provided data in the form of think-alouds, interviews, screen video, digital trails, and task artifacts. Data analysis was based on…
NASA Astrophysics Data System (ADS)
Wang, W.; Hashimoto, H.; Milesi, C.; Nemani, R. R.; Myneni, R.
2011-12-01
Terrestrial ecosystem models are primary scientific tools to extrapolate our understanding of ecosystem functioning from point observations to global scales as well as from the past climatic conditions into the future. However, no model is nearly perfect and there are often considerable structural uncertainties existing between different models. Ensemble model experiments thus become a mainstream approach in evaluating the current status of global carbon cycle and predicting its future changes. A key task in such applications is to quantify the sensitivity of the simulated carbon fluxes to climate variations and changes. Here we develop a systematic framework to address this question solely by analyzing the inputs and the outputs from the models. The principle of our approach is to assume the long-term (~30 years) average of the inputs/outputs as a quasi-equlibrium of the climate-vegetation system while treat the anomalies of carbon fluxes as responses to climatic disturbances. In this way, the corresponding relationships can be largely linearized and analyzed using conventional time-series techniques. This method is used to characterize three major aspects of the vegetation models that are mostly important to global carbon cycle, namely the primary production, the biomass dynamics, and the ecosystem respiration. We apply this analytical framework to quantify the climatic sensitivity of an ensemble of models including CASA, Biome-BGC, LPJ as well as several other DGVMs from previous studies, all driven by the CRU-NCEP climate dataset. The detailed analysis results are reported in this study.
NASA Astrophysics Data System (ADS)
Swenson, S. C.; Lawrence, D. M.
2014-12-01
Estimating the relative contributions of human withdrawals and climate variability to changes in groundwater is a challenging task at present. One method that has been used recently is a model-data synthesis combining GRACE total water storage estimates with simulated water storage estimates from land surface models. In this method, water storage changes due to natural climate variations simulated by a model are removed from total water storage changes observed by GRACE; the residual is then interpreted as anthropogenic groundwater change. If the modeled water storage estimate contains systematic errors, these errors will also be present in the residual groundwater estimate. For example, simulations performed with the Community Land Model (CLM; the land component of the Community Earth System Model) generally show a weak (as much as 50% smaller) seasonal cycle of water storage in semi-arid regions when compared to GRACE satellite water storage estimates. This bias propagates into GRACE-CLM anthropogenic groundwater change estimates, which then exhibit unphysical seasonal variability. The CLM bias can be traced to the parameterization of soil evaporative resistance. Incorporating a new soil resistance parameterization in CLM greatly reduces the seasonal bias with respect to GRACE. In this study, we compare the improved CLM water storage estimates to GRACE and discuss the implications for estimates of anthropogenic groundwater withdrawal, showing examples for the Middle East and Southwestern United States.
Castro-Sánchez, Manuel; Zurita-Ortega, Félix; Chacón-Cuberos, Ramón; López-Gutiérrez, Carlos Javier; Zafra-Santos, Edson
2018-05-01
(1) Background: Psychological factors can strongly affect the athletes’ performance. Therefore, currently the role of the sports psychologist is particularly relevant, being in charge of training the athlete’s psychological factors. This study aims at analysing the connections between motivational climate in sport, anxiety and emotional intelligence depending on the type of sport practised (individual/team) by means of a multigroup structural equations analysis. (2) 372 semi-professional Spanish athletes took part in this investigation, analysing motivational climate (PMCSQ-2), emotional intelligence (SSRI) and levels of anxiety (STAI). A model of multigroup structural equations was carried out which fitted accordingly (χ² = 586.77; df = 6.37; p < 0.001; Comparative Fit Index (CFI) = 0.951; Normed Fit Index (NFI) = 0.938; Incremental Fit Index (IFI) = 0.947; Root Mean Square Error of Approximation (RMSEA) = 0.069). (3) Results: A negative and direct connection has been found between ego oriented climate and task oriented climate, which is stronger and more differentiated in team sports. The most influential indicator in ego oriented climate is intra-group rivalry, exerting greater influence in individual sports. For task-oriented climate the strongest indicator is having an important role in individual sports, while in team sports it is cooperative learning. Emotional intelligence dimensions correlate more strongly in team sports than in individual sports. In addition, there was a negative and indirect relation between task oriented climate and trait-anxiety in both categories of sports. (4) Conclusions: This study shows how the task-oriented motivational climate or certain levels of emotional intelligence can act preventively in the face of anxiety states in athletes. Therefore, the development of these psychological factors could prevent anxiety states and improve performance in athletes.
López-Gutiérrez, Carlos Javier; Zafra-Santos, Edson
2018-01-01
(1) Background: Psychological factors can strongly affect the athletes’ performance. Therefore, currently the role of the sports psychologist is particularly relevant, being in charge of training the athlete’s psychological factors. This study aims at analysing the connections between motivational climate in sport, anxiety and emotional intelligence depending on the type of sport practised (individual/team) by means of a multigroup structural equations analysis. (2) 372 semi-professional Spanish athletes took part in this investigation, analysing motivational climate (PMCSQ-2), emotional intelligence (SSRI) and levels of anxiety (STAI). A model of multigroup structural equations was carried out which fitted accordingly (χ2 = 586.77; df = 6.37; p < 0.001; Comparative Fit Index (CFI) = 0.951; Normed Fit Index (NFI) = 0.938; Incremental Fit Index (IFI) = 0.947; Root Mean Square Error of Approximation (RMSEA) = 0.069). (3) Results: A negative and direct connection has been found between ego oriented climate and task oriented climate, which is stronger and more differentiated in team sports. The most influential indicator in ego oriented climate is intra-group rivalry, exerting greater influence in individual sports. For task-oriented climate the strongest indicator is having an important role in individual sports, while in team sports it is cooperative learning. Emotional intelligence dimensions correlate more strongly in team sports than in individual sports. In addition, there was a negative and indirect relation between task oriented climate and trait-anxiety in both categories of sports. (4) Conclusions: This study shows how the task-oriented motivational climate or certain levels of emotional intelligence can act preventively in the face of anxiety states in athletes. Therefore, the development of these psychological factors could prevent anxiety states and improve performance in athletes. PMID:29724008
Blodgett, David L.
2013-01-01
The increasing availability of downscaled climate projections and other data products that summarize or predict climate conditions, is making climate data use more common in research and management. Scientists and decisionmakers often need to construct ensembles and compare climate hindcasts and future projections for particular spatial areas. These tasks generally require an investigator to procure all datasets of interest en masse, integrate the various data formats and representations into commonly accessible and comparable formats, and then extract the subsets of the datasets that are actually of interest. This process can be challenging and time intensive due to data-transfer, -storage, and(or) -processing limits, or unfamiliarity with methods of accessing climate data. Data management for modeling and assessing the impacts of future climate conditions is also becoming increasingly expensive due to the size of the datasets. The Climate Geo Data Portal (http://cida.usgs.gov/climate/gdp/) addresses these limitations, making access to numerous climate datasets for particular areas of interest a simple and efficient task.
Anderson, Alexander S.; Storlie, Collin J.; Shoo, Luke P.; Pearson, Richard G.; Williams, Stephen E.
2013-01-01
Among birds, tropical montane species are likely to be among the most vulnerable to climate change, yet little is known about how climate drives their distributions, nor how to predict their likely responses to temperature increases. Correlative models of species’ environmental niches have been widely used to predict changes in distribution, but direct tests of the relationship between key variables, such as temperature, and species’ actual distributions are few. In the absence of historical data with which to compare observations and detect shifts, space-for-time substitutions, where warmer locations are used as analogues of future conditions, offer an opportunity to test for species’ responses to climate. We collected density data for rainforest birds across elevational gradients in northern and southern subregions within the Australian Wet Tropics (AWT). Using environmental optima calculated from elevational density profiles, we detected a significant elevational difference between the two regions in ten of 26 species. More species showed a positive (19 spp.) than negative (7 spp.) displacement, with a median difference of ∼80.6 m across the species analysed that is concordant with that expected due to latitudinal temperature differences (∼75.5 m). Models of temperature gradients derived from broad-scale climate surfaces showed comparable performance to those based on in-situ measurements, suggesting the former is sufficient for modeling impacts. These findings not only confirm temperature as an important factor driving elevational distributions of these species, but also suggest species will shift upslope to track their preferred environmental conditions. Our approach uses optima calculated from elevational density profiles, offering a data-efficient alternative to distribution limits for gauging climate constraints, and is sensitive enough to detect distribution shifts in this avifauna in response to temperature changes of as little as 0.4 degrees. We foresee important applications in the urgent task of detecting and monitoring impacts of climate change on montane tropical biodiversity. PMID:23936005
The Ophidia framework: toward cloud-based data analytics for climate change
NASA Astrophysics Data System (ADS)
Fiore, Sandro; D'Anca, Alessandro; Elia, Donatello; Mancini, Marco; Mariello, Andrea; Mirto, Maria; Palazzo, Cosimo; Aloisio, Giovanni
2015-04-01
The Ophidia project is a research effort on big data analytics facing scientific data analysis challenges in the climate change domain. It provides parallel (server-side) data analysis, an internal storage model and a hierarchical data organization to manage large amount of multidimensional scientific data. The Ophidia analytics platform provides several MPI-based parallel operators to manipulate large datasets (data cubes) and array-based primitives to perform data analysis on large arrays of scientific data. The most relevant data analytics use cases implemented in national and international projects target fire danger prevention (OFIDIA), interactions between climate change and biodiversity (EUBrazilCC), climate indicators and remote data analysis (CLIP-C), sea situational awareness (TESSA), large scale data analytics on CMIP5 data in NetCDF format, Climate and Forecast (CF) convention compliant (ExArch). Two use cases regarding the EU FP7 EUBrazil Cloud Connect and the INTERREG OFIDIA projects will be presented during the talk. In the former case (EUBrazilCC) the Ophidia framework is being extended to integrate scalable VM-based solutions for the management of large volumes of scientific data (both climate and satellite data) in a cloud-based environment to study how climate change affects biodiversity. In the latter one (OFIDIA) the data analytics framework is being exploited to provide operational support regarding processing chains devoted to fire danger prevention. To tackle the project challenges, data analytics workflows consisting of about 130 operators perform, among the others, parallel data analysis, metadata management, virtual file system tasks, maps generation, rolling of datasets, import/export of datasets in NetCDF format. Finally, the entire Ophidia software stack has been deployed at CMCC on 24-nodes (16-cores/node) of the Athena HPC cluster. Moreover, a cloud-based release tested with OpenNebula is also available and running in the private cloud infrastructure of the CMCC Supercomputing Centre.
Anderson, Alexander S; Storlie, Collin J; Shoo, Luke P; Pearson, Richard G; Williams, Stephen E
2013-01-01
Among birds, tropical montane species are likely to be among the most vulnerable to climate change, yet little is known about how climate drives their distributions, nor how to predict their likely responses to temperature increases. Correlative models of species' environmental niches have been widely used to predict changes in distribution, but direct tests of the relationship between key variables, such as temperature, and species' actual distributions are few. In the absence of historical data with which to compare observations and detect shifts, space-for-time substitutions, where warmer locations are used as analogues of future conditions, offer an opportunity to test for species' responses to climate. We collected density data for rainforest birds across elevational gradients in northern and southern subregions within the Australian Wet Tropics (AWT). Using environmental optima calculated from elevational density profiles, we detected a significant elevational difference between the two regions in ten of 26 species. More species showed a positive (19 spp.) than negative (7 spp.) displacement, with a median difference of ∼80.6 m across the species analysed that is concordant with that expected due to latitudinal temperature differences (∼75.5 m). Models of temperature gradients derived from broad-scale climate surfaces showed comparable performance to those based on in-situ measurements, suggesting the former is sufficient for modeling impacts. These findings not only confirm temperature as an important factor driving elevational distributions of these species, but also suggest species will shift upslope to track their preferred environmental conditions. Our approach uses optima calculated from elevational density profiles, offering a data-efficient alternative to distribution limits for gauging climate constraints, and is sensitive enough to detect distribution shifts in this avifauna in response to temperature changes of as little as 0.4 degrees. We foresee important applications in the urgent task of detecting and monitoring impacts of climate change on montane tropical biodiversity.
Profiles of perfectionism, parental climate, and burnout among competitive junior athletes.
Gustafsson, H; Hill, A P; Stenling, A; Wagnsson, S
2016-10-01
Recent research suggests that groups of athletes which differ in terms of perfectionism and perceptions of achievement climate can be identified. Moreover, these groups also differ in terms of burnout symptoms. The purpose of the current study was to extend this research by examining whether discernible groups can be identified based on scores of perfectionism and perceptions of parent-initiated climate and, then, whether these groups differ in terms of burnout. Two-hundred and thirty-seven Swedish junior athletes (124 males and 113 females aged 16-19) from a variety of sports completed measures of athlete burnout, multidimensional perfectionism, and parent-initiated motivational climate. Latent profile analysis identified four groups: non-perfectionistic athletes in a task-involving climate, moderately perfectionistic athletes in a task-involving climate, highly perfectionistic athletes in a task-involving climate, and highly perfectionistic athletes in a mixed climate. The latter two groups reported higher levels of burnout in comparison to other groups. The findings suggest that junior athletes high in perfectionism may be at comparatively greater risk to burnout and that this may especially be the case when they perceive their parents to emphasize concerns about failure and winning without trying one's best. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Driver detection of water availability changes in a large Alpine river basin
NASA Astrophysics Data System (ADS)
Mallucci, Stefano; Majone, Bruno; Bellin, Alberto
2017-04-01
The Alpine region is widely recognised as an area with a particularly sensitive environment, where climate change is expected to modify the river flow regime, which effects on freshwater ecosystems and water resources have not been explored at depth. In the middle of the last century the Alpine region has been characterised by an intensive exploitation of water resources for hydropower production and irrigated agriculture that, in combination with climate change, induced significant and spatially uneven alterations in the flow regime. Disentangling the effects of human activities from climate change is a difficult task, which only recently attracted the interest of scientists and stakeholders. In this study historical time series of hydro-climatic data (i.e. streamflow, precipitation and temperature) recorded since 1920 in the Adige river basin, located in the southeastern part of the Alps, were analysed in order to quantify alterations of the main hydrological fluxes due to climate change and water uses and separate their reciprocal contribution. Spatial and temporal patterns of change are identified by comparing the water budget performed in 4 representative sub-basins of the Adige river basin: Adige at Trento (9852 km2) and Bronzolo (6891 km2), Gadera at Mantana (394 km2) and Avisio at Soraga (207 km2). These sub-catchments are characterised by different climatic and water uses conditions. Disentangling the effects of water uses from climate change is difficult because none are known through measurements, such that the water balance equation contains two unknowns. We overcome this difficulty by calibrating a real evapotranspiration model in the period 1920-1950, when the effects of both climate change and water uses are deemed small to negligible. This model is then included into the water balance equation, to obtain water uses in the following period, under the usual hypothesis of no significant interannual accumulation. The effect of climate change is therefore included in the external drivers (precipitation and temperature) and manifests itself through changes in precipitation and evapotranspiration, besides possible changes in runoff due to seasonal shifts in the precipitation. The northern part of the catchment (Adige at Bronzolo) does not show significant alterations of the hydrological balance, due to water uses, whereas a significant reducing trend of streamflow volumes is found in the middle course of the Adige (at Trento) since the '70s, which can be attributed to the intense development of irrigation agriculture in the drainage area of the Noce river, one of the main tributaries of the middle course of the Adige river. Conversely, Gadera at Mantana shows a significant positive trend in streamflow as a result of the complex interplay between shifts in the seasonal distribution of precipitation and rise of the temperature. This study shows that climate change is the main driver only in headwater basins, while water uses overcome its effect in the lower part of the catchment.
Providing Decision-Relevant Information for a State Climate Change Action Plan
NASA Astrophysics Data System (ADS)
Wake, C.; Frades, M.; Hurtt, G. C.; Magnusson, M.; Gittell, R.; Skoglund, C.; Morin, J.
2008-12-01
Carbon Solutions New England (CSNE), a public-private partnership formed to promote collective action to achieve a low carbon society, has been working with the Governor appointed New Hampshire Climate Change Policy Task Force (NHCCTF) to support the development of a state Climate Change Action Plan. CSNE's role has been to quantify the potential carbon emissions reduction, implementation costs, and cost savings at three distinct time periods (2012, 2025, 2050) for a range of strategies identified by the Task Force. These strategies were developed for several sectors (transportation and land use, electricity generation and use, building energy use, and agriculture, forestry, and waste).New Hampshire's existing and projected economic and population growth are well above the regional average, creating additional challenges for the state to meet regional emission reduction targets. However, by pursuing an ambitious suite of renewable energy and energy efficiency strategies, New Hampshire may be able to continue growing while reducing emissions at a rate close to 3% per year up to 2025. This suite includes efficiency improvements in new and existing buildings, a renewable portfolio standard for electricity generation, avoiding forested land conversion, fuel economy gains in new vehicles, and a reduction in vehicle miles traveled. Most (over 80%) of these emission reduction strategies are projected to provide net economic savings in 2025.A collaborative and iterative process was developed among the key partners in the project. The foundation for the project's success included: a diverse analysis team with leadership that was committed to the project, an open source analysis approach, weekly meetings and frequent communication among the partners, interim reporting of analysis, and an established and trusting relationship among the partners, in part due to collaboration on previous projects.To develop decision-relevant information for the Task Force, CSNE addressed several challenges, including: allocating the emission reduction and economic impacts of local- to state-scale mitigation strategies that are in reality integrated on regional and/or national scales; incorporating changes to the details of the strategies over time; identifying and quantifying key variables; choosing appropriate levels of detail for over 100 strategies within the limited analysis timeframe; integrating individual strategies into a coherent whole; and structuring data presentation to maximize transparency of analysis without confusing or overwhelming decision makers.
LandCaRe-DSS - model based tools for irrigation management under climate change
NASA Astrophysics Data System (ADS)
Dotterweich, Markus; Wilkinson, Kristina; Cassel, Martin; Scherzer, Jörg; Köstner, Barbara; Berg, Michael; Grocholl, Jürgen
2015-04-01
Climate change is expected to have a strong influence on agricultural systems in the future. It will be important for decision makers and stakeholders to assess the impact of climate change at the farm and regional level in order to facilitate and maintain a sustainable and profitable farming infrastructure. Climate change impact studies have to incorporate aspects of uncertainty and the underlying knowledge is constantly expanding and improving. Decision support systems (DSS) with flexible data bases are therefore a useful tool for management and planning: different models can be applied under varying boundary conditions within a conceptual framework and the results can be used e.g. to show the effects of climate change scenarios and different land management options. Within this project, the already existing LandCaRe DSS will be further enhanced and improved. A first prototype had been developed for two regions in eastern Germany, mainly to show the effects of climate change on yields, nutrient balances and farm economy. The new model version will be tested and applied for a region in north-western Germany (Landkreis Uelzen) where arable land makes up about 50% of overall land-use and where 80 % of the arable land is already irrigated. For local decision makers, it will be important to know how water demand and water availability are likely to change in the future: Is more water needed for irrigation? Is more water actually available for irrigation? Will the existing limits for ground water withdrawal be sufficient for farmers to irrigate their crops? How can the irrigation water demand be influenced by land management options like the use of different crops and varieties or different farming and irrigation techniques? The main tasks of the project are (I) the integration of an improved irrigation model, (II) the development of a standardized interface to apply the DSS in different regions, (III) to optimize the graphical user interface, (IV) to transfer and apply the DSS in an example region in north-west Germany and (V) to expand the underlying data base of climate change models and scenarios. The project is funded by the Bundesministeriums für Bildung und Forschung (BMBF), Förderkennzeichen Förderkennzeichen: 02WQ1304.
Prediction of enjoyment in school physical education.
Gråstén, Arto; Jaakkola, Timo; Liukkonen, Jarmo; Watt, Anthony; Yli-Piipari, Sami
2012-01-01
The specific aim of this study was to examine whether motivational climate, perceived physical competence, and exercise motivation predict enjoyment in school physical education within the same sample of adolescents across three years of secondary school. A sample of 639 students (girls = 296, boys = 343) aged between 13- to 15-years at the commencement of the study completed the Intrinsic Motivation Climate in Physical Education Questionnaire, Physical Self-Perception Profile, Physical Education Motivation Scale, and Physical Education Enjoyment Scale. Results derived from path analyses indicated that task-involving motivational climate predicted enjoyment in physical education via perceived physical competence and intrinsic motivation in both girls and boys. In particular, these results supported previous findings of Vallerand et. al (1997) with the self-determination theory and the achievement goal theory. Ego-involving climate was not a significant predictor either in girls or boys. The current results provide continuing support for the investigation of Vallerand's model in the physical education setting, and highlight that motivational climate is an area that requires further evaluation as a contributing factor in the improvement of physical education teaching. A better understanding of the role of motivational climate may assist efforts to promote children's and adolescents' perceived physical competence, intrinsic motivation, and enjoyment in the school physical education setting. Key pointsThe findings of the current study support existing suggestions of Vallerand's (1997) model in which social factors mediated by a psychological mediator, and exercise motivation are related to positive consequences in the PE context.Task-involving motivational climate predicted PE enjoyment via perceived physical competence and intrinsic motivation with both girls and boys. Task-involving motivational climate in PE lessons at Grade 7 had a strong association with PE enjoyment via perceived physical competence and intrinsic motivation at Grade 9 for both girls and boys.Ego-involving climate did not fit either the data for the girls or boys, as PE lessons based on ego-involving motivational climate did not significantly influence on the level of PE enjoyment.The results of the current study and previous practical findings support task-involving teaching methods to promote adolescent's PE enjoyment through secondary school years. School PE could be most effective if based on task-involving motivational climate, in which the main objective is increasing students' perceived physical competence, intrinsic motivation, and enjoyment.
Shorebird Migration Patterns in Response to Climate Change: A Modeling Approach
NASA Technical Reports Server (NTRS)
Smith, James A.
2010-01-01
The availability of satellite remote sensing observations at multiple spatial and temporal scales, coupled with advances in climate modeling and information technologies offer new opportunities for the application of mechanistic models to predict how continental scale bird migration patterns may change in response to environmental change. In earlier studies, we explored the phenotypic plasticity of a migratory population of Pectoral sandpipers by simulating the movement patterns of an ensemble of 10,000 individual birds in response to changes in stopover locations as an indicator of the impacts of wetland loss and inter-annual variability on the fitness of migratory shorebirds. We used an individual based, biophysical migration model, driven by remotely sensed land surface data, climate data, and biological field data. Mean stop-over durations and stop-over frequency with latitude predicted from our model for nominal cases were consistent with results reported in the literature and available field data. In this study, we take advantage of new computing capabilities enabled by recent GP-GPU computing paradigms and commodity hardware (general purchase computing on graphics processing units). Several aspects of our individual based (agent modeling) approach lend themselves well to GP-GPU computing. We have been able to allocate compute-intensive tasks to the graphics processing units, and now simulate ensembles of 400,000 birds at varying spatial resolutions along the central North American flyway. We are incorporating additional, species specific, mechanistic processes to better reflect the processes underlying bird phenotypic plasticity responses to different climate change scenarios in the central U.S.
ERIC Educational Resources Information Center
Matthews, Wendy K.; Kitsantas, Anastasia
2007-01-01
In the present study, we examined whether collective efficacy, group cohesion (task and social), and perceived motivational climate (task-involving and ego-involving orientations) in a music ensemble predict instrumentalists' perceived conductor support. Ninety-one (N = 91) skilled high school instrumentalists participated in the study. To assess…
"So What if My Students Misbehave?" Addressing Misbehavior in a Task-Involving Motivational Climate
ERIC Educational Resources Information Center
Model, Eric D.; Todorovich, John R.; Largo-Wight, Erin
2005-01-01
This article describes factors that teachers can use to create a task-involving motivational climate, discusses behavioral practices for increasing student compliance, and provides specific recommendations for addressing behavior concerns in the physical education setting. A good teaching philosophy built upon established principles is the best…
Interweaving climate research and public understanding
NASA Astrophysics Data System (ADS)
Betts, A. K.
2016-12-01
For the past 10 years I have been using research into land-atmosphere-cloud coupling to address Vermont's need to understand climate change, and develop plans for greater resilience in the face of increasing severe weather. The research side has shown that the fraction of days with snow cover determines the cold season climate, because snow acts as a fast climate switch between non-overlapping climates with and without snow cover. Clouds play opposite roles in warm and cold seasons: surface cooling in summer and warming in winter. The later fall freeze-up and earlier spring ice-out on lakes, coupled to the earlier spring phenology, are clear markers both of a warming climate, as well as the large interannual variability. Severe flooding events have come with large-scale quasi-stationary weather patterns. This past decade I have given 230 talks to schools, business and professional groups, as well as legislative committees and state government. I have written 80 environmental columns for two Vermont newspapers, as part of a weekly series I helped start in 2008. Commentaries and interviews on radio and TV enable me to explain directly the issues we face, as the burning of fossil fuels destabilizes the climate system. The public in Vermont is eager to learn and understand these issues since many have roots in the land; while professional groups need all the information and guidance possible to prepare for the future. My task as a scientist is to map out what we know in ways that can readily be grasped in terms of past experience, even though the climate system is already moving outside this range - and at the same time outline general principles and hopeful strategies for dealing with global and local climate change.
RCOF in European region: current status and future perspective
NASA Astrophysics Data System (ADS)
Hovsepyan, A.
2010-09-01
Regional Climate Outlook Forums are a key component of WMO WCASP/CLIPS activities. The RCOF process pioneered in Africa in late 1990s, since then it spread worldwide, and at present climate outlook forums are being conducted nearly in all regions all over the world. The RCOF brings together experts from a climatologically homogeneous region and provides consensus based climate prediction and information, which has critical socio-economic significance. This information has been applied to reducing climate-related risks and supporting sustainable development. The RCOF process has facilitated a better understanding of the links between the past, current and future evolution of the climate system and its consequences for Members' socio-economic activities. RCOFs have greatly enhanced interactions and exchange of information between providers and users of climate information. In addition, RCOFs contribute substantially to training and capacity building in the regions targeted at. In RA VI the RCOF process was launched in 2008. The South-East European Climate Outlook Forum (SEECOF) mechanism covers mainly countries of South East Europe and Caucasus. Two SEECOFs have been successfully conducted in 2008 and 2009: SEECOF-I took place in Zagreb/Croatia in June 2008 and SEECOF-II was hosted by Hungary, Budapest, in November 2009. SEECOF-III was held as an online COF. Nevertheless, the RCOF mechanism in RA VI still needs substantial support in order to strengthen the process, to better involve the participating countries and users, to sharpen the communication of the consensus forecasts to build trust amongst the user communities, and most importantly to achieve sustainability, which is one of the priority tasks of the RAVI Working Group on Climate and Hydrology (WG CH). Through the Task Team on Regional Climate Outlook Forums (TT RCOF) the WG CH has taken responsibility for the co-ordination of the RCOF process in RA VI, in order to extend it to other parts of RA VI region, strengthen climate change section in the SEECOF, to better involve the participating countries and users, to sharpen the communication of the consensus forecasts in order to build trust amongst the user communities, and most importantly to achieve sustainability of RCOF in Europe.
Kasey Jacobs
2017-01-01
The U.S. Forest Service has found itself in an era of intense human activity, a changing climate; development and loss of open space; resource consumption; and problematic introduced species; and diversity in core beliefs and values. These challenges test our task-relevant maturity and the ability and willingness to meet the growing demands for services. The Forest...
High School Athletes' Perceptions of the Motivational Climate in Their Off-Season Training Programs.
Chamberlin, Jacob M; Fry, Mary D; Iwasaki, Susumu
2017-03-01
Chamberlin, JM, Fry, MD, and Iwasaki, S. High school athletes' perceptions of the motivational climate in their off-season training programs. J Strength Cond Res 31(3): 736-742, 2017-Athletes benefit tremendously from working hard in off-season training (OST) because it sets them up to avoid injuries and perform their best during the season. Ironically, many athletes struggle to stay motivated to participate regularly in this training. Research has highlighted the benefits for athletes perceiving a caring and task-involving climate, where they gauge their success based on their personal effort and improvement, and perceive each member of the team is treated with mutual kindness and respect. Athletes who perceive a caring and task-involving climate on their teams are more likely to report greater adaptive motivational responses. Research has not currently examined athletes' perceptions of the climate in OST programs. The purpose of this study was to examine the relationship between athletes' perceptions of the climate in an OST program and their motivational responses. High school athletes (N = 128; 90 males 35 females; mean age = 15.3 years) participating in summer OST programs completed a survey that included measures of intrinsic motivation, commitment, their valuing OST, feeling like it is their decision to participate in OST, their perceptions that their teammates take OST seriously, and attendance. A canonical correlation revealed that athletes, who perceived a highly caring and task-involving climate reported higher intrinsic motivation, value of and commitment to OST; attendance; and perceived teammates take OST seriously. Results suggest that creating a caring and task-involving climate in OST programs may help athletes optimize their motivation to participate in important strength and conditioning programs.
Global and Regional Temperature-change Potentials for Near-term Climate Forcers
NASA Technical Reports Server (NTRS)
Collins, W.J.; Fry, M.M.; Yu, H.; Fuglestvedt, J. S.; Shindell, D. T.; West, J. J.
2013-01-01
We examine the climate effects of the emissions of near-term climate forcers (NTCFs) from 4 continental regions (East Asia, Europe, North America and South Asia) using results from the Task Force on Hemispheric Transport of Air Pollution Source-Receptor global chemical transport model simulations. We address 3 aerosol species (sulphate, particulate organic matter and black carbon) and 4 ozone precursors (methane, reactive nitrogen oxides (NOx), volatile organic compounds and carbon monoxide). We calculate the global climate metrics: global warming potentials (GWPs) and global temperature change potentials (GTPs). For the aerosols these metrics are simply time-dependent scalings of the equilibrium radiative forcings. The GTPs decrease more rapidly with time than the GWPs. The aerosol forcings and hence climate metrics have only a modest dependence on emission region. The metrics for ozone precursors include the effects on the methane lifetime. The impacts via methane are particularly important for the 20 yr GTPs. Emissions of NOx and VOCs from South Asia have GWPs and GTPs of higher magnitude than from the other Northern Hemisphere regions. The analysis is further extended by examining the temperature-change impacts in 4 latitude bands, and calculating absolute regional temperature-change potentials (ARTPs). The latitudinal pattern of the temperature response does not directly follow the pattern of the diagnosed radiative forcing. We find that temperatures in the Arctic latitudes appear to be particularly sensitive to BC emissions from South Asia. The northern mid-latitude temperature response to northern mid-latitude emissions is approximately twice as large as the global average response for aerosol emission, and about 20-30% larger than the global average for methane, VOC and CO emissions.
ClimateImpactsOnline: A web platform for regional climate impacts
NASA Astrophysics Data System (ADS)
Nocke, Thomas
2013-04-01
Climate change is widely known but there is often uncertainty about the specific effects. One of the key tasks is - beyond discussing climate change and its impacts in specialist groups - to present these to a wider audience. In that respect, decision-makers in the public sector as well as directly affected professional groups require to obtain easy-to-understand information. These groups are not made up of specialist scientists. This gives rise to two challenges: (1) the complex information must be presented such that it is commonly understood, and (2) access to the information must be easy. Interested parties do not have time to familiarize themselves over a lengthy period, but rather want to immediately work with the information. Beside providing climate information globally, regional information become of increasing interest for local decision making regarding awareness building and adaptation options. In addition, current web portals mainly focus on climate information, considering climate impacts on different sectors only implicitly. As solution, Potsdam Institute for Climate Impact Research and WetterOnline have jointly developed an Internet portal that is easy to use, groups together interesting information about climate impacts and offers it in a directly usable form. This new web portal ClimateImpactsOnline.com provides detailed information, combining multiple sectors for the test case of Germany. For this region, numerous individual studies on climate change have been prepared by various institutions. These studies differ in terms of their aim, region and time period of interest. Thus, the goal of ClimateImpactsOnline.com is to present a synthesized view on regional impacts of global climate change on hydrology, agriculture, forest, energy, tourism and health sector. The climate and impact variables are available on a decadal time resolution for the period from 1901-2100, combining observed data and future projections. Detailed information are presented threefold: (1) color maps of absolute and difference values to consider parameter variations, (2) textual tables for individual decades including uncertainties (bandwidth), and (3) time series graphs visualizing the temporal parameter development. Tables and time series graphs are available for administrative units at three aggregation levels (nation, federal state, district). We executed a larger test study with German public institutions and are currently improving functionalities due to appr. 50 user feedbacks. In the talk/poster, we present the scientific basics, graphical user interface in combination with the visual representations and the feedback from the public sector institutions and portal users.
Land cover, land use, and climate change impacts on agriculture in southern Vietnam
NASA Astrophysics Data System (ADS)
Kontgis, Caitlin
Global environmental change is rapidly changing the surface of the Earth in varied and irrevocable ways. Across the world, land cover and land use have been altered to accommodate the needs of expanding populations, and climate change has required plant, animal, and human communities to adapt to novel climates. These changes have created unprecedented new ecosystems that affect the planet in ways that are not fully understood and difficult to predict. Of utmost concern is food security, and whether agro-ecosystems will adapt and respond to widespread changes so that growing global populations can be sustained. To understand how one staple food crop, rice, responds to global environmental change in southern Vietnam, this dissertation aims to accomplish three main tasks: (1) quantify the rate and form of urban and peri-urban expansion onto cropland using satellite imagery and demographic data, (2) track changes to annual rice paddy harvests using time series satellite data, and (3) model the potential effects of climate change on rice paddies by incorporating farmer interview data into a crop systems model. The results of these analyses show that the footprint of Ho Chi Minh City grew nearly five times between 1990 and 2012. Mismatches between urban development and population growth suggest that peri-urbanization is driven by supply-side investment, and that much of this form of land expansion has occurred near major transit routes. In the nearby Mekong River Delta, triple-cropped rice paddy area doubled between 2000 and 2010, from one-third to two-thirds of rice fields, while paddy area expanded by about 10%. These results illustrate the intensification of farming practices since Vietnam liberalized its economy, yet it is not clear whether such practices are environmentally sustainable long-term. Although triple-cropped paddy fields have expanded, future overall production is estimated to decline without the effects of CO2 fertilization. Temperatures are anticipated to increase by mid-century, and model results suggest this will cause depressed yields that cannot be offset by increased water or fertilizer. This finding emphasizes the need for a coordinated, actionable adaptation plan so that climate change does not devastate local ecosystems and livelihoods.
Future possible crop yield scenarios under multiple SSP and RCP scenarios.
NASA Astrophysics Data System (ADS)
Sakurai, G.; Yokozawa, M.; Nishimori, M.; Okada, M.
2016-12-01
Understanding the effect of future climate change on global crop yields is one of the most important tasks for global food security. Future crop yields would be influenced by climatic factors such as the changes of temperature, precipitation and atmospheric carbon dioxide concentration. On the other hand, the effect of the changes of agricultural technologies such as crop varieties, pesticide and fertilizer input on crop yields have large uncertainty. However, not much is available on the contribution ratio of each factor under the future climate change scenario. We estimated the future global yields of four major crops (maize, soybean, rice and wheat) under three Shared Socio Economic Pathways (SSPs) and four Representative Concentration Pathways (RCPs). For this purpose, firstly, we estimated a parameter of a process based model (PRYSBI2) using a Bayesian method for each 1.125 degree spatial grid. The model parameter is relevant to the agricultural technology (we call "technological parameter" here after). Then, we analyzed the relationship between the values of technological parameter and GDP values. We found that the estimated values of the technological parameter were positively correlated with the GDP. Using the estimated relationship, we predicted future crop yield during 2020 and 2100 under SSP1, SSP2 and SSP3 scenarios and RCP 2.6, 4.5, 6.0 and 8.5. The estimated crop yields were different among SSP scenarios. However, we found that the yield difference attributable to SSPs were smaller than those attributable to CO2 fertilization effects and climate change. Particularly, the estimated effect of the change of atmospheric carbon dioxide concentration on global yields was more than four times larger than that of GDP for C3 crops.
Extending the Reach of National Assessments: Addressing Local and Regional Needs
NASA Astrophysics Data System (ADS)
Lewis, K.; Carter, T.
2016-12-01
While climate change is global in scope, many impacts of greatest societal concern (and accompanying response decisions) occur on local to regional scales. The U.S. Global Change Research Program (USGCRP) is tasked with conducting quadrennial national climate assessments, and efforts for the fourth such assessment (NCA4) are underway. Recognizing that there is a growing appetite for climate information on more local scales, however, USGCRP is actively pursuing higher-resolution scientific information, while also seeking engagement with local and regional entities to ensure that NCA4 is well-positioned to address users' needs across geospatial scales. Effectively meeting user needs at regional scales requires robust observations and projections at sub-national scales, as well as a widespread network of agencies and organizations. We discuss our efforts to leverage existing relationships to identify potential users and their needs early in the assessment process. We also discuss plans for future mechanisms to engage additional regional stakeholders from resource managers to policy makers and scientists not only for quadrennial assessment but as part of a sustained process.
NASA Astrophysics Data System (ADS)
Raitsos, D. E.; Hoteit, I.; Prihartato, P. K.; Chronis, T.; Triantafyllou, G.; Abualnaja, Y.
2011-07-01
Coral reef ecosystems, often referred to as “marine rainforests,” concentrate the most diverse life in the oceans. Red Sea reef dwellers are adapted in a very warm environment, fact that makes them vulnerable to further and rapid warming. The detection and understanding of abrupt temperature changes is an important task, as ecosystems have more chances to adapt in a slowly rather than in a rapid changing environment. Using satellite derived sea surface and ground based air temperatures, it is shown that the Red Sea is going through an intense warming initiated in the mid-90s, with evidence for an abrupt increase after 1994 (0.7°C difference pre and post the shift). The air temperature is found to be a key parameter that influences the Red Sea marine temperature. The comparisons with Northern Hemisphere temperatures revealed that the observed warming is part of global climate change trends. The hitherto results also raise additional questions regarding other broader climatic impacts over the area.
Modelling Glacial Lake Outburst Floods: Key Considerations and Challenges Posed By Climatic Change
NASA Astrophysics Data System (ADS)
Westoby, M.
2014-12-01
The number and size of moraine-dammed supraglacial and proglacial lakes is increasing as a result of contemporary climatic change. Moraine-dammed lakes are capable of impounding volumes of water in excess of 107 m3, and often represent a very real threat to downstream communities and infrastructure, should the bounding moraine fail and produce a catastrophic Glacial Lake Outburst Flood (GLOF). Modelling the individual components of a GLOF, including a triggering event, the complex dam-breaching process and downstream propagation of the flood is incredibly challenging, not least because direct observation and instrumentation of such high-magnitude flows is virtually impossible. We briefly review the current state-of-the-art in numerical GLOF modelling, with a focus on the theoretical and computational challenges associated with reconstructing or predicting GLOF dynamics in the face of rates of cryospheric change that have no historical precedent, as well as various implications for researchers and professionals tasked with the production of hazard maps and disaster mitigation strategies.
Koopmann, Jaclyn; Lanaj, Klodiana; Wang, Mo; Zhou, Le; Shi, Junqi
2016-07-01
The teams literature suggests that team tenure improves team psychological safety climate and climate strength in a linear fashion, but the empirical findings to date have been mixed. Alternatively, theories of group formation suggest that new and longer tenured teams experience greater team psychological safety climate than moderately tenured teams. Adopting this second perspective, we used a sample of 115 research and development teams and found that team tenure had a curvilinear relationship with team psychological safety climate and climate strength. Supporting group formation theories, team psychological safety climate and climate strength were higher in new and longer tenured teams compared with moderately tenured teams. Moreover, we found a curvilinear relationship between team tenure and average team member creative performance as partially mediated by team psychological safety climate. Team psychological safety climate improved average team member task performance only when team psychological safety climate was strong. Likewise, team tenure influenced average team member task performance in a curvilinear manner via team psychological safety climate only when team psychological safety climate was strong. We discuss theoretical and practical implications and offer several directions for future research. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Hogue, Candace M; Fry, Mary D; Fry, Andrew C; Pressman, Sarah D
2013-02-01
Research in achievement goal perspective theory suggests that the creation of a caring/task-involving (C/TI) climate results in more advantageous psychological and behavioral responses relative to an ego-involving (EI) climate; however, research has not yet examined the physiological consequences associated with psychological stress in relation to climate. Given the possible health and fitness implications of certain physiological stress responses, it is critical to understand this association. Thus, the purpose of this study was to examine whether an EI climate procures increases in the stress-responsive hormone cortisol, as well as negative psychological changes, following the learning of a new skill, compared with a C/TI climate. Participants (n = 107) were randomized to a C/TI or an EI climate in which they learned how to juggle for 30 min over the course of 2 hr. Seven salivary cortisol samples were collected during this period. Results indicated that EI participants experienced greater cortisol responses after the juggling session and significantly greater anxiety, stress, shame, and self-consciousness relative to C/TI participants. In contrast, the C/TI participants reported greater enjoyment, effort, self-confidence, and interest and excitement regarding future juggling than the EI participants. These findings indicate that motivational climates may have a significant impact on both the physiological and psychological responses of participants.
NASA Astrophysics Data System (ADS)
Albrecht, J.; Juta, K.; Nobis, A.
2009-04-01
In the past, identifying anthropogenic influences on climate change, scenario analyses and issues of climate change mitigation were predominant approaches in climate change research (IPCC 2007). Currently, for instance in Germany, climate impact research on regional level comes to the forefront of research and policy making. Climate change has become an important topic on the agenda of politicians, administration and planning. In order to counteract the (unavoidable) climate change and its impacts it is necessary to develop adaptation strategies. At present, such strategies and guidelines are formulated on international, supranational and national level. The initial point was the United Nations Framework Convention on Climate Change in 1992 where the contracting states obligated themselves to develop national (and regional) programmes for adaptation. In 2007 the European Commission published its Green Paper called Adaptation to Climate Change in Europe. The paper states that adaptation efforts have to be intensified at different (spatial) levels (local, regional, national, and so forth). Furthermore, coordinating these efforts is of high importance. With the recent agreement on the German Adaptation Strategy to Climate Change (DAS 2008) in December 2008, federal government tries to accomplish this task. The German strategy mainly focuses on two elements: decreasing vulnerability and increasing adaptability. While the above mentioned strategies have presented information and policies concerning climate change and adaptation on international, supranational and national level, such documents dońt yet exist on regional level. However, because of their close link to the local level the regions are of high importance for adaptation strategies. Therefore, the Leibniz-Institute of Ecological and Regional Development developed a transdisciplinary project to formulate and implement the so-called Integrated Regional Climate Adaptation Programme (IRCAP) for the Model Region of Dresden (project REGKLAM). The REGKLAM-project is based on regionalised scenarios of climate change and includes measures of climate change adaptation to change for instance, urban form, infrastructure assets (e.g., reservoirs) and land use. Various institutions from politics, administration, economy, and research as well as civil society are involved in the project (the city of Dresden, several ministries and authorities of Saxony, the Dresden Chamber of Industry and Commerce and the University of Dresden). The IRCAP is planned to be an informal, cross-sectoral instrument of adaptation to climate change. As a regional programme, the IRCAP is addressed to decision-makers of the region of Dresden (defined, for instance, as planning region). Its function is to complement and coordinate existing instruments and measures. These instruments also include instruments of environmental and spatial planning on the regional level. Spatial and environmental planning can rely on a wide range of formal and informal instruments on different spatial, administrative, and sectoral levels, e.g. land use and landscape plans. Our contribution to the EGU conference aims to clear the role and relevance of the existing formal and informal planning instruments in the region of Dresden for the process of developing the IRCAP. Firstly, a survey is conducted for the purpose of identifying all relevant planning instruments. The identification process is based on specific criteria, for example: reference to the region, contents relating to the topic of climate change respectively climate adaptation. Secondly, the presentation argues for a selection of those planning instruments which seem to be most relevant for the process of developing an IRCAP. This selection process is based on specific criteria which include, for instance, complexity of expected effects, reference to regional and sectoral vulnerability, opportunity for future change of the existing planning instruments (e.g., current process of updating), interests of project partners and stakeholders. Thirdly, as a result, an overview of relevant planning instruments in the region of Dresden is shown, including their current status and statements about their relevance for the topic of climate adaptation strategies. Finally it is derived that this procedure provides a basis for the following possibilities: Adapting existing planning instruments, integrate contents of existing planning instruments in the IRCAP process, or develop and define new strategies or measures on the way to an IRCAP.
King, David A.; Bachelet, Dominique M.; Symstad, Amy J.
2013-01-01
Since the initial application of MC1 to a small portion of WICA (Bachelet et al. 2000), the model has been altered to improve model performance with the inclusion of dynamic fire. Applying this improved version to WICA required substantial recalibration, during which we have made a number of improvements to MC1 that will be incorporated as permanent changes. In this report we document these changes and our calibration procedure following a brief overview of the model. We compare the projections of current vegetation to the current state of the park and present projections of vegetation dynamics under future climates downscaled from three GCMs selected to represent the existing range in available GCM projections. In doing so, we examine the consequences of different management options regarding fire and grazing, major aspects of biotic management at Wind Cave.
Schools as Vehicles to Assess Experiences, Improve Outcomes, and Effect Social Change.
McMahon, Susan Dvorak
2018-06-01
Schools are important settings that can be utilized to yield a positive impact on youth and the many issues our society faces. In this Presidential Address, I identify key issues and directions for the field, advocating that we need to expand our ecological focus, improve school climate, and collaborate with schools to effect change. To illustrate these key themes, findings from four projects with k-12 youth and educators in the United States are described, and these projects have the following foci: protective factors for youth exposed to violence, teacher-directed violence as part of an APA Task Force, school climate and neighborhood factors in relation to academic outcomes, and school transitions for students with disabilities. Challenges and future directions to build upon community psychology theory, research, practice, and policy are discussed. © Society for Community Research and Action 2018.
Zwack, Julika; Schweitzer, Jochen
2008-01-01
How does the interdisciplinary cooperation of psychiatric staff members change after a multiprofessional family systems training programme? Semi-structured interviews were conducted with 49 staff members. Quantitative questionnaires were used to assess burnout (Maslach Burnout Inventory, MBI) and team climate (Team-Klima-Inventar, TKI). The multiprofessional training intensifies interdisciplinary cooperation. It results in an increased appreciation of the nurses involved and in a redistribution of therapeutic tasks between nurses, psychologists and physicians. Staff burnout decreased during the research period, while task orientation and participative security within teams increased. The multiprofessional family systems training appears suitable to improve quality of patient care and interdisciplinary cooperation and to reduce staff burnout.
Select Methodology for Validating Advanced Satellite Measurement Systems
NASA Technical Reports Server (NTRS)
Larar, Allen M.; Zhou, Daniel K.; Liu, Xi; Smith, William L.
2008-01-01
Advanced satellite sensors are tasked with improving global measurements of the Earth's atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring capability, and environmental change detection. Measurement system validation is crucial to achieving this goal and maximizing research and operational utility of resultant data. Field campaigns including satellite under-flights with well calibrated FTS sensors aboard high-altitude aircraft are an essential part of the validation task. This presentation focuses on an overview of validation methodology developed for assessment of high spectral resolution infrared systems, and includes results of preliminary studies performed to investigate the performance of the Infrared Atmospheric Sounding Interferometer (IASI) instrument aboard the MetOp-A satellite.
Quested, Eleanor; Duda, Joan L
2009-01-01
Grounded in the self-determination theoretical framework (SDT) formulated by Deci and Ryan, and specifically the basic needs mini-theory (BNT), this study examined the relationship between perceptions of the motivational climate manifested in hip hop environments, satisfaction of the three basic needs, and indicators of well- and ill-being among hip hop dancers. Fifty-nine hip hop dancers (mean age: 20.29 years) completed a questionnaire assessing the variables of interest in the study. Perceptions of a task-involving climate were positively associated with satisfaction of the needs for autonomy, competence, and relatedness. Perceptions of an ego-involving climate negatively predicted relatedness. Satisfaction of the need for competence was positively associated with positive affect, and negatively linked to negative affect. Competence need satisfaction significantly mediated the relationship between a perceived task-involving climate and positive and negative affective states. In sum, the findings provided partial support for the facets of SDT and BNT. The results also indicated that promoting the task-involving features of dance learning environments may be beneficial to dancers' well-being.
Climate Data Initiative: A Geocuration Effort to Support Climate Resilience
NASA Technical Reports Server (NTRS)
Ramachandran, Rahul; Bugbee, Kaylin; Tilmes, Curt; Pinheiro Privette, Ana
2015-01-01
Curation is traditionally defined as the process of collecting and organizing information around a common subject matter or a topic of interest and typically occurs in museums, art galleries, and libraries. The task of organizing data around specific topics or themes is a vibrant and growing effort in the biological sciences but to date this effort has not been actively pursued in the Earth sciences. In this paper, we introduce the concept of geocuration and define it as the act of searching, selecting, and synthesizing Earth science data/metadata and information from across disciplines and repositories into a single, cohesive, and useful compendium We present the Climate Data Initiative (CDI) project as an exemplar example. The CDI project is a systematic effort to manually curate and share openly available climate data from various federal agencies. CDI is a broad multi-agency effort of the U.S. government and seeks to leverage the extensive existing federal climate-relevant data to stimulate innovation and private-sector entrepreneurship to support national climate-change preparedness. We describe the geocuration process used in CDI project, lessons learned, and suggestions to improve similar geocuration efforts in the future.
Climate data initiative: A geocuration effort to support climate resilience
NASA Astrophysics Data System (ADS)
Ramachandran, Rahul; Bugbee, Kaylin; Tilmes, Curt; Privette, Ana Pinheiro
2016-03-01
Curation is traditionally defined as the process of collecting and organizing information around a common subject matter or a topic of interest and typically occurs in museums, art galleries, and libraries. The task of organizing data around specific topics or themes is a vibrant and growing effort in the biological sciences but to date this effort has not been actively pursued in the Earth sciences. In this paper, we introduce the concept of geocuration and define it as the act of searching, selecting, and synthesizing Earth science data/metadata and information from across disciplines and repositories into a single, cohesive, and useful collection. We present the Climate Data Initiative (CDI) project as a prototypical example. The CDI project is a systematic effort to manually curate and share openly available climate data from various federal agencies. CDI is a broad multi-agency effort of the U.S. government and seeks to leverage the extensive existing federal climate-relevant data to stimulate innovation and private-sector entrepreneurship to support national climate-change preparedness. We describe the geocuration process used in the CDI project, lessons learned, and suggestions to improve similar geocuration efforts in the future.
Joint Knowledge Generation Between Climate Science and Infrastructure Engineering
NASA Astrophysics Data System (ADS)
Stoner, A. M. K.; Hayhoe, K.; Jacobs, J. M.
2015-12-01
Over the past decade the engineering community has become increasingly aware of the need to incorporate climate projections into the planning and design of sensitive infrastructure. However, this is a task that is easier said than done. This presentation will discuss some of the successes and hurdles experiences through the past year, from a climate scientist's perspective, working with engineers in infrastructure research and applied engineering through the Infrastructure & Climate Network (ICNet). Engineers rely on strict building codes and ordinances, and can be the subject of lawsuits if those codes are not followed. Matters are further complicated by the uncertainty inherent to climate projections, which include short-term natural variability, as well as the influence of scientific uncertainty and even human behavior on the rate and magnitude of change. Climate scientists typically address uncertainty by creating projections based on multiple models following different future scenarios. This uncertainty is difficult to incorporate into engineering projects, however, due to the fact that they cannot build two different bridges, one allowing for a lower amount of change, and another for a higher. More often than not there is a considerable difference between the costs of building two such bridges, which means that available funds often are the deciding factor. Discussions of climate science are often well received with engineers who work in the research area of infrastructure; going a step further, however, and implementing it in applied engineering projects can be challenging. This presentation will discuss some of the challenges and opportunities inherent to collaborations between climate scientists and transportation engineers, drawing from a range of studies including truck weight restrictions on roads during the spring thaw, and bridge deck performance due to environmental forcings.
NASA Astrophysics Data System (ADS)
Caminade, C.; Ndione, J. A.; Diallo, M.; MacLeod, D.; Faye, O.; Ba, Y.; Dia, I.; Medlock, J. M.; Leach, S.; McIntyre, K. M.; Baylis, M.; Morse, A. P.
2012-04-01
Climate variability is an important component in determining the incidence of a number of diseases with significant health and socioeconomic impacts. In particular, vector born diseases are the most likely to be affected by climate; directly via the development rates and survival of both the pathogen and the vector, and indirectly through changes in the surrounding environmental conditions. Disease risk models of various complexities using different streams of climate forecasts as inputs have been developed within the QWeCI EU and ENHanCE ERA-NET project frameworks. This work will present two application examples, one for Africa and one for Europe. First, we focus on Rift Valley fever over sub-Saharan Africa, a zoonosis that affects domestic animals and humans by causing an acute fever. We show that the Rift Valley fever outbreak that occurred in late 2010 in the northern Sahelian region of Mauritania might have been anticipated ten days in advance using the GFS numerical weather prediction system. Then, an ensemble of regional climate projections is employed to model the climatic suitability of the Asian tiger mosquito for the future over Europe. The Asian tiger mosquito is an invasive species originally from Asia which is able to transmit West Nile and Chikungunya Fever among others. This species has spread worldwide during the last decades, mainly through the shipments of goods from Asia. Different disease models are employed and inter-compared to achieve such a task. Results show that the climatic conditions over southern England, central Western Europe and the Balkans might become more suitable for the mosquito (including the proviso that the mosquito has already been introduced) to establish itself in the future.
Quantifying the effect of varying GHG's concentration in Regional Climate Models
NASA Astrophysics Data System (ADS)
López-Romero, Jose Maria; Jerez, Sonia; Palacios-Peña, Laura; José Gómez-Navarro, Juan; Jiménez-Guerrero, Pedro; Montavez, Juan Pedro
2017-04-01
Regional Climate Models (RCMs) are driven at the boundaries by Global Circulation Models (GCM), and in the particular case of Climate Change projections, such simulations are forced by varying greenhouse gases (GHGs) concentrations. In hindcast simulations driven by reanalysis products, the climate change signal is usually introduced in the assimilation process as well. An interesting question arising in this context is whether GHGs concentrations have to be varied within the RCMs model itself, or rather they should be kept constant. Some groups keep the GHGs concentrations constant under the assumption that information about climate change signal is given throughout the boundaries; sometimes certain radiation parameterization schemes do not permit such changes. Other approaches vary these concentrations arguing that this preserves the physical coherence respect to the driving conditions for the RCM. This work aims to shed light on this topic. For this task, various regional climate simulations with the WRF model for the 1954-2004 period have been carried out for using a Euro-CORDEX compliant domain. A series of simulations with constant and variable GHGs have been performed using both, a GCM (ECHAM6-OM) and a reanalysis product (ERA-20C) data. Results indicate that there exist noticeable differences when introducing varying GHGs concentrations within the RCM domain. The differences in 2-m temperature series between the experiments with varying or constant GHGs concentration strongly depend on the atmospheric conditions, appearing a strong interannual variability. This suggests that short-term experiments are not recommended if the aim is to assess the role of varying GHGs. In addition, and consistently in both GCM and reanalysis-driven experiments, the magnitude of temperature trends, as well as the spatial pattern represented by varying GHGs experiment, are closer to the driving dataset than in experiments keeping constant the GHGs concentration. These results point towards the need for the inclusion of varying GHGs concentration within the RCM itself when dynamically downscaling global datasets, both in GCM and hindcast simulations.
Grassroots Environmentalism in Vietnam: How Communities Can Initiate Change
2013-11-01
5d. PROJECT NUMBER Boll, Christian D., CDR, USN 5e. TASK NUMBER Paper Advisor: Prof. William McDonald 5f. WORK UNIT NUMBER 7...number of IGO environmental funds that are administered by the World Bank . The Climate Investment Fund, for example, sponsors a number of projects in...Distribution is unlimited. Reference: DOD Directive 5230.24 13. SUPPLEMENTARY NOTES A paper submitted to the Naval War College faculty in partial
An alternative to soil taxonomy for describing key soil characteristics
Duniway, Michael C.; Miller, Mark E.; Brown, Joel R.; Toevs, Gordon
2013-01-01
is not a simple task. Furthermore, because the US system of soil taxonomy is not applied universally, its utility as a means for effectively describing soil characteristics to readers in other countries is limited. Finally, and most importantly, even at the finest level of soil classification there are often large within-taxa variations in critical properties that can determine ecosystem responses to drivers such as climate and land-use change.
NASA Astrophysics Data System (ADS)
Sorokin, V. A.; Volkov, Yu V.; Sherstneva, A. I.; Botygin, I. A.
2016-11-01
This paper overviews a method of generating climate regions based on an analytic signal theory. When applied to atmospheric surface layer temperature data sets, the method allows forming climatic structures with the corresponding changes in the temperature to make conclusions on the uniformity of climate in an area and to trace the climate changes in time by analyzing the type group shifts. The algorithm is based on the fact that the frequency spectrum of the thermal oscillation process is narrow-banded and has only one mode for most weather stations. This allows using the analytic signal theory, causality conditions and introducing an oscillation phase. The annual component of the phase, being a linear function, was removed by the least squares method. The remaining phase fluctuations allow consistent studying of their coordinated behavior and timing, using the Pearson correlation coefficient for dependence evaluation. This study includes program experiments to evaluate the calculation efficiency in the phase grouping task. The paper also overviews some single-threaded and multi-threaded computing models. It is shown that the phase grouping algorithm for meteorological data can be parallelized and that a multi-threaded implementation leads to a 25-30% increase in the performance.
NASA Technical Reports Server (NTRS)
Bryant, Larry W.; Fragoso, Ruth S.
2007-01-01
In 2003 we proposed an effort to develop a core program of standardized training and verification practices and standards against which the implementation of these practices could be measured. The purpose was to provide another means of risk reduction for deep space missions to preclude the likelihood of a repeat of the tragedies of the 1998 Mars missions. We identified six areas where the application of standards and standardization would benefit the overall readiness process for flight projects at JPL. These are Individual Training, Team Training, Interface and Procedure Development, Personnel Certification, Interface and procedure Verification, and Operations Readiness Testing. In this paper we will discuss the progress that has been made in the tasks of developing the proposed infrastructure in each of these areas. Specifically we will address the Position Training and Certification Standards that are now available for each operational position found on our Flight Operations Teams (FOT). We will also discuss the MGSS Baseline Flight Operations Team Training Plan which can be tailored for each new flight project at JPL. As these tasks have been progressing, the climate and emphasis for Training and for V and V at JPL has changed, and we have learned about the expansion, growth, and limitations in the roles of traditional positions at JPL such as the Project's Training Engineer, V and V Engineer, and Operations Engineer. The need to keep a tight rein on budgets has led to a merging and/or reduction in these positions which pose challenges to individual capacities and capabilities. We examine the evolution of these processes and the roles involved while taking a look at the impact or potential impact of our proposed training related infrastructure tasks. As we conclude our examination of the changes taking place for new flight projects, we see that the importance of proceeding with our proposed tasks and adapting them to the changing climate remains an important element in reducing the risk in the challenging business of space exploration.
Liu, Wenxing; Mao, Jianghua; Chen, Xiao
2017-01-01
Leadership has been found to be linked with team innovation. Based on social information processing theory and substitutes for leadership theory, this paper examines the influence of leader humility on team innovation. Results from 90 teams showed that leader humility will enhance team innovation by fostering team voice climate. Further, task interdependence substitutes the effect of leader humility on team innovation through an indirect way via team voice climate. This study discussed the theoretical and practical implementations of these observations. PMID:28713316
Liu, Wenxing; Mao, Jianghua; Chen, Xiao
2017-01-01
Leadership has been found to be linked with team innovation. Based on social information processing theory and substitutes for leadership theory, this paper examines the influence of leader humility on team innovation. Results from 90 teams showed that leader humility will enhance team innovation by fostering team voice climate. Further, task interdependence substitutes the effect of leader humility on team innovation through an indirect way via team voice climate. This study discussed the theoretical and practical implementations of these observations.
Long-term sustainability of the landscape in new climatic conditions
NASA Astrophysics Data System (ADS)
Kubeckova, D.; Krocova, S.
2017-10-01
The long-term sustainability of the landscape and its natural environment must be the decisive task of the public administration and, in the wider concept, of every citizen. In new climatic conditions, this need has intensified. The following article suggests in a basic scope whether the above-mentioned task can be accomplished, and what means of solution should be used.
ERIC Educational Resources Information Center
Urick, Angela; Bowers, Alex J.
2011-01-01
Using a nationally representative sample of public high schools (N = 439), we examined the extent to which the principal's perception of their influence over instruction, the evaluation of nonacademic related tasks as well as academic related tasks, and their relationship with the school district relates to their perception of academic climate…
NASA Astrophysics Data System (ADS)
Kaspar, F.; Helmschrot, J.; Mhanda, A.; Butale, M.; de Clercq, W.; Kanyanga, J. K.; Neto, F. O. S.; Kruger, S.; Castro Matsheka, M.; Muche, G.; Hillmann, T.; Josenhans, K.; Posada, R.; Riede, J.; Seely, M.; Ribeiro, C.; Kenabatho, P.; Vogt, R.; Jürgens, N.
2015-07-01
A major task of the newly established "Southern African Science Service Centre for Climate Change and Adaptive Land Management" (SASSCAL; www.sasscal.org) and its partners is to provide science-based environmental information and knowledge which includes the provision of consistent and reliable climate data for Southern Africa. Hence, SASSCAL, in close cooperation with the national weather authorities of Angola, Botswana, Germany and Zambia as well as partner institutions in Namibia and South Africa, supports the extension of the regional meteorological observation network and the improvement of the climate archives at national level. With the ongoing rehabilitation of existing weather stations and the new installation of fully automated weather stations (AWS), altogether 105 AWS currently provide a set of climate variables at 15, 30 and 60 min intervals respectively. These records are made available through the SASSCAL WeatherNet, an online platform providing near-real time data as well as various statistics and graphics, all in open access. This effort is complemented by the harmonization and improvement of climate data management concepts at the national weather authorities, capacity building activities and an extension of the data bases with historical climate data which are still available from different sources. These activities are performed through cooperation between regional and German institutions and will provide important information for climate service related activities.
NASA Astrophysics Data System (ADS)
Davidson, E. A.; Suddick, E. C.
2012-12-01
Producing food, transportation, and energy for seven billion people has led to huge increases in use of synthetic nitrogen (N) fertilizers and fossil fuels, resulting in large releases of N as air and water pollution. In its numerous chemical forms, N plays a critical role in all aspects of climate change, including mitigation, adaptation, and impacts. Here we report on a multi-authored, interdisciplinary technical report on climate-nitrogen interactions submitted to the US National Climate Assessment as part of a Research Coordination Network activity. Management of the N cycle not only affects emissions of nitrous oxide (N2O) and nitrogen oxides (NOX), but also impacts carbon dioxide (CO2) and methane (CH4), through effects on carbon cycling processes in forests and soils and the effects on atmospheric reactions of ozone (O3) and CH4. While some of these direct and indirect N effects have a short-term cooling effect, the warming effects of N2O dominate at long time scales. The challenges of mitigating N2O emissions are substantially different from those for CO2 and CH4, because N is essential for food production, and over 80% of anthropogenic N2O emissions are from the agricultural sector. On one hand, improved agricultural nutrient management can confer some adaptive capacity of crops to climatic variability, but, on the other hand, increased climatic variability will render the task more difficult to manage nutrients for the optimization of crop productivity while minimizing N losses to the environment. Higher air temperatures will result in a "climate penalty" for air quality mitigation efforts, because larger NOX emissions reductions will be needed to achieve the same reductions of O3 pollution under higher temperatures, thus imposing further challenges to avoid harmful impacts on human health and crop productivity. Changes in river discharge, due to summer drought and to extreme precipitation events, will affect the transport of N from agricultural fields to rivers and estuaries, potentially resulting in more eutrophication, including harmful algal blooms. Both climate change and N inputs from N deposition can provoke biodiversity loss in aquatic and terrestrial ecosystems, because nutrient enrichment of native ecosystems often favors fast-growing, often non-native species. Policies aimed at improving N-use efficiencies in agriculture and reducing emissions from transportation and energy sectors would have multiple interacting benefits for climate mitigation and adaptation and for minimizing climate change impacts on crop productivity, air and water quality, biodiversity, human health risks, and food security.
NOAA Climate Information and Tools for Decision Support Services
NASA Astrophysics Data System (ADS)
Timofeyeva, M. M.; Higgins, W.; Strager, C.; Horsfall, F. M.
2013-12-01
NOAA is an active participant of the Global Framework for Climate Services (GFCS) contributing data, information, analytical capabilities, forecasts, and decision support services to the Climate Services Partnership (CSP). These contributions emerge from NOAA's own climate services, which have evolved to respond to the urgent and growing need for reliable, trusted, transparent, and timely climate information across all sectors of the U.S. economy. Climate services not only enhance development opportunities in many regions, but also reduce vulnerability to climate change around the world. The NOAA contribution lies within the NOAA Climate Goal mission, which is focusing its efforts on four key climate priority areas: water, extremes, coastal inundation, and marine ecosystems. In order to make progress in these areas, NOAA is exploiting its fundamental capabilities, including foundational research to advance understanding of the Earth system, observations to preserve and build the climate data record and monitor changes in climate conditions, climate models to predict and project future climate across space and time scales, and the development and delivery of decision support services focused on risk management. NOAA's National Weather Services (NWS) is moving toward provision of Decision Support Services (DSS) as a part of the Roadmap on the way to achieving a Weather Ready National (WRN) strategy. Both short-term and long-term weather, water, and climate information are critical for DSS and emergency services and have been integrated into NWS in the form of pilot projects run by National and Regional Operations Centers (NOC and ROCs respectively) as well as several local offices. Local offices with pilot projects have been focusing their efforts on provision of timely and actionable guidance for specific tasks such as DSS in support of Coastal Environments and Integrated Environmental Studies. Climate information in DSS extends the concept of climate services to provision of information that will help guide long-term preparedness for severe weather events and extreme conditions as well as climate variability and change GFCS recently summarized examples of existing initiatives to advance provision of climate services in the 2012 publication Climate ExChange. In this publication, NWS introduced the new Local Climate Analysis Tool (LCAT), a tool that is used to conduct local climate studies that are needed to create efficient and reliable guidance for DSS. LCAT allows for analyzing trends in local climate variables and identifying local impacts of climate variability (e.g., ENSO) on weather and water conditions. In addition to LCAT, NWS, working in partnership with the North East Regional Climate center, released xmACIS version 2, a climate data mining tool, for NWS field operations. During this talk we will demonstrate LCAT and xmACIS as well as outline several examples of their application to DSS and its potential use for achieving GFCS goals. The examples include LCAT-based temperature analysis for energy decisions, guidance on weather and water events leading to increased algal blooms and red tide months in advance, local climate sensitivities to droughts, probabilities of hot/cold conditions and their potential impacts on agriculture and fish kills or fish stress.
Çağlar, Emine; Aşçi, F Hülya; Uygurtaş, Murat
2017-04-01
We investigated the contribution of perceived motivational climates created by coach, peer, and parent on the dispositional flow experience of young athletes. Eighty-six female ( M age = 14.24, SD = 1.38 years) and 134 male ( M age = 16.28, SD = 1.17 years) athletes completed questionnaires of perceived motivational climates created by coach, peer, and parent and the Dispositional Flow Scale-2. Results of hierarchical multiple regression analyses indicated that perceived task-involving coach (β = .40, p < .001) and peer (β = .28, p < .002) motivational climates were the only significant predictors of dispositional flow. These findings suggest that task-involving motivational climates should be strengthened to increase experience of flow.
Modeling climatic effects of anthropogenic CO2 emissions: Unknowns and uncertainties
NASA Astrophysics Data System (ADS)
Soon, W.; Baliunas, S.; Idso, S.; Kondratyev, K. Ya.; Posmentier, E. S.
2001-12-01
A likelihood of disastrous global environmental consequences has been surmised as a result of projected increases in anthropogenic greenhouse gas emissions. These estimates are based on computer climate modeling, a branch of science still in its infancy despite recent, substantial strides in knowledge. Because the expected anthropogenic climate forcings are relatively small compared to other background and forcing factors (internal and external), the credibility of the modeled global and regional responses rests on the validity of the models. We focus on this important question of climate model validation. Specifically, we review common deficiencies in general circulation model calculations of atmospheric temperature, surface temperature, precipitation and their spatial and temporal variability. These deficiencies arise from complex problems associated with parameterization of multiply-interacting climate components, forcings and feedbacks, involving especially clouds and oceans. We also review examples of expected climatic impacts from anthropogenic CO2 forcing. Given the host of uncertainties and unknowns in the difficult but important task of climate modeling, the unique attribution of observed current climate change to increased atmospheric CO2 concentration, including the relatively well-observed latest 20 years, is not possible. We further conclude that the incautious use of GCMs to make future climate projections from incomplete or unknown forcing scenarios is antithetical to the intrinsically heuristic value of models. Such uncritical application of climate models has led to the commonly-held but erroneous impression that modeling has proven or substantiated the hypothesis that CO2 added to the air has caused or will cause significant global warming. An assessment of the positive skills of GCMs and their use in suggesting a discernible human influence on global climate can be found in the joint World Meteorological Organisation and United Nations Environmental Programme's Intergovernmental Panel on Climate Change, IPCC, reports (1990, 1995 and 2001). Our review highlights only the enormous scientific difficulties facing the calculation of climatic effects of added atmospheric CO2 in a GCM. The purpose of such a limited review of the deficiencies of climate model physics and the use of GCMs is to illuminate areas for improvement. Our review does not disprove a significant anthropogenic influence on global climate.
A Bayesian beta distribution model for estimating rainfall IDF curves in a changing climate
NASA Astrophysics Data System (ADS)
Lima, Carlos H. R.; Kwon, Hyun-Han; Kim, Jin-Young
2016-09-01
The estimation of intensity-duration-frequency (IDF) curves for rainfall data comprises a classical task in hydrology studies to support a variety of water resources projects, including urban drainage and the design of flood control structures. In a changing climate, however, traditional approaches based on historical records of rainfall and on the stationary assumption can be inadequate and lead to poor estimates of rainfall intensity quantiles. Climate change scenarios built on General Circulation Models offer a way to access and estimate future changes in spatial and temporal rainfall patterns at the daily scale at the utmost, which is not as fine temporal resolution as required (e.g. hours) to directly estimate IDF curves. In this paper we propose a novel methodology based on a four-parameter beta distribution to estimate IDF curves conditioned on the observed (or simulated) daily rainfall, which becomes the time-varying upper bound of the updated nonstationary beta distribution. The inference is conducted in a Bayesian framework that provides a better way to take into account the uncertainty in the model parameters when building the IDF curves. The proposed model is tested using rainfall data from four stations located in South Korea and projected climate change Representative Concentration Pathways (RCPs) scenarios 6 and 8.5 from the Met Office Hadley Centre HadGEM3-RA model. The results show that the developed model fits the historical data as good as the traditional Generalized Extreme Value (GEV) distribution but is able to produce future IDF curves that significantly differ from the historically based IDF curves. The proposed model predicts for the stations and RCPs scenarios analysed in this work an increase in the intensity of extreme rainfalls of short duration with long return periods.
Spielfogel, Jill E.; Leathers, Sonya J.; Christian, Errick
2016-01-01
Organizational culture and climate play a critical role in worker retention and outcomes, yet little is known about whether perceptions of culture and climate vary depending on the demands of particular roles. In this study, 113 staff from a child welfare agency completed Organizational Social Context profiles. Staff were divided into three groups according to their proximity to child welfare tasks to assess whether involvement in higher stress child welfare tasks is related to perceptions of the social context. Findings suggest possible differences across groups, with those involved in core child welfare tasks appearing to perceive higher resistance to new ways of providing services and those with the least involvement in traditional child welfare perceiving a more positive social context overall. PMID:28261634
Spielfogel, Jill E; Leathers, Sonya J; Christian, Errick
2016-01-01
Organizational culture and climate play a critical role in worker retention and outcomes, yet little is known about whether perceptions of culture and climate vary depending on the demands of particular roles. In this study, 113 staff from a child welfare agency completed Organizational Social Context profiles. Staff were divided into three groups according to their proximity to child welfare tasks to assess whether involvement in higher stress child welfare tasks is related to perceptions of the social context. Findings suggest possible differences across groups, with those involved in core child welfare tasks appearing to perceive higher resistance to new ways of providing services and those with the least involvement in traditional child welfare perceiving a more positive social context overall.
Tiny Ultraviolet Polarimeter for Earth Stratosphere from Space Investigation
NASA Astrophysics Data System (ADS)
Nevodovskyi, P. V.; Morozhenko, O. V.; Vidmachenko, A. P.; Ivakhiv, O.; Geraimchuk, M.; Zbrutskyi, O.
2015-09-01
One of the reasons for climate change (i.e., stratospheric ozone concentrations) is connected with the variations in optical thickness of aerosols in the upper sphere of the atmosphere (at altitudes over 30 km). Therefore, aerosol and gas components of the atmosphere are crucial in the study of the ultraviolet (UV) radiation passing upon the Earth. Moreover, a scrupulous study of aerosol components of the Earth atmosphere at an altitude of 30 km (i.e., stratospheric aerosol), such as the size of particles, the real part of refractive index, optical thickness and its horizontal structure, concentration of ozone or the upper border of the stratospheric ozone layer is an important task in the research of the Earth climate change. At present, the Main Astronomical Observatory of the National Academy of Sciences (NAS) of Ukraine, the National Technical University of Ukraine "KPI"and the Lviv Polytechnic National University are engaged in the development of methodologies for the study of stratospheric aerosol by means of ultraviolet polarimeter using a microsatellite. So fare, there has been created a sample of a tiny ultraviolet polarimeter (UVP) which is considered to be a basic model for carrying out space experiments regarding the impact of the changes in stratospheric aerosols on both global and local climate.
Structuring decisions for managing threatened and endangered species in a changing climate.
Gregory, Robin; Arvai, Joseph; Gerber, Leah R
2013-12-01
The management of endangered species under climate change is a challenging and often controversial task that incorporates input from a variety of different environmental, economic, social, and political interests. Yet many listing and recovery decisions for endangered species unfold on an ad hoc basis without reference to decision-aiding approaches that can improve the quality of management choices. Unlike many treatments of this issue, which consider endangered species management a science-based problem, we suggest that a clear decision-making process is equally necessary. In the face of new threats due to climate change, managers' choices about endangered species require closely linked analyses and deliberations that identify key objectives and develop measurable attributes, generate and compare management alternatives, estimate expected consequences and key sources of uncertainty, and clarify trade-offs across different dimensions of value. Several recent cases of endangered species conservation decisions illustrate our proposed decision-focused approach, including Gulf of Maine Atlantic salmon (Salmo salar) recovery framework development, Cultus Lake sockeye salmon (Oncorhynchus nerka) management, and Upper Columbia River white sturgeon (Acipenser transmontanus) recovery planning. Estructuración de Decisiones para Manejar Especies Amenazadas y en Peligro en un Clima Cambiante. © 2013 Society for Conservation Biology No claim to original US government works.
Luo, Xu; Wang, Yu Li; Zhang, Jin Quan
2018-03-01
Predicting the effects of climate warming and fire disturbance on forest aboveground biomass is a central task of studies in terrestrial ecosystem carbon cycle. The alteration of temperature, precipitation, and disturbance regimes induced by climate warming will affect the carbon dynamics of forest ecosystem. Boreal forest is an important forest type in China, the responses of which to climate warming and fire disturbance are increasingly obvious. In this study, we used a forest landscape model LANDIS PRO to simulate the effects of climate change on aboveground biomass of boreal forests in the Great Xing'an Mountains, and compared direct effects of climate warming and the effects of climate warming-induced fires on forest aboveground biomass. The results showed that the aboveground biomass in this area increased under climate warming scenarios and fire disturbance scenarios with increased intensity. Under the current climate and fire regime scenario, the aboveground biomass in this area was (97.14±5.78) t·hm -2 , and the value would increase up to (97.93±5.83) t·hm -2 under the B1F2 scenario. Under the A2F3 scenario, aboveground biomass at landscape scale was relatively higher at the simulated periods of year 100-150 and year 150-200, and the value were (100.02±3.76) t·hm -2 and (110.56±4.08) t·hm -2 , respectively. Compared to the current fire regime scenario, the predicted biomass at landscape scale was increased by (0.56±1.45) t·hm -2 under the CF2 scenario (fire intensity increased by 30%) at some simulated periods, and the aboveground biomass was reduced by (7.39±1.79) t·hm -2 in CF3 scenario (fire intensity increased by 230%) at the entire simulation period. There were significantly different responses between coniferous and broadleaved species under future climate warming scenarios, in that the simulated biomass for both Larix gmelinii and Betula platyphylla showed decreasing trend with climate change, whereas the simulated biomass for Pinus sylvestris var. mongolica, Picea koraiensis and Populus davidiana showed increasing trend at different degrees during the entire simulation period. There was a time lag for the direct effect of climate warming on biomass for coniferous and broadleaved species. The response time of coniferous species to climate warming was 25-30 years, which was longer than that for broadleaf species. The forest landscape in the Great Xing'an Mountains was sensitive to the interactive effect of climate warming (high CO 2 emissions) and high intensity fire disturbance. Future climate warming and high intensity forest fire disturbance would significantly change the composition and structure of forest ecosystem.
Response-Guided Community Detection: Application to Climate Index Discovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bello, Gonzalo; Angus, Michael; Pedemane, Navya
Discovering climate indices-time series that summarize spatiotemporal climate patterns-is a key task in the climate science domain. In this work, we approach this task as a problem of response-guided community detection; that is, identifying communities in a graph associated with a response variable of interest. To this end, we propose a general strategy for response-guided community detection that explicitly incorporates information of the response variable during the community detection process, and introduce a graph representation of spatiotemporal data that leverages information from multiple variables. We apply our proposed methodology to the discovery of climate indices associated with seasonal rainfall variability.more » Our results suggest that our methodology is able to capture the underlying patterns known to be associated with the response variable of interest and to improve its predictability compared to existing methodologies for data-driven climate index discovery and official forecasts.« less
A tool to assess potential for alien plant establishment and expansion under climate change.
Roger, Erin; Duursma, Daisy Englert; Downey, Paul O; Gallagher, Rachael V; Hughes, Lesley; Steel, Jackie; Johnson, Stephen B; Leishman, Michelle R
2015-08-15
Predicting the influence of climate change on the potential distribution of naturalised alien plant species is an important and challenging task. While prioritisation of management actions for alien plants under current climatic conditions has been widely adopted, very few systems explicitly incorporate the potential of future changes in climate conditions to influence the distribution of alien plant species. Here, we develop an Australia-wide screening tool to assess the potential of naturalised alien plants to establish and spread under both current and future climatic conditions. The screening tool developed uses five spatially explicit criteria to establish the likelihood of alien plant population establishment and expansion under baseline climate conditions and future climates for the decades 2035 and 2065. Alien plants are then given a threat rating according to current and future threat to enable natural resource managers to focus on those species that pose the largest potential threat now and in the future. To demonstrate the screening tool, we present results for a representative sample of approximately 10% (n = 292) of Australia's known, naturalised alien plant species. Overall, most alien plant species showed decreases in area of habitat suitability under future conditions compared to current conditions and therefore the threat rating of most alien plant species declined between current and future conditions. Use of the screening tool is intended to assist natural resource managers in assessing the threat of alien plant establishment and spread under current and future conditions and thus prioritise detailed weed risk assessments for those species that pose the greatest threat. The screening tool is associated with a searchable database for all 292 alien plant species across a range of spatial scales, available through an interactive web-based portal at http://weedfutures.net/. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Self-handicapping in school physical education: The influence of the motivational climate.
Standage, Martyn; Treasure, Darren C; Hooper, Katherine; Kuczka, Kendy
2007-03-01
Self-handicapping is an attribution-related process whereby individuals create performance impediments/excuses to protect self-worth in socially evaluative environments. Thus, the prevailing motivational climate would appear to be an important factor when attempting to understand the situational self-handicapping process within school physical education. Drawing from achievement goal theory, the study examined the effect of experimentally induced conditions (viz. task vs. ego) on situational self-handicapping. Seventy British secondary school students (36 females and 34 males; M age = 11.98; SD=0.31). Participants were randomly assigned to partake in a running endurance task in either an ego-involving (20 male students and 16 female students) or a task-involving (14 male students and 20 female students) condition. Prior to completing the experimental task, participants were given the opportunity to claim situational self-handicaps. Data for goal orientations, subjective climate perceptions, perceived ability and perceived task importance were also obtained. After determining the effectiveness of the experimental manipulation, results revealed participants in the ego-involving condition to report significantly more situational self-handicapping claims. Further, and after controlling for individual difference variables, the results of moderated hierarchical regression analysis revealed subjective perceptions of an ego-involving climate to be the main positive predictor of situational self-handicapping. Although a weaker contributor to the percentage of variance explained, task orientation emerged as a negative predictor of situational self-handicapping. The findings suggest that PE teachers would be prudent to minimize ego-involving situations should they wish to reduce situational self-handicapping.
Global and Regional Temperature-change Potentials for Near-term Climate Forcers
NASA Technical Reports Server (NTRS)
Collins, W.J.; Fry, M. M.; Yu, H.; Fuglestvedt, J. S.; Shindell, D. T.; West, J. J.
2013-01-01
The emissions of reactive gases and aerosols can affect climate through the burdens of ozone, methane and aerosols, having both cooling and warming effects. These species are generally referred to near-term climate forcers (NTCFs) or short-lived climate pollutants (SLCPs), because of their short atmospheric residence time. The mitigation of these would be attractive for both air quality and climate on a 30-year timescale, provided it is not at the expense of CO2 mitigation. In this study we examine the climate effects of the emissions of NTCFs from 4 continental regions (East Asia, Europe, North America and South Asia) using results from the Task Force on Hemispheric Transport of Air Pollution Source-Receptor global chemical transport model simulations. We address 3 aerosol species (sulphate, particulate organic matter and black carbon - BC) and 4 ozone precursors (methane, reactive nitrogen oxides - NOx, volatile organic compounds VOC, and carbon monoxide - CO). For the aerosols the global warming potentials (GWPs) and global temperature change potentials (GTPs) are simply time-dependent scaling of the equilibrium radiative forcing, with the GTPs decreasing more rapidly with time than the GWPs. While the aerosol climate metrics have only a modest dependence on emission region, emissions of NOx and VOCs from South Asia have GWPs and GTPs of higher magnitude than from the other northern hemisphere regions. On regional basis, the northern mid-latitude temperature response to northern mid-latitude emissions is approximately twice as large as the global average response for aerosol emission, and about 20-30% larger than the global average for methane, VOC and CO emissions. We also found that temperatures in the Arctic latitudes appear to be particularly sensitive to black carbon emissions from South Asia.
Gråstén, Arto; Watt, Anthony
2017-01-01
The present paper examined the full sequence of the Hierarchical Model of Motivation in physical education (PE) including motivational climate, basic psychological needs, intrinsic motivation, and related links to contextual enjoyment, knowledge, performance, and total moderate to vigorous physical activity (MVPA). Gender differences and correlations with body mass index (BMI) were also analyzed. Cross-sectional data was represented by self-reports and objective assessments of 770 middle school students (52% of girls) in North-East Finland. The results showed that task-involving climate in girls’ PE classes was related to enjoyment and knowledge through physical competence and intrinsic motivation, whereas task-involving climate was associated with enjoyment and knowledge via competence and autonomy, and total MVPA via autonomy, intrinsic motivation, and knowledge within boys. This may indicate that girls and boys perceive PE classes in a different way. Graded PE assessments appeared to be essential in motivating both girls and boys to participate in greater total MVPA, whereas BMI was negatively linked with competence and social relatedness only among girls. Although, the current and previous empirical findings supported task-involving teaching methods in PE, in some cases, ego-involving climate should be considered. Therefore, both task- and ego-involving teaching practices can be useful ways of developing preferred behaviors in PE classes. Key points The present findings indicated that girls and boys perceive PE classes in a different way. Graded PE assessments appeared to be essential in motivating both girls and boys to participate in greater total MVPA, whereas BMI was negatively linked with competence and social relatedness only among girls. Although, the current and previous empirical findings supported task-involving teaching methods in PE, in some cases, ego-involving climate should be considered. Both task- and ego-involving teaching practices can be useful ways of developing preferred behaviors in PE classes. PMID:28912648
Lawrence, David J.; Stewart-Koster, Ben; Olden, Julian D.; Ruesch, Aaron S.; Torgersen, Christian E.; Lawler, Joshua J.; Butcher, Don P.; Crown, Julia K.
2014-01-01
Predicting how climate change is likely to interact with myriad other stressors that threaten species of conservation concern is an essential challenge in aquatic ecosystems. This study provides a framework to accomplish this task in salmon-bearing streams of the northwestern United States, where land-use related reductions in riparian shading have caused changes in stream thermal regimes, and additional warming from projected climate change may result in significant losses of coldwater fish habitat over the next century. Predatory non-native smallmouth bass have also been introduced into many northwestern streams and their range is likely to expand as streams warm, presenting an additional challenge to the persistence of threatened Pacific salmon. The goal of this work was to forecast the interactive effects of climate change, riparian management, and non-native species on stream-rearing salmon, and to evaluate the capacity of restoration to mitigate these effects. We intersected downscaled global climate forecasts with a local-scale water temperature model to predict mid- and end-of-century temperatures in streams in the Columbia River basin; we compared one stream that is thermally impaired due to the loss of riparian vegetation and another that is cooler and has a largely intact riparian corridor. Using the forecasted stream temperatures in conjunction with fish-habitat models, we predicted how stream-rearing Chinook salmon and bass distributions would change as each stream warmed. In the highly modified stream, end-of-century warming may cause near total loss of Chinook salmon rearing habitat and a complete invasion of the upper watershed by bass. In the less modified stream, bass were thermally restricted from the upstream-most areas. In both systems, temperature increases resulted in higher predicted spatial overlap between stream-rearing Chinook salmon and potentially predatory bass in the early summer (2-4-fold increase) and greater abundance of bass. We found that riparian restoration could prevent the extirpation of Chinook salmon from the more altered stream, and could also restrict bass from occupying the upper 31 km of salmon rearing habitat. The proposed methodology and model predictions are critical for prioritizing climate-change adaptation strategies before salmonids are exposed to both warmer water and greater predation risk by non-native species.
Lawrence, David J; Stewart-Koster, Ben; Olden, Julian D; Ruesch, Aaron S; Torgersen, Christian E; Lawler, Joshua J; Butcher, Don P; Crown, Julia K
2014-06-01
Predicting how climate change is likely to interact with myriad other stressors that threaten species of conservation concern is an essential challenge in aquatic ecosystems. This study provides a framework to accomplish this task in salmon-bearing streams of the northwestern United States, where land-use-related reductions in riparian shading have caused changes in stream thermal regimes, and additional warming from projected climate change may result in significant losses of coldwater fish habitat over the next century. Predatory, nonnative smallmouth bass have also been introduced into many northwestern streams, and their range is likely to expand as streams warm, presenting an additional challenge to the persistence of threatened Pacific salmon. The goal of this work was to forecast the interactive effects of climate change, riparian management, and nonnative species on stream-rearing salmon and to evaluate the capacity of restoration to mitigate these effects. We intersected downscaled global climate forecasts with a local-scale water temperature model to predict mid- and end-of-century temperatures in streams in the Columbia River basin. We compared one stream that is thermally impaired due to the loss of riparian vegetation and another that is cooler and has a largely intact riparian corridor. Using the forecasted stream temperatures in conjunction with fish-habitat models, we predicted how stream-rearing chinook salmon and bass distributions would change as each stream warmed. In the highly modified stream, end-of-century warming may cause near total loss of chinook salmon-rearing habitat and a complete invasion of the upper watershed by bass. In the less modified stream, bass were thermally restricted from the upstream-most areas. In both systems, temperature increases resulted in higher predicted spatial overlap between stream-rearing chinook salmon and potentially predatory bass in the early summer (two- to fourfold increase) and greater abundance of bass. We found that riparian restoration could prevent the extirpation of chinook salmon from the more altered stream and could also restrict bass from occupying the upper 31 km of salmon-rearing habitat. The proposed methodology and model predictions are critical for prioritizing climate-change adaptation strategies before salmonids are exposed to both warmer water and greater predation risk by nonnative species.
NASA Astrophysics Data System (ADS)
Christensen, J. H.; Larsen, M. A. D.; Christensen, O. B.; Drews, M.
2017-12-01
For more than 20 years, coordinated efforts to apply regional climate models to downscale GCM simulations for Europe have been pursued by an ever increasing group of scientists. This endeavor showed its first results during EU framework supported projects such as RACCS and MERCURE. Here, the foundation for today's advanced worldwide CORDEX approach was laid out by a core of six research teams, who conducted some of the first coordinated RCM simulations with the aim to assess regional climate change for Europe. However, it was realized at this stage that model bias in GCMs as well as RCMs made this task very challenging. As an immediate outcome, the idea was conceived to make an even more coordinated effort by constructing a well-defined and structured set of common simulations; this lead to the PRUDENCE project (2001-2004). Additional coordinated efforts involving ever increasing numbers of GCMs and RCMs followed in ENSEMBLES (2004-2009) and the ongoing Euro-CORDEX (officially commenced 2011) efforts. Along with the overall coordination, simulations have increased their standard resolution from 50km (PRUDENCE) to about 12km (Euro-CORDEX) and from time slice simulations (PRUDENCE) to transient experiments (ENSEMBLES and CORDEX); from one driving model and emission scenario (PRUDENCE) to several (Euro-CORDEX). So far, this wealth of simulations have been used to assess the potential impacts of future climate change in Europe providing a baseline change as defined by a multi-model mean change with associated uncertainties calculated from model spread in the ensemble. But how has the overall picture of state-of-the-art regional climate change projections changed over this period of almost two decades? Here we compare across scenarios, model resolutions and model vintage the results from PRUDENCE, ENSEMBLES and Euro-CORDEX. By appropriate scaling we identify robust findings about the projected future of European climate expressed by temperature and precipitation changes that confirm the basic findings of PRUDENCE. For parameters such as snow cover and soil moisture availability we also identify major new results, which illustrate that model improvements and higher resolution offer new, physically grounded, robust information that could not have been identified twenty years ago with the approach taken at that time
NASA Astrophysics Data System (ADS)
Dearing, John; Hoffmann, Thomas
2010-05-01
LUCIFS is a global research program which is concerned with understanding past interactions between climate, human activity and fluvial systems. Its focus is on evaluating the geomorphic impact of humans on landscapes, with a strong emphasis on geomorphological and sedimentological perspectives on mid- to long-term man-landscape interactions. Of particular relevance are aspects of sediment redistribution systems such as non-linear behaviour, the role of system configuration, scale effects, and emergent properties Over the last decade the LUCIFS program has been investigating both contemporary and long-term river response to global change with the principal aims of i)quantifying land use and climate change impacts of river-borne fluxes of water, sediment, C, N and P; ii) identification of key controls on these fluxes at the catchment scale; and iii) identification of the feedback on both human society and biogeochemical cycles of long-term changes in the fluxes of these materials The major scientific tasks of the LUCIFS-program are: • synthesising results of regional case studies • identify regional gaps and encouraging new case studies • addressing research gaps and formulating new research questions • organising workshops and conferences In this paper we present the LUCIFS program within the new PAGES structure. LUCIFS is located in the Focus 4 (PHAROS) dealing with how a knowledge of human-climate-ecosystem interactions in the past can help inform understanding and management today. In conjunction with the other working groups HITE (Human Impacts on Terrestrial Ecosystems), LIMPACS (Human Impacts on Lake Ecosystems) and IHOPE (Integrated History of People on Earth) PHAROS aims to compare regional-scale reconstructions of environmental and climatic processes using natural archives, documentary and instrumental data, with evidence of past human activity obtained from historical, paleoecological and archaeological records.
NASA Astrophysics Data System (ADS)
Weiss, E.; Skene, J.; Tran, L.
2011-12-01
Today's youth have been tasked with the overwhelming job of addressing the world's climate future. The students who will become the scientists, policy makers, and citizens of tomorrow must gain a robust understanding of the causes and effects of climate change, as well as possible adaptation strategies. Currently, there are few high quality curricula available to teachers that address these topics in a developmentally appropriate manner. The NOAA-funded Ocean Sciences Sequence for Grades 6-8 aims to address this gap by providing teachers with scientifically accurate climate change curriculum that hits on some of the most salient points in climate science, while simultaneously developing students' science process skills. The Ocean Sciences Sequence for Grades 6-8 is developed through a collaboration between some of the nation's leading ocean and climate scientists and the Lawrence Hall of Science's highly qualified GEMS (Great Explorations in Math & Science) curriculum development team. Scientists are active partners throughout the whole development process, from initial brainstorming of key concepts and creating the conceptual storyline for the curriculum to final review of the content and activities. As with all GEMS Sequences, the Ocean Sciences Sequence for Grades 6-8 is designed to provide significant scientific and educational depth, systematic assessments and informational readings, and incorporate new learning technologies. The goal is to focus strategically and effectively on the core concepts within ocean and climate sciences that students need to understand. This curriculum is designed in accordance with the latest research from the learning sciences, and provides numerous opportunities for students to develop inquiry skills and abilities as they learn about the practice of science through hands-on activities. The Ocean Sciences Sequence for Grades 6-8 addresses in depth a significant number of national, state, and district standards and benchmarks. It aligns with the Ocean Literacy and Climate Literacy Frameworks, as well as multiple core ideas in the new National Academy of Sciences Framework for K-12 Science Education. In brief, the curriculum comprises 33 45-minute sessions organized into three thematic units that are each driven by an exploratory question: Unit 1 (11 sessions)-How do the ocean and atmosphere interact?; Unit 2 (8 sessions)-How does carbon flow through the ocean, land, and atmosphere?; and Unit 3 (12 sessions)-What are the causes and effects of climate change? The curriculum deliberately explores the ocean and climate as global systems, and challenges students to use scientific evidence to make explanations about climate change. The Ocean Sciences Sequence for Grades 6-8 is currently being classroom tested by teachers across the United States in a wide variety of classroom settings. Evaluation is also being undertaken to determine the efficacy of the sequence in addressing the curriculum's learning goals.
Constructing optimal ensemble projections for predictive environmental modelling in Northern Eurasia
NASA Astrophysics Data System (ADS)
Anisimov, Oleg; Kokorev, Vasily
2013-04-01
Large uncertainties in climate impact modelling are associated with the forcing climate data. This study is targeted at the evaluation of the quality of GCM-based climatic projections in the specific context of predictive environmental modelling in Northern Eurasia. To accomplish this task, we used the output from 36 CMIP5 GCMs from the IPCC AR-5 data base for the control period 1975-2005 and calculated several climatic characteristics and indexes that are most often used in the impact models, i.e. the summer warmth index, duration of the vegetation growth period, precipitation sums, dryness index, thawing degree-day sums, and the annual temperature amplitude. We used data from 744 weather stations in Russia and neighbouring countries to analyze the spatial patterns of modern climatic change and to delineate 17 large regions with coherent temperature changes in the past few decades. GSM results and observational data were averaged over the coherent regions and compared with each other. Ultimately, we evaluated the skills of individual models, ranked them in the context of regional impact modelling and identified top-end GCMs that "better than average" reproduce modern regional changes of the selected meteorological parameters and climatic indexes. Selected top-end GCMs were used to compose several ensembles, each combining results from the different number of models. Ensembles were ranked using the same algorithm and outliers eliminated. We then used data from top-end ensembles for the 2000-2100 period to construct the climatic projections that are likely to be "better than average" in predicting climatic parameters that govern the state of environment in Northern Eurasia. The ultimate conclusions of our study are the following. • High-end GCMs that demonstrate excellent skills in conventional atmospheric model intercomparison experiments are not necessarily the best in replicating climatic characteristics that govern the state of environment in Northern Eurasia, and independent model evaluation on regional level is necessary to identify "better than average" GCMs. • Each of the ensembles combining results from several "better than average" models replicate selected meteorological parameters and climatic indexes better than any single GCM. The ensemble skills are parameter-specific and depend on models it consists of. The best results are not necessarily those based on the ensemble comprised by all "better than average" models. • Comprehensive evaluation of climatic scenarios using specific criteria narrows the range of uncertainties in environmental projections.
ERIC Educational Resources Information Center
Logan, Samuel W.; Robinson, Leah E.; Webster, E. Kipling; Rudisill, Mary E.
2015-01-01
The purpose of this study is to determine the effect of two physical education (PE) instructional climates (mastery, performance) on the percentage of time students spent in a) moderate-to-vigorous physical activity (MVPA) and b) management tasks during PE in 2nd-grade students. Forty-eight 2nd graders (mastery, n = 23; performance, n = 25)…
Geocuration Lessons Learned from the Climate Data Initiative Project
NASA Technical Reports Server (NTRS)
Ramachandran, Rahul; Bugbee, Kaylin; Tilmes, Curt; Pinheiro Privette, Ana
2015-01-01
Curation is traditionally defined as the process of collecting and organizing information around a common subject matter or a topic of interest and typically occurs in museums, art galleries, and libraries. The task of organizing data around specific topics or themes is a vibrant and growing effort in the biological sciences but to date this effort has not been actively pursued in the Earth sciences. This presentation will introduce the concept of geocuration, which we define it as the act of searching, selecting, and synthesizing Earth science data/metadata and information from across disciplines and repositories into a single, cohesive, and useful compendium. We also present the Climate Data Initiative (CDI) project as an prototypical example. The CDI project is a systematic effort to manually curate and share openly available climate data from various federal agencies. CDI is a broad multi-agency effort of the U.S. government and seeks to leverage the extensive existing federal climate-relevant data to stimulate innovation and private-sector entrepreneurship to support national climate change preparedness. The geocuration process used in the CDI project, key lessons learned, and suggestions to improve similar geocuration efforts in the future will be part of this presentation.
Geocuration Lessons Learned from the Climate Data Initiative Project
NASA Astrophysics Data System (ADS)
Ramachandran, R.; Bugbee, K.; Tilmes, C.; Privette, A. P.
2015-12-01
Curation is traditionally defined as the process of collecting and organizing information around a common subject matter or a topic of interest and typically occurs in museums, art galleries, and libraries. The task of organizing data around specific topics or themes is a vibrant and growing effort in the biological sciences but to date this effort has not been actively pursued in the Earth sciences. This presentation will introduce the concept of geocuration, which we define it as the act of searching, selecting, and synthesizing Earth science data/metadata and information from across disciplines and repositories into a single, cohesive, and useful compendium.We also present the Climate Data Initiative (CDI) project as an exemplar example. The CDI project is a systematic effort to manually curate and share openly available climate data from various federal agencies. CDI is a broad multi-agency effort of the U.S. government and seeks to leverage the extensive existing federal climate-relevant data to stimulate innovation and private-sector entrepreneurship to support national climate-change preparedness. The geocuration process used in CDI project, key lessons learned, and suggestions to improve similar geocuration efforts in the future will be part of this presentation.
Projected 2050 Model Simulations for the Chesapeake Bay ...
The Chesapeake Bay Program as has been tasked with assessing how changes in climate systems are expected to alter key variables and processes within the Watershed in concurrence with land use changes. EPA’s Office of Research and Development will be conducting historic and future, 2050, Weather Research and Forecast (WRF) metrological and Community Multiscale Air Quality (CMAQ) chemical transport model simulations to provide meteorological and nutrient deposition estimates for inclusion of the Chesapeake Bay Program’s assessment of how climate and land use change may impact water quality and ecosystem health. This presentation will present the timeline and research updates. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple data sources. It also develops media- and receptor-specific models, process models, and decision support tools for use both within and outside of EPA.
Exploring Global Change In Place-Based Case Studies
NASA Astrophysics Data System (ADS)
Moosavi, S. C.
2011-12-01
The complexity of global climate change makes the subject challenging for the average student, particularly given the nuanced feedbacks and exceptions to the general "warming" or "drying" trend that may be experienced at the local and regional level at which most people experience geologic processes. Geoscience educators can reduce these barriers and draw in student learners by adopting a place-based approach to teaching and researching geologic principles that relate to global change. Assisting students in recognizing and understanding the geologic environment in which they live and study has the side benefit of making the potential effect of climate change tangible. This presentation will review several approaches for using place-based case studies to explore global climate change issues in large lecture, small seminar, field research and service learning environments. The special place project used in large introductory physical geology courses requires each student to select a place familiar and unique to them for an in depth study of the common course content as the semester progresses. Students are specifically tasked with identifying how their site came to be, the geologic processes that act upon it today, how the site may have been different during the last glacial advance and how global climate change (specifically warming of 3OC over 50 years) might impact the site. The concept that change has occurred at the student's site in the past, even far from glacial environments, opens students to the scale of potential anthropogenic climate change. A freshman seminar Global Warming & Climate Change - Service in Preparation for Climate Change: The Second Battle of New Orleans focused on the environmental threats to New Orleans and southeastern Louisiana resulting from regional land use decisions in the centuries before Hurricane Katrina, and the threat that global change relating to sea level rise, acceleration of the hydrologic cycle and intensification of hurricanes poses to this region specifically and as a model for similar coastal regions around the world. The small seminar format is an excellent approach to target a specific topic and audience for examining global climate change on the ground where students stand. The Grand Isle Project began as a service learning option for students in a large introductory physical geology course. The initial goal of the project was to expose general education students to a rapidly eroding and subsiding barrier island whose loss threatens national oil and gas infrastructure and storm surge defenses of New Orleans. The battle fought by the Army Corps of Engineers and local officials to defend the beach on Grand Isle against the ravages of 2 hurricanes and the BP oil spill brought together issues of human manipulation of river/sediment systems, continued energy dependence on fossil fuels, changes to the severity of natural weather events and the inevitable natural subsidence demonstrating the complexity of global change in a specific place familiar to all members of the class. A subset of these students were afforded the opportunity to engage in undergraduate research, contributing to decisions guiding the clean up and preservation of this portion of the coast.
Scrimin, Sara; Moscardino, Ughetta; Mason, Lucia
2018-06-11
Children's ability to remain focused on a task despite the presence of emotionally salient distractors in the environment is crucial for successful learning and academic performance. This study investigated first-graders' allocation of attentional resources in the presence of distracting emotional, school-related social interaction stimuli. Moreover, we examined whether such attentional processes were influenced by students' self-regulation, as indexed by heart period variability, observed classroom climate, or their interaction. Seventy-two-first graders took part in the study. To assess allocation of attentional resources, students' reaction times on an emotional Stroop task were registered by recording response times to colour frames placed around pictures of distracting emotional, school-related social interaction stimuli (i.e., emotional interference index). Moreover, heart period variability was measured by recording children's electrocardiogram at rest during an individual session, whereas classroom climate was observed during class activities by a trained researcher. Images representing negative social interactions required greater attentional resources than images depicting positive ones. Heart period variability and classroom climate were each significantly and independently associated with the emotional interference index. A significant interaction also emerged, indicating that among children experiencing a negative classroom climate, those who had a higher basal heart period variability (higher self-regulation) were less distracted by negative emotional material and remained more focused on a task compared to those with lower heart period variability (lower self-regulation). Negative interactions require greater attentional resources than positive scenes. Moreover, with a negative classroom climate, higher basal heart period variability is a protective factor. Implications for theory and practice are discussed. © 2018 The British Psychological Society.
The Deep End of the Pool: Strategy, Skills and Priorities for Climate Communication
NASA Astrophysics Data System (ADS)
Moffitt, S. E.
2015-12-01
In the complex public landscape of climate science, scientists are tasked with the roles of communicator, entrepreneur, media strategist, and moral compass. These novel identities may or may not be welcome by individual scientists, however they clearly push the broader scientific community out of an established cultural role and into new and novel paradigms. For the individual scientist, an effective way to mitigate the risks and maximize the benefits of speaking about climate science in public arenas is to front-load the work of communication strategizing. Scientists can build their own roadmaps for how they will talk about both their own narrow field of study and the broad field of climate change. The workload generated by this includes prioritizing science communication training events, especially in the early career timeframe, building a suite of social media and entrepreneurial skills, and delineating personal boundaries of advocacy, objectivity, and morality. The use of such a framework for planning cycles of publication and media engagement may support risk adverse scientists to come forward in public settings.
ICEX: Ice and Climate Experiment. Report of science and applications working group
NASA Technical Reports Server (NTRS)
1979-01-01
The Ice and Climate Experiment (ICEX), a proposed program of coordinated investigations of the ice and snow masses of the Earth (the "cryosphere") is described. These investigations are to be carried out with the help of satellite, aircraft, and surface based observations. Measurements derived from the investigations will be applied to an understanding of the role of the cryosphere in the system that determines the Earth's climate, to a better prediction of the responses of the ice and snow to climatic change, to studies of the basic nature of ice forms and ice dynamics, and to the development of operational techniques for assisting such activities in the polar regions as transportation, exploitation of natural resources, and petroleum exploration and production. A high-inclination satellite system with a set of remote-sensing instruments specially tailored to the task of observing the important features of snow, sea ice, and the ice sheets of Greenland and the Antarctic is to be used to record the near-simultaneous observations of multiple geophysical parameters by complementary sensors.
Integrating Climate Information and Decision Processes for Regional Climate Resilience
NASA Astrophysics Data System (ADS)
Buizer, James; Goddard, Lisa; Guido, Zackry
2015-04-01
An integrated multi-disciplinary team of researchers from the University of Arizona and the International Research Institute for Climate and Society at Columbia University have joined forces with communities and institutions in the Caribbean, South Asia and West Africa to develop relevant, usable climate information and connect it to real decisions and development challenges. The overall objective of the "Integrating Climate Information and Decision Processes for Regional Climate Resilience" program is to build community resilience to negative impacts of climate variability and change. We produce and provide science-based climate tools and information to vulnerable peoples and the public, private, and civil society organizations that serve them. We face significant institutional challenges because of the geographical and cultural distance between the locale of climate tool-makers and the locale of climate tool-users and because of the complicated, often-inefficient networks that link them. To use an accepted metaphor, there is great institutional difficulty in coordinating the supply of and the demand for useful climate products that can be put to the task of building local resilience and reducing climate vulnerability. Our program is designed to reduce the information constraint and to initiate a linkage that is more demand driven, and which provides a set of priorities for further climate tool generation. A demand-driven approach to the co-production of appropriate and relevant climate tools seeks to meet the direct needs of vulnerable peoples as these needs have been canvassed empirically and as the benefits of application have been adequately evaluated. We first investigate how climate variability and climate change affect the livelihoods of vulnerable peoples. In so doing we assess the complex institutional web within which these peoples live -- the public agencies that serve them, their forms of access to necessary information, the structural constraints under which they make their decisions, and the non-public institutions of support that are available to them. We then interpret this complex reality in terms of the demand for science-based climate products and analyze the channels through which such climate support must pass, thus linking demand assessment with the scientific capacity to create appropriate decision support tools. In summary, the approach we employ is: 1) Demand-driven, beginning with a knowledge of the impacts of climate variability and change upon targeted populations, 2) Focused on vulnerability and resilience, which requires an understanding of broader networks of institutional actors who contribute to the adaptive capacity of vulnerable peoples, 3) Needs-based in that the climate needs matrix set priorities for the assessment of relevant climate products, 4) Dynamic in that the producers of climate products are involved at the point of demand assessment and can respond directly to stated needs, 5) Reflective in that the impacts of climate product interventions are subject to monitoring and evaluation throughout the process. Methods, approaches and preliminary results of our work in the Caribbean will be presented.
NASA Astrophysics Data System (ADS)
Reeves, K. L.; Samson, C.; Summers, R. S.; Balaji, R.
2017-12-01
Drinking water treatment utilities (DWTU) are tasked with the challenge of meeting disinfection and disinfection byproduct (DBP) regulations to provide safe, reliable drinking water under changing climate and land surface characteristics. DBPs form in drinking water when disinfectants, commonly chlorine, react with organic matter as measured by total organic carbon (TOC), and physical removal of pathogen microorganisms are achieved by filtration and monitored by turbidity removal. Turbidity and TOC in influent waters to DWTUs are expected to increase due to variable climate and more frequent fires and droughts. Traditional methods for forecasting turbidity and TOC require catchment specific data (i.e. streamflow) and have difficulties predicting them under non-stationary climate. A modelling framework was developed to assist DWTUs with assessing their risk for future compliance with disinfection and DBP regulations under changing climate. A local polynomial method was developed to predict surface water TOC using climate data collected from NOAA, Normalized Difference Vegetation Index (NDVI) data from the IRI Data Library, and historical TOC data from three DWTUs in diverse geographic locations. Characteristics from the DWTUs were used in the EPA Water Treatment Plant model to determine thresholds for influent TOC that resulted in DBP concentrations within compliance. Lastly, extreme value theory was used to predict probabilities of threshold exceedances under the current climate. Results from the utilities were used to produce a generalized TOC threshold approach that only requires water temperature and bromide concentration. The threshold exceedance model will be used to estimate probabilities of exceedances under projected climate scenarios. Initial results show that TOC can be forecasted using widely available data via statistical methods, where temperature, precipitation, Palmer Drought Severity Index, and NDVI with various lags were shown to be important predictors of TOC, and TOC thresholds can be determined using water temperature and bromide concentration. Results include a model to predict influent turbidity and turbidity thresholds, similar to the TOC models, as well as probabilities of threshold exceedances for TOC and turbidity under changing climate.
Classification and Feature Selection Algorithms for Modeling Ice Storm Climatology
NASA Astrophysics Data System (ADS)
Swaminathan, R.; Sridharan, M.; Hayhoe, K.; Dobbie, G.
2015-12-01
Ice storms account for billions of dollars of winter storm loss across the continental US and Canada. In the future, increasing concentration of human populations in areas vulnerable to ice storms such as the northeastern US will only exacerbate the impacts of these extreme events on infrastructure and society. Quantifying the potential impacts of global climate change on ice storm prevalence and frequency is challenging, as ice storm climatology is driven by complex and incompletely defined atmospheric processes, processes that are in turn influenced by a changing climate. This makes the underlying atmospheric and computational modeling of ice storm climatology a formidable task. We propose a novel computational framework that uses sophisticated stochastic classification and feature selection algorithms to model ice storm climatology and quantify storm occurrences from both reanalysis and global climate model outputs. The framework is based on an objective identification of ice storm events by key variables derived from vertical profiles of temperature, humidity and geopotential height. Historical ice storm records are used to identify days with synoptic-scale upper air and surface conditions associated with ice storms. Evaluation using NARR reanalysis and historical ice storm records corresponding to the northeastern US demonstrates that an objective computational model with standard performance measures, with a relatively high degree of accuracy, identify ice storm events based on upper-air circulation patterns and provide insights into the relationships between key climate variables associated with ice storms.
NASA's Global Climate Change Education (GCCE) Program: New modules
NASA Astrophysics Data System (ADS)
Witiw, M. R.; Myers, R. J.; Schwerin, T. G.
2010-12-01
In existence for over 10 years, the Earth System Science Educational Alliance (ESSEA) through the Institute of Global Environmental Strategies (IGES) has developed a series of modules on Earth system science topics. To date, over 80 educational modules have been developed. The primary purpose of these modules is to provide graduate courses for teacher education. A typical course designed for teachers typically consists of from three to five content modules and a primer on problem-based learning. Each module is designed to take three weeks in a normal university semester. Course delivery methods vary. Some courses are completed totally online. Others are presented in the classroom. Still others are delivered using a hybrid method which combines classroom meetings with online delivery of content. Although originally designed for teachers and education students, recent changes, provide a format for general education students to use these module. In 2009, under NASA’s Global Climate Change Education (GCCE) initiative, IGES was tasked to develop 16 new modules addressing the topic of climate change. Two of the modules recently developed under this program address the topics of sunspots and thermal islands. Sunspots is a problem-based learning module where students are provided resources and sample investigations related to sunspots. The history of sunspot observations, the structure of sunspots and the possible role sunspots may have in Earth’s climate are explored. Students are then asked to determine what effects a continued minimum in sunspot activity may have on the climate system. In Thermal Islands, the topic of urban heat islands is addressed. How heat islands are produced and the role of urban heat islands in exacerbating heat waves are two of the topics covered in the resources. In this problem-based learning module, students are asked to think of mitigating strategies for these thermal islands as Earth’s urban population grows over the next 50 years. These modules were successfully piloted with undergraduate students at Seattle Pacific University.
Are species' responses to global change predicted by past niche evolution?
Lavergne, Sébastien; Evans, Margaret E. K.; Burfield, Ian J.; Jiguet, Frederic; Thuiller, Wilfried
2013-01-01
Predicting how and when adaptive evolution might rescue species from global change, and integrating this process into tools of biodiversity forecasting, has now become an urgent task. Here, we explored whether recent population trends of species can be explained by their past rate of niche evolution, which can be inferred from increasingly available phylogenetic and niche data. We examined the assemblage of 409 European bird species for which estimates of demographic trends between 1970 and 2000 are available, along with a species-level phylogeny and data on climatic, habitat and trophic niches. We found that species' proneness to demographic decline is associated with slow evolution of the habitat niche in the past, in addition to certain current-day life-history and ecological traits. A similar result was found at a higher taxonomic level, where families prone to decline have had a history of slower evolution of climatic and habitat niches. Our results support the view that niche conservatism can prevent some species from coping with environmental change. Thus, linking patterns of past niche evolution and contemporary species dynamics for large species samples may provide insights into how niche evolution may rescue certain lineages in the face of global change. PMID:23209172
NASA Astrophysics Data System (ADS)
Barbosa, A.; Robertson, W. H.
2013-12-01
In the 2012, the National Research Council (NRC) of the National Academies' reported that one of the major issues associated with the development of climate change curriculum was the lack of interdisciplinary materials that also promoted a correlation between science standards and content. Therefore, in order to respond to this need, our group has developed an interdisciplinary climate change curriculum that has had as its fundamental basis the alignment with the guidelines presented by the Next Generation Science Standards (NGSS) and the ones presented by the international document entitled The Earth Charter. In this regards, while the alignment with NGSS disciplinary core ideas, cross-concepts and students' expectations intended to fulfill the need for the development of climate change curriculum activities that were directly associated with the appropriate set of NGSS guidelines, the alignment with The Earth Charter document intended to reinforce the need the for the integration of sociological, philosophical and intercultural analysis of the theme 'climate change'. Additionally, our curriculum was also developed as part of a collaborative project between climate scientists and engineers, who are responsible for the development of a Regional Arctic Simulation Model (RASM). Hence, another important curriculum constituent was the feedback, suggestions and reviews provided by these professionals, who have also contributed to these pedagogical materials' scientific accuracy by facilitating the integration of datasets and visualizations developed by RASM. Furthermore, our group has developed a climate change curriculum for two types of audience: high school and early undergraduate students. Each curriculum unit is divided into modules and each module contains a set of lesson plans. The topics selected to compose each unit and module were designated according to the surveys conducted with scientists and engineers involved with the development of the climate change simulation model. Inside each module, we have provided a description of the general topic being addressed, the appropriate grade levels, students' required prior knowledge, the correspondent NGSS topics, disciplinary core ideas and students' performance expectations, purpose of the activities, and lesson plan activities. Each lesson plan activity is composed by the following: an introductory text that aims at explaining the topic, activities description (classroom tasks and optional classroom activities), time frame, materials, assessment, additional readings and online resources (scientific journals, online simulation models, and books). Each module presents activities and discussions that incorporate historical, philosophical, sociological and/or scientific perspectives on the topics being addressed. Moreover, the activities and lesson plans designed to compose our curriculum have the potential of being used either individually or together, according to the teacher and topic of interest, at the same time that each unit can also be used as a full semester course.
The New European Security Calculus: Implications for the U.S. Army
1991-01-03
Iberian and Levantine allies) is anxious that "peace" in Central Europe could work to decouple its security concerns from its northern neighbors. 10 4...altered political climate in Europe, the U.S. Army must be proactive in changing its force and command and control structures to meet both its new...relocated to the Kola Peninsula . "The main task of these planes is to attack targets from the rear, and their range makes it possible for them to reach
NASA Astrophysics Data System (ADS)
Parkes, Ben; Defrance, Dimitri; Sultan, Benjamin; Ciais, Philippe; Wang, Xuhui
2018-02-01
The ability of a region to feed itself in the upcoming decades is an important issue. The West African population is expected to increase significantly in the next 30 years. The responses of crops to short-term climate change is critical to the population and the decision makers tasked with food security. This leads to three questions: how will crop yields change in the near future? What influence will climate change have on crop failures? Which adaptation methods should be employed to ameliorate undesirable changes? An ensemble of near-term climate projections are used to simulate maize, millet and sorghum in West Africa in the recent historic period (1986-2005) and a near-term future when global temperatures are 1.5 K above pre-industrial levels to assess the change in yield, yield variability and crop failure rate. Four crop models were used to simulate maize, millet and sorghum in West Africa in the historic and future climates. Across the majority of West Africa the maize, millet and sorghum yields are shown to fall. In the regions where yields increase, the variability also increases. This increase in variability increases the likelihood of crop failures, which are defined as yield negative anomalies beyond 1 standard deviation during the historic period. The increasing variability increases the frequency of crop failures across West Africa. The return time of crop failures falls from 8.8, 9.7 and 10.1 years to 5.2, 6.3 and 5.8 years for maize, millet and sorghum respectively. The adoption of heat-resistant cultivars and the use of captured rainwater have been investigated using one crop model as an idealized sensitivity test. The generalized doption of a cultivar resistant to high-temperature stress during flowering is shown to be more beneficial than using rainwater harvesting.
Alternative Evaluation Designs for Data-Centered Technology-Based Geoscience Education Projects
NASA Astrophysics Data System (ADS)
Zalles, D. R.
2012-12-01
This paper will present different strategies for how to evaluate contrasting K-12 geoscience classroom-based interventions with different goals, leveraging the first author's experiences as principal investigator of four NSF and NASA-funded geoscience education projects. Results will also be reported. Each project had its own distinctive features but all had in common the broad goal of bringing to high school classrooms uses of real place-based geospatial data to study the relationships of Earth system phenomena to climate change and sustainability. The first project's goal was to produce templates and exemplars for curriculum and assessment designs around studying contrasting geoscience topics with different data sets and forms of data representation. The project produced a near transfer performance assessment task in which students who studied climate trends in Phoenix turned their attention to climate in Chicago. The evaluation looked at the technical quality of the assessment instrument as measured by inter-rater reliability. It then analyzed the assessment results against student responses to the instructional tasks about Phoenix. The evaluation proved useful in pinpointing areas of student strength and weakness on different inquiry tasks, from simple map interpretation to analysis of contrasting claims about what the data indicate. The goal of the second project was to produce an exemplar curriculum unit that bridges Western science and traditional American Indian ecological knowledge for student learning and skill building about local environmental sustainability issues. The evaluation looked at the extent to which Western and traditional perspectives were incorporated into the design of the curriculum. The curriculum was not constructed with a separate assessment, yet evidence centered design was utilized to extrapolate from the exemplar unit templates for future instructional and assessment tasks around other places, other sustainability problems, and other repositories of traditional ecological knowledge. The goals of the two other projects, in progress, are to build forms of support and access by teachers to complex scientific geospatial data sets concerning climate change and a myriad of related Earth system phenomena for which measurements are available from different government agencies such as NASA, NCAR, and the USGS. The driving philosophy of these projects has been that teachers are more likely to use these powerful resources when provided with curricula and educative supports, yet have the option of implementing the curricula as written, adapting the curricula, or developing their own curricula provided that they on at least some of the data about the local region. These projects are being evaluated on the extent to which this model of flexible implementation is bearing fruit in teacher capacity building and student learning outcomes. Hence, teachers are being provided with a set of pre post assessment options that they can choose from, including for example selected response items on Earth system variables of their choice, map interpretation items, and open-ended constructed response items about the weather, climate, and ecosystem concepts that they select to focus on with their students. Teacher capacity building is being measured through oral and written documentation of the teachers' evolving learning about the data resources and evolving decision-making about how to use the resources.
Spectral Resolution and Coverage Impact on Advanced Sounder Information Content
NASA Technical Reports Server (NTRS)
Larar, Allen M.; Liu, Xu; Zhou, Daniel K.; Smith, William L.
2010-01-01
Advanced satellite sensors are tasked with improving global measurements of the Earth s atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring capability, and environmental change detection. Achieving such measurement improvements requires instrument system advancements. This presentation focuses on the impact of spectral resolution and coverage changes on remote sensing system information content, with a specific emphasis on thermodynamic state and trace species variables obtainable from advanced atmospheric sounders such as the Infrared Atmospheric Sounding Interferometer (IASI) and Cross-track Infrared Sounder (CrIS) systems on the MetOp and NPP/NPOESS series of satellites. Key words: remote sensing, advanced sounders, information content, IASI, CrIS
Aerosol Source Attributions and Source-Receptor Relationships Across the Northern Hemisphere
NASA Technical Reports Server (NTRS)
Bian, Huisheng; Chin, Mian; Kucsera, Tom; Pan, Xiaohua; Darmenov, Anton; Colarco, Peter; Torres, Omar; Shults, Michael
2014-01-01
Emissions and long-range transport of air pollution pose major concerns on air quality and climate change. To better assess the impact of intercontinental transport of air pollution on regional and global air quality, ecosystems, and near-term climate change, the UN Task Force on Hemispheric Transport of Air Pollution (HTAP) is organizing a phase II activity (HTAP2) that includes global and regional model experiments and data analysis, focusing on ozone and aerosols. This study presents the initial results of HTAP2 global aerosol modeling experiments. We will (a) evaluate the model results with surface and aircraft measurements, (b) examine the relative contributions of regional emission and extra-regional source on surface PM concentrations and column aerosol optical depth (AOD) over several NH pollution and dust source regions and the Arctic, and (c) quantify the source-receptor relationships in the pollution regions that reflect the sensitivity of regional aerosol amount to the regional and extra-regional emission reductions.
Coastal Fog in Atlantic Canada: Characterization and Projection in a Changing Climate
NASA Astrophysics Data System (ADS)
Duplessis, P.; Hartery, S.; Macdonald, A. M.; Wheeler, M.; Miller, J.; Bhatia, S.; Chang, R. Y. W.
2016-12-01
Marine and coastal fog in Atlantic Canada is usually advective and favored by the meeting of the warm Gulf Stream and cold Labrador Current. As moist warm air moves over cold water, it cools down and becomes supersaturated. The interactions between microphysical, dynamical and radiative processes can also be a determining element in the formation and persistence of fog, which makes fog forecasting a highly challenging task. Current parameterizations within models suffer notably from unresolved microphysical problems such as neglecting droplet concentration, which leads to errors in droplet density predictions of up to 50%. In the scope of improving our understanding of fog and its characteristics, our research group conducted a field study on the coast of Nova Scotia in Eastern Canada during the fog season of 2016. Meteorological variables, droplet and aerosol size distributions, chemical speciation and fog water composition were measured. Results from this study will be presented, along with projections in a changing climate.
Cervelló, Eduardo M; Jiménez, Ruth; del Villar, Fernando; Ramos, Luis; Santos-Rosa, Francisco J
2004-08-01
This study analyzes how dispositional goal orientations and perception of different motivational climates are related to the students' perception of sex-related egalitarian treatment and the appearance of disciplined or undisciplined behaviors in physical education classes. Analyses showed that ego orientation is a predictor of undisciplined behavior. Task orientation was positively associated to discipline. The perception of task-involving motivational climate is related to the students' perception of equal treatment. On the contrary, the perception of ego-involving climate has been linked positively to the prediction of the perception of sex discrimination in physical education classes and negatively to the perception of equality and the appearance of disciplined behavior. This study discusses the implications of these results related to teaching instructional actions in physical education classes.
NASA Astrophysics Data System (ADS)
Niyogi, D.; Andresen, J.
2011-12-01
Corn and soybean production contributes over $100 billion annually to the U.S. economy, most of which comes from the intensely cultivated corn-belt region of the Midwest. Successful crop production in this region is highly dependent on favorable temperatures and appropriate precipitation patters, making this industry vulnerable to changes in climate patterns. Though predictive models are constantly improving, there are gaps in our understanding of how different management practices can be used to help farmers adapt to changes in climate while maintaining economic viability. Furthermore, currently available tools and models are not meeting producers' needs, and little is known about the types of information they would like to access. Useful to Usable (U2U): Transforming Climate Variability and Change Information for Cereal Crop Producers is an integrated research and extension project that seeks to improve the resilience and profitability of farms in the North Central Region amid variable climate change through the development and dissemination of improved decision support tools, resource materials, and training. The goal is to work closely with producers to help them make better long-term plans on what, when and where to plant, and also how to manage crops for maximum yields and minimum environmental damage. The U2U team is composed of a uniquely qualified group of climatologists, crop modelers, agronomists, economists, and social scientists from 10 partner universities across the Midwest. Over the span of 5 years, collaborators will complete tasks associated with 5 objectives that will enhance the usability of climate information for the agricultural community and lead to more sustainable farming operations. First the team will produce research on the biophysical and economic impacts of different climate scenarios on corn and soybean yields in the North Central Region (objective 1) and conduct complementary research to understand how producers and advisors are likely to use this information (objective 2). Based on these findings, decision support tools (DSTs) and training materials will be developed to effectively deliver climate information to stakeholders (objective 3). Next, DSTs will be piloted in a four-state region (Indiana, Iowa, Nebraska, and Michigan) to help improve tools and evaluate effectiveness (objective 4). After several iterations with stakeholders to ensure the usability and utility of the tools, the program will be extended to all twelve states in the region (objective 5). Decision support tools, along with training products, surveys, feedback mechanisms and collaborative social tools, will be supported using the NSF-funded and Purdue University developed HUBzero web-based technology.
NASA Astrophysics Data System (ADS)
Ciceri, Piera
2017-04-01
Pictures and diaries of the legendary Antarctic Expedition of sir E. Shackleton and his crew aboard the Endurance (1914/16) have become the starting point to learn about Natural Science, Earth Science and Climate Change. Students, 12 years old, were involved in hands on activities, took part to a network project, used interactive virtual labs, talked to university researchers on Skype and became the writers of a play. The theater was the place to act the story of Shackleton's expedition, to "stage" some scientific experiments and to tell to the audience about ice cores, climate change, physical and geographical characteristic of polar regions, thermal phenomena related to adaptations of polar animals, solar radiation at different latitude, day/night duration. The project was carried out from teachers of science, letters, geography and English in collaboration with the "Piccolo Teatro di Milano", the association "Scienza Under 18", researchers of the "Byrd Polar and Climate Research Center of Ohio State University" and of "M. Zucchelli Station" based in Antarctica. In our opinion drama activities improve both verbal and non-verbal communication skills and soft skills such as teamwork, responsibility and commitment. To be able to write and to act, students need a deep understanding of contents. To have an audience different from their own teachers and classmates and to interact with university researchers offer real tasks. The project aims to develop a relevant skill for the students: to become awareness citizens in a changing word.
Evaluation of the multi-model CORDEX-Africa hindcast using RCMES
NASA Astrophysics Data System (ADS)
Kim, J.; Waliser, D. E.; Lean, P.; Mattmann, C. A.; Goodale, C. E.; Hart, A.; Zimdars, P.; Hewitson, B.; Jones, C.
2011-12-01
Recent global climate change studies have concluded with a high confidence level that the observed increasing trend in the global-mean surface air temperatures since mid-20th century is triggered by the emission of anthropogenic greenhouse gases (GHGs). The increase in the global-mean temperature due to anthropogenic emissions is nearly monotonic and may alter the climatological norms resulting in a new climate normal. In the presence of anthropogenic climate change, assessing regional impacts of the altered climate state and developing the plans for mitigating any adverse impacts are an important concern. Assessing future climate state and its impact remains a difficult task largely because of the uncertainties in future emissions and model errors. Uncertainties in climate projections propagates into impact assessment models and result in uncertainties in the impact assessments. In order to facilitate the evaluation of model data, a fundamental step for assessing model errors, the JPL Regional Climate Model Evaluation System (RCMES: Lean et al. 2010; Hart et al. 2011) has been developed through a joint effort of the investigators from UCLA and JPL. RCMES is also a regional climate component of a larger worldwide ExArch project. We will present the evaluation of the surface temperatures and precipitation from multiple RCMs participating in the African component of the Coordinated Regional Climate Downscaling Experiment (CORDEX) that has organized a suite of regional climate projection experiments in which multiple RCMs and GCMs are incorporated. As a part of the project, CORDEX organized a 20-year regional climate hindcast study in order to quantify and understand the uncertainties originating from model errors. Investigators from JPL, UCLA, and the CORDEX-Africa team collaborate to analyze the RCM hindcast data using RCMES. The analysis is focused on measuring the closeness between individual regional climate model outputs as well as their ensembles and observed data. The model evaluation is quantified in terms of widely used metrics. Details on the conceptual outline and architecture of RCMES is presented in two companion papers "The Regional climate model Evaluation System (RCMES) based on contemporary satellite and other observations for assessing regional climate model fidelity" and "A Reusable Framework for Regional Climate Model Evaluation" in GC07 and IN30, respectively.
Regime Shift in an Exploited Fish Community Related to Natural Climate Oscillations.
Auber, Arnaud; Travers-Trolet, Morgane; Villanueva, Maria Ching; Ernande, Bruno
2015-01-01
Identifying the various drivers of marine ecosystem regime shifts and disentangling their respective influence are critical tasks for understanding biodiversity dynamics and properly managing exploited living resources such as marine fish communities. Unfortunately, the mechanisms and forcing factors underlying regime shifts in marine fish communities are still largely unknown although climate forcing and anthropogenic pressures such as fishing have been suggested as key determinants. Based on a 24-year-long time-series of scientific surveys monitoring 55 fish and cephalopods species, we report here a rapid and persistent structural change in the exploited fish community of the eastern English Channel from strong to moderate dominance of small-bodied forage fish species with low temperature preferendum that occurred in the mid-1990s. This shift was related to a concomitant warming of the North Atlantic Ocean as attested by a switch of the Atlantic Multidecadal Oscillation from a cold to a warm phase. Interestingly, observed changes in the fish community structure were opposite to those classically induced by exploitation as larger fish species of higher trophic level increased in abundance. Despite not playing a direct role in the regime shift, fishing still appeared as a forcing factor affecting community structure. Moreover, although related to climate, the regime shift may have been facilitated by strong historic exploitation that certainly primed the system by favoring the large dominance of small-bodied fish species that are particularly sensitive to climatic variations. These results emphasize that particular attention should be paid to multidecadal natural climate variability and its interactions with both fishing and climate warming when aiming at sustainable exploitation and ecosystem conservation.
Shaping the global landscape in the Anthropocene
NASA Astrophysics Data System (ADS)
Lotze-Campen, H.
2012-12-01
In the emerging era of the Anthropocene (Crutzen and Stoermer 2000) most ecosystems are either directly or indirectly influenced by human activities, and neither socio-economic processes nor environmental changes can be understood without taking their interactions into account. Social transitions towards more sustainable development paths will only be achieved through a co-evolution process of society and nature. Both are parts of one integrated "Earth system", where land and water use are key linking elements. In the industrialised countries the transition task will have to focus on maintaining current standards of living while reducing the demand for ecosystem services. In the developing countries the major challenge will be to raise income levels substantially and find more sustainable development paths that try to minimise the negative side-effects of economic growth. Due to technological changes and a globally integrated economy, human society is now in a position where it has to ask itself: "What kind of landscapes and ecosystems do we really want in the future?" Shaping environmental conditions in the course of economic growth and climate change becomes a social management task. While many environmental and social problems have to be dealt with at the regional and national scale, in some areas, like climate change and international trade, the level of analysis and political action extends to the global scale. The allocation of land and water resources for different human uses has to be consciously managed. The potential and limitations of different options and the trade-offs between land expansion, increased land use intensity and re-allocation between different uses have to be carefully assessed. While agricultural productivity has continuously grown in the past, a slowing pace has to be expected in many regions in the future. Water may pose the most serious limitation to future global food and bioenergy supplies. Rising crop outputs per unit of land and water are essential to feed growing demands. The technological and organisational changes required to increase productivity will only be achieved through continuous investments and appropriate institutional settings and incentives. Strategies for a "sustainable land management" will only emerge from truly integrated methods of analysis. These have to combine theories, models and data from various social sciences (e.g. economics, sociology, psychology) and natural sciences (e.g. ecology, hydrology, biogeochemistry). We provide an integrated assessment approach for modeling global landscape change and related management options, including changes in lifestyles and global consumption patterns. The global biogeochemistry model LPJmL (Bondeau et al. 2007) is linked to the economic land and water use model MAgPIE (Lotze-Campen et al. 2008) and the economy-climate model REMIND-R (Leimbach et al. 2010). We illustrate the trade-offs between different societal goals with regard to land use and landscape diversity. Finally, we provide a research design for multi-scale analysis of landscape change through a combination of regional case studies with our global models of the economy, biosphere, and climate.
Serious-game for water resources management adaptation training to climatic changes
NASA Astrophysics Data System (ADS)
Leroy, Eve; Saulnier, Georges-Marie
2013-04-01
Water resources access is a main issue for territorial development to ensure environmental and human well-being. Indeed, sustainable development is vulnerable to water availability and climate change may affect the quantity and temporality of available water resources for anthropogenic water uses. How then to adapt, how to change water management rules and practices and how to involve stakeholders is such process? To prevent water scarcity situations, which may generate conflicts and impacts on ecosystems, it is important to think about a sustainable development where anthropogenic water uses are in good balance with forecasted water resources availability. This implies to raise awareness and involve stakeholders for a sustainable water management. Stakeholders have to think about future territorial development taking into account climate change impacts on water resources. Collaboration between scientists and stakeholders is essential to insure consistent climate change knowledge, well identification of anthropogenic uses, tensions and stakes of the territory. However sharing information on complex questions such as climate change, hydro-meteorological modeling and practical constraints may be a difficult task. Therefore to contribute to an easier debate and to the global training of all the interested actors, a serious game about water management was built. The serious game uses scientist complex models with real data but via a simple and playful web-game interface. The advantage of this interface is that it may help stakeholders, citizen or the target group to raise their understandings of impacts of climate change on water resources and to raise their awareness to the need for a sustainable water management while using state-of-the-art knowledge. The principle of the game is simple. The gamer is a mayor of a city and has to manage the water withdrawals from hydro systems, water distribution and consumption, water retreatment etc. In the same time, a clock is running and climate change occurs on the territory which impacts the water resources. The gamer has to deal with this evolution and try to help its municipality in growing. If the water management plays well the city can develop. At the opposite, wrong player decisions may generate water, energy or food scarcities, which lead the city to decrease. A first version of this game still under development was built. It makes uses of data from a famous French ski resort: Megève municipality. A demo of this game will be presented. Under a playful approach the serious game helps to discuss essential but strained topics between stakeholders, scientists and citizens. It may be considered as a useful tool for decision support and explanation of a complex topic. It is also hoped that this approach offers new ways of collaboration with stakeholders to approach complex situations in order to find the best paths for future water management.
Alpbach Summer School - a unique learning experience
NASA Astrophysics Data System (ADS)
Kern, K.; Aulinas, J.; Clifford, D.; Krejci, D.; Topham, R.
2011-12-01
The Alpbach Summer School is a ten-day program that provides a unique opportunity for young european science and engineering students, both undergraduate and graduate, to learn how to approach the entire design process of a space mission. The theme of the 2010 Summer School was "New Space Missions to Understand Climate Change", a current, challenging, very broad and complex topic. The program was established more than 35 years ago and is organised in two interrelated parts: a series of lectures held by renowned experts in the field (in the case of this specific year, climate change and space engineering experts) that provides a technical and scientific background for the workshops that follow, the core of the Summer School. For the workshops the students are split into four international, interdisciplinary teams of about 15 students. In 2010 every team had to complete a number of tasks, four in total: (1) identify climate change research gaps and design a space mission that has not yet been flown or proposed, (2) define the science objectives and requirements of the mission, (3) design a spacecraft that meets the mission requirements, which includes spacecraft design and construction, payload definition, orbit calculations, but also the satellite launch, operation and mission costs and (4) write up a short mission proposal and present the results to an expert review panel. Achieving these tasks in only a few days in a multicultural, interdisciplinary team represents a major challenge for all participants and provides an excellent practical learning experience. Over the course of the program, students do not just learn facts about climate change and space engineering, but scientists also learn from engineers and engineers from scientists. The participants have to deepen their knowledge in an often unfamiliar field, develop organisational and team-work skills and work under pressure. Moreover, teams are supported by team and roving tutors and get the opportunity to meet and learn from international experts. This presentation will provide an overview of the Alpbach Summer School program from a student's perspective. The different stages of this unique and enriching experience will be covered. Special attention will be paid to the workshops, which, as mentioned above, are the core of the Alpbach Summer School. During these intense workshops, participants work towards the proposed goals resulting in the design proposal of a space mission. The Alpbach Summer School is organised by FFG and co-sponsored by ESA, ISSI and the national space authorities of ESA member and cooperating states.
Ruiz, Montse C; Haapanen, Saara; Tolvanen, Asko; Robazza, Claudio; Duda, Joan L
2017-08-01
This study examined the relationships between perceptions of the motivational climate, motivation regulations, and the intensity and functionality levels of athletes' pleasant and unpleasant emotional states. Specifically, we examined the hypothesised mediational role of motivation regulations in the climate-emotion relationship. We also tested a sequence in which emotions were assumed to be predicted by the motivational climate dimensions and then served as antecedents to variability in motivation regulations. Participants (N = 494) completed a multi-section questionnaire assessing targeted variables. Structural equation modelling (SEM) revealed that a perceived task-involving climate was a positive predictor of autonomous motivation and of the impact of functional anger, and a negative predictor of the intensity of anxiety and dysfunctional anger. Autonomous motivation was a partial mediator of perceptions of a task-involving climate and the impact of functional anger. An ego-involving climate was a positive predictor of controlled motivation, and of the intensity and impact of functional anger and the intensity of dysfunctional anger. Controlled motivation partially mediated the relationship between an ego-involving climate and the intensity of dysfunctional anger. Good fit to the data also emerged for the motivational climate, emotional states, and motivation regulations sequence. Findings provide support for the consideration of hedonic tone and functionality distinctions in the assessment of athletes' emotional states.
Climate sensitivity estimated from temperature reconstructions of the Last Glacial Maximum
NASA Astrophysics Data System (ADS)
Schmittner, A.; Urban, N.; Shakun, J. D.; Mahowald, N. M.; Clark, P. U.; Bartlein, P. J.; Mix, A. C.; Rosell-Melé, A.
2011-12-01
In 1959 IJ Good published the discussion "Kinds of Probability" in Science. Good identified (at least) five kinds. The need for (at least) a sixth kind of probability when quantifying uncertainty in the context of climate science is discussed. This discussion brings out the differences in weather-like forecasting tasks and climate-links tasks, with a focus on the effective use both of science and of modelling in support of decision making. Good also introduced the idea of a "Dynamic probability" a probability one expects to change without any additional empirical evidence; the probabilities assigned by a chess playing program when it is only half thorough its analysis being an example. This case is contrasted with the case of "Mature probabilities" where a forecast algorithm (or model) has converged on its asymptotic probabilities and the question hinges in whether or not those probabilities are expected to change significantly before the event in question occurs, even in the absence of new empirical evidence. If so, then how might one report and deploy such immature probabilities in scientific-support of decision-making rationally? Mature Probability is suggested as a useful sixth kind, although Good would doubtlessly argue that we can get by with just one, effective communication with decision makers may be enhanced by speaking as if the others existed. This again highlights the distinction between weather-like contexts and climate-like contexts. In the former context one has access to a relevant climatology (a relevant, arguably informative distribution prior to any model simulations), in the latter context that information is not available although one can fall back on the scientific basis upon which the model itself rests, and estimate the probability that the model output is in fact misinformative. This subjective "probability of a big surprise" is one way to communicate the probability of model-based information holding in practice, the probability that the information the model-based probability is conditioned on holds. It is argued that no model-based climate-like probability forecast is complete without a quantitative estimate of its own irrelevance, and that the clear identification of model-based probability forecasts as mature or immature, are critical elements for maintaining the credibility of science-based decision support, and can shape uncertainty quantification more widely.
Christiansen, Daniel E.; Walker, John F.; Hunt, Randall J.
2014-01-01
The Great Lakes Restoration Initiative (GLRI) is the largest public investment in the Great Lakes in two decades. A task force of 11 Federal agencies developed an action plan to implement the initiative. The U.S. Department of the Interior was one of the 11 agencies that entered into an interagency agreement with the U.S. Environmental Protection Agency as part of the GLRI to complete scientific projects throughout the Great Lakes basin. The U.S. Geological Survey, a bureau within the Department of the Interior, is involved in the GLRI to provide scientific support to management decisions as well as measure progress of the Great Lakes basin restoration efforts. This report presents basin-scale simulated current and forecast climatic and hydrologic conditions in the Lake Michigan Basin. The forecasts were obtained by constructing and calibrating a Precipitation-Runoff Modeling System (PRMS) model of the Lake Michigan Basin; the PRMS model was calibrated using the parameter estimation and uncertainty analysis (PEST) software suite. The calibrated model was used to evaluate potential responses to climate change by using four simulated carbon emission scenarios from eight general circulation models released by the World Climate Research Programme’s Coupled Model Intercomparison Project phase 3. Statistically downscaled datasets of these scenarios were used to project hydrologic response for the Lake Michigan Basin. In general, most of the observation sites in the Lake Michigan Basin indicated slight increases in annual streamflow in response to future climate change scenarios. Monthly streamflows indicated a general shift from the current (2014) winter-storage/snowmelt-pulse system to a system with a more equally distributed hydrograph throughout the year. Simulated soil moisture within the basin illustrates that conditions within the basin are also expected to change on a monthly timescale. One effect of increasing air temperature as a result of the changing climate was the appreciable increase in the length of the growing season in the Lake Michigan Basin. The increase in growing season will cause an increase in evapotranspiration across the Lake Michigan Basin, which will directly affect soil moisture and late growing season streamflows. Output from the Lake Michigan Basin PRMS model is available through an online dynamic web mapping service available at (http://pubs.usgs.gov/sir/2014/5175/). The map service includes layers for the each of the 8 global climate models and 4 carbon emission scenarios combinations for 12 hydrologic model state variables. The layers are pre-rendered maps of annual hydrologic response from 1977 through 2099 that provide an easily accessible online method to examine climate change effects across the Lake Michigan Basin.
NASA Astrophysics Data System (ADS)
Huang, Wen-Cheng
2014-05-01
Global climate change results in extreme weather, especially ex-treme precipitation in Taiwan. Though the total amount of precipi-tation remains unchanged, the frequency of rainfall return period increases which affects slopeland and causes sediment disaster. In Taiwan, slopeland occupies about 73% of national territory. Under harsh environmental stress, soil and water conservation of slope-land becomes more important. In response to the trends of global-ization impacts of climate change, long term strategic planning be-comes more necessary. This study reviewed international practices and decision making process about soil and water conservation of slopeland; and conducted the compilation and analysis of water and soil conservation related research projects in Taiwan within the past five years. It is necessary for Taiwan to design timely adaptive strategies about conducting the all-inclusive conservation of na-tional territory, management and business operation of watershed based on the existing regulation with the effects of extreme weather induced by climate change and the changes of social-economic en-vironments. In order to realize the policy vision of "Under the premise of multiple uses, operating the sustainable business and management of the water and soil resources in the watershed through territorial planning in response to the climate and so-cial-economic environment change". This study concluded the future tasks for soil and water con-servation: 1.Design and timely amend strategies for soil and wand water conservation in response to extreme weather. 2. Strengthen the planning and operating of the land management and integrated conservation of the water and soil resources of key watershed. 3. Manage and operate the prevention of debris flow disaster and large-scale landslide. 4. Formulate polices, related regulations and assessment indicators of soil and water conservation. 5. Maintain the biodiversity of the slopeland and reduce the ecological footprint. 6. Conduct soil and water conservation research according to the importance and urgency of policies. 7. Implement the international cooperation, technology communication, talent cultivation, and integrated education and promotion.
Phase I of a National Phenological Assessment
NASA Astrophysics Data System (ADS)
Betancourt, J. L.; Henebry, G. M.
2009-12-01
Phenology is the gateway to climatic effects on both managed and unmanaged ecosystems. Adaptation to climatic variability and change will require integration of phenological data and models with climatic forecasts at seasonal to decadal timescales. We propose a scoping study to identify, formulate, and refine approaches to the first National Phenological Assessment (NPA) for the U.S. The NPA should be viewed as a data product of the USA-National Phenology Network that will help guide future phenological monitoring and research at the national level. We envision three main objectives for the first NPA: 1) Establish a suite of indicators of phenological change (IPCs) at regional to continental scales, following the Heinz Center model for such national assessments; 2) Using sufficiently long and broad-scale time series of IPCs and legacy phenological data, assess phenological responses to what many scientists are calling the early stages of anthropogenic climate change, specifically the abrupt advance in spring onset in the late 1970’s/early 1980’s 3) Project large-scale phenological changes into 21st Century using GCM and RCM model realizations. Toward this end we see the following tasks as critical preliminary work to plan the first NPA: a) Identify, evaluate, and refine IPCs based on indices developed from standard weather observations, streamflow and other hydrological observations (e.g., center of mass, lake freeze/thaw, etc.), plant and animal phenology observations from legacy datasets, remote sensing datastreams, flux tower observations, and GCM and RCM model realizations; b) Evaluate covariability between IPCs, legacy phenological data, and large-scale modes of climate variability to help detection and attribution of supposed secular trends and development of short and long-lead forecasts for phenological variations; c) identify, evaluate, and refine optimal methods for quantifying what constitutes significant statistical and ecological change in phenological indicators, given uncertainties in both data and methods and defined range of natural variability; d) identify, evaluate, and refine key questions of natural resource managers regarding phenological indicators for monitoring and adaptive management of habitats and wildlife, given the spectrum of management objectives on federal, state, and private lands.
NASA Astrophysics Data System (ADS)
Marcisz, Katarzyna; Tinner, Willy; Colombaroli, Daniele; Kołaczek, Piotr; Słowiński, Michał; Fiałkiewicz-Kozieł, Barbara; Lamentowicz, Mariusz
2014-05-01
Climate change affects many natural processes and the same applies to human impact For instance climate change and anthropogenic activities may cause increased fire activity or change peatland dynamics. Currently it is still unknown how Sphagnum peatlands in the oceanic-continental transition zone of Poland may respond to combined effects of heat waves, drought and fire. The aim of the study was to reconstruct the last 2000 years palaeohydrology and fire history at Linje bog in Northern Poland. The main task was to determine the drivers of fire episodes, particularly to identify climatic and anthropogenic forcing. A two-meter peat core was extracted and subsampled with a high resolution. Micro- and macroscopic charcoal analyses were applied to determine past fire activity and the results compared with palaeohydrological reconstructions based on testate amoeba analysis. Palynological human indicators were used to reconstruct human activity. A depth-age model including 20 14C dates was constructed to calculate peat accumulation rates and charcoal influx. We hypothesised that: 1) fire frequency in Northern Poland was determined by climatic conditions (combination of low precipitation and heat waves), as reflected in peatland water table, and that 2) past fire episodes in the last millennium were intensified by human activity. Furthermore climate may have influenced human activity over harvest success and the carrying capacity. Our study shows that fire was important for the studied ecosystem, however, its frequency has increased in the last millennium in concomitance with land use activities. Landscape humanization and vegetation opening were followed by a peatland drying during the Little Ice Age (from ca. AD 1380). Similarly to other palaeoecological studies from Poland, Linje peatland possessed an unstable hydrology during the Little Ice Age. Increased fire episodes appeared shortly before the Little Ice Age and most severe fires were present in the time when recorded water table was the lowest. We acknowledge the support of RE-FIRE SCIEX project 12.286 and grant PSPB-013/2010 from Switzerland through the Swiss Contribution to the enlarged European Union.
NASA Astrophysics Data System (ADS)
Shiklomanov, A. I.; Okladnikov, I.; Gordov, E. P.; Proussevitch, A. A.; Titov, A. G.
2016-12-01
Presented is a collaborative project carrying out by joint team of researchers from the Institute of Monitoring of Climatic and Ecological Systems, Russia and Earth Systems Research Center, University of New Hampshire, USA. Its main objective is development of a hardware and software prototype of Distributed Research Center (DRC) for monitoring and projecting of regional climatic and and their impacts on the environment over the Northern extratropical areas. In the framework of the project new approaches to "cloud" processing and analysis of large geospatial datasets (big geospatial data) are being developed. It will be deployed on technical platforms of both institutions and applied in research of climate change and its consequences. Datasets available at NCEI and IMCES include multidimensional arrays of climatic, environmental, demographic, and socio-economic characteristics. The project is aimed at solving several major research and engineering tasks: 1) structure analysis of huge heterogeneous climate and environmental geospatial datasets used in the project, their preprocessing and unification; 2) development of a new distributed storage and processing model based on a "shared nothing" paradigm; 3) development of a dedicated database of metadata describing geospatial datasets used in the project; 4) development of a dedicated geoportal and a high-end graphical frontend providing intuitive user interface, internet-accessible online tools for analysis of geospatial data and web services for interoperability with other geoprocessing software packages. DRC will operate as a single access point to distributed archives of spatial data and online tools for their processing. Flexible modular computational engine running verified data processing routines will provide solid results of geospatial data analysis. "Cloud" data analysis and visualization approach will guarantee access to the DRC online tools and data from all over the world. Additionally, exporting of data processing results through WMS and WFS services will be used to provide their interoperability. Financial support of this activity by the RF Ministry of Education and Science under Agreement 14.613.21.0037 (RFMEFI61315X0037) and by the Iola Hubbard Climate Change Endowment is acknowledged.
Beyond Sexual Assault Surveys: A Model for Comprehensive Campus Climate Assessments
ERIC Educational Resources Information Center
McMahon, Sarah; Stepleton, Kate; Cusano, Julia; O'Connor, Julia; Gandhi, Khushbu; McGinty, Felicia
2018-01-01
The White House Task Force to Protect Students from Sexual Assault identified campus climate surveys as "the first step" for addressing campus sexual violence. Through a process case study, this article presents one model for engaging in a comprehensive, action-focused campus climate assessment process. Rooted in principles of…
The Principal's Role in Setting School Climate (for School Improvement).
ERIC Educational Resources Information Center
Hall, Gene E.
Given that principals play a role in setting school climate, this paper focuses on how this actually happens. First, the paper explores different criteria and variables as possible frameworks for defining the term "climate." This task is complicated by problems in identifying consensus findings due to weak variable definitions and lack…
Role of Head Teachers in Ensuring Sound Climate
ERIC Educational Resources Information Center
Kor, Jacob; Opare, James K.
2017-01-01
The school climate is outlined in literature as one of the most important within school factors required for effective teaching in learning. As leaders in any organisations are assigned the role of ensuring sound climates for work, head teachers also have the task of creating and maintaining an environment conducive for effective academic work…
Report of the Interagency Task Force on Carbon Capture and Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-08-01
Carbon capture and storage (CCS) refers to a set of technologies that can greatly reduce carbon dioxide (CO{sub 2}) emissions from new and existing coal- and gas-fired power plants, industrial processes, and other stationary sources of CO{sub 2}. In its application to electricity generation, CCS could play an important role in achieving national and global greenhouse gas (GHG) reduction goals. However, widespread cost-effective deployment of CCS will occur only if the technology is commercially available and a supportive national policy framework is in place. In keeping with that objective, on February 3, 2010, President Obama established an Interagency Task Forcemore » on Carbon Capture and Storage composed of 14 Executive Departments and Federal Agencies. The Task Force, co-chaired by the Department of Energy (DOE) and the Environmental Protection Agency (EPA), was charged with proposing a plan to overcome the barriers to the widespread, cost-effective deployment of CCS within ten years, with a goal of bringing five to ten commercial demonstration projects online by 2016. Composed of more than 100 Federal employees, the Task Force examined challenges facing early CCS projects as well as factors that could inhibit widespread commercial deployment of CCS. In developing the findings and recommendations outlined in this report, the Task Force relied on published literature and individual input from more than 100 experts and stakeholders, as well as public comments submitted to the Task Force. The Task Force also held a large public meeting and several targeted stakeholder briefings. While CCS can be applied to a variety of stationary sources of CO{sub 2}, its application to coal-fired power plant emissions offers the greatest potential for GHG reductions. Coal has served as an important domestic source of reliable, affordable energy for decades, and the coal industry has provided stable and quality high-paying jobs for American workers. At the same time, coal-fired power plants are the largest contributor to U.S. greenhouse gas (GHG) emissions, and coal combustion accounts for 40 percent of global carbon dioxide (CO{sub 2}) emissions from the consumption of energy. EPA and Energy Information Administration (EIA) assessments of recent climate and energy legislative proposals show that, if available on a cost-effective basis, CCS can over time play a large role in reducing the overall cost of meeting domestic emissions reduction targets. By playing a leadership role in efforts to develop and deploy CCS technologies to reduce GHG emissions, the United States can preserve the option of using an affordable, abundant, and domestic energy resource, help improve national security, help to maximize production from existing oil fields through enhanced oil recovery (EOR), and assist in the creation of new technologies for export. While there are no insurmountable technological, legal, institutional, regulatory or other barriers that prevent CCS from playing a role in reducing GHG emissions, early CCS projects face economic challenges related to climate policy uncertainty, first-of-a-kind technology risks, and the current high cost of CCS relative to other technologies. Administration analyses of proposed climate change legislation suggest that CCS technologies will not be widely deployed in the next two decades absent financial incentives that supplement projected carbon prices. In addition to the challenges associated with cost, these projects will need to meet regulatory requirements that are currently under development. Long-standing regulatory programs are being adapted to meet the circumstances of CCS, but limited experience and institutional capacity at the Federal and State level may hinder implementation of CCS-specific requirements. Key legal issues, such as long-term liability and property rights, also need resolution. A climate policy designed to reduce our Nation's GHG emissions is the most important step for commercial deployment of low-carbon technologies such as CCS, because it will create a stable, long-term framework for private investments. A concerted effort to properly address financial, economic, technological, legal, institutional, and social barriers will enable CCS to be a viable climate change mitigation option that can over time play an important role in reducing the overall cost of meeting domestic and global emissions reduction targets. Federal and State agencies can use existing authorities and programs to begin addressing these barriers while ensuring appropriate safeguards are in place to protect the environment and public health and safety.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oubeidillah, Abdoul A; Kao, Shih-Chieh; Ashfaq, Moetasim
2014-01-01
To extend geographical coverage, refine spatial resolution, and improve modeling efficiency, a computation- and data-intensive effort was conducted to organize a comprehensive hydrologic dataset with post-calibrated model parameters for hydro-climate impact assessment. Several key inputs for hydrologic simulation including meteorologic forcings, soil, land class, vegetation, and elevation were collected from multiple best-available data sources and organized for 2107 hydrologic subbasins (8-digit hydrologic units, HUC8s) in the conterminous United States at refined 1/24 (~4 km) spatial resolution. Using high-performance computing for intensive model calibration, a high-resolution parameter dataset was prepared for the macro-scale Variable Infiltration Capacity (VIC) hydrologic model. The VICmore » simulation was driven by DAYMET daily meteorological forcing and was calibrated against USGS WaterWatch monthly runoff observations for each HUC8. The results showed that this new parameter dataset may help reasonably simulate runoff at most US HUC8 subbasins. Based on this exhaustive calibration effort, it is now possible to accurately estimate the resources required for further model improvement across the entire conterminous United States. We anticipate that through this hydrologic parameter dataset, the repeated effort of fundamental data processing can be lessened, so that research efforts can emphasize the more challenging task of assessing climate change impacts. The pre-organized model parameter dataset will be provided to interested parties to support further hydro-climate impact assessment.« less
Teaching Climate Change Science to Undergradutes with Diverse & Digital Pedagogical Techniquees
NASA Astrophysics Data System (ADS)
Kauffman, C.; Brey, J. A.; Nugnes, K. A.; Weinbeck, R. S.; Geer, I. W.
2015-12-01
California University of Pennsylvania (CalUPA) is unique relative to other undergraduate geoscience programs in that their climate science offerings are varied and inter-woven into an existing meteorology degree program, which aligns with the guidelines established by the American Meteorological Society (AMS). In addition to the rigorous meteorological requirements, the program strives to increase students' climate literacy. At the introductory course level, students are required to use the educational resources offered by the AMS—specifically their weather and climate studies materials, which have recently transitioned to a digital format. The Earth Sciences Program at CalUPA recently incorporated these new digital resources into a climatology course with novel pedagogical variants. These teaching strategies were well received by students and may benefit other climatology courses at similar institutions. For example, students were tasked with expounding upon textbook content from 'Topic In Depth' segments; they were required to present tangential climate topics in a digital presentation. Moreover, students mined the scientific literature listed at the end of each chapter in the text to identify climate scientists immersed in social media. Students were then required to follow these scientists and engage each other within a social media platform. Finally, as a culminating experience, students were required to create digital portfolios (e.g., infographic) related to climate science and the AMS materials. This presentation will further detail CalUPA's climatological course offerings and detail how the AMS resources were connected to course requirements listed herein.
MEGAPOLI: concept and first results of multi-scale modelling of megacity impacts
NASA Astrophysics Data System (ADS)
Baklanov, A. A.; Lawrence, M.; Pandis, S.
2009-09-01
The European FP7 project MEGAPOLI: ‘Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation' (http://megapoli.info), started in October 2008, brings together 27 leading European research groups from 11 countries, state-of-the-art scientific tools and key players from countries outside Europe to investigate the interactions among megacities, air quality and climate. MEGAPOLI bridges the spatial and temporal scales that connect local emissions, air quality and weather with global atmospheric chemistry and climate. The main MEGAPOLI objectives are: 1. to assess impacts of megacities and large air-pollution hot-spots on local, regional and global air quality, 2. to quantify feedbacks among megacity air quality, local and regional climate, and global climate change, 3. to develop improved integrated tools for prediction of air pollution in megacities. In order to achieve these objectives the following tasks are realizing: • Develop and evaluate integrated methods to improve megacity emission data, • Investigate physical and chemical processes starting from the megacity street level, continuing to the city, regional and global scales, • Assess regional and global air quality impacts of megacity plumes, • Determine the main mechanisms of regional meteorology/climate forcing due to megacity plumes, • Assess global megacity pollutant forcing on climate, • Examine feedback mechanisms including effects of climate change on megacity air quality, • Develop integrated tools for prediction of megacity air quality, • Evaluate these integrated tools and use them in case studies, • Develop a methodology to estimate the impacts of different scenarios of megacity development on human health and climate change, • Propose and assess mitigation options to reduce the impacts of megacity emissions. We follow a pyramid strategy of undertaking detailed measurements in one European major city, Paris, performing detailed analysis for 12 megacities with existing air quality datasets and investigate the effects of all megacities on climate and global atmospheric chemistry. The project focuses on the multi-scale modelling of interacting meteorology and air quality, spanning the range from emissions to air quality, effects on climate, and feedbacks and mitigation potentials. Our hypothesis is that megacities around the world have an impact on air quality not only locally, but also regionally and globally and therefore can also influence the climate of our planet. Some of the links between megacities, air quality and climate are reasonably well-understood. However, a complete quantitative picture of these interactions is clearly missing. Understanding and quantifying these missing links is the focus of MEGAPOLI. The current status and modeling results after the first project year on examples of Paris and other European megacities are discussed.
NASA Astrophysics Data System (ADS)
Bandurin, M. A.; Volosukhin, V. A.; Vanzha, V. V.; Mikheev, A. V.; Volosukhin, Y. V.
2018-05-01
At present theoretical substations for fundamental methods of forecasting possible natural disasters and for quantitative evaluating remaining live technical state of landfall dams in the mountain regions with higher danger are lacking. In this article, the task was set to carry out finite-element simulation of possible natural disasters with changes in the climate as well as in modern seismic conditions of operation in the mountain regions of the Greater Caucasus with higher danger. The research is aimed at the development of methods and principles for monitoring safety of possible natural disasters, evaluating remaining live technical state of landfall dams having one or another damage and for determination of dam failure riskiness, as well. When developing mathematical models of mudflow descents by inflows tributaries into the main bed, an intensive danger threshold was determined, taking into consideration geomorphological characteristics of earthflow courses, physico-chemical and mechanical state of mudflow mass and the dynamics of their state change. Consequences of mudflow descents into river basins were simulated with assessment of threats and risks for projects with different infrastructures located in the river floodplain.
Evaluation of Chemistry-Climate Model Results using Long-Term Satellite and Ground-Based Data
NASA Technical Reports Server (NTRS)
Stolarski, Richard S.
2005-01-01
Chemistry-climate models attempt to bring together our best knowledge of the key processes that govern the composition of the atmosphere and its response to changes in forcing. We test these models on a process by process basis by comparing model results to data from many sources. A more difficult task is testing the model response to changes. One way to do this is to use the natural and anthropogenic experiments that have been done on the atmosphere and are continuing to be done. These include the volcanic eruptions of El Chichon and Pinatubo, the solar cycle, and the injection of chlorine and bromine from CFCs and methyl bromide. The test of the model's response to these experiments is their ability to produce the long-term variations in ozone and the trace gases that affect ozone. We now have more than 25 years of satellite ozone data. We have more than 15 years of satellite and ground-based data of HC1, HN03, and many other gases. I will discuss the testing of models using long-term satellite data sets, long-term measurements from the Network for Detection of Stratospheric Change (NDSC) , long-term ground-based measurements of ozone.
Yashveer, Shikha; Singh, Vikram; Kaswan, Vineet; Kaushik, Amit; Tokas, Jayanti
2014-10-01
Food insecurity and malnutrition are prominent issues for this century. As the world's population continues to increase, ensuring that the earth has enough food that is nutritious too will be a difficult task. Today one billion people of the world are undernourished and more than a third are malnourished. Moreover, the looming threat of climate change is exasperating the situation even further. At the same time, the total acreage of arable land that could support agricultural use is already near its limits, and may even decrease over the next few years due to salination and desertification patterns resulting from climate change. Clearly, changing the way we think about crop production must take place on multiple levels. New varieties of crops must be developed which can produce higher crop yields with less water and fewer agricultural inputs. Besides this, the crops themselves must have improved nutritional qualities or become biofortified in order to reduce the chances of 'hidden hunger' resulting from malnourishment. It is difficult to envision the optimum way to increase crop production using a single uniform strategy. Instead, a variety of approaches must be employed and tailored for any particular agricultural setting. New high-impact technologies such as green biotechnology, biofortification, and nanotechnology offer opportunities for boosting agricultural productivity and enhancing food quality and nutritional value with eco-friendly manner. These agricultural technologies currently under development will renovate our world to one that can comfortably address the new directions, our planet will take as a result of climate change.
NASA Technical Reports Server (NTRS)
Kolyer, J. M.; Mann, N. R.
1977-01-01
Methods of accelerated and abbreviated testing were developed and applied to solar cell encapsulants. These encapsulants must provide protection for as long as 20 years outdoors at different locations within the United States. Consequently, encapsulants were exposed for increasing periods of time to the inherent climatic variables of temperature, humidity, and solar flux. Property changes in the encapsulants were observed. The goal was to predict long term behavior of encapsulants based upon experimental data obtained over relatively short test periods.
Nurse practitioners: leadership behaviors and organizational climate.
Jones, L C; Guberski, T D; Soeken, K L
1990-01-01
The purpose of this article is to examine the relationships of individual nurse practitioners' perceptions of the leadership climate in their organizations and self-reported formal and informal leadership behaviors. The nine climate dimensions (Structure, Responsibility, Reward, Perceived Support of Risk Taking, Warmth, Support, Standard Setting, Conflict, and Identity) identified by Litwin and Stringer in 1968 were used to predict five leadership dimensions (Meeting Organizational Needs, Managing Resources, Leadership Competence, Task Accomplishment, and Communications). Demographic variables of age, educational level, and percent of time spent performing administrative functions were forced as a first step in each multiple regression analysis and used to explain a significant amount of variance in all but one analysis. All leadership dimensions were predicted by at least one organizational climate dimension: (1) Meeting Organizational Needs by Risk and Reward; (2) Managing Resources by Risk and Structure; (3) Leadership Competence by Risk and Standards; (4) Task Accomplishment by Structure, Risk, and Standards; and (5) Communication by Rewards.
ERIC Educational Resources Information Center
Parker, Mitchum B.; Curtner-Smith, Matthew D.
2014-01-01
Previous research has suggested that sport education (SE) may be a superior curriculum model to multi-activity (MA) teaching because its pedagogies and structures create a task-involving motivational climate. The purpose of this study was to describe and compare the objective motivational climates teachers create within the MA and SE models.…
NASA Astrophysics Data System (ADS)
Hahnenberger, M.
2014-12-01
The intersection of environmental with social problems is a growing area of concern for scientists, policy makers, and citizens. Climate change and air pollution are two current environmental issues holding the public's attention which require collaboration of all stakeholders to create meaningful solutions. General education science courses are critical venues to engage students in the intersection of science with society. Effective teaching methods for these intersections include case studies, gallery walks, and town hall meetings. A case study from California explores how air quality has greatly improved in Los Angeles in the past 20 years, however residents of neighborhoods with lower socioeconomic status are still exposed to high levels of air pollutants. Students analyze scientific and health data to develop understanding and expertise in the problem, and are then tasked with developing a cost-benefit analysis of solutions. Gallery walks can be used to connect natural phenomena, such as hurricanes and severe weather, with their human impacts. Students bring their personal experiences with disasters and recovery to analyze how societies should deal with the changing climate and weather risks in their region, the country, or across the world. Town hall meetings allow students to gain expertise and perspective while embodying a role as a particular stakeholder in a climate mitigation or adaptation issue. A successful application of this method is a discussion of whether a resort community should be rebuilt on a barrier island after being destroyed in a category 3 hurricane. Stakeholders which students take on as roles have included climate scientists, homeowners, emergency managers, meteorologists, and others. Including distinct connections to social issues in introductory science courses helps students to not only engage with the material in a deeper way, but also helps to create critical thinkers who will become better citizens for tomorrow.
NASA Astrophysics Data System (ADS)
Ozbay, G.; Sriharan, S.; Fan, C.; Prakash, A.; San Juan, F.
2016-12-01
Consortium of minority serving institutions including Delaware State University, Virginia State University, Morgan State University, University of Alaska Fairbanks, and Elizabeth City State University have collaborated on various student experiential learning programs to expand the technology-based education by incorporating Geographic Information System (GIS) technique to promote student learning on climate change and sustainability. Specific objectives of this collaborative programs are to: (i) develop new or enhance existing courses of Introduction to Geographic Information System (GIS) and Introduction to Remote Sensing, (ii) enhance teaching and research capabilities through faculty professional development workshops, (iii) engage minority undergraduates in GIS and remote sensing research via experiential learning activities including summer internship, workshop, and work study experience. Ultimate goal is to prepare pipeline of minority task force with skills in GIS and remote sensing application in climate sciences. Various research projects were conducted on topics such as carbon footprint, atmospheric CO2, wildlife diversity, ocean circulation, wild fires, geothermal exploration, etc. Students taking GIS and remote sensing courses often express interests to be involved in research projects to enhance their knowledge and obtain research skills. Of about 400 students trained, approximately 30% of these students were involved in research experience in our programs since 2004. The summer undergraduate research experiences (REU) have offered hands-on research experience to the students on climate change and sustainability. Previous studies indicate that students who are previously exposed to environmental science only by a single field trip or an introductory course could be still at risk of dropping out of this field in their early years of the college. The research experience, especially at early college years, would significantly increase the participation and retention of students in climate sciences and sustainability by creating and maintaining interest in these areas. These programs promoted active recruitment of faculty, staff, and students, fostered the development of partnerships, and enhanced related skill sets among students in GIS and remote sensing.
Communicating the Dangers of Global Warming
NASA Astrophysics Data System (ADS)
Hansen, J. E.
2006-12-01
So far, in my opinion, we scientists have not done a good job of communicating the imminent threat posed by global warming, yet I believe there is still time for that if we work efficiently now to overcome existing obstacles. Several of those obstacles are illustrated by contrasting the roles of scientists, the media, special interests, politicians and the public in the ozone depletion and global warming crises. Scientists in America are further challenged by a decline in public science education, a perceived gap between science and religion, increasing politicization of public affairs offices in the government, and accumulation of power by a unitary executive. First order communication tasks are illustrated by a need for improved exchange and understanding, among scientists as well as with the public, of fundamental climate facts: (1) additional global warming exceeding 1C will yield large climate effects, (2) paleoclimate changes contain quantitatively specific information about climate sensitivity that is not widely appreciated, (3) carbon cycle facts, such as the substantial portion of carbon dioxide emissions that will remain in the air "forever", for practical purposes, (4) fossil fuel facts such as the dominant role of coal and unconventional fuels in all business-as-usual scenarios for future energy sources. The facts graphically illustrate the need for prompt actions to avoid disastrous climate change, yet they also reveal the feasibility of a course that minimizes global warming and yields other benefits. Perhaps the greatest challenge is posed by an inappropriate casting of the topic as a dichotomy between those who deny that there is a global warming problem and those who either are exceedingly pessimistic about the prospects for minimizing climate change or believe that solutions would be very expensive. Sensible evaluation of the situation, in my opinion, suggests a strategy for dealing with global warming that is not costly and has many subsidiary benefits, but it does require leadership. Practical difficulties in communicating this story will be illustrated with some personal experiences.
NASA Astrophysics Data System (ADS)
Addison, J. A.
2015-12-01
The Past Global Changes (PAGES) project of IGBP and Future Earth supports research to understand the Earth's past environment to improve future climate predictions and inform strategies for sustainability. Within this framework, the PAGES 2k Network was established to provide a focus on the past 2000 years, a period that encompasses Medieval Climate Anomaly warming, Little Ice Age cooling, and recent anthropogenically-forced climate change. The results of these studies are used for testing earth system models, and for understanding decadal- to centennial-scale variability, which is needed for long-term planning. International coordination and cooperation among the nine regional Working Groups that make up the 2k Network has been critical to the success of PAGES 2k. The collaborative approach is moving toward scientific achievements across the regional groups, including: (i) the development of a community-driven open-access proxy climate database; (ii) integration of multi-resolution proxy records; (iii) development of multivariate climate reconstructions; and (iv) a leap forward in the spatial resolution of paleoclimate reconstructions. The last addition to the 2k Network, the Ocean2k Working Group has further innovated the collaborative approach by: (1) creating an open, receptive environment to discuss ideas exclusively in the virtual space; (2) employing an array of real-time collaborative software tools to enable communication, group document writing, and data analysis; (3) consolidating executive leadership teams to oversee project development and manage grassroots-style volunteer pools; and (4) embracing the value-added role that international and interdisciplinary science can play in advancing paleoclimate hypotheses critical to understanding future change. Ongoing efforts for the PAGES 2k Network are focused on developing new standards for data quality control and archiving. These tasks will provide the foundation for new and continuing "trans-regional" 2k projects which address paleoclimate science that transcend regional boundaries. The PAGES 2k Network encourages participation by all investigators interested in this community-wide project.
NASA Astrophysics Data System (ADS)
Kanaparthi, M. B.
2017-12-01
In India urban population is growing day by day which is causing air pollution less air quality finally leading to climate change and global warming. To mitigate the effect of the climate change we need to plant more trees in the urban area. The objective of this study is develop a plan to improve the urban Green Infrastructure (GI) to fight against the climate change and global warming. Improving GI is a challenging and difficult task in the urban areas because land unavailability of land, to overcome the problem greenways is a good the solution. Greenway is a linear open space developed along the rivers, canals, roads in the urban areas to form a network of green spaces. Roads are the most common structures in the urban area. The idea is to develop the greenways alongside the road to connecting the different green spaces. Tree crowns will act as culverts to connect the green spaces. This will require the spatial structure of the green space, distribution of trees along the roads and the gap areas along the road where more trees can be planted. This can be achieved with help of high resolution Satellite Imagery and the object extraction techniques. This study was carried in the city Bhimavaram which is located in state Andhra Pradesh. The final outcome of this study is potential gap areas for planting trees in the city.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Morris A.; Parker, Elissa A.
The Environmental Law Institute, the grantee, in the final quarter of operation under Department of Energy Grant DE-FG02-02ER63414, successfully completed the following tasks associated with the grant: (1) published ''Reporting on Climate Change: Understanding the Science'', the third edition of this resource intended primarily to help print and broadcast journalists report more effectively on scientific aspects of global climate change; (2) distributed the reporters guide directly to roughly 500 journalists and journalism educators participating in the annual meeting of the Society of Environmental Journalists in New Orleans, La.; (3) distributed the reporters guide to an additional 1,500 journalists and journalismmore » educators by mail; (4) provided journalism educators bulk copies, upon specific request, for their use in upper-level science journalism and environmental journalism classes; (5) conducted outreach to science editors and environmental reporters on availability and use of the reporter's guide; (6) completed financial reporting associated with the reporter's guide grant. ELI has provided requested bulk numbers of copies of ''Reporting on Climate Change: Understanding the Science'' to the DOE Project Officer, David C. Bader, Ph.D., and to Jeffrey Amthor, Ph.D., in the Office of Science. ELI currently has a remaining inventory of roughly 500 copies from the original printing of more than 3,000 copies of the guide. These copies are used for responding to continuing requests from journalists and educators for the guide. ELI is currently exploring opportunities for reprinting additional copies to help meet the continuing demand from the educational and journalism communities.« less
NASA Astrophysics Data System (ADS)
Ramos-Pereira, Ana; Ramos, Catarina; Trindade, Jorge; Araújo-Gomes, João.; Rocha, Jorge; Granja, Helena; Gonçalves, Luís.; Monge-Soares, António; Martins, José
2010-05-01
Keywords: Estuaries, Environmental Changes, Holocene, GIS Modelling, Portugal FMI 5000 Project (between 2010 and 2012) aims to evaluate, in different estuarine environmental conditions, the balance between fluvial and marine influences, the responses to climatic events and the impact of land use changes. The temporal window chosen, contains different trends of the sea level, climatic fluctuations like the Bond events or humid episodes recorded in the Iberian Peninsula, as well as the increase of the human intervention in the landscape, particularly sensitive since the Bronze Age (circa 3500yr), imprinted in the filling-up of the alluvial plain estuaries. The Portuguese mainland mesotidal coast spreads out in two different environmental conditions: (i) the West coast exposed to the NW dominant waves, with a temperate oceanic climate and fluvial regimes and (ii) the Southern sheltered one, but open to the SW storms, with a Mediterranean climate and with occasional heavy fluvial discharges. This contrast along the coast creates a good field of research to achieve the aims of the project. To prosecute this goal, estuaries of medium drainage basins were selected as they have homogeneous climate, geologic and geomorphologic conditions, allowing to define accurately the hydroclimatic events that contribute to the infilling of the estuarine plains. The small changes are recorded not only in the textural properties of the sediments, already recognized in the sediments of the Tagus and Guadiana rivers and in the small estuaries of the Spanish southern coast but also in the micro fauna, pollens and non-pollen-palinomorphs allowing to define the environmental changes, both marine and fluvial. To achieve the Project goals we select three estuaries in different climatic and wave climate conditions, to develop four different kinds of research and methodologies: (i) To identify millenary evolution, several hand-operated gauge auger cores or vibracores will be carried out in the infilling sediments of the estuaries alluvial plains. The cored sediments will be treated to define the textural sedimentary changes, to identify the pollen and non-pollen-palinomorphs and the foraminifera content. The changes in the sedimentary record are fundamental in the flood episodes evaluation and the sequence of wet and dry period's establishment over the Middle and Upper Holocene. The identification of the pollen and non-pollen-palinomorphs will add information on the natural and human induced climatic and environmental conditions. The presence and the type of foraminifera content will set aside the marine incursion episodes and the environmental changes. Stable isotope ratios (δ13C) in muddy deposits will be used to identify sources of fine-sized organic matter (marine or terrestrial). (ii) To identify the secular evolution, the research of regional historical documents will focus not only on rainy/flooded episodes and droughts but also on the land use changes (e.g. deforestation, drying of marshes). (iii) To assess dating of the detected environmental change events, the sedimentation rates and the landscape evolution over the last 5000 yr, radiocarbon dating will be carried out. For the last century another approach will be used, based on radiometric data tools adequate to this temporal scale (210Pb) and compared with climatic and hydrological Portuguese network observational records. (iv) The correlation of the results provided by the three previous set of tasks would be performed and compared with Paleoclimatic Data Sets (e.g. NOAA) in order to evaluate how the global and regional climatic changes are reflected along the Western coast of the Iberian Peninsula during the last 5000yr. All data will be integrated in a GIS, allowing the reconstruction and modelling of paleolandscape, its evolution during the Middle and Upper Holocene and future tendencies in the global change scenario. Project financed by FCT - Fundação para a Ciência e Tcnologia, n°: PTDC/CTE-GIX/104035/2008
Waterborne Diseases & Illnesses
... Lead Arsenic Volatile Organic Compounds Plastics Pesticides Climate Change Climate Change Home What is Climate Change Greenhouse Gases ... Lead Arsenic Volatile Organic Compounds Plastics Pesticides Climate Change Climate Change Home What is Climate Change Greenhouse Gases ...
Arsenic (Environmental Health Student Portal)
... Lead Arsenic Volatile Organic Compounds Plastics Pesticides Climate Change Climate Change Home What is Climate Change Greenhouse Gases ... Lead Arsenic Volatile Organic Compounds Plastics Pesticides Climate Change Climate Change Home What is Climate Change Greenhouse Gases ...
NASA Astrophysics Data System (ADS)
Gordov, Evgeny; Okladnikov, Igor; Titov, Alexander
2017-04-01
For comprehensive usage of large geospatial meteorological and climate datasets it is necessary to create a distributed software infrastructure based on the spatial data infrastructure (SDI) approach. Currently, it is generally accepted that the development of client applications as integrated elements of such infrastructure should be based on the usage of modern web and GIS technologies. The paper describes the Web GIS for complex processing and visualization of geospatial (mainly in NetCDF and PostGIS formats) datasets as an integral part of the dedicated Virtual Research Environment for comprehensive study of ongoing and possible future climate change, and analysis of their implications, providing full information and computing support for the study of economic, political and social consequences of global climate change at the global and regional levels. The Web GIS consists of two basic software parts: 1. Server-side part representing PHP applications of the SDI geoportal and realizing the functionality of interaction with computational core backend, WMS/WFS/WPS cartographical services, as well as implementing an open API for browser-based client software. Being the secondary one, this part provides a limited set of procedures accessible via standard HTTP interface. 2. Front-end part representing Web GIS client developed according to a "single page application" technology based on JavaScript libraries OpenLayers (http://openlayers.org/), ExtJS (https://www.sencha.com/products/extjs), GeoExt (http://geoext.org/). It implements application business logic and provides intuitive user interface similar to the interface of such popular desktop GIS applications, as uDIG, QuantumGIS etc. Boundless/OpenGeo architecture was used as a basis for Web-GIS client development. According to general INSPIRE requirements to data visualization Web GIS provides such standard functionality as data overview, image navigation, scrolling, scaling and graphical overlay, displaying map legends and corresponding metadata information. The specialized Web GIS client contains three basic tires: • Tier of NetCDF metadata in JSON format • Middleware tier of JavaScript objects implementing methods to work with: o NetCDF metadata o XML file of selected calculations configuration (XML task) o WMS/WFS/WPS cartographical services • Graphical user interface tier representing JavaScript objects realizing general application business logic Web-GIS developed provides computational processing services launching to support solving tasks in the area of environmental monitoring, as well as presenting calculation results in the form of WMS/WFS cartographical layers in raster (PNG, JPG, GeoTIFF), vector (KML, GML, Shape), and binary (NetCDF) formats. It has shown its effectiveness in the process of solving real climate change research problems and disseminating investigation results in cartographical formats. The work is supported by the Russian Science Foundation grant No 16-19-10257.
Parametric assessment of climate change impacts of automotive material substitution.
Geyer, Roland
2008-09-15
Quantifying the net climate change impact of automotive material substitution is not a trivial task. It requires the assessment of the mass reduction potential of automotive materials, the greenhouse gas (GHG) emissions from their production and recycling, and their impact on GHG emissions from vehicle use. The model presented in this paper is based on life cycle assessment (LCA) and completely parameterized, i.e., its computational structure is separated from the required input data, which is not traditionally done in LCAs. The parameterization increases scientific rigor and transparency of the assessment methodology, facilitates sensitivity and uncertainty analysis of the results, and also makes it possible to compare different studies and explain their disparities. The state of the art of the modeling methodology is reviewed and advanced. Assessment of the GHG emission impacts of material recycling through consequential system expansion shows that our understanding of this issue is still incomplete. This is a critical knowledge gap since a case study shows thatfor materials such as aluminum, the GHG emission impacts of material production and recycling are both of the same size as the use phase savings from vehicle mass reduction.
Wen, Zhaofei; Wu, Shengjun; Chen, Jilong; Lü, Mingquan
2017-01-01
Natural and social environmental changes in the China's Three Gorges Reservoir Region (TGRR) have received worldwide attention. Identifying interannual changes in vegetation activities in the TGRR is an important task for assessing the impact these changes have on the local ecosystem. We used long-term (1982-2011) satellite-derived Normalized Difference Vegetation Index (NDVI) datasets and climatic and anthropogenic factors to analyze the spatiotemporal patterns of vegetation activities in the TGRR, as well as their links to changes in temperature (TEM), precipitation (PRE), downward radiation (RAD), and anthropogenic activities. At the whole TGRR regional scale, a statistically significant overall uptrend in NDVI variations was observed in 1982-2011. More specifically, there were two distinct periods with different trends split by a breakpoint in 1991: NDVI first sharply increased prior to 1991, and then showed a relatively weak rate of increase after 1991. At the pixel scale, most parts of the TGRR experienced increasing NDVI before the 1990s but different trend change types after the 1990s: trends were positive in forests in the northeastern parts, but negative in farmland in southwest parts of the TGRR. The TEM warming trend was the main climate-related driver of uptrending NDVI variations pre-1990s, and decreasing PRE was the main climate factor (42%) influencing the mid-western farmland areas' NDVI variations post-1990s. We also found that anthropogenic factors such as population density, man-made ecological restoration, and urbanization have notable impacts on the TGRR's NDVI variations. For example, large overall trend slopes in NDVI were more likely to appear in TGRR regions with large fractions of ecological restoration within the last two decades. The findings of this study may help to build a better understanding of the mechanics of NDVI variations in the periods before and during TGDP construction for ongoing ecosystem monitoring and assessment in the post-TGDP period. Copyright © 2016 Elsevier B.V. All rights reserved.
Bortoli, Laura; Bertollo, Maurizio; Filho, Edson; Robazza, Claudio
2014-01-01
Grounded in achievement goal theory and self-determination theory, this cross-sectional study examined the relationship between perceived motivational climate and individuals' motivation as well as the mediation effect of psychobiosocial states as conceptualised within the individual zones of optimal functioning (IZOF) model. Young students (N = 167, age range 14-15 years) taking part in physical education classes completed measures of teacher-initiated motivational climate, task and ego orientation, motivation and psychobiosocial states. Simple and serial mediation analyses indicated that a perceived mastery climate and individuals' task orientation were related to intrinsic motivation and identified regulation through the mediation of pleasant/functional psychobiosocial states. In contrast, a perceived performance climate was related to external regulation and amotivation through the mediation of unpleasant/dysfunctional psychobiosocial states. Regression analysis results also showed that discrete psychobiosocial states accounted for a significant proportion of variance in motivational variables. Taken together, findings highlight the role of psychobiosocial states as mediators of the relationship between motivational climate and an individual's motivation, and suggest that educators should consider a wide range of individual's functional and dysfunctional reactions deriving from their instructional activity.
NASA Astrophysics Data System (ADS)
Natalia, Slyusar; Pisman, Tamara; Pechurkin, Nikolai S.
Among the most challenging tasks faced by contemporary ecology is modeling of biological production process in different plant communities. The difficulty of the task is determined by the complexity of the study material. Models showing the influence of climate and climate change on plant growth, which would also involve soil site parameters, could be of both practical and theoretical interest. In this work a mathematical model has been constructed to describe the growth dynamics of different plant communities of halophytic meadows as dependent upon the temperature factor and soil salinity level, which could be further used to predict yields of these plant communities. The study was performed on plants of halophytic meadows in the coastal area of Lake of the Republic of Khakasia in 2004 - 2006. Every plant community grew on the soil of a different level of salinity - the amount of the solid residue of the saline soil aqueous extract. The mathematical model was analyzed using field data of 2004 and 2006, the years of contrasting air temperatures. Results of model investigations show that there is a correlation between plant growth and the temperature of the air for plant communities growing on soils containing the lowest (0.1Thus, results of our study, in which we used a mathematical model describing the development of plant communities of halophytic meadows and field measurements, suggest that both climate conditions (temperature) and ecological factors of the plants' habitat (soil salinity level) should be taken into account when constructing models for predicting crop yields.
Climate change 101 : understanding and responding to global climate change
DOT National Transportation Integrated Search
2009-01-01
To inform the climate change dialogue, the Pew Center on Global Climate Change and the Pew Center on the States have developed a series of brief reports entitled Climate Change 101: Understanding and Responding to Global Climate Change. These reports...
NASA Astrophysics Data System (ADS)
Brey, J. A.; Kauffman, C.; Geer, I. W.; Mills, E. W.; Nugnes, K. A.; Stimach, A. E.
2015-12-01
As the effects of climate change become more profound, climate literacy becomes increasingly important. The American Meteorological Society (AMS) responds to this need through the publication of Our Changing Climate and Living With Our Changing Climate. Both publications incorporate the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the USGCRP's Third National Climate Assessment. Topic In Depth sections appear throughout each chapter and lead to more extensive, multidisciplinary information related to various topics. Additionally, each chapter closes with a For Further Exploration essay, which addresses specific topics that complement a chapter concept. Web Resources, which encourage additional exploration of chapter content, and Scientific Literature, from which chapter content was derived can also be found at the conclusion of each chapter. Our Changing Climate covers a breadth of topics, including the scientific principles that govern Earth's climate system and basic statistics and geospatial tools used to investigate the system. Released in fall 2015, Living With Our Changing Climate takes a more narrow approach and investigates human and ecosystem vulnerabilities to climate change, the role of energy choices in affecting climate, actions humans can take through adaption, mitigation, and policy to lessen vulnerabilities, and psychological and financial reasons behind climate change denial. While Living With Our Changing Climate is intended for programs looking to add a climate element into their curriculum, Our Changing Climate is part of the AMS Climate Studies course. In a 2015 survey of California University of Pennsylvania undergraduate students using Our Changing Climate, 82% found it comfortable to read and utilized its interactive components and resources. Both ebooks illuminate the multidisciplinary aspect of climate change, providing the opportunity for a more sustainable future.
Maritime Archaeology and Climate Change: An Invitation
NASA Astrophysics Data System (ADS)
Wright, Jeneva
2016-12-01
Maritime archaeology has a tremendous capacity to engage with climate change science. The field is uniquely positioned to support climate change research and the understanding of past human adaptations to climate change. Maritime archaeological data can inform on environmental shifts and submerged sites can serve as an important avenue for public outreach by mobilizing public interest and action towards understanding the impacts of climate change. Despite these opportunities, maritime archaeologists have not fully developed a role within climate change science and policy. Moreover, submerged site vulnerabilities stemming from climate change impacts are not yet well understood. This article discusses potential climate change threats to maritime archaeological resources, the challenges confronting cultural resource managers, and the contributions maritime archaeology can offer to climate change science. Maritime archaeology's ability to both support and benefit from climate change science argues its relevant and valuable place in the global climate change dialogue, but also reveals the necessity for our heightened engagement.
Forest-stressing climate factors on the US West Coast as simulated by CMIP5
NASA Astrophysics Data System (ADS)
Rupp, D. E.; Buotte, P.; Hicke, J. A.; Law, B. E.; Mote, P.; Sharp, D.; Zhenlin, Y.
2013-12-01
The rate of forest mortality has increased significantly in western North America since the 1970s. Causes include insect attacks, fire, and soil water deficit, all of which are interdependent. We first identify climate factors that stress forests by reducing photosynthesis and hydraulic conductance, and by promoting bark beetle infestation and wildfire. Examples of such factors may be two consecutive years of extreme summer precipitation deficit, or prolonged vapor pressure deficit exceeding some threshold. Second, we quantify the frequency and magnitude of these climate factors in 20th and 21st century climates, as simulated by global climate models (GCMs) in Coupled Model Intercomparison Project phase 5 (CMIP5), of Washington, Oregon, and California in the western US. Both ';raw' (i.e., original spatial resolution) and statistically downscaled simulations are considered, the latter generated using the Multivariate Adaptive Constructed Analogs (MACA) method. CMIP5 models that most faithfully reproduce the observed historical statistics of these climate factors are identified. Furthermore, significant changes in the statistics between the 20th and 21st centuries are reported. A subsequent task will be to use a selected subset of MACA-downscaled CMIP5 simulations to force the Community Land Model, version 4.5 (CLM 4.5). CLM 4.5 will be modified to better simulate forest mortality and to couple CLM with an economic model. The ultimate goal of this study is to understand the interactions and the feedbacks by which the market and the forest ecosystem influence each other.
Forecasting European cold waves based on subsampling strategies of CMIP5 and Euro-CORDEX ensembles
NASA Astrophysics Data System (ADS)
Cordero-Llana, Laura; Braconnot, Pascale; Vautard, Robert; Vrac, Mathieu; Jezequel, Aglae
2016-04-01
Forecasting future extreme events under the present changing climate represents a difficult task. Currently there are a large number of ensembles of simulations for climate projections that take in account different models and scenarios. However, there is a need for reducing the size of the ensemble to make the interpretation of these simulations more manageable for impact studies or climate risk assessment. This can be achieved by developing subsampling strategies to identify a limited number of simulations that best represent the ensemble. In this study, cold waves are chosen to test different approaches for subsampling available simulations. The definition of cold waves depends on the criteria used, but they are generally defined using a minimum temperature threshold, the duration of the cold spell as well as their geographical extend. These climate indicators are not universal, highlighting the difficulty of directly comparing different studies. As part of the of the CLIPC European project, we use daily surface temperature data obtained from CMIP5 outputs as well as Euro-CORDEX simulations to predict future cold waves events in Europe. From these simulations a clustering method is applied to minimise the number of ensembles required. Furthermore, we analyse the different uncertainties that arise from the different model characteristics and definitions of climate indicators. Finally, we will test if the same subsampling strategy can be used for different climate indicators. This will facilitate the use of the subsampling results for a wide number of impact assessment studies.
NASA Astrophysics Data System (ADS)
Duveiller, Gregory; Forzieri, Giovanni; Robertson, Eddy; Georgievski, Goran; Li, Wei; Lawrence, Peter; Ciais, Philippe; Pongratz, Julia; Sitch, Stephen; Wiltshire, Andy; Arneth, Almut; Cescatti, Alessandro
2017-04-01
Changes in vegetation cover can affect the climate by altering the carbon, water and energy cycles. The main tools to characterize such land-climate interactions for both the past and future are land surface models (LSMs) that can be embedded in larger Earth System models (ESMs). While such models have long been used to characterize the biogeochemical effects of vegetation cover change, their capacity to model biophysical effects accurately across the globe remains unclear due to the complexity of the phenomena. The result of competing biophysical processes on the surface energy balance varies spatially and seasonally, and can lead to warming or cooling depending on the specific vegetation change and on the background climate (e.g. presence of snow or soil moisture). Here we present a global scale benchmarking exercise of four of the most commonly used LSMs (JULES, ORCHIDEE, JSBACH and CLM) against a dedicated dataset of satellite observations. To facilitate the understanding of the causes that lead to discrepancies between simulated and observed data, we focus on pure transitions amongst major plant functional types (PFTs): from different tree types (evergreen broadleaf trees, deciduous broadleaf trees and needleleaf trees) to either grasslands or crops. From the modelling perspective, this entails generating a separate simulation for each PFT in which all 1° by 1° grid cells are uniformly covered with that PFT, and then analysing the differences amongst them in terms of resulting biophysical variables (e.g net radiation, latent and sensible heat). From the satellite perspective, the effect of pure transitions is obtained by unmixing the signal of different 0.05° spatial resolution MODIS products (albedo, latent heat, upwelling longwave radiation) over a local moving window using PFT maps derived from the ESA Climate Change Initiative land cover map. After aggregating to a common spatial support, the observation and model-driven datasets are confronted and analysed across different climate zones. Results indicate that models tend to catch better radiative than non-radiative energy fluxes. However, for various vegetation transitions, models do not agree amongst themselves on the magnitude nor the sign of the change. In particular, predicting the impact of land cover change on the partitioning of the available energy between latent and sensible heat proves to be a challenging task for vegetation models. We expect that this benchmarking exercise will shed a light on where to prioritize the efforts in model development as well as inform where consensus between model and observations is already met. Improving the robustness and consistency of land-model is essential to develop and inform land-based mitigation and adaptation policies that account for both biogeochemical and biophysical vegetation impacts on climate.
Climate change velocity underestimates climate change exposure in mountainous regions
Solomon Z. Dobrowski; Sean A. Parks
2016-01-01
Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not...
Assessment of the Effect of Climate Change on Grain Yields in China
NASA Astrophysics Data System (ADS)
Chou, J.
2006-12-01
The paper elaborates the social background and research background; makes clear what the key scientific issues need to be resolved and where the difficulties are. In the research area of parasailing the grain yield change caused by climate change, massive works have been done both in the domestic and in the foreign. It is our upcoming work to evaluate how our countrywide climate change information provided by this pattern influence our economic and social development; and how to make related policies and countermeasures. the main idea in this paper is that the grain yield change is by no means the linear composition of social economy function effect and the climatic change function effect. This paper identifies the economic evaluation object, proposes one new concept - climate change output. The grain yields change affected by the social factors and the climatic change working together. Climate change influences the grain yields by the non ¨C linear function from both climate change and social factor changes, not only by climate change itself. Therefore, in my paper, the appraisal object is defined as: The social factors change based on actual social changing situations; under the two kinds of climate change situation, the invariable climate change situation and variable climate change situation; the difference of grain yield outputs is called " climate change output ", In order to solve this problem, we propose a method to analyze and imitate on the historical materials. Giving the condition that the climate is invariable, the social economic factor changes cause the grain yield change. However, this grain yield change is a tentative quantity index, not an actual quantity number. So we use the existing historical materials to exam the climate change output, based on the characteristic that social factor changes greater in year than in age, but the climate factor changes greater in age than in year. The paper proposes and establishes one economy - climate model (C-D-C model) to appraise the grain yield change caused by the climatic change. Also the preliminary test on this model has been done. In selection of the appraisal methods, we take the C-D production function model, which has been proved more mature in the economic research, as our fundamental model. Then, we introduce climate index (arid index) to the C-D model to develop one new model. This new model utilizes the climatic change factor in the economical model to appraise how the climatic change influence the grain yield change. The new way of appraise should have the better application prospect. The economy - climate model (The C-D-C model) has been applied on the eight Chinese regions that we divide; it has been proved satisfactory in its feasibility, rationality and the application prospect. So we can provide the theoretical fundamentals for policy-making under the more complex and uncertain climate change. Therefore, we open a new possible channel for the global climate change research moving toward the actual social, economic life.
NASA Astrophysics Data System (ADS)
Habtemariam, Lemlem Teklegiorgis; Gandorfer, Markus; Kassa, Getachew Abate; Heissenhuber, Alois
2016-08-01
Factors influencing climate change perceptions have vital roles in designing strategies to enrich climate change understanding. Despite this, factors that influence smallholder farmers' climate change perceptions have not yet been adequately studied. As many of the smallholder farmers live in regions where climate change is predicted to have the most negative impact, their climate change perception is of particular interest. In this study, based on data collected from Ethiopian smallholder farmers, we assessed farmers' perceptions and anticipations of past and future climate change. Furthermore, the factors influencing farmers' climate change perceptions and the relation between farmers' perceptions and available public climate information were assessed. Our findings revealed that a majority of respondents perceive warming temperatures and decreasing rainfall trends that correspond with the local meteorological record. Farmers' perceptions about the past climate did not always reflect their anticipations about the future. A substantial number of farmers' anticipations of future climate were less consistent with climate model projections. The recursive bivariate probit models employed to explore factors affecting different categories of climate change perceptions illustrate statistical significance for explanatory variables including location, gender, age, education, soil fertility status, climate change information, and access to credit services. The findings contribute to the literature by providing evidence not just on farmers' past climate perceptions but also on future climate anticipations. The identified factors help policy makers to provide targeted extension and advisory services to enrich climate change understanding and support appropriate farm-level climate change adaptations.
Habtemariam, Lemlem Teklegiorgis; Gandorfer, Markus; Kassa, Getachew Abate; Heissenhuber, Alois
2016-08-01
Factors influencing climate change perceptions have vital roles in designing strategies to enrich climate change understanding. Despite this, factors that influence smallholder farmers' climate change perceptions have not yet been adequately studied. As many of the smallholder farmers live in regions where climate change is predicted to have the most negative impact, their climate change perception is of particular interest. In this study, based on data collected from Ethiopian smallholder farmers, we assessed farmers' perceptions and anticipations of past and future climate change. Furthermore, the factors influencing farmers' climate change perceptions and the relation between farmers' perceptions and available public climate information were assessed. Our findings revealed that a majority of respondents perceive warming temperatures and decreasing rainfall trends that correspond with the local meteorological record. Farmers' perceptions about the past climate did not always reflect their anticipations about the future. A substantial number of farmers' anticipations of future climate were less consistent with climate model projections. The recursive bivariate probit models employed to explore factors affecting different categories of climate change perceptions illustrate statistical significance for explanatory variables including location, gender, age, education, soil fertility status, climate change information, and access to credit services. The findings contribute to the literature by providing evidence not just on farmers' past climate perceptions but also on future climate anticipations. The identified factors help policy makers to provide targeted extension and advisory services to enrich climate change understanding and support appropriate farm-level climate change adaptations.
NASA Astrophysics Data System (ADS)
Klein Goldewijk, K.
2015-12-01
Land use plays an important role in the climate system. Many ecosystem processes are directly or indirectly climate driven, and together with human driven land use changes, they determine how the land surface will evolve through time. To assess the effects of land cover changes on the climate system, models are required which are capable of simulating interactions between the involved components of the Earth system. Since driving forces for global environmental change differ among regions, a geographically (spatially) explicit modeling approach is called for, so that it can be incorporated in global and regional (climate and/or biophysical) change models in order to enhance our understanding of the underlying processes and thus improving future projections.Some researchers suggest that mankind has shifted from living in the Holocene (~emergence of agriculture) into the Anthropocene (~humans capable of changing the Earth' atmosphere) since the start of the Industrial Revolution. But in the light of the sheer size and magnitude of some historical land use changes (e.g. the Black Plague in the 14th century and the aftermath of the Colombian Exchange in the 16th century), some believe that this point might have occurred earlier in time. There are still many uncertainties and gaps in our knowledge about the importance of land use (change) in the global biogeochemical cycle, and it is crucial that researchers from other disciplines are involved in decreasing the uncertainties.Thus, integrated records of the co-evolving human-environment system over millennia are needed to provide a basis for a deeper understanding of the present and for forecasting the future. This requires the major task of assembling and integrating regional and global historical, archaeological, and paleo-environmental records. Humans cannot predict the future. Here I present a tool for such long term global change studies; it is the latest update (v 3.2) of the History Database of the Global Environment (HYDE), which tries to incorporate many of these cross-disciplinary records and create thus new and more accurate estimates of the underlying demographic and agricultural driving factors for the whole Holocene. Estimates include population, cropland, pasture, rangeland, irrigation, rice, and built-up area.
NASA Astrophysics Data System (ADS)
Schneider, Christof; Flörke, Martina; De Stefano, Lucia; Petersen-Perlman, Jacob D.
2017-06-01
Riparian wetlands have been disappearing at an accelerating rate. Their ecological integrity as well as their vital ecosystem services for humankind depend on regular patterns of inundation and drying provided by natural flow regimes. However, river hydrology has been altered worldwide. Dams cause less variable flow regimes and water abstractions decrease the amount of flow so that ecologically important flood pulses are often reduced. Given growing population pressure and projected climate change, immediate action is required. However, the implementation of counteractive measures is often a complex task. This study develops a screening tool for assessing hydrological threats to riparian wetlands on global scales. The approach is exemplified on 93 Ramsar sites, many of which are located in transboundary basins. First, the WaterGAP3 hydrological modeling framework is used to quantitatively compare current and future modified flow regimes to reference flow conditions. In our simulations current water resource management seriously impairs riparian wetland inundation at 29 % of the analyzed sites. A further 8 % experience significantly reduced flood pulses. In the future, eastern Europe, western Asia, as well as central South America could be hotspots of further flow modifications due to climate change. Second, a qualitative analysis of the 93 sites determined potential impact on overbank flows resulting from planned or proposed dam construction projects. They take place in one-third of the upstream areas and are likely to impair especially wetlands located in South America, Asia, and the Balkan Peninsula. Third, based on the existing legal/institutional framework and water resource availability upstream, further qualitative analysis evaluated the capacity to preserve overbank flows given future streamflow changes due to dam construction and climate change. Results indicate hotspots of vulnerability exist, especially in northern Africa and the Persian Gulf.
Climates Past, Present, and Yet-to-Come Shape Climate Change Vulnerabilities.
Nadeau, Christopher P; Urban, Mark C; Bridle, Jon R
2017-10-01
Climate change is altering life at multiple scales, from genes to ecosystems. Predicting the vulnerability of populations to climate change is crucial to mitigate negative impacts. We suggest that regional patterns of spatial and temporal climatic variation scaled to the traits of an organism can predict where and why populations are most vulnerable to climate change. Specifically, historical climatic variation affects the sensitivity and response capacity of populations to climate change by shaping traits and the genetic variation in those traits. Present and future climatic variation can affect both climate change exposure and population responses. We provide seven predictions for how climatic variation might affect the vulnerability of populations to climate change and suggest key directions for future research. Copyright © 2017 Elsevier Ltd. All rights reserved.
Current practices and future opportunities for policy on climate change and invasive species.
Pyke, Christopher R; Thomas, Roxanne; Porter, Read D; Hellmann, Jessica J; Dukes, Jeffrey S; Lodge, David M; Chavarria, Gabriela
2008-06-01
Climate change and invasive species are often treated as important, but independent, issues. Nevertheless, they have strong connections: changes in climate and societal responses to climate change may exacerbate the impacts of invasive species, whereas invasive species may affect the magnitude, rate, and impact of climate change. We argue that the design and implementation of climate-change policy in the United States should specifically consider the implications for invasive species; conversely, invasive-species policy should address consequences for climate change. The development of such policies should be based on (1) characterization of interactions between invasive species and climate change, (2) identification of areas where climate-change policies could negatively affect invasive-species management, and (3) identification of areas where policies could benefit from synergies between climate change and invasive-species management.
Bortoli, Laura; Bertollo, Maurizio; Comani, Silvia; Robazza, Claudio
2011-01-01
We examined the three-way interactions among competence (actual and perceived), individuals' dispositional goal orientation (task/ego), and perceived sport motivational climate (mastery/performance) in the prediction of pleasant psychobiosocial states (i.e. emotion, cognition, motivation, bodily reaction, movement, performance, and communication) as conceptualized by the Individual Zones of Optimal Functioning model. The sample consisted of 320 Italian youths (160 girls and 160 boys) aged 13-14 years who were involved in individual or team sports. The assessment included a perceived competence scale, a goal orientation questionnaire, a motivational climate inventory, and pleasant psychobiosocial descriptors. An actual competence scale was also administered to coaches asking them to assess their youngsters. Moderated hierarchical regression analysis showed that perceived competence, actual competence, and task orientation were the strongest predictors of pleasant psychobiosocial states. Moreover, actual competence and perceived competence interacted in different ways with dispositional goal orientations and motivational climate perceptions in the prediction of psychobiosocial states. It is therefore recommended that both constructs be included in motivational research.
NASA Astrophysics Data System (ADS)
Behrens, Jörg; Hanke, Moritz; Jahns, Thomas
2014-05-01
In this talk we present a way to facilitate efficient use of MPI communication for developers of climate models. Exploitation of the performance potential of today's highly parallel supercomputers with real world simulations is a complex task. This is partly caused by the low level nature of the MPI communication library which is the dominant communication tool at least for inter-node communication. In order to manage the complexity of the task, climate simulations with non-trivial communication patterns often use an internal abstraction layer above MPI without exploiting the benefits of communication aggregation or MPI-datatypes. The solution for the complexity and performance problem we propose is the communication library YAXT. This library is built on top of MPI and takes high level descriptions of arbitrary domain decompositions and automatically derives an efficient collective data exchange. Several exchanges can be aggregated in order to reduce latency costs. Examples are given which demonstrate the simplicity and the performance gains for selected climate applications.
Public Perception of Uncertainties Within Climate Change Science.
Visschers, Vivianne H M
2018-01-01
Climate change is a complex, multifaceted problem involving various interacting systems and actors. Therefore, the intensities, locations, and timeframes of the consequences of climate change are hard to predict and cause uncertainties. Relatively little is known about how the public perceives this scientific uncertainty and how this relates to their concern about climate change. In this article, an online survey among 306 Swiss people is reported that investigated whether people differentiate between different types of uncertainty in climate change research. Also examined was the way in which the perception of uncertainty is related to people's concern about climate change, their trust in science, their knowledge about climate change, and their political attitude. The results of a principal component analysis showed that respondents differentiated between perceived ambiguity in climate research, measurement uncertainty, and uncertainty about the future impact of climate change. Using structural equation modeling, it was found that only perceived ambiguity was directly related to concern about climate change, whereas measurement uncertainty and future uncertainty were not. Trust in climate science was strongly associated with each type of uncertainty perception and was indirectly associated with concern about climate change. Also, more knowledge about climate change was related to less strong perceptions of each type of climate science uncertainty. Hence, it is suggested that to increase public concern about climate change, it may be especially important to consider the perceived ambiguity about climate research. Efforts that foster trust in climate science also appear highly worthwhile. © 2017 Society for Risk Analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernst, Kathleen M; Van Riemsdijk, Dr. Micheline
This article studies the participation of stakeholders in climate change decision-making in Alaska s National Parks. We place stakeholder participation within literatures on environmental and climate change decision-making. We conducted participant observation and interviews in two planning workshops to investigate the decision-making process, and our findings are three-fold. First, the inclusion of diverse stakeholders expanded climate change decision-making beyond National Park Service (NPS) institutional constraints. Second, workshops of the Climate Change Scenario Planning Project (CCSPP) enhanced institutional understandings of participants attitudes towards climate change and climate change decision-making. Third, the geographical context of climate change influences the decisionmaking process. Asmore » the first regional approach to climate change decision-making within the NPS, the CCSPP serves as a model for future climate change planning in public land agencies. This study shows how the participation of stakeholders can contribute to robust decisions, may move climate change decision-making beyond institutional barriers, and can provide information about attitudes towards climate change decision-making.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernst, Kathleen M; Van Riemsdijk, Dr. Micheline
This article studies the participation of stakeholders in climate change decision-making in Alaska s National Parks. We place stakeholder participation within literatures on environmental and climate change decision-making. We conducted participant observation and interviews in two planning workshops to investigate the decision-making process, and our findings are three-fold. First, the inclusion of diverse stakeholders expanded climate change decision-making beyond National Park Service (NPS) institutional constraints. Second, workshops of the Climate Change Scenario Planning Project (CCSPP) enhanced institutional understandings of participants attitudes towards climate change and climate change decision-making. Third, the geographical context of climate change influences the decision-making process. Asmore » the first regional approach to climate change decision-making within the NPS, the CCSPP serves as a model for future climate change planning in public land agencies. This study shows how the participation of stakeholders can contribute to robust decisions, may move climate change decision-making beyond institutional barriers, and can provide information about attitudes towards climate change decision-making.« less
The climate change-infectious disease nexus: is it time for climate change syndemics?
Heffernan, Claire
2013-12-01
Conceptualizing climate as a distinct variable limits our understanding of the synergies and interactions between climate change and the range of abiotic and biotic factors, which influence animal health. Frameworks such as eco-epidemiology and the epi-systems approach, while more holistic, view climate and climate change as one of many discreet drivers of disease. Here, I argue for a new paradigmatic framework: climate-change syndemics. Climate-change syndemics begins from the assumption that climate change is one of many potential influences on infectious disease processes, but crucially is unlikely to act independently or in isolation; and as such, it is the inter-relationship between factors that take primacy in explorations of infectious disease and climate change. Equally importantly, as climate change will impact a wide range of diseases, the frame of analysis is at the collective rather than individual level (for both human and animal infectious disease) across populations.
NASA Astrophysics Data System (ADS)
Heinke, J.; Ostberg, S.; Schaphoff, S.; Frieler, K.; Müller, C.; Gerten, D.; Meinshausen, M.; Lucht, W.
2013-10-01
In the ongoing political debate on climate change, global mean temperature change (ΔTglob) has become the yardstick by which mitigation costs, impacts from unavoided climate change, and adaptation requirements are discussed. For a scientifically informed discourse along these lines, systematic assessments of climate change impacts as a function of ΔTglob are required. The current availability of climate change scenarios constrains this type of assessment to a narrow range of temperature change and/or a reduced ensemble of climate models. Here, a newly composed dataset of climate change scenarios is presented that addresses the specific requirements for global assessments of climate change impacts as a function of ΔTglob. A pattern-scaling approach is applied to extract generalised patterns of spatially explicit change in temperature, precipitation and cloudiness from 19 Atmosphere-Ocean General Circulation Models (AOGCMs). The patterns are combined with scenarios of global mean temperature increase obtained from the reduced-complexity climate model MAGICC6 to create climate scenarios covering warming levels from 1.5 to 5 degrees above pre-industrial levels around the year 2100. The patterns are shown to sufficiently maintain the original AOGCMs' climate change properties, even though they, necessarily, utilise a simplified relationships between ΔTglob and changes in local climate properties. The dataset (made available online upon final publication of this paper) facilitates systematic analyses of climate change impacts as it covers a wider and finer-spaced range of climate change scenarios than the original AOGCM simulations.
Public Perception of Climate Change: The Importance of Knowledge and Cultural Worldviews.
Shi, Jing; Visschers, Vivianne H M; Siegrist, Michael
2015-12-01
The importance of knowledge for lay people's climate change concerns has been questioned in recent years, as it had been suggested that cultural values are stronger predictors of concern about climate change than knowledge. Studies that simultaneously measured knowledge related to climate change and cultural values have, however, been missing. We conducted a mail survey in the German-speaking part of Switzerland (N = 1,065). Results suggested that cultural worldviews and climate-related knowledge were significantly related with people's concern about climate change. Also, cultural worldviews and climate-relevant knowledge appeared important for people's willingness to change behaviors and to accept climate change policies. In addition, different types of knowledge were found to have different impacts on people's concern about climate change, their willingness to change behaviors, and their acceptance of policies about climate change. Specifically, causal knowledge significantly increased concern about climate change and willingness to support climate-friendly policies. We therefore concluded that risk communication should focus on causal knowledge, provided this knowledge does not threaten cultural values. © 2015 Society for Risk Analysis.
Ice Velocity Mapping in Antarctica - Towards a Virtual Satellite Constellation
NASA Astrophysics Data System (ADS)
Scheuchl, B.; Mouginot, J.; Rignot, E. J.; Crevier, Y.
2013-12-01
Ice sheets are acknowledged by the World Meteorological Organization (WMO) and the United Nations Framework Convention on Climate Change (UNFCCC) as an Essential Climate Variable (ECV) needed to make significant progress in the generation of global climate products and derived information. Ice velocity is a crucial geophysical parameter that can be measured using spaceborne Synthetic Aperture Radar (SAR) data. Here, we report on an update to available Earth System Data Records (ESDR) of ice velocity in Antarctica based on data from a suite of spaceborne (SAR) sensors and provide an overview on international coordination in an effort to best utilize the available SAR satellites. Building on the first complete mapping of the flow of ice surface over the Antarctic continent using data predominantly acquired during IPY, we are working on a series of regional studies analyzing data from several different epochs. The analysis of velocity changes between discrete measurements requires even more careful data processing in order to be able to accurately measure subtle changes. Examples for Larsen-C and the Amundsen Sea Embayment will be presented. Data continuity is a crucial aspect to this work, particularly in light of the fact that 4 SAR missions have ceased operations since IPY and all available missions have a primary mandate that is not scientific data collection. Following the successful internationally coordinated SAR data acquisitions over ice sheets during the International Polar Year 2007/2008, efforts are undertaken to continue data acquisitions in the spirit of collaboration. The Polar Space Task Group (PSTG) is succeeding the IPY coordinating body of international space agencies, Space Task Group (STG). The PSTG SAR Coordination Working Group was created to address the issue of SAR data acquisitions in the cryosphere. A review of ice sheet requirements was undertaken by the science community, presented to PSTG, and followed up with a set of sensor specific recommendations. PSTG includes this information in coordinated acquisition planning going forward. In 2013 the Canadian Space Agency committed RADARSAT-2 to a large scale Antarctic data acquisition campaign. This effort will be supported in the near future by the European Space Agency and the Japan Space Exploration Agency once Sentinel-1 and ALOS-2 are launched. In addition, the German Space Agency and the Italian Space Agency acquire high resolution SAR data in high priority sites. We provide an overview of high-level plans and show first results from the RADARSAT-2 campaign. Data analysis and ESDR production is conducted at the Department of Earth System Science, University of California Irvine under a contract with the National Aeronautics and Space Administration's MEaSUREs program. Spaceborne SAR data are made available courtesy of the Polar Space Task Group.
Accounting for health in climate change policies: a case study of Fiji.
Morrow, Georgina; Bowen, Kathryn
2014-01-01
Climate change is expected to affect the health of most populations in the coming decades, having the greatest impact on the poorest and most disadvantaged people in the world. The Pacific islands, including Fiji, are particularly vulnerable to the effects of climate change. The three major health impacts of climate change in Fiji explored in this study were dengue fever, diarrhoeal disease, and malnutrition, as they each pose a significant threat to human health. The aim of this study was to investigate to what extent the Fiji National Climate Change Policy, and a selection of relevant sectoral policies, account for these human health effects of climate change. The study employed a three-pronged policy analysis to evaluate: 1) the content of the Fijian National Climate Change Policy and to what extent health was incorporated within this; 2) the context within which the policy was developed; 3) the relevant processes; and 4) the actors involved. A selection of relevant sectoral policies were also analysed to assess the extent to which these included climate change and health considerations. The policy analysis showed that these three health impacts of climate change were only considered to a minor extent, and often indirectly, in both the Fiji National Climate Change Policy and the corresponding National Climate Change Adaptation Strategy, as well as the Public Health Act. Furthermore, supporting documents in relevant sectors including water and agriculture made no mention of climate change and health impacts. The projected health impacts of climate change should be considered as part of reviewing the Fiji National Climate Change Policy and National Climate Change Adaptation Strategy, and the Public Health Act. In the interest of public health, this should include strategies for combating dengue fever, malnutrition, and water-borne disease. Related sectoral policies in water and agriculture should also be revised to consider climate change and its impact on human health. Approaches to include health aspects of climate change within sectoral and climate change specific policies should be encouraged, via a number of mechanisms, such as the Health in All Policies approach. Future research could support the Fiji health sector in developing climate change and health programmes.
ERIC Educational Resources Information Center
Shepardson, Daniel P.; Niyogi, Dev; Roychoudhury, Anita; Hirsch, Andrew
2012-01-01
Today there is much interest in teaching secondary students about climate change. Much of this effort has focused directly on students' understanding of climate change. We hypothesize, however, that in order for students to understand climate change they must first understand climate as a system and how changes to this system due to both natural…
Observations from old forests underestimate climate change effects on tree mortality.
Luo, Yong; Chen, Han Y H
2013-01-01
Understanding climate change-associated tree mortality is central to linking climate change impacts and forest structure and function. However, whether temporal increases in tree mortality are attributed to climate change or stand developmental processes remains uncertain. Furthermore, interpreting the climate change-associated tree mortality estimated from old forests for regional forests rests on an un-tested assumption that the effects of climate change are the same for young and old forests. Here we disentangle the effects of climate change and stand developmental processes on tree mortality. We show that both climate change and forest development processes influence temporal mortality increases, climate change-associated increases are significantly higher in young than old forests, and higher increases in younger forests are a result of their higher sensitivity to regional warming and drought. We anticipate our analysis to be a starting point for more comprehensive examinations of how forest ecosystems might respond to climate change.
Opinions and knowledge about climate change science in high school students.
Harker-Schuch, Inez; Bugge-Henriksen, Christian
2013-10-01
This study investigates the influence of knowledge on opinions about climate change in the emerging adults' age group (16-17 years). Furthermore, the effects of a lecture in climate change science on knowledge and opinions were assessed. A survey was conducted in Austria and Denmark on 188 students in national and international schools before and after a lecture in climate change science. The results show that knowledge about climate change science significantly affects opinions about climate change. Students with a higher number of correct answers are more likely to have the opinion that humans are causing climate change and that both individuals and governments are responsible for addressing climate change. The lecture in climate change science significantly improved knowledge development but did not affect opinions. Knowledge was improved by 11 % after the lecture. However, the percentage of correct answers was still below 60 % indicating an urgent need for improving climate change science education.
Solar Variability in the Context of Other Climate Forcing Mechanisms
NASA Technical Reports Server (NTRS)
Hansen, James E.
1999-01-01
I compare and contrast climate forcings due to solar variability with climate forcings due to other mechanisms of climate change, interpretation of the role of the sun in climate change depends upon climate sensitivity and upon the net forcing by other climate change mechanisms. Among the potential indirect climate forcings due to solar variability, only that due to solar cycle induced ozone changes has been well quantified. There is evidence that the sun has been a significant player in past climate change on decadal to century time scales, and that it has the potential to contribute to climate change in the 21st century.
Pangercić, Ana; Sambunjak, Dario; Hren, Darko; Marusić, Matko; Marusić, Ana
2010-04-01
To assess the educational climate at a medical school, we explored students' perception of their motives for study, the importance of students' personal characteristics for success in the study and profession of medicine, students' perceptions of professional and personal characteristics of their teachers, and students' preferences for their future careers in medicine. We surveyed all students coming to the administration office to enroll for the following academic year (2nd to 6th year of study, n = 738) at Zagreb University Medical School, Croatia. Responses with answers to all questions (n = 482, 65% response rate) were analyzed. Students from both preclinical and clinical study years perceived their teachers to be formal: strict, authoritative, punctual, well prepared, and respectful of hierarchy. Similar formal characteristics were seen as important for success in their studies and in the medical profession. The strongest motivation for studying among students in all study years was task completion. Most of the students wanted a career in medical practice, with (n = 160, 33.2%) or without (n = 207, 42.9%) involvement in clinical research; a few (n = 3, 0.6%) wanted to do basic biomedical research, and an academic career was sought by 23.5% (n = 112). The choice of academic career was associated with grade point average (odds ratio [OR] = 1.75, 95% confidence interval [CI] = 1.10-2.88), higher scores on motivation scales for professional advancement (OR = 1.72; 95% CI = 1.12-2.63) and academic gains (OR = 1.58; 95% CI = 1.17-2.14). Medical students perceive formal characteristics and self-interests as dominant aspects of the educational climate at medical school, where they are motivated mostly by task completion. The change towards a climate of social sensitivity and pro-social behavior may require less frontal and more interactive teaching, with personal interaction between students and teachers.
Weathercasters' views on climate change: A state-of-the-community review
NASA Astrophysics Data System (ADS)
Timm, K.; Perkins, D. R., IV; Myers, T.; Maibach, E.
2017-12-01
As a community of practice, TV weathercasters are positioned at a crucial intersection between climate scientists and the general public. Weathercasters have the opportunity to use their scientific training and public communication skills to educate viewers about climate change. Though early research found high rates of skepticism about climate change among TV weathercasters, the most current and comprehensive analysis to date of TV weathercasters' views on climate change suggests that their views have evolved in several important ways. Surveys of all working TV weathercasters in the United States conducted in 2015, 2016 and 2017 show that the weathercaster community now holds views of climate change that are similar to that of climate scientists—in particular, that human-caused climate change is happening today and it is impacting American communities in many harmful ways. Ninety-five percent of TV weathercasters now believe that climate change (as defined by the American Meteorological Society) is occurring, and certainty in that belief has grown. Nearly 50% of TV weathercasters believe the climate change that has occurred over the past 50 years has been caused mostly (34%), or largely to entirely (15%), by human activity. Additionally, surveys suggest that weathercasters tend to underestimate the scientific consensus on climate change. Weathercasters, on average, estimate 75% of climate scientists believe humans have caused the majority of recent climate change as compared to the actual value of 97%. Despite convergence in weathercasters' climate change beliefs, this analysis suggests that opportunities remain for building climate literacy among America's TV weathercasters. Increasing this personal knowledge of climate change is one of several factors that empower weathercasters to become public climate educators to increase understanding of climate change causes in communities around the country.
UQ for Decision Making: How (at least five) Kinds of Probability Might Come Into Play
NASA Astrophysics Data System (ADS)
Smith, L. A.
2013-12-01
In 1959 IJ Good published the discussion "Kinds of Probability" in Science. Good identified (at least) five kinds. The need for (at least) a sixth kind of probability when quantifying uncertainty in the context of climate science is discussed. This discussion brings out the differences in weather-like forecasting tasks and climate-links tasks, with a focus on the effective use both of science and of modelling in support of decision making. Good also introduced the idea of a "Dynamic probability" a probability one expects to change without any additional empirical evidence; the probabilities assigned by a chess playing program when it is only half thorough its analysis being an example. This case is contrasted with the case of "Mature probabilities" where a forecast algorithm (or model) has converged on its asymptotic probabilities and the question hinges in whether or not those probabilities are expected to change significantly before the event in question occurs, even in the absence of new empirical evidence. If so, then how might one report and deploy such immature probabilities in scientific-support of decision-making rationally? Mature Probability is suggested as a useful sixth kind, although Good would doubtlessly argue that we can get by with just one, effective communication with decision makers may be enhanced by speaking as if the others existed. This again highlights the distinction between weather-like contexts and climate-like contexts. In the former context one has access to a relevant climatology (a relevant, arguably informative distribution prior to any model simulations), in the latter context that information is not available although one can fall back on the scientific basis upon which the model itself rests, and estimate the probability that the model output is in fact misinformative. This subjective "probability of a big surprise" is one way to communicate the probability of model-based information holding in practice, the probability that the information the model-based probability is conditioned on holds. It is argued that no model-based climate-like probability forecast is complete without a quantitative estimate of its own irrelevance, and that the clear identification of model-based probability forecasts as mature or immature, are critical elements for maintaining the credibility of science-based decision support, and can shape uncertainty quantification more widely.
Online coupled regional meteorology-chemistry models in Europe: current status and prospects
NASA Astrophysics Data System (ADS)
Baklanov, A.; Schluenzen, K. H.; Suppan, P.; Baldasano, J.; Brunner, D.; Aksoyoglu, S.; Carmichael, G.; Douros, J.; Flemming, J.; Forkel, R.; Galmarini, S.; Gauss, M.; Grell, G.; Hirtl, M.; Joffre, S.; Jorba, O.; Kaas, E.; Kaasik, M.; Kallos, G.; Kong, X.; Korsholm, U.; Kurganskiy, A.; Kushta, J.; Lohmann, U.; Mahura, A.; Manders-Groot, A.; Maurizi, A.; Moussiopoulos, N.; Rao, S. T.; Savage, N.; Seigneur, C.; Sokhi, R.; Solazzo, E.; Solomos, S.; Sørensen, B.; Tsegas, G.; Vignati, E.; Vogel, B.; Zhang, Y.
2013-05-01
The simulation of the coupled evolution of atmospheric dynamics, pollutant transport, chemical reactions and atmospheric composition is one of the most challenging tasks in environmental modelling, climate change studies, and weather forecasting for the next decades as they all involve strongly integrated processes. Weather strongly influences air quality (AQ) and atmospheric transport of hazardous materials, while atmospheric composition can influence both weather and climate by directly modifying the atmospheric radiation budget or indirectly affecting cloud formation. Until recently, however, due to the scientific complexities and lack of computational power, atmospheric chemistry and weather forecasting have developed as separate disciplines, leading to the development of separate modelling systems that are only loosely coupled. The continuous increase in computer power has now reached a stage that enables us to perform online coupling of regional meteorological models with atmospheric chemical transport models. The focus on integrated systems is timely, since recent research has shown that meteorology and chemistry feedbacks are important in the context of many research areas and applications, including numerical weather prediction (NWP), AQ forecasting as well as climate and Earth system modelling. However, the relative importance of online integration and its priorities, requirements and levels of detail necessary for representing different processes and feedbacks can greatly vary for these related communities: (i) NWP, (ii) AQ forecasting and assessments, (iii) climate and earth system modelling. Additional applications are likely to benefit from online modelling, e.g.: simulation of volcanic ash or forest fire plumes, pollen warnings, dust storms, oil/gas fires, geo-engineering tests involving changes in the radiation balance. The COST Action ES1004 - European framework for online integrated air quality and meteorology modelling (EuMetChem) - aims at paving the way towards a new generation of online integrated atmospheric chemical transport and meteorology modelling with two-way interactions between different atmospheric processes including dynamics, chemistry, clouds, radiation, boundary layer and emissions. As its first task, we summarise the current status of European modelling practices and experience with online coupled modelling of meteorology with atmospheric chemistry including feedback mechanisms and attempt reviewing the various issues connected to the different modules of such online coupled models but also providing recommendations for coping with them for the benefit of the modelling community at large.
Peters, Erica N; Rosenberry, Zachary R; Schauer, Gillian L; O'Grady, Kevin E; Johnson, Patrick S
2017-06-01
Although marijuana and tobacco are commonly coused, the nature of their relationship has not been fully elucidated. Behavioral economics has characterized the relationship between concurrently available commodities but has not been applied to marijuana and tobacco couse. U.S. adults ≥18 years who coused marijuana and tobacco cigarettes were recruited via Mechanical Turk, a crowdsourcing service by Amazon. Participants (N = 82) completed online purchasing tasks assessing hypothetical marijuana or tobacco cigarette puff consumption across a range of per-puff prices; 2 single-commodity tasks assessed these when only 1 commodity was available, and 2 cross-commodity tasks assessed these in the presence of a concurrently available fixed-price commodity. Purchasing tasks generated measures of demand elasticity, that is, sensitivity of consumption to prices. In single-commodity tasks, consumption of tobacco cigarette puffs (elasticity of demand: α = 0.0075; 95% confidence interval [0.0066, 0.0085], R² = 0.72) and of marijuana puffs (α = .0044; 95% confidence interval [0.0038, 0.0049], R² = 0.71) declined significantly with increases in price per puff. In cross-commodity tasks when both tobacco cigarette puffs and marijuana puffs were available, demand for 1 commodity was independent of price increases in the other commodity (ps > .05). Results revealed that, in this small sample, marijuana and tobacco cigarettes did not substitute for each other and did not complement each other; instead, they were independent of each other. These preliminary results can inform future studies assessing the economic relationship between tobacco and marijuana in the quickly changing policy climate in the United States. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Balsells, M; Barroca, B; Amdal, J R; Diab, Y; Becue, V; Serre, D
2013-01-01
Recent changes in cities and their environments, caused by rapid urbanisation and climate change, have increased both flood probability and the severity of flooding. Consequently, there is a need for all cities to adapt to climate and socio-economic changes by developing new strategies for flood risk management. Following a risk paradigm shift from traditional to more integrated approaches, and considering the uncertainties of future urban development, one of the main emerging tasks for city managers becomes the development of resilient cities. However, the meaning of the resilience concept and its operability is still not clear. The goal of this research is to study how urban engineering and design disciplines can improve resilience to floods in urban neighbourhoods. This paper presents the conceptual Spatial Decision Support System (DS3) model which we consider a relevant tool to analyse and then implement resilience into neighbourhood design. Using this model, we analyse and discuss alternative stormwater management options at the neighbourhood scale in two specific areas: Rotterdam and New Orleans. The results obtained demonstrate that the DS3 model confirmed in its framework analysis that stormwater management systems can positively contribute to the improved flood resilience of a neighbourhood.
Wibeck, Victoria
2014-02-01
This paper explores social representations of climate change, investigating how climate change is discussed by Swedish laypeople interacting in focus group interviews. The analysis focuses on prototypical examples and metaphors, which were key devices for objectifying climate change representations. The paper analyzes how the interaction of focus group participants with other speakers, ideas, arguments, and broader social representations shaped their representations of climate change. Climate change was understood as a global but distant issue with severe consequences. There was a dynamic tension between representations of climate change as a gradual vs. unpredictable process. Implications for climate change communication are discussed.
Climate change and forest diseases
R.N. Sturrock; Susan Frankel; A. V. Brown; Paul Hennon; J. T. Kliejunas; K. J. Lewis; J. J. Worrall; A. J. Woods
2011-01-01
As climate changes, the effects of forest diseases on forest ecosystems will change. We review knowledge of relationships between climate variables and several forest diseases, as well as current evidence of how climate, host and pathogen interactions are responding or might respond to climate change. Many forests can be managed to both adapt to climate change and...
ClimateNet: A Machine Learning dataset for Climate Science Research
NASA Astrophysics Data System (ADS)
Prabhat, M.; Biard, J.; Ganguly, S.; Ames, S.; Kashinath, K.; Kim, S. K.; Kahou, S.; Maharaj, T.; Beckham, C.; O'Brien, T. A.; Wehner, M. F.; Williams, D. N.; Kunkel, K.; Collins, W. D.
2017-12-01
Deep Learning techniques have revolutionized commercial applications in Computer vision, speech recognition and control systems. The key for all of these developments was the creation of a curated, labeled dataset ImageNet, for enabling multiple research groups around the world to develop methods, benchmark performance and compete with each other. The success of Deep Learning can be largely attributed to the broad availability of this dataset. Our empirical investigations have revealed that Deep Learning is similarly poised to benefit the task of pattern detection in climate science. Unfortunately, labeled datasets, a key pre-requisite for training, are hard to find. Individual research groups are typically interested in specialized weather patterns, making it hard to unify, and share datasets across groups and institutions. In this work, we are proposing ClimateNet: a labeled dataset that provides labeled instances of extreme weather patterns, as well as associated raw fields in model and observational output. We develop a schema in NetCDF to enumerate weather pattern classes/types, store bounding boxes, and pixel-masks. We are also working on a TensorFlow implementation to natively import such NetCDF datasets, and are providing a reference convolutional architecture for binary classification tasks. Our hope is that researchers in Climate Science, as well as ML/DL, will be able to use (and extend) ClimateNet to make rapid progress in the application of Deep Learning for Climate Science research.
Wan, Jizhong
2016-01-01
Climate change has the potential to alter the distributions of threatened plant species, and may therefore diminish the capacity of nature reserves to protect threatened plant species. Chinese nature reserves contain a rich diversity of plant species that are at risk of becoming more threatened by climate change. Hence, it is urgent to identify the extent to which future climate change may compromise the suitability of threatened plant species habitats within Chinese nature reserves. Here, we modelled the climate suitability of 82 threatened plant species within 168 nature reserves across climate change scenarios. We used Maxent modelling based on species occurrence localities and evaluated climate change impacts using the magnitude of change in climate suitability and the degree of overlap between current and future climatically suitable habitats. There was a significant relationship between overlap with current and future climate suitability of all threatened plant species habitats and the magnitude of changes in climate suitability. Our projections estimate that the climate suitability of more than 60 threatened plant species will decrease and that climate change threatens the habitat suitability of plant species in more than 130 nature reserves under the low, medium, and high greenhouse gas concentration scenarios by both 2050s and 2080s. Furthermore, future climate change may substantially threaten tree plant species through changes in annual mean temperature. These results indicate that climate change may threaten plant species that occur within Chinese nature reserves. Therefore, we suggest that climate change projections should be integrated into the conservation and management of threatened plant species within nature reserves. PMID:27326373
Accounting for multiple climate components when estimating climate change exposure and velocity
Nadeau, Christopher P.; Fuller, Angela K.
2015-01-01
The effect of anthropogenic climate change on organisms will likely be related to climate change exposure and velocity at local and regional scales. However, common methods to estimate climate change exposure and velocity ignore important components of climate that are known to affect the ecology and evolution of organisms.We develop a novel index of climate change (climate overlap) that simultaneously estimates changes in the means, variation and correlation between multiple weather variables. Specifically, we estimate the overlap between multivariate normal probability distributions representing historical and current or projected future climates. We provide methods for estimating the statistical significance of climate overlap values and methods to estimate velocity using climate overlap.We show that climates have changed significantly across 80% of the continental United States in the last 32 years and that much of this change is due to changes in the variation and correlation between weather variables (two statistics that are rarely incorporated into climate change studies). We also show that projected future temperatures are predicted to be locally novel (<1·5% overlap) across most of the global land surface and that exposure is likely to be highest in areas with low historical climate variation. Last, we show that accounting for changes in the variation and correlation between multiple weather variables can dramatically affect velocity estimates; mean velocity estimates in the continental United States were between 3·1 and 19·0 km yr−1when estimated using climate overlap compared to 1·4 km yr−1 when estimated using traditional methods.Our results suggest that accounting for changes in the means, variation and correlation between multiple weather variables can dramatically affect estimates of climate change exposure and velocity. These climate components are known to affect the ecology and evolution of organisms, but are ignored by most measures of climate change. We conclude with a set of future directions and recommend future work to determine which measures of climate change exposure and velocity are most related to biological responses to climate change.
Climate change and skin disease.
Lundgren, Ashley D
2018-04-01
Despite commanding essentially universal scientific consensus, climate change remains a divisive and poorly understood topic in the United States. Familiarity with this subject is not just for climate scientists. The impact of climate change on human morbidity and mortality may be considerable; thus, physicians also should be knowledgeable in this realm. Climate change science can seem opaque and inferential, creating fertile ground for political polemics and undoubtedly contributing to confusion among the general public. This puts physicians in a pivotal position to facilitate a practical understanding of climate change in the public sphere by discussing changes in disease patterns and their possible relationship to a changing climate. This article provides a background on climate change for dermatologists and highlights how climate change may impact the management of skin disease across the United States.
Mandate for the Nursing Profession to Address Climate Change Through Nursing Education.
Leffers, Jeanne; Levy, Ruth McDermott; Nicholas, Patrice K; Sweeney, Casey F
2017-11-01
The adverse health effects from climate change demand action from the nursing profession. This article examines the calls to action, the status of climate change in nursing education, and challenges and recommendations for nursing education related to climate change and human health. Discussion paper. The integration of climate change into nursing education is essential so that knowledge, skills, and insights critical for clinical practice in our climate-changing world are incorporated in curricula, practice, research, and policy. Our Ecological Planetary Health Model offers a framework for nursing to integrate relevant climate change education into nursing curricula and professional nursing education. Nursing education can offer a leadership role to address the mitigation, adaptation, and resilience strategies for climate change. An ecological framework is valuable for nursing education regarding climate change through its consideration of political, cultural, economic, and environmental interrelationships on human health and the health of the planet. Knowledge of climate change is important for integration into basic and advanced nursing education, as well as professional education for nurses to address adverse health impacts, climate change responses policy, and advocacy roles. For current and future nurses to provide care within a climate-changing environment, nursing education has a mandate to integrate knowledge about climate change issues across all levels of nursing education. Competence in nursing practice follows from knowledge and skill acquisition gained from integration of climate change content into nursing education. © 2017 Sigma Theta Tau International.
Mainstreaming Climate Change Into Geosciences Curriculum of Tertiary Educational Systems in Ghana
NASA Astrophysics Data System (ADS)
Nyarko, B. K.
2015-12-01
The impact of Climate Change has a far-reaching implication for economies and people living in the fragile Regions of Africa analysts project that by 2020, between 75 million and 250 million people will be exposed various forms of Climate Change Stresses. Education as a key strategy identified under Agenda 21 has been incorporated into the efforts of various educational institutions as a means of mitigating climate change and enhancing sustainability. Climate Change education offers many opportunities and benefits for educators, researchers, learners, and for wider society, but there are also many challenges, which can hinder the successful mainstreaming of climate change education. The study aims at understanding barriers for Climate Change Education in selected tertiary institutions in Ghana. The study was conducted among Geoscience Departments of the 7 main public universities of Ghana and also juxtapose with the WASCAL graduate school curriculum. The transcript analysis identified issues that hinders the mainstreaming of Climate Change, these includes existing levels of knowledge and understanding of the concept of climate change, appreciating the threshold concepts, ineffective teaching of Climate Change and some Departments are slow in embracing Climate Change as a discipline. Hence to develop strategies to mainstream climate change education it is important to recognize that increasing the efficiency and delivery of Climate Change education requires greater attention and coordination of activities and updating the educators knowledge and skill's. Institutions and Educator should be encouraged to undertake co-curricula activities and finding ways to make Climate Change education practical.
A new dataset for systematic assessments of climate change impacts as a function of global warming
NASA Astrophysics Data System (ADS)
Heinke, J.; Ostberg, S.; Schaphoff, S.; Frieler, K.; M{ü}ller, C.; Gerten, D.; Meinshausen, M.; Lucht, W.
2012-11-01
In the ongoing political debate on climate change, global mean temperature change (ΔTglob) has become the yardstick by which mitigation costs, impacts from unavoided climate change, and adaptation requirements are discussed. For a scientifically informed discourse along these lines systematic assessments of climate change impacts as a function of ΔTglob are required. The current availability of climate change scenarios constrains this type of assessment to a~narrow range of temperature change and/or a reduced ensemble of climate models. Here, a newly composed dataset of climate change scenarios is presented that addresses the specific requirements for global assessments of climate change impacts as a function of ΔTglob. A pattern-scaling approach is applied to extract generalized patterns of spatially explicit change in temperature, precipitation and cloudiness from 19 AOGCMs. The patterns are combined with scenarios of global mean temperature increase obtained from the reduced-complexity climate model MAGICC6 to create climate scenarios covering warming levels from 1.5 to 5 degrees above pre-industrial levels around the year 2100. The patterns are shown to sufficiently maintain the original AOGCMs' climate change properties, even though they, necessarily, utilize a simplified relationships betweenΔTglob and changes in local climate properties. The dataset (made available online upon final publication of this paper) facilitates systematic analyses of climate change impacts as it covers a wider and finer-spaced range of climate change scenarios than the original AOGCM simulations.
Climate change velocity underestimates climate change exposure in mountainous regions
Dobrowski, Solomon Z.; Parks, Sean A.
2016-01-01
Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not quantify the extent to which trajectories traverse areas of dissimilar climate. Here we calculate velocity and minimum cumulative exposure (MCE) in degrees Celsius along climate trajectories for North America. We find that velocity is weakly related to MCE; each metric identifies contrasting areas of vulnerability to climate change. Notably, velocity underestimates exposure in mountainous regions where climate trajectories traverse dissimilar climates, resulting in high MCE. In contrast, in flat regions velocity is high where MCE is low, as these areas have negligible climatic resistance to movement. Our results suggest that mountainous regions are more climatically isolated than previously reported. PMID:27476545
Conceptual Model of Climate Change Impacts at LANL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewart, Jean Marie
Goal 9 of the LANL FY15 Site Sustainability Plan (LANL 2014a) addresses Climate Change Adaptation. As part of Goal 9, the plan reviews many of the individual programs the Laboratory has initiated over the past 20 years to address climate change impacts to LANL (e.g. Wildland Fire Management Plan, Forest Management Plan, etc.). However, at that time, LANL did not yet have a comprehensive approach to climate change adaptation. To fill this gap, the FY15 Work Plan for the LANL Long Term Strategy for Environmental Stewardship and Sustainability (LANL 2015) included a goal of (1) establishing a comprehensive conceptual modelmore » of climate change impacts at LANL and (2) establishing specific climate change indices to measure climate change and impacts at Los Alamos. Establishing a conceptual model of climate change impacts will demonstrate that the Laboratory is addressing climate change impacts in a comprehensive manner. This paper fulfills the requirement of goal 1. The establishment of specific indices of climate change at Los Alamos (goal 2), will improve our ability to determine climate change vulnerabilities and assess risk. Future work will include prioritizing risks, evaluating options/technologies/costs, and where appropriate, taking actions. To develop a comprehensive conceptual model of climate change impacts, we selected the framework provided in the National Oceanic and Atmospheric Administration (NOAA) Climate Resilience Toolkit (http://toolkit.climate.gov/).« less
Rural perspectives of climate change: a study from Saurastra and Kutch of Western India.
Moghariya, Dineshkumar P; Smardon, Richard C
2014-08-01
This research reports on rural people's beliefs and understandings of climate change in the Saurastra/ Kutch region of Western India. Results suggest that although most rural respondents have not heard about the scientific concept of climate change, they have detected changes in the climate. They appear to hold divergent understandings about climate change and have different priorities for causes and solutions. Many respondents appear to base their understandings of climate change upon a mix of ideas drawn from various sources and rely on different kinds of reasoning in relation to both causes of and solutions to climate change to those used by scientists. Environmental conditions were found to influence individuals' understanding of climate change, while demographic factors were not. The results suggest a need to learn more about people's conceptual models and understandings of climate change and a need to include local climate research in communication efforts.
Our Changing Climate: A Brand New Way to Study Climate Science
NASA Astrophysics Data System (ADS)
Brey, J. A.; Kauffman, C.; Geer, I.; Nugnes, K. A.; Mills, E. W.
2014-12-01
Earth's climate is inherently variable, but is currently changing at rates unprecedented in recent Earth history. Human activity plays a major role in this change and is projected to do so well into the future. This is the stance taken in Our Changing Climate, the brand new climate science ebook from the American Meteorological Society (AMS). Our Changing Climate investigates Earth's climate system, explores humans' impact on it, and identifies actions needed in response to climate change. Released in August 2014, Our Changing Climate is the result of a year's worth of intensive research and writing, incorporating the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the Third National Climate Assessment. To encourage additional exploration of climate science information, scientific literature, from which chapter content was derived, is cited at the conclusion of each chapter. In addition, Topic In Depth sections appear throughout each chapter and lead to more extensive information related to various topics. For example, a Topic In Depth in Chapter 11 describes the effect of climate extremes on ranching enterprises in Nebraska. Climate science is multi-disciplinary and therefore Our Changing Climate covers a breadth of topics. From understanding basic statistics and geospatial tools used to investigate Earth's climate system to examining the psychological and financial reasons behind climate change denial, the AMS believes that a multi-disciplinary approach is the most effective way to increase climate literacy. Our Changing Climate is part of the AMS Climate Studies course which is intended for undergraduate-level students. Other course materials include an eInvestigations Manual and access to the RealTime Climate Portal, both of which provide weekly activities corresponding to that week's chapter content. The RealTime Climate Portal also has links to climate data as well as societal interactions and climate policy websites to spur further interest. Faculty support materials are also provided. AMS Climate Studies has been licensed by 130 institutions since Fall 2010. Our Changing Climate reveals the impact that each of us has on the climate. With this understanding come choices and actions for a more sustainable future.
A plant’s perspective of extremes: Terrestrial plant responses to changing climatic variability
Reyer, C.; Leuzinger, S.; Rammig, A.; Wolf, A.; Bartholomeus, R. P.; Bonfante, A.; de Lorenzi, F.; Dury, M.; Gloning, P.; Abou Jaoudé, R.; Klein, T.; Kuster, T. M.; Martins, M.; Niedrist, G.; Riccardi, M.; Wohlfahrt, G.; de Angelis, P.; de Dato, G.; François, L.; Menzel, A.; Pereira, M.
2013-01-01
We review observational, experimental and model results on how plants respond to extreme climatic conditions induced by changing climatic variability. Distinguishing between impacts of changing mean climatic conditions and changing climatic variability on terrestrial ecosystems is generally underrated in current studies. The goals of our review are thus (1) to identify plant processes that are vulnerable to changes in the variability of climatic variables rather than to changes in their mean, and (2) to depict/evaluate available study designs to quantify responses of plants to changing climatic variability. We find that phenology is largely affected by changing mean climate but also that impacts of climatic variability are much less studied but potentially damaging. We note that plant water relations seem to be very vulnerable to extremes driven by changes in temperature and precipitation and that heatwaves and flooding have stronger impacts on physiological processes than changing mean climate. Moreover, interacting phenological and physiological processes are likely to further complicate plant responses to changing climatic variability. Phenological and physiological processes and their interactions culminate in even more sophisticated responses to changing mean climate and climatic variability at the species and community level. Generally, observational studies are well suited to study plant responses to changing mean climate, but less suitable to gain a mechanistic understanding of plant responses to climatic variability. Experiments seem best suited to simulate extreme events. In models, temporal resolution and model structure are crucial to capture plant responses to changing climatic variability. We highlight that a combination of experimental, observational and /or modeling studies have the potential to overcome important caveats of the respective individual approaches. PMID:23504722
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jay, David A.
Long-term changes and fluctuations in river flow, water properties, tides, and sediment transport in the Columbia River and its estuary have had a profound effect on Columbia River salmonids and their habitat. Understanding the river-flow, temperature, tidal, and sediment-supply regimes of the Lower Columbia River (LCR) and how they interact with habitat is, therefore, critical to development of system management and restoration strategies. It is also useful to separate management and climate impacts on hydrologic properties and habitat. This contract, part of a larger project led by the National Oceanic and Atmospheric Administration (NOAA), consists of three work elements, onemore » with five tasks. The first work element relates to reconstruction of historic conditions in a broad sense. The second and third elements consist, respectively, of participation in project-wide integration efforts, and reporting. This report focuses on the five tasks within the historic reconstruction work element. It in part satisfies the reporting requirement, and it forms the basis for our participation in the project integration effort. The first task consists of several topics related to historic changes in river stage and tide. Within this task, the chart datum levels of 14 historic bathymetric surveys completed before definition of Columbia River Datum (CRD) were related to CRD, to enable analysis of these surveys by other project scientists. We have also modeled tidal datums and properties (lower low water or LLW, higher high water or HHW, mean water level or MWL, and greater diurnal tidal range or GDTR) as a function of river flow and tidal range at Astoria. These calculations have been carried for 10 year intervals (1940-date) for 21 stations, though most stations have data for only a few time intervals. Longer-term analyses involve the records at Astoria (1925-date) and Vancouver (1902-date). Water levels for any given river flow have decreased substantially (0.3-1.8 m, depending on river flow and tidal range), and tidal ranges have increased considerably (by a factor of 1.5 to 4 for most river-flow levels) since the 1900-1940 period at most stations, with the largest percentage changes occurring at upriver stations. These changes have been caused by a combination of changes in channel roughness, shape and alignment, changes in coastal tides, and (possibly) bed degradation. Tides are growing throughout the Northeast Pacific, and Astoria (Tongue Pt) has one of the most rapid rates of increase in tidal range in the entire Eastern Pacific, about 0.3m per century. More than half of this change appears to result from changes within the system, the rest from larger scale changes in coastal tides. Regression models of HHW have been used to estimate daily shallow water habitat (SWHA) available in a {approx}25 mile long reach of the system from Eagle Cliff to Kalama for 1925-2004 under four different scenarios (the four possible combinations of diked/undiked and observed flow/ virgin flow). More than 70% of the habitat in this reach has been lost (modern conditions vs. virgin flow with not dikes). In contrast, however, to the reach between Skamokawa and Beaver, selective dike removal (instead of a combination of dike removal and flow restoration) would suffice to increase spring SWHA. The second task consists of reconstruction of the hydrologic cycle before 1878, based on historic documents and inversion of tidal data collected before the onset of the historic flow record in 1878. We have a complete list of freshet times and peak flows for 1858-1877, and scattered freshet information for 1841-1857. Based on tidal data, we have reconstructed the annual flow cycles for 1870 and 1871; other time periods between 1854 and 1867 are under analysis. The three remaining tasks relate to post-1878 hydrologic conditions (flows, sediment supply and water temperature), and separation of the human and climate influences thereon. Estimated ob-served (sometimes routed), adjusted (corrected for reservoir manipulation) and virgin (corrected also for irrigation diversion) flows for 1878-2004 have been compiled for the Columbia River at The Dalles and Beaver, and for the Willamette River at Portland. Sediment transports for the ob-served, adjusted and virgin flows have been calculated for 1878-2004 for the Columbia River at Vancouver and Beaver, for the Willamette River at Portland, and for other west-side tributaries seaward of Vancouver. For Vancouver and Portland, it has been possible to estimate sand trans-port (including gravel), fine sediment transport and total load. Only total load can be estimated at Beaver, and only fine sediment transport can be determined for the west-side tributaries, except for the post-1980 period influenced by the 1980 eruption of Mt St. Helens. Changes in flows and sediment transport due to flow regulation, irrigation diversion, and climate have been estimated.« less
Development of a Self-Observation Mastery Intervention Programme for Teacher Education
ERIC Educational Resources Information Center
Morgan, Kevin; Kingston, Kieran
2008-01-01
Background: Two goal perspectives predominate in achievement settings such as physical education (PE), namely task involvement, focused on self-referenced effort and improvement, and ego involvement, focused on normative ability comparisons. A task (mastery) involving motivational climate is associated with adaptive motivational responses, whereas…
Undergraduate Students' Conceptions of Natural and Anthropogenic Climate Change
NASA Astrophysics Data System (ADS)
Trenbath, K. L.
2011-12-01
Scientists and educators strive to improve climate literacy throughout society, whether through communication of research findings or though classroom teaching. Despite these efforts, climate change misconceptions exist in students and the general public. When educators present evidence that contradicts misconceptions, students may begin to struggle with their inaccurate ideas and perhaps transition towards a scientifically-accepted understanding. These transitions, called conceptual change, can occur in college climate change courses. The purpose of this presentation is to describe college students' ideas of natural and anthropogenic climate change and the way these ideas change throughout a climate change course. This presentation is based on five case studies of undergraduate students in a large lecture-hall course dedicated to climate change. Each case study student represents a different level of climate change understanding at the beginning of the semester. These case studies and subsequent cross-case analyses result from a qualitative research study using interviews, field notes, artifact analysis, coding and categorization, and research memos. The cases show shifts in all five students' ideas of natural and anthropogenic climate change. During the first month of class, the three lower achieving students expressed uncertainty about the increase in average global temperatures due to anthropogenic climate change. At the end of the semester, these students explained that warming from climate change is natural, yet the rate of this warming is increasing due to human activities. Two of the lower achieving students constructed definitions of climate change different than the definition used by the professor in the classroom. These students solidified the idea that the term "climate change" describes the change that results from natural forcings only, while the term "global warming" describes change in the climate that results from human-caused forcings. Their constructed definition removes human-causes from association with the word "climate change", which may influence their climate change understanding. Of the two higher achieving students, one emphasized anthropogenic climate change at the beginning of the semester, but later focused on natural climate change during his interviews. The other high achieving student included tangential environmental topics in her descriptions of climate change throughout the entire semester, thus conflating climate change's definition. These alternative definitions of climate change indicate that the learners constructed hybrid conceptions in order to incorporate class content with their prior ideas. These hybrid conceptions indicate that the students' understandings lie somewhere between misconceptions and conceptual change. Since the students demonstrated these hybrid conceptions at the end of class, perhaps more time is needed for the students to process the information. These case studies identify the gaps the professor should address for conceptual change to fully occur.
An Interface between Law and Science: The Climate Change Regime
NASA Astrophysics Data System (ADS)
Kuleshov, Y.; Grandbois, M.; Kaniaha, S.
2012-04-01
Law and Science are jointly building the international climate change regime. Up to date, international law and climate science have been unable to take into consideration both regional law and Pacific climate science in this process. Under the International Climate Change Adaptation Initiative (the Australian Government Initiative to assist with high priority climate adaptation needs in vulnerable countries in the Asia-Pacific region) significant efforts were dedicated to improve understanding of climate in the Pacific through the Pacific Climate Change Science Program (PCCSP) and through the Pacific Adaptation Strategy Assistance Program (PASAP). The first comprehensive PCCSP scientific report on the South Pacific climate has been published in 2011. Under the PASAP, web-based information tools for seasonal climate prediction have been developed and now outputs from dynamical climate model are used in 15 countries of the North-West and South Pacific for enhanced prediction of rainfall, air and sea surface temperatures which reduces countries' vulnerability to climate variability in the context of a changing climate. On a regional scale, the Meteorological and Geohazards Department of Vanuatu is preparing a full report on Climate change impacts on the country. These scientific reports and tools could lead to a better understanding of climate change in the South Pacific and to a better understanding of climate change science, for lawyers and policy-makers. The International climate change regime develops itself according to science findings, and at the pace of the four scientific reports issued by the Intergovernmental Panel on Climate Change (IPCC). In return, Law is a contributing factor to climate change, a structural data in the development and perception of environmental issues and it exerts an influence on Science. Because of the dependency of law on science, the PCCSP and PASAP outcomes will also stimulate and orientate developments in law of the Pacific Island countries, as well as it could increase countries' contributions to the future of international environmental law. Vanuatu is pioneering this process in the Pacific and could make a leading contribution to the development of Nationally appropriate mitigation actions by developing country Parties, according to the Bali action Plan and to participate actively in the negotiations of a successor agreement to the Kyoto Protocol. In studying and transposing the national climate change report, Vanuatu would also sensibly improve its own environmental laws in response to climate change. By building a bridge between law and science in the Pacific, we are training scientists to climate change law, and training lawyers and policy-makers to climate change science; increasing the collaborative process and the cooperation between scientists and lawyers, in drafting national environmental laws and in negotiating international climate change agreements; and enhancing the contribution of small vulnerable islands to the development of the international climate change regime, as it regards to law and to science. Training for climate scientists and for lawyers and policy-makers on climate change science and law will be provided through the USP Course on climate change international law and climate change science - the first course on this type in the Pacific.
Separating sensitivity from exposure in assessing extinction risk from climate change.
Dickinson, Maria G; Orme, C David L; Suttle, K Blake; Mace, Georgina M
2014-11-04
Predictive frameworks of climate change extinction risk generally focus on the magnitude of climate change a species is expected to experience and the potential for that species to track suitable climate. A species' risk of extinction from climate change will depend, in part, on the magnitude of climate change the species experiences, its exposure. However, exposure is only one component of risk. A species' risk of extinction will also depend on its intrinsic ability to tolerate changing climate, its sensitivity. We examine exposure and sensitivity individually for two example taxa, terrestrial amphibians and mammals. We examine how these factors are related among species and across regions and how explicit consideration of each component of risk may affect predictions of climate change impacts. We find that species' sensitivities to climate change are not congruent with their exposures. Many highly sensitive species face low exposure to climate change and many highly exposed species are relatively insensitive. Separating sensitivity from exposure reveals patterns in the causes and drivers of species' extinction risk that may not be evident solely from predictions of climate change. Our findings emphasise the importance of explicitly including sensitivity and exposure to climate change in assessments of species' extinction risk.
Separating sensitivity from exposure in assessing extinction risk from climate change
Dickinson, Maria G.; Orme, C. David L.; Suttle, K. Blake; Mace, Georgina M.
2014-01-01
Predictive frameworks of climate change extinction risk generally focus on the magnitude of climate change a species is expected to experience and the potential for that species to track suitable climate. A species' risk of extinction from climate change will depend, in part, on the magnitude of climate change the species experiences, its exposure. However, exposure is only one component of risk. A species' risk of extinction will also depend on its intrinsic ability to tolerate changing climate, its sensitivity. We examine exposure and sensitivity individually for two example taxa, terrestrial amphibians and mammals. We examine how these factors are related among species and across regions and how explicit consideration of each component of risk may affect predictions of climate change impacts. We find that species' sensitivities to climate change are not congruent with their exposures. Many highly sensitive species face low exposure to climate change and many highly exposed species are relatively insensitive. Separating sensitivity from exposure reveals patterns in the causes and drivers of species' extinction risk that may not be evident solely from predictions of climate change. Our findings emphasise the importance of explicitly including sensitivity and exposure to climate change in assessments of species' extinction risk. PMID:25367429
Jaspal, Rusi; Nerlich, Brigitte
2014-02-01
Climate change has become a pressing environmental concern for scientists, social commentators and politicians. Previous social science research has explored media representations of climate change in various temporal and geographical contexts. Through the lens of Social Representations Theory, this article provides a detailed qualitative thematic analysis of media representations of climate change in the 1988 British broadsheet press, given that this year constitutes an important juncture in this transition of climate change from the domain of science to that of the socio-political sphere. The following themes are outlined: (i) "Climate change: a multi-faceted threat"; (ii) "Collectivisation of threat"; (iii) "Climate change and the attribution of blame"; and (iv) "Speculative solutions to a complex socio-environmental problem." The article provides detailed empirical insights into the "starting-point" for present-day disputes concerning climate change and lays the theoretical foundations for tracking the continuities and discontinuities characterising social representations of climate change in the future.
Some guidelines for helping natural resources adapt to climate change
Baron, Jill S.; Julius, Susan Herrod; West, Jordan M.; Joyce, Linda A.; Blate, Geoffrey; Peterson, Charles H.; Palmer, Margaret; Keller, Brian D.; Kareiva, Peter; Scott, J. Michael; Griffith, Brad
2008-01-01
The changes occurring in mountain regions are an epitome of climate change. The dramatic shrinkage of major glaciers over the past century – and especially in the last 30 years – is one of several iconic images that have come to symbolize climate change. Climate creates the context for ecosystems, and climate variables strongly influence the structure, composition, and processes that characterize distinct ecosystems. Climate change, therefore, is having direct and indirect effects on species attributes, ecological interactions, and ecosystem processes. Because changes in the climate system will continue regardless of emissions mitigation, management strategies to enhance the resilience of ecosystems will become increasingly important. It is essential that management responses to climate change proceed using the best available science despite uncertainties associated with the future path of climate change, the response of ecosystems to climate effects, and the effects of management. Given these uncertainties, management adaptation will require flexibility to reflect our growing understanding of climate change impacts and management effectiveness.
2016-01-01
Climate Assessment for Army Enterprise Planning Effects of Climate Change , Urban Development, and... Climate Assessment for Army Enterprise Planning ERDC/CERL TR-16-29 January 2016 Effects of Climate Change , Urban Development, and Threatened and...due to climate change factors. The effects of climate change on DoD in- stallations is increasing in significance and has the potential to impact
Patterns and biases in climate change research on amphibians and reptiles: a systematic review.
Winter, Maiken; Fiedler, Wolfgang; Hochachka, Wesley M; Koehncke, Arnulf; Meiri, Shai; De la Riva, Ignacio
2016-09-01
Climate change probably has severe impacts on animal populations, but demonstrating a causal link can be difficult because of potential influences by additional factors. Assessing global impacts of climate change effects may also be hampered by narrow taxonomic and geographical research foci. We review studies on the effects of climate change on populations of amphibians and reptiles to assess climate change effects and potential biases associated with the body of work that has been conducted within the last decade. We use data from 104 studies regarding the effect of climate on 313 species, from 464 species-study combinations. Climate change effects were reported in 65% of studies. Climate change was identified as causing population declines or range restrictions in half of the cases. The probability of identifying an effect of climate change varied among regions, taxa and research methods. Climatic effects were equally prevalent in studies exclusively investigating climate factors (more than 50% of studies) and in studies including additional factors, thus bolstering confidence in the results of studies exclusively examining effects of climate change. Our analyses reveal biases with respect to geography, taxonomy and research question, making global conclusions impossible. Additional research should focus on under-represented regions, taxa and questions. Conservation and climate policy should consider the documented harm climate change causes reptiles and amphibians.
Zhao, Wei; Shen, Wei Shou; Liu, Hai Yue
2016-12-01
According to the theoretical framework of addressing climate change based on risk mana-gement and the challenge to nature reserve management under climate change, climate change risk of nature reserve was analyzed and defined. Focus on birds and water habitat, grassland habitat, forest habitat, wetland habitat in Dalinuoer Nature Reserve, risk assessment method of nature reserve under climate change was formulated, climate change risks to Dalinuoer Nature Reserve and its habitats were assessed and predicted. The results showed that, during the period from 1997 to 2010, there was significant volatility in dynamic changes of climate change risks to Dalinuoer Nature Reserve and waterbody, grassland, forest, wetland in the region, Dalinuoer Nature Reserve and its habitats were in status of risk in 1999, 2001, 2005 and 2008, wetland habitat was also in status of risk in 2002 and 2004. Under scenario A, B and C, climate change risks to Dalinuoer Nature Reserve and waterbody, grassland, forest, wetland in the region would be more serious in 2020 and 2030, compared with the 2010 level. Climate change risks to different habitats were different significantly, with most serious climate change risk to wetland habitat due to its sensitivity to climate change and rich bird resources. The effect of climate change on nature reserve and related risk would be aggravated by excess utilization of water resource and grassland resource. As climate change risks had appeared in Dalinuoer Nature Reserve, risk management associated with climate change could greatly help to maintain and enhance biodiversity protection function of nature reserves.
Popular culture and the "new human condition": Catastrophe narratives and climate change
NASA Astrophysics Data System (ADS)
Bulfin, Ailise
2017-09-01
Striking popular culture images of burnt landscapes, tidal waves and ice-bound cities have the potential to dramatically and emotively convey the dangers of climate change. Given that a significant number of people derive a substantial proportion of their information on the threat of climate change, or the ;new human condition;, from popular culture works such as catastrophe movies, it is important that an investigation into the nature of the representations produced be embedded in the attempt to address the issue. What climate change-related messages may be encoded in popular films, television and novels, how are they being received, and what effects may they have? This article adopts the cultural studies perspective that popular culture gives us an important means by which to access the ;structures of feeling; that characterise a society at a particular historic juncture: the views held and emotional states experienced by significant amounts of people as evident in disparate forms of cultural production. It further adopts the related viewpoint that popular culture has an effect upon the society in which it is consumed, as well as reflecting that society's desires and concerns - although the nature of the effect may be difficult to quantify. From this position, the article puts forward a theory on the role of ecological catastrophe narratives in current popular culture, before going on to review existing critical work on ecologically-charged popular films and novels which attempts to assess their effects on their audiences. It also suggests areas for future research, such as the prevalent but little studied theme of natural and environmental disaster in late-Victorian science fiction writing. This latter area is of interest because it reveals the emergence of an ecological awareness or structure of feeling as early as the late-nineteenth century, and allows the relationship of this development to environmental policy making to be investigated because of the historical timeframe. Effectively communicating the threat of climate change and the need to address it, reframing the perspective from a detached and scientifically-articulated problem to one of a human condition - immediate and personal - is on one level a task of narrative, or story-telling, and cultural studies has an important role to play in this and in elucidating the challenges involved. In line with the remit of the special issue in which this article appears, it is written as a review article specifically addressing the question of what cultural studies can contribute to helping to articulate the 'new human condition' of existence under climate change. As such, it offers some initial preliminary readings of popular culture trends, outlines a potential methodology, briefly summarises some effective work already done in the area and suggests further potential avenues of enquiry.
Bahamians and Climate Change: An Analysis of Risk Perception and Climate Change Literacy
NASA Astrophysics Data System (ADS)
Neely, R.; Owens, M. A.
2011-12-01
The Commonwealth of the Bahamas is forecasted to be adversely impacted by the effects of climate change. This presentation will present the results of an assessment of the risk perception toward climate change and climate change literacy among Bahamians. 499 Bahamians from the health care and hospitality industries participated in surveys and/or focus groups and three (3) areas of climate change literacy (attitude, behavior and knowledge) were analyzed as well as risk perception. In general, 1) Bahamians demonstrated an elementary understanding of the underlying causes of climate change, 2) possessed positive attitudes toward adopting new climate change policies, and 3) are already adjusting their behaviors in light of the current predictions. This research also resulted in the development of a model of the relationships between the climate literacy subscales (attitude, behavior and knowledge) and risk perception. This study also examined information sources and their impacts on climate change literacy. As the source of information is important in assessing the quality of the information, participants also identified the source(s) of most of their climate change information. The TV news was cited as the most common source for climate change information among Bahamians. As there is limited active research generating specific climate change information in the Bahamas, all the information Bahamians receive as it pertains to climate change is generated abroad. As a result, Bahamians must decipher through to make sense of it on an individual level. From the focus groups, many of the participants have been able to view possible changes through a cultural lens and are willing to make adjustments to maintain the uniqueness and viability of the Bahamas and to preserve it for generations. Continued study of Bahamians' climate change literacy will inform adaption and mitigation policy as well as individual action.
Collaborative Education in Climate Change Sciences and Adaptation through Interactive Learning
NASA Astrophysics Data System (ADS)
Ozbay, G.; Sriharan, S.; Fan, C.
2014-12-01
As a result of several funded climate change education grants, collaboration between VSU, DSU, and MSU, was established to provide the innovative and cohesive education and research opportunities to underrepresented groups in the climate related sciences. Prior to offering climate change and adaptation related topics to the students, faculty members of the three collaborating institutions participated at a number of faculty training and preparation workshops for teaching climate change sciences (i.e. AMS Diversity Project Workshop, NCAR Faculty-Student Team on Climate Change, NASA-NICE Program). In order to enhance the teaching and student learning on various issues in the Environmental Sciences Programs, Climatology, Climate Change Sciences and Adaptation or related courses were developed at Delaware State University and its partner institutions (Virginia State University and Morgan State University). These courses were prepared to deliver information on physical basis for the earth's climate system and current climate change instruction modules by AMS and historic climate information (NOAA Climate Services, U.S. and World Weather Data, NCAR and NASA Climate Models). By using Global Seminar as a Model, faculty members worked in teams to engage students in videoconferencing on climate change through Contemporary Global Studies and climate courses including Climate Change and Adaptation Science, Sustainable Agriculture, Introduction to Environmental Sciences, Climatology, and Ecology and Adaptation courses. All climate change courses have extensive hands-on practices and research integrated into the student learning experiences. Some of these students have presented their classroom projects during Earth Day, Student Climate Change Symposium, Undergraduate Summer Symposium, and other national conferences.
Managing climate change refugia for climate adaptation
Morelli, Toni L.; Jackson, Stephen T.
2016-01-01
Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change.
Managing Climate Change Refugia for Climate Adaptation.
Morelli, Toni Lyn; Daly, Christopher; Dobrowski, Solomon Z; Dulen, Deanna M; Ebersole, Joseph L; Jackson, Stephen T; Lundquist, Jessica D; Millar, Constance I; Maher, Sean P; Monahan, William B; Nydick, Koren R; Redmond, Kelly T; Sawyer, Sarah C; Stock, Sarah; Beissinger, Steven R
2016-01-01
Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change.
Managing Climate Change Refugia for Climate Adaptation
Daly, Christopher; Dobrowski, Solomon Z.; Dulen, Deanna M.; Ebersole, Joseph L.; Jackson, Stephen T.; Lundquist, Jessica D.; Millar, Constance I.; Maher, Sean P.; Monahan, William B.; Nydick, Koren R.; Redmond, Kelly T.; Sawyer, Sarah C.; Stock, Sarah; Beissinger, Steven R.
2016-01-01
Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change. PMID:27509088
Atmospheric Science Data Center
2017-11-27
article title: Is Climate Changing Cloud Heights? Too Soon to Say Climate change may eventually change global cloud heights, but scientists need ... whether that's happening already. For details see: Is Climate Changing Cloud Heights? Too Soon to Say . Climate ...
Climate change and disaster management.
O'Brien, Geoff; O'Keefe, Phil; Rose, Joanne; Wisner, Ben
2006-03-01
Climate change, although a natural phenomenon, is accelerated by human activities. Disaster policy response to climate change is dependent on a number of factors, such as readiness to accept the reality of climate change, institutions and capacity, as well as willingness to embed climate change risk assessment and management in development strategies. These conditions do not yet exist universally. A focus that neglects to enhance capacity-building and resilience as a prerequisite for managing climate change risks will, in all likelihood, do little to reduce vulnerability to those risks. Reducing vulnerability is a key aspect of reducing climate change risk. To do so requires a new approach to climate change risk and a change in institutional structures and relationships. A focus on development that neglects to enhance governance and resilience as a prerequisite for managing climate change risks will, in all likelihood, do little to reduce vulnerability to those risks.
Public Inaccuracy in Meta-perceptions of Climate Change
NASA Astrophysics Data System (ADS)
Swim, J.; Fraser, J.
2012-12-01
Public perceptions of climate change and meta-perceptions of the public and climate scientist's perceptions of climate change were assessed to benchmark the National Network for Climate Change Interpretation's impacts. Meta-perceptions are important to examine because they can have implications for willingness to take action to address climate change. For instance, recent research suggests a tendency to misperceive that there is disagreement among climate scientists is predictive of lack of support for climate change policies. Underestimating public concern about climate change could also be problematic: it could lead individuals to withdraw from personal efforts to reduce impact and engage others in discussions about climate change. Presented results will demonstrate that respondents in a national survey underestimated the percent of the public who were very concerned, concerned or cautious about climate change and overestimated the extent others were disengaged, doubted, or non-believers. They underestimated the percent of the public who likely believed that humans caused climate change and overestimate the percent that believed climate change was not happening nor human induced. Finally, they underestimated the percent of the public that believed climate change threatened ocean health. The results also explore sources of misperceptions. First, correlates with TV viewing habits suggest that inaccuracy is a result of too little attention to network news, with one exception: Greater attention to FOX among doubters reduced accuracy. Second, adding to other evidence that basic cognitive heuristics (such as availability heuristic) influence perceptions of climate change, we show that that false consensus effects account for meta-perceptions of the public and climate scientists beliefs. The false consensus effect, in combination with underestimating concern among the public, results in those most concerned about climate change and those who believe it to be human caused to be more accurate in their meta-perceptions than their disbelieving counterparts. Yet, even this group underestimates the public's concern about climate change and the presence of the false consensus effect suggests that greater accuracy is not a result of greater knowledge about other's beliefs but rather a result of personal cognitive or motivational biases counteracting a general trend toward underestimating the general public's concern. We conclude that there is need to inform the public about wide-spread agreement that human caused climate change and its impacts on oceans is believed by the majority of the public and to increase the public's confidence in climate scientist agreement about the existence, causes, and impacts of climate change.; Perceptions and metaperceptions of concern about climate change
Accounting for health in climate change policies: a case study of Fiji
Morrow, Georgina; Bowen, Kathryn
2014-01-01
Background Climate change is expected to affect the health of most populations in the coming decades, having the greatest impact on the poorest and most disadvantaged people in the world. The Pacific islands, including Fiji, are particularly vulnerable to the effects of climate change. Objective The three major health impacts of climate change in Fiji explored in this study were dengue fever, diarrhoeal disease, and malnutrition, as they each pose a significant threat to human health. The aim of this study was to investigate to what extent the Fiji National Climate Change Policy, and a selection of relevant sectoral policies, account for these human health effects of climate change. Design The study employed a three-pronged policy analysis to evaluate: 1) the content of the Fijian National Climate Change Policy and to what extent health was incorporated within this; 2) the context within which the policy was developed; 3) the relevant processes; and 4) the actors involved. A selection of relevant sectoral policies were also analysed to assess the extent to which these included climate change and health considerations. Results The policy analysis showed that these three health impacts of climate change were only considered to a minor extent, and often indirectly, in both the Fiji National Climate Change Policy and the corresponding National Climate Change Adaptation Strategy, as well as the Public Health Act. Furthermore, supporting documents in relevant sectors including water and agriculture made no mention of climate change and health impacts. Conclusions The projected health impacts of climate change should be considered as part of reviewing the Fiji National Climate Change Policy and National Climate Change Adaptation Strategy, and the Public Health Act. In the interest of public health, this should include strategies for combating dengue fever, malnutrition, and water-borne disease. Related sectoral policies in water and agriculture should also be revised to consider climate change and its impact on human health. Approaches to include health aspects of climate change within sectoral and climate change specific policies should be encouraged, via a number of mechanisms, such as the Health in All Policies approach. Future research could support the Fiji health sector in developing climate change and health programmes. PMID:24836442
Climate Change Schools Project...
ERIC Educational Resources Information Center
McKinzey, Krista
2010-01-01
This article features the award-winning Climate Change Schools Project which aims to: (1) help schools to embed climate change throughout the national curriculum; and (2) showcase schools as "beacons" for climate change teaching, learning, and positive action in their local communities. Operating since 2007, the Climate Change Schools…
Towards a regional climate model coupled to a comprehensive hydrological model
NASA Astrophysics Data System (ADS)
Rasmussen, S. H.; Drews, M.; Christensen, J. H.; Butts, M. B.; Jensen, K. H.; Refsgaard, J.; Hydrological ModellingAssessing Climate Change Impacts At Different Scales (Hyacints)
2010-12-01
When planing new ground water abstractions wells, building areas, roads or other land use activities information about expected future groundwater table location for the lifetime of the construction may be critical. The life time of an abstraction well can be expected to be more than 50 years, while if for buildings may be up to 100 years or more. The construction of an abstraction well is expensive and it is important to know if clean groundwater is available for its expected life time. The future groundwater table is depending on the future climate. With climate change the hydrology is expected to change as well. Traditionally, this assessment has been done by driving hydrological models with output from a climate model. In this way feedback between the groundwater hydrology and the climate is neglected. Neglecting this feedback can lead to imprecise or wrong results. The goal of this work is to couple the regional climate model HIRHAM (Christensen et al. 2006) to the hydrological model MIKE SHE (Graham and Butts, 2006). The coupling exploits the new OpenMI technology that provides a standardized interface to define, describe and transfer data on a time step basis between software components that run simultaneously (Gregersen et al., 2007). HIRHAM runs on a UNIX platform whereas MIKE SHE and OpenMI are under WINDOWS. Therefore the first critical task has been to develop an effective communication link between the platforms. The first step towards assessing the coupled models performance are addressed by looking at simulated land-surface atmosphere feedback through variables such as evapotranspiration, sensible heat flux and soil moisture content. Christensen, O.B., Drews, M., Christensen, J.H., Dethloff, K., Ketelsen, K., Hebestadt, I. and Rinke, A. (2006) The HIRHAM Regional Climate Model. Version 5; DMI Scientific Report 0617. Danish Meteorological Institute. Graham, D.N. and Butts, M.B. (2005) Flexible, integrated watershed modelling with MIKE SHE, In Watershed Models, (Eds. V.P. Singh & D.K. Frevert) CRC Press. Pages 245-272, ISBN: 0849336090. Gregersen, J.B., Gijsbers, P.J.A. and Westen, S.J.P. (2007) OpenMI: Open modelling interface. Journal of Hydroinformatics, 09.3, 175191. doi: 10.2166/hydro.2007.023.
A synthesized biophysical and social vulnerability assessment for Taiwan
NASA Astrophysics Data System (ADS)
Lee, Yung-Jaan
2017-11-01
Taiwan, located in the Western Pacific, is a country that is one of the most vulnerable to disasters that are associated with the changing climate; it is located within the Ring of Fire, which is the most geologically active region in the world. The environmental and geological conditions in Taiwan are sensitive and vulnerable to such disasters. Owing to increasing urbanization in Taiwan, floods and climate-related disasters have taken an increasing toll on human lives. As global warming accelerates the rising of sea levels and increasing of the frequency of extreme weather events, disasters will continue to affect socioeconomic development and human conditions. Under such circumstances, researchers and policymakers alike must recognize the importance of providing useful knowledge concerning vulnerability, disaster recovery and resilience. Strategies for reducing vulnerability and climate-related disaster risks and for increasing resilience involve preparedness, mitigation and adaptation. In the last two decades, extreme climate events have caused severe flash floods, debris flows, landslides, and other disasters and have had negative effects of many sectors, including agriculture, infrastructure and health. Since climate change is expected to have a continued impact on socio-economic development, this work develops a vulnerability assessment framework that integrates both biophysical and social vulnerability and supports synthesized vulnerability analyses to identify vulnerable areas in Taiwan. Owing to its geographical, geological and climatic features, Taiwan is susceptible to earthquakes, typhoons, droughts and various induced disasters. Therefore, Taiwan has the urgent task of establishing a framework for assessing vulnerability as a planning and policy tool that can be used to identify not only the regions that require special attention but also hotspots in which efforts should be made to reduce vulnerability and the risk of climate-related disaster. To analyze the biophysical vulnerability of Taiwan, hazards on eight maps from Taiwan’s National Science and Technology Center for Disaster Reduction (NCDR) are analyzed. Statistical data from the NCDR on social vulnerability are also adopted. Finally, a GIS overlaying method was used to perform the synthesized vulnerability analysis of biophysical and social vulnerability for municipalities and counties in Taiwan.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-25
... on Climate Change (IPCC), Mitigation of Climate Change SUMMARY: The United States Global Change... Panel on Climate Change (IPCC), Mitigation of Climate Change. The United Nations Environment Programme...-economic information for understanding the scientific basis of climate change, potential impacts, and...
ERIC Educational Resources Information Center
Trenbath, Thien-Kim Leckie
2012-01-01
This dissertation shows the evolution of five undergraduate students' ideas of natural and anthropogenic climate change throughout a lecture hall course on climate change. This research was informed by conceptual change theory and students' inaccurate ideas of climate change. Subjects represented different levels of climate change understanding at…
Climate change: Conflict of observational science, theory, and politics
Gerhard, L.C.
2004-01-01
Debate over whether human activity causes Earth climate change obscures the immensity of the dynamic systems that create and maintain climate on the planet. Anthropocentric debate leads people to believe that they can alter these planetary dynamic systems to prevent that they perceive as negative climate impacts on human civilization. Although politicians offer simplistic remedies, such as the Kyoto Protocol, global climate continues to change naturally. Better planning for the inevitable dislocations that have followed natural global climate changes throughout human history requires us to accept the fact that climate will change, and that human society must adapt to the changes. Over the last decade, the scientific literature reported a shift in emphasis from attempting to build theoretical models of putative human impacts on climate to understanding the planetwide dynamic processes that are the natural climate drivers. The current scientific literature is beginning to report the history of past climate change, the extent of natural climate variability, natural system drivers, and the episodicity of many climate changes. The scientific arguments have broadened from focus upon human effects on climate to include the array of natural phenomena that have driven global climate change for eons. However, significant political issues with long-term social consequences continue their advance. This paper summarizes recent scientific progress in climate science and arguments about human influence on climate. ?? 2004. The American Association of Petroleum Geologists. All rights reserved.
NASA Astrophysics Data System (ADS)
Brohan, P.
2014-12-01
Recent years have seen many extreme and damaging weather events - for example the low Arctic sea-ice of 2012, and the severe winter of 2013/4 in North America and the UK. To understand these events, and to judge whether they represent environmental change, we need to compare today's weather to the long-term historical record. Our long-term historical record of the weather is based on the billions of observations, from scientists, explorers, mariners, and others, that have been made, across the world, over the last few centuries. Many of these records are still dark: They exist only as hand-written paper documents in various archives and libraries, and are inaccessible to science. As a result our historical weather reconstructions have major gaps, where we do not know how the climate has varied. oldWeather.org is a citizen science project rescuing these observations. By providing an web interface to scans of paper records, we enable volunteers around the world to contribute to the task of rescuing the observations. So far a community of around 20,000 volunteers have read well over 1 million pages of paper records and contributed millions of recovered weather observations to international climate datasets. As well as learning about past weather, we are also learning what it takes to build a successful volunteer science project in this area: building a community, breaking down the task into manageable steps, feeding back success to the volunteers, and enabling comitted volunteers to take on more responsibilities were all vital to our success. We are currently using those lessons to build a new version of oldWeather that can rescue even more data.
Climate change and sustainable development: realizing the opportunity.
Robinson, John; Bradley, Mike; Busby, Peter; Connor, Denis; Murray, Anne; Sampson, Bruce; Soper, Wayne
2006-02-01
Manifold linkages exist between climate change and sustainable development. Although these are starting to receive attention in the climate exchange literature, the focus has typically been on examining sustainable development through a climate change lens, rather than vice versa. And there has been little systematic examination of how these linkages may be fostered in practice. This paper examines climate change through a sustainable development lens. To illustrate how this might change the approach to climate change issues, it reports on the findings of a panel of business, local government, and academic representatives in British Columbia, Canada, who were appointed to advise the provincial government on climate change policy. The panel found that sustainable development may offer a significantly more fruitful way to pursue climate policy goals than climate policy itself. The paper discusses subsequent climate change developments in the province and makes suggestions as how best to pursue such a sustainability approach in British Columbia and other jurisdictions.
Mainstreaming of Climate Change into the Ghanaian Tertiary Educational System
NASA Astrophysics Data System (ADS)
Nyarko, B. K.
2013-12-01
The impact of Climate Change has a far-reaching implication for economies and people living in the fragile Regions of Africa analysts project that by 2020, between 75 million and 250 million people will be exposed various forms of Climate Change Stresses. Education as a key strategy identified under Agenda 21 has been incorporated into the efforts of various educational institutions as a means of mitigating climate change and enhancing sustainability. Climate Change education offers many opportunities and benefits for educators, researchers, learners, and for wider society, but there are also many challenges, which can hinder the successful mainstreaming of climate change education. The study aims at understanding barriers for Climate Change Education in selected tertiary institutions in Ghana. The study was conducted among Geoscience Departments of the 7 main public universities of Ghana. The transcript analysis identified issues that hinders the mainstreaming of Climate Change, these includes existing levels of knowledge and understanding of the concept of climate change, appreciating the threshold concepts, ineffective teaching of Climate Change and some Departments are slow in embracing Climate Change as a discipline. Hence to develop strategies to mainstream climate change education it is important to recognise that increasing the efficiency and delivery of Climate Change education requires greater attention and coordination of activities and updating the educators knowledge and skill's. Various Ministries should be challenged to develop and integrate climate change into education policies. In the design of curriculum, there is a need to integrate Climate Change Education into curricula without compromising already overstretched programmes of study. There is a need to encourage and enhance innovative teaching approaches such as Problem-based learning (PBL) is an approach that challenges students to learn through engagement in a real problem. Institutions and Educator should be encouraged to undertake co-curricula activities and finding ways to practicalize Climate Change education.
Climate change; Confronting the global experiment
Constance I. Millar
2006-01-01
Earth’s natural climate system is characterized by continually changing climates, with climate regimes that oscillate quasi-cyclically at multiple and nested scales from annual to multi-millennial, and commonly change abruptly. Under naturally changing climates, plant species track changes at all scales in individualistic manner, with plant communities...
Climate Research by K-12 Students: Can They Do It? Will Anybody Care?
NASA Astrophysics Data System (ADS)
Brooks, D. R.
2011-12-01
Starting from the premise that engaging students in authentic science research is an activity that benefits science education in general, it is first necessary to consider whether students, in collaboration with teachers and climate scientists, can do climate-related research that actually has scientific value. A workshop held in November 2010, co-sponsored by NSF and NOAA, addressed this question. It took as its starting point this "scientific interest" test: "If students conduct a climate-related research project according to protocols designed in collaboration with climate scientists, when they get done, will any of those scientists care whether they did it or not?" If the answer to this question is "yes," then the project may constitute authentic research, but if the answer is "no," then the project may have educational value, but it is not research. This test is important because only when climate scientists (and other stakeholders interested in climate and climate change) are invested in the outcomes of student research will meaningful student research programs with sustainable support be forthcoming. The absence of climate-related projects in high-level student science fair competitions indicates that, currently, the investment and infrastructure required to support student climate research is lacking. As a result, climate science is losing the battle for the "hearts and minds" of today's best students. The critical task for student climate research is to define projects that are theoretically and practically accessible. This excludes the "big questions" of climate science, such as "Is Earth getting warmer?", but includes many observationally based projects that can help to refine our understanding of climate and climate change. The characteristics of collaborative climate research with students include: 1. carefully drawn distinctions between inquiry-based "learning about" activities and actual research; 2. an identified audience of potential stakeholders who will care about the results of the research; 3. clearly defined expectations, logistics, and outcomes for all participants. Some examples of appropriate data-based research topics include: 1. monitoring black carbon, atmospheric aerosols, and water vapor; 2. pyranometry at sufficiently high temporal resolution to study cloud patterns; 3. urban heat island and other microclimate effects; 4. monitoring benthic habitats and seafloor temperatures; 5. monitoring free-floating ocean buoys to help in the establishment of mobile marine sanctuaries; 6. monitoring surface reflectivity to generate highly localized normalized difference vegetation indices; 7. tracking habitats for vector-borne disease carriers in developing countries. Both education and science communities need to work harder to support student climate research. Educational institutions must build authentic student research into their mission statements. Scientists need to be more aware of the constraints under which teachers and their students must operate on a day-to-day basis. But, students can participate in authentic climate research if educators and scientists expect them to do real research, are honest with them about what is required to do real research, and are willing to provide persistent ongoing support.
Casajus, Nicolas; Périé, Catherine; Logan, Travis; Lambert, Marie-Claude; de Blois, Sylvie; Berteaux, Dominique
2016-01-01
An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one. PMID:27015274
Casajus, Nicolas; Périé, Catherine; Logan, Travis; Lambert, Marie-Claude; de Blois, Sylvie; Berteaux, Dominique
2016-01-01
An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one.
Interactions of Mean Climate Change and Climate Variability on Food Security Extremes
NASA Technical Reports Server (NTRS)
Ruane, Alexander C.; McDermid, Sonali; Mavromatis, Theodoros; Hudson, Nicholas; Morales, Monica; Simmons, John; Prabodha, Agalawatte; Ahmad, Ashfaq; Ahmad, Shakeel; Ahuja, Laj R.
2015-01-01
Recognizing that climate change will affect agricultural systems both through mean changes and through shifts in climate variability and associated extreme events, we present preliminary analyses of climate impacts from a network of 1137 crop modeling sites contributed to the AgMIP Coordinated Climate-Crop Modeling Project (C3MP). At each site sensitivity tests were run according to a common protocol, which enables the fitting of crop model emulators across a range of carbon dioxide, temperature, and water (CTW) changes. C3MP can elucidate several aspects of these changes and quantify crop responses across a wide diversity of farming systems. Here we test the hypothesis that climate change and variability interact in three main ways. First, mean climate changes can affect yields across an entire time period. Second, extreme events (when they do occur) may be more sensitive to climate changes than a year with normal climate. Third, mean climate changes can alter the likelihood of climate extremes, leading to more frequent seasons with anomalies outside of the expected conditions for which management was designed. In this way, shifts in climate variability can result in an increase or reduction of mean yield, as extreme climate events tend to have lower yield than years with normal climate.C3MP maize simulations across 126 farms reveal a clear indication and quantification (as response functions) of mean climate impacts on mean yield and clearly show that mean climate changes will directly affect the variability of yield. Yield reductions from increased climate variability are not as clear as crop models tend to be less sensitive to dangers on the cool and wet extremes of climate variability, likely underestimating losses from water-logging, floods, and frosts.
PMP Estimations at Sparsely Controlled Andinian Basins and Climate Change Projections
NASA Astrophysics Data System (ADS)
Lagos Zúñiga, M. A.; Vargas, X.
2012-12-01
Probable Maximum Precipitation (PMP) estimation implies an extensive review of hydrometeorological data and understandig of precipitation formation processes. There exists different methodology processes that apply for their estimations and all of them require a good spatial and temporal representation of storms. The estimation of hydrometeorological PMP on sparsely controlled basins is a difficult task, specially if the studied area has an important orographic effect due to mountains and the mixed precipitation occurrence in the most several storms time period, the main task of this study is to propose and estimate PMP in a sparsely controlled basin, affected by abrupt topography and mixed hidrology basin; also analyzing statystic uncertainties estimations and possible climate changes effects in its estimation. In this study the PMP estimation under statistical and hydrometeorological aproaches (watershed-based and traditional depth area duration analysis) was done in a semi arid zone at Puclaro dam in north Chile. Due to the lack of good spatial meteorological representation at the study zone, we propose a methodology to consider the orographic effects of Los Andes due to orographic effects patterns based in a RCM PRECIS-DGF and annual isoyetal maps. Estimations were validated with precipitation patterns for given winters, considering snow route and rainfall gauges at the preferencial wind direction, finding good results. The estimations are also compared with the highest areal storms in USA, Australia, India and China and with frequency analysis in local rain gauge stations in order to decide about the most adequate approach for the study zone. Climate change projections were evaluated with ECHAM5 GCM model, due to its good quality representation in the seasonality and the magnitude of meteorological variables. Temperature projections, for 2040-2065 period, show that there would be a rise in the catchment contributing area that would lead to an increase of the average liquid precipitation over the basin. Temperature projections would also affect the maximization factors in the calculation of the PMP, increasing it up to 126.6% and 62.5% in scenarios A2 and B1, respectively. These projections are important to be studied due to the implications of PMP in hydrologic design of great hydraulic works as Probable Maximum Flood (PMF). We propose that the methodology presented in this study could be also used in other basins of similar characteristics.
Climate Change, Climate Justice, and Environmental Health: Implications for the Nursing Profession.
Nicholas, Patrice K; Breakey, Suellen
2017-11-01
Climate change is an emerging challenge linked to negative outcomes for the environment and human health. Since the 1960s, there has been a growing recognition of the need to address climate change and the impact of greenhouse gas emissions implicated in the warming of our planet. There are also deleterious health outcomes linked to complex climate changes that are emerging in the 21st century. This article addresses the social justice issues associated with climate change and human health and discussion of climate justice. Discussion paper. A literature search of electronic databases was conducted for articles, texts, and documents related to climate change, climate justice, and human health. The literature suggests that those who contribute least to global warming are those who will disproportionately be affected by the negative health outcomes of climate change. The concept of climate justice and the role of the Mary Robinson Foundation-Climate Justice are discussed within a framework of nursing's professional responsibility and the importance of social justice for the world's people. The nursing profession must take a leadership role in engaging in policy and advocacy discussions in addressing the looming problems associated with climate change. Nursing organizations have adopted resolutions and engaged in leadership roles to address climate change at the local, regional, national, and global level. It is essential that nurses embrace concepts related to social justice and engage in the policy debate regarding the deleterious effects on human health related to global warming and climate change. Nursing's commitment to social justice offers an opportunity to offer significant global leadership in addressing the health implications related to climate change. Recognizing the negative impacts of climate change on well-being and the underlying socioeconomic reasons for their disproportionate and inequitable distribution can expand and optimize the profession's role in education, practice, research, and policy-making efforts to address climate change. © 2017 Sigma Theta Tau International.
ERIC Educational Resources Information Center
Chepko, Stevie; Doan, Robert
2015-01-01
This article focuses on establishing a mastery climate where all students find success and start on the road to physical literacy. Using a five-step approach, physical educators will be offered guidance for developing practice tasks that lead to skill mastery. These steps include creating a mastery environment, designing deliberate practice tasks,…
NASA Astrophysics Data System (ADS)
Zebisch, Marc; Schneiderbauer, Stefan; Petitta, Marcello
2015-04-01
In the last decade the scope of climate change science has broadened significantly. 15 years ago the focus was mainly on understanding climate change, providing climate change scenarios and giving ideas about potential climate change impacts. Today, adaptation to climate change has become an increasingly important field of politics and one role of science is to inform and consult this process. Therefore, climate change science is not anymore focusing on data driven approaches only (such as climate or climate impact models) but is progressively applying and relying on qualitative approaches including opinion and expertise acquired through interactive processes with local stakeholders and decision maker. Furthermore, climate change science is facing the challenge of normative questions, such us 'how important is a decrease of yield in a developed country where agriculture only represents 3% of the GDP and the supply with agricultural products is strongly linked to global markets and less depending on local production?'. In this talk we will present examples from various applied research and consultancy projects on climate change vulnerabilities including data driven methods (e.g. remote sensing and modelling) to semi-quantitative and qualitative assessment approaches. Furthermore, we will discuss bottlenecks, pitfalls and opportunities in transferring climate change science to policy and decision maker oriented climate services.
Climate change refugia as a tool for climate adaptation
Climate change refugia, areas relatively buffered from contemporary climate change so as to increase persistence of valued physical, ecological, and cultural resources, are considered as potential adaptation options in the face of anthropogenic climate change. In a collaboration ...
Inadvertent Weather Modification in Urban Areas: Lessons for Global Climate Change.
NASA Astrophysics Data System (ADS)
Changnon, Stanley A.
1992-05-01
Large metropolitan areas in North America, home to 65% of the nation's population, have created major changes in their climates over the past 150 years. The rate and amount of the urban climate change approximate those being predicted globally using climate models. Knowledge of urban weather and climate modification holds lessons for the global climate change issue. First, adjustments to urban climate changes can provide guidance for adjusting to global change. A second lesson relates to the difficulty but underscores the necessity of providing scientifically credible proof of change within the noise of natural climatic variability. The evolution of understanding about how urban conditions influence weather reveals several unexpected outcomes, particularly relating to precipitation changes. These suggest that similar future surprises can be expected in a changed global climate, a third lesson. In-depth studies of how urban climate changes affected the hydrologic cycle, the regional economy, and human activities were difficult because of data problems, lack of impact methodology, and necessity for multi disciplinary investigations. Similar impact studies for global climate change will require diverse scientific talents and funding commitments adequate to measure the complexity of impacts and human adjustments. Understanding the processes whereby urban areas and other human activities have altered the atmosphere and changed clouds and precipitation regionally appears highly relevant to the global climate-change issue. Scientific and governmental policy development needs to recognize an old axiom that became evident in the studies of inadvertent urban and regional climate change and their behavioral implications: Think globally but act locally. Global climate change is an international issue, and the atmosphere must be treated globally. But the impacts and the will to act and adjust will occur regionally.
ERIC Educational Resources Information Center
Dal, Burçkin; Alper, Umut; Özdem-Yilmaz, Yasemin; Öztürk, Nilay; Sönmez, Duygu
2015-01-01
Public awareness of the negative effects of climate change is vital since it leads to collective action for prevention and adaptation. However, investigations on to what extent people are aware of the climate change issue are rare in the literature. The present study reported the adaptation process of awareness to climate change questionnaire into…
A roadmap to effective urban climate change adaptation
NASA Astrophysics Data System (ADS)
Setiadi, R.
2018-03-01
This paper outlines a roadmap to effective urban climate change adaptation built from our practical understanding of the evidence and effects of climate change and the preparation of climate change adaptation strategies and plans. This roadmap aims to drive research in achieving fruitful knowledge and solution-based achievable recommendations in adapting to climate change in urban areas with effective and systematic manner. This paper underscores the importance of the interplay between local government initiatives and a national government for effective adaptation to climate change and takes into account the policy process and politics. This paper argues that effective urban climate change adaptation has a contribution to build urban resilience and helps the achievement of national government goals and targets in climate change adaptation.
Links between media communication and local perceptions of climate change in an indigenous society
Fernández-Llamazares, Álvaro; Méndez-López, María Elena; Díaz-Reviriego, Isabel; McBride, Marissa F.; Pyhälä, Aili; Rosell-Melé, Antoni; Reyes-García, Victoria
2015-01-01
Indigenous societies hold a great deal of ethnoclimatological knowledge that could potentially be of key importance for both climate change science and local adaptation; yet, we lack studies examining how such knowledge might be shaped by media communication. This study systematically investigates the interplay between local observations of climate change and the reception of media information amongst the Tsimane’, an indigenous society of Bolivian Amazonia where the scientific discourse of anthropogenic climate change has barely reached. Specifically, we conducted a Randomized Evaluation with a sample of 424 household heads in 12 villages to test to what degree local accounts of climate change are influenced by externally influenced awareness. We randomly assigned villages to a treatment and control group, conducted workshops on climate change with villages in the treatment group, and evaluated the effects of information dissemination on individual climate change perceptions. Results of this work suggest that providing climate change information through participatory workshops does not noticeably influence individual perceptions of climate change. Such findings stress the challenges involved in translating between local and scientific framings of climate change, and gives cause for concern about how to integrate indigenous peoples and local knowledge with global climate change policy debates. PMID:26166919
Proximity to coast is linked to climate change belief.
Milfont, Taciano L; Evans, Laurel; Sibley, Chris G; Ries, Jan; Cunningham, Andrew
2014-01-01
Psychologists have examined the many psychological barriers to both climate change belief and concern. One barrier is the belief that climate change is too uncertain, and likely to happen in distant places and times, to people unlike oneself. Related to this perceived psychological distance of climate change, studies have shown that direct experience of the effects of climate change increases climate change concern. The present study examined the relationship between physical proximity to the coastline and climate change belief, as proximity may be related to experiencing or anticipating the effects of climate change such as sea-level rise. We show, in a national probability sample of 5,815 New Zealanders, that people living in closer proximity to the shoreline expressed greater belief that climate change is real and greater support for government regulation of carbon emissions. This proximity effect held when adjusting for height above sea level and regional poverty. The model also included individual differences in respondents' sex, age, education, political orientation, and wealth. The results indicate that physical place plays a role in the psychological acceptance of climate change, perhaps because the effects of climate change become more concrete and local.
Links between media communication and local perceptions of climate change in an indigenous society.
Fernández-Llamazares, Álvaro; Méndez-López, María Elena; Díaz-Reviriego, Isabel; McBride, Marissa F; Pyhälä, Aili; Rosell-Melé, Antoni; Reyes-García, Victoria
2015-07-01
Indigenous societies hold a great deal of ethnoclimatological knowledge that could potentially be of key importance for both climate change science and local adaptation; yet, we lack studies examining how such knowledge might be shaped by media communication. This study systematically investigates the interplay between local observations of climate change and the reception of media information amongst the Tsimane', an indigenous society of Bolivian Amazonia where the scientific discourse of anthropogenic climate change has barely reached. Specifically, we conducted a Randomized Evaluation with a sample of 424 household heads in 12 villages to test to what degree local accounts of climate change are influenced by externally influenced awareness. We randomly assigned villages to a treatment and control group, conducted workshops on climate change with villages in the treatment group, and evaluated the effects of information dissemination on individual climate change perceptions. Results of this work suggest that providing climate change information through participatory workshops does not noticeably influence individual perceptions of climate change. Such findings stress the challenges involved in translating between local and scientific framings of climate change, and gives cause for concern about how to integrate indigenous peoples and local knowledge with global climate change policy debates.
Lee, Yung-Jaan; Tung, Chuan-Ming; Lin, Shih-Chien
2018-02-08
Issues that are associated with climate change have global importance. Most related studies take a national or regional perspective on the impact of climate change. Taiwan is constrained by its geographical conditions, which increase its vulnerability to climate change, especially in its western coastal areas. The county that is most affected by climate change is Yunlin. In 2013-2014, projects that were sponsored by Taiwan's government analyzed the relationship among synthesized vulnerability, ecological footprint (EF) and adaptation to climate change and proposed 15 categories of synthesized vulnerability and EF values. This study further examines the relationship between vulnerability and EF values and examines how residents of four townships-Linnei, Sihu, Mailiao, and Huwei-cope with the effects of climate change. This study investigates whether the residents of the four townships vary in their attitudes to climate change, their perceptions of disaster risk, and their behavioral intentions with respect to coping with climate change. The structural equation model (SEM) is used to examine the relationships among attitudes to climate change, perceptions of disaster risk, and the behavioral intentions of residents in townships with various vulnerabilities to climate change. The results that are obtained using the SEM reveal that climate change mitigation/adaptation behavior is affected by attitudes to climate change and perceptions of disaster risk. However, the effects of attitudes and perceptions on mitigation and adaptation that are mediated by place attachment are not statistically significant.
Application of Inverse Modeling to Estimate Groundwater Recharge under Future Climate Scenario
NASA Astrophysics Data System (ADS)
Akbariyeh, S.; Wang, T.; Bartelt-Hunt, S.; Li, Y.
2016-12-01
Climate variability and change will impose profound influences on groundwater systems. Accurate estimation of groundwater recharge is extremely important for predicting the flow and contaminant transport in the subsurface, which, however, remains as one of the most challenging tasks in the field of hydrology. Using an inverse modeling technique and HYDRUS 1D software, we predicted the spatial distribution of groundwater recharge across the Upper Platte basin in Nebraska, USA, based on 5-year projected future climate and soil moisture data (2057-2060). The climate data was obtained from Weather Research and Forecasting (WRF) model under RCP 8.5 scenario, which was downscaled from global CCSM4 model to a resolution of 24 by 24 km2. Precipitation, potential evapotranspiration, and soil moisture data were extracted from 76 grids located within the Upper Platte basin to perform the inverse modeling. Hargreaves equation was used to calculate the potential evapotranspiration according to latitude, maximum and minimum temperature, and leaf area index (LAI) data at each node. Van-Genuchten parameters were optimized using the inverse algorithm to minimize the error between input and modeled soil moisture data. The groundwater recharge was calculated as the amount of water that passed the lower boundary of the best fitted model. The year of 2057 was used as a spin-up period to minimize the impact of initial conditions. The model was calibrated for years 2058 to 2059 and validation was performed for 2060. This work demonstrates an efficient approach to estimating groundwater recharge based on climate modeling results, which will aid groundwater resources management under future climate scenarios.
Using Local Stories as a Call to Action on Climate Change Adaptation and Mitigation in Minnesota
NASA Astrophysics Data System (ADS)
Phipps, M.
2015-12-01
Climate Generation: A Will Steger Legacy and the University of Minnesota's Regional Sustainability Development Partnerships (RSDP) have developed a novel approach to engaging rural Minnesotans on climate change issues. Through the use of personal, local stories about individuals' paths to action to mitigate and or adapt to climate change, Climate Generation and RSDP aim to spur others to action. Minnesota's Changing Climate project includes 12 Climate Convenings throughout rural Minnesota in a range of communities (tourism-based, agrarian, natural resources-based, university towns) to engage local populations in highly local conversations about climate change, its local impacts, and local solutions currently occurring. Climate Generation and RSDP have partnered with Molly Phipps Consulting to evaluate the efficacy of this approach in rural Minnesota. Data include pre and post convening surveys examining participants' current action around climate change, attitudes toward climate change (using questions from Maibach, Roser-Renouf, and Leiserowitz, 2009), and the strength of their social network to support their current and ongoing work toward mitigating and adapting to climate change. Although the Climate Convenings are tailored to each community, all include a resource fair of local organizations already engaging in climate change mitigation and adaptation activities which participants can participate in, a welcome from a trusted local official, a presentation on the science of climate change, sharing of local climate stories, and break-out groups where participants can learn how to get involved in a particular mitigation or adaptation strategy. Preliminary results have been positive: participants feel motivated to work toward mitigating and adapting to climate change, and more local stories have emerged that can be shared in follow-up webinars and on a project website to continue to inspire others to act.
Challenges and Opportunities for Advancing Work on Climate Change and Public Health.
Gould, Solange; Rudolph, Linda
2015-12-09
Climate change poses a major threat to public health. Strategies that address climate change have considerable potential to benefit health and decrease health inequities, yet public health engagement at the intersection of public health, equity, and climate change has been limited. This research seeks to understand the barriers to and opportunities for advancing work at this nexus. We conducted semi-structured in-depth interviews (N = 113) with public health and climate change professionals and thematic analysis. Barriers to public health engagement in addressing climate change include individual perceptions that climate change is not urgent or solvable and insufficient understanding of climate change's health impacts and programmatic connections. Institutional barriers include a lack of public health capacity, authority, and leadership; a narrow framework for public health practice that limits work on the root causes of climate change and health; and compartmentalization within and across sectors. Opportunities include integrating climate change into current public health practice; providing inter-sectoral support for climate solutions with health co-benefits; and using a health frame to engage and mobilize communities. Efforts to increase public health sector engagement should focus on education and communications, building leadership and funding, and increasing work on the shared root causes of climate change and health inequities.
NASA Astrophysics Data System (ADS)
Nkhonjera, German K.; Dinka, Megersa O.
2017-11-01
This paper considers the extent and usefulness of reviewing existing literature on the significance of direct and indirect impacts of climate change on groundwater resources with emphasis on examples from the Olifants River basin. Here, the existing literature were extensively reviewed, with discussions centred mainly on the impacts of climate change on groundwater resources and challenges in modelling climate change impacts on groundwater resources. Since in the hydrological cycle, the hydrological components such as evaporation, temperature, precipitation, and groundwater, are the major drivers of the present and future climate, a detailed discussion is done on the impact of climate change on these hydrological components to determine to what extent the hydrological cycle has already been affected as a result of climate change. The uncertainties, constraints and limitations in climate change research have also been reviewed. In addition to the research gaps discussed here, the emphasis on the need of extensive climate change research on the continent, especially as climate change impacts on groundwater, is discussed. Overall, the importance of conducting further research in climate change, understanding the significance of the impact of climate change on water resources such as groundwater, and taking actions to effectively meet the adaptation needs of the people, emerge as an important theme in this review.
Climate change and vector-borne diseases of public health significance.
Ogden, Nicholas H
2017-10-16
There has been much debate as to whether or not climate change will have, or has had, any significant effect on risk from vector-borne diseases. The debate on the former has focused on the degree to which occurrence and levels of risk of vector-borne diseases are determined by climate-dependent or independent factors, while the debate on the latter has focused on whether changes in disease incidence are due to climate at all, and/or are attributable to recent climate change. Here I review possible effects of climate change on vector-borne diseases, methods used to predict these effects and the evidence to date of changes in vector-borne disease risks that can be attributed to recent climate change. Predictions have both over- and underestimated the effects of climate change. Mostly under-estimations of effects are due to a focus only on direct effects of climate on disease ecology while more distal effects on society's capacity to control and prevent vector-borne disease are ignored. There is increasing evidence for possible impacts of recent climate change on some vector-borne diseases but for the most part, observed data series are too short (or non-existent), and impacts of climate-independent factors too great, to confidently attribute changing risk to climate change. © Crown copyright 2017.
Climate change: believing and seeing implies adapting.
Blennow, Kristina; Persson, Johannes; Tomé, Margarida; Hanewinkel, Marc
2012-01-01
Knowledge of factors that trigger human response to climate change is crucial for effective climate change policy communication. Climate change has been claimed to have low salience as a risk issue because it cannot be directly experienced. Still, personal factors such as strength of belief in local effects of climate change have been shown to correlate strongly with responses to climate change and there is a growing literature on the hypothesis that personal experience of climate change (and/or its effects) explains responses to climate change. Here we provide, using survey data from 845 private forest owners operating in a wide range of bio-climatic as well as economic-social-political structures in a latitudinal gradient across Europe, the first evidence that the personal strength of belief and perception of local effects of climate change, highly significantly explain human responses to climate change. A logistic regression model was fitted to the two variables, estimating expected probabilities ranging from 0.07 (SD ± 0.01) to 0.81 (SD ± 0.03) for self-reported adaptive measures taken. Adding socio-demographic variables improved the fit, estimating expected probabilities ranging from 0.022 (SD ± 0.008) to 0.91 (SD ± 0.02). We conclude that to explain and predict adaptation to climate change, the combination of personal experience and belief must be considered.
Patterns and biases in climate change research on amphibians and reptiles: a systematic review
2016-01-01
Climate change probably has severe impacts on animal populations, but demonstrating a causal link can be difficult because of potential influences by additional factors. Assessing global impacts of climate change effects may also be hampered by narrow taxonomic and geographical research foci. We review studies on the effects of climate change on populations of amphibians and reptiles to assess climate change effects and potential biases associated with the body of work that has been conducted within the last decade. We use data from 104 studies regarding the effect of climate on 313 species, from 464 species–study combinations. Climate change effects were reported in 65% of studies. Climate change was identified as causing population declines or range restrictions in half of the cases. The probability of identifying an effect of climate change varied among regions, taxa and research methods. Climatic effects were equally prevalent in studies exclusively investigating climate factors (more than 50% of studies) and in studies including additional factors, thus bolstering confidence in the results of studies exclusively examining effects of climate change. Our analyses reveal biases with respect to geography, taxonomy and research question, making global conclusions impossible. Additional research should focus on under-represented regions, taxa and questions. Conservation and climate policy should consider the documented harm climate change causes reptiles and amphibians. PMID:27703684
Asplund, Therese
2016-07-01
While previous research into understandings of climate change has usually examined general public perceptions, this study offers an audience-specific departure point. This article analyses how Swedish farmers perceive climate change and how they jointly shape their understandings. The agricultural sector is of special interest because it both contributes to and is directly affected by climate change. Through focus group discussions with Swedish farmers, this study finds that (1) farmers relate to and understand climate change through their own experiences, (2) climate change is understood either as a natural process subject to little or no human influence or as anthropogenic and (3) various communication tools contribute to the formation of natural and anthropogenic climate change frames. The article ends by discussing frame resonance and frame clash in public understanding of climate change and by comparing potential similarities and differences in how various segments of the public make sense of climate change. © The Author(s) 2014.
Palou, Pere; Ponseti, Francisco Javier; Cruz, Jaume; Vidal, Josep; Cantallops, Jaume; Borràs, Pere Antoni; Garcia-Mas, Alejandro
2013-08-01
The goal was to assess the relation between the acceptance of using gamesmanship and cheating in sports and the type of motivational climate created by coaches and parents. The sample consisted of 110 soccer, basketball, and handball players from the Balearic Islands competition (70 boys, 40 girls; M age = 14.7 yr., SD = 2.1, range 10-19). As for the motivational climate generated by coaches, task climate was negatively related to the acceptance of gamesmanship and cheating, but ego climate was related to higher acceptance. Motivational climate generated by parents was not related to acceptance of cheating or gamesmanship.
ERIC Educational Resources Information Center
Hibbs, Amber Campbell; Kahl, Daniel; PytlikZillig, Lisa; Champion, Ben; Abdel-Monem, Tarik; Steffensmeier, Timothy; Rice, Charles W.; Hubbard, Kenneth
2014-01-01
The Central Great Plains Climate Education Partnership conducted focus groups throughout Kansas to gain a better understanding of farmer perceptions and attitudes towards climate change education. Results indicate concern about climatic changes, even if producers are unsure that "human caused climate change" is occurring. Participants…
Tietjen, Britta; Schlaepfer, Daniel R; Bradford, John B; Lauenroth, William K; Hall, Sonia A; Duniway, Michael C; Hochstrasser, Tamara; Jia, Gensuo; Munson, Seth M; Pyke, David A; Wilson, Scott D
2017-07-01
Drylands occur worldwide and are particularly vulnerable to climate change because dryland ecosystems depend directly on soil water availability that may become increasingly limited as temperatures rise. Climate change will both directly impact soil water availability and change plant biomass, with resulting indirect feedbacks on soil moisture. Thus, the net impact of direct and indirect climate change effects on soil moisture requires better understanding. We used the ecohydrological simulation model SOILWAT at sites from temperate dryland ecosystems around the globe to disentangle the contributions of direct climate change effects and of additional indirect, climate change-induced changes in vegetation on soil water availability. We simulated current and future climate conditions projected by 16 GCMs under RCP 4.5 and RCP 8.5 for the end of the century. We determined shifts in water availability due to climate change alone and due to combined changes of climate and the growth form and biomass of vegetation. Vegetation change will mostly exacerbate low soil water availability in regions already expected to suffer from negative direct impacts of climate change (with the two RCP scenarios giving us qualitatively similar effects). By contrast, in regions that will likely experience increased water availability due to climate change alone, vegetation changes will counteract these increases due to increased water losses by interception. In only a small minority of locations, climate change-induced vegetation changes may lead to a net increase in water availability. These results suggest that changes in vegetation in response to climate change may exacerbate drought conditions and may dampen the effects of increased precipitation, that is, leading to more ecological droughts despite higher precipitation in some regions. Our results underscore the value of considering indirect effects of climate change on vegetation when assessing future soil moisture conditions in water-limited ecosystems. © 2017 John Wiley & Sons Ltd.
Tietjen, Britta; Schlaepfer, Daniel R.; Bradford, John B.; Laurenroth, William K.; Hall, Sonia A.; Duniway, Michael C.; Hochstrasser, Tamara; Jia, Gensuo; Munson, Seth M.; Pyke, David A.; Wilson, Scott D.
2017-01-01
Drylands occur world-wide and are particularly vulnerable to climate change since dryland ecosystems depend directly on soil water availability that may become increasingly limited as temperatures rise. Climate change will both directly impact soil water availability, and also change plant biomass, with resulting indirect feedbacks on soil moisture. Thus, the net impact of direct and indirect climate change effects on soil moisture requires better understanding.We used the ecohydrological simulation model SOILWAT at sites from temperate dryland ecosystems around the globe to disentangle the contributions of direct climate change effects and of additional indirect, climate change-induced changes in vegetation on soil water availability. We simulated current and future climate conditions projected by 16 GCMs under RCP 4.5 and RCP 8.5 for the end of the century. We determined shifts in water availability due to climate change alone and due to combined changes of climate and the growth form and biomass of vegetation.Vegetation change will mostly exacerbate low soil water availability in regions already expected to suffer from negative direct impacts of climate change (with the two RCP scenarios giving us qualitatively similar effects). By contrast, in regions that will likely experience increased water availability due to climate change alone, vegetation changes will counteract these increases due to increased water losses by interception. In only a small minority of locations, climate change induced vegetation changes may lead to a net increase in water availability. These results suggest that changes in vegetation in response to climate change may exacerbate drought conditions and may dampen the effects of increased precipitation, i.e. leading to more ecological droughts despite higher precipitation in some regions. Our results underscore the value of considering indirect effects of climate change on vegetation when assessing future soil moisture conditions in water-limited ecosystems.
A historical land use data set for the Holocene; HYDE 3.2
NASA Astrophysics Data System (ADS)
Klein Goldewijk, Kees
2016-04-01
Land use plays an important role in the climate system (Feddema et al., 2005). Many ecosystem processes are directly or indirectly climate driven, and together with human driven land use changes, they determine how the land surface will evolve through time. To assess the effects of land cover changes on the climate system, models are required which are capable of simulating interactions between the involved components of the Earth system (land, atmosphere, ocean, and carbon cycle). Since driving forces for global environmental change differ among regions, a geographically (spatially) explicit modeling approach is called for, so that it can be incorporated in global and regional (climate and/or biophysical) change models in order to enhance our understanding of the underlying processes and thus improving future projections. Integrated records of the co-evolving human-environment system over millennia are needed to provide a basis for a deeper understanding of the present and for forecasting the future. This requires the major task of assembling and integrating regional and global historical, archaeological, and paleo-environmental records. Humans cannot predict the future. But, if we can adequately understand the past, we can use that understanding to influence our decisions and to create a better, more sustainable and desirable future. Some researchers suggest that mankind has shifted from living in the Holocene (~emergence of agriculture) into the Anthropocene (~humans capable of changing the Earth' atmosphere) since the start of the Industrial Revolution. But in the light of the sheer size and magnitude of some historical land use changes (e.g. collapse of the Roman Empire in the 4th century, the depopulation of Europe due to the Black Plague in the 14th century and the aftermath of the colonization of the Americas in the 16th century), some believe that this point might have occurred earlier in time (Ruddiman, 2003; Kaplan et al., 2010). Many uncertainties still remain today and gaps in our knowledge of the Antiquity and its aftermath can only be improved by interdisciplinary research, of which some examples will be given. Here I will present the latest update (v 3.2) of the History Database of the Global Environment (HYDE) (Klein Goldewijk et al., 2011) with new quantitative estimates of the underlying demographic and agricultural developments for the Holocene. References Feddema, J.J., Oleson, K.W., Bonan, G.B., Mearns, L.O., Buja, L.E., Meehl, G.A. & Washington, W.M. (2005) Atmospheric science: The importance of land-cover change in simulating future climates. Science, 310, 1674-1678. Kaplan, J.O., Krumhardt, K.M., Ellis, E.C., Ruddiman, W.F., Lemmen, C. & Klein Goldewijk, K. (2010) Holocene carbon emissions as a result of anthropogenic land cover change. The Holocene, 20, doi:10.1177/0959683610386983 Klein Goldewijk, K., Beusen, A., van Drecht, G. & de Vos, M. (2011) The HYDE 3.1 spatially explicit database of human induced land use change over the past 12,000 years. Global Ecology and Biogeography, 20, 73-86. Ruddiman, W.F. (2003) The anthropogenic greenhouse era began thousands of years ago. Climatic Change, 61, 261-293.
Understanding global climate change scenarios through bioclimate stratification
NASA Astrophysics Data System (ADS)
Soteriades, A. D.; Murray-Rust, D.; Trabucco, A.; Metzger, M. J.
2017-08-01
Despite progress in impact modelling, communicating and understanding the implications of climatic change projections is challenging due to inherent complexity and a cascade of uncertainty. In this letter, we present an alternative representation of global climate change projections based on shifts in 125 multivariate strata characterized by relatively homogeneous climate. These strata form climate analogues that help in the interpretation of climate change impacts. A Random Forests classifier was calculated and applied to 63 Coupled Model Intercomparison Project Phase 5 climate scenarios at 5 arcmin resolution. Results demonstrate how shifting bioclimate strata can summarize future environmental changes and form a middle ground, conveniently integrating current knowledge of climate change impact with the interpretation advantages of categorical data but with a level of detail that resembles a continuous surface at global and regional scales. Both the agreement in major change and differences between climate change projections are visually combined, facilitating the interpretation of complex uncertainty. By making the data and the classifier available we provide a climate service that helps facilitate communication and provide new insight into the consequences of climate change.
2018-01-01
Background Water level fluctuations in endorheic lakes are highly susceptible to even slight changes in climate and land use. Devils Lake (DL) in North Dakota, USA is an endorheic system that has undergone multi-decade flooding driven by changes in regional climate. Flooding mitigation strategies have centered on the release of lake water to a nearby river system through artificial outlets, resulting in legal challenges and environmental concerns related to water quality, downstream flooding, species migration, stakeholder opposition, and transboundary water conflicts between the US and Canada. Despite these drawbacks, running outlets would result in low overspill risks in the next 30 years. Methods In this study we evaluated the efficacy of this outlet-based mitigation strategy under scenarios based on the latest IPCC future climate projections. We used the Coupled Model Intercomparison Project CMIP-5 weather patterns from 17 general circulation models (GCMs) obtained under four representative concentration pathways (RCP) scenarios and downscaled to the DL region. Then, we simulated the changes in lake water levels using the soil and water assessment tool based hydrological model of the watershed. We estimated the probability of future flood risks under those scenarios and compared those with previously estimated overspill risks under the CMIP-3 climate. Results The CMIP-5 ensemble projected a mean annual temperature of 5.78 °C and mean daily precipitation of 1.42 mm/day; both are higher than the existing CMIP-3 future estimates of 4.98 °C and 1.40 mm/day, respectively. The increased precipitation and higher temperature resulted in a significant increase of DL’s overspill risks: 24.4–47.1% without release from outlets and 3.5–14.4% even if the outlets are operated at their combined full 17 m3/s capacity. Discussion The modeled increases in overspill risks indicate a greater frequency of water releases through the artificial outlets. Future risk mitigation management should include providing a flood warning signal to local resource managers, and tasking policy makers to identify additional solution measures such as land use management in the upper watershed to mitigate DL’s flooding. PMID:29736343
Kharel, Gehendra; Kirilenko, Andrei
2018-01-01
Water level fluctuations in endorheic lakes are highly susceptible to even slight changes in climate and land use. Devils Lake (DL) in North Dakota, USA is an endorheic system that has undergone multi-decade flooding driven by changes in regional climate. Flooding mitigation strategies have centered on the release of lake water to a nearby river system through artificial outlets, resulting in legal challenges and environmental concerns related to water quality, downstream flooding, species migration, stakeholder opposition, and transboundary water conflicts between the US and Canada. Despite these drawbacks, running outlets would result in low overspill risks in the next 30 years. In this study we evaluated the efficacy of this outlet-based mitigation strategy under scenarios based on the latest IPCC future climate projections. We used the Coupled Model Intercomparison Project CMIP-5 weather patterns from 17 general circulation models (GCMs) obtained under four representative concentration pathways (RCP) scenarios and downscaled to the DL region. Then, we simulated the changes in lake water levels using the soil and water assessment tool based hydrological model of the watershed. We estimated the probability of future flood risks under those scenarios and compared those with previously estimated overspill risks under the CMIP-3 climate. The CMIP-5 ensemble projected a mean annual temperature of 5.78 °C and mean daily precipitation of 1.42 mm/day; both are higher than the existing CMIP-3 future estimates of 4.98 °C and 1.40 mm/day, respectively. The increased precipitation and higher temperature resulted in a significant increase of DL's overspill risks: 24.4-47.1% without release from outlets and 3.5-14.4% even if the outlets are operated at their combined full 17 m 3 /s capacity. The modeled increases in overspill risks indicate a greater frequency of water releases through the artificial outlets. Future risk mitigation management should include providing a flood warning signal to local resource managers, and tasking policy makers to identify additional solution measures such as land use management in the upper watershed to mitigate DL's flooding.
A "Carbon Reduction Challenge" as tool for undergraduate engagement on climate change
NASA Astrophysics Data System (ADS)
Cobb, K. M.; Toktay, B.
2017-12-01
Institutions of higher education must meet the challenges of educating the generation that must make significant progress towards stabilizing atmospheric greenhouse gases. However, the interdisciplinary nature of the climate change problem, and the fact that solutions will necessarily involve manipulating natural systems, advancing energy technologies, and developing innovative policy instruments means that traditional disciplinary tracks are not well-suited for the task. Furthermore, institutions must not only equip students with fundamental knowledge about climate and energy, but they must empower a generation of students to become part of the climate change solution. Here we present the cumulative results of the `Carbon Reduction Challenge' - a team-based competition to reduce CO2 that is conducted in an interdisciplinary undergraduate class called "Energy, the Environment, and Society" at Georgia Institute of Technology. Working with 30 undergraduate students from all years and all majors, we demonstrate how student teams move through a highly-structured timeline of deliverables towards achieving their team's end-of-semester goals. We discuss the importance of student creativity, ingenuity, initiative, and perseverance in achieving project outcomes, which in 2017 topped 5 million pounds of CO2 reductions - the all-time record for the class. Student-driven reductions on a year-to-year basis track an exponential growth curve through time. Based on the success of a pilot Carbon Reduction Challenge conducted in the summer of 2017, we present evidence that student-led partnerships with large corporations represents the area of largest potential for student success. Such partnerships deliver significant value added to students (professional conduct, on-the-job training, networking), the corporate partner (cost savings, talent recruitment, and public relations), and to the higher education institution (corporate relations contacts). In summary, the Carbon Reduction Challenge represents a solutions-oriented, hands-on, project-based learning tool that has achieved significant pedagogical benefits while delivering real-world carbon reductions and cost savings to community stakeholders.
Integrating social capacity into risk reduction strategies
NASA Astrophysics Data System (ADS)
Schneiderbauer, S.; Pedoth, L.; Zebisch, M.
2012-04-01
The reduction of risk to impacts from external stresses and shocks is an important task in communities worldwide at all government levels and independent of the development status. The importance of building social capacity as part of risk reduction strategies is increasingly recognized. However, there is space for improvement to incorporate related activities into a holistic risk governance approach. Starting point for such enhancements is to promote and improve assessments of what is called 'sensitivity' or 'adaptive capacity' in the climate change community and what is named 'vulnerability' or 'resilience' in the hazard risk community. Challenging issues that need to be tackled in this context are the integration of concepts and method as well as the fusion of data. Against this background we introduce a method to assess regional adaptive capacity to climate change focusing on mountain areas accounting for sector specific problems. By considering three levels of specificity as base for the selection of most appropriate indicators the study results have the potential to support decision making regarding most appropriate adaptation actions. Advantages and shortcomings of certain aspects of adaptive capacity assessment in general and of the proposed method in particular are presented.
Allometric growth in reef-building corals.
Dornelas, Maria; Madin, Joshua S; Baird, Andrew H; Connolly, Sean R
2017-03-29
Predicting demographic rates is a critical part of forecasting the future of ecosystems under global change. Here, we test if growth rates can be predicted from morphological traits for a highly diverse group of colonial symbiotic organisms: scleractinian corals. We ask whether growth is isometric or allometric among corals, and whether most variation in coral growth rates occurs at the level of the species or morphological group. We estimate growth as change in planar area for 11 species, across five morphological groups and over 5 years. We show that coral growth rates are best predicted from colony size and morphology rather than species. Coral size follows a power scaling law with a constant exponent of 0.91. Despite being colonial organisms, corals have consistent allometric scaling in growth. This consistency simplifies the task of projecting community responses to disturbance and climate change. © 2017 The Author(s).
Abrupt climate change: can society cope?
Hulme, Mike
2003-09-15
Consideration of abrupt climate change has generally been incorporated neither in analyses of climate-change impacts nor in the design of climate adaptation strategies. Yet the possibility of abrupt climate change triggered by human perturbation of the climate system is used to support the position of both those who urge stronger and earlier mitigative action than is currently being contemplated and those who argue that the unknowns in the Earth system are too large to justify such early action. This paper explores the question of abrupt climate change in terms of its potential implications for society, focusing on the UK and northwest Europe in particular. The nature of abrupt climate change and the different ways in which it has been defined and perceived are examined. Using the example of the collapse of the thermohaline circulation (THC), the suggested implications for society of abrupt climate change are reviewed; previous work has been largely speculative and has generally considered the implications only from economic and ecological perspectives. Some observations about the implications from a more social and behavioural science perspective are made. If abrupt climate change simply implies changes in the occurrence or intensity of extreme weather events, or an accelerated unidirectional change in climate, the design of adaptation to climate change can proceed within the existing paradigm, with appropriate adjustments. Limits to adaptation in some sectors or regions may be reached, and the costs of appropriate adaptive behaviour may be large, but strategy can develop on the basis of a predicted long-term unidirectional change in climate. It would be more challenging, however, if abrupt climate change implied a directional change in climate, as, for example, may well occur in northwest Europe following a collapse of the THC. There are two fundamental problems for society associated with such an outcome: first, the future changes in climate currently being anticipated and prepared for may reverse and, second, the probability of such a scenario occurring remains fundamentally unknown. The implications of both problems for climate policy and for decision making have not been researched. It is premature to argue therefore that abrupt climate change - in the sense referred to here - imposes unacceptable costs on society or the world economy, represents a catastrophic impact of climate change or constitutes a dangerous change in climate that should be avoided at all reasonable cost. We conclude by examining the implications of this contention for future research and policy formation.
Global synthesis of the documented and projected effects of climate change on inland fishes
Myers, Bonnie; Lynch, Abigail; Bunnell, David; Chu, Cindy; Falke, Jeffrey A.; Kovach, Ryan; Krabbenhoft, Trevor J.; Kwak, Thomas J.; Paukert, Craig P.
2017-01-01
Although climate change is an important factor affecting inland fishes globally, a comprehensive review of how climate change has impacted and will continue to impact inland fishes worldwide does not currently exist. We conducted an extensive, systematic primary literature review to identify English-language, peer-reviewed journal publications with projected and documented examples of climate change impacts on inland fishes globally. Since the mid-1980s, scientists have projected the effects of climate change on inland fishes, and more recently, documentation of climate change impacts on inland fishes has increased. Of the thousands of title and abstracts reviewed, we selected 624 publications for a full text review: 63 of these publications documented an effect of climate change on inland fishes, while 116 publications projected inland fishes’ response to future climate change. Documented and projected impacts of climate change varied, but several trends emerged including differences between documented and projected impacts of climate change on salmonid abundance (P = 0.0002). Salmonid abundance decreased in 89.5% of documented effects compared to 35.7% of projected effects, where variable effects were more commonly reported (64.3%). Studies focused on responses of salmonids (61% of total) to climate change in North America and Europe, highlighting major gaps in the literature for taxonomic groups and geographic focus. Elucidating global patterns and identifying knowledge gaps of climate change effects on inland fishes will help managers better anticipate local changes in fish populations and assemblages, resulting in better development of management plans, particularly in systems with little information on climate change effects on fish.
Arimi, Kayode S
2014-05-01
Undesirable impacts of climate change have been a common occurrence that has made fish farmers in developing countries adopt some climate-change adaptation strategies. However, little is known about determinants of climate-change adaptation strategies used by these fish farmers. This study, therefore, articulates novelties on adaptation to climate change, as well ascertains determinants of adaptation strategies used by fish farmers in Epe, Lagos State, Nigeria. Climate change adaptation strategies mostly used by fish farmers include frequent seeking for early warning information about climate change (76.7%) and avoidance of areas susceptible to flooding (60.0%). Climate-change adaptation strategies used by fish farmers were significantly influenced by access to early warning information (β = 7.21), knowledge of farmers about climate change adaptation strategies (β = 8.86), access to capital (β = 28.25), and participation in workshop and conferences (β = 37.19) but were reduced by number of fish stocking (β = -2.06). The adaptation strategies used by fish farmers were autonomous and mostly determined by the access to credit facilities and information. Development policy should focus on carbon capture and storage technology in order to reduce adverse impacts of climate change, as well as making early warning information on climate change available to fish farmers. These will enhance adaptation to climate change. © 2013 Society of Chemical Industry.
Comparative study on Climate Change Policies in the EU and China
NASA Astrophysics Data System (ADS)
Bray, M.; Han, D.
2012-04-01
Both the EU and China are among the largest CO2 emitters in the world; their climate actions and policies have profound impacts on global climate change and may influence the activities in other countries. Evidence of climate change has been observed across Europe and China. Despite the many differences between the two regions, the European Commission and Chinese government support climate change actions. The EU has three priority areas in climate change: 1) understanding, monitoring and predicting climate change and its impact; 2) providing tools to analyse the effectiveness, cost and benefits of different policy options for mitigating climate change and adapting to its impacts; 3) improving, demonstrating and deploying existing climate friendly technologies and developing the technologies of the future. China is very vulnerable to climate change, because of its vast population, fast economic development, and fragile ecological environment. The priority policies in China are: 1) Carbon Trading Policy; 2) Financing Loan Policy (Special Funds for Renewable Energy Development); 3) Energy Efficiency Labelling Policy; 4) Subsidy Policy. In addition, China has formulated the "Energy Conservation Law", "Renewable Energy Law", "Cleaner Production Promotion Law" and "Circular Economy Promotion Law". Under the present EU Framework Programme FP7 there is a large number of funded research activities linked to climate change research. Current climate change research projects concentrate on the carbon cycle, water quality and availability, climate change predictors, predicting future climate and understanding past climates. Climate change-related scientific and technological projects in China are mostly carried out through national scientific and technological research programs. Areas under investigation include projections and impact of global climate change, the future trends of living environment change in China, countermeasures and supporting technologies of global environment change, formation mechanism and prediction theory of major climate and weather disasters in China, technologies of efficient use of clean energy, energy conservation and improvement of energy efficiency, development and utilisation technology of renewable energy and new energy. The EU recognises that developing countries, such as China and India, need to strengthen their economies through industrialisation. However this needs to be achieved at the same time as protecting the environment and sustainable use of energy. The EU has committed itself to assisting developing countries to achieve their goals in four priority areas: 1) raising the policy profile of climate change; 2) support for adaption to climate change; 3) support for mitigation of climate change; and 4) capacity development. This comparative study is part of the EU funded SPRING project which seeks to understand and assess Chinese and European competencies, with the aim of facilitating greater cooperation in future climate and environment research.
Climate variability and vulnerability to climate change: a review
Thornton, Philip K; Ericksen, Polly J; Herrero, Mario; Challinor, Andrew J
2014-01-01
The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food systems, with a focus on the developing world. We present new analysis that tentatively links increases in climate variability with increasing food insecurity in the future. We consider the ways in which people deal with climate variability and extremes and how they may adapt in the future. Key knowledge and data gaps are highlighted. These include the timing and interactions of different climatic stresses on plant growth and development, particularly at higher temperatures, and the impacts on crops, livestock and farming systems of changes in climate variability and extreme events on pest-weed-disease complexes. We highlight the need to reframe research questions in such a way that they can provide decision makers throughout the food system with actionable answers, and the need for investment in climate and environmental monitoring. Improved understanding of the full range of impacts of climate change on biological and food systems is a critical step in being able to address effectively the effects of climate variability and extreme events on human vulnerability and food security, particularly in agriculturally based developing countries facing the challenge of having to feed rapidly growing populations in the coming decades. PMID:24668802
El-Alayli, Amani
2006-12-01
Previous research has shown that matching person variables with achievement contexts can produce the best motivational outcomes. The current study examines whether this is also true when matching entity and incremental beliefs with the appropriate motivational climate. Participants were led to believe that a personal attribute was fixed (entity belief) or malleable (incremental belief). After thinking that they failed a test that assessed the attribute, participants performed a second (related) task in a context that facilitated the pursuit of either performance or learning goals. Participants were expected to exhibit greater effort on the second task in the congruent conditions (entity belief plus performance goal climate and incremental belief plus learning goal climate) than in the incongruent conditions. These results were obtained, but only for participants who either valued competence on the attribute or had high achievement motivation. Results are discussed in terms of developing strategies for optimizing motivation in achievement settings.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-26
... Climate Change (IPCC), Climate Change 2013: The Physical Science Basis Summary: The United States Global... Panel on Climate Change (IPCC) Climate Change 2013: The Physical Science Basis. The United Nations..., and socio-economic information for understanding the scientific basis of climate change, potential...
Climate Change Education: Goals, Audiences, and Strategies--A Workshop Summary
ERIC Educational Resources Information Center
Forest, Sherrie; Feder, Michael A.
2011-01-01
The global scientific and policy community now unequivocally accepts that human activities cause global climate change. Although information on climate change is readily available, the nation still seems unprepared or unwilling to respond effectively to climate change, due partly to a general lack of public understanding of climate change issues…
Plasticity and genetic adaptation mediate amphibian and reptile responses to climate change.
Urban, Mark C; Richardson, Jonathan L; Freidenfelds, Nicole A
2014-01-01
Phenotypic plasticity and genetic adaptation are predicted to mitigate some of the negative biotic consequences of climate change. Here, we evaluate evidence for plastic and evolutionary responses to climate variation in amphibians and reptiles via a literature review and meta-analysis. We included studies that either document phenotypic changes through time or space. Plasticity had a clear and ubiquitous role in promoting phenotypic changes in response to climate variation. For adaptive evolution, we found no direct evidence for evolution of amphibians or reptiles in response to climate change over time. However, we found many studies that documented adaptive responses to climate along spatial gradients. Plasticity provided a mixture of adaptive and maladaptive responses to climate change, highlighting that plasticity frequently, but not always, could ameliorate climate change. Based on our review, we advocate for more experiments that survey genetic changes through time in response to climate change. Overall, plastic and genetic variation in amphibians and reptiles could buffer some of the formidable threats from climate change, but large uncertainties remain owing to limited data.
Plasticity and genetic adaptation mediate amphibian and reptile responses to climate change
Urban, Mark C; Richardson, Jonathan L; Freidenfelds, Nicole A
2014-01-01
Phenotypic plasticity and genetic adaptation are predicted to mitigate some of the negative biotic consequences of climate change. Here, we evaluate evidence for plastic and evolutionary responses to climate variation in amphibians and reptiles via a literature review and meta-analysis. We included studies that either document phenotypic changes through time or space. Plasticity had a clear and ubiquitous role in promoting phenotypic changes in response to climate variation. For adaptive evolution, we found no direct evidence for evolution of amphibians or reptiles in response to climate change over time. However, we found many studies that documented adaptive responses to climate along spatial gradients. Plasticity provided a mixture of adaptive and maladaptive responses to climate change, highlighting that plasticity frequently, but not always, could ameliorate climate change. Based on our review, we advocate for more experiments that survey genetic changes through time in response to climate change. Overall, plastic and genetic variation in amphibians and reptiles could buffer some of the formidable threats from climate change, but large uncertainties remain owing to limited data. PMID:24454550
Lo, Alex Y; Jim, C Y
2015-11-01
Tailored messages are instrumental to climate change communication. Information about the global threat can be 'localised' by demonstrating its linkage with local events. This research ascertains the relationship between climate change attitude and perception of local weather, based on a survey involving 800 Hong Kong citizens. Results indicate that concerns about climate change increase with expectations about the likelihood and impacts of local weather change. Climate change believers attend to all three types of adverse weather events, namely, temperature rises, tropical cyclones and prolonged rains. Climate scepticism, however, is not associated with expectation about prolonged rains. Differential spatial orientations are a possible reason. Global climate change is an unprecedented and distant threat, whereas local rain is a more familiar and localised weather event. Global climate change should be articulated in terms that respect local concerns. Localised framing may be particularly effective for engaging individuals holding positive views about climate change science. © The Author(s) 2014.
Climate Change Detection and Attribution of Infrared Spectrum Measurements
NASA Technical Reports Server (NTRS)
Phojanamongkolkij, Nipa; Parker, Peter A.; Mlynczak, Martin G.
2012-01-01
Climate change occurs when the Earth's energy budget changes due to natural or possibly anthropogenic forcings. These forcings cause the climate system to adjust resulting in a new climate state that is warmer or cooler than the original. The key question is how to detect and attribute climate change. The inference of infrared spectral signatures of climate change has been discussed in the literature for nearly 30 years. Pioneering work in the 1980s noted that distinct spectral signatures would be evident in changes in the infrared radiance emitted by the Earth and its atmosphere, and that these could be observed from orbiting satellites. Since then, a number of other studies have advanced the concepts of spectral signatures of climate change. Today the concept of using spectral signatures to identify and attribute atmospheric composition change is firmly accepted and is the foundation of the Climate Absolute Radiance and Refractivity Observatory (CLARREO) satellite mission being developed at NASA. In this work, we will present an overview of the current climate change detection concept using climate model calculations as surrogates for climate change. Any future research work improving the methodology to achieve this concept will be valuable to our society.
Jones, Charlotte; Hine, Donald W; Marks, Anthony D G
2017-02-01
Many people perceive climate change as psychologically distant-a set of uncertain events that might occur far in the future, impacting distant places and affecting people dissimilar to themselves. In this study, we employed construal level theory to investigate whether a climate change communication intervention could increase public engagement by reducing the psychological distance of climate change. Australian residents (N = 333) were randomly assigned to one of two treatment conditions: one framed to increase psychological distance to climate change (distal frame), and the other framed to reduce psychological distance (proximal frame). Participants then completed measures of psychological distance of climate change impacts, climate change concern, and intentions to engage in mitigation behavior. Principal components analysis indicated that psychological distance to climate change was best conceptualized as a multidimensional construct consisting of four components: geographic, temporal, social, and uncertainty. Path analysis revealed the effect of the treatment frame on climate change concern and intentions was fully mediated by psychological distance dimensions related to uncertainty and social distance. Our results suggest that climate communications framed to reduce psychological distance represent a promising strategy for increasing public engagement with climate change. © 2016 Society for Risk Analysis.
Han, Ying; Hou, Xiang-yang
2011-04-01
Desert steppe is very vulnerable to climate change. The herders caring for their livestock in such a natural environment have to face the challenges of rapid climate change. In this paper, a household-level questionnaire was conducted in the Suniteyou District of Inner Mongolia, China, aimed to analyze the herders' perceptions and adaptation strategies to climate change, extreme climate events in particular. In this Steppe where precipitation is rare and meteorological disasters are frequent, drought is the main extreme climate event with the broadest affecting area, the highest affecting degree, and the greatest frequency. The sensitivity of the herders to drought is far higher than that to other extreme climate events, and also, the perceptions to drought induce the herders having deep perceptions to the extreme climate events such as strong wing, dust storm, and heavy snow. Relative to the perceptions to long-term climate change, the perceptions to short-term climate change are more deep and precise. The herders can estimate the long-term climate change trend according to their perceptions to the latest 10 years climate change. They attribute the poor livestock health and the reduced forage yield greatly to climate change. Yet, the herders are inexperienced in implementing efficient adaptation strategies. Generally, their adaptation measures are quite simplex and rather passive.
Climate change and nutrition: creating a climate for nutrition security.
Tirado, M C; Crahay, P; Mahy, L; Zanev, C; Neira, M; Msangi, S; Brown, R; Scaramella, C; Costa Coitinho, D; Müller, A
2013-12-01
Climate change further exacerbates the enormous existing burden of undernutrition. It affects food and nutrition security and undermines current efforts to reduce hunger and promote nutrition. Undernutrition in turn undermines climate resilience and the coping strategies of vulnerable populations. The objectives of this paper are to identify and undertake a cross-sectoral analysis of the impacts of climate change on nutrition security and the existing mechanisms, strategies, and policies to address them. A cross-sectoral analysis of the impacts of climate change on nutrition security and the mechanisms and policies to address them was guided by an analytical framework focused on the three 'underlying causes' of undernutrition: 1) household food access, 2) maternal and child care and feeding practices, 3) environmental health and health access. The analytical framework includes the interactions of the three underlying causes of undernutrition with climate change,vulnerability, adaptation and mitigation. Within broad efforts on climate change mitigation and adaptation and climate-resilient development, a combination of nutrition-sensitive adaptation and mitigation measures, climate-resilient and nutrition-sensitive agricultural development, social protection, improved maternal and child care and health, nutrition-sensitive risk reduction and management, community development measures, nutrition-smart investments, increased policy coherence, and institutional and cross-sectoral collaboration are proposed as a means to address the impacts of climate change to food and nutrition security. This paper proposes policy directions to address nutrition in the climate change agenda and recommendations for consideration by the UN Framework Convention on Climate Change (UNFCCC). Nutrition and health stakeholders need to be engaged in key climate change adaptation and mitigation initiatives, including science-based assessment by the Intergovernmental Panel on Climate Change (IPCC), and policies and actions formulated by the UN Framework Convention on Climate Change (UNFCCC). Improved multi-sectoral coordination and political will is required to integrate nutrition-sensitive actions into climate-resilient sustainable development efforts in the UNFCCC work and in the post 2015 development agenda. Placing human rights at the center of strategies to mitigate and adapt to the impacts of climate change and international solidarity is essential to advance sustainable development and to create a climate for nutrition security.
Thom, Dominik; Rammer, Werner; Seidl, Rupert
2017-11-01
Currently, the temperate forest biome cools the earth's climate and dampens anthropogenic climate change. However, climate change will substantially alter forest dynamics in the future, affecting the climate regulation function of forests. Increasing natural disturbances can reduce carbon uptake and evaporative cooling, but at the same time increase the albedo of a landscape. Simultaneous changes in vegetation composition can mitigate disturbance impacts, but also influence climate regulation directly (e.g., via albedo changes). As a result of a number of interactive drivers (changes in climate, vegetation, and disturbance) and their simultaneous effects on climate-relevant processes (carbon exchange, albedo, latent heat flux) the future climate regulation function of forests remains highly uncertain. Here we address these complex interactions to assess the effect of future forest dynamics on the climate system. Our specific objectives were (1) to investigate the long-term interactions between changing vegetation composition and disturbance regimes under climate change, (2) to quantify the response of climate regulation to changes in forest dynamics, and (3) to identify the main drivers of the future influence of forests on the climate system. We investigated these issues using the individual-based forest landscape and disturbance model (iLand). Simulations were run over 200 yr for Kalkalpen National Park (Austria), assuming different future climate projections, and incorporating dynamically responding wind and bark beetle disturbances. To consistently assess the net effect on climate the simulated responses of carbon exchange, albedo, and latent heat flux were expressed as contributions to radiative forcing. We found that climate change increased disturbances (+27.7% over 200 yr) and specifically bark beetle activity during the 21st century. However, negative feedbacks from a simultaneously changing tree species composition (+28.0% broadleaved species) decreased disturbance activity in the long run (-10.1%), mainly by reducing the host trees available for bark beetles. Climate change and the resulting future forest dynamics significantly reduced the climate regulation function of the landscape, increasing radiative forcing by up to +10.2% on average over 200 yr. Overall, radiative forcing was most strongly driven by carbon exchange. We conclude that future changes in forest dynamics can cause amplifying climate feedbacks from temperate forest ecosystems.
Global Climate Change: Federal Research on Possible Human Health Effects
2006-02-10
unrelated to climate change per se. This report does not address the underlying question of climate change itself. Rather, it identifies the array of...climate-relevant human health research and discusses the interconnections. Approximately $57 million each year since FY2005 supports climate change research...infectious diseases. Three conclusions are common to several studies on possible health effects of climate change : the infirm, the elderly, and the poor
Challenges and Opportunities for Advancing Work on Climate Change and Public Health
Gould, Solange; Rudolph, Linda
2015-01-01
Climate change poses a major threat to public health. Strategies that address climate change have considerable potential to benefit health and decrease health inequities, yet public health engagement at the intersection of public health, equity, and climate change has been limited. This research seeks to understand the barriers to and opportunities for advancing work at this nexus. We conducted semi-structured in-depth interviews (N = 113) with public health and climate change professionals and thematic analysis. Barriers to public health engagement in addressing climate change include individual perceptions that climate change is not urgent or solvable and insufficient understanding of climate change’s health impacts and programmatic connections. Institutional barriers include a lack of public health capacity, authority, and leadership; a narrow framework for public health practice that limits work on the root causes of climate change and health; and compartmentalization within and across sectors. Opportunities include integrating climate change into current public health practice; providing inter-sectoral support for climate solutions with health co-benefits; and using a health frame to engage and mobilize communities. Efforts to increase public health sector engagement should focus on education and communications, building leadership and funding, and increasing work on the shared root causes of climate change and health inequities. PMID:26690194
Simulating the Impacts of Climate Extremes Across Sectors: The Case of the 2003 European Heat Wave
NASA Astrophysics Data System (ADS)
Schewe, J.; Zhao, F.; Reyer, C.; Breuer, L.; Coll, M.; Deryng, D.; Eddy, T.; Elliott, J. W.; Francois, L. M.; Friend, A. D.; Gerten, D.; Gosling, S.; Gudmundsson, L.; Huber, V.; Kim, H.; Lotze, H. K.; Orth, R.; Seneviratne, S. I.; Tittensor, D.; Vautard, R.; van Vliet, M. T. H.; Wada, Y.
2017-12-01
Increased occurrence of extreme climate or weather events is one of the most damaging consequences of global climate change today and in the future. Estimating the impacts of such extreme events across different human and natural systems is crucial for quantifying overall risks from climate change. Are current models fit for this task? Here we use the 2003 European heat wave and drought (EHW) as a historical analogue for comparable events in the future, and evaluate how accurately its impacts are reproduced by a multi-sectoral "super-ensemble" of state-of-the-art impacts models. Our study combines, for the first time, impacts on agriculture, freshwater resources, terrestrial and marine ecosystems, energy, and human health in a consistent multi-model framework. We identify key impacts of the 2003 EHW reported in the literature and/or recorded in publicly available databases, and examine how closely the models reproduce those impacts, applying the same measure of impact magnitude across different sectors. Preliminary results are mixed: While the EHW's impacts on water resources (streamflow) are reproduced well by most global hydrological models, not all crop and natural vegetation models reproduce the magnitude of impacts on agriculture and ecosystem productivity, respectively, and their performance varies by country or region. A hydropower capacity model matches reported hydropower generation anomalies only in some countries, and estimates of heat-related excess mortality from a set of statistical models are consistent with literature reports only for some of the cities investigated. We present a synthesis of simulated and observed impacts across sectors, and reflect on potential improvements in modeling and analyzing cross-sectoral impacts.
Responding to the Consequences of Climate Change
NASA Technical Reports Server (NTRS)
Hildebrand, Peter H.
2011-01-01
The talk addresses the scientific consensus concerning climate change, and outlines the many paths that are open to mitigate climate change and its effects on human activities. Diverse aspects of the changing water cycle on Earth are used to illustrate the reality climate change. These include melting snowpack, glaciers, and sea ice; changes in runoff; rising sea level; moving ecosystems, an more. Human forcing of climate change is then explained, including: greenhouse gasses, atmospheric aerosols, and changes in land use. Natural forcing effects are briefly discussed, including volcanoes and changes in the solar cycle. Returning to Earth's water cycle, the effects of climate-induced changes in water resources is presented. Examples include wildfires, floods and droughts, changes in the production and availability of food, and human social reactions to these effects. The lk then passes to a discussion of common human reactions to these forecasts of climate change effects, with a summary of recent research on the subject, plus several recent historical examples of large-scale changes in human behavior that affect the climate and ecosystems. Finally, in the face for needed action on climate, the many options for mitigation of climate change and adaptation to its effects are presented, with examples of the ability to take affordable, and profitable action at most all levels, from the local, through national.
NASA Astrophysics Data System (ADS)
Reyer, Christopher P. O.; Bathgate, Stephen; Blennow, Kristina; Borges, Jose G.; Bugmann, Harald; Delzon, Sylvain; Faias, Sonia P.; Garcia-Gonzalo, Jordi; Gardiner, Barry; Gonzalez-Olabarria, Jose Ramon; Gracia, Carlos; Guerra Hernández, Juan; Kellomäki, Seppo; Kramer, Koen; Lexer, Manfred J.; Lindner, Marcus; van der Maaten, Ernst; Maroschek, Michael; Muys, Bart; Nicoll, Bruce; Palahi, Marc; Palma, João HN; Paulo, Joana A.; Peltola, Heli; Pukkala, Timo; Rammer, Werner; Ray, Duncan; Sabaté, Santiago; Schelhaas, Mart-Jan; Seidl, Rupert; Temperli, Christian; Tomé, Margarida; Yousefpour, Rasoul; Zimmermann, Niklaus E.; Hanewinkel, Marc
2017-03-01
Recent studies projecting future climate change impacts on forests mainly consider either the effects of climate change on productivity or on disturbances. However, productivity and disturbances are intrinsically linked because 1) disturbances directly affect forest productivity (e.g. via a reduction in leaf area, growing stock or resource-use efficiency), and 2) disturbance susceptibility is often coupled to a certain development phase of the forest with productivity determining the time a forest is in this specific phase of susceptibility. The objective of this paper is to provide an overview of forest productivity changes in different forest regions in Europe under climate change, and partition these changes into effects induced by climate change alone and by climate change and disturbances. We present projections of climate change impacts on forest productivity from state-of-the-art forest models that dynamically simulate forest productivity and the effects of the main European disturbance agents (fire, storm, insects), driven by the same climate scenario in seven forest case studies along a large climatic gradient throughout Europe. Our study shows that, in most cases, including disturbances in the simulations exaggerate ongoing productivity declines or cancel out productivity gains in response to climate change. In fewer cases, disturbances also increase productivity or buffer climate-change induced productivity losses, e.g. because low severity fires can alleviate resource competition and increase fertilization. Even though our results cannot simply be extrapolated to other types of forests and disturbances, we argue that it is necessary to interpret climate change-induced productivity and disturbance changes jointly to capture the full range of climate change impacts on forests and to plan adaptation measures.
Reyer, Christopher P O; Bathgate, Stephen; Blennow, Kristina; Borges, Jose G; Bugmann, Harald; Delzon, Sylvain; Faias, Sonia P; Garcia-Gonzalo, Jordi; Gardiner, Barry; Gonzalez-Olabarria, Jose Ramon; Gracia, Carlos; Hernández, Juan Guerra; Kellomäki, Seppo; Kramer, Koen; Lexer, Manfred J; Lindner, Marcus; van der Maaten, Ernst; Maroschek, Michael; Muys, Bart; Nicoll, Bruce; Palahi, Marc; Palma, João HN; Paulo, Joana A; Peltola, Heli; Pukkala, Timo; Rammer, Werner; Ray, Duncan; Sabaté, Santiago; Schelhaas, Mart-Jan; Seidl, Rupert; Temperli, Christian; Tomé, Margarida; Yousefpour, Rasoul; Zimmermann, Niklaus E; Hanewinkel, Marc
2017-01-01
Recent studies projecting future climate change impacts on forests mainly consider either the effects of climate change on productivity or on disturbances. However, productivity and disturbances are intrinsically linked because 1) disturbances directly affect forest productivity (e.g. via a reduction in leaf area, growing stock or resource-use efficiency), and 2) disturbance susceptibility is often coupled to a certain development phase of the forest with productivity determining the time a forest is in this specific phase of susceptibility. The objective of this paper is to provide an overview of forest productivity changes in different forest regions in Europe under climate change, and partition these changes into effects induced by climate change alone and by climate change and disturbances. We present projections of climate change impacts on forest productivity from state-of-the-art forest models that dynamically simulate forest productivity and the effects of the main European disturbance agents (fire, storm, insects), driven by the same climate scenario in seven forest case studies along a large climatic gradient throughout Europe. Our study shows that, in most cases, including disturbances in the simulations exaggerate ongoing productivity declines or cancel out productivity gains in response to climate change. In fewer cases, disturbances also increase productivity or buffer climate-change induced productivity losses, e.g. because low severity fires can alleviate resource competition and increase fertilization. Even though our results cannot simply be extrapolated to other types of forests and disturbances, we argue that it is necessary to interpret climate change-induced productivity and disturbance changes jointly to capture the full range of climate change impacts on forests and to plan adaptation measures. PMID:28855959
Reyer, Christopher P O; Bathgate, Stephen; Blennow, Kristina; Borges, Jose G; Bugmann, Harald; Delzon, Sylvain; Faias, Sonia P; Garcia-Gonzalo, Jordi; Gardiner, Barry; Gonzalez-Olabarria, Jose Ramon; Gracia, Carlos; Hernández, Juan Guerra; Kellomäki, Seppo; Kramer, Koen; Lexer, Manfred J; Lindner, Marcus; van der Maaten, Ernst; Maroschek, Michael; Muys, Bart; Nicoll, Bruce; Palahi, Marc; Palma, João Hn; Paulo, Joana A; Peltola, Heli; Pukkala, Timo; Rammer, Werner; Ray, Duncan; Sabaté, Santiago; Schelhaas, Mart-Jan; Seidl, Rupert; Temperli, Christian; Tomé, Margarida; Yousefpour, Rasoul; Zimmermann, Niklaus E; Hanewinkel, Marc
2017-03-16
Recent studies projecting future climate change impacts on forests mainly consider either the effects of climate change on productivity or on disturbances. However, productivity and disturbances are intrinsically linked because 1) disturbances directly affect forest productivity (e.g. via a reduction in leaf area, growing stock or resource-use efficiency), and 2) disturbance susceptibility is often coupled to a certain development phase of the forest with productivity determining the time a forest is in this specific phase of susceptibility. The objective of this paper is to provide an overview of forest productivity changes in different forest regions in Europe under climate change, and partition these changes into effects induced by climate change alone and by climate change and disturbances. We present projections of climate change impacts on forest productivity from state-of-the-art forest models that dynamically simulate forest productivity and the effects of the main European disturbance agents (fire, storm, insects), driven by the same climate scenario in seven forest case studies along a large climatic gradient throughout Europe. Our study shows that, in most cases, including disturbances in the simulations exaggerate ongoing productivity declines or cancel out productivity gains in response to climate change. In fewer cases, disturbances also increase productivity or buffer climate-change induced productivity losses, e.g. because low severity fires can alleviate resource competition and increase fertilization. Even though our results cannot simply be extrapolated to other types of forests and disturbances, we argue that it is necessary to interpret climate change-induced productivity and disturbance changes jointly to capture the full range of climate change impacts on forests and to plan adaptation measures.
Predictors of public climate change awareness and risk perception around the world
NASA Astrophysics Data System (ADS)
Lee, Tien Ming; Markowitz, Ezra M.; Howe, Peter D.; Ko, Chia-Ying; Leiserowitz, Anthony A.
2015-11-01
Climate change is a threat to human societies and natural ecosystems, yet public opinion research finds that public awareness and concern vary greatly. Here, using an unprecedented survey of 119 countries, we determine the relative influence of socio-demographic characteristics, geography, perceived well-being, and beliefs on public climate change awareness and risk perceptions at national scales. Worldwide, educational attainment is the single strongest predictor of climate change awareness. Understanding the anthropogenic cause of climate change is the strongest predictor of climate change risk perceptions, particularly in Latin America and Europe, whereas perception of local temperature change is the strongest predictor in many African and Asian countries. However, other key factors associated with public awareness and risk perceptions highlight the need to develop tailored climate communication strategies for individual nations. The results suggest that improving basic education, climate literacy, and public understanding of the local dimensions of climate change are vital to public engagement and support for climate action.
Psychological research and global climate change
NASA Astrophysics Data System (ADS)
Clayton, Susan; Devine-Wright, Patrick; Stern, Paul C.; Whitmarsh, Lorraine; Carrico, Amanda; Steg, Linda; Swim, Janet; Bonnes, Mirilia
2015-07-01
Human behaviour is integral not only to causing global climate change but also to responding and adapting to it. Here, we argue that psychological research should inform efforts to address climate change, to avoid misunderstandings about human behaviour and motivations that can lead to ineffective or misguided policies. We review three key research areas: describing human perceptions of climate change; understanding and changing individual and household behaviour that drives climate change; and examining the human impacts of climate change and adaptation responses. Although much has been learned in these areas, we suggest important directions for further research.
ERIC Educational Resources Information Center
Goodman-Scott, Emily; Betters-Bubon, Jennifer; Donohue, Peg
2015-01-01
School counselors are tasked with contributing to a safe and preventative school climate serving students' academic, career, and social/emotional needs through comprehensive school counseling program implementation. Positive Behavioral Interventions and Supports (PBIS) prioritizes a positive school climate, is widely implemented in the United…
ERIC Educational Resources Information Center
Patrick, Helen; Kaplan, Avi; Ryan, Allison M.
2011-01-01
In a series of 4 studies we investigated the relations of mastery goal structure and 4 dimensions of the classroom social climate (teacher academic support, teacher emotional support, classroom mutual respect, task-related interaction). We conducted multidimensional scaling with separate adolescent samples that differed considerably (i.e., by…
The neurobiology of climate change
NASA Astrophysics Data System (ADS)
O'Donnell, Sean
2018-02-01
Directional climate change (global warming) is causing rapid alterations in animals' environments. Because the nervous system is at the forefront of animals' interactions with the environment, the neurobiological implications of climate change are central to understanding how individuals, and ultimately populations, will respond to global warming. Evidence is accumulating for individual level, mechanistic effects of climate change on nervous system development and performance. Climate change can also alter sensory stimuli, changing the effectiveness of sensory and cognitive systems for achieving biological fitness. At the population level, natural selection forces stemming from directional climate change may drive rapid evolutionary change in nervous system structure and function.
The neurobiology of climate change.
O'Donnell, Sean
2018-01-06
Directional climate change (global warming) is causing rapid alterations in animals' environments. Because the nervous system is at the forefront of animals' interactions with the environment, the neurobiological implications of climate change are central to understanding how individuals, and ultimately populations, will respond to global warming. Evidence is accumulating for individual level, mechanistic effects of climate change on nervous system development and performance. Climate change can also alter sensory stimuli, changing the effectiveness of sensory and cognitive systems for achieving biological fitness. At the population level, natural selection forces stemming from directional climate change may drive rapid evolutionary change in nervous system structure and function.
Prokopy, Linda S; Arbuckle, J G; Barnes, Andrew P; Haden, V R; Hogan, Anthony; Niles, Meredith T; Tyndall, John
2015-08-01
Climate change has serious implications for the agricultural industry-both in terms of the need to adapt to a changing climate and to modify practices to mitigate for the impacts of climate change. In high-income countries where farming tends to be very intensive and large scale, it is important to understand farmers' beliefs and concerns about climate change in order to develop appropriate policies and communication strategies. Looking across six study sites-Scotland, Midwestern United States, California, Australia, and two locations in New Zealand-this paper finds that over half of farmers in each location believe that climate change is occurring. However, there is a wide range of beliefs regarding the anthropogenic nature of climate change; only in Australia do a majority of farmers believe that climate change is anthropogenic. In all locations, a majority of farmers believe that climate change is not a threat to local agriculture. The different policy contexts and existing impacts from climate change are discussed as possible reasons for the variation in beliefs. This study compared varying surveys from the different locations and concludes that survey research on farmers and climate change in diverse locations should strive to include common questions to facilitate comparisons.
Climate-change impacts on sandy-beach biota: crossing a line in the sand.
Schoeman, David S; Schlacher, Thomas A; Defeo, Omar
2014-08-01
Sandy ocean beaches are iconic assets that provide irreplaceable ecosystem services to society. Despite their great socioeconomic importance, beaches as ecosystems are severely under-represented in the literature on climate-change ecology. Here, we redress this imbalance by examining whether beach biota have been observed to respond to recent climate change in ways that are consistent with expectations under climate change. We base our assessments on evidence coming from case studies on beach invertebrates in South America and on sea turtles globally. Surprisingly, we find that observational evidence for climate-change responses in beach biota is more convincing for invertebrates than for highly charismatic turtles. This asymmetry is paradoxical given the better theoretical understanding of the mechanisms by which turtles are likely to respond to changes in climate. Regardless of this disparity, knowledge of the unique attributes of beach systems can complement our detection of climate-change impacts on sandy-shore invertebrates to add rigor to studies of climate-change ecology for sandy beaches. To this end, we combine theory from beach ecology and climate-change ecology to put forward a suite of predictive hypotheses regarding climate impacts on beaches and to suggest ways that these can be tested. Addressing these hypotheses could significantly advance both beach and climate-change ecology, thereby progressing understanding of how future climate change will impact coastal ecosystems more generally.
... in a place over a period of time. Climate change is major change in temperature, rainfall, snow, or ... by natural factors or by human activities. Today climate changes are occurring at an increasingly rapid rate. Climate ...
Comprehension of climate change and environmental attitudes across the lifespan.
Degen, C; Kettner, S E; Fischer, H; Lohse, J; Funke, J; Schwieren, C; Goeschl, T; Schröder, J
2014-08-01
Given the coincidence of the demographic change and climate change in the upcoming decades the aging voter gains increasing importance in climate change mitigation and adaptation processes. It is generally assumed that information status and comprehension of complex processes underlying climate change are prerequisites for adopting pro-environmental attitudes and taking pro-environmental actions. In a cross-sectional study, we investigated in how far (1) environmental knowledge and comprehension of feedback processes underlying climate change and (2) pro-environmental attitudes change as a function of age. Our sample consisted of 92 participants aged 25-75 years (mean age 49.4 years, SD 17.0). Age was negatively related to comprehension of system structures inherent to climate change, but positively associated with level of fear of consequences and anxiousness towards climate change. No significant relations were found between environmental knowledge and pro-environmental attitude. These results indicate that, albeit understanding of relevant structures of the climate system is less present in older age, age is not a limiting factor for being engaged in the complex dilemma of climate change. Results bear implications for the communication of climate change and pro-environmental actions in aging societies.
ERIC Educational Resources Information Center
Barwell, Richard
2013-01-01
Climate change is one of the most pressing issues of the 21st Century. Mathematics is involved at every level of understanding climate change, including the description, prediction and communication of climate change. As a highly complex issue, climate change is an example of "post-normal" science -- it is urgent, complex and involves a…
Adaptation: Planning for climate change and its effects on federal lands
Marie Oliver; David L. Peterson; Michael J. Furniss
2012-01-01
National forest managers are charged with tackling the effects of climate change on the natural resources under their care. The Forest Service National Roadmap for Responding to Climate Change and the Climate Change Performance Scorecard require managers to make significant progress in addressing climate change by 2015. To help land managers meet this challenge,...
Rachel Loehman
2009-01-01
Climate changes in the Prairie Potholes and Grasslands bioregion include increased seasonal, annual, minimum, and maximum temperature and changing precipitation patterns. Because the region is relatively dry with a strong seasonal climate, it is sensitive to climatic changes and vulnerable to changes in climatic regime. For example, model simulations show that regional...
Integrated approaches to climate-crop modelling: needs and challenges.
Betts, Richard A
2005-11-29
This paper discusses the need for a more integrated approach to modelling changes in climate and crops, and some of the challenges posed by this. While changes in atmospheric composition are expected to exert an increasing radiative forcing of climate change leading to further warming of global mean temperatures and shifts in precipitation patterns, these are not the only climatic processes which may influence crop production. Changes in the physical characteristics of the land cover may also affect climate; these may arise directly from land use activities and may also result from the large-scale responses of crops to seasonal, interannual and decadal changes in the atmospheric state. Climate models used to drive crop models may, therefore, need to consider changes in the land surface, either as imposed boundary conditions or as feedbacks from an interactive climate-vegetation model. Crops may also respond directly to changes in atmospheric composition, such as the concentrations of carbon dioxide (CO2), ozone (03) and compounds of sulphur and nitrogen, so crop models should consider these processes as well as climate change. Changes in these, and the responses of the crops, may be intimately linked with meteorological processes so crop and climate models should consider synergies between climate and atmospheric chemistry. Some crop responses may occur at scales too small to significantly influence meteorology, so may not need to be included as feedbacks within climate models. However, the volume of data required to drive the appropriate crop models may be very large, especially if short-time-scale variability is important. Implementation of crop models within climate models would minimize the need to transfer large quantities of data between separate modelling systems. It should also be noted that crop responses to climate change may interact with other impacts of climate change, such as hydrological changes. For example, the availability of water for irrigation may be affected by changes in runoff as a direct consequence of climate change, and may also be affected by climate-related changes in demand for water for other uses. It is, therefore, necessary to consider the interactions between the responses of several impacts sectors to climate change. Overall, there is a strong case for a much closer coupling between models of climate, crops and hydrology, but this in itself poses challenges arising from issues of scale and errors in the models. A strategy is proposed whereby the pursuit of a fully coupled climate-chemistry-crop-hydrology model is paralleled by continued use of separate climate and land surface models but with a focus on consistency between the models.
Sheridan, Jennifer A; Caruso, Nicholas M; Apodaca, Joseph J; Rissler, Leslie J
2018-01-01
Changes in body size and breeding phenology have been identified as two major ecological consequences of climate change, yet it remains unclear whether climate acts directly or indirectly on these variables. To better understand the relationship between climate and ecological changes, it is necessary to determine environmental predictors of both size and phenology using data from prior to the onset of rapid climate warming, and then to examine spatially explicit changes in climate, size, and phenology, not just general spatial and temporal trends. We used 100 years of natural history collection data for the wood frog, Lithobates sylvaticus with a range >9 million km 2 , and spatially explicit environmental data to determine the best predictors of size and phenology prior to rapid climate warming (1901-1960). We then tested how closely size and phenology changes predicted by those environmental variables reflected actual changes from 1961 to 2000. Size, phenology, and climate all changed as expected (smaller, earlier, and warmer, respectively) at broad spatial scales across the entire study range. However, while spatially explicit changes in climate variables accurately predicted changes in phenology, they did not accurately predict size changes during recent climate change (1961-2000), contrary to expectations from numerous recent studies. Our results suggest that changes in climate are directly linked to observed phenological shifts. However, the mechanisms driving observed body size changes are yet to be determined, given the less straightforward relationship between size and climate factors examined in this study. We recommend that caution be used in "space-for-time" studies where measures of a species' traits at lower latitudes or elevations are considered representative of those under future projected climate conditions. Future studies should aim to determine mechanisms driving trends in phenology and body size, as well as the impact of climate on population density, which may influence body size.
Tribal engagement strategy of the South Central Climate Science Center, 2014
Andrews, William J.; Taylor, April; Winton, Kimberly T.
2014-01-01
The South Central Climate Science Center was established by the U.S. Department of the Interior in 2012 to increase understanding of climate change and coordinate an effective response to climate-change effects on Native American tribes and natural and cultural resources that the Department manages. The eight regional Climate Science Centers of the U.S. Department of the Interior work closely with natural-resource management agencies, university researchers, and others such as tribes and private landowners on climate-change issues. The relatively large number of Native Americans in the south central United States and their special knowledge of changing ecosystems make working with tribes and tribal members on climate-change issues particularly important in this part of the Nation. This circular describes priorities of the South Central Climate Science Center and provides information about resources available from Climate Science Centers and partner agencies regarding climate change. The circular also describes how this Climate Science Center, tribes and tribal members, and others can collaborate to minimize potential harmful effects of climate change on human society and our surrounding ecosystems.
Public perceptions of climate change and extreme weather events
NASA Astrophysics Data System (ADS)
Bruine de Bruin, W.; Dessai, S.; Morgan, G.; Taylor, A.; Wong-Parodi, G.
2013-12-01
Climate experts face a serious communication challenge. Public debate about climate change continues, even though at the same time people seem to complain about extreme weather events becoming increasingly common. As compared to the abstract concept of ';climate change,' (changes in) extreme weather events are indeed easier to perceive, more vivid, and personally relevant. Public perception research in different countries has suggested that people commonly expect that climate change will lead to increases in temperature, and that unseasonably warm weather is likely to be interpreted as evidence of climate change. However, relatively little is known about whether public concerns about climate change may also be driven by changes in other types of extreme weather events, such as exceptional amounts of precipitation or flooding. We therefore examined how perceptions of and personal experiences with changes in these specific weather events are related to public concerns about climate change. In this presentation, we will discuss findings from two large public perception surveys conducted in flood-prone Pittsburgh, Pennsylvania (US) and with a national sample in the UK, where extreme flooding has recently occurred across the country. Participants completed questions about their perceptions of and experiences with specific extreme weather events, and their beliefs about climate change. We then conducted linear regressions to predict individual differences in climate-change beliefs, using perceptions of and experiences with specific extreme weather events as predictors, while controlling for demographic characteristics. The US study found that people (a) perceive flood chances to be increasing over the decades, (b) believe climate change to play a role in increases in future flood chances, and (c) would interpret future increases in flooding as evidence for climate change. The UK study found that (a) UK residents are more likely to perceive increases in ';wet' events such as flooding and heavy rainfall than in ';hot' events such as heatwaves, (b) perceptions of these ';wet' weather events are more strongly associated with climate-change beliefs than were extremely ';hot' weather events, and (c) personal experiences with the negative consequences of specific extreme weather events are associated with stronger climate-change beliefs. Hence, which specific weather events people interpret as evidence of climate change may depend on their personal perceptions and experiences - which may not involve the temperature increases that are commonly the focus of climate-change communications. Overall, these findings suggest that climate experts should consider focusing their public communications on extreme weather events that are relevant to their intended audience. We will discuss strategies for designing and evaluating communications about climate change and adaptation.
Trawöger, Lisa
2014-02-01
Its focus on snow-dependent activities makes Alpine winter tourism especially sensitive to climate change. Stakeholder risk perceptions are a key factor in adaptation to climate change because they fundamentally drive or constrain stakeholder action. This paper examines climate change perceptions of winter tourism stakeholders in Tyrol (Austria). Using a qualitative approach, expert interviews were conducted. Four opinion categories reflecting different attitudes toward climate change issues were identified: convinced planners , annoyed deniers , ambivalent optimists , convinced wait-and-seers . Although the findings generally indicate a growing awareness of climate change, this awareness is mainly limited to perceiving the issue as a global phenomenon. Awareness of regional and branch-specific consequences of climate change that lead to a demand for action could not be identified. Current technical strategies, like snowmaking, are not primarily climate-induced. At present, coping with climate change is not a priority for risk management. The findings point out the importance of gaining and transferring knowledge of regional and branch-specific consequences of climate change in order to induce action at the destination level.
Boeye, Jeroen; Travis, Justin M J; Stoks, Robby; Bonte, Dries
2013-02-01
Species can either adapt to new conditions induced by climate change or shift their range in an attempt to track optimal environmental conditions. During current range shifts, species are simultaneously confronted with a second major anthropogenic disturbance, landscape fragmentation. Using individual-based models with a shifting climate window, we examine the effect of different rates of climate change on the evolution of dispersal distances through changes in the genetically determined dispersal kernel. Our results demonstrate that the rate of climate change is positively correlated to the evolved dispersal distances although too fast climate change causes the population to crash. When faced with realistic rates of climate change, greater dispersal distances evolve than those required for the population to keep track of the climate, thereby maximizing population size. Importantly, the greater dispersal distances that evolve when climate change is more rapid, induce evolutionary rescue by facilitating the population in crossing large gaps in the landscape. This could ensure population persistence in case of range shifting in fragmented landscapes. Furthermore, we highlight problems in using invasion speed as a proxy for potential range shifting abilities under climate change.
Hathaway, Julia; Maibach, Edward W
2018-03-01
Through a systematic search of English language peer-reviewed studies, we assess how health professionals and the public, worldwide, perceive the health implications of climate change. Among health professionals, perception that climate change is harming health appears to be high, although self-assessed knowledge is low, and perceived need to learn more is high. Among the public, few North Americans can list any health impacts of climate change, or who is at risk, but appear to view climate change as harmful to health. Among vulnerable publics in Asia and Africa, awareness of increasing health harms due to specific changing climatic conditions is high. Americans across the political and climate change opinion spectra appear receptive to information about the health aspects of climate change, although findings are mixed. Health professionals feel the need to learn more, and the public appears open to learning more, about the health consequences of climate change.
Climate change and health research in the Eastern Mediterranean Region.
Habib, Rima R; Zein, Kareem El; Ghanawi, Joly
2010-06-01
Anthropologically induced climate change, caused by an increased concentration of greenhouse gases in the atmosphere, is an emerging threat to human health. Consequences of climate change may affect the prevalence of various diseases and environmental and social maladies that affect population health. In this article, we reviewed the literature on climate change and health in the Eastern Mediterranean Region. This region already faces numerous humanitarian crises, from conflicts to natural hazards and a high burden of disease. Climate change is likely to aggravate these emergencies, necessitating a strengthening of health systems and capacities in the region. However, the existing literature on climate change from the region is sparse and informational gaps stand in the way of regional preparedness and adaptation. Further research is needed to assess climatic changes and related health impacts in the Eastern Mediterranean Region. Such knowledge will allow countries to identify preparedness vulnerabilities, evaluate capacity to adapt to climate change, and develop adaptation strategies to allay the health impacts of climate change.
Chronomics of tree rings for chronoastrobiology and beyond.
Nintcheu-Fata, Sylvain; Katinas, George; Halberg, Franz; Cornélissen, Germaine; Tolstykh, Victor; Michael, Henry N; Otsuka, Kuniaki; Schwartzkopff, Othild; Bakken, Earl
2003-10-01
Gliding spectral windows illustrate the changes as a function of time in the relative prominence of signals in a given frequency range, viewed in 3D or as surface charts. As an example, the method is applied to a 2,189-year series of averages of ring measurements on 11 sequoia trees published by Douglass. Analyses of the original data and after filtering reveal, among others, components with periods of about 10.5 and 21 years similar to the Schwabe and Hale solar activity cycles. An alignment of gliding spectra with a global spectrum serves to define, by minima, the ranges of variability around the anticipated Schwabe and Hale cycles. This procedure may have more general applicability when dealing with ranges of only transiently synchronized, wobbly, and perhaps sometimes free-running periodicities. Solar activity is known to affect climate and changes in climate are reflected to some extent in tree growth. The spectral structure in tree rings could serve not only to check any relations of climate with sunspots, auroras and more modern measures of solar activity, but also to check any purely mathematical extrapolations from the much shorter available actual data on solar activity. With such extrapolated series and the data analyzed herein, the task remains to align physical and physiological variables to further study the influence of natural environmental factors near and far on biota, including international battles, which cover an even longer span of 2,556 years.
A Climate Change Vulnerability Assessment of California's At-Risk Birds
Gardali, Thomas; Seavy, Nathaniel E.; DiGaudio, Ryan T.; Comrack, Lyann A.
2012-01-01
Conservationists must develop new strategies and adapt existing tools to address the consequences of anthropogenic climate change. To support statewide climate change adaptation, we developed a framework for assessing climate change vulnerability of California's at-risk birds and integrating it into the existing California Bird Species of Special Concern list. We defined climate vulnerability as the amount of evidence that climate change will negatively impact a population. We quantified climate vulnerability by scoring sensitivity (intrinsic characteristics of an organism that make it vulnerable) and exposure (the magnitude of climate change expected) for each taxon. Using the combined sensitivity and exposure scores as an index, we ranked 358 avian taxa, and classified 128 as vulnerable to climate change. Birds associated with wetlands had the largest representation on the list relative to other habitat groups. Of the 29 state or federally listed taxa, 21 were also classified as climate vulnerable, further raising their conservation concern. Integrating climate vulnerability and California's Bird Species of Special Concern list resulted in the addition of five taxa and an increase in priority rank for ten. Our process illustrates a simple, immediate action that can be taken to inform climate change adaptation strategies for wildlife. PMID:22396726
A climate change vulnerability assessment of California's at-risk birds.
Gardali, Thomas; Seavy, Nathaniel E; DiGaudio, Ryan T; Comrack, Lyann A
2012-01-01
Conservationists must develop new strategies and adapt existing tools to address the consequences of anthropogenic climate change. To support statewide climate change adaptation, we developed a framework for assessing climate change vulnerability of California's at-risk birds and integrating it into the existing California Bird Species of Special Concern list. We defined climate vulnerability as the amount of evidence that climate change will negatively impact a population. We quantified climate vulnerability by scoring sensitivity (intrinsic characteristics of an organism that make it vulnerable) and exposure (the magnitude of climate change expected) for each taxon. Using the combined sensitivity and exposure scores as an index, we ranked 358 avian taxa, and classified 128 as vulnerable to climate change. Birds associated with wetlands had the largest representation on the list relative to other habitat groups. Of the 29 state or federally listed taxa, 21 were also classified as climate vulnerable, further raising their conservation concern. Integrating climate vulnerability and California's Bird Species of Special Concern list resulted in the addition of five taxa and an increase in priority rank for ten. Our process illustrates a simple, immediate action that can be taken to inform climate change adaptation strategies for wildlife.
Social Climate Science: A New Vista for Psychological Science.
Pearson, Adam R; Schuldt, Jonathon P; Romero-Canyas, Rainer
2016-09-01
The recent Paris Agreement to limit greenhouse gas emissions, adopted by 195 nations at the 2015 United Nations Climate Change Conference, signaled unprecedented commitment by world leaders to address the human social aspects of climate change. Indeed, climate change increasingly is recognized by scientists and policymakers as a social issue requiring social solutions. However, whereas psychological research on intrapersonal and some group-level processes (e.g., political polarization of climate beliefs) has flourished, research into other social processes-such as an understanding of how nonpartisan social identities, cultural ideologies, and group hierarchies shape public engagement on climate change-has received substantially less attention. In this article, we take stock of current psychological approaches to the study of climate change to explore what is "social" about climate change from the perspective of psychology. Drawing from current interdisciplinary perspectives and emerging empirical findings within psychology, we identify four distinct features of climate change and three sets of psychological processes evoked by these features that are fundamentally social and shape both individual and group responses to climate change. Finally, we consider how a more nuanced understanding of the social underpinnings of climate change can stimulate new questions and advance theory within psychology. © The Author(s) 2016.
Physiological basis of climate change impacts on North American inland fishes
Whitney, James E.; Al-Chokhachy, Robert K.; Bunnell, David B.; Caldwell, Colleen A.; Cooke, Steven J.; Eliason, Erika J.; Rogers, Mark W.; Lynch, Abigail J.; Paukert, Craig P.
2016-01-01
Global climate change is altering freshwater ecosystems and affecting fish populations and communities. Underpinning changes in fish distribution and assemblage-level responses to climate change are individual-level physiological constraints. In this review, we synthesize the mechanistic effects of climate change on neuroendocrine, cardiorespiratory, immune, osmoregulatory, and reproductive systems of freshwater and diadromous fishes. Observed climate change effects on physiological systems are varied and numerous, including exceedance of critical thermal tolerances, decreased cardiorespiratory performance, compromised immune function, and altered patterns of individual reproductive investment. However, effects vary widely among and within species because of species, population, and even sex-specific differences in sensitivity and resilience and because of habitat-specific variation in the magnitude of climate-related environmental change. Research on the interactive effects of climate change with other environmental stressors across a broader range of fish diversity is needed to further our understanding of climate change effects on fish physiology.
A team fares well with a fair coach: Predictors of social loafing in interactive female sport teams.
De Backer, M; Boen, F; De Cuyper, B; Høigaard, R; Vande Broek, G
2015-12-01
The present research aimed to develop and test a theoretical model that links players' perceived justice of the coach to a more optimal motivational climate, which in turn increases players' team identification and cohesion, and results in lower levels of social loafing in female sport teams. Belgian elite female basketball, volleyball, and football players (study 1; N = 259; M(age) = 22.6) and Norwegian world-class female handball players (study 2; N = 110; M(age) = 22.8) completed questionnaires assessing players' perceived justice (distributive and procedural), motivational climate, team identification, team cohesion (task and social), and social loafing (perceived and self-reported). In both studies, confirmatory and exploratory path analyses indicated that perceived justice was positively related to a mastery climate (P < 0.05) and negatively to a performance climate (P < 0.05). In turn, a mastery climate was linked to increased levels of team identification (P < 0.05) and task cohesion (P < 0.05). Consequently, players' perceived and self-reported social loafing decreased (P < 0.05). The findings of both independent studies demonstrated the impact of coaches' fairness, and consequently, the motivational climate created by the coach on the optimal functioning of female sport teams. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Reflecting on the Japan-Chile Task-Based Telecollaboration Project for Beginner-Level Learners
ERIC Educational Resources Information Center
Dunne, B. Greg
2014-01-01
Using O'Dowd and Ritter's (2006) Inventory of Reasons for Failed Communication in Telecollaborative Projects as a barometer, this article details the considerations and procedures followed in a task-based, asynchronous email telecollaboration project between EFL (English as a Foreign Language) learners in Japan and Chile. In a climate where…
Uncertainties in Decadal Model Evaluation due to the Choice of Different Reanalysis Products
NASA Astrophysics Data System (ADS)
Illing, Sebastian; Kadow, Christopher; Kunst, Oliver; Cubasch, Ulrich
2014-05-01
In recent years decadal predictions have become very popular in the climate science community. A major task is the evaluation and validation of a decadal prediction system. Therefore hindcast experiments are performed and evaluated against observation based or reanalysis data-sets. That is, various metrics and skill scores like the anomaly correlation or the mean squared error skill score (MSSS) are calculated to estimate potential prediction skill of the model system. Our results will mostly feature the Baseline 1 hindcast experiments from the MiKlip decadal prediction system. MiKlip (www.fona-miklip.de) is a project for medium-term climate prediction funded by the Federal Ministry of Education and Research in Germany (BMBF) and has the aim to create a model system that can provide reliable decadal forecasts on climate and weather. There are various reanalysis and observation based products covering at least the last forty years which can be used for model evaluation, for instance the 20th Century Reanalysis from NOAA-CIRES, the Climate Forecast System Reanalysis from NCEP or the Interim Reanalysis from ECMWF. Each of them is based on different climate models and observations. We will show that the choice of the reanalysis product has a huge impact on the value of various skill metrics. In some cases this may actually lead to a change in the interpretation of the results, e.g. when one tries to compare two model versions and the anomaly correlation difference changes its sign for two different reanalysis products. We will also show first results of our studies investigating the influence and effect of this source of uncertainty for decadal model evaluation. Furthermore we point out regions which are most affected by this uncertainty and where one has to cautious interpreting skill scores. In addition we introduce some strategies to overcome or at least reduce this source of uncertainty.
Climate change and coastal vulnerability assessment: Scenarios for integrated assessment
Nicholls, R.J.; Wong, P.P.; Burkett, V.; Woodroffe, C.D.; Hay, J.
2008-01-01
Coastal vulnerability assessments still focus mainly on sea-level rise, with less attention paid to other dimensions of climate change. The influence of non-climatic environmental change or socio-economic change is even less considered, and is often completely ignored. Given that the profound coastal changes of the twentieth century are likely to continue through the twenty-first century, this is a major omission, which may overstate the importance of climate change, and may also miss significant interactions of climate change with other non-climate drivers. To better support climate and coastal management policy development, more integrated assessments of climatic change in coastal areas are required, including the significant non-climatic changes. This paper explores the development of relevant climate and non-climate drivers, with an emphasis on the non-climate drivers. While these issues are applicable within any scenario framework, our ideas are illustrated using the widely used SRES scenarios, with both impacts and adaptation being considered. Importantly, scenario development is a process, and the assumptions that are made about future conditions concerning the coast need to be explicit, transparent and open to scientific debate concerning their realism and likelihood. These issues are generic across other sectors. ?? Integrated Research System for Sustainability Science and Springer 2008.
Improving Undergraduate Climate Change Literacy through Writing: A Pilot Study
ERIC Educational Resources Information Center
Small Griswold, Jennifer D.
2017-01-01
A climate-literate population, capable of making informed decisions related to climate change, is of critical importance as society faces ever-increasing global temperatures and changes in the climate system. This project evaluates the effectiveness of a novel instructional approach that incorporates climate change science into a first-year…
How Do We Communicate Both the Knowns and Unknowns of Climate Change?
NASA Astrophysics Data System (ADS)
Hamilton, P.; Selin, C.; Garfinkle, R.
2011-12-01
The overwhelming consensus amongst climatologists is that anthropogenic climate change is underway, but leading climate scientists also anticipate that over the next 20 years research will only modestly reduce the uncertainty about where, when and by how much climate will change. Uncertainty about these aspects of climate change and their impacts presents not only scientific challenges but social, political and economic quandaries as well. The Science Museum of Minnesota (SMM) in partnership with the Consortium for Science, Policy and Outcomes at Arizona State University, the Institute on the Environment at the University of Minnesota, and the Institute for the Future in Palo Alto, CA proposes to create a major national touring science exhibition that focuses both on informing the public on what is known about climate change and on how to plan for the future in light of the uncertainties identified above. The scientific and educational communities understand that climate change will test the resilience of societies especially because of the uncertainties regarding where, when and by how much climate will change. Yet the civic space for such conversations is circumscribed. Various interest groups are actively engaged in sowing doubt and confusion in the public's mind about the existence of anthropogenic climate change. Consequently, some in the scientific community find the mention of uncertainty in association with climate change as an anathema because of concerns about potentially eroding public understanding and acceptance of the reality of anthropogenic climate change. SMM and its partners are interested in the perspectives of the scientific community with respect to the proposed exhibition. This session will engage participants in a dialog around a number of questions: How should we discuss the uncertainties of climate change while still communicating the scientific consensus on climate change? How do we gain the confidence of the scientific community to get the balance right between the reality of climate change and the uncertainty of how it will manifest itself? How might this project help reopen the presently stifled U.S. civic conversation about climate change? SMM and its partners seek your insights into these and other critical climate change education questions.