2012-10-16
Participants in an Oct. 16-18 workshop at John C. Stennis Space Center focused on identifying current and future climate risks and developing strategies to address them. NASA Headquarters sponsored the Resilience and Adaptation to Climate Risks Workshop to understand climate change risks and adaptation strategies. The workshop was part of an effort that joins the science and operations arms of the agency in a coordinated response to climate change. NASA Headquarters is holding workshops on the subject at all NASA centers.
NASA Astrophysics Data System (ADS)
Veron, D. E.; Ad-Marbach, G.; Fox-Lykens, R.; Ozbay, G.; Sezen-Barrie, A.; Wolfson, J.
2017-12-01
As states move to adopt the next generation science standards, in-service teachers are being provided with professional development that introduces climate change content and best practices for teaching climate change in the classroom. However, research has shown that it is challenging to bring this information into the higher education curriculum in education courses for pre-service teachers due to curricular and programming constraints. Over two years, the Maryland and Delaware Climate Change Assessment and Research (MADE-CLEAR) project explored a professional development approach for pre-service teachers which employed paired workshops that resulted in participant-developed lesson plans based on climate change content. The workshops were designed to provide pre-service teachers with climate change content related to the carbon cycle and to model a variety of techniques and activities for presenting this information in the classroom. Lesson plans were developed between the first and second workshop, presented at the second workshop and discussed with peers and in-service teachers, and then revised in response to feedback from the second workshop. Participant climate change content knowledge was assessed before the first workshop, and after the final revision of the lesson plan was submitted to the MADE-CLEAR team. Climate content knowledge was also assessed using the same survey for additional pre-service teacher groups who did not participate in the professional development. Results show that while the paired workshop approach increased climate content knowledge, the amount of improvement varied depending on the participants' prior knowledge in climate change content. In addition, some alternate conceptions of climate change were not altered by participant involvement in the professional development approach. Revised lesson plans showed understanding of underlying climate change impacts and demonstrated awareness of appropriate techniques for introducing this complex topic. These findings will be useful to those planning pre-service teacher professional development on climate change in the future.
Climate Change Education for General Education Faculty
NASA Astrophysics Data System (ADS)
Ozbay, G.; Fox-Lykens, R.; Fuoco, M. J.; Phalen, L.; Harcourt, P.; Veron, D. E.; Rogers, M.; Merrill, J.
2016-12-01
As MADE-CLEAR scientists, our ultimate goal is to inform the public about climate change through education. Education will provide citizens with important tools for adapting and coping against climate change through the understanding of the cause and effects of climate change, and the role they play in counteracting these effects. MADE-CLEAR is connecting educators with resources such as lesson plans and hands-on activities so they can easily incorporate climate change into their curriculum. This past year Delaware State University held workshops for Chemistry and Math faculty to provide information and resources to help integrate climate change education into their classes. We presented them with information on climate change and demonstrated several laboratory activities that would be applicable to their classes. Such activities included a sea level rise graphing exercise, ocean acidification pH demonstration, ocean acidification's effect on organism's demonstration, carbon dioxide variability and heat trapping gas simulation. The goals of the workshops are to implement a multidisciplinary approach in climate change education. Workshops are prepared hands-on heavy followed by the lectures and video resources. Pre- and post-workshop assessment questions on the workshop contents are provided to monitor faculty understanding of the climate change content. In doing so, we aim to improve climate literacy in our higher education students.
Workshop on the preparation of climate change action plans. Workshop summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1999-05-24
Over 130 participants from more than 27 countries shared experiences of developing and transition countries in preparation and development of their climate change national action plans. International experts guided countries in preparation of their climate change national action plans.
The Heat is On! Confronting Climate Change in the Classroom
NASA Astrophysics Data System (ADS)
Bowman, R.; Atwood-Blaine, D.
2008-12-01
This paper discusses a professional development workshop for K-12 science teachers entitled "The Heat is On! Confronting Climate Change in the Classroom." This workshop was conducted by the Center for Remote Sensing of Ice Sheets (CReSIS), which has the primary goal to understand and predict the role of polar ice sheets in sea level change. The specific objectives of this summer workshop were two-fold; first, to address the need for advancement in science technology engineering and mathematics (STEM) education and second, to address the need for science teacher training in climate change science. Twenty-eight Kansas teachers completed four pre-workshop assignments online in Moodle and attended a one-week workshop. The workshop included lecture presentations by scientists (both face-to-face and via video-conference) and collaboration between teachers and scientists to create online inquiry-based lessons on the water budget, remote sensing, climate data, and glacial modeling. Follow-up opportunities are communicated via the CReSIS Teachers listserv to maintain and further develop the collegial connections and collaborations established during the workshop. Both qualitative and quantitative evaluation results indicate that this workshop was particularly effective in the following four areas: 1) creating meaningful connections between K-12 teachers and CReSIS scientists; 2) integrating distance-learning technologies to facilitate the social construction of knowledge; 3) increasing teachers' content understanding of climate change and its impacts on the cryosphere and global sea level; and 4) increasing teachers' self-efficacy beliefs about teaching climate science. Evaluation methods included formative content understanding assessments (via "clickers") during each scientist's presentation, a qualitative evaluation survey administered at the end of the workshop, and two quantitative evaluation instruments administered pre- and post- workshop. The first of these quantitative instruments measured teachers' efficacy beliefs about teaching climate science and the outcome expectancy they hold for student achievement. The second, a content test, measured the teachers' content knowledge of climate science and the cryosphere. Our results indicate that the teachers participating in the workshops showed significant increase in personal climate science teaching efficacy, outcome expectancy, and content knowledge of climate science, all at the p < 0.01 level. Interestingly, these results appear to be independent of each other. While one may think that changes in efficacy beliefs are caused by gains in content knowledge, our results show low correlation between these two factors.
Making Climate Hot: Preparing Scientists and Teachers for Climate Change Communication and Education
NASA Astrophysics Data System (ADS)
Buhr, S. M.; Wise, S. B.
2008-05-01
Anyone having anything to do with climate change science (or even geosciences) is increasingly asked to communicate about climate change with friends and family, media, the general public, and students. But, we have often not had the training to communicate with simplicity and clarity about such a complex topic. Furthermore, the need to know how to accommodate controversy, common misconceptions, and contrarian arguments complicates the task. The CIRES Education and Outreach group has developed a short professional development workshop "Making Climate Hot: How to Communicate Effectively about Climate Change". The goals of the workshop are to make scientists and educators aware of best practices in climate change communications, provide some tools for crafting messages, and allow participants to practice skills in a supportive, low-risk environment. The "Making Climate Hot" workshop has been piloted with scientists and university communicators, teachers and environmental educators and college students anxious to communicate with family and roommates. The most and least effective aspects of the workshop will be described, along with the lessons learned and next steps.
The purpose of this workshop Improving the Assessment and Valuation of Climate Change Impacts for Policy and Regulatory Analysis. focused on conceptual and methodological issues - integrated assessment modeling and valuation.
The purpose of this workshop Improving the Assessment and Valuation of Climate Change Impacts for Policy and Regulatory Analysis. focused on conceptual and methodological issues - estimating impacts and valuing damages on a sectoral basis.
From November 8/9, 2011, the U.S. Environmental Protection Agency (EPA) hosted a workshop titled "Managing the Environmental Impacts of Growth Under Climate Change." The Office of Research and Development (ORD) organized the meeting, which was held in Research Triangle Park, Nort...
Leslie Brandt; Chris Swanston; Linda Parker; Maria Janowiak; Richard Birdsey; Louis Iverson; David Mladenoff; Patricia Butler
2012-01-01
Climate change is leading to direct and indirect impacts on forest tree species and ecosystems in northern Wisconsin. Land managers will need to prepare for and respond to these impacts, so we designed a workshop to identify forest management approaches that can enhance the ability of ecosystems in northern Wisconsin to cope with climate change and address how National...
Keune, Hans; Ludlow, David; van den Hazel, Peter; Randall, Scott; Bartonova, Alena
2012-06-28
The EU FP6 HENVINET project reviewed the potential relevance of a focus on climate change related health effects for climate change policies at the city region level. This was undertaken by means of a workshop with both scientists, city representatives from several EU-countries, representatives of EU city networks and EU-experts. In this paper we introduce some important health related climate change issues, and discuss the current city policies of the participating cities. The workshop used a backcasting format to analyse the future relevance of a health perspective, and the main benefits and challenges this would bring to urban policy making. It was concluded that health issues have an important function as indicators of success for urban climate change policies, given the extent to which climate change policies contribute to public health and as such to quality of life. Simultaneously the health perspective may function as a policy integrator in that it can combine several related policy objectives, such as environmental policies, health policies, urban planning and economic development policies, in one framework for action. Furthermore, the participants to the workshop considered public health to be of strategic importance in organizing public support for climate change policies. One important conclusion of the workshop was the view that the connection of science and policy at the city level is inadequate, and that the integration of scientific knowledge on climate change related health effects and local policy practice is in need of more attention. In conclusion, the workshop was viewed as a constructive advance in the process of integration which hopefully will lead to ongoing cooperation. The workshop had the ambition to bring together a diversity of actor perspectives for exchange of knowledge and experiences, and joint understanding as a basis for future cooperation. Next to the complementarities in experience and knowledge, the mutual critical reflection was a bonus, as ideas had the opportunity to be scrutinized by others, leading to more robustness and common ground. The structured backcasting approach was helpful in integrating all of this with one common focus, embracing diversity and complexity, and stimulating reflection and new ideas.
2012-01-01
Background The EU FP6 HENVINET project reviewed the potential relevance of a focus on climate change related health effects for climate change policies at the city region level. This was undertaken by means of a workshop with both scientists, city representatives from several EU-countries, representatives of EU city networks and EU-experts. In this paper we introduce some important health related climate change issues, and discuss the current city policies of the participating cities. Methods The workshop used a backcasting format to analyse the future relevance of a health perspective, and the main benefits and challenges this would bring to urban policy making. Results It was concluded that health issues have an important function as indicators of success for urban climate change policies, given the extent to which climate change policies contribute to public health and as such to quality of life. Simultaneously the health perspective may function as a policy integrator in that it can combine several related policy objectives, such as environmental policies, health policies, urban planning and economic development policies, in one framework for action. Furthermore, the participants to the workshop considered public health to be of strategic importance in organizing public support for climate change policies. One important conclusion of the workshop was the view that the connection of science and policy at the city level is inadequate, and that the integration of scientific knowledge on climate change related health effects and local policy practice is in need of more attention. In conclusion, the workshop was viewed as a constructive advance in the process of integration which hopefully will lead to ongoing cooperation. Conclusions The workshop had the ambition to bring together a diversity of actor perspectives for exchange of knowledge and experiences, and joint understanding as a basis for future cooperation. Next to the complementarities in experience and knowledge, the mutual critical reflection was a bonus, as ideas had the opportunity to be scrutinized by others, leading to more robustness and common ground. The structured backcasting approach was helpful in integrating all of this with one common focus, embracing diversity and complexity, and stimulating reflection and new ideas. PMID:22759496
Bringing climate change into natural resource management: proceedings.
L. Joyce; R. Haynes; R. White; R.J. Barbour
2007-01-01
These are the proceedings of the 2005 workshop titled implications of bringing climate into natural resource management in the Western United States. This workshop was an attempt to further the dialogue among scientists, land managers, landowners, interested stakeholders and the public about how individuals are addressing climate change in natural resource management....
NASA Astrophysics Data System (ADS)
Weihs, R. R.
2013-12-01
A variety of Florida-focused climate change activities will be featured as part of the ASK Florida global and regional climate change professional development workshops. In a combined effort from Florida State University's Center for Ocean-Atmospheric Prediction Studies (COAPS) and University of South Florida's Coalition for Science Literacy (CSL), and supported by NASA's NICE initiative, the ASK Florida professional development workshops are a series of workshops designed to enhance and support climate change information and related pedagogical skills for middle school science teachers from Title-I schools in Florida. These workshops took place during a two-year period from 2011 to 2013 and consisted of two cohorts in Hillsborough and Volusia counties in Florida. Featured activities include lab-style exercises demonstrating topics such as storm surge and coastal geometry, sea level rise from thermal expansion, and the greenhouse effect. These types of labs are modified so that they allow more independent, inquiry thinking as they require teachers to design their own experiment in order to test a hypothesis. Lecture based activities are used to cover a broad range of topics including hurricanes, climate modeling, and sink holes. The more innovative activities are group activities that utilize roll-playing, technology and resources, and group discussion. For example, 'Climate Gallery Walk' is an activity that features group discussions on each of the climate literacy principles established by the United States Global Change Research Program. By observing discussions between individuals and groups, this activity helps the facilitators gather information on their previous knowledge and identify possible misconceptions that will be addressed within the workshops. Furthermore, 'Fact or Misconception' presents the challenge of identifying whether a given statement is fact or misconception based on the material covered throughout the workshops. It serves as a way to evaluate retention of knowledge as well as clarification and reinforcement of topics. Another featured activity is 'Climate Change Scenario' in which teachers roll play as groups from various facets of local government, who decide how to deal with a given climate change scenario in the Miami-Dade county area. This activity demonstrates the complexities of negotiations that policy makers must make for the greater good of the local economy and ecology. Finally, we highlight activities that utilize online resources for both scientific information and pedagogical strategies for teaching climate change at the middle school level. Such resources include MYNASADATA, hurricane tracking websites, other scientist-vetted climate change lessons, and outreach events like NOAA's Adopt-a-drifter. These activities are highlighted for other scientists, educators, and professional development groups in the hopes that they will inspire further collaboration and further commitment to enhancing climate change education for our nation's youth.
NASA Technical Reports Server (NTRS)
Ohring, G.; Wielicki, B.; Spencer, R.; Emery, B.; Datla, R.
2004-01-01
Measuring the small changes associated with long-term global climate change from space is a daunting task. To address these problems and recommend directions for improvements in satellite instrument calibration some 75 scientists, including researchers who develop and analyze long-term data sets from satellites, experts in the field of satellite instrument calibration, and physicists working on state of the art calibration sources and standards met November 12 - 14, 2002 and discussed the issues. The workshop defined the absolute accuracies and long-term stabilities of global climate data sets that are needed to detect expected trends, translated these data set accuracies and stabilities to required satellite instrument accuracies and stabilities, and evaluated the ability of current observing systems to meet these requirements. The workshop's recommendations include a set of basic axioms or overarching principles that must guide high quality climate observations in general, and a roadmap for improving satellite instrument characterization, calibration, inter-calibration, and associated activities to meet the challenge of measuring global climate change. It is also recommended that a follow-up workshop be conducted to discuss implementation of the roadmap developed at this workshop.
NASA Astrophysics Data System (ADS)
Halvorsen, K. E.; Kossak, D. J.; Mayer, A. S.; Vivoni, E. R.; Robles-Morua, A.; Gamez Molina, V.; Dana, K.; Mirchi, A.
2013-12-01
Climate change-related impacts on water resources are expected to be particularly severe in the arid developing world. As a result, we conducted a series of participatory modeling workshops on hydrologic and water resources systems modeling in the face of climate change in Sonora, Mexico. Pre-surveys were administered to participants on Day 1 of a series of four workshops spaced out over three months in 2013. Post-surveys repeated many pre-survey questions and included questions assessing the quality of the workshops and models. We report on significant changes in participant perceptions of water resource models and problems and their assessment of the workshops. These findings will be of great value to future participatory modeling efforts, particularly within the developing world.
Workshop on the Impacts of Aviation on Climate Change
NASA Technical Reports Server (NTRS)
Wuebbles, Don; Gupta, Mohan; Ko, Malcolm
2006-01-01
Projections indicate that demand for aviation transportation will increase by more than two fold over the next few decades. Timely action is needed to understand and quantify the potential climate impacts of aviation emissions particularly given the sustained lapse over the last several years in U.S. research activities in this area. In response to the stated needs, a group of international experts participated in the Workshop on the Impacts of Aviation on Climate Change during June 7-9, 2006 in Boston, MA. The workshop focus was on the impacts of subsonic aircraft emissions in the UT/LS region and on the potential response of the climate system. The goals of the workshop were to assess and document the present state of scientific knowledge, to identify the key underlying uncertainties and gaps, to identify ongoing and further research needed, to explore the development of climate impact metrics, and to help focus the scientific community on the aviation-climate change research needs. The workshop concluded that the major ways that aviation can affect climate, in agreement with the 1999 assessment by the Intergovernmental Panel on Climate Change (IPCC), are the direct climate effects from CO2 and water vapor emissions, the indirect forcing on climate resulting from changes in the distributions and concentrations of ozone and methane as a primary consequence of aircraft nitrogen oxide (NOx) emissions, the direct effects (and indirect effects on clouds) from emitted aerosols and aerosol precursors, and the climate effects associated with contrails and cirrus cloud formation. The workshop was organized in three subgroups: (1) Effects of aircraft emissions on the UT/LS chemical composition, (2) Effects of water and particle emissions on contrails and on cirrus clouds, and (3) Impacts on climate from aircraft emissions and identification of suitable metrics to measure these impacts. The workshop participants acknowledged the need for focused research specifically to address the uncertainties and gaps in our understanding of current and projected impacts of aviation on climate and to develop metrics to better characterize these impacts. This may entail coordination and/or expansion of existing and planned climate research programs, or new activities. Such efforts should include strong and continuing interactions among the science and aviation communities as well as policymakers to develop well-informed decisions.
The CLEAN Workshop Series: Promoting Effective Pedagogy for Teaching Undergraduate Climate Science
NASA Astrophysics Data System (ADS)
Kirk, K. B.; Bruckner, M. Z.; Manduca, C. A.; Buhr, S. M.
2012-12-01
To prepare students to understand a changing climate, it is imperative that we equip educators with the best possible tools and methods for reaching their audience. As part of the Climate Literacy and Energy Awareness Network (CLEAN) professional development efforts, two workshops for undergraduate faculty were held in 2012. These workshops used a variety of activities to help faculty learn about recent climate research, take part in demonstrations of successful activities for teaching climate topics, and collaborate to create new teaching materials. The workshops also facilitated professional networking among participants. Both workshops were held online, eliminating the need for travel, encouraging participants without travel funds to attend, and allowing international collaborations and presentations. To create an authentic experience, the workshop used several technologies such as the Blackboard Collaborate web conferencing platform, SERC's web-based collaboration tools and online discussion threads, and conference calls. The workshop Communicating Climate Science in the Classroom, held in April 2012, explored practices for communicating climate science and policy in the classroom and provided strategies to improve student understanding of this complex and sensitive topic. Workshop presentations featured public opinion research on Americans' perceptions of climate change, tactics for identifying and resolving student misconceptions, and methods to address various "backfire effects" that can result from attempts to correct misinformation. Demonstrations of teaching approaches included a role-playing simulation of emissions negotiations, Princeton's climate stabilization wedges game, and an activity that allows students to use scientific principles to tackle misinformation. The workshop Teaching Climate Complexity was held in May 2012. Teaching the complexities of climate science requires an understanding of many facets of the Earth system and a robust pedagogic approach that fosters systems thinking. Workshop participants heard presentations from top climate scientists about topics such as the role of carbon dioxide in regulating Earth's climate, the silicate-weathering thermostat hypothesis, effects of water vapor in the climate system, and albedo effects from the loss of Artic sea ice. Demonstrations of classroom techniques allowed participants to use a jigsaw approach to understand poleward heat transport, plot atmospheric carbon dioxide concentrations, and use a mass balance model to explore the role of carbon dioxide in Earth's atmosphere. A hallmark of the CLEAN workshops is that participants are actively engaged in team projects to create new teaching materials. In the Communicating Climate workshop, John Cook led a demonstration of techniques featured in his Debunking Handbook and workshop participants created examples of how to respond to common climate myths in the classroom. In the Climate Complexities workshop, participants used existing elements within the CLEAN reviewed collection to create a comprehensive sequence of activities that can be used to teach elements of Earth's climate system. Activities from the workshop are archived on the CLEAN website, including screen cast recordings of all the presentations and materials created at each workshop. For more information, visit the workshop website at the URL below.
NASA Astrophysics Data System (ADS)
Ozbay, G.; Fox-Lykens, R.; Veron, D. E.; Rogers, M.; Merrill, J.; Harcourt, P.; Mead, H.
2015-12-01
Delaware State University is working toward infusing undergraduate education with climate change science and enhancing the climate change learning content of pre-service teacher preparation programs as part of the MADE-CLEAR project (www.madeclear.org). Faculty development workshops have been conducted to prepare and educate a cadre of faculty from different disciplines in global climate science literacy. Following the workshops, the faculty participants have integrated climate literacy tenets into their existing curriculum. Follow up meetings have helped the faculty members to use specific content in their curriculum such as greenhouse gases, atmospheric CO2, sea level rise, etc. Additional training provided to the faculty participants in pedagogical methods of climate change instruction to identify common misconceptions and barriers to student understanding. Some pre-service teachers were engaged in summer internships and learned how to become messenger of climate change science by the state parks staff during the summer. Workshops were offered to other pre-service teachers to teach them specific climate change topics with enhanced hands-on laboratory activities. The participants were provided examples of lesson plans and guided to develop their own lesson plans and present them. Various pedagogical methods have been explored for teaching climate change content to the participants. The pre-service teachers found the climate content very challenging and confusing. Training activities were modified to focus on targeted topics and modeling of pedagogical techniques for the faculty and pre-service teachers. Program evaluation confirms that the workshop participant show improved understanding of the workshop materials by the participants if they were introduced few climate topics. Learning how to use hands-on learning tools and preparing lesson plans are two of the challenges successfully implemented by the pre-service teachers. Our next activity includes pre-service teachers to use their lesson plans to teach the climate change content in the middle school science classes. This will mutually help the middle school science teachers' to learn and use the materials provided by the pre-service teachers and also pre-service teachers' to improve their teaching skills on climate change content.
Maria K. Janowiak; Christopher W. Swanston; Linda M. Nagel; Christopher R. Webster; Brian J. Palik; Mark J. Twery; John B. Bradford; Linda R. Parker; Andrea T. Hille; Sheela M. Johnson
2011-01-01
Land managers across the country face the immense challenge of developing and applying appropriate management strategies as forests respond to climate change. We hosted a workshop to explore silvicultural strategies for addressing the uncertainties surrounding climate change and forest response in the northeastern and north-central United States. Outcomes of this...
Summary report : MPO peer workshop on planning for climate change
DOT National Transportation Integrated Search
2008-04-01
This report summarizes the results of the workshop held in Seattle, Washington on March 6 and 7, 2008, on planning for climate change. Representatives from 13 MPOs shared their experiences and challenges in this area. The ultimate goal of the worksho...
Native Peoples-Native Homelands Climate Change Workshop: Lessons Learned
NASA Technical Reports Server (NTRS)
Maynard, Nancy G.
2003-01-01
The Native Peoples-Native Homelands Climate Change Workshop was held on October 28 through November 01,1998, as part of a series of workshops being held around the U.S. to improve the understanding of the potential consequences of climate variability and change for the Nation. This workshop was specifically designed by Native Peoples to examine the impacts of climate change and extreme weather variability on Native Peoples and Native Homelands from an indigenous cultural and spiritual perspective and to develop recommendations as well as identify potential response actions. The workshop brought together interested Native Peoples, representatives of Tribal governments, traditional elders, Tribal leaders, natural resource managers, Tribal College faculty and students, and climate scientists fiom government agencies and universities. It is clear that Tribal colleges and universities play a unique and critical role in the success of these emerging partnerships for decision-making in addition to the important education function for both Native and non-Native communities such as serving as a culturally-appropriate vehicle for access, analysis, control, and protection of indigenous cultural and intellectual property. During the discussions between scientists and policy-makers from both Native and non-Native communities, a number of important lessons emerged which are key to building more effective partnerships between Native and non-Native communities for collaboration and decision-making for a more sustainable future. This talk summarizes the key issues, recommendations, and lessons learned during this workshop.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernst, Kathleen M; Van Riemsdijk, Dr. Micheline
This article studies the participation of stakeholders in climate change decision-making in Alaska s National Parks. We place stakeholder participation within literatures on environmental and climate change decision-making. We conducted participant observation and interviews in two planning workshops to investigate the decision-making process, and our findings are three-fold. First, the inclusion of diverse stakeholders expanded climate change decision-making beyond National Park Service (NPS) institutional constraints. Second, workshops of the Climate Change Scenario Planning Project (CCSPP) enhanced institutional understandings of participants attitudes towards climate change and climate change decision-making. Third, the geographical context of climate change influences the decisionmaking process. Asmore » the first regional approach to climate change decision-making within the NPS, the CCSPP serves as a model for future climate change planning in public land agencies. This study shows how the participation of stakeholders can contribute to robust decisions, may move climate change decision-making beyond institutional barriers, and can provide information about attitudes towards climate change decision-making.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernst, Kathleen M; Van Riemsdijk, Dr. Micheline
This article studies the participation of stakeholders in climate change decision-making in Alaska s National Parks. We place stakeholder participation within literatures on environmental and climate change decision-making. We conducted participant observation and interviews in two planning workshops to investigate the decision-making process, and our findings are three-fold. First, the inclusion of diverse stakeholders expanded climate change decision-making beyond National Park Service (NPS) institutional constraints. Second, workshops of the Climate Change Scenario Planning Project (CCSPP) enhanced institutional understandings of participants attitudes towards climate change and climate change decision-making. Third, the geographical context of climate change influences the decision-making process. Asmore » the first regional approach to climate change decision-making within the NPS, the CCSPP serves as a model for future climate change planning in public land agencies. This study shows how the participation of stakeholders can contribute to robust decisions, may move climate change decision-making beyond institutional barriers, and can provide information about attitudes towards climate change decision-making.« less
Workshop on Bridging Satellite Climate Data Gaps.
Cooksey, Catherine; Datla, Raju
2011-01-01
Detecting the small signals of climate change for the most essential climate variables requires that satellite sensors make highly accurate and consistent measurements. Data gaps in the time series (such as gaps resulting from launch delay or failure) and inconsistencies in radiometric scales between satellites undermine the credibility of fundamental climate data records, and can lead to erroneous analysis in climate change detection. To address these issues, leading experts in Earth observations from National Aeronautics and Space Administration (NASA), National Oceanic and Atmospheric Adminstration (NOAA), United States Geological Survey (USGS), and academia assembled at the National Institute of Standards and Technology on December 10, 2009 for a workshop to prioritize strategies for bridging and mitigating data gaps in the climate record. This paper summarizes the priorities for ensuring data continuity of variables relevant to climate change in the areas of atmosphere, land, and ocean measurements and the recommendations made at the workshop for overcoming planned and unplanned gaps in the climate record.
March 2011 Physical Indicators Workshop Summary Report
NASA Technical Reports Server (NTRS)
Roberts, Brent
2011-01-01
The National Climate Assessment (NCA) convened a workshop on Physical Climate Indicators from 29-30 March 2011, as part of a series on Monitoring Climate Change and its Impacts . The overarching goal of this workshop was to identify a few broad categories of potential physical climate indicators using a set of priorities developed by the NCA, and to provide a clear justification for how they would inform the Nation about climate change. Additional goals included providing input on the overall NCA framework for selecting the indicators and suggesting methodologies to construct indicators. Although one of the workshop goals was to address the status of current observational networks to support indicators, this was not a main focus of any single discussion. However, participants agreed with the NCA indicator vision that high quality data were needed to develop indicators, and generally focused on identifying indicator categories that current observation systems could support. The nearly 60 participants, primarily from Federal agencies, received a white paper in advance of the workshop that detailed the NCA vision for a coordinated suite of climate-related physical, ecological, and societal indicators. The intent of these national indicators of change is to develop a way to evaluate and communicate over time both the rate of change in impacts and the capacity to respond to climate drivers. These indicators will be tracked as a part of ongoing, long-term assessment activities, with adjustments as necessary to adapt to changing conditions and understanding. An initial framework was provided to workshop participants to ensure that everyone understood the audience, scope, and purpose of the indicators. A common lexicon was defined since indicator terminology varies widely. In addition, several potential approaches to grouping or categorizing the indicators were presented. Participants spent most of their time in small breakout groups with facilitators, working to address a common set of questions. The workshop was structured to start with the broadest issue and then focus down as the workshop progressed. The first breakout therefore solicited comments on the NCA indicator framework, followed by discussion of the potential approaches to organizing the physical climate indicators. Once several approaches were identified, the groups then worked to define specific measurements, or types of measurements, that could be used to create the indicators.
Sautier, Marion; Piquet, Mathilde; Duru, Michel; Martin-Clouaire, Roger
2017-05-15
Research is expected to produce knowledge, methods and tools to enhance stakeholders' adaptive capacity by helping them to anticipate and cope with the effects of climate change at their own level. Farmers face substantial challenges from climate change, from changes in the average temperatures and the precipitation regime to an increased variability of weather conditions and the frequency of extreme events. Such changes can have dramatic consequences for many types of agricultural production systems such as grassland-based livestock systems for which climate change influences the seasonality and productivity of fodder production. We present a participatory design method called FARMORE (FARM-Oriented REdesign) that allows farmers to design and evaluate adaptations of livestock systems to future climatic conditions. It explicitly considers three climate features in the design and evaluation processes: climate change, climate variability and the limited predictability of weather. FARMORE consists of a sequence of three workshops for which a pre-existing game-like platform was adapted. Various year-round forage production and animal feeding requirements must be assembled by participants with a computerized support system. In workshop 1, farmers aim to produce a configuration that satisfies an average future weather scenario. They refine or revise the previous configuration by considering a sample of the between-year variability of weather in workshop 2. In workshop 3, they explicitly take the limited predictability of weather into account. We present the practical aspects of the method based on four case studies involving twelve farmers from Aveyron (France), and illustrate it through an in-depth description of one of these case studies with three dairy farmers. The case studies shows and discusses how workshop sequencing (1) supports a design process that progressively accommodates complexity of real management contexts by enlarging considerations of climate change to climate variability and low weather predictability, and (2) increases the credibility and salience of the design method. Further enhancements of the method are outlined, especially the selection of pertinent weather scenarios. Copyright © 2017 Elsevier Ltd. All rights reserved.
Acadia National Park Climate Change Scenario Planning Workshop summary
Star, Jonathan; Fisichelli, Nicholas; Bryan, Alexander; Babson, Amanda; Cole-Will, Rebecca; Miller-Rushing, Abraham J.
2016-01-01
This report summarizes outcomes from a two-day scenario planning workshop for Acadia National Park, Maine (ACAD). The primary objective of the workshop was to help ACAD senior leadership make management and planning decisions based on up-to-date climate science and assessments of future uncertainty. The workshop was also designed as a training program, helping build participants' capabilities to develop and use scenarios. The details of the workshop are given in later sections. The climate scenarios presented here are based on published global climate model output. The scenario implications for resources and management decisions are based on expert knowledge distilled through scientist-manager interaction during workgroup break-out sessions at the workshop. Thus, the descriptions below are from these small-group discussions in a workshop setting and should not be taken as vetted research statements of responses to the climate scenarios, but rather as insights and examinations of possible futures (Martin et al. 2011, McBride et al. 2012).
Long-Term Monitoring of Global Climate Forcings and Feedbacks
NASA Technical Reports Server (NTRS)
Hansen, J. (Editor); Rossow, W. (Editor); Fung, I. (Editor)
1993-01-01
A workshop on Long-Term Monitoring of Global Climate Forcings and Feedbacks was held February 3-4, 1992, at NASA's Goddard Institute for Space Studies to discuss the measurements required to interpret long-term global temperature changes, to critique the proposed contributions of a series of small satellites (Climsat), and to identify needed complementary monitoring. The workshop concluded that long-term (several decades) of continuous monitoring of the major climate forcings and feedbacks is essential for understanding long-term climate change.
A Faculty Workshop Model to Integrate Climate Change across the Curriculum
NASA Astrophysics Data System (ADS)
Teranes, J. L.
2017-12-01
Much of the growing scientific certainty of human impacts on the climate system, and the implications of these impacts on current and future generations, have been discovered and documented in research labs in colleges and universities across the country. Often these institutions also take decisive action towards combatting climate change, by making significant reductions in greenhouse emissions and pledging to greater future reductions. Yet, there are still far too many students that graduate from these campuses without an adequate understanding of how climate change will impact them within their lifetimes and without adequate workforce preparation to implement solutions. It may be that where college and universities still have the largest influence on climate change adaption and mitigation is in the way that we educate students. Here I present a curriculum workshop model at UC San Diego that leverages faculty expertise to infuse climate change education across disciplines to enhance UC San Diego students' climate literacy, particularly for those students whose major focus is not in the geosciences. In this model, twenty faculty from a breadth of disciplines, including social sciences, humanities, arts, education, and natural sciences participated in workshops and developed curricula to infuse aspects of climate change into their existing undergraduate courses. We particularly encouraged development of climate change modules in courses in the humanities, social sciences and arts that are best positioned to address the important human and social dimensions of climate change. In this way, climate change content becomes embedded in current course offerings, including non-science courses, to increase climate literacy among a greater number and a broader cross-section of students.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levine, Ellen
The National Council for Science and the Environment (NCSE) held its 15th National Conference and Global Forum on Science, Policy and the Environment: Energy and Climate Change, on January 27-29, 2015, at the Hyatt Regency Hotel, Crystal City, VA. The National Conference: Energy and Climate Change developed and advanced partnerships that focused on transitioning the world to a new “low carbon” and “climate resilient” energy system. It emphasized advancing research and technology, putting ideas into action, and moving forward on policy and practice. More than 900 participants from the scientific research, policy and governance, business and civil society, and educationmore » communities attended. The Conference was organized around four themes: (1) a new energy system (including energy infrastructure, technologies and efficiencies, changes in distribution of energy sources, and low carbon transportation); (2) energy, climate and sustainable development; (3) financing and markets; and (4) achieving progress (including ideas for the 21st Conference of Parties to the United Nations Framework Convention on Climate Change). The program featured six keynote presentations, six plenary sessions, 41 symposia and 20 workshops. Conference participants were involved in the 20 workshops, each on a specific energy and climate-related issue. The workshops were designed as interactive sessions, with each workshop generating 10-12 recommendations on the topic. The recommendations were prepared in the final conference report, were disseminated nationally, and continue to be available for public use. The conference also featured an exhibition and poster sessions. The National Conference on Energy and Climate Change addressed a wide range of issues specific to the U.S. Department of Energy’s programs; involved DOE’s scientists and program managers in sessions and workshops; and reached out to a broad array of DOE stakeholders.« less
McKenzie, Don; Allen, Craig D.
2007-01-01
Warming temperatures across western North America, coupled with increased drought, are expected to exacerbate disturbance regimes, particularly wildfires, insect outbreaks, and invasions of exotic species. Many ecologists and resource managers expect ecosystems to change more rapidly from disturbance effects than from the effects of a changing climate by itself. A particular challenge is to understand the interactions among disturbance regimes; for example, how will massive outbreaks of bark beetles, which kill drought-stressed trees by feeding on cambial tissues, increase the potential for large severe wildfires in a warming climate?Researchers in climatology, ecosystem science, fire and insect ecology, and landscape modeling from across western North America convened in Tucson, Ariz., for a 2 and a half day intensive workshop to identify new research directions in climate change and disturbance ecology. Four work groups focused on different aspects of the response of disturbance regimes to climate change: (1) extreme events and climatic variability (2) the effects of changing disturbance regimes on ecosystems, (3) disturbance interactions and cumulative effects, and (4) developing new landscape disturbance models. The workshop was structured with the analytic hierarchy process, a decision support method for achieving consensus from diverse groups of experts without sacrificing individual contributions.
NASA Astrophysics Data System (ADS)
Morrison, A.; Gold, A. U.; Soltis, N.; McNeal, K.; Kay, J. E.
2017-12-01
Climate science and global climate change are complex topics that require system-level thinking and the application of general science concepts. Identifying effective instructional approaches for improving climate literacy is an emerging research area with important broader impacts. Active learning techniques can ensure engagement throughout the learning process and increase retention of climate science content. Conceptual changes that can be measured as lasting learning gains occur when both the cognitive and affective domain are engaged. Galvanic skin sensors are a relatively new technique to directly measure engagement and cognitive load in science education. We studied the engagement and learning gains of 16 teachers throughout a one-day teacher professional development workshop focused on creative strategies to communicate about climate change. The workshop consisted of presentations about climate science, climate communication, storytelling and filmmaking, which were delivered using different pedagogical approaches. Presentations alternated with group exercises, clicker questions, videos and discussions. Using a pre-post test design we measured learning gains and attitude changes towards climate change among participating teachers. Each teacher wore a hand sensor to measure galvanic skin conductance as a proxy for emotional engagement. We surveyed teachers to obtain self-reflection data on engagement and on their skin conductance data during and after the workshop. Qualitative data provide critical information to aid the interpretation of skin conductance readings. Based on skin conductance data, teachers were most engaged during group work, discussions and videos as compared to lecture-style presentations. We discuss the benefits and limitations of using galvanic skin sensors to inform the design of teacher professional development opportunities. Results indicate that watching videos or doing interactive activities may be the most effective strategies for increasing teachers' knowledge of climate science.
Climate Change Education: Goals, Audiences, and Strategies--A Workshop Summary
ERIC Educational Resources Information Center
Forest, Sherrie; Feder, Michael A.
2011-01-01
The global scientific and policy community now unequivocally accepts that human activities cause global climate change. Although information on climate change is readily available, the nation still seems unprepared or unwilling to respond effectively to climate change, due partly to a general lack of public understanding of climate change issues…
CLIMATE CHANGE IN THE UPPER GREAT LAKES REGION: A WORKSHOP REPORT
This paper, "Coping With Climate Change", argues that adaptation is an important strategy for protecting human health, ecosystems, and economic activity as the climate changes. Adaptation is an essential component of any portfolio of actions that comprise U.S. climate change poli...
The Upper Great Lakes workshop, sponsored by the U.S. Environmental Protection Agency (USEPA), was held at the University of Michigan in Ann Arbor, Michigan from 4-7 May 1998 to discuss some of the potential consequences of climate change in the Upper Great Lakes region (e.g., Mi...
NASA Technical Reports Server (NTRS)
Rosenzweig, Cynthia; Brown, Molly
2009-01-01
NASA conducted a workshop in July 2009 to bring together their experts in the climate science and climate impacts domains with their institutional stewards. The workshop serves as a pilot for how a federal agency can start to: a) understand current and future climate change risks, b) develop a list of vulnerable institutional capabilities and assets, and c) develop next steps so flexible adaptation strategies can be developed and implemented. 63 attendees (26 scientists and over 30 institutional stewards) participated in the workshop, which extended across all or part of three days.
Developing and Evaluating Workshop Frameworks to Improve Climate Literacy
NASA Astrophysics Data System (ADS)
Averyt, K.; Alvord, C.; Joyce, L. A.; Lukas, J.; Barsugli, J. J.; Owen, G.; Udall, B.
2009-12-01
A burgeoning need for climate information is rising from a variety of stakeholders. A new federal report encourages federal resource management efforts to consider climate in assessments-leaving agency scientists and resource managers searching for appropriate data and methodologies. At the other end of the spectrum, small-scale decision makers realize the need to develop scientifically-informed climate adaptation plans, but are unclear about what science is relevant. It is becoming necessary to improve the climate literacy across all sectors. However, past examples illustrate that climate science has been insufficiently communicated, resulting in perceptions that misinform decision-making and planning. Given the necessity to include climate science in planning on multiple scales, scientific educators must work with stakeholders to determine how best to improve climate literacy. Doing so will reduce uncertainty in the application of climate data in planning, and thus mitigate vulnerabilities to the impacts of climate change. Here, we present the design and assessment of two workshop frameworks intended to improve the climate literacy of two distinct entities with different climate information needs. This work represents initial steps by the Western Water Assessment, a NOAA- Regionally Integrated Sciences and Assessments (RISA) Program, towards the development of a suite of process-oriented frameworks geared toward improving the climate literacy of different users with distinct informational needs. Both workshops focused on water-related climate issues: the first (Dealing with Drought: Climate Change in Colorado) was geared toward an audience with minimal exposure to climate information; the second was for US Forest Service hydrologists and managers with technical backgrounds. In both cases, the workshop format included presentations of relevant climate science, introductions to varied climate tools and products, and a needs-and-gaps assessment. Evaluation of each workshop drew upon a variety of tested social science methods, such as focus groups, decision games, surveys, and structured interviews. The efficacy of the framework developed was assessed by evaluating the relationship among the climate information presented, user perceptions about climate information, and incorporation into decision-making. In addition to climate literacy evaluations, participants were presented with a scenario at the beginning of the meeting, and were asked to report periodically on their thoughts on how to approach the scenario as new information was presented throughout the workshop. This allowed us to track the co-evolution of climate literacy, accuracy of data interpretation, and the sophistication of participants’ decision-making. In the 12-months after each workshop, we will track how the climate literacy of the participants evolves, and how their informational needs for decision-making change. The results here will frame a process for how a larger, federal climate-training program might be conducted, and how training needs can be assessed through climate literacy assessments.
Addressing climate challenges in developing countries
NASA Astrophysics Data System (ADS)
Tilmes, Simone; Monaghan, Andrew; Done, James
2012-04-01
Advanced Study Program/Early Career Scientist Assembly Workshop on Regional Climate Issues in Developing Countries; Boulder, Colorado, 19-22 October 2011 The Early Career Scientist Assembly (ECSA) and the Advanced Study Program of the National Center for Atmospheric Research (NCAR) invited 35 early-career scientists from nearly 20 countries to attend a 3-day workshop at the NCAR Mesa Laboratory prior to the World Climate Research Programme (WCRP) Open Science Conference in October 2011. The goal of the workshop was to examine a range of regional climate challenges in developing countries. Topics included regional climate modeling, climate impacts, water resources, and air quality. The workshop fostered new ideas and collaborations between early-career scientists from around the world. The discussions underscored the importance of establishing partnerships with scientists located in typically underrepresented countries to understand and account for the local political, economic, and cultural factors on which climate change is superimposed.
Links between media communication and local perceptions of climate change in an indigenous society
Fernández-Llamazares, Álvaro; Méndez-López, María Elena; Díaz-Reviriego, Isabel; McBride, Marissa F.; Pyhälä, Aili; Rosell-Melé, Antoni; Reyes-García, Victoria
2015-01-01
Indigenous societies hold a great deal of ethnoclimatological knowledge that could potentially be of key importance for both climate change science and local adaptation; yet, we lack studies examining how such knowledge might be shaped by media communication. This study systematically investigates the interplay between local observations of climate change and the reception of media information amongst the Tsimane’, an indigenous society of Bolivian Amazonia where the scientific discourse of anthropogenic climate change has barely reached. Specifically, we conducted a Randomized Evaluation with a sample of 424 household heads in 12 villages to test to what degree local accounts of climate change are influenced by externally influenced awareness. We randomly assigned villages to a treatment and control group, conducted workshops on climate change with villages in the treatment group, and evaluated the effects of information dissemination on individual climate change perceptions. Results of this work suggest that providing climate change information through participatory workshops does not noticeably influence individual perceptions of climate change. Such findings stress the challenges involved in translating between local and scientific framings of climate change, and gives cause for concern about how to integrate indigenous peoples and local knowledge with global climate change policy debates. PMID:26166919
Links between media communication and local perceptions of climate change in an indigenous society.
Fernández-Llamazares, Álvaro; Méndez-López, María Elena; Díaz-Reviriego, Isabel; McBride, Marissa F; Pyhälä, Aili; Rosell-Melé, Antoni; Reyes-García, Victoria
2015-07-01
Indigenous societies hold a great deal of ethnoclimatological knowledge that could potentially be of key importance for both climate change science and local adaptation; yet, we lack studies examining how such knowledge might be shaped by media communication. This study systematically investigates the interplay between local observations of climate change and the reception of media information amongst the Tsimane', an indigenous society of Bolivian Amazonia where the scientific discourse of anthropogenic climate change has barely reached. Specifically, we conducted a Randomized Evaluation with a sample of 424 household heads in 12 villages to test to what degree local accounts of climate change are influenced by externally influenced awareness. We randomly assigned villages to a treatment and control group, conducted workshops on climate change with villages in the treatment group, and evaluated the effects of information dissemination on individual climate change perceptions. Results of this work suggest that providing climate change information through participatory workshops does not noticeably influence individual perceptions of climate change. Such findings stress the challenges involved in translating between local and scientific framings of climate change, and gives cause for concern about how to integrate indigenous peoples and local knowledge with global climate change policy debates.
Climate variability and change in high elevation regions: Past, present & future
Diaz, Henry F.; Grosjean, Martin; Graumlich, Lisa J.
2003-01-01
This special issue of Climatic Change contains a series of research and review articles, arising from papers that were presented and discussed at a workshop held in Davos, Switzerland on 25–28 June 2001. The workshop was titled ‘Climate Change at High Elevation Sites: Emerging Impacts’, and was convened to reprise an earlier conference on the same subject that was held in Wengen, Switzerland in 1995 (Diaz et al., 1997). The Davos meeting had as its main goals, a discussion of the following key issues: (1) reviewing recent climatic trends in high elevation regions of the world, (2) assessing the reliability of various biological indicators as indicators of climatic change, and (3) assessing whether physical impacts of climatic change in high elevation areas are becoming evident, and to discuss a range of monitoring strategies needed to observe and to understand the nature of any changes.
NASA Astrophysics Data System (ADS)
Rumore, D.; Kirshen, P. H.; Susskind, L.
2014-12-01
Despite scientific consensus that the climate is changing, local efforts to prepare for and manage climate change risks remain limited. How we can raise concern about climate change risks and enhance local readiness to adapt to climate change's effects? In this presentation, we will share the lessons learned from the New England Climate Adaptation Project (NECAP), a participatory action research project that tested science-based role-play simulations as a tool for educating the public about climate change risks and simulating collective risk management efforts. NECAP was a 2-year effort involving the Massachusetts Institute of Technology, the Consensus Building Institute, the National Estuarine Research Reserve System, and four coastal New England municipalities. During 2012-2013, the NECAP team produced downscaled climate change projections, a summary risk assessment, and a stakeholder assessment for each partner community. Working with local partners, we used these assessments to create a tailored, science-based role-play simulation for each site. Through a series of workshops in 2013, NECAP engaged between 115-170 diverse stakeholders and members of the public in each partner municipality in playing the simulation and a follow up conversation about local climate change risks and possible adaptation strategies. Data were collected through before-and-after surveys administered to all workshop participants, follow-up interviews with 25 percent of workshop participants, public opinion polls conducted before and after our intervention, and meetings with public officials. This presentation will report our research findings and explain how science-based role-play simulations can be used to help communicate local climate change risks and enhance local readiness to adapt.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-30
... Changes in Extreme Storm Statistics: State of Knowledge; Notice of Open Public Workshop AGENCY: National... .) SUPPLEMENTARY INFORMATION: This workshop will provide an update to the climate science surrounding extreme... storms. Specific topics include: Severe Thunderstorms (and associated hail and winds), tornadoes, extreme...
An Official American Thoracic Society Workshop Report: Climate Change and Human Health
Pinkerton, Kent E.; Rom, William N.; Akpinar-Elci, Muge; Balmes, John R.; Bayram, Hasan; Brandli, Otto; Hollingsworth, John W.; Kinney, Patrick L.; Margolis, Helene G.; Martin, William J.; Sasser, Erika N.; Smith, Kirk R.; Takaro, Tim K.
2012-01-01
This document presents the proceedings from the American Thoracic Society Climate Change and Respiratory Health Workshop that was held on May 15, 2010, in New Orleans, Louisiana. The purpose of the one-day meeting was to address the threat to global respiratory health posed by climate change. Domestic and international experts as well as representatives of international respiratory societies and key U.S. federal agencies convened to identify necessary research questions concerning climate change and respiratory health and appropriate mechanisms and infrastructure needs for answering these questions. After much discussion, a breakout group compiled 27 recommendations for physicians, researchers, and policy makers. These recommendations are listed under main issues that the workshop participants deemed of key importance to respiratory health. Issues include the following: (1) the health impacts of climate change, with specific focus on the effect of heat waves, air pollution, and natural cycles; (2) mitigation and adaptation measures to be taken, with special emphasis on recommendations for the clinical and research community; (3) recognition of challenges specific to low-resource countries when coping with respiratory health and climate change; and (4) priority research infrastructure needs, with special discussion of international needs for cooperating with present and future environmental monitoring and alert systems. PMID:22421581
78 FR 19514 - National Fish, Wildlife, and Plants Climate Adaptation Strategy
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-01
... changing climate. Input from public comments and workshops has been incorporated in the development of this... or Strategy). The adverse impacts of climate change transcend political and administrative boundaries... effects of climate change. This Strategy presents a unified approach--reflecting shared principles and...
NASA Astrophysics Data System (ADS)
Kirk, K. B.; Manduca, C. A.; Myers, J. D.; Loxsom, F.
2009-12-01
Global climate change and energy use are among the most relevant and pressing issues in today’s science curriculum, yet they are also complex topics to teach. The underlying science spans multiple disciplines and is quickly evolving. Moreover, a comprehensive treatment of climate change and energy use must also delve into perspectives not typically addressed in geosciences courses, such as public policy and economics. Thus, faculty attempting to address these timely issues face many challenges. To support faculty in teaching these subjects, the On the Cutting Edge faculty development program has created a series of websites and workshop opportunities to provide faculty with information and resources for teaching about climate and energy. A web-based collection of teaching materials was developed in conjunction with the On the Cutting Edge workshops “Teaching about Energy in Geoscience Courses: Current Research and Pedagogy.” The website is designed to provide faculty with examples, references and ideas for either incorporating energy topics into existing geoscience courses or for designing or refining a course about energy. The website contains a collection of over 30 classroom and lab activities contributed by faculty and covering such diverse topics as renewable energy, energy policy and energy conservation. Course descriptions and syllabi for energy courses address audiences ranging from introductory courses to advanced seminars. Other materials available on the website include a collection of visualizations and animations, a catalog of recommended books, presentations and related references from the teaching energy workshops, and ideas for novel approaches or new topics for teaching about energy in the geosciences. The Teaching Climate Change website hosts large collections of teaching materials spanning many different topics within climate change, climatology and meteorology. Classroom activities highlight diverse pedagogic approaches such as role-playing, inquiry-based learning via online data sets, and the use of computer models. The website houses course descriptions and syllabi for both introductory-level and upper-level climate courses contributed by faculty. Collections of climate visualizations and recommended references help faculty navigate to online materials that are best suited for their classroom. The On the Cutting Edge program features a biennial workshop series about teaching climate change, held in conjunction with the American Quaternary Association. Presentations, teaching ideas and references from the 2006 and 2008 workshops are available, along with applications for the upcoming workshop to be held in August 2010. All of these materials can be found at http://serc.carleton.edu/NAGTWorkshops/energy and http://serc.carleton.edu/NAGTWorkshops/climatechange. Faculty are encouraged to submit their own teaching materials to the web collections via on-line forms for submitting information and uploading files.
NASA Astrophysics Data System (ADS)
Mayer, A.; Vivoni, E.; Halvorsen, K.; Robles-Morua, A.; Dana, K.; Che, D.; Mirchi, A.; Kossak, D.; Casteneda, M.
2013-05-01
In this project, we are studying decision-making for water resources management in anticipation of climate change in the Sonora River Basin, Mexico as a case study for the broader arid and semiarid southwestern North America. The goal of the proposed project is to determine whether water resources systems modeling, developed within a participatory framework, can contribute to the building of management strategies in a context of water scarcity, conflicting water uses and highly variable and changing climate conditions. The participatory modeling approach will be conducted through a series of three workshops, designed to encourage substantive participation from a broad range of actors, including representatives from federal and local government agencies, water use sectors, non-governmental organizations, and academics. Participants will guide the design of supply- and demand-side management strategies and selection of climate change and infrastructure management scenarios using state-of-the-art engineering tools. These tools include a water resources systems framework, a spatially-explicit hydrologic model, the use of forecasted climate scenarios under 21st century climate change, and observations obtained from field and satellite sensors. Through the theory of planned behavior, the participatory modeling process will be evaluated to understand if, and to what extent, the engineering tools are useful in the uncertain and politically-complex setting. Pre- and post-workshop surveys will be used in this evaluation. For this contribution, we present the results of the first collaborative modeling workshop that will be held in March 2013, where we will develop the initial modeling framework in collaboration with workshop participants.
Developing Capacity for Cities to Adapt to a Changing Climate-a Case Study in Boulder, Colorado
NASA Astrophysics Data System (ADS)
Sands, R.; Groves, D. G.; Nason, M.; Pandya, R.
2016-12-01
The City of Boulder in Colorado has undertaken many progressive climate-related initiatives, from signing the Kyoto protocol to passing a Climate Action Tax. But as the city prepared to launch its Climate Commitment document and lead a community process, it realized that one critical group that had not been fully engaged in the process was its own staff. It became clear that for organizational change to occur and for the city to meet its goals, city staff needed to develop a deeper understanding of the importance of the climate goals while also learning better how to use these goals to guide their long-term planning. In early 2016, the city launched a year-long "Climate Leaders" initiative which comprised of a series of workshops that brought together over 70 staff members with climate scientists and experts in climate adaptation planning. The first two workshops, billed as Climate 101 and 201, reviewed the best available scientific information about climate threats and potential impacts, and worked with participants to understand how climate changes could affect diverse city functions. These interactive workshops also explored ways to help city staff feel comfortable preparing for a significantly different climate and discussed ways to communicate this information to the public. From there the group split into two tracks. A "mitigation" track focused on the ways in which Boulder could meet its aggressive emissions reduction targets. The "adaptation" track developed integrated scenarios for citywide planning to highlight Boulder's vulnerability to climate change and guide adaptation planning. Bringing these two conversations together is helping city staff to explore critical linkages between mitigation and adaptation, develop common messages to build community support for climate action, and inform comprehensive climate resiliency planning. We will describe how Boulder successfully partnered with scientists and planning experts to program a year of interactive workshops to bring diverse city staff into the climate action process. We will share outcomes from the development of the integrated climate scenarios vulnerability assessment and adaptation planning. Lastly we will share key lessons learned that will be valuable to other cities and jurisdictions engaging in similar climate action.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-08
... exercise was designed to elicit judgments from experts in a workshop setting, regarding climate change... influence under both current and future climate change scenarios. The experts also discussed the high impact... in the diagram, and the potential for threshold changes. These reports show how climate-sensitive...
Impact relevance and usability of high resolution climate modeling and data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnott, James C.
2016-10-30
The Aspen Global Change Institute hosted a technical science workshop entitled, “Impact Relevance and Usability of High-Resolution Climate Modeling and Datasets,” on August 2-7, 2015 in Aspen, CO. Kate Calvin (Pacific Northwest National Laboratory), Andrew Jones (Lawrence Berkeley National Laboratory) and Jean-François Lamarque (NCAR) served as co-chairs for the workshop. The meeting included the participation of 29 scientists for a total of 145 participant days. Following the workshop, workshop co-chairs authored a meeting report published in Eos on April 27, 2016. Insights from the workshop directly contributed to the formation of a new DOE-supported project co-led by workshop co-chair Andymore » Jones. A subset of meeting participants continue to work on a publication on institutional innovations that can support the usability of high resolution modeling, among other sources of climate information.« less
Fisichelli, Nicholas A.; Schuurman, Gregor; Symstad, Amy J.; Ray, Andrea; Friedman, Jonathan M.; Miller, Brian; Rowland, Erika
2016-01-01
The Scaling Climate Change Adaptation in the Northern Great Plains through Regional Climate Summaries and Local Qualitative-Quantitative Scenario Planning Workshops project synthesizes climate data into 3-5 distinct but plausible climate summaries for the northern Great Plains region; crafts quantitative summaries of these climate futures for two focal areas; and applies these local summaries by developing climate-resource-management scenarios through participatory workshops and, where possible, simulation models. The two focal areas are central North Dakota and southwest South Dakota (Figure 1). The primary objective of this project is to help resource managers and scientists in a focal area use scenario planning to make management and planning decisions based on assessments of critical future uncertainties.This report summarizes project work for public and tribal lands in the central North Dakota focal area, with an emphasis on Knife River Indian Villages National Historic Site. The report explainsscenario planning as an adaptation tool in general, then describes how it was applied to the central North Dakota focal area in three phases. Priority resource management and climate uncertainties were identified in the orientation phase. Local climate summaries for relevant, divergent, and challenging climate scenarios were developed in the second phase. In the final phase, a two-day scenario planning workshop held November 12-13, 2015 in Bismarck, ND, featured scenario development and implications, testing management decisions, and methods for operationalizing scenario planning outcomes.
Fisichelli, Nicholas A.; Schuurman, Gregor W.; Symstad, Amy J.; Ray, Andrea; Miller, Brian; Cross, Molly; Rowland, Erika
2016-01-01
The Scaling Climate Change Adaptation in the Northern Great Plains through Regional Climate Summaries and Local Qualitative-Quantitative Scenario Planning Workshops project synthesizes climate data into 3-5 distinct but plausible climate summaries for the northern Great Plains region; crafts quantitative summaries of these climate futures for two focal areas; and applies these local summaries by developing climate-resource-management scenarios through participatory workshops and, where possible, simulation models. The two focal areas are central North Dakota and southwest South Dakota (Figure 1). The primary objective of this project is to help resource managers and scientists in a focal area use scenario planning to make management and planning decisions based on assessments of critical future uncertainties.This report summarizes project work for public and tribal lands in the southwest South Dakota grasslands focal area, with an emphasis on Badlands National Park and Buffalo Gap National Grassland. The report explains scenario planning as an adaptation tool in general, then describes how it was applied to the focal area in three phases. Priority resource management and climate uncertainties were identified in the orientation phase. Local climate summaries for relevant, divergent, and challenging climate scenarios were developed in the second phase. In the final phase, a two-day scenario planning workshop held January 20-21, 2016 in Rapid City, South Dakota, featured scenario development and implications, testing management decisions, and methods for operationalizing scenario planning outcomes.
NASA Astrophysics Data System (ADS)
Flores, A. N.; Gelb, L.; Watson, K. A.; Steimke, A.; Chang, C.; Busche, C.; Breidenbach, J.
2016-12-01
A climate literate citizenry is essential to the long-term success of climate change adaptation and to enhancing resilience of communities to climate change impacts. In support of a National Science Foundation CAREER award, we developed a teacher training workshop on a project that engages students in creating functioning, low-cost weather stations using open source electronics. The workshop aims to improve climate literacy among K-12 students while providing an authentic opportunity to acquire and hone STEM skills. Each station measures temperature, humidity, barometric pressure, light level, soil moisture, and precipitation occurrence. Our day-long workshop focuses on three elements: (1) providing context on the scientific importance of climate observation, (2) equipping teachers with technical skills needed to assemble and use a station from provided components, and (3) highlighting relevant educational standards met by the weather station activities. The workshop was attended by twelve 4th-9th grade teachers from southwest Idaho, all of whom teach at rural and/or Title I schools. Attendees reported having minimal or no previous experience with open source electronics, but all were able to effectively use their weather station with less than two hours of hands-on training. In written and oral post-workshop reflections teachers expressed a strong desire to integrate these activities into classrooms, but also revealed barriers associated with rigid curricular constraints and risk-averse administrators. Continued evolution of the workshop will focus on: (1) extending the duration and exploratory depth of the workshop, (2) refining pre- and post-assessments and performing longitudinal monitoring of teacher participants to measure short- and long-term efficacy of the workshop, and (3) partnering with colleagues to engage school district administrators in dialog on how to integrate authentic activities like this one into K-12 curriculum.
Buotte, Polly C; Peterson, David L; McKelvey, Kevin S; Hicke, Jeffrey A
2016-03-15
Natural resource vulnerability to climate change can depend on the climatology and ecological conditions at a particular site. Here we present a conceptual framework for incorporating spatial variability in natural resource vulnerability to climate change in a regional-scale assessment. The framework was implemented in the first regional-scale vulnerability assessment conducted by the US Forest Service. During this assessment, five subregional workshops were held to capture variability in vulnerability and to develop adaptation tactics. At each workshop, participants answered a questionnaire to: 1) identify species, resources, or other information missing from the regional assessment, and 2) describe subregional vulnerability to climate change. Workshop participants divided into six resource groups; here we focus on wildlife resources. Participants identified information missing from the regional assessment and multiple instances of subregional variability in climate change vulnerability. We provide recommendations for improving the process of capturing subregional variability in a regional vulnerability assessment. We propose a revised conceptual framework structured around pathways of climate influence, each with separate rankings for exposure, sensitivity, and adaptive capacity. These revisions allow for a quantitative ranking of species, pathways, exposure, sensitivity, and adaptive capacity across subregions. Rankings can be used to direct the development and implementation of future regional research and monitoring programs. The revised conceptual framework is equally applicable as a stand-alone model for assessing climate change vulnerability and as a nested model within a regional assessment for capturing subregional variability in vulnerability. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Weller, N.; Bennett, I.; Bernstein, M.; Farooque, M.; Lloyd, J.; Lowenthal, C.; Sittenfeld, D.
2016-12-01
Actionable science seeks to align scientific inquiry with decision-making priorities to overcome rifts between scientific knowledge and the needs of decision makers. Combining actionable science with explorations of public values and priorities creates useful support for decision makers facing uncertainty, tradeoffs, and limited resources. As part of a broader project to create public forums about climate change resilience, we convened workshops with decision makers, resilience experts, and community stakeholders to discuss climate change resilience. Our goals were 1) to create case studies of resilience strategies for use in public deliberations at science museums across 8 U.S. cities; and 2) to build relationships with decision makers and stakeholders interested in these public deliberations. Prior to workshops, we created summaries of resilience strategies using academic literature, government assessments, municipal resilience plans, and conversations with workshop participants. Workshops began with example deliberation activities followed by semi-structured discussions of resilience strategies centered on 4 questions: 1) What are the key decisions to be made regarding each strategy? 2) What stakeholders and perspectives are relevant to each strategy? 3) What available data are relevant to each strategy? 4) What visualizations or other resources are useful for communicating things about each strategy? Workshops yielded actionable dialogue regarding issues of justice, feasibility, and the socio-ecological-technical systems impacted by climate change hazards and resilience strategies. For example, discussions of drought revealed systemic and individual-level challenges and opportunities; discussions of sea level rise included ways to account for the cultural significance of many coastal communities. The workshops provide a model for identifying decision-making priorities and tradeoffs and building partnerships among stakeholders, scientists, and decision makers.
Thorne, Karen M.; Elliott-Fisk, Deborah L.; Freeman, Chase; Bui, Thuy-Vy D.; Powelson, Katherine; Janousek, Christopher; Buffington, Kevin J.; Takekawa, John Y.
2017-01-01
A key challenge for coastal resource managers is to plan and implement climate change adaptation strategies inlight of uncertainties and competing management priorities. In 2014, we held six workshops across estuaries along the Pacific coast of North America with over 150 participants to evaluate resource managers' perceived level of understanding of climate change science, where they obtain information, how they use this knowledge, and their preparedness for incorporating climate change into their management decisions. We found that most resource managers understood the types of climate change impacts likely to occur in their estuaries, but often lacked the scientific information to make decisions and plan effectively. Managers stated that time, money, and staff resources were the largest obstacles in their efforts. Managers identified that they learned most of their information from peers, scientific journals, and the Internet and indicated that sea-level rise was their greatest concern. There was, however, variation in managers' levels of readiness and perceived knowledge within and among workshop locations. The workshops revealed that some regions don't have the information they need or the planning capacity to effectively integrate climate change into their management, with eight out of fifteen site comparisons showing a significant difference between their level of preparedness (F5,26 = 6.852; p = 0.0003), and their willingness to formally plan (F5,26 = 12.84; p = 0.000002). We found that Urban estuaries were significantly different from Mixed Use and Rural estuaries, in having access to information and feeling more prepared to conduct climate change planning and implementation (F2,29 = 17.34; p = 0.00001). To facilitate climate change preparedness more comprehensive integration of science into management decisions is essential.
NASA Astrophysics Data System (ADS)
Reddy, S. R.
2013-12-01
AMS Climate Studies is an introductory college-level course developed by the American Meteorological Society for implementation at undergraduate institutions nationwide and increasing involvement of under-represented groups The course places students in a dynamic and highly motivational educational environment where they investigate Earth's climate system using real-world environmental data. The AMS Climate Studies course package consists of a textbook, investigations manual, course website, and course management system-compatible files. Instructors can use these resources in combinations that make for an exciting learning experience for their students. The AMS Climate Studies Diversity Project Workshop participation is on a first-come, first-serve basis as determined by the date-of-receipt of the License Order Form. To grow AMS Diversity Programs to their fullest extent, institutions are encouraged to nominate course instructors who did not previously attend Diversity Project workshops. Until three months before the workshop, two-thirds of the workshop positions would be reserved for institutions new to AMS Diversity Projects. The AMS five day course implementation workshop was held in Washington, DC, during May 24-29, 2012. It covered essential course topics in climate science and global climate change, and strategies for course implementation. Talks would feature climate science and sustainability experts from Federal agencies and area research institutions, such as NASA, NOAA, University of Maryland, Howard University, George Mason University, and other Washington, DC, area institutions. The workshop would also include visits to NASA Goddard Space Flight Center and NOAA's Climate Prediction Center. JSU Meteorology Program will be offering AMS Climate Studies undergraduate course under MET 210: Climatology in spring 2014. AMS Climate Studies is offered as a 3 credit hour laboratory course with 2 lectures and 1 lab sessions per week. Although this course places strong intellectual demands upon each student, the instructors' objective is to help each student to pass the course with an adequate understanding of the fundamentals and advanced and applied concepts of climatology, and climate change for him/her to understand basic atmospheric/climate processes, physical and dynamical climatology, regional and global climatology, past and future climates and statistical analysis using climate data and to be prepared to profit from studying more advanced courses.
NASA Astrophysics Data System (ADS)
Storksdieck, M.
2012-12-01
A recent report by the National Research Council placed climate change or climate science education deeply into the curriculum of K-12 science education in the US (A Framework for K-12 Science Education). The NRC Framework is currently being translated into the Next Generation Science Standards (NGSS), an effort by 26 states, representing 57% of the US school-aged population, under the leadership of the educational nonprofit Achieve. A first draft version of the NGSS was made available to public audiences in June of 2012, and a revised draft will be available for a second round of reviews in later November of 2012; the final version of the NGSS which will likely feature climate change and climate science as part of Earth Systems Science, but also embedded in other areas of the science curriculum, is expected to be released in the spring of 2013. It has already become apparent, though, that successful implementation of the new standards down into effective classroom-based instruction will require a deep analysis of current and likely future barriers and opportunities for engaging K-14 students in climate change education. A recently released report on an NRC workshop conducted in 2011 summarizes these discussions (Climate Change Education in Formal Settings, K-14: A Workshop Summary). The proceedings of the workshop highlight the need to think in trans- or interdisciplinary ways about educating children in primary, secondary and early post-secondary education. This report builds on a 2010 workshop that addressed how to best reach general audiences on the issue of climate change education, particularly if the desired outcome is seen as building adaptive capacity in children and adults alike. This workshop was summarized in a report entitled Climate Change Education: Goals, Audiences, and Strategies. Opportunities for engaging students in trans- or interdisciplinary exploration of climate science or climate change-related topics, while available to K-12 students, abound in undergraduate education and informal learning. This presentation will feature a variety of cases in which climate is being addressed this way, and discuss principles that one can extract from such diverse examples as an integrated undergraduate minor; a youth-oriented show and related activities for schools provided by an educational non-profit; Green Schools and other specialty initiatives at the K-12 level that integrate education around climate and energy challenges, or programs in nature and science centers that address climate issues from a stewardship perspective, addressing actions children can take as part of the educational activities themselves. Principles that have guided various successful efforts to implement trans-and interdisciplinary climate education include orientation towards local and community action; relevance to learners; commitment by leadership and staff; institutional and organizational freedom to experiment and cooperate; opportunities to explore underlying natural and social science phenomena through hands-on and active learning; and commitment to excellence and scientific "truth". The session will close with a reflection on the merits of infusing climate change throughout the learning trajectory of a child, adolescent or young adult.
Collaborative Education in Climate Change Sciences and Adaptation through Interactive Learning
NASA Astrophysics Data System (ADS)
Ozbay, G.; Sriharan, S.; Fan, C.
2014-12-01
As a result of several funded climate change education grants, collaboration between VSU, DSU, and MSU, was established to provide the innovative and cohesive education and research opportunities to underrepresented groups in the climate related sciences. Prior to offering climate change and adaptation related topics to the students, faculty members of the three collaborating institutions participated at a number of faculty training and preparation workshops for teaching climate change sciences (i.e. AMS Diversity Project Workshop, NCAR Faculty-Student Team on Climate Change, NASA-NICE Program). In order to enhance the teaching and student learning on various issues in the Environmental Sciences Programs, Climatology, Climate Change Sciences and Adaptation or related courses were developed at Delaware State University and its partner institutions (Virginia State University and Morgan State University). These courses were prepared to deliver information on physical basis for the earth's climate system and current climate change instruction modules by AMS and historic climate information (NOAA Climate Services, U.S. and World Weather Data, NCAR and NASA Climate Models). By using Global Seminar as a Model, faculty members worked in teams to engage students in videoconferencing on climate change through Contemporary Global Studies and climate courses including Climate Change and Adaptation Science, Sustainable Agriculture, Introduction to Environmental Sciences, Climatology, and Ecology and Adaptation courses. All climate change courses have extensive hands-on practices and research integrated into the student learning experiences. Some of these students have presented their classroom projects during Earth Day, Student Climate Change Symposium, Undergraduate Summer Symposium, and other national conferences.
Stahl, Ralph G; Hooper, Michael J; Balbus, John M; Clements, William; Fritz, Alyce; Gouin, Todd; Helm, Roger; Hickey, Christopher; Landis, Wayne; Moe, S Jannicke
2013-01-01
This is the first of seven papers resulting from a Society of Environmental Toxicology and Chemistry (SETAC) international workshop titled "The Influence of Global Climate Change on the Scientific Foundations and Applications of Environmental Toxicology and Chemistry." The workshop involved 36 scientists from 11 countries and was designed to answer the following question: How will global climate change influence the environmental impacts of chemicals and other stressors and the way we assess and manage them in the environment? While more detail is found in the complete series of articles, some key consensus points are as follows: (1) human actions (including mitigation of and adaptation to impacts of global climate change [GCC]) may have as much influence on the fate and distribution of chemical contaminants as does GCC, and modeled predictions should be interpreted cautiously; (2) climate change can affect the toxicity of chemicals, but chemicals can also affect how organisms acclimate to climate change; (3) effects of GCC may be slow, variable, and difficult to detect, though some populations and communities of high vulnerability may exhibit responses sooner and more dramatically than others; (4) future approaches to human and ecological risk assessments will need to incorporate multiple stressors and cumulative risks considering the wide spectrum of potential impacts stemming from GCC; and (5) baseline/reference conditions for estimating resource injury and restoration/rehabilitation will continually shift due to GCC and represent significant challenges to practitioners. Copyright © 2013 SETAC.
Stahl, Ralph G.; Hooper, Michael J.; Balbus, John M.; Clements, William; Fritz, Alyce; Gouin, Todd; Helm, Roger; Hickey, Christopher; Landis, Wayne; Moe, S. Jannicke
2013-01-01
This is the first of seven papers resulting from a Society of Environmental Toxicology and Chemistry (SETAC) international workshop titled “The Influence of Global Climate Change on the Scientific Foundations and Applications of Environmental Toxicology and Chemistry.” The workshop involved 36 scientists from 11 countries and was designed to answer the following question: How will global climate change influence the environmental impacts of chemicals and other stressors and the way we assess and manage them in the environment? While more detail is found in the complete series of articles, some key consensus points are as follows: (1) human actions (including mitigation of and adaptation to impacts of global climate change [GCC]) may have as much influence on the fate and distribution of chemical contaminants as does GCC, and modeled predictions should be interpreted cautiously; (2) climate change can affect the toxicity of chemicals, but chemicals can also affect how organisms acclimate to climate change; (3) effects of GCC may be slow, variable, and difficult to detect, though some populations and communities of high vulnerability may exhibit responses sooner and more dramatically than others; (4) future approaches to human and ecological risk assessments will need to incorporate multiple stressors and cumulative risks considering the wide spectrum of potential impacts stemming from GCC; and (5) baseline/reference conditions for estimating resource injury and restoration/rehabilitation will continually shift due to GCC and represent significant challenges to practitioners.
Climate change in the Pacific - is it real or not?
NASA Astrophysics Data System (ADS)
Kuleshov, Yuriy
2013-04-01
In this presentation, novel approaches and new ideas for students and young researchers to appreciate the importance of climate science are discussed. These approaches have been applied through conducting a number of training workshops in the Pacific Island Countries and teaching a course on climate change international law and climate change science at the University of the South Pacific (USP) - the first course on this type in the Pacific. Particular focus of this presentation is on broadening students' experience with application of web-based information tools for analysis of climatic extremes and natural hazards such as tropical cyclones. Over the past few years, significant efforts of Australian climate scientists have been dedicated to improving understanding of climate in the Pacific through the International Climate Change Adaptation Initiative (the Australian Government Initiative to assist with high priority climate adaptation needs in vulnerable countries in the Asia-Pacific region). The first comprehensive scientific report about the Pacific climate has been published in 2011, as an outcome of the Pacific Climate Change Science Program (PCCSP). A range of web-based information tools such as the Pacific Tropical Cyclone Data Portal, the Pacific Climate Change Data Portal and the Pacific Seasonal Climate Prediction Portal has been also developed through the PCCSP and the Pacific Adaptation Strategy Assistance Program. Currently, further advancement in seasonal climate prediction science and developing enhanced software tools for the Pacific is undertaken through the Theme 1 of the Pacific Australia Climate Change Science and Adaptation Planning (PACCSAP) Program. This new scientific knowledge needs to be transferred to students to provide them with true information about climate change and its impact on the Pacific Island Countries. Teachers and educators need their knowledge-base regularly updated and tools that will help their students critically evaluate information transmitted via the mass media. This is particularly important when educators present to students cutting edge science knowledge on climate change. Climate change skeptics through mass media attack climate scientists and dismiss their findings about magnitude of climate change. A novel approach implemented in our training workshops and teaching courses gives students practical hands on experience in examining climate data using the developed web-based information tools. Using the tools, students can examine climate of the Pacific Island Countries, derive trends in climate variables such as temperature and rainfall and make their own conclusions. An open forum "Is climate change real or not?" has also been included as an integral part of these workshops and teaching, giving an opportunity for students to present their findings. They have also been asked to provide examples of observed change in the environment in their countries which may be related to climate change. Tropical cyclones are the most destructive severe weather events in the Pacific which regularly affect countries in the region. Understanding importance of updating knowledge about cyclones, extensive training in using the Pacific Tropical Cyclone Data Portal (http://www.bom.gov.au/cyclone/history/tracks/) has also been provided. Using this sophisticated web-based tool, students can learn about occurrences of cyclones in waters around their countries and over the whole Pacific. Positive feedback from university students and participants of training workshops has been obtained and this approach may be recommended for educators to include in their courses. Acknowledgement The research discussed in this paper was conducted through the PASAP, PCCSP and PACCSAP supported by the AusAID and Department of Climate Change and Energy Efficiency and delivered by the Bureau of Meteorology and CSIRO.
Regional Climate Variations and Change for Terrestrial Ecosystems Workshop Review
North Carolina State University, the University of North Carolina at Chapel Hill, and the U.S. Environmental Protection Agency, in partnership with the U.S. Department of the Interior Southeast Climate Science Center (SECSC), hosted the Regional Climate Variations and Change for ...
Global climate change: Social and economic research issues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rice, M.; Snow, J.; Jacobson, H.
This workshop was designed to bring together a group of scholars, primarily from the social sciences, to explore research that might help in dealing with global climate change. To illustrate the state of present understanding, it seemed useful to focus this workshop on three broad questions that are involved in coping with climate change. These are: (1) How can the anticipated economic costs and benefits of climate change be identified; (2) How can the impacts of climate change be adjusted to or avoided; (3) What previously studied models are available for institutional management of the global environment? The resulting discussionsmore » may (1) identify worthwhile avenues for further social science research, (2) help develop feedback for natural scientists about research information from this domain needed by social scientists, and (3) provide policymakers with the sort of relevant research information from the social science community that is currently available. Individual papers are processed separately for the database.« less
Helweg, David A.; Keener, Victoria; Burgett, Jeff M.
2016-07-14
In the subtropical and tropical Pacific islands, changing climate is predicted to influence precipitation and freshwater availability, and thus is predicted to impact ecosystems goods and services available to ecosystems and human communities. The small size of high Hawaiian Islands, plus their complex microlandscapes, require downscaling of global climate models to provide future projections of greater skill and spatial resolution. Two different climate modeling approaches (physics-based dynamical downscaling and statistics-based downscaling) have produced dissimilar projections. Because of these disparities, natural resource managers and decision makers have low confidence in using the modeling results and are therefore are unwilling to include climate-related projections in their decisions. In September 2015, the Pacific Islands Climate Science Center (PICSC), the Pacific Islands Climate Change Cooperative (PICCC), and the Pacific Regional Integrated Sciences and Assessments (Pacific RISA) program convened a 2-day facilitated workshop in which the two modeling teams, plus key model users and resource managers, were brought together for a comparison of the two approaches, culminating with a discussion of how to provide predictions that are useable by resource managers. The proceedings, discussions, and outcomes of this Workshop are summarized in this Open-File Report.
Atmospheric Chemistry Over Southern Africa
NASA Technical Reports Server (NTRS)
Gatebe, Charles K.; Levy, Robert C.; Thompson, Anne M.
2011-01-01
During the southern African dry season, regional haze from mixed industrial pollution, biomass burning aerosol and gases from domestic and grassland fires, and biogenic sources from plants and soils is worsened by a semi-permanent atmosphere gyre over the subcontinent. These factors were a driver of several major international field campaigns in the 1990s and early 2000s, and attracted many scientists to the region. Some researchers were interested in understanding fundamental processes governing chemistry of the atmosphere and interaction with climate change. Others found favorable conditions for evaluating satellite-derived measurements of atmospheric properties and a changing land surface. With that background in mind a workshop on atmospheric chemistry was held in South Africa. Sponsored by the International Commission for Atmospheric Chemistry and Global Pollution (ICACGP; http://www.icacgp.org/), the workshop received generous support from the South African power utility, Eskom, and the Climatology Research Group of the University of the Witwatersrand, Johannesburg, South Africa. The purpose of the workshop was to review some earlier findings as well as more recent findings on southern African climate vulnerability, chemical changes due to urbanization, land-use modification, and how these factors interact. Originally proposed by John Burrows, president of ICACGP, the workshop was the first ICACGP regional workshop to study the interaction of air pollution with global chemical and climate change. Organized locally by the University of the Witwatersrand, the workshop attracted more than 60 delegates from South Africa, Mozambique, Botswana, Zimbabwe, France, Germany, Canada, and the United States. More than 30 presentations were given, exploring both retrospective and prospective aspects of the science. In several talks, attention was focused on southern African chemistry, atmospheric pollution monitoring, and climate processes as they were studied in the field campaigns such as Transport and Atmospheric Chemistry Near the Equator-Atlantic (TRACE-A), Southern African Fire-Atmosphere Research Initiative (SAFARI-92), and Southern African Regional Science Initiative (SAFARI 2000). Since those large international efforts, satellites have matured enough to enable quantifiable measurements of regional land surface, atmosphere, and ocean. In addition, global and chemical transport models have also been advanced to incorporate various data. Thus, the timing of the workshop was right for a full-fledged re-assessment of the chemistry, physics, and socio-economical impacts caused by pollution in the region, including a characterization of sources, deposition, and feedbacks with climate change.
Jessica E. Halofsky; David L Peterson; Michael J. Furniss; Linda A. Joyce; Constance I. Millar; Ronald P. Neilson
2011-01-01
Concrete ways to adapt to climate change are needed to help land-management agencies take steps to incorporate climate change into management and take advantage of opportunities to balance the negative effects of climate change. Because the development of adaptation tools and strategies is at an early stage, it is important that ideas and strategies are disseminated...
McClymont Peace, Diane; Myers, Erin
2012-05-08
Health Canada's Program for Climate Change and Health Adaptation in Northern First Nation and Inuit Communities is unique among Canadian federal programs in that it enables community-based participatory research by northern communities. The program was designed to build capacity by funding communities to conduct their own research in cooperation with Aboriginal associations, academics, and governments; that way, communities could develop health-related adaptation plans and communication materials that would help in adaptation decision-making at the community, regional, national and circumpolar levels with respect to human health and a changing environment. Community visits and workshops were held to familiarize northerners with the impacts of climate change on their health, as well as methods to develop research proposals and budgets to meet program requirements. Since the launch of the Climate Change and Health Adaptation Program in 2008, Health Canada has funded 36 community projects across Canada's North that focus on relevant health issues caused by climate change. In addition, the program supported capacity-building workshops for northerners, as well as a Pan-Arctic Results Workshop to bring communities together to showcase the results of their research. Results include: numerous films and photo-voice products that engage youth and elders and are available on the web; community-based ice monitoring, surveillance and communication networks; and information products on land, water and ice safety, drinking water, food security and safety, and traditional medicine. Through these efforts, communities have increased their knowledge and understanding of the health effects related to climate change and have begun to develop local adaptation strategies.
Climate Change Education in Formal Settings, K-14: A Workshop Summary
ERIC Educational Resources Information Center
Beatty, Alexandra
2012-01-01
Climate change is occurring, is very likely caused by human activities, and poses significant risks for a broad range of human and natural systems. Each additional ton of greenhouse gases emitted commits us to further change and greater risks. In the judgment of the Committee on America's Climate Choices, the environmental, economic, and…
Climate Change Education: Preparing Future and Current Business Leaders--A Workshop Summary
ERIC Educational Resources Information Center
Storksdieck, Martin
2014-01-01
Climate change poses challenges as well as opportunities for businesses and, broadly speaking for the entire economy. Businesses will be challenged to provide services or products with less harmful influence on the climate; respond to a changing policy, regulatory, and market environment; and provide new services and products to help address the…
NASA Astrophysics Data System (ADS)
Weihs, R. R.
2012-12-01
A series of professional development workshops covering the fundamentals of climate change have been developed and facilitated for two groups of middle school science teachers in three Florida counties. The NASA-supported joint venture between Florida State University's Center for Ocean-Atmospheric Prediction Studies (COAPS) and the University of South Florida's (USF's) Coalition for Science Literacy, ASK Florida, focuses on expanding and deepening teachers' content knowledge of a wide range of climate change topics, connecting local and regional changes to the global picture, and supporting classroom implementation and effective teaching practices. Education experts from USF, climate scientists from COAPS, and Hillsborough county teachers and science coaches coordinated and developed the workshop content, which is based on Florida's Next Generation Sunshine State Standards in science, science curriculum guides for 6th grade, and teacher interest. Several scientists have facilitated activities during the workshop, including professors in meteorology and climatology, research scientists in the field, a NOAA program manager, the state climatologists for Florida, and others. Having these climate scientists present during the workshop provides teachers an opportunity to interact directly with the scientists and gain insight into the climatology field. Additionally, we host an open-forum discussion panel during which teachers can ask the experts about any topics of interest. Activities are designed to enhance the scientific skill level of the teachers. Introductory activities reinforce teachers' abilities to distinguish facts from opinions and to evaluate sources. Other activities provide hands-on experience using actual scientific data from NASA and other agencies. For example, teachers analyze precipitation data to create distributions of Florida rainfall, examine sea level trends at various locations, identify Atlantic hurricane frequencies during the phases of ENSO, and create maps of climate data available on the MYNASADATA web portal. The human aspect of climate change is addressed by discussing anthropological influences such as land use changes. In addition, we examine scientific and public use and interpretation of climate models, scenarios, and projections, and explore adaptation and mitigation strategies for Florida-specific climate projections. Pedagogy is incorporated throughout the workshops to demonstrate how the content and activities can be adapted for their students. Furthermore, we support educators in overcoming obstacles associated with teaching global and regional climate change. This program targets teachers from Title-I schools because students from these schools are typically underrepresented in the STEM fields. Additionally, classroom technology is often limited; therefore, it is important to adapt resources so they can be used in the classroom with or without computers. Activities are presented through an inquiry-based format to encourage knowledge acquisition and discovery similar to that occurring in the actual scientific field. Finally, we prepare teachers to address apathetic or antiscientific sentiments their students may have about climate change by identifying the background issues and ideology and developing strategies to make the content more relevant to their students' lives.
India: The Impact of Climate Change to 2030 Geopolitical Implications
2009-05-01
The National Intelligence Council sponsored workshop entitled Implications of Global Climate Change in India on March 27,2009, brought together a...panel of media experts to consider the probable effects of climate change on media from a social, political, and economic perspective. The panelists...judged the practical effects of climate change on India were uncertain, but they concluded India will most likely be able to manage them out to 2030. 1
Vice President Gore and the Office of Science and Technology Policy (OSTP) recognized that global change will be felt differently by people depending on where they live and encouraged the U.S. Global Change Research Program (USGCRP) to create a series of workshops in 1997. The p...
Adapting to climate change at Olympic National Forest and Olympic National Park
Halofsky, Jessica E.; Peterson, David L.; O'Halloran, Kathy A.; Hoffman, Catherine H.
2011-01-01
Climate change presents a major challenge to natural resource managers both because of the magnitude of potential effects of climate change on ecosystem structure, processes, and function, and because of the uncertainty associated with those potential ecological effects. Concrete ways to adapt to climate change are needed to help natural resource managers take the first steps to incorporate climate change into management and take advantage of opportunities to counteract the negative effects of climate change. We began a climate change adaptation case study at Olympic National Forest (ONF) in partnership with Olympic National Park (ONP) to determine how to adapt management of federal lands on the Olympic Peninsula, Washington, to climate change. The case study began in the summer of 2008 and continued for 1½ years. The case study process involved science-based sensitivity assessments, review of management activities and constraints, and adaptation workshops in each of four focus areas (hydrology and roads, fish, vegetation, and wildlife). The process produced adaptation options for ONF and ONP, and illustrated the utility of place-based vulnerability assessment and science-management workshops in adapting to climate change. The case study process provides an example for other national forests, national parks, and natural resource agencies of how federal land management units can collaborate in the initial stages of climate change adaptation. Many of the ideas generated through this process can potentially be applied in other locations and in other agencies
NASA Astrophysics Data System (ADS)
Brey, J. A.; Geer, I. W.; Mills, E. W.; Kauffman, C.; Nugnes, K. A.; Naik, A.
2013-12-01
To raise climate literacy, the American Meteorological Society (AMS) developed AMS Climate Studies, an innovative, undergraduate-level climate science course. With a focus on real-world climate data, the course is a primer for responsible, scientifically-literate participation in the discussion of climate change. Designed to be adaptable to traditional, hybrid, or online instructional settings, AMS Climate Studies has already been adopted by more than 80 institutions since fall 2010. Course materials include a hardcover textbook, an investigations manual, and an online lab component, Current Climate Studies, which is created weekly throughout the semester utilizing resources from the IPCC, the US Global Change Research Program, NASA, and NOAA. AMS Climate Studies is mutually beneficial because AMS enhances coursework with real-world data while NASA, NOAA, and other government agencies reach a much larger audience with the results of their work. With support from NSF and NASA and in partnership with Second Nature, AMS offers the AMS Climate Studies Diversity Project with the goal of training 100 minority-serving institution (MSI) faculty members to implement the climate course on their campus. The Diversity Project consists of an expenses-paid weeklong workshop for MSI faculty members and a follow-up workshop at the next year's AMS Annual Meeting. The initial workshop covers fundamental understandings within AMS Climate Studies and implementation procedures. Highlights of this workshop are presentations from NOAA, NASA, and other government and university climate scientists as well as field trips to science laboratories. In the year following workshop attendance, faculty work within their MSI to implement AMS Climate Studies. Participants are then invited to a second workshop at the AMS Annual Meeting to report back the results of their work. Currently in its second year, the Project has trained 50 MSI faculty members with subsequent workshops to be held throughout the next 2 years. The AMS Climate Studies Diversity Project follows the proven models of the AMS Weather Studies (2002-2007) and AMS Ocean Studies (2006-2008) Diversity Projects, which have impacted more than 200 MSI faculty and 24,000 students. Second Nature is a national non-profit organization that works with higher education leaders to accelerate movement toward a sustainable society. Second Nature manages and supports the American College & University Presidents' Climate Commitment (ACUPCC), a high-visibility effort by a network of more than 670 presidents and chancellors committed to achieving climate neutrality by eliminating net greenhouse gas emissions from campus operations, and making sustainability a part of the curriculum and other educational experiences for all students. Second Nature has been actively working with MSIs, which has given AMS the opportunity to effectively recruit for the AMS Climate Studies Diversity Project. With successful partnerships, such as this one, AMS is excited to bring climate science coursework to more students, strengthening the pathway towards advanced geoscience study and careers, and empowering institutions to be leaders in deep climate action.
Stahl, Ralph G; Hooper, Michael J; Balbus, John M; Clements, William; Fritz, Alyce; Gouin, Todd; Helm, Roger; Hickey, Christopher; Landis, Wayne; Moe, S Jannicke
2013-01-01
This is the first of seven papers resulting from a Society of Environmental Toxicology and Chemistry (SETAC) international workshop titled “The Influence of Global Climate Change on the Scientific Foundations and Applications of Environmental Toxicology and Chemistry.” The workshop involved 36 scientists from 11 countries and was designed to answer the following question: How will global climate change influence the environmental impacts of chemicals and other stressors and the way we assess and manage them in the environment? While more detail is found in the complete series of articles, some key consensus points are as follows: (1) human actions (including mitigation of and adaptation to impacts of global climate change [GCC]) may have as much influence on the fate and distribution of chemical contaminants as does GCC, and modeled predictions should be interpreted cautiously; (2) climate change can affect the toxicity of chemicals, but chemicals can also affect how organisms acclimate to climate change; (3) effects of GCC may be slow, variable, and difficult to detect, though some populations and communities of high vulnerability may exhibit responses sooner and more dramatically than others; (4) future approaches to human and ecological risk assessments will need to incorporate multiple stressors and cumulative risks considering the wide spectrum of potential impacts stemming from GCC; and (5) baseline/reference conditions for estimating resource injury and restoration/rehabilitation will continually shift due to GCC and represent significant challenges to practitioners. Environ. Toxicol. Chem. 2013;32:13–19. © 2012 SETAC PMID:23097130
Climate Change Adaptation Science Activities at NASA Johnson Space Center
NASA Technical Reports Server (NTRS)
Stefanov, William L.; Lulla, Kamlesh
2012-01-01
The Johnson Space Center (JSC), located in the southeast metropolitan region of Houston, TX is the prime NASA center for human spaceflight operations and astronaut training, but it also houses the unique collection of returned extraterrestrial samples, including lunar samples from the Apollo missions. The Center's location adjacent to Clear Lake and the Clear Creek watershed, an estuary of Galveston Bay, puts it at direct annual risk from hurricanes, but also from a number of other climate-related hazards including drought, floods, sea level rise, heat waves, and high wind events all assigned Threat Levels of 2 or 3 in the most recent NASA Center Disaster/Risk Matrix produced by the Climate Adaptation Science Investigator Working Group. Based on prior CASI workshops at other NASA centers, it is recognized that JSC is highly vulnerable to climate-change related hazards and has a need for adaptation strategies. We will present an overview of prior CASI-related work at JSC, including publication of a climate change and adaptation informational data brochure, and a Resilience and Adaptation to Climate Risks Workshop that was held at JSC in early March 2012. Major outcomes of that workshop that form a basis for work going forward are 1) a realization that JSC is embedded in a regional environmental and social context, and that potential climate change effects and adaptation strategies will not, and should not, be constrained by the Center fence line; 2) a desire to coordinate data collection and adaptation planning activities with interested stakeholders to form a regional climate change adaptation center that could facilitate interaction with CASI; 3) recognition that there is a wide array of basic data (remotely sensed, in situ, GIS/mapping, and historical) available through JSC and other stakeholders, but this data is not yet centrally accessible for planning purposes.
Understanding the North Atlantic Oscillation and Its Effects in the Mediterranean
NASA Astrophysics Data System (ADS)
Trigo, Ricardo M.; Serrano, Sergio M. Vicente
2010-11-01
ESF-MedCLIVAR Workshop on Hydrological, Socioeconomic and Ecological Impacts of the North Atlantic Oscillation in the Mediterranean; Zaragoza, Spain, 24-27 May 2010; According to the latest Intergovernmental Panel on Climate Change report, the Mediterranean basin represents one of the most important hot spots of climate change in the world, with recent trends toward a hotter and drier climate being related to changes in atmospheric circulation patterns. Among these patterns the North Atlantic Oscillation (NAO) is the most important one and the only one that exerts a clear influence throughout the year, although with stronger intensity and extension during winter. In the framework of the European Science Foundation's Mediterranean Climate Variability and Predictability (MedCLIVAR) program (http://www.medclivar.eu/), a thematic workshop devoted to the hydrological, socioeconomic, and ecological impacts of the NAO in the Mediterranean area was held in Spain. The main objective of this 3-day workshop was to foster interaction in this increasingly interdisciplinary topic, in particular, among climatologists, hydrologists, geographers, agronomists, biologists, and other scientists. The workshop was attended by 62 participants from 15 different countries and included a mix of senior scientists and graduate students. The workshop was divided into five sessions focusing on (1) natural hazards, including droughts, severe precipitations, floods, heat waves, and cold spells; (2) vegetation activity and agriculture production; (3) natural ecosystems and environment, including forest dynamics, fisheries, dynamics of animal populations, and air quality; (4) geomorphology, including landslides and debris flows, erosivity mechanisms, and surface erosion processes; and (5) renewable energies production, including hydraulic, eolic, and solar.
Brook, Barry W; Akçakaya, H Resit; Keith, David A; Mace, Georgina M; Pearson, Richard G; Araújo, Miguel B
2009-12-23
Climate change is already affecting species worldwide, yet existing methods of risk assessment have not considered interactions between demography and climate and their simultaneous effect on habitat distribution and population viability. To address this issue, an international workshop was held at the University of Adelaide in Australia, 25-29 May 2009, bringing leading species distribution and population modellers together with plant ecologists. Building on two previous workshops in the UK and Spain, the participants aimed to develop methodological standards and case studies for integrating bioclimatic and metapopulation models, to provide more realistic forecasts of population change, habitat fragmentation and extinction risk under climate change. The discussions and case studies focused on several challenges, including spatial and temporal scale contingencies, choice of predictive climate, land use, soil type and topographic variables, procedures for ensemble forecasting of both global climate and bioclimate models and developing demographic structures that are realistic and species-specific and yet allow generalizations of traits that make species vulnerable to climate change. The goal is to provide general guidelines for assessing the Red-List status of large numbers of species potentially at risk, owing to the interactions of climate change with other threats such as habitat destruction, overexploitation and invasive species.
Creating dialogue: a workshop on "Uncertainty in Decision Making in a Changing Climate"
NASA Astrophysics Data System (ADS)
Ewen, Tracy; Addor, Nans; Johnson, Leigh; Coltekin, Arzu; Derungs, Curdin; Muccione, Veruska
2014-05-01
Uncertainty is present in all fields of climate research, spanning from projections of future climate change, to assessing regional impacts and vulnerabilities, to adaptation policy and decision-making. In addition to uncertainties, managers and planners in many sectors are often confronted with large amounts of information from climate change research whose complex and interdisciplinary nature make it challenging to incorporate into the decision-making process. An overarching issue in tackling this problem is the lack of institutionalized dialogue between climate researchers, decision-makers and user groups. Forums that facilitate such dialogue would allow climate researchers to actively engage with end-users and researchers in different disciplines to better characterize uncertainties and ultimately understand which ones are critically considered and incorporated into decisions made. We propose that the introduction of students to these challenges at an early stage of their education and career is a first step towards improving future dialogue between climate researchers, decision-makers and user groups. To this end, we organized a workshop at the University of Zurich, Switzerland, entitled "Uncertainty in Decision Making in a Changing Climate". It brought together 50 participants, including Bachelor, Master and PhD students and academic staff, and nine selected speakers from academia, industry, government, and philanthropy. Speakers introduced participants to topics ranging from uncertainties in climate model scenarios to managing uncertainties in development and aid agencies. The workshop consisted of experts' presentations, a panel discussion and student group work on case studies. Pedagogical goals included i) providing participants with an overview of the current research on uncertainty and on how uncertainty is dealt with by decision-makers, ii) fostering exchange between practitioners, students, and scientists from different backgrounds, iii) exposing students, at an early stage of their professional life, to multidisciplinary collaborations and real-world problems involving decisions under uncertainty. An opinion survey conducted before and after the workshop enabled us to observe changes in participants' perspectives on what information and tools should be exchanged between researchers and decision-makers to better address uncertainty. Responses demonstrated a marked shift from a pre-workshop vertical conceptualizations of researcher—user group interaction to a post-workshop horizontal mode: in the former, researchers were portrayed as bestowing data-based products to decision-makers, while in the latter, both sets of actors engaged in institutionalized dialogues and frequent communication, exchanging their needs, expertise, and personnel. In addition to the survey, we will draw on examples from the course evaluation to illustrate the strengths and weaknesses of our approach. By doing so, we seek to encourage the organization of similar events by other universities, with the mid-term goal to improve future dialogue. From a pedagogical perspective, introducing students to these ideas at a very early stage in their research careers is an ideal opportunity to establish new modes of communication with an interdisciplinary perspective and strengthen dialogue between climate researchers, decision-makers and user groups.
Multidisciplinary approaches to climate change questions
Middleton, Beth A.; LePage, Ben A.
2011-01-01
Multidisciplinary approaches are required to address the complex environmental problems of our time. Solutions to climate change problems are good examples of situations requiring complex syntheses of ideas from a vast set of disciplines including science, engineering, social science, and the humanities. Unfortunately, most ecologists have narrow training, and are not equipped to bring their environmental skills to the table with interdisciplinary teams to help solve multidisciplinary problems. To address this problem, new graduate training programs and workshops sponsored by various organizations are providing opportunities for scientists and others to learn to work together in multidisciplinary teams. Two examples of training in multidisciplinary thinking include those organized by the Santa Fe Institute and Dahlem Workshops. In addition, many interdisciplinary programs have had successes in providing insight into climate change problems including the International Panel on Climate Change, the Joint North American Carbon Program, the National Academy of Science Research Grand Challenges Initiatives, and the National Academy of Science. These programs and initiatives have had some notable success in outlining some of the problems and solutions to climate change. Scientists who can offer their specialized expertise to interdisciplinary teams will be more successful in helping to solve the complex problems related to climate change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sayler, Gary; Gentry, Randall; Zhuang, Jie
2010-07-01
The 140-page published proceedings of the workshop include individual articles and PowerPoint slides for all workshop presentations. The proceedings also contain pertinent background information on the China-US Joint Research Center, partnering organizations, and workshop goals and objectives. Overall, the workshop increased the understanding of the impacts of climate change on energy use and renewable energy production as well as the complex relationships among land use, energy production, and ecological restoration. The workshop served as an international platform for scientists and students of different research backgrounds to develop a unified perspective on energy and climate relationships. Such understanding will benefit futuremore » cooperation between China and the US in mitigating global climate change. The workshop’s agenda, which is highly interdisciplinary, explored many potential opportunities for international collaboration in ecosystem management, climate modeling, greenhouse gas emissions, and bioenergy sustainability. International research groups have been suggested in the areas of genomes and biotechnology of energy plants, sustainable management of soil and water resources, carbon sequestration, and microbial processes for ecological cycles. The project has attracted considerable attention from institutes beyond the China-US Joint Research Center partners, and several of them (such as Institute of Qing-Tibet Plateau Research, Institute of Soil and Water Conservation, Institute of Applied Ecology, CAS) have expressed interest in joining the partnership. In addition, the workshop played a significant role in facilitating establishment of private-public partnerships between government and private bioenergy companies (such as L.R. Shugarts and Associates, Inc.), including seed providers (Blade Energy Crops, Thousand Oaks, CA), pilot demonstration projects at coal-producing cities (e.g., Huaibei, Anhui province, China), and the development of methodology for assessment of the sustainable production of biofuels (such as life-cycle analysis, sustainability metrics, and land-use policy). Establishment of two US-China scientific research networks in the area of bioenergy and environmental science is a significant result of the workshop.« less
Assessing the Vulnerability of Older Americans to Climate Change
This project is comprised of a series of activities – listening sessions, literature reviews, and an expert elicitation research agenda-setting workshop – designed to examine and characterize the vulnerability of older adults to climate change and opportunities for adaptation. ...
Jenni, K.; Graves, D.; Hardiman, Jill M.; Hatten, James R.; Mastin, Mark C.; Mesa, Matthew G.; Montag, J.; Nieman, Timothy; Voss, Frank D.; Maule, Alec G.
2014-01-01
Designing climate-related research so that study results will be useful to natural resource managers is a unique challenge. While decision makers increasingly recognize the need to consider climate change in their resource management plans, and climate scientists recognize the importance of providing locally-relevant climate data and projections, there often remains a gap between management needs and the information that is available or is being collected. We used decision analysis concepts to bring decision-maker and stakeholder perspectives into the applied research planning process. In 2009 we initiated a series of studies on the impacts of climate change in the Yakima River Basin (YRB) with a four-day stakeholder workshop, bringing together managers, stakeholders, and scientists to develop an integrated conceptual model of climate change and climate change impacts in the YRB. The conceptual model development highlighted areas of uncertainty that limit the understanding of the potential impacts of climate change and decision alternatives by those who will be most directly affected by those changes, and pointed to areas where additional study and engagement of stakeholders would be beneficial. The workshop and resulting conceptual model highlighted the importance of numerous different outcomes to stakeholders in the basin, including social and economic outcomes that go beyond the physical and biological outcomes typically reported in climate impacts studies. Subsequent studies addressed several of those areas of uncertainty, including changes in water temperatures, habitat quality, and bioenergetics of salmonid populations.
NASA Astrophysics Data System (ADS)
Friday, E.; Barron, E. J.; Elfring, C.; Geller, L.
2002-12-01
When a major East Coast snowstorm was forecast during the winter of 2001, people began preparing - both the public and the decision-makers responsible for public services. There was an air of urgency, heightened because just the previous year the region had been hit hard by a storm of unpredicted strength. But this time, the storm never materialized and people were left wondering what went "wrong" with the forecast. Did something go wrong or did forecasters just fail to communicate their information in an effective way? Did they convey a sense of the likelihood of the event and keep people up to date as information changed? In the summer of 2001, the National Academies' Board on Atmospheric Sciences and Climate hosted a workshop designed to explore the communication of uncertainty in weather and climate information. Workshop participants examined five case studies that were chosen to illustrate a range of forecast timescales and certainty levels. The cases were: Red River Flood, Grand Forks, April 1997; East Coast Winter Storm, March 2001; Oklahoma-Kansas Tornado Outbreak, May 3, 1999; El Nino 1997-1998, and Climate Change Science, a report issued in 2001. In each of these cases, participants examined who said what, when, to whom, how, and with what effect. The last two cases specifically address climate-related topics. This paper summarizes the final workshop report (Communicating Uncertainties in Weather and Climate Information: Summary of a Workshop, NRC 2002), including an overview of the five cases and lessons learned about communicating uncertainties in weather and climate forecasts. Among other findings, the report stresses that communication and appropriate dissemination of information, including information about uncertainty in the forecasts and the forecaster's confidence in the product, should be an integral, ongoing part of the forecasting process, not an afterthought. Explaining uncertainty should be an integral part of what weather and climate forecasters do and is essential to delivering accurate and useful information.
Peace, Diane McClymont; Myers, Erin
2012-01-01
Objectives Health Canada's Program for Climate Change and Health Adaptation in Northern First Nation and Inuit Communities is unique among Canadian federal programs in that it enables community-based participatory research by northern communities. Study design The program was designed to build capacity by funding communities to conduct their own research in cooperation with Aboriginal associations, academics, and governments; that way, communities could develop health-related adaptation plans and communication materials that would help in adaptation decision-making at the community, regional, national and circumpolar levels with respect to human health and a changing environment. Methods Community visits and workshops were held to familiarize northerners with the impacts of climate change on their health, as well as methods to develop research proposals and budgets to meet program requirements. Results Since the launch of the Climate Change and Health Adaptation Program in 2008, Health Canada has funded 36 community projects across Canada's North that focus on relevant health issues caused by climate change. In addition, the program supported capacity-building workshops for northerners, as well as a Pan-Arctic Results Workshop to bring communities together to showcase the results of their research. Results include: numerous films and photo-voice products that engage youth and elders and are available on the web; community-based ice monitoring, surveillance and communication networks; and information products on land, water and ice safety, drinking water, food security and safety, and traditional medicine. Conclusions Through these efforts, communities have increased their knowledge and understanding of the health effects related to climate change and have begun to develop local adaptation strategies. PMID:22584509
Climate Change Extreme Events: Meeting the Information Needs of Water Resource Managers
NASA Astrophysics Data System (ADS)
Quay, R.; Garfin, G. M.; Dominguez, F.; Hirschboeck, K. K.; Woodhouse, C. A.; Guido, Z.; White, D. D.
2013-12-01
Information about climate has long been used by water managers to develop short term and long term plans and strategies for regional and local water resources. Inherent within longer term forecasts is an element of uncertainty, which is particularly evident in Global Climate model results for precipitation. For example in the southwest estimates in the flow of the Colorado River based on GCM results indicate changes from 120% or current flow to 60%. Many water resource managers are now using global climate model down scaled estimates results as indications of potential climate change as part of that planning. They are addressing the uncertainty within these estimates by using an anticipatory planning approach looking at a range of possible futures. One aspect of climate that is important for such planning are estimates of future extreme storm (short term) and drought (long term) events. However, the climate science of future possible changes in extreme events is less mature than general climate change science. At a recent workshop among climate scientists and water managers in the southwest, it was concluded the science of climate change extreme events is at least a decade away from being robust enough to be useful for water managers in their water resource management activities. However, it was proposed that there are existing estimates and records of past flooding and drought events that could be combined with general climate change science to create possible future events. These derived events could be of sufficient detail to be used by water resource managers until such time that the science of extreme events is able to provide more detailed estimates. Based on the results of this workshop and other work being done by the Decision Center for a Desert City at Arizona State University and the Climate Assessment for the Southwest center at University of Arizona., this article will 1) review what are the extreme event data needs of Water Resource Managers in the southwest, 2) review of the current state of extreme event climate science, 3) review what information is available about past extreme events in the southwest, 4) report the results of the 2012 workshop on climate change and extreme events, and 5) propose a method for combining this past information with current climate science information to produce estimates of possible future extreme events in sufficient detail to be useful to water resource managers.
GLOBAL CHANGE RESEARCH NEWS #9: ORD PROVIDES TECHNICAL SUPPORT TO EPA/OIA & DOS INITIATIVE IN EGYPT
This ninth edition reports on a workshop on global climate change that was held in Cairo, Egypt, on May 10-12, 1999. The workshop represented a successful partnership between EPA's Office of International Affairs, Office of Research and Development (ORD), Office of Air and Radiat...
Considering Climate Change in Road and Building Design
NASA Astrophysics Data System (ADS)
Jacobs, Jennifer M.; Kirshen, Paul H.; Daniel, Jo Sias
2013-07-01
What is the role of climate in infrastructure design? How can engineers design for a changing climate? How can climate scientists better inform the design process? These were the questions posed at the first Infrastructure and Climate Network (ICNet) Steering Committee Workshop, which was sponsored by a U.S. National Science Foundation research grant (CBET-1231326) from the Research Coordination Networks-Science, Engineering and Education for Sustainability (RCN-SEES) program.
NASA Astrophysics Data System (ADS)
Rosenzweig, C.
2011-12-01
The Agricultural Model Intercomparison and Improvement Project (AgMIP) is a distributed climate-scenario simulation exercise for historical model intercomparison and future climate change conditions with participation of multiple crop and agricultural trade modeling groups around the world. The goals of AgMIP are to improve substantially the characterization of risk of hunger and world food security due to climate change and to enhance adaptation capacity in both developing and developed countries. Recent progress and the current status of AgMIP will be presented, highlighting three areas of activity: preliminary results from crop pilot studies, outcomes from regional workshops, and emerging scientific challenges. AgMIP crop modeling efforts are being led by pilot studies, which have been established for wheat, maize, rice, and sugarcane. These crop-specific initiatives have proven instrumental in testing and contributing to AgMIP protocols, as well as creating preliminary results for aggregation and input to agricultural trade models. Regional workshops are being held to encourage collaborations and set research activities in motion for key agricultural areas. The first of these workshops was hosted by Embrapa and UNICAMP and held in Campinas, Brazil. Outcomes from this meeting have informed crop modeling research activities within South America, AgMIP protocols, and future regional workshops. Several scientific challenges have emerged and are currently being addressed by AgMIP researchers. Areas of particular interest include geospatial weather generation, ensemble methods for climate scenarios and crop models, spatial aggregation of field-scale yields to regional and global production, and characterization of future changes in climate variability.
Climate Literacy: STEM and Climate Change Education and Remote Sensing Applications
NASA Astrophysics Data System (ADS)
Reddy, S. R.
2015-12-01
NASA Innovations in Climate Education (NICE) is a competitive project to promote climate and Earth system science literacy and seeks to increase the access of underrepresented minority groups to science careers and educational opportunities. A three year funding was received from NASA to partnership with JSU and MSU under cooperative agreement "Strengthening Global Climate Change education through Remote Sensing Application in Coastal Environment using NASA Satellite Data and Models". The goal is to increase the number of highschool and undergraduate students at Jackson State University, a Historically Black University, who are prepared to pursue higher academic degrees and careers in STEM fields. A five Saturday course/workshop was held during March/April 2015 at JSU, focusing on historical and technical concepts of math, enginneering, technology and atmosphere and climate change and remote sensing technology and applications to weather and climate. Nine students from meteorology, biology, industrial technology and computer science/engineering of JSU and 19 high scool students from Jackson Public Schools participated in the course/workshop. The lecture topics include: introduction to remote sensing and GIS, introduction to atmospheric science, math and engineering, climate, introduction to NASA innovations in climate education, introduction to remote sensing technology for bio-geosphere, introduction to earth system science, principles of paleoclimatology and global change, daily weather briefing, satellite image interpretation and so on. In addition to lectures, lab sessions were held for hand-on experiences for remote sensing applications to atmosphere, biosphere, earth system science and climate change using ERDAS/ENVI GIS software and satellite tools. Field trip to Barnett reservoir and National weather Service (NWS) was part of the workshop. Basics of Earth System Science is a non-mathematical introductory course designed for high school seniors, high school teachers and undergraduate students who may or may not have adequate exposure to fundamental concepts of the key components of the modern earth system and their interactions. This is an online course that will be delivered using Blackboard platform available at Jackson State University.
NASA Astrophysics Data System (ADS)
Hayden, L. B.; Hale, S. R.; Johnson, D.
2013-12-01
Elizabeth City State University has joined with the University of New Hampshire under the NASA Innovations in Climate Education (NICE) to empower faculty of education programs at Minority Serving Institutions (MSIs) to better engage their pre-service teachers in teaching and learning about global climate change through the use of NASA Earth observation data sets. This project is designed to impact teaching first on college campuses within science education classes. Second, as pre-service teachers transition into in-service teachers, the impact will extend to elementary and secondary classrooms. Our goal is to empower faculty of education programs at Minority Serving Institutions to better engage their pre-service teachers in teaching and learning about global climate change through the use of NASA Earth observation data sets. This presentation documents the efforts to recruit two cohorts of STEM education faculty from MSIs along with the associated implementation and program evaluation efforts. To date, thirty-four (34) faculty from over a dozen MSIs have participated in the summer workshops. Recruitment efforts have focused on interactions with faculty in campus and conference settings. This has included the Johnson C. Smith University conference, the Minorities (QEM) Network Workshop on Evidence-Based STEM Instructional Strategies and the Annual Minority Serving Institutions Technical Assistance and Capacity Conference. The primary implementation mechanism was a one-week summer workshop conducted each year. ECSU hosted the first summer workshop and UNH hosted the second workshop. During each workshop, faculty had an opportunity to engage in activities using NASA Earth observation data, and benefited from engaged instruction and interaction with scientists who routinely use these datasets in their professional practice. This provided a comprehensive learning environment ensuring the transfer of the know-how on utilizing NASA datasets and tools in climate change education from researcher to science educator to pre-service STEM teacher. The faculty conducted field work that emphasizes place-based pedagogy. They worked with NASA satellite imagery data from the MODIS and SeaWiFS sensors, and discussed the challenges and approaches to integrating all or some of the lessons into their courses. Program Evaluation efforts, led by Learning Innovations at WestEd, includes formative and summative evaluation related to the outcomes of the project. Evaluators worked with project staff to create a logic model that clearly articulates a theory of action for the project. Included in the evaluation model were online questionnaires and focus group protocols. There exist evidence to show that the MSI faculty who participate in the workshop are using the information learned to engage their pre-service teachers in teaching and learning about global climate change through the use of NASA Earth observation sets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baer, Donald R.; Finlayson-Pitts, Barbara J.; Allen, Heather C.
2013-07-01
This report contains the workshop scope and recommendations from the workshop attendees in identifying scientific gaps in new particle formation, growth and properties of particles and reactions in and on particles as well as the laboratory-focused capabilities, field-deployable capabilities and modeling/theory tools along with linking of models to fundamental data.
Workshop on Spanning Regional-to-Global Pollution
NASA Technical Reports Server (NTRS)
Thompson, Anne M.; Newman, Paul A.; Gleason, James F.; Brune, William H.; Dickerson, Russell R.
2002-01-01
Pollution is often considered a localized phenomenon, but it is now clear that it travels from region-to-region, country to country, and even continent to continent. In addition to urban pollution in developed countries, large emissions from developing nations and large-scale biomass fires add to the global pollution burden. Ozone and aerosols are two components of pollution that contribute to radiative forcing of the earth s climate. In turn, as climate changes, rates of chemical and microphysical reactions may be perturbed. Considering the earth as a coupled chemical-microphysical-climate system poses challenges for models and observations alike. These issues were the topic of a Workshop held in May 2002 at NASA GSFC s Laboratory for Atmospheres. Highlights of the Workshop are summarized in this article.
NASA Astrophysics Data System (ADS)
Halofsky, J.; Peterson, D. L.
2015-12-01
Concrete ways to adapt to climate change are needed to help natural resource managers take the first steps to incorporate climate change into management and take advantage of opportunities to balance the negative effects of climate change. We recently initiated two science-management climate change adaptation partnerships, one with three national forests and one national park in south central Oregon, and the other with 16 national forests, three national parks and other stakeholders in the northern Rockies region. Goals of both partnerships were to: (1) synthesize published information and data to assess the exposure, sensitivity, and adaptive capacity of key resource areas, including water use, infrastructure, fisheries, and vegetation and disturbance; (2) develop science-based adaptation strategies and tactics that will help to mitigate the negative effects of climate change and assist the transition of biological systems and management to a warmer climate; (3) ensure adaptation strategies and tactics are incorporated into relevant planning documents; and (4) foster an enduring partnership to facilitate ongoing dialogue and activities related to climate change in the partnerships regions. After an initial vulnerability assessment by agency and university scientists and local resource specialists, adaptation strategies and tactics were developed in a series of scientist-manager workshops. The final vulnerability assessments and adaptation actions are incorporated in technical reports. The partnerships produced concrete adaptation options for national forest and other natural resource managers and illustrated the utility of place-based vulnerability assessments and scientist-manager workshops in adapting to climate change.
integration Impacts of climate change on energy system evolution Energy policy analysis Education M.E.M. in . Electric Sector Climate Impacts. International Energy Workshop, Maryland. View all NREL publications for
DOT National Transportation Integrated Search
2009-01-01
There is growing consensus among policymakers that bold government action is needed : to mitigate climate change, particularly through integrated climate, energy, and transportation : policy initiatives. In an effort to share different perspectives o...
The Global Change Research Program is pleased to announce the publication of the first report from the Great Lakes Regional Assessment that is being conducted as part of the First U.S. National Assessment. The report is entitled, Climate Changes in the Upper Great Lakes Region --...
Addressing socioeconomic and political challenges posed by climate change
NASA Astrophysics Data System (ADS)
Fernando, Harindra Joseph; Klaic, Zvjezdana Bencetic
2011-08-01
NATO Advanced Research Workshop: Climate Change, Human Health and National Security; Dubrovnik, Croatia, 28-30 April 2011; Climate change has been identified as one of the most serious threats to humanity. It not only causes sea level rise, drought, crop failure, vector-borne diseases, extreme events, degradation of water and air quality, heat waves, and other phenomena, but it is also a threat multiplier wherein concatenation of multiple events may lead to frequent human catastrophes and intranational and international conflicts. In particular, urban areas may bear the brunt of climate change because of the amplification of climate effects that cascade down from global to urban scales, but current modeling and downscaling capabilities are unable to predict these effects with confidence. These were the main conclusions of a NATO Advanced Research Workshop (ARW) sponsored by the NATO Science for Peace and Security program. Thirty-two invitees from 17 counties, including leading modelers; natural, political, and social scientists; engineers; politicians; military experts; urban planners; industry analysts; epidemiologists; and health care professionals, parsed the topic on a common platform.
Proceedings of a Workshop on Antarctic Meteorite Stranding Surfaces
NASA Technical Reports Server (NTRS)
Cassidy, W. A. (Editor); Whillans, I. M. (Editor)
1990-01-01
The discovery of large numbers of meteorites on the Antarctic Ice Sheet is one of the most exciting developments in polar science in recent years. The meteorites are found on areas of ice called stranding surfaces. Because of the sudden availability of hundreds, and then thousands, of new meteorite specimens at these sites, the significance of the discovery of meteorite stranding surfaces in Antarctica had an immediate and profound impact on planetary science, but there is also in this discovery an enormous, largely unrealized potential to glaciology for records of climatic and ice sheet changes. The glaciological interest derives from the antiquity of the ice in meteorite stranding surfaces. This exposed ice covers a range of ages, probably between zero and more than 500,000 years. The Workshop on Antarctic Meteorite Stranding Surfaces was convened to explore this potential and to devise a course of action that could be recommended to granting agencies. The workshop recognized three prime functions of meteorite stranding surfaces. They provide: (1) A proxy record of climatic change (i.e., a long record of climatic change is probably preserved in the exposed ice stratigraphy); (2) A proxy record of ice volume change; and (3) A source of unique nonterrestrial material.
ERIC Educational Resources Information Center
Teed, Rebecca; Franco, Suzanne
2014-01-01
An Earth science professional-development program for in-service middle- and high-school teachers increased participants' content knowledge about weather, climate, and climate change in addition to increasing their confidence in their assessment and teaching skills. The curriculum and funding gave them time, funding, and the help of content and…
Exploring Climate Science with WV Educators: A Regional Model for Teacher Professional Development
NASA Astrophysics Data System (ADS)
Ruberg, L. F.; Calinger, M.
2014-12-01
The National Research Council Framework for K-12 Science Literacy reports that children reared in rural agricultural communities, who experience regular interactions with plants and animals, develop more sophisticated understanding of ecology and biological systems than do urban and suburban children of the same age. West Virginia (WV) is a rural state. The majority of its residents live in communities of fewer than 2,500 people. Based on the features of the population being served and their unique strengths, this presentation focuses on a regional model for teacher professional development that addresses agricultural and energy vulnerabilities and adaptations to climate change in WV. The professional development model outlined shows how to guide teachers to use a problem-based learning approach to introduce climate data and analysis techniques within a scenario context that is locally meaningful. This strategy engages student interest by focusing on regional and community concerns. Climate science standards are emphasized in the Next Generation Science Standards, but WV has not provided its teachers with appropriate instructional resources to meet those standards. The authors addressed this need by offering a series of climate science education workshops followed by online webinars offered to WV science educators free of charge with funding by the West Virginia Space Grant Consortium. The authors report on findings from this series of professional development workshops conducted in partnership with the West Virginia Science Teachers Association. The goal was to enhance grades 5-12 teaching and learning about climate change through problem-based learning. Prior to offering the climate workshops, all WV science educators were asked to complete a short questionnaire. As Figure 1 shows, over 40% of the teacher respondents reported being confident in teaching climate science content. For comparison post workshops surveys measure teacher confidence in climate science instruction after the professional development sessions. In summary, this report describes how this professional approach can serve as a regional model to address the need for climate science literacy throughout Appalachia.
Next Generation Climate Change Experiments Needed to Advance Knowledge and for Assessment of CMIP6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katzenberger, John; Arnott, James; Wright, Alyson
2014-10-30
The Aspen Global Change Institute hosted a technical science workshop entitled, “Next generation climate change experiments needed to advance knowledge and for assessment of CMIP6,” on August 4-9, 2013 in Aspen, CO. Jerry Meehl (NCAR), Richard Moss (PNNL), and Karl Taylor (LLNL) served as co-chairs for the workshop which included the participation of 32 scientists representing most of the major climate modeling centers for a total of 160 participant days. In August 2013, AGCI gathered a high level meeting of representatives from major climate modeling centers around the world to assess achievements and lessons learned from the most recent generationmore » of coordinated modeling experiments known as the Coupled Model Intercomparison Project – 5 (CMIP5) as well as to scope out the science questions and coordination structure desired for the next anticipated phase of modeling experiments called CMIP6. The workshop allowed for reflection on the coordination of the CMIP5 process as well as intercomparison of model results, such as were assessed in the most recent IPCC 5th Assessment Report, Working Group 1. For example, this slide from Masahiro Watanabe examines performance on a range of models capturing Atlantic Meridional Overturning Circulation (AMOC).« less
NASA Astrophysics Data System (ADS)
Halofsky, J.; Peterson, D. L.
2014-12-01
Concrete ways to adapt to climate change are needed to help natural resource managers take the first steps to incorporate climate change into management and take advantage of opportunities to balance the negative effects of climate change. We recently initiated two science-management climate change adaptation partnerships, one with three national forests and other key stakeholders in the Blue Mountains region of northeastern Oregon, and the other with 16 national forests, three national parks and other stakeholders in the northern Rockies region. Goals of both partnerships were to: (1) synthesize published information and data to assess the exposure, sensitivity, and adaptive capacity of key resource areas, including water use, infrastructure, fisheries, and vegetation and disturbance; (2) develop science-based adaptation strategies and tactics that will help to mitigate the negative effects of climate change and assist the transition of biological systems and management to a warmer climate; (3) ensure adaptation strategies and tactics are incorporated into relevant planning documents; and (4) foster an enduring partnership to facilitate ongoing dialogue and activities related to climate change in the partnerships regions. After an initial vulnerability assessment by agency and university scientists and local resource specialists, adaptation strategies and tactics were developed in a series of scientist-manager workshops. The final vulnerability assessments and adaptation actions are incorporated in technical reports. The partnerships produced concrete adaptation options for national forest and other natural resource managers and illustrated the utility of place-based vulnerability assessments and scientist-manager workshops in adapting to climate change.
Mars Recent Climate Change Workshop
NASA Astrophysics Data System (ADS)
Haberle, Robert M.; Owen, Sandra J.
2012-11-01
Mars Recent Climate Change Workshop NASA/Ames Research Center May 15-17, 2012 Climate change on Mars has been a subject of great interest to planetary scientists since the 1970's when orbiting spacecraft first discovered fluvial landforms on its ancient surfaces and layered terrains in its polar regions. By far most of the attention has been directed toward understanding how "Early Mars" (i.e., Mars >~3.5 Gya) could have produced environmental conditions favorable for the flow of liquid water on its surface. Unfortunately, in spite of the considerable body of work performed on this subject, no clear consensus has emerged on the nature of the early Martian climate system because of the difficulty in distinguishing between competing ideas given the ambiguities in the available geological, mineralogical, and isotopic records. For several reasons, however, the situation is more tractable for "Recent Mars" (i.e., Mars during past 20 My or so). First, the geologic record is better preserved and evidence for climate change on this time scale has been building since the rejuvenation of the Mars Exploration Program in the late 1990's. The increasing coverage of the planet from orbit and the surface, coupled with accurate measurements of surface topography, increasing spatial resolution of imaging cameras, improved spectral resolution of infrared sensors, and the ability to probe the subsurface with radar, gamma rays, and neutron spectroscopy, has not only improved the characterization of previously known climate features such as polar layered terrains and glacier-related landforms, but has also revealed the existence of many new features related to recent climate change such as polygons, gullies, concentric crater fill, and a latitude dependent mantle. Second, the likely cause of climate change - spin axis/orbital variations - is more pronounced on Mars compared to Earth. Spin axis/orbital variations alter the seasonal and latitudinal distribution of sunlight, which can mobilize and redistribute volatile reservoirs both on and below the surface. And for Mars, these variations are large. In the past 20 My, for example, the obliquity is believed to have varied from a low of 15° to a high of 45° with a regular oscillation time scale of ~10^5 years. These variations are typically less than two degrees on the Earth. Mars, therefore, offers a natural laboratory for the study of orbitally induced climate change on a terrestrial planet. Finally, general circulation models (GCMs) for Mars have reached a level of sophistication that justifies their application to the study of spin axis/orbitally forced climate change. With recent advances in computer technology the models can run at reasonable spatial resolution for many Mars years with physics packages that include cloud microphysics, radiative transfer in scattering/absorbing atmospheres, surface heat budgets, boundary layer schemes, and a host of other processes. To be sure, the models will undergo continual improvement, but with carefully designed experiments they can now provide insights into mechanisms of climate change in the recent past. Thus, the geologic record is better preserved, the forcing function is large, and GCMs have become useful tools. While research efforts in each of these areas have progressed considerably over the past several decades, they have proceeded mostly on independent paths occasionally leading to conflicting ideas. To remedy this situation and accelerate progress in the area, the NASA/Ames Research Center's Mars General Circulation Modeling Group hosted a 3-day workshop on May 15-17, 2012 that brought together the geological and atmospheric science communities to collectively discuss the evidence for recent climate change on Mars, the nature of the change required, and how that change could be brought about. Over 50 researchers, students, and post-docs from the US, Canada, Europe, and Japan attended the meeting. The program and abstracts from the workshop are presented in this NASA/CP and are available to the public at http://spacescience.arc.nasa.gov/mars-climate-workshop-2012/
EPA Office of Research and Development (ORD) and EPA Office of Water (OW) joinined efforts to assess and evaluate programmatic, research & development (R&D) needs for sustainable water infrastructure development and effective adaptation to climate changes. The purpose of this pr...
EPA’s Systems Thinking Advisory Team (STAT) was engaged to guide a multi-disciplinary (health officials, modelers, climate change scientists, city planners, ecologists, and architects), multi-agency (EPA, CDC, State and Country officials) team in the use systems thinking, diagram...
In-Service Teachers' Attitudes, Knowledge and Classroom Teaching of Global Climate Change
ERIC Educational Resources Information Center
Liu, Shiyu; Roehrig, Gillian; Bhattacharya, Devarati; Varma, Keisha
2015-01-01
This study explores in-service teachers' attitudes and knowledge about a pressing environmental issue, "global climate change" (GCC), and how these may relate to their classroom teaching. In this work, nineteen teachers from Native American communities attended a professional development workshop that focused on enhancing their…
NASA Astrophysics Data System (ADS)
Larson, E. K.; Li, J.; Zycherman, A.
2017-12-01
Integration of social science into climate and global change assessments is fundamental for improving understanding of the drivers, impacts and vulnerability of climate change, and the social, cultural and behavioral challenges related to climate change responses. This requires disciplinary and interdisciplinary knowledge as well as integrational and translational tools for linking this knowledge with the natural and physical sciences. The USGCRP's Social Science Coordinating Committee (SSCC) is tasked with this challenge and is working to integrate relevant social, economic and behavioral knowledge into processes like sustained assessments. This presentation will discuss outcomes from a recent SSCC workshop, "Social Science Perspectives on Climate Change" and their applications to sustained assessments. The workshop brought academic social scientists from four disciplines - anthropology, sociology, geography and archaeology - together with federal scientists and program managers to discuss three major research areas relevant to the USGCRP and climate assessments: (1) innovative tools, methods, and analyses to clarify the interactions of human and natural systems under climate change, (2) understanding of factors contributing to differences in social vulnerability between and within communities under climate change, and (3) social science perspectives on drivers of global climate change. These disciplines, collectively, emphasize the need to consider socio-cultural, political, economic, geographic, and historic factors, and their dynamic interactions, to understand climate change drivers, social vulnerability, and mitigation and adaptation responses. They also highlight the importance of mixed quantitative and qualitative methods to explain impacts, vulnerability, and responses at different time and spatial scales. This presentation will focus on major contributions of the social sciences to climate and global change research. We will discuss future directions for sustained assessments that integrate and reflect the social science understanding of the complex relationships between social and natural worlds in a changing climate, and factors that impact effective mitigation and adaptation strategies that address risks and vulnerabilities of climate change.
NASA Astrophysics Data System (ADS)
Pathak, T. B.; Doll, J. E.
2016-12-01
It is evident that changes in climate will adversely impact various sectors including agriculture and natural resources worldwide. Increased temperatures, longer than normal growing seasons, more frequent extreme weather events, decreased winter snowpack, earlier snowmelt, and vulnerability to pest are some of the examples of changes and impacts documented in the literature. According to the IPCC 2007, mainstreaming` climate change issues into decision-making is an important aspect for sustainability. Due to the lack of locally and regionally focused educational programs, it becomes difficult for people to translate the science into meaningful actions. One of the strengths of the Cooperative Extension system is that it is one of the most trusted sources of science-based information that is locally relevant. In order to utilize strong network of Cooperative Extension system, we implemented a project to provide regionally tailored climate change and sustainable agriculture professional development for Cooperative Extension and Natural Resources Conservation Services (NRCS) educators in 12 states in north central US. We conducted these activities: 1) creation and dissemination of a Climate Change and Sustainable Agriculture Resource Handbook and a curriculum and 2) two climate change and sustainable agriculture workshops. In general, this project resulted in improved ability of Cooperative Extension academics to respond to climate change questions with science-based information. Several workshop attendees also integrated information provided to them through resource handbook and curriculum into their existing programming. In the long-term, we hope these programs will result in educators and farmers making informed choices and recommendations that lead to sustainable agriculture in the face of climate change.
Climate Change Impacts and Responses: Societal Indicators for the National Climate Assessment
NASA Technical Reports Server (NTRS)
Kenney, Melissa A.; Chen, Robert S.; Maldonado, Julie; Quattrochi, Dale
2011-01-01
The Climate Change Impacts and Responses: Societal Indicators for the National Climate Assessment workshop, sponsored by the National Aeronautics and Space Administration (NASA) for the National Climate Assessment (NCA), was held on April 28-29, 2011 at The Madison Hotel in Washington, DC. A group of 56 experts (see list in Appendix B) convened to share their experiences. Participants brought to bear a wide range of disciplinary expertise in the social and natural sciences, sector experience, and knowledge about developing and implementing indicators for a range of purposes. Participants included representatives from federal and state government, non-governmental organizations, tribes, universities, and communities. The purpose of the workshop was to assist the NCA in developing a strategic framework for climate-related physical, ecological, and socioeconomic indicators that can be easily communicated with the U.S. population and that will support monitoring, assessment, prediction, evaluation, and decision-making. The NCA indicators are envisioned as a relatively small number of policy-relevant integrated indicators designed to provide a consistent, objective, and transparent overview of major variations in climate impacts, vulnerabilities, adaptation, and mitigation activities across sectors, regions, and timeframes. The workshop participants were asked to provide input on a number of topics, including: (1) categories of societal indicators for the NCA; (2) alternative approaches to constructing indicators and the better approaches for NCA to consider; (3) specific requirements and criteria for implementing the indicators; and (4) sources of data for and creators of such indicators. Socioeconomic indicators could include demographic, cultural, behavioral, economic, public health, and policy components relevant to impacts, vulnerabilities, and adaptation to climate change as well as both proactive and reactive responses to climate change. Participants provided inputs through in-depth discussion in breakout sessions, plenary sessions on break-out results, and several panels that provided key insights about indicators, lessons learned through experience with developing and implementing indicators, and thoughts on how the NCA could proceed to develop indicators for the NCA.
Increasing Scientific Literacy at Minority Serving Institutions Nationwide
NASA Astrophysics Data System (ADS)
Brey, J. A.; Geer, I. W.; Moran, J. M.; Mills, E. W.; Nugnes, K. A.
2012-12-01
It is vital to increase the scientific literacy of all students, including those at minority serving institutions (MSIs). With support from NSF, NASA, and NOAA, the American Meteorological Society (AMS) Education Program has developed scientifically authentic, introductory, undergraduate courses that engage students in the geosciences through the use of real-world environmental data. AMS Climate, Weather, and Ocean Studies have already been adopted by more than 600 institutions across the U.S. With additional support from NSF and NASA, and a partnership with Second Nature, the organizing entity behind the American College and University President's Climate Commitment (ACUPCC), the first AMS Climate Studies Diversity Project was held in May 2012 in Washington, D.C. Thirty faculty members from 16 different states, Puerto Rico, and Washington, D.C. attended the week-long workshop. They were immersed in the course materials, received presentations from high-level speakers such as Dr. Thomas Karl, Rear Admiral David Titley, and Dr. Peter Hildebrand, and were trained as change agents for their local institution. Afterwards, faculty work within their MSI to introduce and enhance geoscience curricula and offer the AMS Climate Studies course in the year following workshop attendance. They are also encouraged to implement the AMS Weather and Ocean Studies courses. Subsequent workshops will be held throughout the next 3 years, targeting 100 MSIs. The AMS Climate Studies Diversity Project followed the proven models of the AMS Weather Studies (2002-2007) and AMS Ocean Studies (2006-2008) Diversity Projects. Evaluation results are extremely favorable with 96% of the participants rating the workshop as outstanding and all would recommend the workshop to other AMS Climate Studies faculty. More in depth results will be discussed in our presentation. AMS Climate Studies explores the fundamental science of Earth's climate system while addressing the societal impacts relevant to today's students and teachers. The course utilizes resources from respected organizations, such as the IPCC, the US Global Change Research Program, NASA, and NOAA. In addition, participants use the AMS Conceptual Energy Model to differentiate between climate variability and climate change. Additionally, the AMS Education Program, James Madison University (JMU), and Los Angeles Valley College (LAVC), are working in collaboration with the Consortium for Ocean Leadership/Integrated Ocean Drilling Program's (IODP) Deep Earth Academy (DEA) to integrate investigations of ocean core data of paleoclimates into course curricula of MSIs. In June 2012, this team participated in a workshop to gain direct experience with ocean core investigations. The goal is to form a trained team to help guide the future, large-scale integration of scientific ocean drilling paleoclimate research into existing MSI geoscience courses, and the development of new course offerings. The AMS is excited to bring meteorology, oceanography, and climate science course work to more students, strengthening the pathway towards advanced geoscience study and careers.
Bringing hands-on exploration of air quality technology to the ...
This is an educational presentation to the OAQPS Teachers Workshop on the PM sensor kit and other related air technology educational activities. This workshop for teachers and other educators includes topics, such as: how EPA manages air quality, the environmental health effects and risks of air pollution, climate change, and sustainability solutions and more. Attendees will also build a DYI Sensor kit and explore energy choices and the environment when they play the interactive board game developed by EPA scientists called Generate! This workshop for teachers and other educators includes topics, such as: how EPA manages air quality, the environmental health effects and risks of air pollution, climate change and sustainability and more. Attendees will also build a DYI Sensor kit and explore energy choices and the environment when they play the interactive board game developed by EPA scientists called Generate!
NASA Technical Reports Server (NTRS)
Schubert, Siegfried
2012-01-01
Among the key recommendations of a recent WCRP Workshop on Drought Predictability and Prediction in a Changing Climate is the development of an experimental global drought information system (GDIS). The timeliness of such an effort is evidenced by the wide aITay of relevant ongoing national and international (as well as regional and continental scale) efforts to provide drought information, including the US and North American drought monitors, and various integrating activities such as GEO and the Global Drought Portal. The workshop will review current capabilities and needs, and focus on the steps necessary to develop a GDIS that will build upon the extensive worldwide investments that have already been made in developing drought monitoring (including new space-based observations), drought risk management, and climate prediction capahilities.
Grant, Evan H. Campbell; Wofford, John E.B.; Smith, D.R.; Dennis, J.; Hawkins-Hoffman, C.; Schaberl, J.; Foley, M.; Bogle, M.
2014-01-01
Here we report on a structured decision making (SDM) process to identify management strategies to ensure persistence of the federally endangered Shenandoah salamander (Plethodon shenandoah), given that it may be at increased extinction risk under projected climate change. The focus of this report is the second of two SDM workshops; in the first workshop, participants developed a prototype of the decision, including problem frame, management objectives and a suite of potential management strategies, predictive models to inform the decision and link alternatives with the objectives to identify potential solutions, and identified data needs to reduce key uncertainties in the decision. Participants in this second workshop included experts in National Park Service policy at multiple administrative levels, who refined objectives, further evaluated the initial management alternatives, and discussed policy constraints on implementing active management for the species and its high-elevation habitat. The conclusion of the second workshop was similar to that of the first: the current state of information and objectives suggest that there is some value in considering active management to reduce the long-term extinction risk for the species, though there are institutional conservative policies to implementing active management at range-wide scales. The workshop participants also emphasized a conservative NPS management philosophy, including caution in implementing management actions that may ultimately harm the system, a stated assumption that ecosystem changes were “natural” unless demonstrated otherwise (therefore not warranting active management to mitigate), and a need to demonstrate that extinction risk is tied to anthropogenic influence prior to taking active management to mitigate specific anthropogenic influences. Even within a protected area having minimal human disturbance, intertwined environmental variables and interspecific relationships that drive population trends challenge our ability to demonstrate direct links with (anthropogenically influenced) climate change and the decline of a species. Thus while this policy may reduce the potential for injurious management, it may also necessitate extraordinary resources to reduce uncertainty regarding fundamental drivers of species decline prior to taking action.
Workshop on the Polar Regions of Mars: Geology, Glaciology, and Climate History, part 1
NASA Technical Reports Server (NTRS)
Clifford, S. M. (Editor); Howard, A. D. (Editor); Paterson, W. S. B. (Editor)
1992-01-01
Papers and abstract of papers presented at the workshop are presented. Some representative titles are as follows: Glaciation in Elysium; Orbital, rotational, and climatic interactions; Water on Mars; Rheology of water-silicate mixtures at low temperatures; Evolution of the Martian atmosphere (the role of polar caps); Is CO2 ice permanent; Dust transport into Martian polar latitudes; Mars observer radio science (MORS) observations in polar regions; and Wind transport near the poles of Mars (timescales of changes in deposition and erosion).
NCAR Johns Hopkins/CDC Climate and Health Summer Institute
NASA Technical Reports Server (NTRS)
Mearns, Linda O.
2005-01-01
The interactions between climate and health are rife with complexity and present many conceptual and methodological challenges. Possible effects of climate change on health are considered some of the most sensitive impacts of climate change and are a high priority for policy-makers and the public. As a first step toward improving tlit: quality of research, we developed a Climate and Health Workshop (Institute), geared toward teaching students various aspects of how to conduct integrated climate and health research. At the workshop scientists presented selected case studies of climate and health (e.g., heat mortality, vector-borne diseases), thus demonstrating a subset of key analytical tools and databases most useful to researchers in this field. Key research gaps in this research area were discussed. In this six-day Institute (21-28 July 2004, Boulder, Colorado), health scientists and students benefited from lectures and hands-on tools taught by top NCAR scientists. The attendees learned about health databases and epidemiologic methods from leading health scientists from CDC, Johns Hopkins, and other institutions from around the globe.
Varela Minder, Elda; Padgett, Holly A.
2015-10-27
The National Climate Change and Wildlife Science Center (NCCWSC) and the Department of the Interior (DOI) Climate Science Centers (CSCs) had another exciting year in 2014. The NCCWSC moved toward focusing their science funding on several high priority areas and, along with the CSCs, gained new agency partners; contributed to various workshops, meetings, publications, student activities, and Tribal/indigenous activities; increased outreach; and more.
NASA Astrophysics Data System (ADS)
DeFrancis, G.; Haynes, R.; Schroer, K.
2017-12-01
The Montshire Museum of Science, a regional science center serving families, teachers, and students in rural Vermont and New Hampshire, has been actively engaged in in climate literacy initiatives for over 10 years. The Museum's visitor evaluation data shows that before audiences can be engaged in conversations around climate change, they need to be introduced to the underlying earth processes that drive climate, and to the nature of how climate science is done. Through this work, the Museum has developed a suite of climate science programs that can be incorporated in informal science programming at museums, science centers, and libraries, and in the formal K-8 classroom environment. Front-end and formative evaluation data was used in the program design, and summative evaluation showed an increase in concept understanding in the topic presented. Family science and student workshops developed focused on Albedo and the Earth's energy budget, properties and characteristics of sea ice, sediment cores and ice cores to study changes in the climate over time, and the geography of the polar regions. We found that successful climate literacy learning experiences require meaningful hands-on, inquiry-based activities focused on a single earth process, and leads to an increase in science talk and conversation about climate change between the program instructor and audience members as learners begin to understand how these processes interact in the Earth's climate system.
NASA Astrophysics Data System (ADS)
Tuddenham, P.; Bishop, K.; Walters, H.; Carley, S.
2011-12-01
The Great Lakes Climate Change Science and Education Systemic Network (GLCCSESN) project is an NSF-funded CCEP program awarded to Eastern Michigan University in 2010. The College of Exploration is one of the project partners and has conducted a series of online surveys, workshop and focus group to identify a wide range of organizations, individuals, resources and needs related to climate change education and research activities in and about the Great Lakes Region and to provide information about climate change science to the education community. One of the first steps taken to build this community was to build a web site that features a dynamic online map of individuals and organizations concerned about climate change as well as interested in resources and activities specific to the Great Lakes. Individuals and organizations have been, and are still, invited to put themselves on the map at http://greatlakesclimate.org This map of the Great Lakes region provides both a visual representation of activities and resources as well as a database of climate change activities. This map will grow over time as more people and organizations put themselves on the map. The use of online technologies has helped broaden the participation and representation in the GLCCSESN from all states/provinces in the Great Lakes region, encouraging diverse audiences and stakeholders, including scientists, educators, and journalists, etc.to engage with the project. In the fall of 2011 a combined online professional development workshop and focus group is planned. Educators and scientists working on climate change studies and issues related to the Great Lakes will be sharing their work and expertise in an online workshop and focus group. Following the professional development activity a focus group will be conducted online using a model developed as part of a NSF funded COSEE project. The focus group purpose is to review current educational resources and to identify gaps and needs for further educational programs, materials and resources. The online format will encourage and support widespread participation across the Great Lakes region. Data from the needs assessment surveys will provide a foundation for online focus group discussion questions.
Improving the Accuracy of Estimation of Climate Extremes
NASA Astrophysics Data System (ADS)
Zolina, Olga; Detemmerman, Valery; Trenberth, Kevin E.
2010-12-01
Workshop on Metrics and Methodologies of Estimation of Extreme Climate Events; Paris, France, 27-29 September 2010; Climate projections point toward more frequent and intense weather and climate extremes such as heat waves, droughts, and floods, in a warmer climate. These projections, together with recent extreme climate events, including flooding in Pakistan and the heat wave and wildfires in Russia, highlight the need for improved risk assessments to help decision makers and the public. But accurate analysis and prediction of risk of extreme climate events require new methodologies and information from diverse disciplines. A recent workshop sponsored by the World Climate Research Programme (WCRP) and hosted at United Nations Educational, Scientific and Cultural Organization (UNESCO) headquarters in France brought together, for the first time, a unique mix of climatologists, statisticians, meteorologists, oceanographers, social scientists, and risk managers (such as those from insurance companies) who sought ways to improve scientists' ability to characterize and predict climate extremes in a changing climate.
Grasstops and Grassroots Approaches to Building Community Resilience
NASA Astrophysics Data System (ADS)
LeBeau, A.; Bader, D.
2017-12-01
Climate change and extreme weather events pose complex risks to cities all over the world, impacting not only the built environment, but also social infrastructure. Because urban communities are culturally and socioeconomically diverse, as well as systemically complicated, climate change and extreme weather events will impact people differently even within a single city—not only because of where they live, but also because of who they are. The City of Long Beach, California, is in its very early stages of understanding its vulnerabilities. However, city leaders and community partners including the Aquarium of the Pacific are committed to creating a model climate resilient city. Climate change risks most relevant to Long Beach include drought (and freshwater shortages), extreme heat, sea level rise, and poor air quality. Over the past 18 months, the Aquarium of the Pacific has been testing elements of a broad-reaching education strategy to reach community stakeholders. Two multi-level approaches are designed to build awareness and momentum for climate resilience. A grassroots approach, called RESILIENT LB, focuses on an interactive outreach booth that travels to community events. The booth is staffed by educators with specific training on climate communication. Facilitated conversations help people identify what they love about Long Beach and immediate impacts that climate change will have on the things they value. A second, complimentary approach involves long-term community engagement through a grasstops-to-grassroots approach. Aquarium educators have been facilitating different climate resilience workshops for leaders from a variety of groups across Long Beach. These workshops give leaders the chance to reflect on how their communities may be impacted by climate change, and highlight adaptation (rather than mitigation) to climate change. In this session, we will share how these programs have evolved, lessons learned, and areas of growth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moss, Richard H.; Engle, Nathan L.; Hall, John
This whitepaper is intended to provide a starting point for discussion at a workshop for the National Climate Assessment (NCA) that focuses on the use and development of scenarios. The paper will provide background needed by participants in the workshop in order to review options for developing and using scenarios in NCA. The paper briefly defines key terms and establishes a conceptual framework for developing consistent scenarios across different end uses and spatial scales. It reviews uses of scenarios in past U.S. national assessments and identifies potential users of and needs for scenarios for both the report scheduled for releasemore » in June 2013 and to support an ongoing distributed assessment process in sectors and regions around the country. Because scenarios prepared for the NCA will need to leverage existing research, the paper takes account of recent scientific advances and activities that could provide needed inputs. Finally, it considers potential approaches for providing methods, data, and other tools for assessment participants. We note that the term 'scenarios' has many meanings. An important goal of the whitepaper (and portions of the workshop agenda) is pedagogical (i.e., to compare different meanings and uses of the term and make assessment participants aware of the need to be explicit about types and uses of scenarios). In climate change research, scenarios have been used to establish bounds for future climate conditions and resulting effects on human and natural systems, given a defined level of greenhouse gas emissions. This quasi-predictive use contrasts with the way decision analysts typically use scenarios (i.e., to consider how robust alternative decisions or strategies may be to variation in key aspects of the future that are uncertain). As will be discussed, in climate change research and assessment, scenarios describe a range of aspects of the future, including major driving forces (both human activities and natural processes), changes in climate and related environmental conditions (e.g., sea level), and evolution of societal capability to respond to climate change. This wide range of scenarios is needed because the implications of climate change for the environment and society depend not only on changes in climate themselves, but also on human responses. This degree of breadth introduces and number of challenges for communication and research.« less
NASA Astrophysics Data System (ADS)
Brey, J. A.; Geer, I. W.; Mills, E. W.; Nugnes, K. A.; Moses, M. N.
2011-12-01
Increasing students' earth science literacy, especially those at Minority Serving Institutions (MSIs), is a primary goal of the American Meteorological Society (AMS). Through the NSF-supported AMS Weather Studies and AMS Ocean Studies Diversity workshops for Historically Black College and Universities, Hispanic Serving Institutions, Tribal Colleges and Universities, Alaska Native, and Native Hawaiian Serving Institutions, AMS has brought meteorology and oceanography courses to more students. These workshops trained and mentored faculty implementing AMS Weather Studies and AMS Ocean Studies. Of the 145 institutions that have participated in the AMS Weather Studies Diversity Project, reaching over 13,000 students, it was the first meteorology course offered for more than two-thirds of the institutions. As a result of the AMS Ocean Studies Diversity Project, 75 institutions have offered the course to more than 3000 students. About 50 MSIs implemented both the Weather and Ocean courses, improving the Earth Science curriculum on their campuses. With the support of NSF and NASA, and a partnership with Second Nature, the organizing entity behind the American College and University President's Climate Commitment (ACUPCC), the newest professional development workshop, AMS Climate Studies Diversity Project will recruit MSI faculty members through the vast network of Second Nature's more than 670 signatories. These workshops will begin in early summer 2012. An innovative approach to studying climate science, AMS Climate Studies explores the fundamental science of Earth's climate system and addresses the societal impacts relevant to today's students and teachers. The course utilizes resources from respected organizations, such as the IPCC, the US Global Change Research Program, NASA, and NOAA. In addition, faculty and students learn about basic climate modeling through the AMS Conceptual Energy Model. Following the flow of energy in a clear, simplified model from space to Earth and back sets the stage for differentiating between climate, climate variability, and climate change. The AMS Climate Studies Diversity Project will follow the successful models of the Weather and Ocean Diversity Projects. Hands on examples, computer based experiments, round table discussions, lectures, and conversations with scientists in the field and other experienced professors are all important parts of previous workshops, and will be complimented by previous participants' feedback. This presentation will also focus on insight gained from the results of a self-study of the long term, successful AMS DataStreme Project, precollege teacher professional development courses. AMS is excited for this new opportunity of reaching even more MSI faculty and students. The ultimate goal of the AMS is to have a geoscience concentration at MSIs throughout the nation and to greatly increase the number of minority students entering geoscience careers, including science teaching.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sathaye; Makundi; Goldberg
1997-07-01
The International Workshop on Sustainable Forest Management: Monitoring and Verification of Greenhouse Gases was held in San Jose, Costa Rica, July 29-31, 1996. The main objectives of the workshop were to: (1) assemble key practitioners of forestry greenhouse gas (GHG) or carbon offset projects, remote sensing of land cover change, guidelines development, and the forest products certification movement, to offer presentations and small group discussions on findings relevant to the crucial need for the development of guidelines for monitoring and verifying offset projects, and (2) disseminate the findings to interested carbon offset project developers and forestry and climate change policymore » makers, who need guidance and consistency of methods to reduce project transaction costs and increase probable reliability of carbon benefits, at appropriate venues. The workshop brought together about 45 participants from developed, developing, and transition countries. The participants included researchers, government officials, project developers, and staff from regional and international agencies. Each shared his or her perspectives based on experience in the development and use of methods for monitoring and verifying carbon flows from forest areas and projects. A shared sense among the participants was that methods for monitoring forestry projects are well established, and the techniques are known and used extensively, particularly in production forestry. Introducing climate change with its long-term perspective is often in conflict with the shorter-term perspective of most forestry projects and standard accounting principles. The resolution of these conflicts may require national and international agreements among the affected parties. The establishment of guidelines and protocols for better methods that are sensitive to regional issues will be an important first step to increase the credibility of forestry projects as viable mitigation options. The workshop deliberations led to three primary outputs: (1) a Workshop Statement in the JI Quarterly, September, 1996; (2) the publication of a series of selected peer-reviewed technical papers from the workshop in a report of the Lawrence Berkeley National Laboratory (LBNL. 40501); and (3) a special issue of the journal ''Mitigation and Adaptation Strategies for Global Change'', Kluwer Academic Publishers. The outputs will be distributed to practitioners in this field and to negotiators attending the Framework Convention on Climate Change (FCCC) deliberations leading up to the Third conference of Parties in Kyoto, in December 1997.« less
David L. Peterson; John L. Innes; Kelly O’Brian
2004-01-01
Interactions between forests, climatic change and the Earthâs carbon cycle are complex and represent a challenge for forest managers â they are integral to the sustainable management of forests. In this volume, a number of papers are presented that describe some of the complex relationships between climate, the global carbon cycle and forests. Research has demonstrated...
Extreme Weather and Climate: Workshop Report
NASA Technical Reports Server (NTRS)
Sobel, Adam; Camargo, Suzana; Debucquoy, Wim; Deodatis, George; Gerrard, Michael; Hall, Timothy; Hallman, Robert; Keenan, Jesse; Lall, Upmanu; Levy, Marc;
2016-01-01
Extreme events are the aspects of climate to which human society is most sensitive. Due to both their severity and their rarity, extreme events can challenge the capacity of physical, social, economic and political infrastructures, turning natural events into human disasters. Yet, because they are low frequency events, the science of extreme events is very challenging. Among the challenges is the difficulty of connecting extreme events to longer-term, large-scale variability and trends in the climate system, including anthropogenic climate change. How can we best quantify the risks posed by extreme weather events, both in the current climate and in the warmer and different climates to come? How can we better predict them? What can we do to reduce the harm done by such events? In response to these questions, the Initiative on Extreme Weather and Climate has been created at Columbia University in New York City (extreme weather.columbia.edu). This Initiative is a University-wide activity focused on understanding the risks to human life, property, infrastructure, communities, institutions, ecosystems, and landscapes from extreme weather events, both in the present and future climates, and on developing solutions to mitigate those risks. In May 2015,the Initiative held its first science workshop, entitled Extreme Weather and Climate: Hazards, Impacts, Actions. The purpose of the workshop was to define the scope of the Initiative and tremendously broad intellectual footprint of the topic indicated by the titles of the presentations (see Table 1). The intent of the workshop was to stimulate thought across disciplinary lines by juxtaposing talks whose subjects differed dramatically. Each session concluded with question and answer panel sessions. Approximately, 150 people were in attendance throughout the day. Below is a brief synopsis of each presentation. The synopses collectively reflect the variety and richness of the emerging extreme event research agenda.
2010-04-01
self-blame, and guilt or shame. The model provides an account of how economic Radicalization in the National Economic Climate Discovery Workshop at...RADICALIZATION IN THE NATIONAL ECONOMIC CLIMATE DISCOVERY WORKSHOP AT DRDC TORONTO 7-8 DECEMBER 2009 Gauthier, M.; Lamoureux, T. CAE...1 0 . Radicalization in the National Economic Climate Discovery Workshop at DRDC Toronto 7-8 December 2009 April 2010 – ii – © Her Majesty
NASA Astrophysics Data System (ADS)
Torresan, S.; Gallina, V.; Giannini, V.; Rizzi, J.; Zabeo, A.; Critto, A.; Marcomini, A.
2012-04-01
At the international level climate services are recognized as innovative tools aimed at providing and distributing climate data and information according to the needs of end-users. Furthermore, needs-based climate services are extremely effective to manage climate risks and take advantage of the opportunities associated with climate change impacts. To date, climate services are mainly related to climate models that supply climate data (e.g. temperature, precipitations) at different spatial and time scales. However, there is a significant gap of tools aimed at providing information about risks and impacts induced by climate change and allowing non-expert stakeholders to use both climate-model and climate-impact data. DESYCO is a GIS-Decision Support System aimed at the integrated assessment of multiple climate change impacts on vulnerable coastal systems (e.g. beaches, river deltas, estuaries and lagoons, wetlands, agricultural and urban areas). It is an open source software that manages different input data (e.g. raster or shapefiles) coming from climate models (e.g. global and regional climate projections) and high resolution impact models (e.g. hydrodynamic, hydrological and biogeochemical simulations) in order to provide hazard, exposure, susceptibility, risk and damage maps for the identification and prioritization of hot-spot areas and to provide a basis for the definition of coastal adaptation and management strategies. Within the CLIM-RUN project (FP7) DESYCO is proposed as an helpful tool to bridge the gap between climate data and stakeholder needs and will be applied to the coastal area of the North Adriatic Sea (Italy) in order to provide climate services for local authorities involved in coastal zone management. Accordingly, a first workshop was held in Venice (Italy) with coastal authorities, climate experts and climate change risk experts, in order to start an iterative exchange of information about the knowledge related to climate change, climate models and projections, impact and risk parameters and to know what are stakeholder needs related to climate change in a climate service perspective. The preliminary results gained from the workshop showed that DESYCO is an helpful tool for the impact and risk assessment related to climate change that could be improved in order to fulfill stakeholder needs.
NASA Astrophysics Data System (ADS)
Bachelet, D. M.
2014-12-01
Climate change is projected to jeopardize ecosystems in the Pacific Northwest. Managing ecosystems for future resilience requires collaboration, innovation and communication. The abundance of data and documents describing the uncertainty around both climate change projections and impacts has become challenging to managers who have little funding and limited time to digest and incorporate these materials into planning and implementation documents. We worked with US Forest Service and BLM managers to help them develop vulnerability assessments and identify on-the-ground strategies to address climate change challenges on the federal lands in northwest Oregon (Siuslaw, Willamette and Mt. Hood National Forests; Eugene and Salem BLM Districts). We held workshops to promote dialogue about climate change, which were particularly effective in fostering discussions between the managers who often do not have the time to share their knowledge and compare experiences across administrative boundaries. We used the Adaptation for Conservation Targets (ACT) framework to identify measurable management objectives and rapidly assess local vulnerabilities. We used databasin.org to centralize usable information, including state-of-the-art CMIP5 climate projections, for the mandated assessments of vulnerability and resilience. We introduced participants to a decision support framework providing opportunities to develop more effective adaptation strategies. We built a special web page to hold the information gathered at the workshops and provide easy access to climate change information. We are now working with several Landscape Conservation Cooperatives (LCCs) to design gateways - conservation atlases - to their relevant data repositories on databasin.org and working with them to develop web tools that can provide usable information for their own vulnerability assessments.
ERIC Educational Resources Information Center
Beatty, Alexandra S.; Feder, Michael; Storksdieck, Martin
2014-01-01
The forested land in the United States is an asset that is owned and managed not only by federal, state, and local governments, but also by families and other private groups, including timber investment management organizations and real estate investment trusts. The more than 10 million family forestland owners manage the largest percentage of…
Global Warming: Discussion for EOS Science Writers Workshop
NASA Technical Reports Server (NTRS)
Hansen, James E
1999-01-01
The existence of global warming this century is no longer an issue of scientific debate. But there are many important questions about the nature and causes of long-term climate change, th roles of nature and human-made climate forcings and unforced (chaotic) climate variability, the practical impacts of climate change, and what, if anything, should be done to reduce global warming, Global warming is not a uniform increase of temperature, but rather involves at complex geographically varying climate change. Understanding of global warming will require improved observations of climate change itself and the forcing factors that can lead to climate change. The NASA Terra mission and other NASA Earth Science missions will provide key measurement of climate change and climate forcings. The strategy to develop an understanding of the causes and predictability of long-term climate change must be based on combination of observations with models and analysis. The upcoming NASA missions will make important contributions to the required observations.
Enhancing STEM coursework at MSIs through the AMS Climate Studies Diversity Project
NASA Astrophysics Data System (ADS)
Abshire, W. E.; Mills, E. W.; Slough, S. W.; Brey, J. A.; Geer, I. W.; Nugnes, K. A.
2017-12-01
The AMS Education Program celebrates a successful completion to its AMS Climate Studies Diversity Project. The project was funded for 6 years (2011-2017) through the National Science Foundation (NSF). It introduced and enhanced geoscience and/or sustainability-focused course components at minority-serving institutions (MSIs) across the U.S., many of which are signatories to the President's Climate Leadership Commitments, administered by Second Nature, and/or members of the Louis Stokes Alliances for Minority Participation. The Project introduced AMS Climate Studies curriculum to approximately 130 faculty representing 113 MSIs. Each year a cohort of, on average, 25 faculty attended a course implementation workshop where they were immersed in the course materials, received presentations from high-level speakers, and trained as change agents for their local institutions. This workshop was held in the Washington, DC area in collaboration with Second Nature, NOAA, NASA Goddard Space Flight Center, Howard University, and other local climate educational and research institutions. Following, faculty introduced and enhanced geoscience curricula on their local campuses with AMS Climate Studies course materials, thereby bringing change from within. Faculty were then invited to the following AMS Annual Meeting to report on their AMS Climate Studies course implementation progress, reconnect with their colleagues, and learn new science presented at the meeting. A longitudinal survey was administered to all Climate Diversity Project faculty participants who attended the course implementation workshops. The survey goals were to assess the effectiveness of the Project in helping faculty implement/enhance their institutional climate science offering, share best practices in offering AMS Climate Studies, and analyze the usefulness of course materials. Results will be presented during this presentation. The AMS Climate Studies Diversity Project builds on highly successful, NSF-supported diversity projects for the AMS Weather and Ocean Studies courses conducted from 2001-2008. As a whole, AMS Climate, Weather, and Ocean Studies courses have activated more than 400 institutional licenses from MSIs and impacted more than 25,000 students.
Climate Change at the Poles: Research Immersion Experience at Bellingshausen, Antarctica
NASA Astrophysics Data System (ADS)
Alexeev, V. A.; Repina, I. A.; Baeseman, J. L.; Fernandoy, F.; Bart, S.
2010-12-01
We brought a party of 15 scientists, graduate students, and educators to King George Island, the largest of the South Shetland Islands, just off the Antarctic Peninsula, for an international workshop on Antarctica and global climate change in January 2010. Participants included professors, young scientists and graduate students from the Obukhov Institute of Atmospheric Physics, the University of Maryland, the University of Wisconsin, and the Michigan Technological University. Lindsay Bartholomew, an education and outreach specialist at the Museum of Science and Industry in Chicago connected the workshop via video and Internet with an audience of museum visitors. Scientists living and working at Bellingshausen, including Hans-Ulrich Peter, an eminent ecologist from Jena University (Germany), and Bulat Movlyudov (Institute of Geography, Moscow), a distinguished glaciologist, participated in the workshop. Field trips led by Peter and Movlyudov and others were made by day and lectures were held by night. Professors and graduate students made cutting-edge presentations on such subjects as permafrost, glaciology, and global climate models. Three workshop teams conducted field research projects at the foot of the Bellingshausen Dome icecap - two on carbon cycling and one on permafrost. Major funding sources for the workshop included the Russian Foundation for Basic Research (Russia), Wilderness Research Foundation (USA), NSF, University of Wisconsin at Stevens Point, Alfred Wegener Institute (Germany) and Museum for Science and Industry (Chicago). INACH, the Chilean Antarctic Institute, and IAU, the Uruguayan Antarctic Institute, provided air charter services. On King George Island, our group was billeted at Russia’s Bellingshausen science station.
Climate Science across the Liberal Arts Curriculum at Gustavus Adolphus College
NASA Astrophysics Data System (ADS)
Bartley, J. K.; Triplett, L.; Dontje, J.; Huber, T.; Koomen, M.; Jeremiason, J.; La Frenierre, J.; Niederriter, C.; Versluis, A.
2014-12-01
The human and social dimensions of climate change are addressed in courses in humanities, social sciences, and arts disciplines. However, faculty members in these disciplines are not climate science experts and thus may feel uncomfortable discussing the science that underpins our understanding of climate change. In addition, many students are interested in the connections between climate change and their program of study, but not all students take courses that address climate science as a principal goal. At Gustavus Adolphus College, the Climate Science Project aims to help non-geoscience faculty introduce climate science content in their courses in order to increase climate science literacy among students and inform discussions of the implications of climate change. We assembled an interdisciplinary team of faculty with climate science expertise to develop climate science modules for use in non-geoscience courses. Faculty from the social sciences, humanities, arts, education, and natural sciences attended workshops in which they developed plans to include climate science in their courses. Based on these workshops, members of the development team created short modules for use by participating faculty that introduce climate science concepts to a non-specialist audience. Each module was tested and modified prior to classroom implementation by a team of faculty and geoscience students. Faculty and student learning are assessed throughout the process, and participating faculty members are interviewed to improve the module development process. The Climate Science Project at Gustavus Adolphus College aims to increase climate science literacy in both faculty members and students by creating accessible climate science content and supporting non-specialist faculty in learning key climate science concepts. In this way, climate science becomes embedded in current course offerings, including non-science courses, reaching many more students than new courses or enhanced content in the geosciences can reach. In addition, this model can be adopted by institutions with limited geoscience course offerings to increase geoscience literacy among a broad cross-section of students.
NASA Astrophysics Data System (ADS)
Schuster, D. A.; Thomas, C. W.; Smith, J. S.; Wood, E. J.; Filippelli, G. M.
2007-12-01
The importance of K-12 educational programs and resources that seek to share the science of climate change has recently come into focus. During the fall 2006 AGU meeting, we presented the conceptual framework used to guide both the curriculum and year-one programs of Students as Mentors and Owners of Geoscience and Environmental Education: The Global Warming Road Show. Currently this dynamic, three-phase, tiered mentoring program selects and empowers a diverse population of 11th and 12th grade students from a large urban high school in the Midwest to teach a curriculum on climate change to 7th graders from a local feeder school. In December 2007 we will complete year-one of the program and will present an overview of 1) students' conceptual representations of climate change, 2) the most recent curriculum and programs, and 3) the ongoing program evaluation. We will synthesize these three areas and reflect on how to improve upon year-two of both the curriculum and the program. During various stages of the program, students have constructed concept maps, written in journals, created lesson plans, and participated in focus group interviews. These materials are being analyzed to provide a brief overview of high school students' initial conceptualizations of climate change. During the intensive 2007 summer workshop, these 11th and 12th grade students were supported by university scientists and science educators, secondary science teachers, and museum educators as they attempted to better understand climate change and as they reflected on how to effectively teach this topic to 7th graders. During the fall semester of 2007, the workshop graduates are scheduled to teach 25 to 30 7th graders a five week climate unit. The program will culminate with the 11th and 12th grade student-mentors working with the 7th graders to create a "Road Show," which will be presented to other 7th and 8th graders within the same school district. To ensure that this program is current, a team of scientists and science educators supplemented and further developed a well known and tested 15-year-old curriculum (Great Explorations in Math and Science, 1990) with recent data and analysis focusing on key concepts of climate change. The updated curriculum was structured using two driving questions: - How do we know the earth has experienced climate change in the past, including the ice ages and the age of the dinosaurs? - How do we know that humans have an impact on climate? Science educators and scientists also worked together to create templates that prompted the 11th and 12th grade students to first reflect on their understandings of climate change and then on how they would teach their younger peers. As students work with experiments, data sets, and news-media articles, they are also prompted to reflect on discrepancies between primary science sources and secondary media sources (Drake and Nelson, 2005). An evaluation team observed the summer workshops, administered surveys, reviewed the adapted curriculum, and participated in planning sessions. The evaluators are in the process of analyzing these multiple indicators to examine the extent to which the program aligns with its stated goals. The initial formative evaluation findings suggest that students were active participants in the workshop and that they enjoyed their experience. Areas of year-two development include improved communication and collaboration between university and secondary school units.
NASA Astrophysics Data System (ADS)
Bartholow, S.; Warburton, J.; Wood, J. H.; Steiner, S. M.
2015-12-01
Seeing Understanding and Teaching: Climate Change in Denali is a four-day immersive teacher professional development course held in Denali National Park. Developed through three partner organizations, the course aims to develop teachers' skills for integrating climate change content into their classrooms. This presentation aims to share tangible best practices for linking researchers and teachers in the field, through four years of experience in program delivery and reported through a published external evaluation. This presentation will examine the key aspects of a successful connection between teachers, researchers, science, and classrooms: (1) Inclusion of teacher leaders, (2) dedicated program staff, (3) workshop community culture, and will expose barriers to this type of collaboration including (1) differences in learning style, (2) prior teaching experience, (3) existing/scaffolding understanding of climate change science, and (4) accessibility of enrollment and accommodations for the extended learning experience. Presentation Content Examples:Participants overwhelmingly value the deep commitment this course has to linking their field experience to the classroom attributing to the role of a teacher-leader; an expert science teacher with first-hand field research experience in the polar regions. The goal of including a teacher-leader is to enhance translatability between fieldwork and the classroom. Additionally, qualitative aspects of the report touches on the intangible successes of the workshop such as: (1) the creation of a non-judgmental learning atmosphere, (2) addressing accessibility to science learning tools in rural and under-served communities, (3) defining successful collaboration as making meaning together through exploratory questioning while in the field (4) discussed the social and cultural implications of climate change, and the difficulty of navigating these topics in educational and/or multicultural spaces. Next Steps? Create a #ClimateEdCommunity that is both teachers and researchers with teacher leaders as a catalyst for transcending our disparate disciplines and developing a community of learning, without judgment, and interpersonal connections.
Cross-scale phenological data integration to benefit resource management and monitoring
Richardson, Andrew D.; Weltzin, Jake F.; Morisette, Jeffrey T.
2017-01-01
Climate change is presenting new challenges for natural resource managers charged with maintaining sustainable ecosystems and landscapes. Phenology, a branch of science dealing with seasonal natural phenomena (bird migration or plant flowering in response to weather changes, for example), bridges the gap between the biosphere and the climate system. Phenological processes operate across scales that span orders of magnitude—from leaf to globe and from days to seasons—making phenology ideally suited to multiscale, multiplatform data integration and delivery of information at spatial and temporal scales suitable to inform resource management decisions.A workshop report: Workshop held June 2016 to investigate opportunities and challenges facing multi-scale, multi-platform integration of phenological data to support natural resource management decision-making.
NASA Astrophysics Data System (ADS)
Buizer, J.; Chhetri, N.; Roy, M.
2010-12-01
Extreme weather events in urban areas such as torrential rainfall in Chicago and London, floods in Boston and Elbe and heat waves in Europe have shed stark light on cities’ vulnerability to the effects of climate change. At the same time, cities themselves are significant net contributors to GHG’s attributable to climatic changes through the built environment (e.g. housing, roads, and parking lots), transport, consumption and recreation. In the arid region of southwestern United States, issues associated with the adequacy of water resources, urban heat island, and air quality best exemplify these contributions. This duality - cities as impacted by, and contributors to extreme climatic patterns induced by climate change, and the specific climate information needed for decision-making by city planners - provided the impetus for a two-day workshop in January 2009. Organized by Arizona State University, the workshop included city managers, planners, private sector stakeholders, water managers, researchers, and Federal program managers. The aim was to identify information needs, and data and research gaps, as well as to design strategies to address climate uncertainty. Two key approaches discussed were: a) building multiple, flexible scenarios and modeling efforts that enable decision-makers to plan for a number of possible futures, and b) matching Federal climate assets to local, regional and sectoral needs through continuous collaboration that supports decision-making within the social, economic, and political context of the place. Federal leadership in facilitating, coordinating and informing efforts that nurture the creative intellectual capacity of cities to produce integrated solutions to mitigate the effects of and adapt to climate change will go a long way in addressing urban climate adaptation in the United States. Participants outlined a number of concerns and suggestions for Federal government leaders and services associated with a national climate network. Concerns included a broad range of issues, including flood protection, sea level rise, extreme events, infrastructure investment decisions, water supply, storm-water and wastewater management, public education and outreach. Suggestions included an in-depth exploration of new roles for federal agencies, as well as new partnerships with state and local entities, the private sector, and non-governmental entities; developing specialized communicators and trusted information brokers who can connect federal science agencies to local decision makers; and integrating federal decision making with local implementation.
Human ecology and climate change: People and resources in the Far North
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, D.L.; Johnson, D.R.
1995-12-31
This book is a collection of papers from a workshop held in October 1993 that explore and develop further ideas about the impacts of climate change on the people and ecosystems of the Far North. Included are researchers and managers from atmospheric sciences, anthropology, sociology, rural economics, northern latitude mammal and fisheries biology, and governmental and management strategies. The book discusses the range of interrelationships that will have to be addressed as natural cycles or anthropogenic causes affect global climate patterns.
Climate change vulnerability assessment for the Chugach National Forest and the Kenai Peninsula
Gregory H. Hayward; Steve Colt; Monica L. McTeague; Teresa N. Hollingsworth
2017-01-01
This assessment evaluates the effects of future climate change on a select set of ecological systems and ecosystem services in Alaskaâs Kenai Peninsula and Chugach National Forest regions. The focus of the assessment was established during a multi-agency/organization workshop that established the goal to conduct a rigorous evaluation of a limited range of topics rather...
NASA Technical Reports Server (NTRS)
Olsen, Lola
1992-01-01
In addition to the discussions, Ocean Climate Data Workshop hosts gave participants an opportunity to hear about, see, and test for themselves some of the latest computer tools now available for those studying climate change and the oceans. Six speakers described computer systems and their functions. The introductory talks were followed by demonstrations to small groups of participants and some opportunities for participants to get hands-on experience. After this familiarization period, attendees were invited to return during the course of the Workshop and have one-on-one discussions and further hands-on experience with these systems. Brief summaries or abstracts of introductory presentations are addressed.
Summary of the 2009 National Silviculture Workshop
James M. Guldin
2010-01-01
The theme of the 2009 National Silviculture Workshop held in Boise Idaho in June 2009 was, âIntegrated management of carbon sequestration and biomass utilization opportunities in a changing climate.â The session had a series of outstanding presentations and field tours focused on the theme of the meeting nationally, and with specific reference to the forests of the...
Dalton, Meghan M.; Bethel, Jeffrey; Capalbo, Susan M.; Cuhaciyan, J.E.; Eigenbrode, Sanford D.; Glick, Patty; Houston, Laurie L.; Littell, Jeremy S.; Lynn, Kathy; Mote, Philip W.; Raymondi, Rick R.; Reeder, W. Spencer; Shafer, Sarah L.; Snover, Amy K.
2013-01-01
Climate Change in the Northwest: Implications for Our Landscapes, Waters, and Communities is aimed at assessing the state of knowledge about key climate impacts and consequences to various sectors and communities in the northwest United States. It draws on a wealth of peer-reviewed literature, earlier state-level assessment reports conducted for Washington (2009) and Oregon (2010), as well as a risk-framing workshop. As an assessment, it aims to be representative (though not exhaustive) of the key climate change issues as reflected in the growing body of Northwest climate change science, impacts, and adaptation literature now available. This report will serve as an updated resource for scientists, stakeholders, decision makers, students, and community members interested in understanding and preparing for climate change impacts on Oregon, Washington, and Idaho. This more detailed, foundational report is intended to support the key findings presented in the Northwest chapter of the Third National Climate Assessment.
Improving coordination and integration of observations of Arctic change
NASA Astrophysics Data System (ADS)
Perovich, Donald; Payne, John; Eicken, Hajo
2012-10-01
U.S. Arctic Observing Coordination Workshop;Anchorage, Alaska, 20-22 March 2012 The Arctic is undergoing tremendous changes. Permafrost is thawing, ice sheets are melting, and sea ice is thinning and retreating. These changes are impacting ecosystems and human activities. Observing, understanding, and responding to these changes are the central themes of the U.S. Interagency Study of Environmental Arctic Change (SEARCH, http://www.arcus.org/search/index.php). SEARCH brings together academic and government agency scientists and stakeholders to prioritize, plan, conduct, and synthesize research focused on Arctic environmental change. The U.S. Arctic Observing Coordination Workshop (http://www.arcus.org/search/meetings/2012/coordination-workshop/) focused on two key themes for cross-disciplinary and cross-agency collaboration: (1) understanding and predicting sea ice changes and their consequences for ecosystems, human activities, and climate and (2) determining consequences of loss and warming of shallow permafrost on Arctic and global systems.
Climate change and respiratory disease: European Respiratory Society position statement.
Ayres, J G; Forsberg, B; Annesi-Maesano, I; Dey, R; Ebi, K L; Helms, P J; Medina-Ramón, M; Windt, M; Forastiere, F
2009-08-01
Climate change will affect individuals with pre-existing respiratory disease, but the extent of the effect remains unclear. The present position statement was developed on behalf of the European Respiratory Society in order to identify areas of concern arising from climate change for individuals with respiratory disease, healthcare workers in the respiratory sector and policy makers. The statement was developed following a 2-day workshop held in Leuven (Belgium) in March 2008. Key areas of concern for the respiratory community arising from climate change are discussed and recommendations made to address gaps in knowledge. The most important recommendation was the development of more accurate predictive models for predicting the impact of climate change on respiratory health. Respiratory healthcare workers also have an advocatory role in persuading governments and the European Union to maintain awareness and appropriate actions with respect to climate change, and these areas are also discussed in the position statement.
Port Communities Face Many Challenges: • Climate change – Sea Level Rise, Extreme Events: “Assets” become Vulnerabilities; Nuisance flooding; Changes in waste water and stormwater capacity; Changes in near-shore ecology and water quality • Port Exp...
Pauchard, Aníbal; Albihn, Ann; Alexander, Jake; Burgess, Treena; Daehler, Curt; Essl, Franz; Evengard, Birgitta; Greenwood, Greg; Haider, Sylvia; Lenoir, Jonathan; McDougall, K.; Milbau, Ann; Muths, Erin L.; Nunez, Martin; Pellissier, Lois; Rabitsch, Wolfgang; Rew, Lisa; Robertson, Mark; Sanders, Nathan; Kueffer, Christoph
2016-01-01
Cold environments at high elevation and high latitude are often viewed as resistant to biological invasions. However, climate warming, land use change and associated increased connectivity all increase the risk of biological invasions in these environments. Here we present a summary of the key discussions of the workshop ‘Biosecurity in Mountains and Northern Ecosystems: Current Status and Future Challenges’ (Flen, Sweden, 1–3 June 2015). The aims of the workshop were to (1) increase awareness about the growing importance of species expansion—both non-native and native—at high elevation and high latitude with climate change, (2) review existing knowledge about invasion risks in these areas, and (3) encourage more research on how species will move and interact in cold environments, the consequences for biodiversity, and animal and human health and wellbeing. The diversity of potential and actual invaders reported at the workshop and the likely interactions between them create major challenges for managers of cold environments. However, since these cold environments have experienced fewer invasions when compared with many warmer, more populated environments, prevention has a real chance of success, especially if it is coupled with prioritisation schemes for targeting invaders likely to have greatest impact. Communication and co-operation between cold environment regions will facilitate rapid response, and maximise the use of limited research and management resources.
NASA Astrophysics Data System (ADS)
Holman, A.; Poe, A.; Murphy, K.; Littell, J. S.; Pletnikoff, K.; Holen, D.
2016-12-01
The phrases "coastal resilience" and "climate adaptation" appear everywhere now—but how do they meet the needs of communities and natural resource managers on Alaska's coast? A regional consortium of The Aleutian Pribilof Islands Association, four of Alaska's Landscape Conservation Cooperatives (LCCs), NOAA, University of Alaska Fairbanks and the Alaska Climate Science Center joined numerous local partners including several Tribes and Alaska Native Organizations to host workshops in five regions to find out.The project brought together audiences from Tribal and local government, State and Federal agencies, scientists and local experts to share the state of existing knowledge on current and anticipated environmental changes and impacts and discuss potential response actions. Targeting information and tools needed for decision making and resource management, the hundreds of workshop participants identified gaps in available data, information and knowledge that needs to be filled to help communities and managers better respond to climate change. Each of the workshops built upon the other and connected stakeholders and increase resiliency by bringing local decision makers together with the researchers who can fill their needs, consolidating and leveraging research being done in the region by many different parties (western and traditional) and ensuring those results get to those who need them, and creating an adaptive, collaborative process of identifying needs, conducting work, gathering the latest science from local to national sources, presenting results for evaluation and feedback, and using that information to drive future research and management investments. The resulting "toolbox" will help management agencies and others to better understand the dynamic changes Alaska is experiencing, their impacts on communities and habitats, as well as tools and information that can help managers and community leaders work better together to adapt to climate change.
Proceedings of the Ocean Climate Data Workshop
NASA Technical Reports Server (NTRS)
Churgin, James (Compiler)
1992-01-01
The First Consultative Meeting on Responsible National Oceanographic Data Centres (RNODC's) and Climate DataServices met in February 1988 and made a number of recommendations related to improving services to meet the needs of climate programmes. Included in these discussions was a recommendation for a Workshop on Ocean Climate Data Management. This workshop will be talking about ways to establish a Global Ocean Observing System (GOOS).
Climate Change Student Summits: A Model that Works (Invited)
NASA Astrophysics Data System (ADS)
Huffman, L. T.
2013-12-01
The C2S2: Climate Change Student Summit project has completed four years of activities plus a year-long longitudinal evaluation with demonstrated positive impacts beyond the life of the project on both students and teachers. This presentation will share the lessons learned about implementing this climate change science education program and suggest that it is a successful model that can be used to scale up from its Midwestern roots to achieve measurable national impact. A NOAA Environmental Literacy grant allowed ANDRILL (ANtarctic geological DRILLing) to grow a 2008 pilot program involving 2 Midwestern sites, to a program 4 years later involving 10 sites. The excellent geographical coverage included 9 of the U.S. National Climate Assessment regions defined by the U.S. Global Change Research Program. Through the delivery of two professional development (PD) workshops, a unique opportunity was provided for both formal and informal educators to engage their classrooms/audiences in understanding the complexities of climate change. For maximum contact hours, the PD experience was extended throughout the school year through the use of an online grouphub. Student teams were involved in a creative investigative science research and presentation experience culminating in a Climate Change Student Summit, an on-site capstone event including a videoconference connecting all sites. The success of this program was based on combining multiple aspects, such as encouraging the active involvement of scientists and early career researchers both in the professional development workshops and in the Student Summit. Another key factor was the close working relationships between informal and formal science entities, including involvement of informal science learning facilities and informal science education leaders. The program also created cutting-edge curriculum materials titled the ELF, (Environmental Literacy Framework with a focus on climate change), providing an earth systems approach to climate change education which have been successfully integrated into existing curricula in grades 4-12, as well as at numerous science museums.
Climate change risk perception and communication: addressing a critical moment?
Pidgeon, Nick
2012-06-01
Climate change is an increasingly salient issue for societies and policy-makers worldwide. It now raises fundamental interdisciplinary issues of risk and uncertainty analysis and communication. The growing scientific consensus over the anthropogenic causes of climate change appears to sit at odds with the increasing use of risk discourses in policy: for example, to aid in climate adaptation decision making. All of this points to a need for a fundamental revision of our conceptualization of what it is to do climate risk communication. This Special Collection comprises seven papers stimulated by a workshop on "Climate Risk Perceptions and Communication" held at Cumberland Lodge Windsor in 2010. Topics addressed include climate uncertainties, images and the media, communication and public engagement, uncertainty transfer in climate communication, the role of emotions, localization of hazard impacts, and longitudinal analyses of climate perceptions. Climate change risk perceptions and communication work is critical for future climate policy and decisions. © 2012 Society for Risk Analysis.
NASA Astrophysics Data System (ADS)
von Schneidemesser, E.; Schmale, J.; Van Aardenne, J.
2013-12-01
Air pollution and climate change are often treated at national and international level as separate problems under different regulatory or thematic frameworks and different policy departments. With air pollution and climate change being strongly linked with regard to their causes, effects and mitigation options, the integration of policies that steer air pollutant and greenhouse gas emission reductions might result in cost-efficient, more effective and thus more sustainable tackling of the two problems. To support informed decision making and to work towards an integrated air quality and climate change mitigation policy requires the identification, quantification and communication of present-day and potential future co-benefits and trade-offs. The identification of co-benefits and trade-offs requires the application of appropriate metrics that are well rooted in science, easy to understand and reflect the needs of policy, industry and the public for informed decision making. For the purpose of this workshop, metrics were loosely defined as a quantified measure of effect or impact used to inform decision-making and to evaluate mitigation measures. The workshop held on October 9 and 10 and co-organized between the European Environment Agency and the Institute for Advanced Sustainability Studies brought together representatives from science, policy, NGOs, and industry to discuss whether current available metrics are 'fit for purpose' or whether there is a need to develop alternative metrics or reassess the way current metrics are used and communicated. Based on the workshop outcome the presentation will (a) summarize the informational needs and current application of metrics by the end-users, who, depending on their field and area of operation might require health, policy, and/or economically relevant parameters at different scales, (b) provide an overview of the state of the science of currently used and newly developed metrics, and the scientific validity of these metrics, (c) identify gaps in the current information base, whether from the scientific development of metrics or their application by different users.
Making short-term climate forecasts useful: Linking science and action
Buizer, James; Jacobs, Katharine; Cash, David
2016-01-01
This paper discusses the evolution of scientific and social understanding that has led to the development of knowledge systems supporting the application of El Niño-Southern Oscillation (ENSO) forecasts, including the development of successful efforts to connect climate predictions with sectoral applications and actions “on the ground”. The evolution of “boundary-spanning” activities to connect science and decisionmaking is then discussed, setting the stage for a report of outcomes from an international workshop comprised of producers, translators, and users of climate predictions. The workshop, which focused on identifying critical boundary-spanning features of successful boundary organizations, included participants from Australia, Hawaii, and the Pacific Islands, the US Pacific Northwest, and the state of Ceará in northwestern Brazil. Workshop participants agreed that boundary organizations have multiple roles including those of information broker, convenor of forums for engagement, translator of scientific information, arbiter of access to knowledge, and exemplar of adaptive behavior. Through these roles, boundary organizations will ensure the stability of the knowledge system in a changing political, economic, and climatic context. The international examples reviewed in this workshop demonstrated an interesting case of convergent evolution, where organizations that were very different in origin evolved toward similar structures and individuals engaged in them had similar experiences to share. These examples provide evidence that boundary organizations and boundary-spanners fill some social/institutional roles that are independent of culture. PMID:20133668
Making short-term climate forecasts useful: Linking science and action.
Buizer, James; Jacobs, Katharine; Cash, David
2016-04-26
This paper discusses the evolution of scientific and social understanding that has led to the development of knowledge systems supporting the application of El Niño-Southern Oscillation (ENSO) forecasts, including the development of successful efforts to connect climate predictions with sectoral applications and actions "on the ground". The evolution of "boundary-spanning" activities to connect science and decisionmaking is then discussed, setting the stage for a report of outcomes from an international workshop comprised of producers, translators, and users of climate predictions. The workshop, which focused on identifying critical boundary-spanning features of successful boundary organizations, included participants from Australia, Hawaii, and the Pacific Islands, the US Pacific Northwest, and the state of Ceará in northwestern Brazil. Workshop participants agreed that boundary organizations have multiple roles including those of information broker, convenor of forums for engagement, translator of scientific information, arbiter of access to knowledge, and exemplar of adaptive behavior. Through these roles, boundary organizations will ensure the stability of the knowledge system in a changing political, economic, and climatic context. The international examples reviewed in this workshop demonstrated an interesting case of convergent evolution, where organizations that were very different in origin evolved toward similar structures and individuals engaged in them had similar experiences to share. These examples provide evidence that boundary organizations and boundary-spanners fill some social/institutional roles that are independent of culture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, P.C.
1982-10-01
Given the potential significance of northern ecosystems to the global carbon budget it is critical to estimate the current carbon balance of these ecosystems as precisely as possible, to improve estimates of the future carbon balance if world climates change, and to assess the range of certainty associated with these estimates. As a first step toward quantifying some of the potential changes, a workshop with tundra and taiga ecologists and soil scientists was held in San Diego in March 1980. The first part of this report summarizes the conclusions of this workshop with regard to the estimate of the currentmore » areal extent and carbon content of the circumpolar arctic and the taiga, current rates of carbon accumulation in the peat in the arctic and the taiga, and predicted future carbon accumulation rates based on the present understanding of controlling processes and on the understanding of past climates and vegetation. This report presents a finer resolution of areal extents, standing crops, and production rates than was possible previously because of recent syntheses of data from the International Biological Program and current studies in the northern ecosystems, some of which have not yet been published. This recent information changes most of the earlier estimates of carbon content and affects predictions of the effect of climate change. The second part of this report outlines research needed to fill major gaps in the understanding of the role of northern ecosystems in global climate change.« less
How Did Climate and Humans Respond to Past Volcanic Eruptions?
NASA Technical Reports Server (NTRS)
Toohey, Matthew; Ludlow, Francis; Legrande, Allegra N.
2016-01-01
To predict and prepare for future climate change, scientists are striving to understand how global-scale climatic change manifests itself on regional scales and also how societies adapt or don't to sometimes subtle and complex climatic changes. In this regard, the strongest volcanic eruptions of the past are powerful test cases, showcasing how the broad climate system responds to sudden changes in radiative forcing and how societies have responded to the resulting climatic shocks. These issues were at the heart of the inaugural workshop of the Volcanic Impacts on Climate and Society (VICS) Working Group, convened in June 2016 at the Lamont-Doherty Earth Observatory of Columbia University in Palisades, N.Y. The 3-day meeting gathered approximately 50 researchers, who presented work intertwining the history of volcanic eruptions and the physical processes that connect eruptions with human and natural systems on a global scale.
Fostering climate dialogue by introducing students to uncertainty in decision-making
NASA Astrophysics Data System (ADS)
Addor, N.; Ewen, T.; Johnson, L.; Coltekin, A.; Derungs, C.; Muccione, V.
2014-12-01
Uncertainty is present in all fields of climate research, spanning from climate projections, to assessing regional impacts and vulnerabilities to adaptation policy and decision-making. The complex and interdisciplinary nature of climate information, however, makes the decision-making process challenging. This process is further hindered by a lack of institutionalized dialogue between climate researchers, decision-makers and user groups. Forums that facilitate such dialogue would allow these groups to actively engage with each other to improve decisions. In parallel, introducing students to these challenges is one way to foster such climate dialogue. We present the design and outcome of an innovative workshop-seminar series we convened at the University of Zurich to demonstrate the pedagogical importance of such forums. An initial two-day workshop brought together 50 participants, including bachelor, master and PhD students and academic staff, and nine speakers from academia, industry, government, and philanthropy. The main objectives were to provide participants with tools to communicate uncertainty in their current or future research projects, to foster exchange between practitioners, students and scientists from different backgrounds and finally to expose students to multidisciplinary collaborations and real-world problems involving decisions under uncertainty. An opinion survey conducted before and after the workshop enabled us to observe changes in participants' perspectives on what information and tools should be exchanged between researchers and decision-makers to better address uncertainty. Responses demonstrated a marked shift from a pre-workshop vertical conceptualization of researcher-user group interaction to a post-workshop horizontal mode: in the former, researchers were portrayed as bestowing data-based products to decision-makers, while in the latter, both sets of actors engaged in frequent communication, exchanging their needs and expertise. Drawing on examples from the course evaluation, we seek to encourage the organization of similar events, introducing students to these challenges at an early stage of their education and career as a first step towards improving future dialogue.
Collaborative Science with Indigenous Knowledge for Climate Solutions: Why, How, and with Whom?
NASA Astrophysics Data System (ADS)
Maldonado, J.; Lazrus, H.; Gough, B.
2017-12-01
The inherent complexity of climate change requires diverse perspectives to understand and respond to its impacts. The Rising Voices: Collaborative Science with Indigenous Knowledge for Climate Solutions (Rising Voices) program represents a growing network of engaged Indigenous and non-Indigenous scientists committed to cross-cultural and collaborative research and activities to understand and mitigate the impacts of extreme weather and climate change. Five annual Rising Voices workshops have occurred since 2013, engaging hundreds of participants from across Tribal communities, the United States, and internationally over the years. Housed at the National Center for Atmospheric Research, Rising Voices aims to expand how diversity is understood in atmospheric science, to include intellectual diversity stemming from distinct cultural backgrounds. It envisions collaborative research that brings together Indigenous knowledges and science with Western climate and weather sciences in a respectful and inclusive manner to achieve culturally relevant and scientifically robust climate and weather adaptation solutions. The premise of the program and the research and collaborations it produces is that there is an opportunity cost to not involving diverse knowledge systems and observations from varied cultural backgrounds in addressing climate change. We cannot afford that cost given the challenges ahead. This poster presents some of the protocols, methods, challenges, and outcomes of cross-cultural research between Western and Indigenous scientists and communities from across the United States. It also presents some of the recommendations that have emerged from Rising Voices workshops over the past five years.
Tracing the flow: Climate change actor-networks in Oklahoma secondary science education
NASA Astrophysics Data System (ADS)
Colston, Nicole Marie
This dissertation reports research about the translation of climate change in science education. Public controversies about climate change education raises questions about the lived experiences of teachers in Oklahoma and the role of science education in increasing public understanding. A mixed methods research design included rhetorical analysis of climate change denial media, key informant interviews with science education stakeholders, and a survey questionnaire of secondary science teachers. Final analysis was further informed by archival research and supplemented by participant observation in state-wide meetings and science teacher workshops. The results are organized into three distinct manuscripts intended for publication across the fields of communication, science education, and climate science. As a whole the dissertation answers the research question, how does manufactured scientific controversy about climate change present specific challenges and characterize negotiations in secondary science education in Oklahoma? Taken together, the findings suggest that manufactured controversy about climate change introduces a logic of non-problematicity, challenges science education policy making, and undermines scientific consensus about global warming.
NASA Astrophysics Data System (ADS)
Lefèvre, Roger-Alexandre
2017-04-01
Cultural Heritage is the core of civilization and mankind and contributes substantially to quality of life. Its preservation for its historical value and aesthetics, for its conservation and transmission, must be one of the paramount preoccupations of each citizen and institution. It is therefore fundamental to guard against a major evolution of our planet that is increasing and harmful for all the materials: climate imbalance. The tangible Cultural Heritage, often in an urban environment, is threatened both by extreme climate events, relatively short but recurrent, and by slow, insidious and continuous ones, often in relationship with pollution. The main climate factor at global scale - a general increase of mean temperatures leading to sea level rise - will have direct and indirect consequences on Cultural Heritage. The other climate threats (rain, relative humidity, solar radiation, drought, wind, floods…) and pollution (by gases and particles) will have specific effects on materials of Cultural Heritage, both outdoors (façades of monuments, historical centres of cities, open-air statues, cultural landscapes…) and indoors (museums, libraries, reserves, collections…). Since the 1st International Workshop on « Climate Change and Cultural Heritage » held at the European University Centre for Cultural Heritage in Ravello in May 2009, three important events appeared: • The publication in 2014 of the 5th IPCC Assessment Report. For the first time the Cultural Heritage was cited in an IPCC Report. • The holding in 2015 in Paris of the COP21. Some round-tables were organised during this conference concerning the Cultural Heritage. • The holding the same year in Paris of the International Scientific Conference "Our Common Future under Climate Change" in the frame and ahead of the COP21. Cultural Heritage was the topic of a special session at this important conference. During the last decade, the European scientific community was focused on the Threats and Impacts of Climate Change on Cultural Heritage thanks to important projects funded by the European Commission among them: Noah's Ark (2003-2007) and Climate for Culture (2009-2014). The time is arrived focusing on the Resilience and Adaptation of Cultural Heritage to Climate Change. Italy and France already have National Adaptation Plan to Climate Change where Cultural Heritage is taken into account. Other national and international bodies are involved in this field, including European Commission (Horizon 2020 Programme, JPI Cultural Heritage), Council of Europe, UNESCO, ICOMOS… The organisation in Ravello in 2017 of the 2nd International Workshop on "Resilience and Adaptation of Cultural Heritage to Climate Change" should be an opportunity to give the word to scientists, teachers, curators, conservators, restorers, politicians, decision-makers and stake-holders…for reviewing the current state of this urgent problematic and of this scarcely explored area of research (www.univeur.org ).
Workshop on Early Mars: How Warm and How Wet?, part 1
NASA Technical Reports Server (NTRS)
Squyres, S. (Editor); Kasting, J. (Editor)
1993-01-01
This volume contains papers that have been accepted for presentation at the Workshop on Early Mars: How Warm and How Wet?, 26-28 Jul. 1993, in Breckenridge, CO. The following topics are covered: the Martian water cycle; Martian paleoclimatology; CO2/CH4 atmosphere on early Mars; Noachian hydrology; early Martian environment; Martian weathering; nitrogen isotope ratios; CO2 evolution on Mars; and climate change.
Theresa B. Jain; Russell T. Graham; Jonathan Sandquist
2010-01-01
Forests are important for carbon sequestration and how they are manipulated either through natural or human induced disturbances can have an effect on CO2 emissions and carbon sequestration. The 2009 National Silviculture Workshop presented scientific information and management strategies to meet a variety of objectives while simultaneously addressing carbon...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-22
... Center, Center of Excellence in Coral Reef Ecosystems Science, 8000 North Ocean Drive; Dania Beach, FL... Center, Center of Excellence in Coral Reef Ecosystems Science, 8000 North Ocean Drive, Dania Beach, FL... science workshops will focus on two themes: ``Climate Change and Climate Impacts on Coral Reef Ecosystems...
Building Systems from Scratch: An Exploratory Study of Students Learning about Climate Change
ERIC Educational Resources Information Center
Puttick, Gillian; Tucker-Raymond, Eli
2018-01-01
Science and computational practices such as modeling and abstraction are critical to understanding the complex systems that are integral to climate science. Given the demonstrated affordances of game design in supporting such practices, we implemented a free 4-day intensive workshop for middle school girls that focused on using the visual…
NASA Technical Reports Server (NTRS)
Kihara, Job; MacCarthy, Dilys S.; Bationo, Andre; Koala, Saidou; Hickman, Jonathon; Koo, Jawoo; Vanya, Charles; Adiku, Samuel; Beletse, Yacob; Masikate, Patricia;
2012-01-01
Agriculture in Sub-Saharan Africa (SSA) is experiencing climate change-related effects that call for integrated regional assessments, yet capacity for these assessments has been low. The Agricultural Model Intercomparison and Improvement Project (AgMIP) is advancing research on integrated regional assessments of climate change that include climate, crop, and economic modeling and analysis. Through AgMIP, regional integrated assessments are increasingly gaining momentum in SSA, and multi-institutional regional research teams (RRTs) centered in East, West, and Southern· Africa are generating new information on climate change impacts and adaptation in selected agricultural systems. The research in Africa is organized into four RRTs and a coordination team. Each of the RRTs in SSA is composed of scientists from the Consultative Group of International Agricultural Research (CGIAR) institutions, National Agriculture Research institutes (NARs), and universities consisting of experts in crop and economic modeling, climate, and information technology. Stakeholder involvement to inform specific agricultural systems to be evaluated, key outputs, and the representative agricultural pathways (RAPs), is undertaken at two levels: regional and national, in order to contribute to decision making at these levels. Capacity building for integrated assessment (lA) is a key component that is undertaken continuously through interaction with experts in regional and SSA-wide workshops, and through joint creation of tools. Many students and research affiliates have been identified and entrained as part of capacity building in IA. Bi-monthly updates on scholarly publications in climate change in Africa also serve as a vehicle for knowledge-sharing. With 60 scientists already trained and actively engaged in IA and over 80 getting monthly briefs on the latest information on climate change, a climate-informed community of experts is gradually taking shape in SSA. (See Part 2, Appendices 3-5 in this volume for AgMIP Regional Workshop reports.)
Earth System Modeling and Field Experiments in the Arctic-Boreal Zone - Report from a NASA Workshop
NASA Technical Reports Server (NTRS)
Sellers, Piers; Rienecker Michele; Randall, David; Frolking, Steve
2012-01-01
Early climate modeling studies predicted that the Arctic Ocean and surrounding circumpolar land masses would heat up earlier and faster than other parts of the planet as a result of greenhouse gas-induced climate change, augmented by the sea-ice albedo feedback effect. These predictions have been largely borne out by observations over the last thirty years. However, despite constant improvement, global climate models have greater difficulty in reproducing the current climate in the Arctic than elsewhere and the scatter between projections from different climate models is much larger in the Arctic than for other regions. Biogeochemical cycle (BGC) models indicate that the warming in the Arctic-Boreal Zone (ABZ) could lead to widespread thawing of the permafrost, along with massive releases of CO2 and CH4, and large-scale changes in the vegetation cover in the ABZ. However, the uncertainties associated with these BGC model predictions are even larger than those associated with the physical climate system models used to describe climate change. These deficiencies in climate and BGC models reflect, at least in part, an incomplete understanding of the Arctic climate system and can be related to inadequate observational data or analyses of existing data. A workshop was held at NASA/GSFC, May 22-24 2012, to assess the predictive capability of the models, prioritize the critical science questions; and make recommendations regarding new field experiments needed to improve model subcomponents. This presentation will summarize the findings and recommendations of the workshop, including the need for aircraft and flux tower measurements and extension of existing in-situ measurements to improve process modeling of both the physical climate and biogeochemical cycle systems. Studies should be directly linked to remote sensing investigations with a view to scaling up the improved process models to the Earth System Model scale. Data assimilation and observing system simulation studies should be used to guide the deployment pattern and schedule for inversion studies as well. Synthesis and integration of previously funded Arctic-Boreal projects (e.g., ABLE, BOREAS, ICESCAPE, ICEBRIDGE, ARCTAS) should also be undertaken. Such an effort would include the integration of multiple remotely sensed products from the EOS satellites and other resources.
Challenges in understanding past and present eolian dust dynamics
NASA Astrophysics Data System (ADS)
Stuut, Jan-Berend; Merkel, Ute; Rousseau, Denis-Didier
2012-05-01
Dust Workshop 2011: Processes and Quaternary History of Dust Dynamics; Bremen, Germany, 31 October to 3 November 2011 Mineral dust is now generally recognized as a key element in global climate. However, many open questions need to be addressed to reduce the large uncertainties that still exist regarding the global dust cycle. The Atmospheric Dust During the Last Glacial Cycle: Observations and Modeling initiative (ADOM; see http://www.pages-igbp.org/workinggroups/adom) of the Past Global Changes (PAGES) tackles these questions from both modern and paleo perspectives. A 3-day workshop funded by PAGES and the Center for Marine Environmental Sciences (MARUM) in Germany brought together 50 international experts on marine, terrestrial, and polar dust archives; meteorology; remote sensing; and climate modeling. The workshop aimed to bridge gaps between disciplines and to cover all temporal and spatial scales involved in dust processes.
Weiskopf, Sarah R.; Varela Minder, Elda; Padgett, Holly A.
2017-05-19
Introduction2016 was an exciting year for the Department of the Interior (DOI) Climate Science Centers (CSCs) and the U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC). In recognition of our ongoing efforts to raise awareness and provide the scientific data and tools needed to address the impacts of climate change on fish, wildlife, ecosystems, and people, NCCWSC and the CSCs received an honorable mention in the first ever Climate Adaptation Leadership Award for Natural Resources sponsored by the National Fish, Wildlife, and Plant Climate Adaptation Strategy’s Joint Implementation Working Group. The recognition is a reflection of our contribution to numerous scientific workshops and publications, provision of training for students and early career professionals, and work with Tribes and indigenous communities to improve climate change resilience across the Nation. In this report, we highlight some of the activities that took place throughout the NCCWSC and CSC network in 2016.
Lifelines for High School Climate Change Education
NASA Astrophysics Data System (ADS)
Gould, A. D.
2012-12-01
The Lifelines project aims to establish a network of practicing high school teachers actively using climate change curricula by creating professional learning communities (PLCs) of teachers who, through remote meetings and workshops, maintain ongoing communication and sharing of best practices among colleagues to strengthen knowledge and promote effective teaching strategies. The project explores techniques to achieve the most effective teleconferencing meetings and workshops. This promotes not only teaching about minimizing environmental impacts of human activity, but minimizes environmental impacts of professional development — practicing what we preach. To date, Lifelines PLCs have set up websites and e-mail lists for sharing information. Teleconferences and webinars have been held using services such as Skype, ReadyTalk, and Wiggio. Many of the meetings have been recorded and archived for the benefit of members who could not attend in real-time.
Comparative analysis of marine ecosystems: workshop on predator-prey interactions.
Bailey, Kevin M; Ciannelli, Lorenzo; Hunsicker, Mary; Rindorf, Anna; Neuenfeldt, Stefan; Möllmann, Christian; Guichard, Frederic; Huse, Geir
2010-10-23
Climate and human influences on marine ecosystems are largely manifested by changes in predator-prey interactions. It follows that ecosystem-based management of the world's oceans requires a better understanding of food web relationships. An international workshop on predator-prey interactions in marine ecosystems was held at the Oregon State University, Corvallis, OR, USA on 16-18 March 2010. The meeting brought together scientists from diverse fields of expertise including theoretical ecology, animal behaviour, fish and seabird ecology, statistics, fisheries science and ecosystem modelling. The goals of the workshop were to critically examine the methods of scaling-up predator-prey interactions from local observations to systems, the role of shifting ecological processes with scale changes, and the complexity and organizational structure in trophic interactions.
USDA-ARS?s Scientific Manuscript database
In June 2016, nearly 50 climate science and services experts representing the North American Climate Services Partnership, North American Drought Monitor Forum, and North American Fire Forecasting Workshop joined together for an integrated workshop on drought, wildfire, and climate services across N...
Over the past few decades, air quality planners have forecasted future air pollution levels based on information about changing emissions from stationary and mobile sources, population trends, transportation demand, natural sources of emissions, and other pressures on air quality...
Arimi, Kayode S
2014-05-01
Undesirable impacts of climate change have been a common occurrence that has made fish farmers in developing countries adopt some climate-change adaptation strategies. However, little is known about determinants of climate-change adaptation strategies used by these fish farmers. This study, therefore, articulates novelties on adaptation to climate change, as well ascertains determinants of adaptation strategies used by fish farmers in Epe, Lagos State, Nigeria. Climate change adaptation strategies mostly used by fish farmers include frequent seeking for early warning information about climate change (76.7%) and avoidance of areas susceptible to flooding (60.0%). Climate-change adaptation strategies used by fish farmers were significantly influenced by access to early warning information (β = 7.21), knowledge of farmers about climate change adaptation strategies (β = 8.86), access to capital (β = 28.25), and participation in workshop and conferences (β = 37.19) but were reduced by number of fish stocking (β = -2.06). The adaptation strategies used by fish farmers were autonomous and mostly determined by the access to credit facilities and information. Development policy should focus on carbon capture and storage technology in order to reduce adverse impacts of climate change, as well as making early warning information on climate change available to fish farmers. These will enhance adaptation to climate change. © 2013 Society of Chemical Industry.
Frontiers in Decadal Climate Variability: Proceedings of a Workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purcell, Amanda
A number of studies indicate an apparent slowdown in the overall rise in global average surface temperature between roughly 1998 and 2014. Most models did not predict such a slowdown--a fact that stimulated a lot of new research on variability of Earth's climate system. At a September 2015 workshop, leading scientists gathered to discuss current understanding of climate variability on decadal timescales (10 to 30 years) and whether and how prediction of it might be improved. Many researchers have focused their attention on the climate system itself, which is known to vary across seasons, decades, and other timescales. Several naturalmore » variables produce "ups and downs" in the climate system, which are superimposed on the long-term warming trend due to human influence. Understanding decadal climate variability is important not only for assessing global climate change but also for improving decision making related to infrastructure, water resources, agriculture, energy, and other realms. Like the well-studied El Nino and La Nina interannual variations, decadal climate variability is associated with specific regional patterns of temperature and precipitation, such as heat waves, cold spells, and droughts. Several participants shared research that assesses decadal predictive capability of current models.« less
Reconstruction of Past Mediterranean Climate
NASA Astrophysics Data System (ADS)
García-Herrera, Ricardo; Luterbacher, Jürg; Lionello, Piero; Gonzáles-Rouco, Fidel; Ribera, Pedro; Rodó, Xavier; Kull, Christoph; Zerefos, Christos
2007-02-01
First MEDCLIVAR Workshop on Reconstruction of Past Mediterranean Climate; Pablo de Olavide University, Carmona, Spain, 8-11 November 2006; Mediterranean Climate Variability and Predictability (MEDCLIVAR; http://www.medclivar.eu) is a program that coordinates and promotes research on different aspects of Mediterranean climate. The main MEDCLIVAR goals include the reconstruction of past climate, describing patterns and mechanisms characterizing climate space-time variability, extremes at different time and space scales, coupled climate model/empirical reconstruction comparisons, seasonal forecasting, and the identification of the forcings responsible for the observed changes. The program has been endorsed by CLIVAR (Climate Variability and Predictability project) and is funded by the European Science Foundation.
Workshop on early Mars: How warm and how wet, part 2?
NASA Technical Reports Server (NTRS)
Squyres, S. (Editor); Kasting, J. (Editor)
1993-01-01
In 1992 the MSATT program conducted a workshop on modeling of the Martian climate. At that workshop it became clear that a serious problem had arisen concerning the early climate of Mars. Based on the evidence for smallscale fluvial activity, the view had been widely held that early in its history Mars had a climate that was much warmer and wetter than today's. However, most plausible recent climate models have fallen far short of the warm temperatures often inferred from the geologic evidence. Moreover, recent geophysical work has suggested that early geothermal warming may also have played a significant role in allowing fluvial activity. In order to address the issue of just how warm and how wet early Mars was, a workshop was convened in July of 1993, in Breckenridge, Colorado. The results of the workshop are reported here.
Jennifer Forbey; Gail Patricelli; Donna Delparte; Alan Krakauer; Peter Olsoy; Marcella Fremgen; Jordan Nobler; Nancy Glenn; Lucas Spaete; Bryce Richardson; Lisa Shipley; Jessica Mitchell
2016-01-01
We held a workshop related to the use of emerging technology to understand the ecology of grouse on 03 September 2015 from 08:00 to 17:30 at the Reykjavik Family Park and Zoo, Reykjavik, Iceland as part of the 13th International Grouse Symposium. Our overall objective was to translate technological advances in remote sensing, rapid biochemical assays, and robotics to...
Aumen, Nicholas G.; Havens, Karl E; Best, G. Ronnie; Berry, Leonard
2015-01-01
Florida’s Everglades stretch from the headwaters of the Kissimmee River near Orlando to Florida Bay. Under natural conditions in this flat landscape, water flowed slowly downstream as broad, shallow sheet flow. The ecosystem is markedly different now, altered by nutrient pollution and construction of canals, levees, and water control structures designed for flood control and water supply. These alterations have resulted in a 50 % reduction of the ecosystem’s spatial extent and significant changes in ecological function in the remaining portion. One of the world’s largest restoration programs is underway to restore some of the historic hydrologic and ecological functions of the Everglades, via a multi-billion dollar Comprehensive Everglades Restoration Plan. This plan, finalized in 2000, did not explicitly consider climate change effects, yet today we realize that sea level rise and future changes in rainfall (RF), temperature, and evapotranspiration (ET) may have system-wide impacts. This series of papers describes results of a workshop where a regional hydrologic model was used to simulate the hydrology expected in 2060 with climate changes including increased temperature, ET, and sea level, and either an increase or decrease in RF. Ecologists with expertise in various areas of the ecosystem evaluated the hydrologic outputs, drew conclusions about potential ecosystem responses, and identified research needs where projections of response had high uncertainty. Resource managers participated in the workshop, and they present lessons learned regarding how the new information might be used to guide Everglades restoration in the context of climate change.
NASA Astrophysics Data System (ADS)
Aumen, Nicholas G.; Havens, Karl E.; Best, G. Ronnie; Berry, Leonard
2015-04-01
Florida's Everglades stretch from the headwaters of the Kissimmee River near Orlando to Florida Bay. Under natural conditions in this flat landscape, water flowed slowly downstream as broad, shallow sheet flow. The ecosystem is markedly different now, altered by nutrient pollution and construction of canals, levees, and water control structures designed for flood control and water supply. These alterations have resulted in a 50 % reduction of the ecosystem's spatial extent and significant changes in ecological function in the remaining portion. One of the world's largest restoration programs is underway to restore some of the historic hydrologic and ecological functions of the Everglades, via a multi-billion dollar Comprehensive Everglades Restoration Plan. This plan, finalized in 2000, did not explicitly consider climate change effects, yet today we realize that sea level rise and future changes in rainfall (RF), temperature, and evapotranspiration (ET) may have system-wide impacts. This series of papers describes results of a workshop where a regional hydrologic model was used to simulate the hydrology expected in 2060 with climate changes including increased temperature, ET, and sea level, and either an increase or decrease in RF. Ecologists with expertise in various areas of the ecosystem evaluated the hydrologic outputs, drew conclusions about potential ecosystem responses, and identified research needs where projections of response had high uncertainty. Resource managers participated in the workshop, and they present lessons learned regarding how the new information might be used to guide Everglades restoration in the context of climate change.
A Model for Local Experiential Learning: Workshop on Mangroves, Oceans & Climate in Kosrae
NASA Astrophysics Data System (ADS)
Maloney, A. E.; Sachs, J. P.; Barros, C.; Low, M.
2015-12-01
A curriculum for an intensive one-day workshop about mangroves, oceans, and climate has been developed for schoolteachers in the Federated States of Micronesia. The goals of the workshop are for teachers/attendees to be able to (i) explain what salinity is and describe how it varies from the ocean to the river, (ii) explain what a mangrove is and describe adaptations mangroves have developed that allow them to live in saline or brackish water, and adjust to changing sea level, and (iii) develop a grade-appropriate poster on mangroves or salinity and one interactive activity that uses the poster to engage students in learning. These objectives are accomplished by field trips to the ocean and mangrove swamp, where each participant learns how to measure salinity and identify mangrove species. The hands-on field component is followed by a poster development session where participants design, present, and share feedback on their posters that they will bring back to their classrooms. This experience allows schoolteachers to intimately explore their coastal ecosystems and gain new perspectives about their environment that they can take back to their students. The workshop was designed through a collaborative effort between Pacific Resources for Education and Learning (PREL) NSF Pacific Climate Education Partnership, University of Washington professors and graduate students and undergraduate students, Kosrae Department of Education, Kosrae Island Resource Management Authority (KIRMA), Kosrae Island Conservation and Safety Organization (KCSO), and local Kosraean schoolteachers and administrators. The workshop was offered to elementary school teachers from 4 of 5 school districts in 2013, 2014, and 2015, led by University of Washington scientists and PREL. Local education officials and PREL staff will lead future workshops.
A Model for Local Experiential Learning: Teacher Workshop on Mangroves, Oceans & Climate in Kosrae
NASA Astrophysics Data System (ADS)
Maloney, A. E.; Sachs, J. P.; Barros, C.; Low, M.
2016-02-01
A curriculum for an intensive one-day workshop about mangroves, oceans, and climate has been developed for school teachers in the Federated States of Micronesia. The goals of the workshop are for teachers/attendees to be able to (i) explain what salinity is and describe how it varies from the ocean to the river, (ii) explain what a mangrove is and describe adaptations mangroves have developed that allow them to live in saline or brackish water and adjust to changing sea level, and (iii) develop a grade-appropriate poster on mangroves or salinity and one interactive activity that uses the poster to engage students in learning. These objectives are accomplished by field trips to the ocean and mangrove swamp, where each participant learns how to measure salinity and identify mangrove species. The hands-on field component is followed by a poster development session where participants design, present, and share feedback on their posters that they will bring back to their classrooms. This experience allows schoolteachers to intimately explore their coastal ecosystems and gain new perspectives about their environment that they can take back to their students. The workshop was designed through a collaborative effort between Pacific Resources for Education and Learning (PREL) NSF Pacific Climate Education Partnership, University of Washington professors, graduate students and undergraduate students, Kosrae Department of Education, Kosrae Island Resource Management Authority (KIRMA), Kosrae Island Conservation and Safety Organization (KCSO), and local Kosraean schoolteachers and administrators. The workshop was offered to elementary school teachers from 4 of 5 school districts in 2013, 2014, and 2015, led by University of Washington scientists and PREL. Local education officials and PREL staff will lead future workshops.
The Effects of Solar Variability on Earth's Climate: A Workshop Report
NASA Technical Reports Server (NTRS)
2012-01-01
Solar irradiance, the flux of the Sun s output directed toward Earth, is Earth s main energy source.1 The Sun itself varies on several timescales over billions of years its luminosity increases as it evolves on the main sequence toward becoming a red giant; about every 11 years its sunspot activity cycles; and within just minutes flares can erupt and release massive amounts of energy. Most of the fluctuations from tens to thousands of years are associated with changes in the solar magnetic field. The focus of the National Research Council's September 2011 workshop on solar variability and Earth's climate, and of this summary report, is mainly magnetically driven variability and its possible connection with Earth's climate variations in the past 10,000 years. Even small variations in the amount or distribution of energy received at Earth can have a major influence on Earth's climate when they persist for decades. However, no satellite measurements have indicated that solar output and variability have contributed in a significant way to the increase in global mean temperature in the last 50 years. Locally, however, correlations between solar activity and variations in average weather may stand out beyond the global trend; such has been argued to be the case for the El Nino-Southern Oscillation, even in the present day. A key area of inquiry deals with establishing a unified record of the solar output and solar-modified particles that extends from the present to the prescientific past. The workshop focused attention on the need for a better understanding of the links between indices of solar activity such as cosmogenic isotopes and solar irradiance. A number of presentations focused on the timescale of the solar cycle and of the satellite record, and on the problem of extending this record back in time. Highlights included a report of progress on pyroheliometer calibration, leading to greater confidence in the time history and future stability of total solar irradiance (TSI), and surprising results on changes in spectral irradiance over the last solar cycle, which elicited spirited discussion. New perspectives on connections between features of the quiet and active areas of the photosphere and variations in TSI were also presented, emphasizing the importance of developing better understanding in order to extrapolate back in time using activity indices. Workshop participants reviews highlighted difficulties as well as causes for optimism in current understanding of the cosmogenic isotope record and the use of observed variability in Sun-like stars in reconstructing variations in TSI occurring on lower frequencies than the sunspot cycle. The workshop succeeded in bringing together informed, focused presentations on major drivers of the Sun-climate connection. The importance of the solar cycle as a unique quasi-periodic probe of climate responses on a timescale between the seasonal and Milankovitch cycles was recognized in several presentations. The signal need only be detectable, not dominant, for it to play this role of a useful probe. Some workshop participants also found encouraging progress in the top-down perspective, according to which solar variability affects surface climate by first perturbing the stratosphere, which then forces the troposphere and surface. This work is now informing and being informed by research on tropospheric responses to the Antarctic ozone hole and volcanic aerosols. In contrast to the top-down perspective is the bottom-up view that the interaction of solar energy with the ocean and surface leads to changes in dynamics and temperature. During the discussion of how dynamical air-sea coupling in the tropical Pacific and solar variability interact from a bottom-up perspective, several participants remarked on the wealth of open research questions in the dynamics of the climatic response to TSI and spectral variability. The discussion of the paleoclimate record emphasized that the link between solar varbility and Earth s climate is multifaceted and that some components are understood better than others. According to two presenters on paleoclimate, there is a need to study the idiosyncrasies of each key proxy record. Yet they also emphasized that there may be an emerging pattern of paleoclimate change coincident with periods of solar activity and inactivity, but only on long timescales of multiple decades to millennia. Several speakers discussed the effects of particle events and cosmic-ray variability. These are all areas of exciting fundamental research; however, they have not yet led to conclusive evidence for significant related climate effects. The key problem of attribution of climate variability on the timescales of the Little Ice Age and the Maunder Minimum were directly addressed in several presentations. Several workshop participants remarked that the combination of solar, paleoclimatic, and climate modeling research has the potential to dramatically improve the credibility of these attribution studies.
Place in Pacific Islands Climate Education
NASA Astrophysics Data System (ADS)
Barros, C.; Koh, M. W.
2015-12-01
Understanding place, including both the environment and its people, is essential to understanding our climate, climate change, and its impacts. For us to develop a sense of our place, we need to engage in multiple ways of learning: observation, experimentation, and opportunities to apply new knowledge (Orr, 1992). This approach allows us to access different sources of knowledge and then create local solutions for local issues. It is especially powerful when we rely on experts and elders in our own community along with information from the global community.The Pacific islands Climate Education Partnership (PCEP) is a collaboration of partners—school systems, nongovernmental organizations, and government agencies—working to support learning and teaching about climate in the Pacific. Since 2009, PCEP partners have been working together to develop and implement classroom resources, curriculum standards, and teacher professional learning opportunities in which learners approach climate change and its impacts first through the lens of their own place. Such an approach to putting place central to teaching and learning about climate requires partnership and opportunities for learners to explore solutions for and with their communities. In this presentation, we will share the work unfolding in the Republic of the Marshall Islands (RMI) as one example of PCEP's approach to place-based climate education. Three weeklong K-12 teacher professional learning workshops took place during June-July 2015 in Majuro, RMI on learning gardens, climate science, and project-based learning. Each workshop was co-taught with local partners and supports educators in teaching climate-related curriculum standards through tasks that can foster sense of place through observation, experimentation, and application of new knowledge. Additionally, we will also share PCEP's next steps in place-based climate education, specifically around emerging conversations about the importance of highlighting stories of place to generate local solutions for local issues, as well as further global awareness about climate change impacts in the Pacific.
Managing Climate Change Refugia for Biodiversity ...
Climate change threatens to create fundamental shifts in in the distributions and abundances of species. Given projected losses, increased emphasis on management for ecosystem resilience to help buffer fish and wildlife populations against climate change is emerging. Such efforts stake a claim for an adaptive, anticipatory planning response to the climate change threat. To be effective, approaches will need to address critical uncertainties in both the physical basis for projected landscape changes, as well as the biological responses of organisms. Recent efforts define future potential climate refugia based on air temperatures and associated microclimatic changes. These efforts reflect the relatively strong conceptual foundation for linkages between regional climate change and local responses and thermal dynamics. Yet important questions remain. Drawing on case studies, we illustrate some key uncertainties in the responses of species and their habitats to altered hydro-climatic regimes currently not well addressed by physical or ecological models. These uncertainties need not delay anticipatory planning, but rather highlight the need for identification and communication of actions with high probabilities of success, and targeted research within an adaptive management framework.In this workshop, we will showcase the latest science on climate refugia and participants will interact through small group discussions, relevant examples, and facilitated dialogue to i
Experimental Design for CMIP6: Aerosol, Land Use, and Future Scenarios Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnott, James
2015-10-30
The Aspen Global Change Institute hosted a technical science workshop entitled, “Experimental design for CMIP6: Aerosol, Land Use, and Future Scenarios,” on August 3-8, 2014 in Aspen, CO. Claudia Tebaldi (NCAR) and Brian O’Neill (NCAR) served as co-chairs for the workshop. The Organizing committee also included Dave Lawrence (NCAR), Jean-Francois Lamarque (NCAR), George Hurtt (University of Maryland), & Detlef van Vuuren (PBL Netherlands Environmental Change). The meeting included the participation of 22 scientists representing many of the major climate modeling centers for a total of 110 participant days.
Trends in Middle East climate extreme indices from 1950 to 2003
NASA Astrophysics Data System (ADS)
Zhang, Xuebin; Aguilar, Enric; Sensoy, Serhat; Melkonyan, Hamlet; Tagiyeva, Umayra; Ahmed, Nader; Kutaladze, Nato; Rahimzadeh, Fatemeh; Taghipour, Afsaneh; Hantosh, T. H.; Albert, Pinhas; Semawi, Mohammed; Karam Ali, Mohammad; Said Al-Shabibi, Mansoor Halal; Al-Oulan, Zaid; Zatari, Taha; Al Dean Khelet, Imad; Hamoud, Saleh; Sagir, Ramazan; Demircan, Mesut; Eken, Mehmet; Adiguzel, Mustafa; Alexander, Lisa; Peterson, Thomas C.; Wallis, Trevor
2005-11-01
A climate change workshop for the Middle East brought together scientists and data for the region to produce the first area-wide analysis of climate extremes for the region. This paper reports trends in extreme precipitation and temperature indices that were computed during the workshop and additional indices data that became available after the workshop. Trends in these indices were examined for 1950-2003 at 52 stations covering 15 countries, including Armenia, Azerbaijan, Bahrain, Cyprus, Georgia, Iran, Iraq, Israel, Jordan, Kuwait, Oman, Qatar, Saudi Arabia, Syria, and Turkey. Results indicate that there have been statistically significant, spatially coherent trends in temperature indices that are related to temperature increases in the region. Significant, increasing trends have been found in the annual maximum of daily maximum and minimum temperature, the annual minimum of daily maximum and minimum temperature, the number of summer nights, and the number of days where daily temperature has exceeded its 90th percentile. Significant negative trends have been found in the number of days when daily temperature is below its 10th percentile and daily temperature range. Trends in precipitation indices, including the number of days with precipitation, the average precipitation intensity, and maximum daily precipitation events, are weak in general and do not show spatial coherence. The workshop attendees have generously made the indices data available for the international research community.
NASA Astrophysics Data System (ADS)
Suntharalingam, Parvadha; Gehlen, Marion; Hopkins, Frances; Duce, Robert; Jickells, Tim; Gesamp WG38 Workshop, Participants
2017-04-01
Most investigations of the impact of ocean acidification (OA) have focused on changes in oceanic uptake of anthropogenic CO2, the resulting shifts in carbonate chemical equilibria, and the consequences for marine calcifying organisms. Little attention has been paid to the direct impacts of OA on the ocean sources of a range of other gaseous and aerosol species that are influential in regulating radiative forcing, atmospheric oxidising capacity and atmospheric chemistry. The oceanic processes governing emissions of these species are frequently sensitive to the changes in pH and ocean pCO2 accompanying ocean acidification. Such processes include, for example, metabolic rates of microbial activity, levels of surface primary production, ecosystem composition, and photo-chemical and microbially mediated production/loss pathways for individual species. The direct and indirect influences of these factors on oceanic fluxes of non-CO2 trace-gases and aerosols, and the subsequent feedbacks to climate remain highly uncertain. To address these issues UN/GESAMP Working Group 38, The Atmospheric Input of Chemicals to the Ocean, convened a workshop on this topic at the University of East Anglia in February, 2017. The goals of this workshop are to review and synthesize the current science on the direct impacts of ocean acidification on marine emissions to the atmosphere of key species important for climate, and atmospheric chemistry; and to identify the primary needs for new research to improve process understanding and to quantify the impact of ocean acidification on these marine fluxes (i.e., provide recommendations on the specific laboratory process studies, field measurements and model analyses needed to support targeted research activities on this topic). The results, conclusions, and recommendations of this workshop will be presented.
NASA Astrophysics Data System (ADS)
Addor, Nans; Ewen, Tracy; Johnson, Leigh; Ćöltekin, Arzu; Derungs, Curdin; Muccione, Veruska
2015-08-01
In the context of climate change, both climate researchers and decision makers deal with uncertainties, but these uncertainties differ in fundamental ways. They stem from different sources, cover different temporal and spatial scales, might or might not be reducible or quantifiable, and are generally difficult to characterize and communicate. Hence, a mutual understanding between current and future climate researchers and decision makers must evolve for adaptation strategies and planning to progress. Iterative two-way dialogue can help to improve the decision making process by bridging current top-down and bottom-up approaches. One way to cultivate such interactions is by providing venues for these actors to interact and exchange on the uncertainties they face. We use a workshop-seminar series involving academic researchers, students, and decision makers as an opportunity to put this idea into practice and evaluate it. Seminars, case studies, and a round table allowed participants to reflect upon and experiment with uncertainties. An opinion survey conducted before and after the workshop-seminar series allowed us to qualitatively evaluate its influence on the participants. We find that the event stimulated new perspectives on research products and communication processes, and we suggest that similar events may ultimately contribute to the midterm goal of improving support for decision making in a changing climate. Therefore, we recommend integrating bridging events into university curriculum to foster interdisciplinary and iterative dialogue among researchers, decision makers, and students.
Global climate change and international security.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karas, Thomas H.
2003-11-01
This report originates in a workshop held at Sandia National Laboratories, bringing together a variety of external experts with Sandia personnel to discuss 'The Implications of Global Climate Change for International Security.' Whatever the future of the current global warming trend, paleoclimatic history shows that climate change happens, sometimes abruptly. These changes can severely impact human water supplies, agriculture, migration patterns, infrastructure, financial flows, disease prevalence, and economic activity. Those impacts, in turn, can lead to national or international security problems stemming from aggravation of internal conflicts, increased poverty and inequality, exacerbation of existing international conflicts, diversion of national andmore » international resources from international security programs (military or non-military), contribution to global economic decline or collapse, or international realignments based on climate change mitigation policies. After reviewing these potential problems, the report concludes with a brief listing of some research, technology, and policy measures that might mitigate them.« less
Global Environmental Change: Modifying Human Contributions Through Education
NASA Astrophysics Data System (ADS)
Carter, Lynne M.
1998-12-01
The 1995 Intergovernmental Panel on Climate Change (IPCC, 1996) Science report concludes that evidence now available "points toward a discernible human influence on global climate" (p. 439). Reductions in emissions will require changes in human behavior. This study assessed whether gains in global environmental change knowledge would lead to changes in human behaviors that could be deemed environmentally responsible. The study assessed the impact on participant behavior of a two-and-one-half day National Informal Educators Workshop and Videoconference held November 14-16, 1994. The workshops were located in seven down-link sites around the continental U.S. and Hawaii. The program utilized a variety of pedagogical techniques during five hours of satellite programming with national expertise on global change topics (natural variability, greenhouse effect, ozone depletion, ecosystem response, and population and resource distribution) and applications of that information with local experts in regional workshops. Participants implemented many personal and professional behavior changes after participation in this program. Six behavior change scales were created from assessment of survey responses (four coefficient alphas were above .7, one was .68, and one was .58). Personal behavior changes grouped into three categories: Use of Fewer Resources (acts of everyday life generally under volitional control), Purchasing Choices/Options (less frequent acts, not under total volitional control, with significant environmental effect over the lifetime of the decision, e.g., an automobile) and Increased Awareness and Discussion (indicating changes in "habits of mind"). The professional behavior changes also grouped into three categories: Curriculum Development (developing/revising curricula including new knowledge); Networking (with colleagues from the program); and Office Procedures (reflecting environmentally responsible behavior). The statistically significant behavior changes implemented correspond with increases in content knowledge, confidence, a developing national network, regional applications, and satisfaction with the program.
Data, age uncertainties and ocean δ18O under the spotlight for Ocean2k Phase 2
McGregor, Helen V.; Martrat, Belen; Evans, Michael N.; Thompson, Diane; Reynolds, D.; Addison, Jason A.
2016-01-01
The oceans make up 71% of the Earth’s surface area and are a major component of the global climate system. They are the world’s primary heat reservoir, and knowledge of the global ocean response to past and present radiative forcing is important for understanding climate change. PAGES’ Ocean2k working group aims to place marine climate of the past century within the context of the previous 2000 years (2k). Phase 1 (2011-2015) focused on constraining the forcing mechanisms most consistent with reconstructed sea surface temperature (SST) over the 2k interval (McGregor et al. 2015; Tierney et al. 2015). The 1st Ocean2k workshop assisted in the transition to Ocean2k Phase 2 (2015-2017), with the workshop goal to develop, coordinate and significantly advance community-identified and -driven activities.
NASA Astrophysics Data System (ADS)
Buxbaum, T. M.; Trainor, S.; Warner, N.; Timm, K.
2015-12-01
Climate change is impacting ecological systems, coastal processes, and environmental disturbance regimes in Alaska, leading to a pressing need to communicate reliable scientific information about climate change, its impacts, and future projections for land and resource management and decision-making. However, little research has been done to dissect and analyze the process of making the results of scientific inquiry directly relevant and usable in resource management. Based within the Science Application division of the US Fish and Wildlife Service, Landscape Conservation Cooperatives (LCCs) are regional conservation science partnerships that provide scientific and technical expertise needed to support conservation planning at landscape scales and promote collaboration in defining shared conservation goals. The five LCCs with jurisdiction in Alaska recently held a training workshop with the goals of advancing staff understanding and skills related to science communication and translation. We report here preliminary results from analysis of workshop discussions and pre- and post- workshop interviews and surveys revealing expectations, assumptions, and mental models regarding science communication and the process of conducting use-inspired science. Generalizable conclusions can assist scientists and boundary organizations bridge knowledge gaps between science and resource management.
NASA Astrophysics Data System (ADS)
Soreghan, G. S.; Cohen, A. S.
2013-11-01
A US National Science Foundation-funded workshop occurred 17-19 May 2013 at the University of Oklahoma to stimulate research using continental scientific drilling to explore earth's sedimentary, paleobiological and biogeochemical record. Participants submitted 3-page "pre-proposals" to highlight projects that envisioned using drill-core studies to address scientific issues in paleobiology, paleoclimatology, stratigraphy and biogeochemistry, and to identify locations where key questions can best be addressed. The workshop was also intended to encourage US scientists to take advantage of the exceptional capacity of unweathered, continuous core records to answer important questions in the history of earth's sedimentary, biogeochemical and paleobiologic systems. Introductory talks on drilling and coring methods, plus best practices in core handling and curation, opened the workshop to enable all to understand the opportunities and challenges presented by scientific drilling. Participants worked in thematic breakout sessions to consider questions to be addressed using drill cores related to glacial-interglacial and icehouse-greenhouse transitions, records of evolutionary events and extinctions, records of major biogeochemical events in the oceans, reorganization of earth's atmosphere, Lagerstätte and exceptional fossil biota, records of vegetation-landscape change, and special sampling requirements, contamination, and coring tool concerns for paleobiology, geochemistry, geochronology, and stratigraphy-sedimentology studies. Closing discussions at the workshop focused on the role drilling can play in studying overarching science questions about the evolution of the earth system. The key theme, holding the most impact in terms of societal relevance, is understanding how climate transitions have driven biotic change, and the role of pristine, stratigraphically continuous cores in advancing our understanding of this linkage. Scientific drilling, and particularly drilling applied to continental targets, provides unique opportunities to obtain continuous and unaltered material for increasingly sophisticated analyses, tapping the entire geologic record (extending through the Archean), and probing the full dynamic range of climate change and its impact on biotic history.
Health Care Facilities Resilient to Climate Change Impacts
Paterson, Jaclyn; Berry, Peter; Ebi, Kristie; Varangu, Linda
2014-01-01
Climate change will increase the frequency and magnitude of extreme weather events and create risks that will impact health care facilities. Health care facilities will need to assess climate change risks and adopt adaptive management strategies to be resilient, but guidance tools are lacking. In this study, a toolkit was developed for health care facility officials to assess the resiliency of their facility to climate change impacts. A mixed methods approach was used to develop climate change resiliency indicators to inform the development of the toolkit. The toolkit consists of a checklist for officials who work in areas of emergency management, facilities management and health care services and supply chain management, a facilitator’s guide for administering the checklist, and a resource guidebook to inform adaptation. Six health care facilities representing three provinces in Canada piloted the checklist. Senior level officials with expertise in the aforementioned areas were invited to review the checklist, provide feedback during qualitative interviews and review the final toolkit at a stakeholder workshop. The toolkit helps health care facility officials identify gaps in climate change preparedness, direct allocation of adaptation resources and inform strategic planning to increase resiliency to climate change. PMID:25522050
NASA Astrophysics Data System (ADS)
Rooney-Varga, J. N.; Brisk, A. A.; Grogan, M.; Ledley, T. S.
2012-12-01
Through the Climate Education in an Age of Media (CAM) Project (http://cleanet.org/cced_media/), we have developed approaches to integrate media production by students into climate change education in ways that are engaging, empowering, and can be readily adopted in a wide range of instructional environments. These approaches can be used to overcome many of the challenges that climate change education presents and provide a means to evoke experiential, affective, and social learning pathways. Video production combines many key twenty-first century literacy skills, including content research, writing, an understanding of the power of images and sounds, the ability to use that power, and the ability to manipulate, transform, and distribute digital media. Through collaboration, reflection, and visual expression of concepts, video production facilitates a deeper understanding of material and, potentially, shifts in mental models about climate change. Equally importantly, it provides a means to bridge formal and informal learning by enabling students to educate those beyond the classroom. We have piloted our approach in two intensive summer programs (2011 and 2012) for high school students, during which students learned about climate change science content in lessons that were paired with the production of short media pieces including animations, public service announcements, person-on-the-street interviews, mock trailers, mock news programs, and music videos. Two high school teachers were embedded in the program during the second year, providing feedback and assessment of the feasibility, accessibility, and utility of the approach. The programs culminated with students presenting and discussing their work at public screening events. The media lessons and climate change science content examples used in these programs form the backbone of a toolkit and professional development workshops for middle and high school teachers, in which teachers learn how to incorporate student media-making into their science classes. Here, we share the toolkit, describe the scope and structure of the teacher professional development workshops, and share several of the media products created by YEP participants. The confluence of falling financial and technological barriers to producing media; the need for innovative approaches to meet climate change education challenges; and the potential for media literacy to empower young people to add their voice to the societal discourse about climate change science creates an ideal opportunity for integration of science and media production in education.
Regional climate service in Southern Germany
NASA Astrophysics Data System (ADS)
Schipper, Janus; Hackenbruch, Julia
2013-04-01
Climate change challenges science, politics, business and society at the international, national and regional level. The South German Climate Office at the Karlsruhe Institute of Technology (KIT) is a contact for the structuring and dissemination of information on climate and climate change in the South German region. It provides scientifically based and user-oriented climate information. Thereby it builds a bridge between the climate sciences and society and provides scientific information on climate change in an understandable way. The expertise of KIT, in which several institutions operate on fundamental and applied climate research, and of partner institutions is the basis for the work in the climate office. The regional focus is on the south of Germany. Thematic focuses are e.g. regional climate modeling, trends in extreme weather events such as heavy rain and hail event, and issues for energy and water management. The South German Climate Office is one of four Regional Helmholtz Climate Offices, of which each has a regional and thematic focus. The users of the Climate Office can be summarized into three categories. First, there is the general public. This category consists mainly of non-professionals. Here, special attention is on an understandable translation of climate information. Attention is paid to application-related aspects, because each individual is affected in a different way by climate change. Typical examples of this category are school groups, citizens and the media. The second category consists of experts of other disciplines. Unlike the first category they are mainly interested in the exchange of results and data. It is important to the climate office to provide support for the use of climatological results. Typical representatives of this category are ministries, state offices, and companies. In the third and final category are scientists. In addition to the climatologists, this category also holds representatives from other scientific disciplines, which are directly or indirectly cope with climate change. This category encompasses for example hydrologists (estimation of future flood events) and engineers (housing in a changing climate). For these three categories, different approaches are needed. First, the South German Climate Office reaches a wide audience through regular appearance in the media (newspapers, radio, and television). Because for such appearances the information content needs to be simplified quite strongly, experts will be better addressed through workshops and conferences. For example, the Climate Office has carried out a few events on "Climate and Constructions' in recent years. Several collaborations that led to project work between different scientific disciplines resulted from these events. The experience at the South German Climate Office has shown that the demand for information about climate change and its consequences is very diverse. Therefore, part of the activities is to carry out a categorized view on the requests in order to allow such a user-oriented answering. An additional role of the climate office is to enhance the general visibility of climatological results by workshops and conferences.
Climate Change Community Outreach Initiative (CCCOI)--A Gulf of Mexico Education Partnership
NASA Astrophysics Data System (ADS)
Walker, S. H.; Stone, D.; Schultz, T.; LeBlanc, T.; Miller-Way, T.; Estrada, P.
2012-12-01
This five-year, Gulf of Mexico regional collaborative is funded by the National Oceanic and Atmospheric Administration (NOAA)-Office of Education and represents a successful grant submitted by the FL Aquarium as a member of the Association of Zoos and Aquariums (AZA). This climate change effort focuses on enhanced content knowledge and the manner in which personal actions and behaviors contribute to sustainability and stewardship. Diverse audiences—represented by visitors at the informal centers listed above—have been and are involved in the following activities: social networking via responses to climate change surveys; an "ocean and climate change defender" computer game, specifically designed for this project; an average of 10 annual outreach events implemented by these facilities at community festivals; climate change lectures provided to family audiences; and professional development workshops for informal and formal educators. This presentation will provide opportunities and challenges encountered during the first two years of implementation. This regional effort is also aligned with both the Ocean Literacy: Essential Principles and the Climate Literacy: Essential Principles. Additional partners include: Normandeau Associates, Conservation Enterprises, Unlimited, and Mindclay Creative.
NASA Astrophysics Data System (ADS)
Valentina, Gallina; Torresan, Silvia; Giannini, Valentina; Rizzi, Jonathan; Zabeo, Alex; Gualdi, Silvio; Bellucci, Alessio; Giorgi, Filippo; Critto, Andrea; Marcomini, Antonio
2013-04-01
At the international level, the interest for climate services is rising due to the social and economic benefits that different stakeholders can achieve to manage climate risks and take advantage of the opportunities associated with climate change impacts. However, there is a significant gap of tools aimed at providing information about risks and impacts induced by climate change and allowing non-expert stakeholders to use both climate-model and climate-impact data. Within the CLIM-RUN project (FP7), the case study of the North Adriatic Sea is aimed at analysing the need of climate information and the effectiveness of climate services for the integrated assessment of climate change impacts in coastal zones of the North Adriatic Sea at the regional to local scale. A participative approach was developed and applied to identify relevant stakeholders which have a mandate for coastal zone management and to interact with them in order to elicit their climate information needs. Specifically, the participative approach was carried out by means of two local workshops and trough the administration of a questionnaire related to climate information and services. The results of the process allowed identifying three major themes of interest for local stakeholders (i.e. hydro-climatic regime, coastal and marine environment, agriculture) and their preferences concerning key climate variables (e.g. extreme events, sea-level, wave height), mid-term temporal projections (i.e. for the next 30-40 years) and medium-high spatial resolution (i.e. from 1 to 50 km). Furthermore, the workshops highlighted stakeholder concern about several climate-related impacts (e.g. sea-level rise, storm surge, droughts) and vulnerable receptors (e.g. beaches, wetlands, agricultural areas) to be considered in vulnerability and risk assessment studies for the North Adriatic coastal zones. This information was used by climate and environmental risk experts in order to develop targeted climate information and services (e.g. climate projections and maps) for coastal stakeholders. The final results include climate products developed by climate experts through the analysis of climate observations and scenarios (e.g. standard indices of extreme precipitations and droughts, consecutive days of heavy rain, mean sea level pressure) and risk-based maps supplied by environmental risk experts to facilitate the definition of adaptation strategies (e.g. sea-level rise/storm surge risk maps with the surface of receptor lost; drought risk maps with the percentage of suffering agricultural areas). The preliminary climate products and the results of North Adriatic case study will be here presented and discussed.
Shaping the Public Dialogue on Climate Change
NASA Astrophysics Data System (ADS)
Spitzer, W.; Anderson, J. C.
2012-12-01
In order to broaden the public dialogue about climate change, climate scientists need to leverage the potential of informal science education and recent advances in social and cognitive science. In the US, more than 1,500 informal science venues (science centers, museums, aquariums, zoos, nature centers, national parks, etc.) are visited annually by 61% of the population. Extensive research shows that these visitors are receptive to learning about climate change and trust these institutions as reliable sources. Given that we spend less than 5% of our lifetime in a classroom, and only a fraction of that is focused on science, informal science venues will continue to play a critical role in shaping public understanding of environmental issues in the years ahead. Public understanding of climate change continues to lag far behind the scientific consensus not merely because the public lacks information, but because there is in fact too much complex and contradictory information available. Fortunately, we can now (1) build on careful empirical cognitive and social science research to understand what people already value, believe, and understand; and then (2) design and test strategies for translating complex science so that people can examine evidence, make well-informed inferences, and embrace science-based solutions. The New England Aquarium is leading a national effort to enable informal science education institutions to effectively communicate the impacts of climate change and ocean acidification on marine ecosystems. This NSF-funded partnership, the National Network for Ocean and Climate Change Interpretation (NNOCCI), involves the Association of Zoos and Aquariums, FrameWorks Institute, Woods Hole Oceanographic Institution, Monterey Bay Aquarium, and National Aquarium, with evaluation conducted by the New Knowledge Organization, Pennsylvania State University, and Ohio State University. We believe that skilled interpreters can serve as "communication strategists" by engaging in conversations with visitors based on audience research, role playing, and reflective feedback on their practice. From our NSF Phase I CCEP project, we have learned that in-depth training can help interpreters increase their confidence, self-efficacy, and a sense of hope in their ability to effectively communicate about climate change. This sense of hope and optimism has a powerful "ripple effect" on colleagues at their own institution, as well as others in their social and professional networks. In the next phase of our work, we hope to expand our reach to provide professional development for interpretive staff from additional institutions, in collaboration with climate scientists and cognitive/social scientists. Regional leaders will participate in recruiting and in planning and leading additional workshops. For youth interpreters, we plan to develop and implement special training methods. For scientists, we will offer workshops on strategic framing and communication. We will conduct and incorporate new social science research into a widely disseminated e-Workshop. For the growing network of participants, we will facilitate ongoing dialogue and an online community. Ultimately, we envision informal science interpreters as "vectors" for effective science communication, ocean and climate scientists with enhanced communication skills, and increased public demand for explanation and dialogue about global issues.
Assessing Impacts of Climate Change on Food Security Worldwide
NASA Technical Reports Server (NTRS)
Rosenzweig, Cynthia E.; Antle, John; Elliott, Joshua
2015-01-01
The combination of a warming Earth and an increasing population will likely strain the world's food systems in the coming decades. Experts involved with the Agricultural Model Intercomparison and Improvement Project (AgMIP) focus on quantifying the changes through time. AgMIP, a program begun in 2010, involves about 800 climate scientists, economists, nutritionists, information technology specialists, and crop and livestock experts. In mid-September 2015, the Aspen Global Change Institute convened an AgMIP workshop to draft plans and protocols for assessing global- and regional-scale modeling of crops, livestock, economics, and nutrition across major agricultural regions worldwide. The goal of this Coordinated Global and Regional Integrated Assessments (CGRA) project is to characterize climate effects on large- and small-scale farming systems.
Assessing the response of the Gulf Coast to global change
NASA Astrophysics Data System (ADS)
Anderson, John B.; Törnqvist, Torbjörn E.; Day, John
2012-11-01
Gulf Coastal Science Consortium Workshop;Houston, Texas, 28-29 June 2012 The newly formed Gulf Coastal Science Consortium held its first workshop at Rice University. The creation of the consortium was prompted by two recent incidents. One incident involved censorship of a book chapter on Galveston Bay by the Texas Commission on Environmental Quality that omitted all references to climate change and accelerated sea-level rise. The other incident was the adoption of legislation in North Carolina that requires planners and developers to assume a linear sea-level rise projection, despite compelling scientific evidence for a multifold increase in sea-level rise in historical time.
Exploring geophysical processes influencing U.S. West Coast precipitation and water supply
Ralph, F.M.; Prather, K.; Cayan, D.
2011-01-01
CalWater Science Workshop; La Jolla, California, 8-10 June 2011 CalWater is a multiyear, multiagency research project with two primary research themes: the effects of changing climate on atmospheric rivers (ARs) and associated extreme events, and the potential role of aerosols in modulating cloud properties and precipitation, especially regarding orographic precipitation and water supply. Advances made in CalWater have implications for both water supply and flood control in California and other West Coast areas, both in the near term and in a changing climate.
NASA Astrophysics Data System (ADS)
Davis, A.; Morris, J.; Paglierani, R.
2009-12-01
National Parks, Hatcheries, Refuges, and other protected lands provide ideal settings for communicating the immediate and obvious effects of climate change, from rapidly melting glaciers, increased intensity and length of fire seasons, to flooding of archeological and historical treasures. Our nation's protected areas demonstrate clearly that climate change is happening now, and the impacts are affecting us all. Highlights of interpretive, educational and informational products presented in these sites, and developed through the Earth to Sky (ETS) partnership are described. The visiting public in our nation's parks, refuges, cultural sites and other protected lands wants to learn more about climate change, and is asking questions—often, complex questions. A broad array of educational programs and media are delivered in these unique settings, to diverse audiences. To be good "honest brokers" of the best information, staff needs access to accurate, up-to-date data, descriptions, analysis, and imagery that make the issues understandable. Pairing real world experiences of climate effects such as glacial retreat or beetle infestations, with NASA’s unique planetary perspective provides opportunities to link local, regional, and global effects in the minds and hearts of the public and students. The perspective afforded by such linkages can create powerful and long lasting impressions, and will likely provoke further learning about this topic. About Earth to Sky Earth to Sky is a partnership between NASA's Space and Earth Science disciplines, the US Fish and Wildlife Service (USFWS), and the National Park Service (NPS). The partnership actively fosters collaborative work between the science and interpretation/education communities of NPS, USFWS, and NASA, centering around a series of professional development workshops aimed at informal educators. The workshops weave NASA content with NPS and USFWS interpretation and environmental education methodology, and use best practices in professional development. The partnership is funded by NASA, with in-kind contributions from NPS and USFWS. Earth to Sky III: Interpreting Climate Change, held in Jan. 2009, featured over 25 NASA scientists and education specialists who presented to 30 NPS rangers and several attendees from U.S. Fish and Wildlife Service (USFWS), and other informal education groups. Participant's action plans include Junior Ranger programs; pod casts; a public outreach campaign at one of our nation’s leading zoos; creation of talking points for staff at a variety of sites; use of the Landsat satellite's 35+ year record of changes in western parks for public programs, a site bulletin and a podcast; workshops for teachers; new exhibits in visitor centers; curriculum-based educational programming; fact sheets; training for USFWS regional staff; and of course standard ranger campfire and slide programs. Earth to Sky IV: Building Climate Literacy for Informal Educators will be held in Feb. 2010. A pilot course on Interpreting Climate Change is under development, and will be offered in September of 2011 at the USFWS’ National Conservation Training Center in Shepherdstown, WV.
NASA Astrophysics Data System (ADS)
Kunkel, K.; Dissen, J.; Easterling, D. R.; Kulkarni, A.; Akhtar, F. H.; Hayhoe, K.; Stoner, A. M. K.; Swaminathan, R.; Thrasher, B. L.
2017-12-01
s part of the Department of State U.S.-India Partnership for Climate Resilience (PCR), scientists from NOAA NCEI, CICS-NC, Texas Tech University (TTU), Stanford University (SU), and the Indian Institute of Tropical Meteorology (IITM) held a workshop at IITM in Pune, India during 7-9 March 2017 on the development, techniques and applications of downscaled climate projections. Workshop participants from TTU, SU, and IITM presented state-of-the-art climate downscaling techniques using the ARRM method, NASA NEX climate products, CORDEX-South Asia and analysis tools for resilience planning and sustainable development. PCR collaborators in attendance included Indian practitioners, researchers and other NGO including the WRI Partnership for Resilience and Preparedness (PREP), The Energy and Resources Institute (TERI), and NIH. The scientific techniques were provided to workshop participants in a software package written in R by TTU scientists and several sessions were devoted to hands-on experience with the software package. The workshop further examined case studies on the use of downscaled climate data for decision making in a range of sectors, including human health, agriculture, and water resources management as well as to inform the development of the India State Action Plans. This talk will discuss key outcomes including information needs for downscaling climate projections, importance of QA/QC of the data, key findings from select case studies, and the importance of collaborations and partnerships to apply downscaling projections to help inform the development of the India State Action Plans.
Nuccio, Vito F.; D'Erchia, Frank D.; Parady, K.(compiler); Mellinger, A.
2010-01-01
The U.S. Geological Survey (USGS) hosted the second Wyoming Landscape Conservation Initiative (WLCI) Science and Management Workshop at the University of Wyoming Conference Center and Hilton Garden Inn on May 12, 13, and 14, 2009, in Laramie, Wyo. The workshop focused on six topics seen as relevant to ongoing WLCI science and management activities: mapping and modeling resources for decisionmaking; data information and management; fish and wildlife research; changing landscapes; monitoring; and reclamation and offsite mitigation. Panelists gave presentations on ongoing research in these six areas during plenary sessions followed by audience discussions. Three breakout groups focused on discussing wildlife, reclamation, and monitoring. Throughout the plenary sessions, audience discussions, and breakout groups, several needs were repeatedly emphasized by panelists and workshop participants: developing a conservation plan and identifying priority areas and species for conservation actions; gaining a deeper understanding of sagebrush ecology; identifying thresholds for wildlife that can be used to create an 'early warning system' for managers; continuing to collect basic data across the landscape; facilitating even greater communication and partnership across agencies and between scientists and land managers; and engaging proactively in understanding new changes on the landscape such as wind energy development and climate change. Detailed proceedings from the workshop are captured and summarized in this report.
A case study of teaching social responsibility to doctoral students in the climate sciences.
Børsen, Tom; Antia, Avan N; Glessmer, Mirjam Sophia
2013-12-01
The need to make young scientists aware of their social responsibilities is widely acknowledged, although the question of how to actually do it has so far gained limited attention. A 2-day workshop entitled "Prepared for social responsibility?" attended by doctoral students from multiple disciplines in climate science, was targeted at the perceived needs of the participants and employed a format that took them through three stages of ethics education: sensitization, information and empowerment. The workshop aimed at preparing doctoral students to manage ethical dilemmas that emerge when climate science meets the public sphere (e.g., to identify and balance legitimate perspectives on particular types of geo-engineering), and is an example of how to include social responsibility in doctoral education. The paper describes the workshop from the three different perspectives of the authors: the course teacher, the head of the graduate school, and a graduate student. The elements that contributed to the success of the workshop, and thus make it an example to follow, are (1) the involvement of participating students, (2) the introduction of external expertise and role models in climate science, and (3) a workshop design that focused on ethical analyses of examples from the climate sciences.
Climate research priorities for policy-makers, practitioners, and scientists in Georgia, USA.
Rudd, Murray A; Moore, Althea F P; Rochberg, Daniel; Bianchi-Fossati, Lisa; Brown, Marilyn A; D'Onofrio, David; Furman, Carrie A; Garcia, Jairo; Jordan, Ben; Kline, Jennifer; Risse, L Mark; Yager, Patricia L; Abbinett, Jessica; Alber, Merryl; Bell, Jesse E; Bhedwar, Cyrus; Cobb, Kim M; Cohen, Juliet; Cox, Matt; Dormer, Myriam; Dunkley, Nyasha; Farley, Heather; Gambill, Jill; Goldstein, Mindy; Harris, Garry; Hopkinson, Melissa; James, Jean-Ann; Kidd, Susan; Knox, Pam; Liu, Yang; Matisoff, Daniel C; Meyer, Michael D; Mitchem, Jamie D; Moore, Katherine; Ono, Aspen J; Philipsborn, Jon; Sendall, Kerrie M; Shafiei, Fatemeh; Shepherd, Marshall; Teebken, Julia; Worley, Ashby N
2018-05-23
Climate change has far-reaching effects on human and ecological systems, requiring collaboration across sectors and disciplines to determine effective responses. To inform regional responses to climate change, decision-makers need credible and relevant information representing a wide swath of knowledge and perspectives. The southeastern U. S. State of Georgia is a valuable focal area for study because it contains multiple ecological zones that vary greatly in land use and economic activities, and it is vulnerable to diverse climate change impacts. We identified 40 important research questions that, if answered, could lay the groundwork for effective, science-based climate action in Georgia. Top research priorities were identified through a broad solicitation of candidate research questions (180 were received). A group of experts across sectors and disciplines gathered for a workshop to categorize, prioritize, and filter the candidate questions, identify missing topics, and rewrite questions. Participants then collectively chose the 40 most important questions. This cross-sectoral effort ensured the inclusion of a diversity of topics and questions (e.g., coastal hazards, agricultural production, ecosystem functioning, urban infrastructure, and human health) likely to be important to Georgia policy-makers, practitioners, and scientists. Several cross-cutting themes emerged, including the need for long-term data collection and consideration of at-risk Georgia citizens and communities. Workshop participants defined effective responses as those that take economic cost, environmental impacts, and social justice into consideration. Our research highlights the importance of collaborators across disciplines and sectors, and discussing challenges and opportunities that will require transdisciplinary solutions.
NASA Astrophysics Data System (ADS)
Odell, M. R.; Charlevoix, D. J.; Kennedy, T.
2011-12-01
The GLOBE Program is an international science and education focused on connecting scientists, teachers and students around relevant, local environmental issues. GLOBE's focus during the next two years in on climate, global change and understanding climate from a scientific perspective. The GLOBE Student Climate Research Campaign (SCRFC) will engage youth from around the world in understanding and researching climate through investigations of local climate challenges. GLOBE teachers are trained in implementation of inquiry in the classroom and the use of scientific data collection protocols to develop inquiry and research projects of the Earth System. In preparation for the SCRC, GLOBE teachers will need additional training in climate science, global change and communicating climate science in the classroom. GLOBE's reach to 111 countries around the world requires development of scalable models for training teachers. In June GLOBE held the first teacher professional development workshop (Learning to Research Summer Institute) in a hybrid format with two-thirds of the teachers participating face-to-face and the remaining teachers participating virtually using Adobe Connect. The week long workshop prepared teachers to integrate climate science inquiry and research projects in the classrooms in the 2011-12 academic year. GLOBE scientists and other climate science experts will work with teachers and their students throughout the year in designing and executing a climate science research project. Final projects and research results will be presented in May 2012 through a virtual conference. This presentation will provide the framework for hybrid teacher professional development in climate science research and inquiry projects as well as summarize the findings from this inaugural session. The GLOBE Program office, headquartered in Boulder, is funded through cooperative agreements with NASA and NOAA with additional support from NSF and the U.S. Department of State. GLOBE is supported in countries around the world through bi-lateral agreements between U.S. Department of state and national governments.
NASA Astrophysics Data System (ADS)
Harjanne, Atte; Haavisto, Riina; Tuomenvirta, Heikki; Gregow, Hilppa
2017-10-01
Weather, climate and climate change can cause significant risks to businesses and public administration. However, understanding these processes can also create opportunities. Information can help to manage these risks and opportunities, but in order to do so, it must be in line with how risk management and decision making works. To better understand how climate risks and opportunities are reflected in different organizational processes and what types of information is needed and used, we conducted a study on the perceptions and management of weather and climate risks in Finnish organizations and on their use of weather and climate information. In addition, we collected feedback on how the existing climate information tools should be developed. Data on climate risk management was collected in an online survey and in one full-day workshop. The survey was aimed to the Finnish public and private organizations who use weather and climate data and altogether 118 responses were collected. The workshop consisted of two parts: weather and climate risk management processes in general and the development of the current information tools to further address user needs.
We found that climate risk management in organizations is quite diverse and often de-centralized and that external experts are considered the most useful sources of information. Consequently, users emphasize the need for networks of expertise and sector-specific information tools. Creating such services requires input and information sharing from the user side as well. Better temporal and spatial accuracy is naturally asked for, but users also stressed the need for transparency when it comes to communicating uncertainties, and the availability and up-to-datedness of information. Our results illustrate that weather and climate risks compete and blend in with other risks and changes perceived by the organizations and supporting information is sought from different types of sources. Thus the design and evaluation of climate services should take into account the context of existing and developing processes in organizational risk management.
2016 International Land Model Benchmarking (ILAMB) Workshop Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, Forrest M.; Koven, Charles D.; Keppel-Aleks, Gretchen
As Earth system models become increasingly complex, there is a growing need for comprehensive and multi-faceted evaluation of model projections. To advance understanding of biogeochemical processes and their interactions with hydrology and climate under conditions of increasing atmospheric carbon dioxide, new analysis methods are required that use observations to constrain model predictions, inform model development, and identify needed measurements and field experiments. Better representations of biogeochemistry–climate feedbacks and ecosystem processes in these models are essential for reducing uncertainties associated with projections of climate change during the remainder of the 21st century.
NASA Astrophysics Data System (ADS)
Hatheway, B.
2013-12-01
After three years of running a climate science professional development program for secondary teachers, project staff from UCAR and UNC-Greeley have learned the benefits of ample time for interaction between teachers and scientists, informal educators, and their peers. This program gave us the opportunity to develop and refine strategies that leverage teacher-scientist partnerships to improve teachers' ability to teach climate change. First, we prepared both teachers and scientists to work together. Each cohort of teachers took an online course that emphasized climate change content and pedagogy and built a learning community. Scientists were recruited based on their enthusiasm for working with teachers and coached to present materials in an accessible way. Second, the teachers and scientists collaborated during a four-week summer workshop at UCAR. During the workshop, teachers met with a wide range of climate and atmospheric scientists to learn about research, selected a specific scientist's research they would like to adapt for their classrooms, and developed and refined activities based on that research. The program includes strong mentoring from a team of science educators, structured peer feedback, and ample opportunity to interact with the scientists by asking questions, accessing data, or checking resources. This new model of professional development fosters teacher-scientist partnerships. By the end of the four-week workshop, the teachers have built customized activities based on the cutting-edge research being conducted by participating scientists, developed plans to implement and assess those activities, and further strengthened the learning-community that they will rely on for support during the following academic year. This session will provide information about how this model, which differs from the more common model of engaging teachers in research under the direction of scientists, was successful and accomplished positive outcomes for both the teachers and scientists who participated. Lessons learned that will improve this model will also be discussed.
NASA Astrophysics Data System (ADS)
Goodess, C. M.
2012-04-01
The CLIM-RUN case studies provide a real-world context for bringing together experts on the demand and supply side of climate services. They are essential to the CLIM-RUN objective of using iterative and bottom-up (i.e., stakeholder led) approaches for optimizing the two-way information transfer between climate experts and stakeholders. The region of interest for CLIM-RUN is the Mediterranean, which is a recognised climate change hotspot (i.e., a region particularly sensitive and vulnerable to global warming) and which does not currently have developed climate service networks such as exist in a number of Central and Northern European countries. The case studies focus on the energy and tourism sectors, but also include a cross-cutting study on wild fires (an issue of increasing concern in the Mediterranean) as well as a cross-sectorial integrated case study for the Venice lagoon. They span coastal (e.g., Tunisia and Croatia), island (e.g., Cyprus) and mountain (e.g., Savoie) environments, the eastern (e.g., Greece) to western (e.g., Spain, Morocco) Mediterranean regions, and regional to local foci. Stakeholder involvement has been critical from the start of the project in March 2011, with a series of targeted workshops helping to define the framework for each case study. Two specific workshop objectives were to (i) better understand who are the climate services stakeholders and (ii) what they need/want from climate services (both in terms of data products and broader knowledge). Many of the workshops were held in local languages to maximise stakeholder participation, with expert knowledge provided by the CLIM-RUN climate and stakeholder expert teams (the CET and SET). Following the workshops, CET members are 'translating' the user needs into specific requirements from climate observations and models and identifying areas where additional modelling and analysis are required. As part of the central co-ordination of the case studies, a perception and data needs questionnaire was produced to solicit information about stakeholder institutions and organisations, risk perception and current use of climate/weather information, perspectives on climate services, data requirements and handling uncertainties. The questionnaire was designed to be used in a very flexible way, adapted to individual case studies. It has been circulated via email, during and after workshops, made available in on-line form and has also provided the basis for structured interviews with stakeholders. From the preliminary CLIM-RUN work, it is evident that the different sectorial requirements and contexts, including differences in stakeholder expertise and perspectives and the importance of non-climatic considerations in decision making, support the tailored, bottom-up approach adopted. For instance, the energy sector is more keen to use detailed present-day climate information, while tourist stakeholders, although less constrained by climate issues, prefer seasonal timescale information. At the same time, these differences provide a challenge in terms of developing common methodologies and identifying priorities for the provision of climate services. Other challenges relate to the differences in stakeholder engagement across the case studies.
CIRUN: Climate Information Responding to User Needs
NASA Astrophysics Data System (ADS)
Busalacchi, A. J.
2009-12-01
The Earth System will experience real climate change over the next 50 years, exceeding the scope of natural climate variability. A paramount question facing society is how to adapt to this certainty of climate variability and change. In response, OSTP and NOAA are considering how comprehensive climate services would best inform decisions about adaptation. Similarly, NASA is considering the optimal configuration of the next generation of Earth, environmental, and climate observations to be deployed over the coming 10-20 years. Moreover, much of the added-value information for specific climate-related decisions will be provided by private, academic and non-governmental organizations. In this context, over the past several years the University of Maryland has established the CIRUN (Climate Information: Responding to User Needs) initiative to identify the nature of national needs for climate information and services from a decision support perspective. To date, CIRUN has brought together decisionmakers in a number of sectors to help understand their perspectives on climate with the goal of improving the usefulness of climate information, observations and prediction products to specific user communities. CIRUN began with a major workshop in October 2007 that convened 430 participants in agriculture, parks and recreation, terrestrial ecosystems, insurance/investment, energy, national security, state/local/municipal, water, human health, commerce and manufacturing, transportation, and coastal/marine sectors. Plenary speakers such as Norman Augustine, R. James Woolsey, James Mahoney, and former Senator Joseph Tydings, breakout panel sessions, and participants provided input based on the following: - How would you characterize the exposure or vulnerability to climate variability or change impacting your organization? - Does climate variability and/or change currently factor into your organization's objectives or operations? - Are any of your existing plans being affected by climate or projections of climate change? - Is your organization developing a plan for adapting to climate change? - What are your needs for climate observations, predictions, and services? Please cite one or more specific examples when possible. - Do you currently have access to the climate information your organization needs? - What next steps are needed to assure effective use of climate services in your decision making? As a result, a dialogue with various user communities and a subsequent series of more sector specific workshops has been established regarding how significantly enhanced climate observations, data management, modeling, and predictions can provide valuable decision support for business and policy decisions. In particular, CIRUN has helped - To identify how users, stakeholders, and decision makers are influenced by climate on time scales from seasons to decades - To identify the needs and requirements of users, stakeholders, and decision makers for climate information, observations, predictions, and services from global to local scales - To identify what adaptation measures are being considered in the private and public sectors, and how this might result in new classes of information for decision support - To recommend principal elements of the path forward toward more effective use of climate services in decision making.
Donatuto, Jamie; Grossman, Eric E.; Konovsky, John; Grossman, Sarah; Campbell, Larry W.
2014-01-01
This article describes a pilot study evaluating the sensitivity of Indigenous community health to climate change impacts on Salish Sea shorelines (Washington State, United States and British Columbia, Canada). Current climate change assessments omit key community health concerns, which are vital to successful adaptation plans, particularly for Indigenous communities. Descriptive scaling techniques, employed in facilitated workshops with two Indigenous communities, tested the efficacy of ranking six key indicators of community health in relation to projected impacts to shellfish habitat and shoreline archaeological sites stemming from changes in the biophysical environment. Findings demonstrate that: when shellfish habitat and archaeological resources are impacted, so is Indigenous community health; not all community health indicators are equally impacted; and, the community health indicators of highest concern are not necessarily the same indicators most likely to be impacted. Based on the findings and feedback from community participants, exploratory trials were successful; Indigenous-specific health indicators may be useful to Indigenous communities who are assessing climate change sensitivities and creating adaptation plans.
Development of regional climate scenarios in the Netherlands - involvement of users
NASA Astrophysics Data System (ADS)
Bessembinder, Janette; Overbeek, Bernadet
2013-04-01
Climate scenarios are consistent and plausible pictures of possible future climates. They are intended for use in studies exploring the impacts of climate change, and to formulate possible adaptation strategies. To ensure that the developed climate scenarios are relevant to the intended users, interaction with the users is needed. As part of the research programmes "Climate changes Spatial Planning" and "Knowledge for Climate" several projects on climate services, tailoring of climate information and communication were conducted. Some of the important lessons learned about user interaction are: *) To be able to deliver relevant climate information in the right format, proper knowledge is required on who will be using the climate information and data, how it will be used and why they use it; *) Users' requirements can be very diverse and requirements may change over time. Therefore, sustained (personal) contact with users is required; *) Organising meetings with climate researchers and users of climate information together, and working together in projects results in mutual understanding on the requirements of users and the limitations to deliver certain types of climate information, which facilitates the communication and results in more widely accepted products; *) Information and communication should be adapted to the type of users (e.g. impact researchers or policy makers) and to the type of problem (unstructured problems require much more contact with the users). In 2001 KNMI developed climate scenarios for the National Commission on Water management in the 21st century (WB21 scenarios). In 2006 these were replaced by a the KNMI'06 scenarios, intended for a broader group of users. The above lessons are now taken into account during the development of the next generation of climate scenarios for the Netherlands, expected at the end of 2013, after the publication of the IPCC WG1 report: *) users' requirements are taken into account explicitly in the whole process of the development of the climate scenarios; *) users are involved already in the early phases of the development of new scenarios, among others in the following way: **) workshops on users' requirements to check whether they have changed and to get more information; **) feedback group of users to get more detailed feedback on the modes of communication; **) newsletter with information on the progress and procedures to be followed and separate workshops for researchers and policy makers with different levels of detail; **) projects together with impact researchers: tailoring of data and in order to be able to present impact information consistent with the climate scenarios much earlier. During the presentation more detailed information will be given on the interaction with users.
Introducing Argumentation About Climate Change Socioscientific Issues in a Disadvantaged School
NASA Astrophysics Data System (ADS)
Dawson, Vaille; Carson, Katherine
2018-03-01
Improving the ability of young people to construct arguments about controversial science topics is a desired outcome of science education. The purpose of this research was to evaluate the impact of an argumentation intervention on the socioscientific issue of climate change with Year 10 students in a disadvantaged Australian school. After participation in a professional development workshop on climate change science, socioscientific issues and argumentation, an early career teacher explicitly taught argumentation over four non-consecutive lessons as part of a 4 week (16 lesson) topic on Earth science. Thirty students completed a pre- and post-test questionnaire to determine their understanding of climate change science and their ability to construct an argument about a climate change socioscientific issue. Students' understanding of climate change improved significantly (p < .001) with a large effect size. There was also a significant increase (p < .05) in the number of categories provided in written arguments about a climate change issue. Qualitative data, comprising classroom observation field notes, lesson transcripts, work samples, and teacher and student interviews, were analysed for the extent to which the students' argumentation skills improved. At the end of the intervention, students became aware of the need to justify their decisions with scientific evidence. It is concluded that introducing argumentation about climate change socioscientific issues to students in a disadvantaged school can improve their argumentation skills.
Noachian-Hesperian Transition and a Possible Climatic Optimum: Evidence from Landforms
NASA Technical Reports Server (NTRS)
Moore, J. M.; Howard, A. D.
2004-01-01
A climatic optimum? The often strong contrast between the pristine and degraded Noachian channels and craters might be due to a gradual climatic change superimposed upon an episode of mantling associated with early Hesperian volcanism. On the other hand, one or more episodes of volcanism or large impacts could have induced global warming and produced a relatively short-lived optimum for precipitation and runoff. The rapid cutoff of fluvial activity following the development of the later pristine fluvial features is consistent with this scenario. We discuss the changing style of erosion in the highlands during the Noachian and early Hesperian in a companion abstract to this workshop. Here we review the some of the morphologic evidence for a possible Noachian-Hesperian (N-H) climate optimum.
Workshop focuses on study of climate's effects on health
NASA Astrophysics Data System (ADS)
Diaz, Henry F.; Epstein, Paul R.; Aron, Joan L.; Confalonieri, Ulisses E. C.
Changes in temperature, precipitation, humidity, and storm patterns influence upsurges of waterborne diseases such as hepatitis, shigella dysentery, typhoid, and cholera as well as vector-borne pathogens such as malaria, dengue, yellow fever, encephalitis, schistosomiasis, plague, and hantavirus. Cycles of flooding and drought directly affect factors such as the multiplication rates of disease vectors, the biting rate of vectors, and the amount of host-vector interaction. Indirectly, climate influences parameters important to vector spread or survival such as agricultural practices, the disruption of ecosystems, or changes in social systems and practices, which in turn change the relationship between the parasite, the vector, its predators, and the host.
NASA Astrophysics Data System (ADS)
Rango, A.; Crimmins, M.; Elias, E.; Steele, C. M.; Weiss, J. L.
2015-12-01
The mission of the USDA Southwest Regional Climate Hub is to provide farmers, ranchers and forest land owners and managers with information and resources to cope with the impacts of climate change. As such, a clear understanding of landowner needs for weather and climate data and their attitudes about climate change is required. Here we present a summary of results from 17 peer-reviewed articles on studies pertaining to landowner needs and attitudes towards climate change adaptation and mitigation that span much of the continental U.S. and ideally represent a cross-section of different geographies. In general, approximately 75% of landowners and farm advisors believe climate change is occurring, but disagree on the human contribution. Studies found that most farmers were supportive of adaptation responses, but fewer endorsed farm-based greenhouse gas reduction mitigation strategies. Adaptation is often driven by local concerns and requires locally specific strategies. Perceiving weather variability increased belief in human-caused climate change. Presently farmers and ranchers rely on past experience and short-range forecasts (weeks to seasons) whereas some foresters are requesting long-term predictions on the order of years to decades. Foresters indicated that most of them (74%) are presently unable to find needed long-term information. We augment peer-reviewed literature with observations from landowner workshops conducted in Nevada and Arizona during 2014, the first year of Climate Hub operation. To better collect information about climate change needs and attitudes of farmers, ranchers and foresters across the globe, we created a Climate Change Attitudes collection in JournalMap (https://journalmap.org/usda-southwest-regional-climate-hub/climate-change-attitudes). Users anywhere can add articles to this collection, ultimately generating a comprehensive spatial resource in support of adaptation and mitigation efforts on working lands.
Solutions-based climate change education for K-Gray: Renewable energy and energy efficiency
NASA Astrophysics Data System (ADS)
Petrone, C.
2017-12-01
Through the National Science Foundation-funded MADE CLEAR (www.madeclear.org) climate change education project's Informal Climate Change Education (ICCE) Community, funds were received to collaboratively train teachers, informal educators, students, and university docents in climate change basics and solutions, specifically renewable energy and energy efficiency. In all, 10 docents, 50 classroom teachers, over 600 K-16 students, and several hundred science-interested citizens participated in programs and workshops lasting between one and seven hours. Using commercially available kits and other DIY projects, program participants used science content and engineering to develop models of wind turbines, wind mills, solar cells, solar cookers, solar stills, and wind-powered cars. Using thermal imaging cameras, Kill-a-Watt meters, "Carbon Food Print" kit, "Energy Matters" kit, and other tools, program participants learned about energy efficiency as not only a global climate change mitigation strategy, but also a way to save money. ICCE Community members and external partners, such as local electric cooperative personnel, university researchers, and state-sponsored energy efficiency program personnel, provided content presentations, discussions, and hands-on activities to program participants.
Weather uncertainty versus climate change uncertainty in a short television weather broadcast
NASA Astrophysics Data System (ADS)
Witte, J.; Ward, B.; Maibach, E.
2011-12-01
For TV meteorologists talking about uncertainty in a two-minute forecast can be a real challenge. It can quickly open the way to viewer confusion. TV meteorologists understand the uncertainties of short term weather models and have different methods to convey the degrees of confidence to the viewing public. Visual examples are seen in the 7-day forecasts and the hurricane track forecasts. But does the public really understand a 60 percent chance of rain or the hurricane cone? Communication of climate model uncertainty is even more daunting. The viewing public can quickly switch to denial of solid science. A short review of the latest national survey of TV meteorologists by George Mason University and lessons learned from a series of climate change workshops with TV broadcasters provide valuable insights into effectively using visualizations and invoking multimedia-learning theories in weather forecasts to improve public understanding of climate change.
Chile confronts its environmental health future after 25 years of accelerated growth
Pino, Paulina; Iglesias, Verónica; Garreaud, René; Cortés, Sandra; Canals, Mauricio; Folch, Walter; Burgos, Soledad; Levy, Karen; Naeher, Luke P.; Steenland, Kyle
2015-01-01
Background Chile has recently been reclassified by the World Bank from an upper middle income country to a higher income country. There has been great progress in the last 20–30 years in relation to air and water pollution in Chile. Yet after 25 years of unrestrained growth there remain clear challenges posed by air and water, as well as climate change. Methods: In late 2013 a three-day workshop on environmental health was held in Santiago, bringing together researchers and government policy makers. As a follow-up to that workshop, here we review the progress made in environmental health in the past 20–30 years, and discuss the challenges of the future. We focus on air and water pollution, and climate change, which we believe are among the most important areas of environmental health in Chile. Results Air pollution in some cities remains among the highest in the continent. Potable water is generally available, but weak state supervision has led to serious outbreaks of infectious disease and ongoing issues with arsenic exposure in some regions. Climate change modeling in Chile is quite sophisticated, and a number of the impacts of climate change can be reasonably predicted in terms of which areas of the country are most likely to be affected by increased temperature and decreased availability of water, as well as expansion of vector territory. Some health effects, including change vector-borne diseases and excess heat mortality, can be predicted. However, there has yet to be an integration of such research with government planning. Conclusion While great progress has been made, currently there are a number of problems. We suspect that the Chilean experience in environmental health may be of some use for other Latin American countries with rapid economic development. PMID:26615070
Paul (tech. ed.) Keller
2004-01-01
Fire management, and forest and rangeland fuels management, over the past century have altered the wildland fire situation dramatically, thus also altering the institutional approach to how to deal with the changing landscape. Also, climate change, extended drought, increased insect and disease outbreaks, and invasions of exotic plant species have added complications...
NASA Astrophysics Data System (ADS)
Laj, Carlo; Cifelli, Francesca
2015-04-01
The Alexander von Humboldt Conference Series of the European Geosciences Union are a series of meetings held outside of Europe, in particular in South America, Africa or Asia, on selected topics of geosciences with a socio-economic impact for regions on these continents, jointly organised with the scientists and their institutes and the institutions of these regions. Given the increasing success of the GIFT workshops held in conjunction with the General Assemblies, since 2010 EGU has also developed a series of GIFT workshops held in conjunction with AvH conferences. Associated GIFT workshops were held in Merida, Yucatan, on the theme of Climate Change, Natural Hazards and Societies (March 2010), then in Penang, Malaysia (June 2011) on the theme of Ocean Acidification, in November 2012 in Cusco (Peru) on the theme of Natural Disasters, Global Change and the Preservation of World Heritage Sites, finally in Istanbul (March 2014) on "High Impact Natural Hazards Related to the Euro-Mediterranean Region. The next GIFT workshop is already planned for October 2015 in Adis Ababa (Ethiopia) on the theme "Water". In each case, the GIFT workshop was held on the last two days of the AvH conference and reunited 40-45 teachers from the nation where the AvH was held. Keynote speakers from AvH were speakers to the GIFT workshops which also included hands-on activities animated by sciences educators. These GIFT workshops represented the first workshops specifically aimed at teachers held in the country, and therefore represents a significant Earth Sciences contribution to secondary education in non European countries.
Evolving Best Practice in Learning About Air Quality and Climate Change Science in ACCENT
NASA Astrophysics Data System (ADS)
Schuepbach, E.
2008-12-01
Learning about air quality and climate change science has developed into a transdisciplinary impact generator, moulded by academic-stakeholder partnerships, where complementary skills and competences lead to a culture of dialogue, mutual learning and decision-making. These sweeping changes are mirrored in the evolving best practice within the European Network of Excellence on Atmospheric Composition Change (ACCENT). The Training and Education Programme in ACCENT pursues an integrated approach and innovative avenues to sharing knowledge and communicating air quality and climate change science to various end-user groups, including teachers, policy makers, stakeholders, and the general public. Early career scientists are involved in the process, and are trained to acquire new knowledge in a variety of learning communities and environments. Here, examples of both the open system of teaching within ACCENT training workshops for early career scientists, and the engagement of non-academic audiences in the joint learning process are presented.
Climate Connections in Virginia: Your Actions Matter
NASA Astrophysics Data System (ADS)
Hoffman, J. S.; Maurakis, E. G.
2016-12-01
Our project objectives are to educate the general public about the science of climate change on global and local scales, highlight current and potential future impacts of climate change on Virginia and its communities, define community climate resiliency and why it is important, illustrate how individuals can contribute to the resiliency of their own community by taking personal steps to be prepared for weather events and health threats related to climate change, and, foster a conversion of climate change awareness and understanding into personal action to increase readiness and resiliency in homes, schools, and communities. The communication methods used to convey climate change and resiliency information are: development of new programming for the museum's NOAA Science on a Sphere® and digital Dome theater, production of a statewide digital media series (24 audio and 12 video content pieces/year), engagement with social media platforms, a public lecture series, facilitation of resiliency-themed programming (Art Lab, Challenge Lab, EcoLab), establishment of extreme event readiness challenge workshops, and enacting community preparedness and resiliency checklist and certification programs. A front-end evaluation was conducted to survey general audience understanding of the difference between climate and weather, climate change impacts, and resilience. We seek here to share some initial content and reflection based on the first few months of this project. Funded by NOAA Award NA15SEC0080009 and the Virginia Environmental Endowment.
Alpbach Summer School - a unique learning experience
NASA Astrophysics Data System (ADS)
Kern, K.; Aulinas, J.; Clifford, D.; Krejci, D.; Topham, R.
2011-12-01
The Alpbach Summer School is a ten-day program that provides a unique opportunity for young european science and engineering students, both undergraduate and graduate, to learn how to approach the entire design process of a space mission. The theme of the 2010 Summer School was "New Space Missions to Understand Climate Change", a current, challenging, very broad and complex topic. The program was established more than 35 years ago and is organised in two interrelated parts: a series of lectures held by renowned experts in the field (in the case of this specific year, climate change and space engineering experts) that provides a technical and scientific background for the workshops that follow, the core of the Summer School. For the workshops the students are split into four international, interdisciplinary teams of about 15 students. In 2010 every team had to complete a number of tasks, four in total: (1) identify climate change research gaps and design a space mission that has not yet been flown or proposed, (2) define the science objectives and requirements of the mission, (3) design a spacecraft that meets the mission requirements, which includes spacecraft design and construction, payload definition, orbit calculations, but also the satellite launch, operation and mission costs and (4) write up a short mission proposal and present the results to an expert review panel. Achieving these tasks in only a few days in a multicultural, interdisciplinary team represents a major challenge for all participants and provides an excellent practical learning experience. Over the course of the program, students do not just learn facts about climate change and space engineering, but scientists also learn from engineers and engineers from scientists. The participants have to deepen their knowledge in an often unfamiliar field, develop organisational and team-work skills and work under pressure. Moreover, teams are supported by team and roving tutors and get the opportunity to meet and learn from international experts. This presentation will provide an overview of the Alpbach Summer School program from a student's perspective. The different stages of this unique and enriching experience will be covered. Special attention will be paid to the workshops, which, as mentioned above, are the core of the Alpbach Summer School. During these intense workshops, participants work towards the proposed goals resulting in the design proposal of a space mission. The Alpbach Summer School is organised by FFG and co-sponsored by ESA, ISSI and the national space authorities of ESA member and cooperating states.
NASA Astrophysics Data System (ADS)
Rice, J. L.; Woodhouse, C.; Lukas, J.
2008-12-01
Current climate variability, potential impacts of climate change, and limited resources in the face of growing demand are increasingly prompting water managers in the western United States to consider and use data from climate-related research in water resource planning. Much of these data are produced by stakeholder- driven science programs, such as NOAA's Regional Integrated Science Assessments (RISAs), but there have been few efforts to evaluate the effectiveness of these science-to-application efforts. Over the past several years, researchers with the Western Water Assessment (WWA) RISA have been providing tree-ring reconstructions of streamflow to water managers in Colorado and other western states, and presenting technical workshops explaining the applications of these tree-ring data for water management and planning. Using in-depth interviews and a survey questionnaire, we have assessed the effectiveness and outcomes of these engagements, addressing (1) the factors that have prompted water managers to seek out tree-ring data, (2) how paleoclimate data has been made relevant and accessible for water resource planning, and (3) how tree-ring data and information have been utilized by water managers and other workshop participants. We also provide an assessment of challenges and opportunities that exist in the translation of climate science for decision-making, including how tree-ring data are interpreted in the context of water planning paradigms, issues of credibility and acceptance of tree ring data, and what data needs exist in different planning environments. These findings have broader application in improving and evaluating science-policy interactions related to climate and climate change.
NASA Astrophysics Data System (ADS)
Welling, L. A.; Winfree, R.; Mow, J.
2012-12-01
Climate change presents unprecedented challenges for managing natural and cultural resources into the future. Impacts are expected to be highly consequential but specific effects are difficult to predict, requiring a flexible process for adaptation planning that is tightly coupled to climate science delivery systems. Scenario planning offers a tool for making science-based decisions under uncertainty. The National Park Service (NPS) is working with the Department of the Interior Climate Science Centers (CSCs), the NOAA Regional Integrated Science and Assessment teams (RISAs), and other academic, government, non-profit, and private partners to develop and apply scenarios to long-range planning and decision frameworks. In April 2012, Alaska became the first region of the NPS to complete climate change scenario planning for every national park, preserve, and monument. These areas, which collectively make up two-thirds of the total area of the NPS, are experiencing visible and measurable effects attributable to climate change. For example, thawing sea ice, glaciers and permafrost have resulted in coastal erosion, loss of irreplaceable cultural sites, slope failures, flooding of visitor access routes, and infrastructure damage. With higher temperatures and changed weather patterns, woody vegetation has expanded into northern tundra, spruce and cedar diebacks have occurred in southern Alaska, and wildland fire severity has increased. Working with partners at the Alaska Climate Science Center and the Scenario Network for Alaska Planning the NPS integrates quantitative, model-driven data with qualitative, participatory techniques to scenario creation. The approach enables managers to access and understand current climate change science in a form that is relevant for their decision making. Collaborative workshops conducted over the past two years grouped parks from Alaska's southwest, northwest, southeast, interior and central areas. The emphasis was to identify and connect climate and social drivers of change to ecological processes and decision making. Components included review and synthesis of climate observations and projections, effects and impacts, and information on other relevant factors (e.g., subsistence activities, land cover, fire activity, land use change, sea level shifts). Although workshops focused primarily on park lands and waters, nearby communities and other land management units also participated. Results include a framework through which managers are beginning to analyze uncertainties associated with climate change and ecosystem responses and evaluate appropriate and effective actions. For example, at Kenai Fjords National Park, melting from the Harding Icefield and Exit Glacier is changing how managers respond to local flooding issues. The Exit Glacier is one of the park's iconic visitor experiences and in the last four years, the road to the glacier has been subject to mid-summer/fair weather flooding which are outside the historic norms. Rather than seek a traditional solution to the issue, park management has been working with highway engineers to evolve interim solutions as this dynamic system continues to rapidly change. Climate change scenarios established a set of possible plausible futures for the park and are also being used to "wind tunnel" potential responses.
NASA Astrophysics Data System (ADS)
Walton-Jaggers, L. J.; Johnson, D.; Hayden, L. B.; Hale, S. R.
2013-12-01
The Common Core State Standards (CCSS) provide a consistent, clear understanding of what students are expected to learn, so teachers and parents know what they need to do to help them. In 2010 the standards were designed to be robust and relevant to the real world, reflecting the knowledge and skills that young people need for success in college and careers. In 2013 the Next Generation Science Standards (NGSS) in connection with the CCSS developed revised science standards in performance, prior standards documents listed what students should know or understand, foundations were each performance expectation incorporates all three dimensions from a science or engineering practice, a core disciplinary idea, and a crosscutting concept, and coherence that connects each set of performance expectations lists connections to other ideas within the disciplines of science and engineering. Elizabeth City State University (ECSU) in Elizabeth City, North Carolina has joined with the University of New Hampshire (UNH) in Durham, New Hampshire under the NASA Innovations in Climate Education (NICE) grant to empower faculty of education programs at Minority Serving Institutions (MSIs) to better engage their pre-service teachers in teaching and learning about global climate change through the use of NASA Earth observation sets. Specifically, professors from MSIs received training with Global Positioning Systems (GPS) and GES-DISC Interactive Online Visualization And aNalysis Infrastructure (GIOVANNI) to engage pre-service teachers in facets of climate education. Grambling State University faculty members served as participants of the NICE workshop for 2012 and were encouraged to develop lessons in climate education from information shared at the workshop. A corresponding project that incorporated the CCSS and NGSS at Grambling State University in Grambling, Louisiana was headed by Dr. Loretta Jaggers. This paper documents activities that pre-service students in the GSU Curriculum and Instruction Department (College of Education) ED 452-Advanced Seminar Methods course have implemented. Activities included: Critique of Climate Education (oceans) articles, Methodology instruction; and design of a grade specific daily science lesson plan based on Climate Education that focused on El Nino, La Nina, seasonal characteristics of the southern oceans and resources from a NASA NICE workshop packet. Lessons designed were implemented on-site of partner secondary schools. The implementation included a virtual component as Grambling and ECSU students interacted via a polycom environment during reports from ED 452-Advanced Seminar Methods students.
Towards the Goal of Modular Climate Data Services: An Overview of NCPP Applications and Software
NASA Astrophysics Data System (ADS)
Koziol, B. W.; Cinquini, L.; Treshansky, A.; Murphy, S.; DeLuca, C.
2013-12-01
In August 2013, the National Climate Predictions and Projections Platform (NCPP) organized a workshop focusing on the quantitative evaluation of downscaled climate data products (QED-2013). The QED-2013 workshop focused on real-world application problems drawn from several sectors (e.g. hydrology, ecology, environmental health, agriculture), and required that downscaled downscaled data products be dynamically accessed, generated, manipulated, annotated, and evaluated. The cyberinfrastructure elements that were integrated to support the workshop included (1) a wiki-based project hosting environment (Earth System CoG) with an interface to data services provided by an Earth System Grid Federation (ESGF) data node; (2) metadata tools provided by the Earth System Documentation (ES-DOC) collaboration; and (3) a Python-based library OpenClimateGIS (OCGIS) for subsetting and converting NetCDF-based climate data to GIS and tabular formats. Collectively, this toolset represents a first deployment of a 'ClimateTranslator' that enables users to access, interpret, and apply climate information at local and regional scales. This presentation will provide an overview of these components above, how they were used in the workshop, and discussion of current and potential integration. The long-term strategy for this software stack is to offer the suite of services described on a customizable, per-project basis. Additional detail on the three components is below. (1) Earth System CoG is a web-based collaboration environment that integrates data discovery and access services with tools for supporting governance and the organization of information. QED-2013 utilized these capabilities to share with workshop participants a suite of downscaled datasets, associated images derived from those datasets, and metadata files describing the downscaling techniques involved. The collaboration side of CoG was used for workshop organization, discussion, and results. (2) The ES-DOC Questionnaire, Viewer, and Comparator are web-based tools for the creation and use of model and experiment documentation. Workshop participants used the Questionnaire to generate metadata on regional downscaling models and statistical downscaling methods, and the Viewer to display the results. A prototype Comparator was available to compare properties across dynamically downscaled models. (3) OCGIS is a Python (v2.7) package designed for geospatial manipulation, subsetting, computation, and translation of Climate and Forecasting (CF)-compliant climate datasets - either stored in local NetCDF files, or files served through THREDDS data servers.
Second Greenhouse Gas Information System Workshop
NASA Astrophysics Data System (ADS)
Boland, S. W.; Duren, R. M.; Mitchiner, J.; Rotman, D.; Sheffner, E.; Ebinger, M. H.; Miller, C. E.; Butler, J. H.; Dimotakis, P.; Jonietz, K.
2009-12-01
The second Greenhouse Gas Information System (GHGIS) workshop was held May 20-22, 2009 at the Sandia National Laboratories in Albuquerque, New Mexico. The workshop brought together 74 representatives from 28 organizations including U.S. government agencies, national laboratories, and members of the academic community to address issues related to the understanding, operational monitoring, and tracking of greenhouse gas emissions and carbon offsets. The workshop was organized by an interagency collaboration between NASA centers, DOE laboratories, and NOAA. It was motivated by the perceived need for an integrated interagency, community-wide initiative to provide information about greenhouse gas sources and sinks at policy-relevant temporal and spatial scales in order to significantly enhance the ability of national and regional governments, industry, and private citizens to implement and evaluate effective climate change mitigation policies. This talk provides an overview of the second Greenhouse Gas Information System workshop, presents its key findings, and discusses current status and next steps in this interagency collaborative effort.
NASA Astrophysics Data System (ADS)
Sezen-Barrie, A.; Wolfson, J.
2015-12-01
An important goal of science education is to support development of citizens to participate in public debate and make informed decisions relevant to their lives and their worlds. The NGSS (Next Generation Science Standards) suggest engaging students in science classrooms in argumentation as a practice to help enhance the quality of evidence based decision making. In this multi-case study, we explored the use of written argumentation in eight secondary school science classrooms during a lesson on the relationship between ocean temperature and its CO2 holding capacity. All teachers of these classrooms were trained during a day long NSF funded Climate Literacy Workshop on the basic concepts of climate science, scientific practices and implementation of an activity called "It's a Gassy World". The data of the current study involved students' written arguments, teachers' written reflections on the implementation of the activity as well as field notes from the Climate Literacy Workshop. A qualitative discourse analysis of the data was used to find common themes around affordances and challenges of argument as a connective discourse for scientific practices to teach climate change. The findings show that participating in written argumentation process encouraged students to discuss their experimental design and use data interpretation for their evidences. However, the results also indicated the following challenges: a) teachers themselves need support in connecting their evidence to their claims, b) arguing a socioscientific issue creates a sensitive environment c) conceptual quality of an argument needs to be strengthen through background in courses other than science, and d) graphing skills (or lack of) can interfere with constructing scientifically accurate claims. This study has implications in effectively teaching climate change through argumentation, and thus creating opportunities for practicing authentic climate science research in K-12 classrooms.
Climate Change Education Roundtable: A Coherent National Strategy
NASA Astrophysics Data System (ADS)
Storksdieck, M.; Feder, M.; Climate Change Education Roundtable
2010-12-01
The Climate Change Education (CCE) Roundtable fosters ongoing discussion of the challenges to and strategies for improving public understanding of climate science and climate change among federal agencies, the business community, non-profit, and academic sectors. The CCE Roundtable is provides a critical mechanism for developing a coherent, national strategy to advance climate change education guided by the best available research evidence. Through its meetings and workshops, the roundtable brings together 30 federal and state policymakers, educators, communications and media experts, and members from the business and scientific community. The roundtable includes a number of ex officio members from federal agencies with dedicated interests in climate change education, including officials from the National Science Foundation’s EHR Directorate and its collaborating partner divisions, the National Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA), the Department of Interior, the Department of Energy, and the Department of Education. The issues that are addressed by the roundtable include: - ways to incorporate knowledge about learning and understanding in developing informative programs and materials for decision-makers who must cope with climate change - the design of educational programs for professionals such as local planners, water managers, and the like, to enable them to better understand the implications of climate change for their decisions - development of training programs for scientists to help them become better communicators to decision-makers about implications of, and solutions to climate change - coordinated and collaborative efforts at the national level between federal agencies and other stakeholders This presenation will describe how the roundtable is fostering a coherent direction for climate change education.
GAIA - A New Approach To Decision Making on Climate Disruption Issues
NASA Astrophysics Data System (ADS)
Paxton, L. J.; Weiss, M.; Schaefer, R. K.; Swartz, W. H.; Nix, M.; Strong, S. B.; Fountain, G. H.; Babin, S. M.; Pikas, C. K.; Parker, C. L.; Global Assimilation of InformationAction
2011-12-01
GAIA - the Global Assimilation of Information for Action program - provides a broadly extensible framework for enabling the development of a deeper understanding of the issues associated with climate disruption. The key notion of GAIA is that the global climate problem is so complex that a "system engineering" approach is needed in order to make it understandable. The key tenet of system engineering is to focus on requirements and to develop a cost-effective process for satisfying those requirements. To demonstrate this approach we focused first on the impact of climate disruption on public health. GAIA is described in some detail on our website (http://gaia.jhuapl.edu). Climate disruption is not just a scientific problem; one of the key issues that our community has is that of translating scientific results into knowledge that can be used to make informed decisions. In order to support decision makers we have to understand their issues and how to communicate with them. In this talk, we describe how we have built a community of interest that combines subject matter experts from diverse communities (public health, climate change, government, public policy, industry, etc) with policy makers and representatives from industry to develop, on a "level playing field", an understanding of each other's points of view and issues. The first application of this technology was the development of a workshop on Climate, Climate Change and Public Health held April 12-14, 2011. This paper describes our approach to going beyond the workshop environment to continue to engage the decision maker's community in a variety of ways that translate abstract scientific data into actionable information. Key ideas we will discuss include the development of social media, simulations of global/national/local environments affected by climate disruption, and visualizations of the monetary and health impacts of choosing not to address mitigation or adaptation to climate disruption.
Luís, Sílvia; Lima, Maria Luísa; Roseta-Palma, Catarina; Rodrigues, Nuno; P Sousa, Lisa; Freitas, Fabiana; L Alves, Fátima; Lillebø, Ana I; Parrod, Camille; Jolivet, Vincent; Paramana, Theodora; Alexandrakis, George; Poulos, Serafim
2018-06-18
Stakeholder engagement in the processes of planning local adaptation to climate change faces many challenges. The goal of this work was to explore whether or not the intention of engaging could be understood (Study 1) and promoted (Study 2), by using an extension of the theory of planned behaviour. In Study 1, stakeholders from three European Mediterranean case studies were surveyed: Baixo Vouga Lagunar (Portugal), SCOT Provence Méditerranée (France), and the island of Crete (Greece) (N = 115). Stakeholders' intention of engaging was significantly predicted by subjective norm (which was predicted by injunctive normative beliefs towards policy-makers and stakeholders) and by perceived behavioural control (which was predicted by knowledge of policy and instruments). Study 2 was conducted in the Baixo Vouga Lagunar case study and consisted of a two-workshop intervention where issues on local and regional adaptation, policies, and engagement were presented and discussed. A within-participants comparison of initial survey results with results following the workshops (N T1 = 12, N T2 = 15, N T3 = 12) indicated that these were successful in increasing stakeholders' intention of engaging. This increase was paired with a) an increase in injunctive normative beliefs towards policy-makers and consequently in subjective norm, and to b) a decrease in perceived complexity of planning local adaptation and an increase in knowledge regarding adaptation to climate change. Copyright © 2018 Elsevier Ltd. All rights reserved.
Workshop summary: Physical properties of gas hydrate-bearing sediment
Waite, William F.; Santamarina, J.C.
2008-01-01
A wide range of particle and pore scale phenomena, often coupled, determines the macro-scale response of gas-hydrate bearing sediment to changes in mechanical, thermal, or chemical conditions. Predicting this macro-scale response is critical for applications such as optimizing the production of methane from gas-hydrate deposits, or determining the role of gas hydrates in global carbon cycling and climate change.
NASA Astrophysics Data System (ADS)
Niepold, F.; Byers, A.
2009-12-01
The scientific complexities of global climate change, with wide-ranging economic and social significance, create an intellectual challenge that mandates greater public understanding of climate change research and the concurrent ability to make informed decisions. The critical need for an engaged, science literate public has been repeatedly emphasized by multi-disciplinary entities like the Intergovernmental Panel on Climate Change (IPCC), the National Academies (Rising Above the Gathering Storm report), and the interagency group responsible for the recently updated Climate Literacy: The Essential Principles of Climate Science. There is a clear need for an American public that is climate literate and for K-12 teachers confident in teaching relevant science content. A key goal in the creation of a climate literate society is to enhance teachers’ knowledge of global climate change through a national, scalable, and sustainable professional development system, using compelling climate science data and resources to stimulate inquiry-based student interest in science, technology, engineering, and mathematics (STEM). This session will explore innovative e-learning technologies to address the limitations of one-time, face-to-face workshops, thereby adding significant sustainability and scalability. The resources developed will help teachers sift through the vast volume of global climate change information and provide research-based, high-quality science content and pedagogical information to help teachers effectively teach their students about the complex issues surrounding global climate change. The Learning Center is NSTA's e-professional development portal to help the nations teachers and informal educators learn about the scientific complexities of global climate change through research-based techniques and is proven to significantly improve teacher science content knowledge.
International Land Model Benchmarking (ILAMB) Workshop Report, Technical Report DOE/SC-0186
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, Forrest M.; Koven, Charles D.; Kappel-Aleks, Gretchen
2016-11-01
As Earth system models become increasingly complex, there is a growing need for comprehensive and multi-faceted evaluation of model projections. To advance understanding of biogeochemical processes and their interactions with hydrology and climate under conditions of increasing atmospheric carbon dioxide, new analysis methods are required that use observations to constrain model predictions, inform model development, and identify needed measurements and field experiments. Better representations of biogeochemistry–climate feedbacks and ecosystem processes in these models are essential for reducing uncertainties associated with projections of climate change during the remainder of the 21st century.
Climate Change in U.S. South Atlantic, Gulf of Mexico and Caribbean Fisheries Regions
NASA Astrophysics Data System (ADS)
Roffer, M. A.; Hernandez, D. L.; Lamkin, J. T.; Pugliese, R.; Reichert, M.; Hall, C.
2016-02-01
A review of the recent evidence that climate change is affecting marine ecosystems in the U.S. fishery management zones of the South Atlantic, Gulf of Mexico and Caribbean regions will be presented. This will include affects on the living marine resources (including fish, invertebrates, marine mammals and turtles), fisheries, habitat and people. Emphasis will be given on the effects that impact managed species and the likely new challenges that they present to fishery managers. The evidence is being derived from the results of the "Climate Variability and Fisheries Workshop: Setting Research Priorities for the Gulf of Mexico, South Atlantic, and Caribbean Regions," October 26-28, 2015 in St. Petersburg Beach, Florida. Commonalities and regional differences will be presented in terms of how climate variability is likely to impact distribution, catch, catchability, socioeconomics, and management.
NASA Astrophysics Data System (ADS)
Ackerman, S. A.; Mooney, M. E.
2011-12-01
The Climate Literacy Ambassadors program is a collaborative effort to advance climate literacy led by the Cooperative Institute of Meteorological Satellite Studies (CIMSS) at the University of Wisconsin-Madison. With support from NASA, CIMSS is coordinating a three-tiered program to train G6-12 teachers to be Ambassadors of Climate Literacy in their schools and communities. The complete training involves participation at a teacher workshop combined with web-based professional development content around Global and Regional Climate Change. The on-line course utilizes e-learning technology to clarify graphs and concepts from the 2007 Intergovernmental Panel on Climate Change Summary for Policy Makers with content intricately linked to the Climate Literacy: The Essential Principles of Climate Science. Educators who take the course for credit can develop lesson plans or opt for a project of their choosing. This session will showcase select lesson plans and projects, ranging from a district-wide action plan that engaged dozens of teachers to Ambassadors volunteering at the Aldo Leopold Climate Change Nature Center to a teacher who tested a GLOBE Student Climate Research Campaign (SCRC) learning project with plans to participate in the SCRC program. Along with sharing successes from the CIMSS Climate Literacy Ambassadors project, we will share lessons learned related to the challenges of sustaining on-line virtual educator communities.
Network-based approaches to climate knowledge discovery
NASA Astrophysics Data System (ADS)
Budich, Reinhard; Nyberg, Per; Weigel, Tobias
2011-11-01
Climate Knowledge Discovery Workshop; Hamburg, Germany, 30 March to 1 April 2011 Do complex networks combined with semantic Web technologies offer the next generation of solutions in climate science? To address this question, a first Climate Knowledge Discovery (CKD) Workshop, hosted by the German Climate Computing Center (Deutsches Klimarechenzentrum (DKRZ)), brought together climate and computer scientists from major American and European laboratories, data centers, and universities, as well as representatives from industry, the broader academic community, and the semantic Web communities. The participants, representing six countries, were concerned with large-scale Earth system modeling and computational data analysis. The motivation for the meeting was the growing problem that climate scientists generate data faster than it can be interpreted and the need to prepare for further exponential data increases. Current analysis approaches are focused primarily on traditional methods, which are best suited for large-scale phenomena and coarse-resolution data sets. The workshop focused on the open discussion of ideas and technologies to provide the next generation of solutions to cope with the increasing data volumes in climate science.
Earth Experiments in a Virtual World: Introducing Climate & Coding to High School Girls
NASA Astrophysics Data System (ADS)
Singh, H. A.; Twedt, J. R.
2017-12-01
In our increasingly technologically-driven and information-saturated world, literacy in STEM fields can be crucial for career advancement. Nevertheless, both systemic and interpersonal barriers can prevent individuals, particularly members of under-represented groups, from engaging in these fields. Here, we present a high school-level workshop developed to foster basic understanding of climate science while exposing students to the Python programming language. For the past four years, the workshop has been a part of the annual Expanding Your Horizons conference for high school girls, whose mission is to spark interest in STEM fields. Moving through current events in the realm of global climate policy, the fundamentals of climate, and the mathematical representation of planetary energy balance, the workshop culminates in an under-the-hood exploration of a basic climate model coded in the Python programming language. Students interact directly with the underlying code to run `virtual world' experiments that explore the impact of solar insolation, planetary albedo, the greenhouse effect, and meridional energy transport on global temperatures. Engagement with Python is through the Jupyter Notebook interface, which permits direct interaction with the code but is more user-friendly for beginners than a command-line approach. We conclude with further ideas for providing online access to workshop materials for educators, and additional venues for presenting such workshops to under-represented groups in STEM.
NASA Astrophysics Data System (ADS)
Laj, C. E.; Cifelli, F.
2014-12-01
Given the increasing success of the GIFT workshops held in conjunction with the General Assemblies, since 2010 EGU has also developed a series of GIFT workshops held in conjunction with AvH conferences. The Alexander von Humboldt Conference Series of the European Geosciences Union are a series of meetings held outside of Europe, in particular in South America, Africa or Asia, on selected topics of geosciences with a socio-economic impact for regions on these continents, jointly organised with the scientists and their institutes and the institutions of these regions. Associated GIFT workshops were held in Merida, Yucatan, on the theme of Climate Change, Natural Hazards and Societies (March 2010), then in Penang, Malaysia (June 2011) on the theme of Ocean Acidification, in November 2012 in Cusco (Peru) on the theme of Natural Disasters, Global Change and the Preservation of World Heritage Sites, finally in Istanbul (March 2014) on "High Impact Natural Hazards Related to the Euro-Mediterranean Region. The next GIFT workshop is already planned for October 2015 in Adis Ababa (Ethiopia) on the theme "Water". In each case, the GIFT workshop was held on the last two days of the AvH conference and reunited 40-45 teachers from the nation where the AvH was held. Keynote speakers from AvH were speakers to the GIFT workshops which also included hands-on activities animated by sciences educators. In 3 cases of the 4 cases, these GIFT workshops represented the first workshop specifically aimed at teachers held in the country, and therefore represents a significant Earth Sciences contribution to secondary education in non European countries.
Public affairs events at Fall Meeting
NASA Astrophysics Data System (ADS)
Uhlenbrock, Kristan
2012-02-01
AGU's Public Affairs team presented two workshop luncheons and hosted 17 oral and poster sessions at the 2011 Fall Meeting. Topics ranged from defining the importance of the geosciences, to climate change science for communities and institutions. The workshop luncheon "How to Be a Congressional Science Fellow or Mass Media Fellow" was a well-attended event with more than 115 participants. The luncheon provided the opportunity for audience members to ask fellow scientists about their experiences working either in Congress or as a reporter for a news organization. For scientists looking to expand their expertise outside the academic environment, these AGU fellowships are fantastic opportunities.
Communicating Our Science: Three Workshops at the Fall Meeting
NASA Astrophysics Data System (ADS)
Cifuentes, Inés; Landau, Elizabeth
2010-01-01
Earth and space scientists are highly knowledgeable about many important things. For instance, they know about the role of greenhouse gases in climate change, the places in the world where earthquakes are most likely to occur, and how to find planets outside our solar system. Many scientists, however, do not know how to talk to anyone aside from other scientists. At the 2009 AGU Fall Meeting, members of the AGU strategic communications and outreach (SCO) staff held three workshops for scientists, in particular for students and those beginning their careers, on communicating with people who are not scientists.
NASA Astrophysics Data System (ADS)
Miller, M. K.; Rossiter, A.; Spitzer, W.
2016-12-01
The Exploratorium, a hands-on science museum, explores local environmental conditions of San Francisco Bay to connect audiences to the larger global implications of ocean acidification and climate change. The work is centered in the Fisher Bay Observatory at Pier 15, a glass-walled gallery sited for explorations of urban San Francisco and the Bay. Interactive exhibits, high-resolution data visualizations, and mediated activities and conversations communicate to public audiences the impacts of excess carbon dioxide in the atmosphere and ocean. Through a 10-year education partnership with NOAA and two environmental literacy grants funded by its Office of Education, the Exploratorium has been part of two distinct but complementary strategies to increase climate literacy beyond traditional classroom settings. We will discuss two projects that address the ways complex scientific information can be transformed into learning opportunities for the public, providing information citizens can use for decision-making in their personal lives and their communities. The Visualizing Change project developed "visual narratives" that combine scientific visualizations and other images with story telling about the science and potential solutions of climate impacts on the ocean. The narratives were designed to engage curiosity and provide the public with hopeful and useful information to stimulate solutions-oriented behavior rather than to communicate despair about climate change. Training workshops for aquarium and museum docents prepare informal educators to use the narratives and help them frame productive conversations with the pubic. The Carbon Networks project, led by the Exploratorium, uses local and Pacific Rim data to explore the current state of climate change and ocean acidification. The Exploratorium collects and displays local ocean and atmosphere data as a member of the Central and Northern California Ocean Observing System and as an observing station for NOAA's Pacific Marine Environment Lab's carbon buoy network. Other Carbon Network partners, the Pacific Science Center and Waikiki Aquarium, also have access to local carbon data from NOAA. The project collectively explores the development of hands-on activities, teaching resources, and workshops for museum educators and classroom teachers.
ERIC Educational Resources Information Center
Cliffe, Neil; Stone, Roger; Coutts, Jeff; Reardon-Smith, Kathryn; Mushtaq, Shahbaz
2016-01-01
Purpose: This paper documents and evaluates collaborative learning processes aimed at developing farmer's knowledge, skills and aspirations to use seasonal climate forecasting (SCF). Methodology: Thirteen workshops conducted in 2012 engaged over 200 stakeholders across Australian sugar production regions. Workshop design promoted participant…
Vulnerability and adaptation to climate-related fire impacts in rural and urban interior Alaska
Trainor, Sarah F.; Calef, Monika; Natcher, David; Chapin, F. Stuart; McGuire, A. David; Huntington, Orville; Duffy, Paul A.; Rupp, T. Scott; DeWilde, La'Ona; Kwart, Mary; Fresco, Nancy; Lovecraft, Amy Lauren
2009-01-01
This paper explores whether fundamental differences exist between urban and rural vulnerability to climate-induced changes in the fire regime of interior Alaska. We further examine how communities and fire managers have responded to these changes and what additional adaptations could be put in place. We engage a variety of social science methods, including demographic analysis, semi-structured interviews, surveys, workshops and observations of public meetings. This work is part of an interdisciplinary study of feedback and interactions between climate, vegetation, fire and human components of the Boreal forest social–ecological system of interior Alaska. We have learned that although urban and rural communities in interior Alaska face similar increased exposure to wildfire as a result of climate change, important differences exist in their sensitivity to these biophysical, climate-induced changes. In particular, reliance on wild foods, delayed suppression response, financial resources and institutional connections vary between urban and rural communities. These differences depend largely on social, economic and institutional factors, and are not necessarily related to biophysical climate impacts per se. Fire management and suppression action motivated by political, economic or other pressures can serve as unintentional or indirect adaptation to climate change. However, this indirect response alone may not sufficiently reduce vulnerability to a changing fire regime. More deliberate and strategic responses may be required, given the magnitude of the expected climate change and the likelihood of an intensification of the fire regime in interior Alaska.
Creating a GIS-Based Decision-Support System
NASA Technical Reports Server (NTRS)
Alvarado, Lori; Gates, Ann Q.; Gray, Bob; Reyes, Raul
1998-01-01
Tilting the Balance: Climate Variability and Water Resource Management in the Southwest, a regional conference hosted by the Pan American Center for Environmental Studies, will be held at The University of Texas at El Paso on March 2-4, 1998. The conference is supported through the US Global Change Research Program (USGCRP) established by the President in 1989, and codified by Congress in the Global Change Research Act of 1990. The NASA Mission to Planet Earth program is one of the workshops sponsors. The purpose of the regional workshops is to improve understanding of the consequences of global change. This workshop will be focused on issues along the border and the Rio Grande River and thus will bring together stakeholders from Mexico, California, Texas, New Mexico, Arizona and Colorado representing federal, state, and local governments; universities and laboratories; industry, agricultural and natural resource managers; and non-governmental organizations. This paper discusses the efforts of the NASA PACES center create a GIS-based decision-support system that can be used to facilitate discussion of the complex issues of resource management within the targeted international region.
One hundred questions of importance to the conservation of global biological diversity.
Sutherland, W J; Adams, W M; Aronson, R B; Aveling, R; Blackburn, T M; Broad, S; Ceballos, G; Côté, I M; Cowling, R M; Da Fonseca, G A B; Dinerstein, E; Ferraro, P J; Fleishman, E; Gascon, C; Hunter, M; Hutton, J; Kareiva, P; Kuria, A; Macdonald, D W; Mackinnon, K; Madgwick, F J; Mascia, M B; McNeely, J; Milner-Gulland, E J; Moon, S; Morley, C G; Nelson, S; Osborn, D; Pai, M; Parsons, E C M; Peck, L S; Possingham, H; Prior, S V; Pullin, A S; Rands, M R W; Ranganathan, J; Redford, K H; Rodriguez, J P; Seymour, F; Sobel, J; Sodhi, N S; Stott, A; Vance-Borland, K; Watkinson, A R
2009-06-01
We identified 100 scientific questions that, if answered, would have the greatest impact on conservation practice and policy. Representatives from 21 international organizations, regional sections and working groups of the Society for Conservation Biology, and 12 academics, from all continents except Antarctica, compiled 2291 questions of relevance to conservation of biological diversity worldwide. The questions were gathered from 761 individuals through workshops, email requests, and discussions. Voting by email to short-list questions, followed by a 2-day workshop, was used to derive the final list of 100 questions. Most of the final questions were derived through a process of modification and combination as the workshop progressed. The questions are divided into 12 sections: ecosystem functions and services, climate change, technological change, protected areas, ecosystem management and restoration, terrestrial ecosystems, marine ecosystems, freshwater ecosystems, species management, organizational systems and processes, societal context and change, and impacts of conservation interventions. We anticipate that these questions will help identify new directions for researchers and assist funders in directing funds. ©2009 Society for Conservation Biology.
Research Priorities for NCD Prevention and Climate Change: An International Delphi Survey.
Colagiuri, Ruth; Boylan, Sinead; Morrice, Emily
2015-10-16
Climate change and non-communicable diseases (NCDs) are arguably the greatest global challenges of the 21st Century. However, the confluence between them remains under-examined and there is little evidence of a comprehensive, systematic approach to identifying research priorities to mitigate their joint impact. Consequently, we: (i) convened a workshop of academics (n = 25) from the Worldwide Universities Network to identify priority areas at the interface between NCDs and climate change; (ii) conducted a Delphi survey of international opinion leaders in public health and relevant other disciplines; and (iii) convened an expert panel to review and advise on final priorities. Three research areas (water security; transport; conceptualising NCD harms to support policy formation) were listed among the top 10 priorities by >90% of Delphi respondents, and ranked among the top 12 priorities by >60% of respondents who ranked the order of priority. A fourth area (reducing the carbon footprint of cities) was ranked highest by the same >60% of respondents. Our results are consistent with existing frameworks on health and climate change, and extends them by focusing specifically on NCDs. Researching these priorities could progress understanding of climate change and NCDs, and inform global and national policy decisions for mitigating associated harms.
CSIR Contribution to Defining Adaptive Capacity in the Context of Environmental Change
2016-01-31
of transboundary water cooperation in the Nile Basin, presentation at the Horn of Africa Water Security Workshop, jointly hosted by the USGS...Nortje and Marius Claassen CSIR PO Box 395 Pretoria 0001, South Africa Date: 31 January 2016 Defining Adaptive Capacity in the...supports CSIR and ERDC research in adaptation to water -related impacts of climate change. The grant supports a comparison of historic human responses to
Aerial Observation Needs Workshop, May 13-14, 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nasiri, Shaima; Serbin, Shawn; Lesmes, David
2015-10-01
The mission of the Climate and Environmental Sciences Division (CESD) of the Office of Biological and Environmental Research (BER) within the U.S. Department of Energy's (DOE) Office of Science is "to advance a robust, predictive understanding of Earth's climate and environmental systems and to inform the development of sustainable solutions to the nation's energy and environmental challenges." Accomplishing this mission requires aerial observations of the atmospheric and terrestrial components of the climate system. CESD is assessing its current and future aerial observation needs to develop a strategy and roadmap of capability requirements for the next decade. To facilitate this process,more » a workshop was convened that consisted of invited experts in the atmospheric and terrestrial sciences, airborne observations, and modeling. This workshop report summarizes the community input prior to and during the workshop on research challenges and opportunities, as well as specific science questions and observational needs that require aerial observations to address.« less
Lucassen, Mathijs F G; Burford, James
2015-10-01
To evaluate the potential of a 60-minute sexuality diversity workshop to address bullying in secondary schools. Students completed pre- and post-workshop questionnaires. Descriptive statistics were used to summarise results with pre- to immediate post-workshop changes compared using t-tests. Thematic analysis was used to analyse open-ended questionnaire responses. We had 229 students (mean age 13.7 years) attending 10 workshops participate in the study. Three-quarters of students thought the workshop would reduce bullying in schools, and over 95% of the participants thought that other secondary schools should offer the workshop. There was a significant increase in valuing (p < 0.001) and understanding (p < 0.001) sexuality-diverse individuals (e.g. lesbian, gay and bisexual people), between the pre- and post-workshop results. School climates were largely perceived to be 'hard' and included 'bullying/mocking' of sexuality-diverse students; however, many individual students reported a desire to be supportive of their sexuality-diverse peers. Sexuality-based bullying is commonplace in secondary schools. This form of bullying is associated with depression and suicide attempts. Reducing sexuality-based bullying is very likely to have a positive impact on the mental health of young people. Brief workshops, as a part of a wider suite of interventions, have some potential to create safer school environments. © The Royal Australian and New Zealand College of Psychiatrists 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, Melissa R.; Aziz, H. M. Abdul; Coletti, Mark A.
Changing human activity within a geographical location may have significant influence on the global climate, but that activity must be parameterized in such a way as to allow these high-resolution sub-grid processes to affect global climate within that modeling framework. Additionally, we must have tools that provide decision support and inform local and regional policies regarding mitigation of and adaptation to climate change. The development of next-generation earth system models, that can produce actionable results with minimum uncertainties, depends on understanding global climate change and human activity interactions at policy implementation scales. Unfortunately, at best we currently have only limitedmore » schemes for relating high-resolution sectoral emissions to real-time weather, ultimately to become part of larger regions and well-mixed atmosphere. Moreover, even our understanding of meteorological processes at these scales is imperfect. This workshop addresses these shortcomings by providing a forum for discussion of what we know about these processes, what we can model, where we have gaps in these areas and how we can rise to the challenge to fill these gaps.« less
A Scientific Synthesis and Assessment of the Arctic Carbon Cycle
NASA Astrophysics Data System (ADS)
Hayes, Daniel J.; Guo, Laodong; McGuire, A. David
2007-06-01
The Arctic Monitoring and Assessment Programme (AMAP), along with the Climate and Cryosphere (CliC) Project and the International Arctic Science Committee (IASC), sponsored the Arctic Carbon Cycle Assessment Workshop, at the Red Lion Hotel in Seattle, Wash., between 27 February and 1 March 2007. The workshop was held in a general effort toward the scientific synthesis and assessment of the Arctic system carbon cycle, as well as to generate feedback on the working draft of an assessment document. The initial assessment was prepared by the Arctic carbon cycle assessment writing team, which is led by A. David McGuire (University of Alaska Fairbanks) and includes Leif Anderson (Goteborg University, Sweden), Torben Christensen (Lund University, Sweden), Scott Dallimore (Natural Resources Canada), Laodong Guo (University of Southern Mississippi), Martin Heimann (Max Planck Institute, Germany), Robie MacDonald (Department of Fisheries and Oceans, Canada), and Nigel Roulet (McGill University, Canada). The workshop brought together leading researchers in the fields of terrestrial, marine, and atmospheric science to report on and discuss the current state of knowledge on contemporary carbon stocks and fluxes in the Artie and their potential responses to a changing climate. The workshop was attended by 35 scientists representing institutions from 10 countries in addition to two representatives of the sponsor agencies (John Calder for AMAP and Diane Verseghy for CliC).
The role of academic institutions in leveraging engagement and action on climate change
NASA Astrophysics Data System (ADS)
Hill, T. M.; Palca, J.
2016-12-01
Growing global concern over the impact of climate change places climate scientists at the forefront of communicating risks, impacts, and adaptation strategies to non-scientists. Academic institutions can play a leadership role in providing support, incentives, and structures that encourage scientific engagement on this, and other, complex societal and scientific issues. This presentation will focus on `best practices' in supporting university scientists in communicating their science and engaging in thoughtful dialogue with decision makers, managers, media, and public audiences. For example, institutions that can provide significant administrative support for science communication (press officers, training workshops) may decrease barriers between academic science and public knowledge. Additionally, financial (or similar) support in the form of teaching releases and institutional awards can be utilized to acknowledge the time and effort spent in engagement. This presentation will feature examples from universities, professional societies and other institutions where engagement on climate science is structurally encouraged and supported.
NASA Astrophysics Data System (ADS)
Howell, C.
2013-05-01
In reviewing studies evaluating trends in greenhouse gasses, weather, climate and/or ecosystems, it becomes apparent that climate change is a reality. It has also become evident that the energy sector accounts for most of the greenhouse gas emissions with worldwide emissions of carbon dioxide increasing by 31 percent from 1990 to 2005, higher than in the previous thousands of years. While energy courses and topics are presented in high school and community college classes the topic of Climate Change Science is not always a part of the conversation. During the summer of 2011 and 2012, research undergraduates conducted interviews with a total of 39 national community college and 8 high school instructors who participated in a two week Sustainable Energy Education Training (SEET) workshop. Interview questions addressed the barriers and opportunities to the incorporation of climate change as a dimension of an energy/renewable energy curriculum. Barriers found included: there is not enough instruction time to include it; some school administrators including community members do not recognize climate change issues; quality information about climate change geared to students is difficult to find; and, most climate change information is too scientific for most audiences. A Solution to some barriers included dialogue on sustainability as a common ground in recognizing environmental changes/concerns among educators, administrators and community members. Sustainability discussions are already supported in school business courses as well as in technical education. In conclusion, we cannot expect climate change to dissipate without humans making more informed energy and environmental choices. With global population growth producing greater emissions resulting in increased climate change, we must include the topic of climate change to students in high school and community college classrooms, preparing our next generation of leaders and workforce to be equipped to find solutions, (such as renewable energy and sustainability practices), to climate change and environmental sustainability.
NASA Astrophysics Data System (ADS)
Coleman, S.; Hurley, S.; Koliba, C.; Zia, A.; Exler, S.
2014-12-01
Eutrophication and nutrient pollution of surface waters occur within complex governance, social, hydrologic and biophysical basin contexts. The pervasive and perennial nutrient pollution in Lake Champlain Basin, despite decades of efforts, exemplifies problems found across the world's surface waters. Stakeholders with diverse values, interests, and forms of explicit and tacit knowledge determine water quality impacts through land use, agricultural and water resource decisions. Uncertainty, ambiguity and dynamic feedback further complicate the ability to promote the continual provision of water quality and ecosystem services. Adaptive management of water resources and land use requires mechanisms to allow for learning and integration of new information over time. The transdisciplinary Research on Adaptation to Climate Change (RACC) team is working to build regional adaptive capacity in Lake Champlain Basin while studying and integrating governance, land use, hydrological, and biophysical systems to evaluate implications for adaptive management. The RACC team has engaged stakeholders through mediated modeling workshops, online forums, surveys, focus groups and interviews. In March 2014, CSS2CC.org, an interactive online forum to source and identify adaptive interventions from a group of stakeholders across sectors was launched. The forum, based on the Delphi Method, brings forward the collective wisdom of stakeholders and experts to identify potential interventions and governance designs in response to scientific uncertainty and ambiguity surrounding the effectiveness of any strategy, climate change impacts, and the social and natural systems governing water quality and eutrophication. A Mediated Modeling Workshop followed the forum in May 2014, where participants refined and identified plausible interventions under different governance, policy and resource scenarios. Results from the online forum and workshop can identify emerging consensus across scales and sectors and be simulated in adaptation scenarios within integrated models. Comparing interventions and scenarios to existing and planned policy and governance systems in Lake Champlain Basin allows for new feedback to build adaptive capacity to identify key leverage points in the coupled natural and human system.
Improving 6th Grade Climate Literacy using New Media (CLINM) and Teacher Professional Development
NASA Astrophysics Data System (ADS)
Smith, G.; Schmidt, C.; Metzger, E. P.; Cordero, E. C.
2012-12-01
The NASA-funded project, Improving 6th Grade Climate Literacy using New Media (CLINM), is designed to improve the climate literacy of California's 450,000 6th-grade students through teacher professional development that presents climate change as an engaging context for teaching earth science standards. The project fosters experience-based interaction among learners and encourages expressive creativity and idea-exchange via the web and social media. The heart of the CLINM project is the development of an online educator-friendly experience that provides content expert-reviewed, teacher-tested, standards-based educational resources, classroom activities and lessons that make meaningful connections to NASA data and images as well as new media tools (videos, web, and phone applications) based on the Green Ninja, a climate-action superhero who fights global warming by inspiring personal action (www.greenninja.info). In this session, we will discuss this approach to professional development and share a collection of teacher-tested CLINM resources. CLINM resources are grounded in earth system science; classroom activities and lessons engage students in exploration of connections between natural systems and human systems with a particular focus on how climate change relates to everyone's need for food, water, and energy. CLINM uses a team-based approach to resource development, and partners faculty in San José State University's (SJSU) colleges of Science, Education, and Humanities and the Arts with 6th-grade teachers from local school districts, a scientist from NASA Ames Research Center and climate change education projects at Stanford University, the University of Nebraska at Lincoln, and the University of Idaho. Climate scientists and other content experts identify relevant concepts and work with science educators to develop and/or refine classroom activities to elucidate those concepts; activities are piloted in pre-service science methods courses at SJSU and in teacher professional development workshops offered through the Bay Area Earth Science Institute (BAESI); workshop attendees frame the activities as lessons appropriate for their 6th grade students; participants who use the lessons and resources in their classrooms provide iterative feedback, which is used to improve the resources for other teachers involved in the project.
FY 2014 Continuation of Solicitation for the Office of Science Financial Assistance Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saundry, Peter
2014-04-01
On January 28-30, 2014, the National Council for Science and the Environment (NCSE) hosted its 14th National Confrerence and Global Forum on Science, Policy and the Environment: Building Climate Solutions. The conference was held at the Hyatt Regency Crystal City near the Washington, DC National Airport. The conference engaged over 1,100 key individuals from a variety of fields, including natural and social sciences, humanities and engineering and government and policy, as well as business and civil society. They developed actionable partnerships, strategies and tactics that advanced solutions minimizing the impacts of anthropogenic climate change. The conference was organized around themore » two major areas where climate actions are necessary: [1] The Built Environment; and, [2] Agriculture and Natural Resources. This “multi-sector approach” of the conference enables participants to work across traditional boundaries of discipline, science, policy and application by engaging a diverse team of scientists, public- and private-sector program managers, and policy-makers. The confernce was two and a half days long. During this time, over 200 speakers presented in 8 keynote addresses, 7 plenary roundtable discussions, 30 symposia and 23 workshops. The goal of the workshops was to generate additional action through development of improved strategies, tools, and partnerships. During the workshops, participants developed actionable outcomes, committed to further collaboration and implementation, and outlined follow-up activities for post-conference. A list of recommendations from the workshop follows this summary. NCSE’s annual conference has become a signature event for the organization, recognized for its notable presenters, innovative programming, and outcome-oriented approach. Each year, over 1,100 participants attend the event, representing federal agencies, higher education institutions, state and local governments, non-governmental and civic organizations, businesses, and international entities.« less
Hughson, Debra L.; Busch, David E.; Davis, Scott; Finn, Sean P.; Caicco, Steve; Verburg, Paul S.J.
2011-01-01
This report synthesizes the knowledge, opinions, and concerns of many Federal and State land managers, scientists, stakeholders, and partners from a workshop, held at the University of Nevada, Las Vegas, on April 20-22, 2010. Land managers, research scientists, and resource specialists identified common concerns regarding the potential effects of climate change on public lands and natural resources in the Great Basin and Mojave Desert and developed recommendations for mitigation, adaptation, and research needs. Water and, conversely, the effects of drought emerged as a common theme in all breakout sessions on terrestrial and aquatic species at risk, managing across boundaries, monitoring, and ecosystem services. Climate change models for the southwestern deserts predict general warming and drying with increasing precipitation variability year to year. Scientists noted that under these changing conditions the past may no longer be a guide to the future in which managers envision increasing conflicts between human water uses and sustaining ecosystems. Increasing environmental stress also is expected as a consequence of shifting ecosystem boundaries and species distributions, expansion of non-native species, and decoupling of biotic mutualisms, leading to increasingly unstable biologic communities. Managers uniformly expressed a desire to work across management and agency boundaries at a landscape scale but conceded that conflicting agency missions and budgetary constraints often impede collaboration. More and better science is needed to cope with the effects of climate change but, perhaps even more important is the application of science to management issues using the methods of adaptive management based on long-term monitoring to assess the merits of management actions. Access to data is essential for science-based land management. Basic inventories, spatial databases, baseline condition assessments, data quality assurance, and data sharing were identified as top information priorities by all participants at this workshop. Optimizing the utility of ecosystem monitoring data will require standardizing monitoring protocols across agencies. Better communication among researchers and managers and cooperation through partnerships to manage resources across boundaries were emphasized as necessary for adapting to changing climatic conditions. However, even these strategies may be insufficient unless policy mandates, agency missions, and funding are coordinated at a high level.
Continental drilling for paleoclimatic records: Recommendations from an international workshop
Colman, Steve M.
1995-01-01
The Workshop, entitled "Continental Drilling for Paleoclimate Records", was sponsored by the Past Global Changes (PAGES) Project, a core project of the International Geosphere-Biosphere Programme (IGBP) and by the GeoForschungsZentrum, Potsdam, Germany, in conjunction with the International Continental Drilling Programme (ICDP). The impetus for the meeting was the need for long continental paleoclimate records that will fill gaps left by the marine and ice-core records and provide information on time and spatial scales that are relevant to human activities. Further impetus came from a perceived need to balance the forecasts and reconstructions of climate models with information on actual behavior of the climate system on the continents. The meeting was organized by Steven M. Colman, Suzanne A.G. Leroy, and Jörg F.W. Negendank and was held at the GeoForschungsZentrum, Potsdam, Germany, June 30-July 2, 1995. Because the Workshop was primarily a working meeting, a relatively small number of participants were invited (Appendix 3). Leaders of the PAGES Pole-Equator-Pole (PEP) transects and existing large-lake drilling programs, along with a mixture of technical experts, were the primary group of attendees.
NASA Astrophysics Data System (ADS)
Vivoni, E. R.; Mayer, A. S.; Halvorsen, K. E.; Robles-Morua, A.; Kossak, D.
2016-12-01
A series of iterative participatory modeling workshops were held in Sonora, México with the goal of developing water resources management strategies in a water-stressed basin subject to hydro-climatic variability and change. A model of the water resources system, consisting of watershed hydrology, water resources infrastructure, and groundwater models, was developed deliberatively in the workshops, along with scenarios of future climate and development. Participants used the final version of the water resources systems model to select from supply-side and demand-side water resources management strategies. The performance of the strategies was based on the reliability of meeting current and future demands at a daily time scale over a year's period. Pre- and post-workshop surveys were developed and administered. The survey questions focused on evaluation of participants' modeling capacity and the utility and accuracy of the models. The selected water resources strategies and the associated, expected reliability varied widely among participants. Most participants could be clustered into three groups with roughly equal numbers of participants that varied in terms of reliance on expanding infrastructure vs. demand modification; expectations of reliability; and perceptions of social, environmental, and economic impacts. The wide range of strategies chosen and associated reliabilities indicate that there is a substantial degree of uncertainty in how future water resources decisions could be made in the region. The pre- and post-survey results indicate that participants believed their modeling abilities increased and beliefs in the utility of models increased as a result of the workshops
Frazier, Tim G.; Wood, Nathan; Yarnal, Brent
2010-01-01
Sustainable land-use planning requires decision makers to balance community growth with resilience to natural hazards. This balance is especially difficult in many coastal communities where planners must grapple with significant growth projections, the persistent threat of extreme events (e.g., hurricanes), and climate-change-driven sea level rise that not only presents a chronic hazard but also alters the spatial extent of sudden-onset hazards such as hurricanes. We examine these stressors on coastal, long-term land-use planning by reporting the results of a one-day community workshop held in Sarasota County, Florida that included focus groups and participatory mapping exercises. Workshop participants reflected various political agendas and socioeconomic interests of five local knowledge domains: business, environment, emergency management and infrastructure, government, and planning. Through a series of alternating domain-specific focus groups and interactive plenary sessions, participants compared the county 2050 comprehensive land-use plan to maps of contemporary hurricane storm-surge hazard zones and projected storm-surge hazard zones enlarged by sea level rise scenarios. This interactive, collaborative approach provided each group of domain experts the opportunity to combine geographically-specific, scientific knowledge on natural hazards and climate change with local viewpoints and concerns. Despite different agendas, interests, and proposed adaptation strategies, there was common agreement among participants for the need to increase community resilience to contemporary hurricane storm-surge hazards and to explore adaptation strategies to combat the projected, enlarged storm-surge hazard zones.
Extreme Events and Disaster Risk Reduction - a Future Earth KAN initiative
NASA Astrophysics Data System (ADS)
Frank, Dorothea; Reichstein, Markus
2017-04-01
The topic of Extreme Events in the context of global environmental change is both a scientifically challenging and exciting topic, and of very high societal relevance. The Future Earth Cluster initiative E3S organized in 2016 a cross-community/co-design workshop on Extreme Events and Environments from Climate to Society (http://www.e3s-future-earth.eu/index.php/ConferencesEvents/ConferencesAmpEvents). Based on the results, co-design research strategies and established network of the workshop, and previous activities, E3S is thriving to establish the basis for a longer-term research effort under the umbrella of Future Earth. These led to an initiative for a Future Earth Knowledge Action Network on Extreme Events and Disaster Risk Reduction. Example initial key question in this context include: What are meaningful indices to describe and quantify impact-relevant (e.g. climate) extremes? Which system properties yield resistance and resilience to extreme conditions? What are the key interactions between global urbanization processes, extreme events, and social and infrastructure vulnerability and resilience? The long-term goal of this KAN is to contribute to enhancing the resistance, resilience, and adaptive capacity of socio-ecological systems across spatial, temporal and institutional scales, in particular in the light of hazards affected by ongoing environmental change (e.g. climate change, global urbanization and land use/land cover change). This can be achieved by enhanced understanding, prediction, improved and open data and knowledge bases for detection and early warning decision making, and by new insights on natural and societal conditions and governance for resilience and adaptive capacity.
Barriers and Opportunities for Local-level Action on Climate ...
This presentation will highlight findings from a soon-to-be-released report (Climate Change Impacts and Potential Stormwater Responses in the Chesapeake and Great Lakes Regions) that is being developed as a technical input to the National Climate Assessment. The report is the product of a collaborative effort involving the Environmental Protection Agency, the Great Lakes Adaptation Assessment for Cities Project of the Graham Sustainability Institute at the University of Michigan, ICF International, Lake Superior National Estuarine Research Reserve, National Oceanic and Atmospheric Administration Office for Coastal Management, and Old Woman Creek National Estuarine Research Reserve. The report provides key takeaways from eight similar but locally-specific efforts to explore the potential impacts of changing precipitation patterns on stormwater management and consider options (e.g., green infrastructure, low impact development) to address those impacts. The presentation will highlight some of the lessons regarding: incorporating climate change into planning (including dealing with uncertainty); building local capacity; identifying and communicating costs and benefits of green infrastructure; and implementation within the current governance structure. Presentation about workshops held in the Chesapeake Bay and Great Lakes regions to discuss impacts of climate change on stormwater management.
Proceedings of the Space Shuttle Environmental Assessment Workshop on Stratospheric Effects
NASA Technical Reports Server (NTRS)
Potter, A. E. (Compiler)
1977-01-01
Various aspects of the potential environmental impact of space shuttle exhaust are explored. Topics include: (1) increased ultraviolet radiation levels in the biosphere due to destruction of atmospheric ozone; (2) climatic changes due to aerosol particles affecting the planetary albedo; (3) space shuttle propellants (including alternate formulations); and (4) measurement of space shuttle exhaust products.
Impacts of climate change on landscapes of the eastern Sierra Nevada and western Great Basin
A. S. Jayko; C. I. Millar
2000-01-01
This effort was developed under a U.S. GeologicalSurvey (USGS) initiative to sponsor science workshops focusingon various of multidiscipline, multiprogram themes inthe arid Southwest. The intent was to use the workshopsto explore leading-edge questions, as well as to providebetter communication and collaboration between USGS andother organizations and agencies. The...
NASA Astrophysics Data System (ADS)
Giannakopoulos, C.; Hatzaki, M.; Kostopoulou, E.; Varotsos, K.
2010-09-01
Analysing climate change and its impact needs a production of relevant elements for policy making that can be very different from the parameters considered by climate experts. In the framework of EU project CIRCE, a more realistic approach to match stakeholders and policy-makers demands is attempted. For this reason, within CIRCE selected case studies have been chosen that will provide assessments that can be integrated in practical decision making. In this work, an integrated assessment of climate change impacts on several sectors for the urban site of Athens in Greece is presented. The Athens urban case study has been chosen since it provides excellent opportunities for using an integrated approach across multiple temporal and spatial scales and sectors. In the spatial dimension, work extends from the inner city boundaries to the surrounding mountains and forests. In the temporal dimension, research ranges from the current observed time period (using available meteorological and sector data) to future time periods using data from several climate change projections. In addition, a multi-sector approach to climate change impacts is adopted. Impacts sectors covered range from direct climate impacts on natural ecosystems (such as flash floods, air pollution and forest fire risk) to indirect impacts resulting from combined climate-social-economic linkages (such as energy demand, tourism and health). Discussion of impact sector risks and adaptation measures are also exploited. Case-study work on impact sector risk to climate change is of particular interest to relevant policy makers and stakeholders, communication with who is ensured through a series of briefing notes and information sheets and through regional workshops.
Sharpen your science communication skills at a Fall Meeting workshop
NASA Astrophysics Data System (ADS)
Adams, Mary Catherine
2012-10-01
Are you eager to share your research and want to help reporters get it right? Do you yearn to enter the climate science debate but are wary of saying the wrong thing? AGU is offering two separate communications skill-building events on Sunday, 2 December 2012, for Fall Meeting attendees wishing to sharpen their communications skills. For scientists interested in talking about climate science, AGU and the Union of Concerned Scientists, an organization that combines scientific research with citizen action to create practical solutions for a healthy environment and a safer world, will offer the Communicating Climate Science Workshop on Sunday morning. A panel of experienced communicators will share their success stories and offer advice on how to avoid common missteps. Then, in an interactive workshop setting, attendees will practice identifying and effectively responding to misinformation about climate science in front of a variety of audiences.
2016 International Land Model Benchmarking (ILAMB) Workshop Report
NASA Technical Reports Server (NTRS)
Hoffman, Forrest M.; Koven, Charles D.; Keppel-Aleks, Gretchen; Lawrence, David M.; Riley, William J.; Randerson, James T.; Ahlstrom, Anders; Abramowitz, Gabriel; Baldocchi, Dennis D.; Best, Martin J.;
2016-01-01
As earth system models (ESMs) become increasingly complex, there is a growing need for comprehensive and multi-faceted evaluation of model projections. To advance understanding of terrestrial biogeochemical processes and their interactions with hydrology and climate under conditions of increasing atmospheric carbon dioxide, new analysis methods are required that use observations to constrain model predictions, inform model development, and identify needed measurements and field experiments. Better representations of biogeochemistryclimate feedbacks and ecosystem processes in these models are essential for reducing the acknowledged substantial uncertainties in 21st century climate change projections.
Paxton, Eben H.; Burgett, Jeff; McDonald-Fadden, Eve; Bean, Ellen; Atkinson, Carter T.; Ball, Donna; Cole, Colleen; Crampton, Lisa H.; Kraus, Jim; LaPointe, Dennis A.; Mehrhoff, Loyal; Samuel, Michael D.; Brewer, Donna; Converse, Sarah J.; Morey, Steve
2011-01-01
This report is a product of a one-week workshop on using Structured Decision Making to identify and prioritize conservation actions to address the threat of climate change on Hawaii‟s native forest bird community. Specifically, t his report addresses the issue of global warming ‟s likely role in increasing disease prevalence in upper elevation forests of Hawaii, negatively impacting native bird populations susceptible to the disease but currently disease - free because of the cooler temperatures at high elevations.
Building Systems from Scratch: an Exploratory Study of Students Learning About Climate Change
NASA Astrophysics Data System (ADS)
Puttick, Gillian; Tucker-Raymond, Eli
2018-01-01
Science and computational practices such as modeling and abstraction are critical to understanding the complex systems that are integral to climate science. Given the demonstrated affordances of game design in supporting such practices, we implemented a free 4-day intensive workshop for middle school girls that focused on using the visual programming environment, Scratch, to design games to teach others about climate change. The experience was carefully constructed so that girls of widely differing levels of experience were able to engage in a cycle of game design. This qualitative study aimed to explore the representational choices the girls made as they took up aspects of climate change systems and modeled them in their games. Evidence points to the ways in which designing games about climate science fostered emergent systems thinking and engagement in modeling practices as learners chose what to represent in their games, grappled with the realism of their respective representations, and modeled interactions among systems components. Given the girls' levels of programming skill, parts of systems were more tractable to create than others. The educational purpose of the games was important to the girls' overall design experience, since it influenced their choice of topic, and challenged their emergent understanding of climate change as a systems problem.
Improving The Perfect Storm: Overcoming Barriers To Climate Literacy
NASA Astrophysics Data System (ADS)
Tillinger, D.
2015-12-01
Students and scientists are trained to speak different languages. Climate science, and the geosciences more broadly, are strictly classroom topics, not subjects appropriate for casual conversation, social media, or creative projects. When students are aware of climate change through the mainstream media, it is nearly always in a political or technological context rather than a scientific one. However, given the opportunity, students are perfectly capable of not only understanding the science behind climate change, but communicating it to their peers. At the American Museum of Natural History, a group of underprivileged high school students visited Nature's Fury: The Science of Natural Disasters to learn about volcanoes, earthquakes, and climate change impacts. They were then able to write pitches and develop trailers for scientifically accurate, but still compelling, disaster movies. Arts in Parts, a creative outreach group formed as a response to Hurricane Sandy, facilitated a workshop in which younger children made mobiles from beach debris they collected while learning about the the threat of sea level rise locally and globally. Participants in an undergraduate natural disasters class wrote guides to understanding climate change that remained factual while showing great creativity and reflecting the personality of each student. Art, humor, and popular culture are the languages that society chooses to use; scientific literacy might benefit from their inclusion.
Grimm, Nancy B.; Groffman, Peter M; Staudinger, Michelle D.; Tallis, Heather
2016-01-01
The third United States National Climate Assessment emphasized an evaluation of not just the impacts of climate change on species and ecosystems, but also the impacts of climate change on the benefits that people derive from nature, known as ecosystem services. The ecosystems, biodiversity, and ecosystem services component of the assessment largely drew upon the findings of a transdisciplinary workshop aimed at developing technical input for the assessment, involving participants from diverse sectors. A small author team distilled and synthesized this and hundreds of other technical input to develop the key findings of the assessment. The process of developing and ranking key findings hinged on identifying impacts that had particular, demonstrable effects on the U.S. public via changes in national ecosystem services. Findings showed that ecosystem services are threatened by the impacts of climate change on water supplies, species distributions and phenology, as well as multiple assaults on ecosystem integrity that, when compounded by climate change, reduce the capacity of ecosystems to buffer against extreme events. As ecosystems change, such benefits as water sustainability and protection from storms that are afforded by intact ecosystems are projected to decline across the continent due to climate change. An ongoing, sustained assessment that focuses on the co-production of actionable climate science will allow scientists from a range of disciplines to ascertain the capability of their forecasting models to project environmental and ecological change and link it to ecosystem services; additionally, an iterative process of evaluation, development of management strategies, monitoring, and reevaluation will increase the applicability and usability of the science by the U.S. public.
Climate Change Science Teaching through Integration of Technology in Instruction and Research
NASA Astrophysics Data System (ADS)
Sriharan, S.; Ozbay, G.; Robinson, L.; Klimkowski, V.
2015-12-01
This presentation demonstrates the importance of collaborations between the institutions with common focus on offering the academic program on climate change science. Virginia State University (VSU) developed and established the course on climate change and adaptation, AGRI 350 for undergraduates, in cooperation with two HBCUs, Delaware State University (DSU) and Morgan State University (MSU). This program was developed to enhance the science curriculum with funding from the USDA NIFA. The hands-on research opportunities for students were supported by the NSF HBCU UP Supplement Grant at VSU. The technical guidance and lesson plans were available through the courtesy of the AMS and faculty/student team training at the NCAR. In the initial stages, the faculty members participated in faculty development workshops hosted by the AMS and NCAR. This contributed to trained faculty members developing the courses on Climate Change at VSU, DSU, and MSU. To create awareness of global climate change and exposure of students to international programs, seven students from VSU, MSU, and DSU participated in the Climate Change course (ENS 320) at the University of Sunshine Coast (USC), Australia. This international experience included faculty members in using SimCLIM for climate change data into decision-making with regard to potential changes to cropping systems and tree growth. The Climate Change program at VSU, DSU, and MSU is emerging into comprehensive academic program which includes use of case studies and exchange of students' reflections with their peers through discussion board and videoconferencing, hands-on research on water quality monitoring and mapping the study sites, and integration of geospatial technologies and i-Tree. In addition, the students' engagement in intensive research was conducted through hands-on experience with Scanning Electron Microscopy in the Marine Science Department, University of Hawaii at Hilo in summer 2015.
Technical Report Series on Global Modeling and Data Assimilation, Volume 41 : GDIS Workshop Report
NASA Technical Reports Server (NTRS)
Koster, Randal D. (Editor); Schubert, Siegfried; Pozzi, Will; Mo, Kingtse; Wood, Eric F.; Stahl, Kerstin; Hayes, Mike; Vogt, Juergen; Seneviratne, Sonia; Stewart, Ron;
2015-01-01
The workshop "An International Global Drought Information System Workshop: Next Steps" was held on 10-13 December 2014 in Pasadena, California. The more than 60 participants from 15 countries spanned the drought research community and included select representatives from applications communities as well as providers of regional and global drought information products. The workshop was sponsored and supported by the US National Integrated Drought Information System (NIDIS) program, the World Climate Research Program (WCRP: GEWEX, CLIVAR), the World Meteorological Organization (WMO), the Group on Earth Observations (GEO), the European Commission Joint Research Centre (JRC), the US Climate Variability and Predictability (CLIVAR) program, and the US National Oceanic and Atmospheric Administration (NOAA) programs on Modeling, Analysis, Predictions and Projections (MAPP) and Climate Variability & Predictability (CVP). NASA/JPL hosted the workshop with logistical support provided by the GEWEX program office. The goal of the workshop was to build on past Global Drought Information System (GDIS) progress toward developing an experimental global drought information system. Specific goals were threefold: (i) to review recent research results focused on understanding drought mechanisms and their predictability on a wide range of time scales and to identify gaps in understanding that could be addressed by coordinated research; (ii) to help ensure that WRCP research priorities mesh with efforts to build capacity to address drought at the regional level; and (iii) to produce an implementation plan for a short duration pilot project to demonstrate current GDIS capabilities. See http://www.wcrp-climate.org/gdis-wkshp-2014-objectives for more information.
Integrating Native knowledge and community perspectives in geoscience research and education
NASA Astrophysics Data System (ADS)
Sparrow, E. B.; Stephens, S.; Schneider, W.
2010-12-01
Multiple perspectives are being incorporated in geoscience research and education exemplified by ongoing projects at the University of Alaska Fairbanks. This presentation will highlight two such projects. In the Seasons and Biomes project, that monitors seasons through global learning communities, in an effort to increase K-12 student understanding of Earth as a system and the environmental changes occurring in their local environment, students are accessing different knowledge systems in their studies. During professional development workshops for K-12 teachers, Alaska Native elders and community experts have been invited to be part of the scientist-educator team to help teachers engage their students in geoscience studies. Teachers learn and practice scientific measurement protocols in investigations such as atmosphere/weather, phenology and hydrology, learn about increasing their observation skills and systems thinking and how to engage and guide their students in environmental investigations. Native elders have been involved in classroom projects to help students understand what changes have occurred and currently occurring in their villages. They have also been involved in projects where small groups of students have conducted investigations under their guidance and the teachers’/scientists’ guidance. A student group from Shageluk, Alaska, successfully completed their study on effects of environmental changes and fire, and was invited and funded along with their Native mentor, to present their findings at an international student conference. In the Stakeholders and Climate Change project, fieldwork, meetings and numerous interviews have been conducted with Tanana, Ft. Yukon, and Chalkyitsik elders and middle-aged travelers and subsistence users. These video-taped interviews have been transcribed, digitized and processed into a draft Alaska Stakeholders and Climate Change/Project Jukebox website using Drupal CMA to create and maintain dynamic content and XSLT to create synchronized transcription. Interviews also have been analyzed and sorted according to 6 emerging themes: weather, rivers and lakes, fire, permafrost, plants and animals, and seasonality. Additionally, an interview “sampler” has been produced in DVD format for sharing with communities. This past February, we conducted a Stakeholders and Climate Change Workshop that melded local and indigenous observations and scientific research. Residents of Fort Yukon, Chalkyitsik and Tanana, Alaska and IARC and other UAF scientists met for two days to discuss changes in weather, climate, seasonality and the effects on landscape, subsistence resources and activities. Participating scientists were stimulated by the questions and observations of local residents and are interested in how their knowledge and future investigations might align more directly with local concerns. Local residents were appreciative of attention to their climate change concerns and are particularly interested in how their observations link to scientific explanations and to climate change forecasts for their specific location and getting climate change information out to communities and schools.
Research Priorities for NCD Prevention and Climate Change: An International Delphi Survey
Colagiuri, Ruth; Boylan, Sinead; Morrice, Emily
2015-01-01
Climate change and non-communicable diseases (NCDs) are arguably the greatest global challenges of the 21st Century. However, the confluence between them remains under-examined and there is little evidence of a comprehensive, systematic approach to identifying research priorities to mitigate their joint impact. Consequently, we: (i) convened a workshop of academics (n = 25) from the Worldwide Universities Network to identify priority areas at the interface between NCDs and climate change; (ii) conducted a Delphi survey of international opinion leaders in public health and relevant other disciplines; and (iii) convened an expert panel to review and advise on final priorities. Three research areas (water security; transport; conceptualising NCD harms to support policy formation) were listed among the top 10 priorities by >90% of Delphi respondents, and ranked among the top 12 priorities by >60% of respondents who ranked the order of priority. A fourth area (reducing the carbon footprint of cities) was ranked highest by the same >60% of respondents. Our results are consistent with existing frameworks on health and climate change, and extends them by focusing specifically on NCDs. Researching these priorities could progress understanding of climate change and NCDs, and inform global and national policy decisions for mitigating associated harms. PMID:26501301
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The LEDS Global Partnership (LEDS GP) strives to advance climate-resilient, low-emission development through catalyzing collaboration, information exchange, and action on the ground. The Government of Kenya is a key LEDS GP member and offers an inspiring example of how LEDS GP is having an impact globally. The 2012 LEDS Collaboration in Action workshop in London provided an interactive space for members to share experiences on cross-ministerial LEDS leadership and to learn about concrete development impacts of LEDS around the world. Inspired by these stories, the Kenya's Ministry of State for Planning, National Development and Vision 2030 (MPND) began to collaboratemore » closely with the Ministry of Environment and Mineral Resources to create strong links between climate change action and development in the country, culminating in the integration of Kenya's National Climate Change Action Plan and the country's Medium Term Development Plan.« less
Preparing teachers to address climate change with project-based instructional modules
NASA Astrophysics Data System (ADS)
Powers, S. E.; DeWaters, J.; Small, M.; Dhaniyala, S.
2012-12-01
Clarkson University's Project-Based Global Climate Change Education project funded by NASA has created and disseminated several instructional modules for middle and high school teachers. The modules were developed by a team of teachers and university students and faculty. Fundamental to these inquiry-based modules are questions about climate change or mitigation efforts, use of real-world data to explore historical climate changes, and review of IPCC model results to understand predictions of further changes over the next century. As an example, the Climate Connections module requires middle school students to investigate a geographic region, learn about the culture and likely carbon footprint, and then acquire and analyze data sets of historical and predicted temperature changes. The findings are then interpreted in relation to the impact of these changes on the region's culture. NOAA, NASA, IPCC and DOE databases are used extensively. The inquiry approach and core content included in these modules are well aligned with the new Framework for K-12 Science Education. The climate change science in these modules covers aspects of the disciplinary core subjects (dimension 3) and most of the cross cutting concepts (dimension 2). Our approach for inquiry and analysis are also authentic ways to include most of the science and engineering practices (dimension 1) included in the framework. Dissemination of the modules to teachers in New York State has been a joint effort by NYSERDA (New York State Energy Research and Development Authority) and Clarkson. Half-day and full-day workshops and week-long institutes provided opportunities to either introduce the modules and the basics of finding and using temperature data, or delve into the science concepts and integration of the modules into an instructional plan. A significant challenge has been identified by the workshop instructors - many science teachers lack the skills necessary to fully engage in the science and engineering practices required for dimension 1 of the Framework for K-12 Science Education. Downloading data, using a spreadsheet to plot and analyze data and calculating basic statistical parameters are new skills for many of the teachers with whom we have worked. But our teacher professional development opportunities have been effective. 23 teachers attended the intensive one or two week-long institutes. A pre- and post-climate literacy survey administered to these teachers showed statistically significant gains (p <0.01) in their climate change content knowledge and attitudes. For example, the percentage of teachers who agreed or strongly agreed to the statement "Life on earth will continue without major disruptions only if we take immediate and drastic action to reduce global warming" increased from 52% to 90% (pre, post). Changes in responses to the behavior items were not significant. Presentation of this work will include a brief introduction to the instructional modules and climate literacy assessment as a basis for identifying the prerequisite skill sets needed by science teachers to effectively incorporate new content and engineering practices through projects that require accessing and analyzing real-world climate change and mitigation data.
Using narratives to motivate climate science
NASA Astrophysics Data System (ADS)
Stiller-Reeve, Mathew; Bremer, Scott; Blanchard, Anne
2015-04-01
This paper presents the lessons learnt by the climate scientists within an interdisciplinary research project called 'TRACKS': Transforming climate knowledge with and for society. The project uses the climate narratives of local people in northeast Bangladesh as a basis for mobilizing high quality climate knowledge for adaptation. To ensure this high quality climate information, the project demands an interdisciplinary approach. This project is therefore a broad, but tight collaboration between climate science and perspectives from social science and the humanities. For the climate scientists involved, the aim was to do research that would provide local people with climate information that would hopefully aid adaptation. The climate research design had to consider the perceptions of the local people in northeast Bangladesh, and what aspects of the local climate that they thought were important. For the climate scientists to gain an appropriate understanding, they were fully integrated into the whole narrative research process. The different disciplines cooperate fully in all aspects of the TRACKS project. The climate scientists were involved in planning the narrative interview survey about weather and how it impacts the lives of local people in northeast Bangladesh. The climate scientists participated in a workshop with social science colleagues from Bangladesh and Norway, to design the research questions, the interview framework, and the data management plan. The climate scientists then travelled to Bangladesh with social scientist colleagues to observe and discuss ten pilot interviews with local people, and to take part in two 'stakeholder-mapping' workshops. On the basis of these interviews and workshops, the climate scientists arranged an interdisciplinary workshop where all the project's researchers designed the climate science research questions together. The climate research questions have therefore been built around a first-hand interdisciplinary experience of the situation in northeast Bangladesh. At no point did we decide on the pertinent climatic issues independently of the local people. The success of this interdisciplinary approach so far has depended on time, patience, and humility. In this presentation, we present the narrative approach we have initiated in TRACKS. We will look at some of local climate narratives from the full-scale survey, as well as the challenges and the research questions that resulted from the process. We will also discuss future perspectives of how we re-integrate the new climate science into the dialogue with the local people.
Youth Climate Summits: Empowering & Engaging Youth to Lead on Climate Change
NASA Astrophysics Data System (ADS)
Kretser, J.
2017-12-01
The Wild Center's Youth Climate Summits is a program that engages youth in climate literacy from knowledge and understanding to developing action in their schools and communities. Each Youth Climate Summit is a one to three day event that brings students and teachers together to learn about climate change science, impacts and solutions at a global and local level. Through speakers, workshops and activities, the Summit culminates in a student-driven Climate Action Plan that can be brought back to schools and communities. The summits have been found to be powerful vehicles for inspiration, learning, community engagement and youth leadership development. Climate literacy with a focus on local climate impacts and solutions is a key component of the Youth Climate Summit. The project-based learning surrounding the creation of a unique, student driven, sustainability and Climate Action Plan promotes leadership skills applicable and the tools necessary for a 21st Century workforce. Student driven projects range from school gardens and school energy audits to working with NYS officials to commit to going 100% renewable electricty at the three state-owned downhill ski facilities. The summit model has been scaled and replicated in other communities in New York State, Vermont, Ohio, Michigan and Washington states as well as internationally in Finland, Germany and Sri Lanka.
NASA Astrophysics Data System (ADS)
Ozbay, G.; Sriharan, S.; Fan, C.; Prakash, A.; San Juan, F.
2016-12-01
Consortium of minority serving institutions including Delaware State University, Virginia State University, Morgan State University, University of Alaska Fairbanks, and Elizabeth City State University have collaborated on various student experiential learning programs to expand the technology-based education by incorporating Geographic Information System (GIS) technique to promote student learning on climate change and sustainability. Specific objectives of this collaborative programs are to: (i) develop new or enhance existing courses of Introduction to Geographic Information System (GIS) and Introduction to Remote Sensing, (ii) enhance teaching and research capabilities through faculty professional development workshops, (iii) engage minority undergraduates in GIS and remote sensing research via experiential learning activities including summer internship, workshop, and work study experience. Ultimate goal is to prepare pipeline of minority task force with skills in GIS and remote sensing application in climate sciences. Various research projects were conducted on topics such as carbon footprint, atmospheric CO2, wildlife diversity, ocean circulation, wild fires, geothermal exploration, etc. Students taking GIS and remote sensing courses often express interests to be involved in research projects to enhance their knowledge and obtain research skills. Of about 400 students trained, approximately 30% of these students were involved in research experience in our programs since 2004. The summer undergraduate research experiences (REU) have offered hands-on research experience to the students on climate change and sustainability. Previous studies indicate that students who are previously exposed to environmental science only by a single field trip or an introductory course could be still at risk of dropping out of this field in their early years of the college. The research experience, especially at early college years, would significantly increase the participation and retention of students in climate sciences and sustainability by creating and maintaining interest in these areas. These programs promoted active recruitment of faculty, staff, and students, fostered the development of partnerships, and enhanced related skill sets among students in GIS and remote sensing.
Greening the Curriculum? History Joins "The Usual Suspects" in Teaching Climate Change
ERIC Educational Resources Information Center
Hawkey, Kate; James, Jon; Tidmarsh, Celia
2016-01-01
Inspired by the news that Bristol had become the UK's first Green Capital, Kate Hawkey, Jon James and Celia Tidmarsh set out to explore what a "Green Capital" School Curriculum might look like. Hawkey, James and Tidmarsh explain how they created a cross-curricular project to deliver in-school workshops focused on the teaching of climate…
The Center for Sponsored Coastal Ocean Research (CSCOR) is addressing current and future impacts to ecological systems due to the long term effect of sea level rise due to climate change and subsidence on coastal ecosystems through the peer-reviewed research program, the Ecologic...
Restoring fire-adapted ecosystems: proceedings of the 2005 national silviculture workshop
Robert F. Powers
2007-01-01
Many federal forests are at risk to catastrophic wild fire owing to past management practices and policies. Mangers of these forests face the immense challenge of making their forests resilient to wild fire, and the problem is complicated by the specter of climate change that may affect wild fire frequency and intensity. Some of the Nation’s leading...
Promoting Action on Climate Change through Scientific Storytelling and the Green Ninja Film Academy
NASA Astrophysics Data System (ADS)
Cordero, E.; Metzger, E. P.; Smith, G.
2013-12-01
Encouraging student interest on the challenges and opportunities associated with our changing climate can both promote science literacy and enable future reductions in carbon emissions. The goal of the Green Ninja Project is to affect youth culture in ways that promote informed action on climate change. The character and story of the Green Ninja are communicated in a series of quirky short films on YouTube, which focus on actions to reduce human impact. To complement the related underlying science, the films are designed in parallel with a set of engagement experiences that encourage young people to take action on climate change. One such experience is the Green Ninja Film Academy, a classroom experience where students use scientific storytelling to make their own Green Ninja films. Student filmmakers are asked to tell a story related to climate science for a particular audience using the Green Ninja as a storyline. In July 2013, a group of 24 teachers attended a workshop to develop experience using filmmaking to engage their students in climate science topics. The filmmaking experience is designed to promote integrated learning in the sciences, language arts, and technology fields. Students will have the opportunity to submit their films to the Green Ninja Film Festival for possible public screening and awards. Student films will also receive coaching from a panel of scientists and filmmakers. An initial analysis of the effectiveness of this project in engaging student action on climate change will be discussed.
Impacts of climate change on public health in India: future research directions.
Bush, Kathleen F; Luber, George; Kotha, S Rani; Dhaliwal, R S; Kapil, Vikas; Pascual, Mercedes; Brown, Daniel G; Frumkin, Howard; Dhiman, R C; Hess, Jeremy; Wilson, Mark L; Balakrishnan, Kalpana; Eisenberg, Joseph; Kaur, Tanvir; Rood, Richard; Batterman, Stuart; Joseph, Aley; Gronlund, Carina J; Agrawal, Arun; Hu, Howard
2011-06-01
Climate change and associated increases in climate variability will likely further exacerbate global health disparities. More research is needed, particularly in developing countries, to accurately predict the anticipated impacts and inform effective interventions. Building on the information presented at the 2009 Joint Indo-U.S. Workshop on Climate Change and Health in Goa, India, we reviewed relevant literature and data, addressed gaps in knowledge, and identified priorities and strategies for future research in India. The scope of the problem in India is enormous, based on the potential for climate change and variability to exacerbate endemic malaria, dengue, yellow fever, cholera, and chikungunya, as well as chronic diseases, particularly among the millions of people who already experience poor sanitation, pollution, malnutrition, and a shortage of drinking water. Ongoing efforts to study these risks were discussed but remain scant. A universal theme of the recommendations developed was the importance of improving the surveillance, monitoring, and integration of meteorological, environmental, geospatial, and health data while working in parallel to implement adaptation strategies. It will be critical for India to invest in improvements in information infrastructure that are innovative and that promote interdisciplinary collaborations while embarking on adaptation strategies. This will require unprecedented levels of collaboration across diverse institutions in India and abroad. The data can be used in research on the likely impacts of climate change on health that reflect India's diverse climates and populations. Local human and technical capacities for risk communication and promoting adaptive behavior must also be enhanced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz, H.F.; Hughes, M.K.
The workshop will focus on climatic variations during the Medieval Warm Period or Little Climatic Optimum. The nominal time interval assigned to this period is AD 900--1300, but climate information available during the century or two preceding and following this episode is welcome. The aims of the workshop will be to: examine the available evidence for the existence of this episode; assess the spatial and temporal synchronicity of the climatic signals; discuss possible forcing mechanisms; and identify areas and paleoenvironmental records where additional research efforts are needed to improve our knowledge of this period. This document consists of abstracts ofmore » eighteen papers presented at the meeting.« less
Wagner, Frederic H.; Stohlgren, T.J.; Baldwin, C.K.; Mearns, L.O.; Wagner, Frederic H.
2003-01-01
Three procedures were used to develop a set of plausible scenarios of anthropogenic climate change by the year 2100 that could be posed to the sectors selected for assessment (Fig. 2.2). First, a workshop of climatologists with expertise in western North American climates was convened from September 10-12, 1998 at the National Center for Ecological Analysis and Synthesis in Santa Barbara, CA to discuss and propose a set of scenarios for the Rocky Mountain/Great Basin (RMGB) region.Secondly, the 20th-century climate record was analyzed to determine what trends might have occurred during the period. Since CO2 and other greenhouse gases increased during the century, it was reasonable to examine whether the changes projected for the 21st century had begun to appear during the 20th, at least qualitatively though not quantitatively.Third, on the assumption of a two-fold increase in atmospheric CO2 by 2100, climate-change scenarios for the 21st century were projected with two, state-of-the-art computer models that simulate the complex interactions between earth, atmosphere, and ocean to produce the earth’s climate system. Each of the last two procedures has its strengths and weaknesses, and each can function to some degree as a check on the other. The historical analysis has the advantage of using empirical measurements of actual climate change taken over an extensive network of measuring stations. These make it possible to subdivide a large region like the RMGB into subreqions to assess the uniformity of climate and climate change over the region. And the historical measurements can to some degree serve as a check on the GCM simulations when the two are compared over the same time period.
Multiagency Initiative to Provide Greenhouse Gas Information
NASA Astrophysics Data System (ADS)
Boland, Stacey W.; Duren, Riley M.
2009-11-01
Global Greenhouse Gas Information System Workshop; Albuquerque, New Mexico, 20-22 May 2009; The second Greenhouse Gas Information System (GHGIS) workshop brought together 74 representatives from 28 organizations including U.S. government agencies, national laboratories, and members of the academic community to address issues related to the understanding, operational monitoring, and tracking of greenhouse gas emissions and carbon offsets. The workshop was held at Sandia National Laboratories and organized by an interagency collaboration among NASA centers, Department of Energy laboratories, and the U.S. National Oceanic and Atmospheric Administration. It was motivated by the perceived need for an integrated interagency, community-wide initiative to provide information about greenhouse gas sources and sinks at policy-relevant temporal and spatial scales. Such an initiative could significantly enhance the ability of national and regional governments, industry, and private citizens to implement and evaluate effective climate change mitigation policies.
Migration stopover ecology of western avian populations: A southwestern migration workshop
Skagen, Susan K.; Melcher, Cynthia P.; Hazelwood, Rob
2004-01-01
Workshop participants discussed a coordinated approach for addressing immediate research needs regarding migration patterns and crucial stopover sites and types. They envisioned a three-tiered, coordinated approach: (1) long-term research to address effects of climate change and other large-scale patterns, (2) intensive, short-term survey and monitoring efforts using a stratified random design within habitats of interest to elucidate regional patterns of distribution and habitat use, and (3) research conducted at existing survey and banding sites to address more in-depth questions (e.g., rates of lipid deposition, microhabitat use, isotope analyses). There was considerable interest in developing common research proposals to blend the broad expertise represented at this workshop. A second meeting is recommended to build on the momentum of these discussions, to facilitate collaborations, and further the goals of integrated approaches to broadscale research on migration stopover ecology.
Advantages of a polycentric approach to climate change policy
NASA Astrophysics Data System (ADS)
Cole, Daniel H.
2015-02-01
Lack of progress in global climate negotiations has led scholars to reconsider polycentric approaches to climate policy. Several examples of subglobal mechanisms to reduce greenhouse-gas emissions have been touted, but it remains unclear why they might achieve better climate outcomes than global negotiations alone. Decades of work conducted by researchers associated with the Vincent and Elinor Ostrom Workshop in Political Theory and Policy Analysis at Indiana University have emphasized two chief advantages of polycentric approaches over monocentric ones: they provide more opportunities for experimentation and learning to improve policies over time, and they increase communications and interactions -- formal and informal, bilateral and multilateral -- among parties to help build the mutual trust needed for increased cooperation. A wealth of theoretical, empirical and experimental evidence supports the polycentric approach.
Climate science in a postnormal context
NASA Astrophysics Data System (ADS)
Krauss, Werner; von Storch, Hans
2012-03-01
Postnormal Science: The Case of Climate Research; Hamburg, Germany, 4-6 May 2011 Climate research has left the narrow confines of pure science and has entered the public arena. At a workshop organized by Helmholtz Research Centre Geesthacht and the KlimaCampus, University of Hamburg, experts from the cultural, social, and natural sciences discussed the current state of climate science through the lens of "postnormal science" (see, e.g., S. O. Funtowicz and J. R. Ravetz, "Science for the postnormal age," Futures,25, 739-755, 1993). Science turns postnormal when facts are uncertain, stakes are high, values are disputed, and decisions are urgent. During the workshop, situations and practices in climate research were identified and discussed to provide a solid empirical basis for a more realistic definition of climate science.
Integrating Earth System Science Data Into Tribal College and University Curricula
NASA Astrophysics Data System (ADS)
Tilgner, P. J.; Perkey, D. J.
2007-12-01
Universities Space Research Association and Sinte Gleska University (SGU) have teamed with eight Tribal Colleges and Universities (TCUs) to participate in a NASA Earth Science funded project, TRibal Earth Science and Technology Education (TRESTE) project which focuses on TCU faculty teaching undergraduate Earth science courses to non-science and science students, with particular attention to TCU faculty teaching K-12 pre- and in- service teachers. The eight partner TCUs are: Blackfeet Community College (BCC), Browning, MT, Fond du Lac Tribal and Community College, Cloquet, MN, Fort Berthold Community College, New Town, ND, Little Priest Tribal College, Winnebago, NE, Oglala Lakota College, Pine Ridge, SD, Sitting Bull College, Fort Yates, ND, Turtle Mountain Community College, Belcourt, ND, United Tribes Technical College (UTTC), Bismarck, ND. The goal of this 3-year project is to promote the use of NASA Earth science data and products in the classroom thereby enabling faculty to inspire undergraduate students to careers in Earth system science, the physical sciences, and related fields of science and engineering. To accomplish this goal we are targeting three areas: (1) course content - enhance the utilization of Earth system science and physical science concepts, (2) teaching methodology - develop problem-based learning (PBL) methods, and (3) tools and technology - increase the utilization of GIS and remote sensing in the classroom. We also have enlisted ESRI, NativeView and the USGS as collaborators. To date we have held an introductory "needs" workshop at the USGS EROS Data Center and two annual workshops, one at UTTC and the second at BCC. During these annual workshops we have divided our time among the three areas. We have modeled the workshops using the PBL or Case Study approach by starting with a story or current event. Topics for the annual workshops have been Drought and Forest and Grassland Fires. These topics led us into the solar radiation budget, surface energy budgets, climate and climate change, impacts, etc. GIS and remote sensing training has focused on importing, converting and displaying data sets related to drought and fires. The Integrated Science courses at SGU, designed primarily for pre-service elementary teachers, have incorporated physical science concepts and teaching approaches presented at the TRESTE annual workshops. The content of the courses follows the PBL teaching approach and is organized around a relevant, local problem such as prairie dog control and prairie management. Concepts from Earth, life and physical sciences are included in the course design. The fall course is introduced using recent news articles on legislation to control prairie dogs. After expressing their ideas based solely on experience and emotion, students determine what knowledge they will need to write an informed opinion on the issue. One of the instructional units for the course includes instruction and practice in interpreting satellite images of the local reservation to determine impact of prairie dog towns on vegetation. Students also conduct soil studies in the disturbed areas and nearby undisturbed areas. Data is gathered on soil chemistry, soil temperatures, and surface temperatures, measured with an infrared sensor provided by the TRESTE grant. Additional topics covered in the course that contain information from the annual workshops, include prairie fires, climate and climate change, and effects of the drought on local bodies of water.
Baron, Jill S.; Griffith, Brad; Joyce, Linda A.; Kareiva, Peter; Keller, Brian D.; Palmer, Margaret A.; Peterson, Charles H.; Scott, J. Michael; Julius, Susan Herrod; West, Jordan M.
2008-01-01
Climate variables are key determinants of geographic distributions and biophysical characteristics of ecosystems, communities, and species. Climate change is therefore affecting many species attributes, ecological interactions, and ecosystem processes. Because changes in the climate system will continue into the future regardless of emissions mitigation, strategies for protecting climate-sensitive ecosystems through management will be increasingly important. While there will always be uncertainties associated with the future path of climate change, the response of ecosystems to climate impacts, and the effects of management, it is both possible and essential for adaptation to proceed using the best available science. This report provides a preliminary review of adaptation options for climate-sensitive ecosystems and resources in the United States. The term “adaptation” in this document refers to adjustments in human social systems (e.g., management) in response to climate stimuli and their effects. Since management always occurs in the context of desired ecosystem conditions or natural resource management goals, it is instructive to examine particular goals and processes used by different organizations to fulfill their objectives. Such an examination allows for discussion of specific adaptation options as well as potential barriers and opportunities for implementation. Using this approach, this report presents a series of chapters on the following selected management systems: National Forests, National Parks, National Wildlife Refuges, Wild and Scenic Rivers, National Estuaries, and Marine Protected Areas. For these chapters, the authors draw on the literature, their own expert opinion, and expert workshops composed of resource management scientists and representatives of managing agencies. The information drawn from across these chapters is then analyzed to develop the key synthetic messages presented below.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maurakis, Eugene G
Objectives of the two-year study were to (1) establish baselines for fish and macroinvertebrate community structures in two mid-Atlantic lower Piedmont watersheds (Quantico Creek, a pristine forest watershed; and Cameron Run, an urban watershed, Virginia) that can be used to monitor changes relative to the impacts related to climate change in the future; (2) create mathematical expressions to model fish species richness and diversity, and macroinvertebrate taxa and macroinvertebrate functional feeding group taxa richness and diversity that can serve as a baseline for future comparisons in these and other watersheds in the mid-Atlantic region; and (3) heighten people’s awareness, knowledgemore » and understanding of climate change and impacts on watersheds in a laboratory experience and interactive exhibits, through internship opportunities for undergraduate and graduate students, a week-long teacher workshop, and a website about climate change and watersheds. Mathematical expressions modeled fish and macroinvertebrate richness and diversity accurately well during most of the six thermal seasons where sample sizes were robust. Additionally, hydrologic models provide the basis for estimating flows under varying meteorological conditions and landscape changes. Continuations of long-term studies are requisite for accurately teasing local human influences (e.g. urbanization and watershed alteration) from global anthropogenic impacts (e.g. climate change) on watersheds. Effective and skillful translations (e.g. annual potential exposure of 750,000 people to our inquiry-based laboratory activities and interactive exhibits in Virginia) of results of scientific investigations are valuable ways of communicating information to the general public to enhance their understanding of climate change and its effects in watersheds.« less
Evaluation of the Earth System CoG Infrastructure in Supporting a Model Intercomparison Project
NASA Astrophysics Data System (ADS)
Wallis, J. C.; Rood, R. B.; Murphy, S.; Cinquini, L.; DeLuca, C.
2013-12-01
Earth System CoG is a web-based collaboration environment that combines data services with metadata and project management services. The environment is particularly suited to support software development and model intercomparison projects. CoG was recently used to support the National Climate Predictions and Projections Platform (NCPP) Quantitative Evaluation of Downscaling (QED-2013) workshop. QED-2013 was a workshop with a community approach for the objective, quantitative evaluation of techniques to downscale climate model predictions and projections. This paper will present a brief introduction to CoG, QED-2013, and findings from an ethnographic evaluation of how CoG supported QED-2013. The QED-2013 workshop focused on real-world application problems drawn from several sectors, and contributed to the informed use of downscaled data. This workshop is a part of a larger effort by NCPP and partner organizations to develop a standardized evaluation framework for local and regional climate information. The main goals of QED-2013 were to a) coordinate efforts for quantitative evaluation, b) develop software infrastructure, c) develop a repository of information, d) develop translational and guidance information, e) identify and engage key user communities, and f) promote collaboration and interoperability. CoG was a key player in QED-2013 support. NCPP was an early adopter of the CoG platform, providing valuable recommendations for overall development plus specific workshop-related requirements. New CoG features developed for QED-2013 included: the ability to publish images and associated metadata contained within XML files to its associated data node combine both artifacts into an integrated display. The ability to modify data search facets into scientifically relevant groups and display dynamic lists of workshop participants and their interests was also added to the interface. During the workshop, the QED-2013 project page on CoG provided meeting logistics, meeting materials, shared spaces and resources, and data services. The evaluation of CoG tools was focused on the usability of products rather than metrics, such as number of independent hits to a web site. We wanted to know how well CoG tools supported the workshop participants and their tasks. For instance, what workshop tasks could be performed within the CoG environment? Were these tasks performed there or with alternative tools? And do participants plan to use the tools after the workshop for other projects? Ultimately, we wanted to know if CoG contributed to NCPP's need for a flexible and extensible evaluation platform, and did it support the integration of dispersed resources, quantitative evaluation of climate projections, and the generation and management of interpretive information. Evaluation of the workshop and activity occurred during, at the end of, and after the workshop. During the workshop, an ethnographer observed and participated in the workshop, and collected short, semi-structured interviews with a subset of the participants. At the end of the workshop, an exit survey was administered to all the participants. After the workshop, a variety of methods were used to capture the impact of the workshop.
NASA Astrophysics Data System (ADS)
Schuster, D. A.; Thomas, C. W.; Filippelli, G. M.
2006-12-01
Creating an informed citizenry through the promotion of the earth sciences as a long-term educational and employment option has become increasingly difficult: In recent years less than 7% of high school students and less than 12% of 8th graders in our nation have participated in an earth science course. These percentages are even lower among students of color, who often lack role models in the sciences. SMOGEE: Students as Mentors and Owners of Geoscience and Environmental Education: The Global Warming Road Show; is a dynamic, three-phase, tiered mentoring program that selects and empowers 11th and 12th graders from science magnet programs to teach well-known and tested climate change curricula to 8th graders from local feeder schools. This program, which was recently funded by the National Science Foundation, focuses on a student population comprised of 75% non-white students and above 50% students on free or reduced lunch, and will be supported by an expert team consisting of university scientists and science educators, secondary science teachers, and museum educators. Global warming provides an outstanding "teachable moment" in that the processes leading to it are straightforward, but the net rate of impact and the human response are not so simple. This topic is also media- friendly (being politically sensitive, but also easy to translate in terms of rising temperatures and sea level, melting of ice sheets, possible increases in hurricane activity), and nearly all students have been exposed to information about climate change. However, students are probably not as aware of the geologic context of climate change, which provides nearly all of the scenarios for the potential impacts of future climate change. The 8th grade curriculum for this program is being developed primarily using Global Warming and the Greenhouse Effect (Great Explorations in Math and Science, 1990). The expert team will supplement and further develop this 15 year old curriculum with recent data and analysis focusing on key concepts of climate change (feedback loops, ice sheet melting, ocean circulation and sea level changes, climatic history, evolutionary adaptations to climate, etc.) to ensure that this intervention is current and to demonstrate the dynamic nature of science. During an intensive summer workshop 11th and 12th grade students will work with scientists and educators to understand and think about how to effectively teach climate change content to 8th graders. During the fall semester of the following year the workshop graduates will teach 25 to 30 8th graders a five week climate unit. The project will culminate with the 11th and 12th grade student-mentors working with the 8th graders to create a "Road Show," which will be presented to approximately 1000 underrepresented middle school students in our city.
Developing tools and strategies for communicating climate change
NASA Astrophysics Data System (ADS)
Bader, D.; Yam, E. M.; Perkins, L.
2011-12-01
Research indicates that the public views zoos and aquariums as reliable and trusted sources for information on conservation. Additionally, visiting zoos and aquariums helps people reconsider their connections to conservation issues and solutions. The Aquarium of the Pacific, an AZA-accredited institution that serves the most ethnically diverse population of all aquariums in the nation, is using exhibit space, technology, public programming, and staff professional development to present a model for how aquariums can promote climate literacy. Our newest galleries and programs are designed to immerse our visitors in experiences that connect our live animal collection to larger themes on ocean change. The Aquarium is supporting our new programming with a multifaceted staff professional development that exposes our interpretive staff to current climate science and researchers as well as current social science on public perception of climate science. Our staff also leads workshops for scientists; these sessions allow us to examine learning theory and develop tools to communicate science and controversial subjects effectively. Through our partnerships in the science, social science, and informal science education communities, we are working to innovate and develop best practices in climate communication.
History of NASA/Native People Native Homelands Initiative
NASA Technical Reports Server (NTRS)
Maynard, Nancy
2000-01-01
This workshop is one of the follow-on local assessment activities from the US National Assessment on the Impact of Climate Change on the US. N. Maynard (for NASA) helped create and get under way an initiative which brought together climate change scientists from around the US with Native Americans to bring together classic Western European scientists with knowledge from native peoples - from such sources as oral histories of drought, major fires, etc. The purpose of this was to encourage not only joint science but also bring NASA resources and education materials to Tribal schools and encourage joint preparation of educational and training materials. N. Maynard's talk will provide history of that process and discuss possible ways to collaborate in the future, building on this effort.
NASA Nice Climate Change Education
NASA Astrophysics Data System (ADS)
Frink, K.; Crocker, S.; Jones, W., III; Marshall, S. S.; Anuradha, D.; Stewart-Gurley, K.; Howard, E. M.; Hill, E.; Merriweather, E.
2013-12-01
Authors: 1 Kaiem Frink, 4 Sherry Crocker, 5 Willie Jones, III, 7 Sophia S.L. Marshall, 6 Anuadha Dujari 3 Ervin Howard 1 Kalota Stewart-Gurley 8 Edwinta Merriweathe Affiliation: 1. Mathematics & Computer Science, Virginia Union University, Richmond, VA, United States. 2. Mathematics & Computer Science, Elizabeth City State Univ, Elizabeth City, NC, United States. 3. Education, Elizabeth City State University, Elizabeth City, NC, United States. 4. College of Education, Fort Valley State University , Fort Valley, GA, United States. 5. Education, Tougaloo College, Jackson, MS, United States. 6. Mathematics, Delaware State University, Dover, DE, United States. 7. Education, Jackson State University, Jackson, MS, United States. 8. Education, Alabama Agricultural and Mechanical University, Huntsville, AL, United States. ABSTRACT: In this research initiative, the 2013-2014 NASA NICE workshop participants will present best educational practices for incorporating climate change pedagogy. The presentation will identify strategies to enhance instruction of pre-service teachers to aligned with K-12 Science, Technology, Engineering and Mathematics (STEM) standards. The presentation of best practices should serve as a direct indicator to address pedagogical needs to include climate education within a K-12 curriculum Some of the strategies will include inquiry, direct instructions, and cooperative learning . At this particular workshop, we have learned about global climate change in regards to how this is going to impact our life. Participants have been charged to increase the scientific understanding of pre-service teachers education programs nationally to incorporate climate education lessons. These recommended practices will provide feasible instructional strategies that can be easily implemented and used to clarify possible misconceptions and ambiguities in scientific knowledge. Additionally, the presentation will promote an awareness to the many facets in which climate change education can be beneficial to future learners and general public. The main scope is to increase the amount of STEM knowledge throughout the nations scientific literacy as we are using the platform of climate change. Federal entities which may include but not limited to National Security Agency and the Department of Homeland Security and Management will serve as resources partners for this common goal of having a more knowledgeable technological savvy and scientific literate society. The presentation will show that incorporating these best practices into elementary and early childhood education undergraduate programs will assist with increasing a enhance scientific literate society. As a measurable outcome have a positive impact on instructional effectiveness of future teachers. Their successfully preparing students in meeting the standards of the Common Core Initiative will attempt to measure across the curriculum uniformly.
Norway and Cuba Continue Collaborating to Build Capacity to Improve Weather Forecasting
NASA Astrophysics Data System (ADS)
Antuña, Juan Carlos; Kalnay, Eugenia; Mesquita, Michel D. S.
2014-06-01
The Future of Climate Extremes in the Caribbean Extreme Cuban Climate (XCUBE) project, which is funded by the Norwegian Directorate for Civil Protection as part of an assignment for the Norwegian Ministry of Foreign Affairs to support scientific cooperation between Norway and Cuba, carried out a training workshop on seasonal forecasting, reanalysis data, and weather research and forecasting (WRF). The workshop was a follow-up to the XCUBE workshop conducted in Havana in 2013 and provided Cuban scientists with access to expertise on seasonal forecasting, the WRF model developed by the National Center for Atmospheric Research (NCAR) and the community, data assimilation, and reanalysis.
NASA Astrophysics Data System (ADS)
Stylinski, C.; Griswold, M.
2012-12-01
Improving climate literacy is necessary to effectively respond to climate change impacts. However, climate change education efforts face significant hurdles both in the classroom and in out-of-school settings. These include addressing uncertainity and the complex mix of drivers and impacts that occur over large spatial and temporal scales. These efforts are further hampered by audiences who are disinterested and resisant to discussions of anthropogenic climate change. Bridging formal and informal education experiences focused on climate change offers a potentially powerful strategy to tackle these challenges. In this session, we will describe our NSF-funded Maryland-Delaware Climate Change Education, Assessment and Research (MADE-CLEAR) project, which applies a comprehensive regional partnership among scientists, education researchers, K-12 and informal education practitioners, and other stakeholders to improve public and student understanding of and engagement in climate change issues and solutions. To better understand gaps and opportunities, we have conducted surveys and interviews with K-12, informal, and undergraduate educators and administrators. We found that climate change education aligns with most institutions' missions and efforts, that most educators do not face institutional barriers to climate change education, and that climate change is typically incorporated as part of a host of environmental issues. Despite this, climate change education is still quite limited with few institutions explicitly focusing on climate change in their programming. Additionally, there is little apparent communication among these institutions with regard to this issue. In response to these needs, we have focused the MADE-CLEAR project on creating and providing regionally-relevant resouces and professional development on climate change science, impacts and solutions for both formal and informal educators. Our approach is collaborative and includes strategies to promote networking within and among these two groups. For example, we will lead joint workshops where K-12 teachers can share their in-depth understanding of climate change concepts and links to education standards, while free-choice-learning practitioners can provide their expertise in engaging diverse audiences and supporting more learner-centered teaching. Our resources will further support a formal-informal bridge by helping both groups of educators make climate change relevant to their audiences with local examples of impacts and ways to mitigate or adapt to these impacts. Our project includes design-based research, and thus we will examine how our professional development is translated into practice at different types of institutions and the impact of our approach on enhancing formal-informal education collaborations focused on climate change education.
Key challenges and priorities for modelling European grasslands under climate change.
Kipling, Richard P; Virkajärvi, Perttu; Breitsameter, Laura; Curnel, Yannick; De Swaef, Tom; Gustavsson, Anne-Maj; Hennart, Sylvain; Höglind, Mats; Järvenranta, Kirsi; Minet, Julien; Nendel, Claas; Persson, Tomas; Picon-Cochard, Catherine; Rolinski, Susanne; Sandars, Daniel L; Scollan, Nigel D; Sebek, Leon; Seddaiu, Giovanna; Topp, Cairistiona F E; Twardy, Stanislaw; Van Middelkoop, Jantine; Wu, Lianhai; Bellocchi, Gianni
2016-10-01
Grassland-based ruminant production systems are integral to sustainable food production in Europe, converting plant materials indigestible to humans into nutritious food, while providing a range of environmental and cultural benefits. Climate change poses significant challenges for such systems, their productivity and the wider benefits they supply. In this context, grassland models have an important role in predicting and understanding the impacts of climate change on grassland systems, and assessing the efficacy of potential adaptation and mitigation strategies. In order to identify the key challenges for European grassland modelling under climate change, modellers and researchers from across Europe were consulted via workshop and questionnaire. Participants identified fifteen challenges and considered the current state of modelling and priorities for future research in relation to each. A review of literature was undertaken to corroborate and enrich the information provided during the horizon scanning activities. Challenges were in four categories relating to: 1) the direct and indirect effects of climate change on the sward 2) climate change effects on grassland systems outputs 3) mediation of climate change impacts by site, system and management and 4) cross-cutting methodological issues. While research priorities differed between challenges, an underlying theme was the need for accessible, shared inventories of models, approaches and data, as a resource for stakeholders and to stimulate new research. Developing grassland models to effectively support efforts to tackle climate change impacts, while increasing productivity and enhancing ecosystem services, will require engagement with stakeholders and policy-makers, as well as modellers and experimental researchers across many disciplines. The challenges and priorities identified are intended to be a resource 1) for grassland modellers and experimental researchers, to stimulate the development of new research directions and collaborative opportunities, and 2) for policy-makers involved in shaping the research agenda for European grassland modelling under climate change. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Radhakrishnan, A.; Gupta, J.
2017-12-01
Climate change and variability has added many atrociousness to India's food security challenges and the relationship between the asset components of farmers and climate change is always complex. In India, dairy farming substantially contributes towards the food security and always plays a supportive role to agriculture from the adversities. This study provides an overview of the socio economic and livelihood vulnerability of small holder dairy farmers of India to climate change and variability in three dimensions — sensitivity, exposure and adaptive capacity by combining 70 indicators and 12 major components. The livelihood and socio economic vulnerability of dairy farmers to climate change and variability is assessed at taluka level in India through detailed house hold level data of livelihoods of Western Ghats region of India collected by several levels of survey and through Participatory Rural Appraisal (PRA) techniques from selected farmers complemented by thirty years of gridded weather data and other secondary data sources. The index score of dairy based livelihoods of Maharashtra was highly negative compared to other states with about 50 percent of farmers having high level of vulnerability with significant tradeoff between milk productivity and health, food, natural disasters-climate variability components. It finds that ensuring food security in the scenario of climate change will be a dreadful challenge and recommends identification of different potential options depending on local contexts at grass root level, the adoption of sustainable agricultural practices, focusing on improving the adaptive capacity component, provision of livelihood security, preparing the extensionists of Krishi Vigyan Kendras (KVKs)- universities to deal with the risks through extensive training programmes, long-term relief measures in the event of natural disasters, workshops on climate science and communication and promoting farmer centric extension system.
NASA Astrophysics Data System (ADS)
Dullinger, Iwona; Bohner, Andreas; Dullinger, Stefan; Essl, Franz; Gaube, Veronika; Haberl, Helmut; Mayer, Andreas; Plutzar, Christoph; Remesch, Alexander
2016-04-01
Land-use and climate change are important, pervasive drivers of global environmental change and pose major threats to global biodiversity. Research to date has mostly focused either on land-use change or on climate change, but rarely on the interactions between both drivers, even though it is expected that systemic feedbacks between changes in climate and land use will have important effects on biodiversity. In particular, climate change will not only alter the pool of plant and animal species capable of thriving in a specific area, it will also force land owners to reconsider their land use decisions. Such changes in land-use practices may have major additional effects on local and regional species composition and abundance. In LUBIO, we will explore the anticipated systemic feedbacks between (1) climate change, (2) land owner's decisions on land use, (3) land-use change, and (4) changes in biodiversity patterns during the coming decades in a regional context which integrates a broad range of land use practices and intensity gradients. To achieve this goal, an integrated socioecological model will be designed and implemented, consisting of three principal components: (1) an agent based model (ABM) that simulates decisions of important actors, (2) a spatially explicit GIS model that translates these decisions into changes in land cover and land use patterns, and (3) a species distribution model (SDM) that calculates changes in biodiversity patterns following from both changes in climate and the land use decisions as simulated in the ABM. Upon integration of these three components, the coupled socioecological model will be used to generate scenarios of future land-use decisions of landowners under climate change and, eventually, the combined effects of climate and land use changes on biodiversity. Model development of the ABM will be supported by a participatory process intended to collect regional and expert knowledge through a series of expert interviews, a series of transdisciplinary participatory modelling workshops, and a questionnaire-based survey targeted at regional farmers. Beside the integrated socioecological model a catalogue of recommended actions will be developed in order to distribute the insights of the research to the most relevant regional stakeholder groups.
Geoscience Diversity Experiential Simulations (GeoDES) Workshop Report
NASA Astrophysics Data System (ADS)
Houlton, H. R.; Chen, J.; Brown, B.; Samuels, D.; Brinkworth, C.
2017-12-01
The geosciences have to solve increasingly complex problems relating to earth and society, as resources become limited, natural hazards and changes in climate impact larger communities, and as people interacting with Earth become more interconnected. However, the profession has dismally low representation from geoscientists who are from diverse racial, ethnic, or socioeconomic backgrounds, as well as women in leadership roles. This underrepresentation also includes individuals whose gender identity/expression is non-binary or gender-conforming, or those who have physical, cognitive, or emotional disabilities. This lack of diversity ultimately impacts our profession's ability to produce our best science and work with the communities that we strive to protect and serve as stewards of the earth. As part of the NSF GOLD solicitation, we developed a project (Geoscience Diversity Experiential Simulations) to train 30 faculty and administrators to be "champions for diversity" and combat the hostile climates in geoscience departments. We hosted a 3-day workshop in November that used virtual simulations to give participants experience in building the skills to react to situations regarding bias, discrimination, microaggressions, or bullying often cited in geoscience culture. Participants interacted with avatars on screen, who responded to participants' actions and choices, given certain scenarios. The scenarios are framed within a geoscience perspective; we integrated qualitative interview data from informants who experienced inequitable judgement, bias, discrimination, or harassment during their geoscience careers. The simulations gave learners a safe environment to practice and build self-efficacy in how to professionally and productively engage peers in difficult conversations. In addition, we obtained pre-workshop survey data about participants' understanding regarding Diversity, Equity, and Inclusion practices, as well as observation data of participants' responses during the simulations. Follow-up activities include monthly online meetings to engage problem solving and strategy-building skills for catalyzing institutional culture change within departments. This talk will specifically focus on workshop observations and preliminary reactions to the training.
Approaches to Climate Literacy at the American Museum of Natural History
NASA Astrophysics Data System (ADS)
Steiner, R. V.
2015-12-01
The American Museum of Natural History (AMNH) offers a suite of courses, workshops and special events in climate change education for audiences ranging from young children to adults and utilizing both online and in-person formats. These offerings are supported by rich digital resources including video, animations and data visualizations. These efforts have the potential to raise awareness of climate change, deepen understandings and improve public discourse and decision-making on this critical issue. For adult audiences, Our Earth's Future offers participants a five-week course at AMNH that focuses on climate change science, impacts and communication, taking advantage of both AMNH expertise and exhibitry. Online versions of this course include both a ten-week course as well as three different three-week thematic courses. (The longer course is now available as a MOOC in Coursera.) These activities have been supported by a grant from IMLS. The results of independent evaluation provide insight into participant needs and how they might be addressed. For K-12 educators, the Museum's Seminars on Science program of online teacher professional development offers, in collaboration with its higher education partners, a graduate course in climate change that is authored by both an AMNH curator and leading NASA scientists. Developed with support from both NASA and NSF, the course provides a semester-equivalent introduction to climate change science for educators, including digital resources, assignments and discussions for classroom use. The results of independent evaluation will be presented. For younger audiences, the presentation will highlight resources from the AMNH Ology site; television programming conducted in partnership with HBO; Science Bulletinsvideos that include current climate change research; resources related to the GRACE mission for tracking water from space; and special event programming at the Museum on climate change. This presentation will address the opportunities and challenges of climate change education in an informal science institution as well as enduring questions of institutional capacity, scale and sustainability.
Impacts of Climate Change on Public Health in India: Future Research Directions
Bush, Kathleen F.; Luber, George; Kotha, S. Rani; Dhaliwal, R.S.; Kapil, Vikas; Pascual, Mercedes; Brown, Daniel G.; Frumkin, Howard; Dhiman, R.C.; Hess, Jeremy; Wilson, Mark L.; Balakrishnan, Kalpana; Eisenberg, Joseph; Kaur, Tanvir; Rood, Richard; Batterman, Stuart; Joseph, Aley; Gronlund, Carina J.; Agrawal, Arun; Hu, Howard
2011-01-01
Background Climate change and associated increases in climate variability will likely further exacerbate global health disparities. More research is needed, particularly in developing countries, to accurately predict the anticipated impacts and inform effective interventions. Objectives Building on the information presented at the 2009 Joint Indo–U.S. Workshop on Climate Change and Health in Goa, India, we reviewed relevant literature and data, addressed gaps in knowledge, and identified priorities and strategies for future research in India. Discussion The scope of the problem in India is enormous, based on the potential for climate change and variability to exacerbate endemic malaria, dengue, yellow fever, cholera, and chikungunya, as well as chronic diseases, particularly among the millions of people who already experience poor sanitation, pollution, malnutrition, and a shortage of drinking water. Ongoing efforts to study these risks were discussed but remain scant. A universal theme of the recommendations developed was the importance of improving the surveillance, monitoring, and integration of meteorological, environmental, geospatial, and health data while working in parallel to implement adaptation strategies. Conclusions It will be critical for India to invest in improvements in information infrastructure that are innovative and that promote interdisciplinary collaborations while embarking on adaptation strategies. This will require unprecedented levels of collaboration across diverse institutions in India and abroad. The data can be used in research on the likely impacts of climate change on health that reflect India’s diverse climates and populations. Local human and technical capacities for risk communication and promoting adaptive behavior must also be enhanced. PMID:21273162
Warming in the Northern Great Plains: Impact and Response in the Agricultural Community
NASA Astrophysics Data System (ADS)
Seielstad, G.; Welling, L.
2001-12-01
Because agricultural production in the northern Great Plains contributes significantly to both domestic and international markets the impacts of climate change, as well as the response strategies undertaken by the region's residents, will be felt throughout the nation and the world. The national assessment of Climate Change Impacts on the United States has pointed out that the northern Great Plains could be favored under global warming scenarios in that future climates could increase crop yields [Reilly, Tubiello, McCarl, and Melillo, 2000]. Yield, though, is only one measure of the consequences that rapid warming might have on this region. Challenges to a changing environment must be met by people. Producers here, as well as in other agricultural regions, already function under multiple stresses that are completely separate from climate variability and change. These include falling prices, globalization, complex trade relations, changes in government policy, environmental constraints, and changing consumer preferences. It is against the backdrop of these stresses that pending climate changes must be considered. Interactions with stakeholders through the NGP Assessment workshops, held in 1997 and 1999, identified key concerns and outlined potential mitigation and optimization strategies for the consequences of climate change in this region. We will present examples of the successful implementation of some of these strategies: actions that farmers and ranchers are employing to 1) increase their awareness of environmental factors, 2) enhance their ability to respond quickly to environmental change, 3) improve their economic returns, and 4) decrease environmental degradation. We will also highlight other "no regrets" actions and policies under consideration that may offer individual producers greater flexibility in their management decisions and provide a healthier environment for society at large.
NASA Astrophysics Data System (ADS)
Purkiss, C.
2015-12-01
In many professional development programs, teachers attend workshops to learn new knowledge and skills and then are expected to go back to their classrooms and implement what they learned. Often skills or an activity is learned but does not necessarily get practiced in the classroom. Very few professional development programs add direct, immediate practice with children where teachers can try out immediately the new activities or the knowledge they have just learned. In this case, the program directors wanted to see that, by having children to practice with in a non-threatening, low stakes environment, if participants would incorporate the activities and knowledge learned during the workshop into their classrooms in a more immediate way. Would immediate practice help participants internalize the new knowledge and skills and thus create a fund of knowledge that they would use immediately on their return to the classroom. As part of a grant for professional development for underserved elementary teachers on climate literacy, an innovative children's camp was added to a summer intensive workshop. Prior to the summer workshop, participants completed an eight-week online graduate level course on the basics of inquiry-based science. Participants then attended the intensive three-week workshop to gain knowledge in weather and climate and how to teach these concepts in their classrooms. The workshop was rich in materials and resources for participants. During the third week of the workshop, teachers were camp leaders to 100 elementary students in grades 3 through 5 who were participating in "Climate Camp". Various evaluation and assessments were completed during the program on all participants. Through various evaluation methods, it was found that there was a positive transfer of knowledge to the classroom.
NASA Astrophysics Data System (ADS)
Ferguson, D. B.; Guido, Z. S.; Buizer, J.; Roy, M.
2010-12-01
Bringing climate change issues into focus for decision makers is a growing challenge. Decision makers are often confronted with unique informational needs, a lack of useable information, and needs for customized climate change training, among other issues. Despite significant progress in improving climate literacy among certain stakeholders such as water managers, recent reports have highlighted the growing demand for climate-change information in regions and sectors across the US. In recent years many ventures have sprung up to address these gaps and have predominantly focused on K-12 education and resource management agencies such as the National Park Service and National Weather Service. However, two groups that are critical for integrating climate information into actions have received less attention: (1) policy makers and (2) outreach experts, such as Cooperative Extension agents. Climate Change Boot Camps (CCBC) is a joint effort between the Climate Assessment for the Southwest (CLIMAS)—a NOAA Regionally Integrated Sciences and Assessments (RISA) program—and researchers at Arizona State University to diagnose climate literacy and training gaps in Arizona and develop a process that converts these deficiencies into actionable knowledge among the two aforementioned groups. This presentation will highlight the initial phases of the CCBC process, which has as its outcomes the identification of effective strategies for reaching legislators, climate literacy and training needs for both policy makers and trainers, and effective metrics to evaluate the success of these efforts. Specific attention is given to evaluating the process from initial needs assessment to the effectiveness of the workshops. Web curriculum and training models made available on the internet will also be developed, drawing on extensive existing Web resources for other training efforts and converted to meet the needs of these two groups. CCBC will also leverage CLIMAS’ long history of engaging with stakeholders in the Southwest to facilitate to use of climate information in the decision process.
Climate change impacts on forest fires: the stakeholders' perspective
NASA Astrophysics Data System (ADS)
Giannakopoulos, C.; Roussos, A.; Karali, A.; Hatzaki, M.; Xanthopoulos, G.; Chatzinikos, E.; Fyllas, N.; Georgiades, N.; Karetsos, G.; Maheras, G.; Nikolaou, I.; Proutsos, N.; Sbarounis, T.; Tsaggari, K.; Tzamtzis, I.; Goodess, C.
2012-04-01
In this work, we present a synthesis of the presentations and discussions which arose during a workshop on 'Impacts of climate change on forest fires' held in September 2011 at the National Observatory of Athens, Greece in the framework of EU project CLIMRUN. At first, a general presentation about climate change and extremes in the Greek territory provided the necessary background to the audience and highlighted the need for data and information exchange between scientists and stakeholders through climate services within CLIMRUN. Discussions and presentations that followed linked climate with forest science through the use of a meteorological index for fire risk and future projections of fire danger using regional climate models. The current situation on Greek forests was also presented, as well as future steps that should be taken to ameliorate the situation under a climate change world. A time series analysis of changes in forest fires using available historical data on forest ecosystems in Greece was given in this session. This led to the topic of forest fire risk assessment and fire prevention, stating all actions towards sustainable management of forests and effective mechanisms to control fires under climate change. Options for a smooth adaptation of forests to climate change were discussed together with the lessons learned on practical level on prevention, repression and rehabilitation of forest fires. In between there were useful interventions on sustainable hunting and biodiversity protection and on climate change impacts on forest ecosystems dynamics. The importance of developing an educational program for primary/secondary school students on forest fire management was also highlighted. The perspective of forest stakeholders on climate change and how this change can affect their current or future activities was addressed through a questionnaire they were asked to complete. Results showed that the majority of the participants consider climate variability to be important or very important and to influence their activities. Extreme climate events, desertification and drought were regarded as the most important environmental problems along with loss of biodiversity. Most of the participants answered that they use historical data for research, and would welcome climate data and services targeted to their sector if offered. Acknowledgement: This work was supported by the EU project CLIMRUN under contract FP7-ENV-2010- 265192.
Infusing Sustainability Across Disciplines to Build Student Engagement
NASA Astrophysics Data System (ADS)
Bruckner, M. Z.; O'Connell, K.; McDaris, J. R.; Kirk, K. B.; Larsen, K.; Kent, M.; Manduca, C. A.; Egger, A. E.; Blockstein, D.; Mogk, D. W.; Taber, J.
2014-12-01
Establishing relevance and effective communication are key mechanisms for building student and community engagement in a topic and can be used to promote the importance of working across disciplines to solve problems. Sustainability, including the impacts of and responses to climate change, is an inherently interdisciplinary issue and can be infused across courses and curricula in a variety of ways. Key topics such as climate change, hazards, and food, water, and energy production and sustainability are relevant to a wide audience and can be used to build student engagement. Using real-world examples, service learning, and focusing on the local environment may further boost engagement by establishing relevance between sustainability issues and students' lives. Communication plays a key role in the exchange of information across disciplines and allows for a more holistic approach to tackling the complex climate and sustainability issues our society faces. It has the power to bridge gaps, break down disciplinary silos, and build connections among diverse audiences with a wide range of expertise, including scientists, policy-makers, stakeholders, and the general public. It also aids in planning and preparation for, response to, and mitigation of issues related to sustainability, including the impacts of climate change, to lessen the detrimental effects of unavoidable events such as sea level rise and extreme weather events. Several workshops from the InTeGrate and On the Cutting Edge projects brought together educators and practitioners from a range of disciplines including geoscience, engineering, social science, and more to encourage communication and collaboration across disciplines. They supported networking, community-building, and sharing of best practices for preparing our students for a sustainable future, both in and out of the workplace, and across disciplines. Interdisciplinary teams are also working together to author curricular materials that highlight societal issues. The InTeGrate Teaching Materials web pages highlight major outcomes from the workshops and feature community-contributed resources and pedagogic guidance designed to enhance teaching about sustainability across disciplines. Explore these materials at: serc.carleton.edu/integrate/teaching_materials/
NASA Astrophysics Data System (ADS)
Foster, S. Q.; Johnson, R. M.; Randall, D. A.; Denning, A.; Burt, M. A.; Gardiner, L.; Genyuk, J.; Hatheway, B.; Jones, B.; La Grave, M. L.; Russell, R. M.
2009-12-01
The need for improving the representation of cloud processes in climate models has been one of the most important limitations of the reliability of climate-change simulations. Now in its fourth year, the National Science Foundation-funded Center for Multi-scale Modeling of Atmospheric Processes (CMMAP) at Colorado State University (CSU) is addressing this problem through a revolutionary new approach to representing cloud processes on their native scales, including the cloud-scale interaction processes that are active in cloud systems. CMMAP has set ambitious education and human-resource goals to share basic information about the atmosphere, clouds, weather, climate, and modeling with diverse K-12 and public audiences. This is accomplished through collaborations in resource development and dissemination between CMMAP scientists, CSU’s Little Shop of Physics (LSOP) program, and the Windows to the Universe (W2U) program at University Corporation for Atmospheric Research (UCAR). Little Shop of Physics develops new hands on science activities demonstrating basic science concepts fundamental to understanding atmospheric characteristics, weather, and climate. Videos capture demonstrations of children completing these activities which are broadcast to school districts and public television programs. CMMAP and LSOP educators and scientists partner in teaching a summer professional development workshops for teachers at CSU with a semester's worth of college-level content on the basic physics of the atmosphere, weather, climate, climate modeling, and climate change, as well as dozens of LSOP inquiry-based activities suitable for use in classrooms. The W2U project complements these efforts by developing and broadly disseminating new CMMAP-related online content pages, animations, interactives, image galleries, scientists’ biographies, and LSOP videos to K-12 and public audiences. Reaching nearly 20 million users annually, W2U is highly valued as a curriculum enhancement resource, because its content is written at three levels in English and Spanish. Links between science topics and literature, art, and mythology enable teachers of English Language Learners, literacy, and the arts to integrate science into their classrooms. In summary, the CMMAP NSF-funded Science and Technology Center has established a highly effective and productive partnership of scientists and educators focused on enhancing public science literacy about weather, climate, and global change. All CMMAP, LSOP, and W2U resources can be accessed online at no cost by the entire atmospheric science K-12 and informal science education community.
Dr. Michael MacCracken, Climate Institute, Washington, DC
Dr. Michael MacCracken
2017-12-09
Achieving International Agreement and Climate Protection by Coordinated Mitigation of Short- and Long-Lived Greenhouse Gases. Presented at the China-US Workshop on the "Climate-Energy Nexus" at Oak Ridge National Laboratory on November 11, 2009.
Dr. Michael MacCracken, Climate Institute, Washington, DC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Michael MacCracken
2009-11-13
Achieving International Agreement and Climate Protection by Coordinated Mitigation of Short- and Long-Lived Greenhouse Gases. Presented at the China-US Workshop on the "Climate-Energy Nexus" at Oak Ridge National Laboratory on November 11, 2009.
NASA Technical Reports Server (NTRS)
Meeson, Blanche W.
1999-01-01
Workshop for middle and high school teachers to enhance their knowledge of the Earth as a system. NASA data and materials developed by teachers (all available via the Internet) will be used to engage participants in hands-on, investigative approaches to the Earth system. All materials are ready to be applied in pre-college classrooms. Remotely-sensed data will be used in combination with familiar resources, such as maps, to examine global climate change.
Researchers consider U.S. Southwest's response to warmer, drier conditions
NASA Astrophysics Data System (ADS)
Schmidt, Kevin M.; Webb, Robert H.
In 2000, the popular press frequently referred to reports that the southwestern United States might experience a shift from relatively wet to dry conditions during the next couple of decades (see http://topex-www.jpl.nasa.gov/discover/PDO.html). These predictions stemmed from observations that the Pacific Decadal Oscillation (PDO) appeared to abruptly change from a “positive” to a “negative” phase in 1999 (Figure 1). During the mid-twentieth century, a similar negative phase of the PDO was accompanied by prolonged dry conditions in the southwest.By extrapolation, some climatologists predicted future drought in the southwest. Such a change would heavily affect land use planning in the region, because national demographics have stressed the region's resources over the past century From 1990 to 2000, for instance, the population of Nevada and Arizona increased by almost 2.3 million people (http://www.census.gov/population/www/cen2000/respop.html). To discuss potential scenarios of landscape and ecosystem response to 25 years of hot and dry climate, scientists from diverse disciplines gathered at the University of Arizona in April 2001. The objectives of this workshop were to address evidence supporting predictions of warmer and drier climate and the possible landscape responses (http://geology.wr.usgs.gov/sw-workshop/).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hess, Nancy J.; Brown, Gordon E.; Plata, Charity
2014-02-21
As part of the Belowground Carbon Cycling Processes at the Molecular Scale workshop, an EMSL Science Theme Advisory Panel meeting held in February 2013, attendees discussed critical biogeochemical processes that regulate carbon cycling in soil. The meeting attendees determined that as a national scientific user facility, EMSL can provide the tools and expertise needed to elucidate the molecular foundation that underlies mechanistic descriptions of biogeochemical processes that control carbon allocation and fluxes at the terrestrial/atmospheric interface in landscape and regional climate models. Consequently, the workshop's goal was to identify the science gaps that hinder either development of mechanistic description ofmore » critical processes or their accurate representation in climate models. In part, this report offers recommendations for future EMSL activities in this research area. The workshop was co-chaired by Dr. Nancy Hess (EMSL) and Dr. Gordon Brown (Stanford University).« less
Keleman Saxena, Alder; Cadima Fuentes, Ximena; Gonzales Herbas, Rhimer; Humphries, Debbie L
2016-01-01
Inhabitants of the high-mountain Andes have already begun to experience changes in the timing, severity, and patterning of annual weather cycles. These changes have important implications for agriculture, for human health, and for the conservation of biodiversity in the region. This paper examines the implications of climate-driven changes for native and traditional crops in the municipality of Colomi, Cochabamba, Bolivia. Data were collected between 2012 and 2014 via mixed methods, qualitative fieldwork, including participatory workshops with female farmers and food preparers, semi-structured interviews with local agronomists, and participant observation. Drawing from this data, the paper describes (a) the observed impacts of changing weather patterns on agricultural production in the municipality of Colomi, Bolivia and (b) the role of local environmental resources and conditions, including clean running water, temperature, and humidity, in the household processing techniques used to conserve and sometimes detoxify native crop and animal species, including potato (Solanum sp.), oca (Oxalis tuberosa), tarwi (Lupinus mutabilis), papalisa (Ullucus tuberosus), and charke (llama or sheep jerky). Analysis suggests that the effects of climatic changes on agriculture go beyond reductions in yield, also influencing how farmers make choices about the timing of planting, soil management, and the use and spatial distribution of particular crop varieties. Furthermore, household processing techniques to preserve and detoxify native foods rely on key environmental and climatic resources, which may be vulnerable to climatic shifts. Although these findings are drawn from a single case study, we suggest that Colomi agriculture characterizes larger patterns in what might be termed, "indigenous food systems." Such systems are underrepresented in aggregate models of the impacts of climate change on world agriculture and may be under different, more direct, and more immediate threat from climate change. As such, the health of the food production and processing environments in such systems merits immediate attention in research and practice.
Keleman Saxena, Alder; Cadima Fuentes, Ximena; Gonzales Herbas, Rhimer; Humphries, Debbie L.
2016-01-01
Inhabitants of the high-mountain Andes have already begun to experience changes in the timing, severity, and patterning of annual weather cycles. These changes have important implications for agriculture, for human health, and for the conservation of biodiversity in the region. This paper examines the implications of climate-driven changes for native and traditional crops in the municipality of Colomi, Cochabamba, Bolivia. Data were collected between 2012 and 2014 via mixed methods, qualitative fieldwork, including participatory workshops with female farmers and food preparers, semi-structured interviews with local agronomists, and participant observation. Drawing from this data, the paper describes (a) the observed impacts of changing weather patterns on agricultural production in the municipality of Colomi, Bolivia and (b) the role of local environmental resources and conditions, including clean running water, temperature, and humidity, in the household processing techniques used to conserve and sometimes detoxify native crop and animal species, including potato (Solanum sp.), oca (Oxalis tuberosa), tarwi (Lupinus mutabilis), papalisa (Ullucus tuberosus), and charke (llama or sheep jerky). Analysis suggests that the effects of climatic changes on agriculture go beyond reductions in yield, also influencing how farmers make choices about the timing of planting, soil management, and the use and spatial distribution of particular crop varieties. Furthermore, household processing techniques to preserve and detoxify native foods rely on key environmental and climatic resources, which may be vulnerable to climatic shifts. Although these findings are drawn from a single case study, we suggest that Colomi agriculture characterizes larger patterns in what might be termed, “indigenous food systems.” Such systems are underrepresented in aggregate models of the impacts of climate change on world agriculture and may be under different, more direct, and more immediate threat from climate change. As such, the health of the food production and processing environments in such systems merits immediate attention in research and practice. PMID:26973824
Connecting Alaskan Youth, Elders, and Scientists in Climate Change Research and Community Resilience
NASA Astrophysics Data System (ADS)
Spellman, K.; Sparrow, E.
2017-12-01
Integrated science, technology, engineering and math (STEM) solutions and effective, relevant learning processes are required to address the challenges that a changing climate presents to many Arctic communities. Learning that can both enhance a community's understanding and generate new knowledge about climate change impacts at both local and continental scales are needed to efficiently build the capacity to navigate these changes. The Arctic and Earth STEM Integrating GLOBE and NASA (SIGNs) program is developing a learning model to engage Alaskan rural and indigenous communities in climate change learning, research and action. Youth, elders, educators, community leaders and scientists collaborate to address a pressing local climate change concern. The program trains teams of educators and long-time community members on climate change concepts and environmental observing protocols in face-to-face or online workshops together with Arctic and NASA subject matter experts. Community teams return to their community to identify local data or information needs that align with their student's interests and the observations of local elders. They deepen their understanding of the subject through culturally responsive curriculum materials, and collaborate with a scientist to develop an investigation with their students to address the identified need. Youth make observations using GLOBE (Global Learning and Observations to Benefit the Environment) protocols that best fit the issue, analyze the data they have collected, and utilize indigenous or knowledge, and NASA data to address the issue. The use of GLOBE protocols allow for communities to engage in climate change research at both local and global scales, as over 110 nations worldwide are using these standardized protocols. Teams work to communicate their investigation results back to their community and other scientists, and apply their results to local stewardship action or climate adaptation projects. In this presentation, we report the progress of community teams currently engaged in this program from throughout Alaska.
Report of the international workshop on quality control of monthly climate data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-12-31
The National Climatic Data Center (NCDC), the US Department of Energy`s Carbon Dioxide Information Analysis Center, and the World Meteorological Organization (WMO) cosponsored an international quality control workshop for monthly climate data, October 5--6, 1993, at NCDC. About 40 scientists from around the world participated. The purpose of the meeting was to discuss and compare various quality control methods and to draft recommendations concerning the most successful systems. The near-term goal to improve quality control of CLIMAT messages for the NCDC/WMO publication Monthly Climatic Data for the World was sucessfully met. An electronic bulletin board was established to post errorsmore » and corrections. Improved communications among Global Telecommunication System hubs will be implemented. Advanced quality control algorithms were discussed and improvements were suggested. Further data exchanges were arranged.« less
The use of climate information in vulnerability assessments.
DOT National Transportation Integrated Search
2011-01-01
This memorandum focuses on the use of climate information when performing a vulnerability : assessment, a topic that was discussed at the Newark Pilot Peer Exchange Workshop on May 4-5, : 2011. The memorandum describes several sources of climate info...
Special Issue ;Sediment cascades in cold climate geosystems;
NASA Astrophysics Data System (ADS)
Morche, David; Krautblatter, Michael; Beylich, Achim A.
2017-06-01
This Editorial introduces the Special Issue on sediment cascades in cold climate geosystems that evolved from the eighth I.A.G./A.I.G. SEDIBUD (Sediment Budgets in Cold Environments; http://www.geomorph.org/sedibud-working-group/) workshop. The workshop was held from 1st to 4th September 2014 at the Environmental Research Station ;Schneefernerhaus; (http://www.schneefernerhaus.de/en/home.html) located at Mt. Zugspitze, the highest peak of Germany, (2962 m asl). Paper and poster presentations focused on observations, measurements and modeling of geomorphological processes in sediment cascades in cold climate geosystems. This resulting Special Issue brings together ten selected contributions from arctic and alpine environments.
Structural and Psycho-Social Limits to Climate Change Adaptation in the Great Barrier Reef Region
Evans, Louisa S.; Hicks, Christina C.; Adger, W. Neil; Barnett, Jon; Perry, Allison L.; Fidelman, Pedro; Tobin, Renae
2016-01-01
Adaptation, as a strategy to respond to climate change, has limits: there are conditions under which adaptation strategies fail to alleviate impacts from climate change. Research has primarily focused on identifying absolute bio-physical limits. This paper contributes empirical insight to an emerging literature on the social limits to adaptation. Such limits arise from the ways in which societies perceive, experience and respond to climate change. Using qualitative data from multi-stakeholder workshops and key-informant interviews with representatives of the fisheries and tourism sectors of the Great Barrier Reef region, we identify psycho-social and structural limits associated with key adaptation strategies, and examine how these are perceived as more or less absolute across levels of organisation. We find that actors experience social limits to adaptation when: i) the effort of pursuing a strategy exceeds the benefits of desired adaptation outcomes; ii) the particular strategy does not address the actual source of vulnerability, and; iii) the benefits derived from adaptation are undermined by external factors. We also find that social limits are not necessarily more absolute at higher levels of organisation: respondents perceived considerable opportunities to address some psycho-social limits at the national-international interface, while they considered some social limits at the local and regional levels to be effectively absolute. PMID:26960200
Structural and Psycho-Social Limits to Climate Change Adaptation in the Great Barrier Reef Region.
Evans, Louisa S; Hicks, Christina C; Adger, W Neil; Barnett, Jon; Perry, Allison L; Fidelman, Pedro; Tobin, Renae
2016-01-01
Adaptation, as a strategy to respond to climate change, has limits: there are conditions under which adaptation strategies fail to alleviate impacts from climate change. Research has primarily focused on identifying absolute bio-physical limits. This paper contributes empirical insight to an emerging literature on the social limits to adaptation. Such limits arise from the ways in which societies perceive, experience and respond to climate change. Using qualitative data from multi-stakeholder workshops and key-informant interviews with representatives of the fisheries and tourism sectors of the Great Barrier Reef region, we identify psycho-social and structural limits associated with key adaptation strategies, and examine how these are perceived as more or less absolute across levels of organisation. We find that actors experience social limits to adaptation when: i) the effort of pursuing a strategy exceeds the benefits of desired adaptation outcomes; ii) the particular strategy does not address the actual source of vulnerability, and; iii) the benefits derived from adaptation are undermined by external factors. We also find that social limits are not necessarily more absolute at higher levels of organisation: respondents perceived considerable opportunities to address some psycho-social limits at the national-international interface, while they considered some social limits at the local and regional levels to be effectively absolute.
Continuing and developing the engagement with Mediterranean stakeholders in the CLIM-RUN project
NASA Astrophysics Data System (ADS)
Goodess, Clare
2013-04-01
The CLIM-RUN case studies provide a real-world and Mediterranean context for bringing together experts on the demand and supply side of climate services. They are essential to the CLIM-RUN objective of using iterative and bottom-up (i.e., stakeholder led) approaches for optimizing the two-way information transfer between climate experts and stakeholders - and focus on specific locations and sectors (such as tourism and renewable energy). Stakeholder involvement has been critical from the start of the project in March 2011, with an early series of targeted workshops used to define the framework for each case study as well as the needs of stakeholders. Following these workshops, the user needs were translated into specific requirements from climate observations and models and areas identified where additional modelling and analysis are required. The first set of new products and tools produced by the CLIM-RUN modelling and observational experts are presented in a series of short briefing notes. A second round of CLIM-RUN stakeholder workshops will be held for each of the case studies in Spring 2013 as an essential part of the fourth CLIM-RUN key stage: Consolidation and collective review/assessment. During these workshops the process of interaction between CLIM-RUN scientists and case-study stakeholders will be reviewed, as well as the utility of the products and information developed in CLIM-RUN. Review questions will include: How far have we got? How successful have we been? What are the remaining problems/gaps? How to sustain and extend the interactions? The process of planning for and running these second workshops will be outlined and emerging outcomes presented, focusing on common messages which are relevant for development of the CLIM-RUN protocol for providing improved climate services to stakeholders together with the identification of best practices and policy recommendations for climate services development.
NASA Astrophysics Data System (ADS)
Osenga, E. C.; Katzenberger, J.; Morrow, C. A.; Arnott, J. C.; Wright, A.
2013-12-01
The public has access to a bewildering variety of climate change information. But there are no resources offering an accessible opportunity to listen to scientists communicating with each other about climate science. With access to 24 years of digital video archives of scientific presentations and discussions at small, interdisciplinary workshops with leading experts in global change science, AGCI (the Aspen Global Change Institute) saw an opportunity to fill that gap by using selected excerpts from this vast archive to engage public and educational interest in climate change. Our hypothesis is that offering people direct access to climate science discourse will stimulate curiosity leading to greater willingness to participate in further learning and dialogue about climate change. AGCI's NSF-funded project 'From the Horse's Mouth' (FTHM) is providing a way to test this hypothesis. FTHM is a website that combines short (2-8 min) video clips of scientists presenting and discussing their research with colleagues with enriching accessory materials targeted at the high school level of comprehension. The website offers a 'fly on the wall' insight into scientific communication about global change that is rarely experienced by non-scientists and that can be accessed anytime, anywhere, from classrooms to cafes. By removing the scientific process from a shroud of mystery and offering everyone an opportunity to listen in during scientific discourse, FTHM can help cultivate a sense of having a personal understanding of scientific information and thereby make a huge contribution to a more substantive and authentic climate literacy. Here we present successes, challenges, and complications in using first-hand scientific sources to build a bridge between formal and informal learning.
Charlesworth, Kate E; Madden, D Lynne; Capon, Anthony G
2013-11-01
Awareness of the benefits of environmentally sustainable health care is growing. In the United Kingdom in 2010, an educational intervention on sustainable health care was successfully delivered to public health registrars. We conducted a feasibility study to test the intervention in Australia. The intervention consisted of a 1-day workshop delivered face-to-face covering climate change, sustainability and health. The workshop was modified, piloted and then delivered to 33 health professionals. Modifications included using Australian resources, introducing active learning exercises and including guest speakers. Delivery by videoconference was trialled. Outcomes were assessed in three areas - awareness, advocacy and action - using questionnaires and follow-up telephone interviews. There were improvements in participants' mean awareness and advocacy scores. All participants rated sustainability as 'important' for health professionals and many looked to their professional organisation to take a lead advocacy role on this issue. This study demonstrated that the workshop is feasible for use in Australia; the modifications and delivery by videoconference were well received.
Northwest Climate Risk Assessment
NASA Astrophysics Data System (ADS)
Mote, P.; Dalton, M. M.; Snover, A. K.
2012-12-01
As part of the US National Climate Assessment, the Northwest region undertook a process of climate risk assessment. This process included an expert evaluation of previously identified impacts, their likelihoods, and consequences, and engaged experts from both academia and natural resource management practice (federal, tribal, state, local, private, and non-profit) in a workshop setting. An important input was a list of 11 risks compiled by state agencies in Oregon and similar adaptation efforts in Washington. By considering jointly the likelihoods, consequences, and adaptive capacity, participants arrived at an approximately ranked list of risks which was further assessed and prioritized through a series of risk scoring exercises to arrive at the top three climate risks facing the Northwest: 1) changes in amount and timing of streamflow related to snowmelt, causing far-reaching ecological and socioeconomic consequences; 2) coastal erosion and inundation, and changing ocean acidity, combined with low adaptive capacity in the coastal zone to create large risks; and 3) the combined effects of wildfire, insect outbreaks, and diseases will cause large areas of forest mortality and long-term transformation of forest landscapes.
Fire in the Earth System: Bridging data and modeling research
Hantson, Srijn; Kloster, Silvia; Coughlan, Michael; Daniau, Anne-Laure; Vanniere, Boris; Bruecher, Tim; Kehrwald, Natalie; Magi, Brian I.
2016-01-01
Significant changes in wildfire occurrence, extent, and severity in areas such as western North America and Indonesia in 2015 have made the issue of fire increasingly salient in both the public and scientific spheres. Biomass combustion rapidly transforms land cover, smoke pours into the atmosphere, radiative heat from fires initiates dramatic pyrocumulus clouds, and the repeated ecological and atmospheric effects of fire can even impact regional and global climate. Furthermore, fires have a significant impact on human health, livelihoods, and social and economic systems.Modeling and databased methods to understand fire have rapidly coevolved over the past decade. Satellite and ground-based data about present-day fire are widely available for applications in research and fire management. Fire modeling has developed in part because of the evolution in vegetation and Earth system modeling efforts, but parameterizations and validation are largely focused on the present day because of the availability of satellite data. Charcoal deposits in sediment cores have emerged as a powerful method to evaluate trends in biomass burning extending back to the Last Glacial Maximum and beyond, and these records provide a context for present-day fire. The Global Charcoal Database version 3 compiled about 700 charcoal records and more than 1,000 records are expected for the future version 4. Together, these advances offer a pathway to explore how the strengths of fire data and fire modeling could address the weaknesses in the overall understanding of human-climate–fire linkages.A community of researchers studying fire in the Earth system with individual expertise that included paleoecology, paleoclimatology, modern ecology, archaeology, climate, and Earth system modeling, statistics, geography, biogeochemistry, and atmospheric science met at an intensive workshop in Massachusetts to explore new research directions and initiate new collaborations. Research themes, which emerged from the workshop participants via preworkshop surveys, focused on addressing the following questions: What are the climatic, ecological, and human drivers of fire regimes, both past and future? What is the role of humans in shaping historical fire regimes? How does fire ecology affect land cover changes, biodiversity, carbon storage, and human land uses? What are the historical fire trends and their impacts across biomes? Are their impacts local and/or regional? Are the fire trends in the last two decades unprecedented from a historical perspective? The workshop1 aimed to develop testable hypotheses about fire, climate, vegetation, and human interactions by leveraging the confluence of proxy, observational, and model data related to decadal- to millennial-scale fire activity on our planet. New research directions focused on broad interdisciplinary approaches to highlight how knowledge about past fire activity could provide a more complete understanding of the predictive capacity of fire models and inform fire policy in the face of our changing climate.
Identifying Decision Support Tools to Bridge Climate and Agricultural Needs in the Midwest
NASA Astrophysics Data System (ADS)
Hall, B. L.; Kluck, D. R.; Hatfield, J.; Black, C.; Kellner, O.; Woloszyn, M.; Timlin, M. S.
2015-12-01
Climate monitoring tools designed to help stakeholders reduce climate impacts have been developed for the primary Midwest field crops of corn and soybean. However, the region also produces vital livestock and specialty crops that currently lack similar climate monitoring and projection tools. In autumn 2015, the National Oceanic and Atmospheric Administration's (NOAA's) National Integrated Drought Information System (NIDIS) and Midwestern Regional Climate Center (MRCC) partnered with the US Department of Agriculture's Midwest Climate Hub to convene agriculture stakeholders, climate scientists, and climate service specialists to discuss climate impacts and needs for these two, often under-represented, sectors. The goals of this workshop were to (1) identify climate impacts that specialty crops and livestock producers face within the Midwest, (2) develop an understanding of the types of climate and weather information and tools currently available in the Midwest that could be applied to decision making, and (3) discover the types of climate and weather information and tools needed to address concerns of specialty crop and livestock commodities across the Midwest. This presentation will discuss the workshop and provide highlights of the outcomes that developed into strategic plans for the future to better serve these sectors of agriculture in the Midwest.
The Impact of Project-Based Climate Change Learning Experiences on Students' Broad Climate Literacy
NASA Astrophysics Data System (ADS)
DeWaters, J.; Powers, S. E.; Dhaniyala, S.
2014-12-01
Evidence-based pedagogical approaches such as project- and inquiry-based techniques have been shown to promote effective learning in science and engineering. The impact of project-based learning experiences on middle school (MS), high school (HS), and undergraduate (UG) students' climate literacy was investigated as part of a NASA Innovations in Climate Education (NICE) project. Project-based modules were developed and taught by MS and HS teachers who participated in climate change education workshops. UG students enrolled in a climate science course completed independent research projects that provided the basis for several of the HS/MS modules. All modules required students to acquire and analyze historical temperature data and future climate predictions, and apply their analysis to the solution of a societal or environmental problem related to our changing climate. Three versions of a quantitative survey were developed and used in a pre-test/post-test research design to help evaluate the project's impact on MS, HS, and UG students' climate literacy, which includes broad climate knowledge as well as affective and behavioral aspects. Content objectives were guided primarily by the 2009 document, Climate Literacy: The Essential Principles of Climate Sciences. All three groups of students made modest but statistically significant cognitive (p<<0.001) and affective (p<0.01) gains; UG students also showed an increase in behavior scores (p=0.001). Results of an ANCOVA showed significant differences in students' cognitive (p<0.001), behavioral (p=0.005) and self-efficacy (p=0.012) outcomes among the 9 participating MS and HS classrooms, where both teacher and module content varied. The presentation will include a description of some key aspects of the project-based curricula developed and used in this research, the development and content of the climate literacy survey, and the interpretation of specific pre/post changes in participating students relative to the content of and approach used in the project-based modules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saundry, Peter; Kossak, Shelley
The National Council for Science and the Environment (NCSE) received $15,000 from the US Department of Energy to support post-conference activities of the 13th National Conference on the theme of Disasters and the Environment: Science, Preparedness and Resilience, held on January 15-17, 2013 at the Ronald Reagan Building and International Trade Center in Washington, DC. Over 1,000 participants from the scientific, emergency response, policy, conservation, and business communities, as well as federal and local government officials, and international entities attended the event. The conference developed actionable outcomes that constructively advance the science behind decision-making on environmental disasters, with an intendedmore » result of more prepared and resilient communities in light of a changing climate. Disasters and Environment topic was addressed through six organizing themes: Cascading Disasters; Intersection of the Built and Natural Environments; Disasters as Mechanisms of Ecosystem Change; Rethinking Recovery and Expanding the Vision of Mitigation; Human Behavior and its Consequences; and "No Regrets" Resilience. The program featured eight plenary sessions, 24 symposia and 23 breakout workshops and addressed pivotal issues surrounding disasters and environment including lifeline services, the energy, climate, hazard nexus, grid collapse, community vulnerability, and natural resource management. Sessions, symposia and workshops were conducted by over 200 distinguished thought leaders, scientists, government officials, policy experts and international speakers throughout the three day event. Following the conference, NCSE prepared a set of recommendations and results from the workshops and disseminated the results to universities, organizations and agencies, the business community. NCSE’s national dissemination involved organized several targeted trips and meetings to disseminate significant findings to key stakeholder groups.« less
In a Time of Change: Integrating the Arts and Humanities with Climate Change Science in Alaska
NASA Astrophysics Data System (ADS)
Leigh, M.; Golux, S.; Franzen, K.
2011-12-01
The arts and humanities have a powerful capacity to create lines of communication between the public, policy and scientific spheres. A growing network of visual and performing artists, writers and scientists has been actively working together since 2007 to integrate scientific and artistic perspectives on climate change in interior Alaska. These efforts have involved field workshops and collaborative creative processes culminating in public performances and a visual art exhibit. The most recent multimedia event was entitled In a Time of Change: Envisioning the Future, and challenged artists and scientists to consider future scenarios of climate change. This event included a public performance featuring original theatre, modern dance, Alaska Native Dance, poetry and music that was presented concurrently with an art exhibit featuring original works by 24 Alaskan visual artists. A related effort targeted K12 students, through an early college course entitled Climate Change and Creative Expression, which was offered to high school students at a predominantly Alaska Native charter school and integrated climate change science, creative writing, theatre and dance. Our program at Bonanza Creek Long Term Ecological Research (LTER) site is just one of many successful efforts to integrate arts and humanities with science within and beyond the NSF LTER Program. The efforts of various LTER sites to engage the arts and humanities with science, the public and policymakers have successfully generated excitement, facilitated mutual understanding, and promoted meaningful dialogue on issues facing science and society. The future outlook for integration of arts and humanities with science appears promising, with increasing interest from artists, scientists and scientific funding agencies.
Satellite Remote Sensing of Aerosol Forcing
NASA Technical Reports Server (NTRS)
Remer, Lorraine; Kaufman, Yoram; Ramaprasad, Jaya; Procopio, Aline; Levin, Zev
1999-01-01
Aerosol and cloud impacts on the earth's climate become a recent hot topic in climate studies. Having near future earth observing satellites, EOS-AM1 (Earth Observing System-AM1), ENVISAT (Environmental Satellites) and ADEOS-2 (Advanced Earth Observation Satellite-2), it will be a good timing to discuss how to obtain and use the microphysical parameters of aerosols and clouds for studying their climate impacts. Center for Climate System Research (CCSR) of the University of Tokyo invites you to 'Symposium on synergy between satellite-remote sensing and climate modeling in aerosol and cloud issues.' Here, we like to discuss the current and future issues in the remote sensing of aerosol and cloud microphysical parameters and their climate modeling studies. This workshop is also one of workshop series on aerosol remote sensing held in 1996, Washington D. C., and Meribel, France in 1999. It should be reminded that NASDA/ADEOS-1 & -2 (National Space Development Agency of Japan/Advanced Earth Observation Satellite-1 & -2) Workshop will be held in the following week (Dec. 6-10, 1999), so that this opportunity will be a perfect period for you to attend two meetings for satellite remote sensing in Japan. A weekend in Kyoto, the old capital of Japan, will add a nice memory to your visiting Japan. *Issues in the symposium: 1) most recent topics in aerosol and cloud remot sensing, and 2) utility of satellite products on climate modeling of cloud-aerosol effects.
Future scientific drilling in the Arctic Ocean: Key objectives, areas, and strategies
NASA Astrophysics Data System (ADS)
Stein, R.; Coakley, B.; Mikkelsen, N.; O'Regan, M.; Ruppel, C.
2012-04-01
In spite of the critical role of the Arctic Ocean in climate evolution, our understanding of the short- and long-term paleoceanographic and paleoclimatic history through late Mesozoic-Cenozoic times, as well as its plate-tectonic evolution, remains behind that from the other world's oceans. This lack of knowledge is mainly caused by the major technological/logistic problems in reaching this permanently ice-covered region with normal research vessels and in retrieving long and undisturbed sediment cores. With the Arctic Coring Expedition - ACEX (or IODP Expedition 302), the first Mission Specific Platform (MSP) expedition within IODP, a new era in Arctic research began (Backman, Moran, Mayer, McInroy et al., 2006). ACEX proved that, with an intensive ice-management strategy, successful scientific drilling in the permanently ice-covered central Arctic Ocean is possible. ACEX is certainly a milestone in Arctic Ocean research, but - of course - further drilling activities are needed in this poorly studied ocean. Furthermore, despite the success of ACEX fundamental questions related to the long- and short-term climate history of the Arctic Ocean during Mesozoic-Cenozoic times remain unanswered. This is partly due to poor core recovery during ACEX and, especially, because of a major mid-Cenozoic hiatus in this single record. Since ACEX, a series of workshops were held to develop a scientific drilling strategy for investigating the tectonic and paleoceanographic history of the Arctic Ocean and its role in influencing the global climate system: - "Arctic Ocean History: From Speculation to Reality" (Bremerhaven/Germany, November 2008); - "Overcoming barriers to Arctic Ocean scientific drilling: the site survey challenge" (Copenhagen/Denmark, November 2011); - Circum-Arctic shelf/upper continental slope scientific drilling workshop on "Catching Climate Change in Progress" (San Francisco/USA, December 2011); - "Coordinated Scientific Drilling in the Beaufort Sea: Addressing Past, Present and Future Changes in Arctic Terrestrial and Marine Systems" (Kananaskis, Alberta/Canada, February 2012). During these workshops, key areas and key scientific themes as well as drilling and site-survey strategies were discussed. Major scientific themes for future Arctic drilling will include: - The Arctic Ocean during the transition from greenhouse to icehouse conditions and millennial scale climate changes; - Physical and chemical changes of the evolving Polar Ocean and Arctic gateways; - Impact of Pleistocene/Holocene warming and sea-level rise on upper continental slope and shelf gas hydrates and on shelf permafrost; - Land-ocean interactions; - Tectonic evolution and birth of the Arctic Ocean basin: Arctic ridges, sea floor spreading and global lithosphere processes. When thinking about future Arctic drilling, it should be clearly emphasized that for the precise planning of future Arctic Ocean drilling campaigns, including site selection, evaluation of proposed drill sites for safety and environmental protection, etc., comprehensive site survey data are needed first. This means that the development of a detailed site survey strategy is a major challenge for the coming years. Here, an overview of perspectives and plans for future Arctic Ocean drilling will be presented.
NASA Astrophysics Data System (ADS)
Jurado, J.
2016-12-01
Southeast Florida is widely recognized as one of the most vulnerable regions in the United States to the impacts of climate change, especially sea level rise. Dense urban populations, low land elevations, flat topography, complex shorelines and a porous geology all contribute to the region's challenges. Regional and local governments have been working collaboratively to address shared climate mitigation and adaptation concerns as part of the four-county Southeast Florida Regional Climate Change Compact (Compact). This partnership has emphasized, in part, the use of climate data and the development of advanced technical tools and visualizations to help inform decision-making, improve communications, and guide investments. Prominent work products have included regional vulnerability maps and assessments, a unified sea level rise projection for southeast Florida, the development and application of hydrologic models in scenario planning, interdisciplinary resilient redesign planning workshops, and the development of regional climate indicators. Key to the Compact's efforts has been the engagement and expertise of academic and agency partners, including a formal collaboration between the Florida Climate Institute and the Compact to improve research and project collaborations focused on southeast Florida. This presentation will focus on the collaborative processes and work products that have served to accelerate resiliency planning and investments in southeast Florida, with specific examples of how local governments are using these work products to modernize agency processes, and build support among residents and business leaders.
NASA Astrophysics Data System (ADS)
Rogé, P.; Friedman, A. R.; Astier, M.; Altieri, M.
2015-12-01
The traditional management systems of the Mixteca Alta Region of Oaxaca, Mexico offer historical lessons about resilience to climatic variability. We interviewed small farmers to inquire about the dynamics of abandonment and persistence of a traditional management systems. We interpret farmers' narratives from a perspective of general agroecological resilience. In addition, we facilitated workshops in small farmers described their adaptation to past climate challenges and identified 14 indicators that they subsequently used to evaluate the condition of their agroecosystems. The most recent years presented increasingly extreme climatic and socioeconomic hardships: increased temperatures, delayed rainy seasons, reduced capacity of soils to retain soil moisture, changing cultural norms, and reduced rural labor. Farmers reported that their cropping systems were changing for multiple reasons: more drought, later rainfall onset, decreased rural labor, and introduced labor-saving technologies. Examination of climate data found that farmers' climate narratives were largely consistent with the observational record. There have been increases in temperature and rainfall intensity, and an increase in rainfall seasonality that may be perceived as later rainfall onset. Farmers ranked landscape-scale indicators as more marginal than farmer management or soil quality indicators. From this analysis, farmers proposed strategies to improve the ability of their agroecosystems to cope with climatic variability. Notably, they recognized that social organizing and education are required for landscape-level indicators to be improved. Transformative change is required to develop novel cropping systems and complementary activities to agriculture that will allow for farming to be sustained in the face of these challenges. Climate change adaptation by small farmers involves much more than just a set of farming practices, but also community action to tackle collective problems.
NASA Astrophysics Data System (ADS)
Murray, B.; Barnes, M. H.; Chambers, L. H.; Pippin, M. R.; Martin, A. M.; Geyer, A. J.; Leber, M.; Joyner, E.; Small, C.; Dublin, D.
2013-12-01
The Minority University Research and Education Program (MUREP) NASA Innovations in Climate Education (NICE) project advances NASA's Office of Education's strategic initiative to improve the quality of the nation's Science, Technology, Engineering and Mathematics (STEM) education and enhance literacy about climate and other Earth systems environmental changes. NICE also strategically supports the United States' progressive initiative to enhance the science and technology enterprise for successful competition in the 21st century global community. To extend to wider networks in 2013, MUREP NICE partnered with the NASA Digital Learning Network (DLNTM) in a unique, non-traditional collaborative model to significantly increase the impact and connection with formal and informal educators, curriculum developers, science education specialists, and researchers regarding climate literacy. DLN offers an expansive distance learning capability that bridges presenters with education audiences for interactive, web-based, synchronous and asynchronous Educator Professional Development (EPD). DLN services over 10,000 educators each year. In 3rd quarter FY13 alone DLN totaled 3,361 connections with educators. The DLN allows for cost effective (no travel) engagement of multiple geographically dispersed audiences with presenters from remote locations. This facilitates interactive communication among participants through distance education, allowing them to share local experiences with one another. A comprehensive four-part EPD workshop, featuring several NICE Principal Investigators (PI) and NASA subject matter experts was developed for NICE in April 2013. Topics covered in the workshop progressed from a simple introduction of Earth's energy budget, through explanation of temperature data collection and evidence of temperature rise, impacts on phenology, and finally consequences for bugs and birds. This event was an innovative hybrid workshop, connecting onsite teachers interactively with remotely connected participants and presenters across the nation. In addition to the 19 educators who participated live, 298 watched the sessions via a webcast. A similar workshop series experienced 300% growth in 2 years indicating the potential for comparable growth of NICE events. Due to unanimous requests for more information on these and other topics, beginning Fall 2013, NICE will reach into additional educators' classrooms via the DLN to deliver continued EPD from NICE PIs and other NASA researchers. With DLN capability, hundreds of additional unique viewers have been exposed to NICE via the DLN this year. This large-scale effort allows for long term, sustained engagement of the global community. We intend to take advantage of capabilities of the DLN as we continue to scale NICE events to wider audiences. The use of distance education allows for immediate release of new information and more frequent connections, resulting in sustained engagement of participants. This presentation will explore the various successes and future opportunities for expanding the impact of climate literacy via the NASA DLN, a large-scale collaborative network.
Project Zoom IN, Citizen Perspectives on Climate and Water Resources
NASA Astrophysics Data System (ADS)
Glaser, J. P.
2012-12-01
Perspective on climate and water resources can come from the top, scientists sharing invaluable data and findings about how climate dynamics function or quantifications of systems in flux. However, citizens are endowed with an equally as powerful tool for insight: ground zero experience. Project Zoom In is a nascent project undertaken by Global Media Forge to empower youth, educators and scientists with tools to reach the media with locale-specific imagery and perspective of climate dynamics and evidence of anecdotal resource management of liquid gold: fresh water. Zoom In is taking root in Colorado but is designed for national/international scaling. This effort has three limbs: (1) student, scientist and educator workshops teaching invaluable video production skills (2) engaging Colorado school systems to stimulate submission of clips to full video productions to our database, and (3) embedding the findings on a taxonomic GIS interface on-line. The website will be invaluable in classrooms and link network media to individuals with firsthand viewpoints on change.; Climate and Water Resources
Developing a Carbon Observing System
NASA Astrophysics Data System (ADS)
Moore, B., III
2015-12-01
There is a clear need to better understand and predict future climate change, so that science can more confidently inform climate policy, including adaptation planning and future mitigation strategies. Understanding carbon cycle feedbacks, and the relationship between emissions (fossil and land use) and the resulting atmospheric carbon dioxide (CO2) and methane (CH4) concentrations in a changing climate has been recognized as an important goal by the IPCC. The existing surface greenhouse gas observing networks provide accurate and precise measurements of background values, but they are not configured to target the extended, complex and dynamic regions of the carbon budget. Space Agencies around the globe are committed to CO2 and CH4 observations: GOSAT-1/2, OCO-2/3, MERLin, TanSat, and CarbonSat. In addition to these Low Earth Orbit (LEO) missions, a new mission in Geostationary Orbit (GEO), geoCARB, which would provide mapping-like measurements of carbon dioxide, methane, and carbon monoxide concentrations over major land areas, has been recently proposed to the NASA Venture Program. These pioneering missions do not provide the spatial/temporal coverage to answer the key carbon-climate questions at process relevant scales nor do they address the distribution and quantification of anthropogenic sources at urban scales. They do demonstrate, however, that a well-planned future system of system integrating space-based LEO and GEO missions with extensive in situ observations could provide the accuracy, spatial resolution, and coverage needed to address critical open issues in the carbon-climate system. Dr. Diana Wickland devoted enormous energy in developing a comprehensive apprioach to understand the global carbon cycle; she understood well that an integrated, coordinated, international approach is needed. This shines through in her recent contribution in co-chairing the team that produced the "CEOS Strategy for Carbon Observations from Space." A NASA-funded community workshop in March 2015 addressed issues and prioritzed a set of research and observational needs in the study of the Carbon-Climate System. This paper will refect upon the past 30 plus years of carbon research supported by NASA and Dr. Wickland's role, and it will conclude with the findings of the March 2015 Workshop.
NASA Astrophysics Data System (ADS)
Foster, S. Q.; Johnson, R. M.; Carbone, L.; Eastburn, T.; Munoz, R.; Lu, G.; Ammann, C.
2004-05-01
The study of climate and global change is an important on-going focal area for scientists at the National Center for Atmospheric Research (NCAR). Programs overseen by the University Corporation for Atmospheric Research Office of Education and Outreach (UCAR-EO) help to translate NCAR's scientific programs, methodologies, and technologies, and their societal benefits to over 80,000 visitors to the NCAR Mesa Laboratory each year. This is accomplished through the implementation of exhibits, guided tours, an audiotour, programs for school groups, and a teachers' guide to exhibits which is currently in development. The Climate Discovery Exhibit unveiled in July 2003 offers visitors a visually engaging and informative overview of information, graphics, artifacts, and interactives describing the Earth system's dynamic processes that contribute to and mediate climate change, the history of our planet's changing climate, and perspectives on geographic locations and societies around the world that have potential to be impacted by a changing climate. Climate Futures, an addition to this exhibit to open in the summer of 2004, will help visitors to understand why scientists seek to model the global climate system and how information about past and current climate are used to validate models and build scenarios for Earth's future climate, while clarifying the effects of natural and human-induced contributions to these predictions. UCAR-EO further strives to enhance public understanding and to dispel misconceptions about climate change by bringing scientists' explanations to visitors who learn about atmospheric sciences while on staff-guided tours and/or while using an audiotour developed in 2003 with a grant from the National Science Foundation. With advanced reservations, a limited number of visitors may experience demonstrations of climate models in the NCAR Visualization Laboratory. An instructional module for approximately 5,000 visiting school children and a teachers guide for the Climate Discovery Exhibit is in the development and field testing phase with a goal to promote interest in and understanding of how climate change studies align with K-12 science standards. Over the next year, much of the content will become available to national audiences via the new NCAR EO web site (www.ncar.ucar.edu/eo), UCAR-EO's summer teachers workshops, and sessions at the National Science Teacher Association meetings.
Building International Research Partnerships in the North Atlantic-Arctic Region
NASA Astrophysics Data System (ADS)
Benway, Heather M.; Hofmann, Eileen; St. John, Michael
2014-09-01
The North Atlantic-Arctic region, which is critical to the health and socioeconomic well being of North America and Europe, is susceptible to climate-driven changes in circulation, biogeochemistry, and marine ecosystems. The need for strong investment in the study of biogeochemical and ecosystem processes and interactions with physical processes over a range of time and space scales in this region was clearly stated in the 2013 Galway Declaration, an intergovernmental statement on Atlantic Ocean cooperation (http://europa.eu/rapid/press-release_IP-13-459_en.htm). Subsequently, a workshop was held to bring together researchers from the United States, Canada, and Europe with expertise across multiple disciplines to discuss an international research initiative focused on key features, processes, and ecosystem services (e.g., Atlantic Meridional Overturning Circulation, spring bloom dynamics, fisheries, etc.) and associated sensitivities to climate changes.
Advances in Cross-Cutting Ideas for Computational Climate Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, Esmond; Evans, Katherine J.; Caldwell, Peter
This report presents results from the DOE-sponsored workshop titled, ``Advancing X-Cutting Ideas for Computational Climate Science Workshop,'' known as AXICCS, held on September 12--13, 2016 in Rockville, MD. The workshop brought together experts in climate science, computational climate science, computer science, and mathematics to discuss interesting but unsolved science questions regarding climate modeling and simulation, promoted collaboration among the diverse scientists in attendance, and brainstormed about possible tools and capabilities that could be developed to help address them. Emerged from discussions at the workshop were several research opportunities that the group felt could advance climate science significantly. These include (1)more » process-resolving models to provide insight into important processes and features of interest and inform the development of advanced physical parameterizations, (2) a community effort to develop and provide integrated model credibility, (3) including, organizing, and managing increasingly connected model components that increase model fidelity yet complexity, and (4) treating Earth system models as one interconnected organism without numerical or data based boundaries that limit interactions. The group also identified several cross-cutting advances in mathematics, computer science, and computational science that would be needed to enable one or more of these big ideas. It is critical to address the need for organized, verified, and optimized software, which enables the models to grow and continue to provide solutions in which the community can have confidence. Effectively utilizing the newest computer hardware enables simulation efficiency and the ability to handle output from increasingly complex and detailed models. This will be accomplished through hierarchical multiscale algorithms in tandem with new strategies for data handling, analysis, and storage. These big ideas and cross-cutting technologies for enabling breakthrough climate simulation advancements also need the "glue" of outreach and learning across the scientific domains to be successful. The workshop identified several strategies to allow productive, continuous engagement across those who have a broad knowledge of the various angles of the problem. Specific ideas to foster education and tools to make material progress were discussed. Examples include follow-on cross-cutting meetings that enable unstructured discussions of the types this workshop fostered. A concerted effort to recruit undergraduate and graduate students from all relevant domains and provide them experience, training, and networking across their immediate expertise is needed. This will broaden and expand their exposure to the future needs and solutions, and provide a pipeline of scientists with a diversity of knowledge and know-how. Providing real-world experience with subject matter experts from multiple angles may also motivate the students to attack these problems and even come up with the missing solutions.« less
Advances in Cross-Cutting Ideas for Computational Climate Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, E.; Evans, K.; Caldwell, P.
This report presents results from the DOE-sponsored workshop titled, Advancing X-Cutting Ideas for Computational Climate Science Workshop,'' known as AXICCS, held on September 12--13, 2016 in Rockville, MD. The workshop brought together experts in climate science, computational climate science, computer science, and mathematics to discuss interesting but unsolved science questions regarding climate modeling and simulation, promoted collaboration among the diverse scientists in attendance, and brainstormed about possible tools and capabilities that could be developed to help address them. Emerged from discussions at the workshop were several research opportunities that the group felt could advance climate science significantly. These include (1)more » process-resolving models to provide insight into important processes and features of interest and inform the development of advanced physical parameterizations, (2) a community effort to develop and provide integrated model credibility, (3) including, organizing, and managing increasingly connected model components that increase model fidelity yet complexity, and (4) treating Earth system models as one interconnected organism without numerical or data based boundaries that limit interactions. The group also identified several cross-cutting advances in mathematics, computer science, and computational science that would be needed to enable one or more of these big ideas. It is critical to address the need for organized, verified, and optimized software, which enables the models to grow and continue to provide solutions in which the community can have confidence. Effectively utilizing the newest computer hardware enables simulation efficiency and the ability to handle output from increasingly complex and detailed models. This will be accomplished through hierarchical multiscale algorithms in tandem with new strategies for data handling, analysis, and storage. These big ideas and cross-cutting technologies for enabling breakthrough climate simulation advancements also need the "glue" of outreach and learning across the scientific domains to be successful. The workshop identified several strategies to allow productive, continuous engagement across those who have a broad knowledge of the various angles of the problem. Specific ideas to foster education and tools to make material progress were discussed. Examples include follow-on cross-cutting meetings that enable unstructured discussions of the types this workshop fostered. A concerted effort to recruit undergraduate and graduate students from all relevant domains and provide them experience, training, and networking across their immediate expertise is needed. This will broaden and expand their exposure to the future needs and solutions, and provide a pipeline of scientists with a diversity of knowledge and know-how. Providing real-world experience with subject matter experts from multiple angles may also motivate the students to attack these problems and even come up with the missing solutions.« less
Baca, María; Läderach, Peter; Haggar, Jeremy; Schroth, Götz; Ovalle, Oriana
2014-01-01
The Mesoamerican region is considered to be one of the areas in the world most vulnerable to climate change. We developed a framework for quantifying the vulnerability of the livelihoods of coffee growers in Mesoamerica at regional and local levels and identify adaptation strategies. Following the Intergovernmental Panel on Climate Change (IPCC) concepts, vulnerability was defined as the combination of exposure, sensitivity and adaptive capacity. To quantify exposure, changes in the climatic suitability for coffee and other crops were predicted through niche modelling based on historical climate data and locations of coffee growing areas from Mexico, Guatemala, El Salvador and Nicaragua. Future climate projections were generated from 19 Global Circulation Models. Focus groups were used to identify nine indicators of sensitivity and eleven indicators of adaptive capacity, which were evaluated through semi-structured interviews with 558 coffee producers. Exposure, sensitivity and adaptive capacity were then condensed into an index of vulnerability, and adaptation strategies were identified in participatory workshops. Models predict that all target countries will experience a decrease in climatic suitability for growing Arabica coffee, with highest suitability loss for El Salvador and lowest loss for Mexico. High vulnerability resulted from loss in climatic suitability for coffee production and high sensitivity through variability of yields and out-migration of the work force. This was combined with low adaptation capacity as evidenced by poor post harvest infrastructure and in some cases poor access to credit and low levels of social organization. Nevertheless, the specific contributors to vulnerability varied strongly among countries, municipalities and families making general trends difficult to identify. Flexible strategies for adaption are therefore needed. Families need the support of government and institutions specialized in impacts of climate change and strengthening of farmer organizations to enable the adjustment of adaptation strategies to local needs and conditions.
Baca, María; Läderach, Peter; Haggar, Jeremy; Schroth, Götz; Ovalle, Oriana
2014-01-01
The Mesoamerican region is considered to be one of the areas in the world most vulnerable to climate change. We developed a framework for quantifying the vulnerability of the livelihoods of coffee growers in Mesoamerica at regional and local levels and identify adaptation strategies. Following the Intergovernmental Panel on Climate Change (IPCC) concepts, vulnerability was defined as the combination of exposure, sensitivity and adaptive capacity. To quantify exposure, changes in the climatic suitability for coffee and other crops were predicted through niche modelling based on historical climate data and locations of coffee growing areas from Mexico, Guatemala, El Salvador and Nicaragua. Future climate projections were generated from 19 Global Circulation Models. Focus groups were used to identify nine indicators of sensitivity and eleven indicators of adaptive capacity, which were evaluated through semi-structured interviews with 558 coffee producers. Exposure, sensitivity and adaptive capacity were then condensed into an index of vulnerability, and adaptation strategies were identified in participatory workshops. Models predict that all target countries will experience a decrease in climatic suitability for growing Arabica coffee, with highest suitability loss for El Salvador and lowest loss for Mexico. High vulnerability resulted from loss in climatic suitability for coffee production and high sensitivity through variability of yields and out-migration of the work force. This was combined with low adaptation capacity as evidenced by poor post harvest infrastructure and in some cases poor access to credit and low levels of social organization. Nevertheless, the specific contributors to vulnerability varied strongly among countries, municipalities and families making general trends difficult to identify. Flexible strategies for adaption are therefore needed. Families need the support of government and institutions specialized in impacts of climate change and strengthening of farmer organizations to enable the adjustment of adaptation strategies to local needs and conditions. PMID:24586328
Proceedings of the Second Pilot Climate Data System Workshop
NASA Technical Reports Server (NTRS)
1986-01-01
The proceedings of the workshop held on January 29 and 30, 1986 are discussed. Data management, satellite radiance data, clouds, ultraviolet flux variations in the upper atmosphere, rainfall during El Nino events, and the use of optical disks are among the topics covered.
National Climate Change and Wildlife Science Center project accomplishments: highlights
Holl, Sally
2011-01-01
The National Climate Change and Wildlife Science Center (NCCWSC) has invested more than $20M since 2008 to put cutting-edge climate science research in the hands of resource managers across the Nation. With NCCWSC support, more than 25 cooperative research initiatives led by U.S. Geological Survey (USGS) researchers and technical staff are advancing our understanding of habitats and species to provide guidance to managers in the face of a changing climate. Projects focus on quantifying and predicting interactions between climate, habitats, species, and other natural resources such as water. Spatial scales of the projects range from the continent of North America, to a regional scale such as the Pacific Northwest United States, to a landscape scale such as the Florida Everglades. Time scales range from the outset of the 20th century to the end of the 21st century. Projects often lead to workshops, presentations, publications and the creation of new websites, computer models, and data visualization tools. Partnership-building is also a key focus of the NCCWSC-supported projects. New and on-going cooperative partnerships have been forged and strengthened with resource managers and scientists at Federal, tribal, state, local, academic, and non-governmental organizations. USGS scientists work closely with resource managers to produce timely and relevant results that can assist managers and policy makers in current resource management decisions. This fact sheet highlights accomplishments of five NCCWSC projects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graber, J.; Amthor, J.; Dahlman, R.
2008-12-01
One of the most daunting challenges facing science in the 21st Century is to predict how Earth's ecosystems will respond to global climate change. The global carbon cycle plays a central role in regulating atmospheric carbon dioxide (CO{sub 2}) levels and thus Earth's climate, but our basic understanding of the myriad of tightly interlinked biological processes that drive the global carbon cycle remains limited at best. Whether terrestrial and ocean ecosystems will capture, store, or release carbon is highly dependent on how changing climate conditions affect processes performed by the organisms that form Earth's biosphere. Advancing our knowledge of biologicalmore » components of the global carbon cycle is thus crucial to predicting potential climate change impacts, assessing the viability of climate change adaptation and mitigation strategies, and informing relevant policy decisions. Global carbon cycling is dominated by the paired biological processes of photosynthesis and respiration. Photosynthetic plants and microbes of Earth's land-masses and oceans use solar energy to transform atmospheric CO{sub 2} into organic carbon. The majority of this organic carbon is rapidly consumed by plants or microbial decomposers for respiration and returned to the atmosphere as CO{sub 2}. Coupling between the two processes results in a near equilibrium between photosynthesis and respiration at the global scale, but some fraction of organic carbon also remains in stabilized forms such as biomass, soil, and deep ocean sediments. This process, known as carbon biosequestration, temporarily removes carbon from active cycling and has thus far absorbed a substantial fraction of anthropogenic carbon emissions.« less
Workshop on Satellite and In situ Observations for Climate Prediction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acker, J.G.; Busalacchi, A.
1995-02-01
Participants in this workshop, which convened in Venice, Italy, 6-8 May 1993, met to consider the current state of climate monitoring programs and instrumentation for the purpose of climatological prediction on short-term (seasonal to interannual) timescales. Data quality and coverage requirements for definition of oceanographic heat and momentum fluxes, scales of inter- and intra-annual variability, and land-ocean-atmosphere exchange processes were examined. Advantages and disadvantages of earth-based and spaceborne monitoring systems were considered, as were the structures for future monitoring networks, research programs, and modeling studies.
Workshop on Satellite and In situ Observations for Climate Prediction
NASA Technical Reports Server (NTRS)
Acker, James G.; Busalacchi, Antonio
1995-01-01
Participants in this workshop, which convened in Venice, Italy, 6-8 May 1993, met to consider the current state of climate monitoring programs and instrumentation for the purpose of climatological prediction on short-term (seasonal to interannual) timescales. Data quality and coverage requirements for definition of oceanographic heat and momentum fluxes, scales of inter- and intra-annual variability, and land-ocean-atmosphere exchange processes were examined. Advantages and disadvantages of earth-based and spaceborne monitoring systems were considered, as were the structures for future monitoring networks, research programs, and modeling studies.
Douglas, Vasiliki; Chan, Hing Man; Wesche, Sonia; Dickson, Cindy; Kassi, Norma; Netro, Lorraine; Williams, Megan
2014-01-01
Because of a lack of transportation infrastructure, Old Crow has the highest food costs and greatest reliance on traditional food species for sustenance of any community in Canada's Yukon Territory. Environmental, cultural, and economic change are driving increased perception of food insecurity in Old Crow. To address community concerns regarding food security and supply in Old Crow and develop adaptation strategies to ameliorate their impact on the community. A community adaptation workshop was held on October 13, 2009, in which representatives of different stakeholders in the community discussed a variety of food security issues facing Old Crow and how they could be dealt with. Workshop data were analyzed using keyword, subject, and narrative analysis techniques to determine community priorities in food security and adaptation. Community concern is high and favored adaptation options include agriculture, improved food storage, and conservation through increased traditional education. These results were presented to the community for review and revision, after which the Vuntut Gwitchin Government will integrate them into its ongoing adaptation planning measures.
An expert assessment on climate change and health - with a European focus on lungs and allergies.
Forsberg, Bertil; Bråbäck, Lennart; Keune, Hans; Kobernus, Mike; Krayer von Krauss, Martin; Yang, Aileen; Bartonova, Alena
2012-06-28
For almost 20 years, the Intergovernmental Panel on Climate Change has been assessing the potential health risks associated with climate change; with increasingly convincing evidence that climate change presents existing impacts on human health. In industrialized countries climate change may further affect public health and in particular respiratory health, through existing health stressors, including, anticipated increased number of deaths and acute morbidity due to heat waves; increased frequency of cardiopulmonary events due to higher concentrations of air pollutants; and altered spatial and temporal distribution of allergens and some infectious disease vectors. Additionally exposure to moulds and contaminants from water damaged buildings may increase. We undertook an expert elicitation amongst European researchers engaged in environmental medicine or respiratory health. All experts were actively publishing researchers on lung disease and air pollution, climate and health or a closely related research. We conducted an online questionnaire on proposed causal diagrams and determined levels of confidence that climate change will have an impact on a series of stressors. In a workshop following the online questionnaire, half of the experts further discussed the results and reasons for differences in assessments of the state of knowledge on exposures and health effects. Out of 16 experts, 100% expressed high to very high confidence that climate change would increase the frequency of heat waves. At least half expressed high or very high confidence that climate change would increase levels of pollen (50%), particulate matter (PM2.5) (55%), and ozone (70%). While clarity is needed around the impacts of increased exposures to health impacts of some stressors, including ozone and particulate matter levels, it was noted that definitive knowledge is not a prerequisite for policy action. Information to the public, preventive measures, monitoring and warning systems were among the most commonly mentioned preventative actions. This group of experts identifies clear health risks associated with climate change, and express opinions about these risks even while they do not necessarily regard themselves as covering all areas of expertise. Since some changes in exposure have already been observed, the consensus is that there is already a scientific basis for preventative action, and that the associated adaptation and mitigation policies should also be evidence based.
Frontier Science in the Polar Regions: Current Activities of the Polar Research Board
NASA Astrophysics Data System (ADS)
Brown, L. M.
2011-12-01
The National Academies (the umbrella term for the National Academy of Sciences, National Academy of Engineering, Institute of Medicine, and National Research Council) is a private, nonprofit organization chartered by Congress in 1863. The Polar Research Board (PRB) is the focal point within the Academies for providing advice on issues related to the Arctic, Antarctic, and cold regions in general. Tasks within the PRB mission include: providing a forum for the polar science community to address research needs and policy issues; conducting studies and workshops on emerging scientific and policy issues in response to requests from federal agencies and others; providing program reviews, guidance, and assessments of priorities; and facilitating communication on polar issues among academia, industry, and government. The PRB also serves as the US National Committee to two international, nongovernmental polar science organizations: the Scientific Committee on Antarctic Research (SCAR) and the International Arctic Science Committee (IASC). The polar regions are experiencing rapid changes in environment and climate, and the PRB has a number of completed and ongoing studies that will enhance scientific understanding of these issues. This poster will illustrate current PRB activities as well as results from two recently released reports: Frontiers in Understanding Climate Change and Polar Ecosystems and Future Science Opportunities in Antarctica and the Southern Ocean. In the former, a set of frontier research questions are developed to help scientists understand the impacts of climate change on polar ecosystems. The report builds on existing knowledge of climate change impacts and highlights the next big topics to be addressed in the coming decades. In addition, a number of methods and technologies are identified that will be useful to advance future research in polar ecosystem science. In the latter, changes to important science conducted on Antarctica and the surrounding Southern Ocean will be summarized. The report will identify the anticipated types and scope of US scientific programs in the region over the next two decades. It will also examine opportunities for international Antarctic scientific collaborations and report any new and emerging technologies. Through these reports, ongoing studies and workshops, and various outreach methods, the PRB plays an important role in dissemination of polar science, both in the United States and internationally. For example, the PRB played a critical role in planning the International Polar Year (IPY) 2007-2008 and is currently conducting a synthesis study called Legacies and Lessons of IPY 2007-2008. The report will be informed by a large community workshop and will examine what was learned and how the many pieces of IPY combine to move polar understanding forward in the future. Other PRB reports (e.g., Scientific Value of Arctic Sea Ice Imagery Derived Products and Toward an Integrated Arctic Observing Network) have also had important implications for current and future polar research.
Accretion of Interplanetary Dust: A New Record from He-3 In Polar Ice Cores
NASA Technical Reports Server (NTRS)
Brook, Edward
2002-01-01
This grant funded measurements of extraterrestrial He-3 in particles extracted from polar ice samples. The overall objective was to develop measurements of He-3 as tracers of the flux of interplanetary dust particles (IDP's) to the earth. To our knowledge these are the first such measurements, apart from our earlier work. The project also funded an EPO activity - a climate and global change workshop for high school science teachers.
Climate Change: Science and Policy Implications
2007-01-25
Kleypas, J.A., R.A. Feely, V.J. Fabry, C. Langdon, C.L. Sabine, L.L. Robbins, et al. Impacts of Ocean Acidification on Coral Reefs and Other Marine...Impacts of Ocean Acidification on Coral Reefs and Other Marine Calcifiers: A Guide for Future Research,” a report of a workshop held April 18-20... Acidification ” below.) To the degree that live coral reef cover declines, losses up the related food chain could be expected, with possible economic
Carnes, Molly; Devine, Patricia G; Baier Manwell, Linda; Byars-Winston, Angela; Fine, Eve; Ford, Cecilia E; Forscher, Patrick; Isaac, Carol; Kaatz, Anna; Magua, Wairimu; Palta, Mari; Sheridan, Jennifer
2015-02-01
Despite sincere commitment to egalitarian, meritocratic principles, subtle gender bias persists, constraining women's opportunities for academic advancement. The authors implemented a pair-matched, single-blind, cluster randomized, controlled study of a gender-bias-habit-changing intervention at a large public university. Participants were faculty in 92 departments or divisions at the University of Wisconsin-Madison. Between September 2010 and March 2012, experimental departments were offered a gender-bias-habit-changing intervention as a 2.5-hour workshop. Surveys measured gender bias awareness; motivation, self-efficacy, and outcome expectations to reduce bias; and gender equity action. A timed word categorization task measured implicit gender/leadership bias. Faculty completed a work-life survey before and after all experimental departments received the intervention. Control departments were offered workshops after data were collected. Linear mixed-effects models showed significantly greater changes post intervention for faculty in experimental versus control departments on several outcome measures, including self-efficacy to engage in gender-equity-promoting behaviors (P = .013). When ≥ 25% of a department's faculty attended the workshop (26 of 46 departments), significant increases in self-reported action to promote gender equity occurred at three months (P = .007). Post intervention, faculty in experimental departments expressed greater perceptions of fit (P = .024), valuing of their research (P = .019), and comfort in raising personal and professional conflicts (P = .025). An intervention that facilitates intentional behavioral change can help faculty break the gender bias habit and change department climate in ways that should support the career advancement of women in academic medicine, science, and engineering.
Climate Adaptation is About More Than Climate: Value-Driven Science Delivery
NASA Astrophysics Data System (ADS)
Swanston, C.
2015-12-01
Efforts to deliver relevant scientific information and tools to diverse stakeholders have dramatically increased in recent years with the intention of promoting climate change adaptation. Much work has been done to understand the barriers to action, but these largely overlook the need to frame the discussion in terms of stakeholder values and co-create innovative solutions that meet their individual needs. A partnership-based effort in the upper Midwest and Northeast called the Climate Change Response Framework (CCRF; www.forestadaptation.org) ensures relevance, breadth, and credibility of its products through stakeholder inclusion at all levels. The fundamental role of the CCRF is to help people meet their land stewardship goals while minimizing climate risk. This represents a subtle but important shift in focus to people and their values, as opposed to climate change and its effects. The CCRF uses a climate planning tool, the Adaptation Workbook (www.adaptationworkbook.org), along with ecosystem vulnerability assessments and a diverse "menu" of adaptation approaches to generate site-specific adaptation actions that meet explicit conservation objectives. These tools are integrated into an Adaptation Planning and Practices workshop that leads organizations through this structured process of designing adaptation tactics for their projects and plans. All of these tools were developed with stakeholders, or in response to their direct and continuing feedback. The CCRF has involved thousands of people and over 100 organizations, published six ecoregional vulnerability assessments with more than 130 authors, and generated more than 125 intentional adaptation demonstrations in real-world land management projects on federal, state, tribal, county, conservancy, and private lands. The CCRF contributes strongly to the USDA Regional Climate Hubs, working on the applied end of the continuum of climate services occupied by providers such as the CSCs, LCCs, RISAs, and RCCs.
NASA Astrophysics Data System (ADS)
Bhave, Ajay; Dessai, Suraje; Conway, Declan; Stainforth, David
2016-04-01
Deep uncertainty in future climate change and socio-economic conditions necessitates the use of assess-risk-of-policy approaches over predict-then-act approaches for adaptation decision making. Robust Decision Making (RDM) approaches embody this principle and help evaluate the ability of adaptation options to satisfy stakeholder preferences under wide-ranging future conditions. This study involves the simultaneous application of two RDM approaches; qualitative and quantitative, in the Cauvery River Basin in Karnataka (population ~23 million), India. The study aims to (a) determine robust water resources adaptation options for the 2030s and 2050s and (b) compare the usefulness of a qualitative stakeholder-driven approach with a quantitative modelling approach. For developing a large set of future scenarios a combination of climate narratives and socio-economic narratives was used. Using structured expert elicitation with a group of climate experts in the Indian Summer Monsoon, climatic narratives were developed. Socio-economic narratives were developed to reflect potential future urban and agricultural water demand. In the qualitative RDM approach, a stakeholder workshop helped elicit key vulnerabilities, water resources adaptation options and performance criteria for evaluating options. During a second workshop, stakeholders discussed and evaluated adaptation options against the performance criteria for a large number of scenarios of climatic and socio-economic change in the basin. In the quantitative RDM approach, a Water Evaluation And Planning (WEAP) model was forced by precipitation and evapotranspiration data, coherent with the climatic narratives, together with water demand data based on socio-economic narratives. We find that compared to business-as-usual conditions options addressing urban water demand satisfy performance criteria across scenarios and provide co-benefits like energy savings and reduction in groundwater depletion, while options reducing agricultural water demand significantly affect downstream water availability. Water demand options demonstrate potential to improve environmental flow conditions and satisfy legal water supply requirements for downstream riparian states. On the other hand, currently planned large scale infrastructural projects demonstrate reduced value in certain scenarios, illustrating the impacts of lock-in effects of large scale infrastructure. From a methodological perspective, we find that while the stakeholder-driven approach revealed robust options in a resource-light manner and helped initiate much needed interaction amongst stakeholders, the modelling approach provides complementary quantitative information. The study reveals robust adaptation options for this important basin and provides a strong methodological basis for carrying out future studies that support adaptation decision making.
Titan Aeromony and Climate Workshop
NASA Astrophysics Data System (ADS)
Bézard, Bruno; Lavvas, Panayotis; Rannou, Pascal; Sotin, Christophe; Strobel, Darrell; West, Robert A.; Yelle, Roger
2016-06-01
The observations of the Cassini spacecraft since 2004 revealed that Titan, the largest moon of Saturn, has an active climate cycle with a cloud cover related to the large scale atmospheric circulation, lakes of methane and hyrdrocarbons with variable depth, a dried fluvial system witnessing a past wetter climate, dunes, and deep changes in the weather and atmospheric structure as Titan went through the North Spring equinox. Moreover, the upper atmosphere is now considered the cradle of complex chemistry leading to aerosol formation, as well as the manifestation place of atmospheric waves. However, as the Cassini mission comes to its end, many fundamental questions remain unresolved... The objective of the workshop is to bring together international experts from different fields of Titan's research in order to have an overview of the current understanding, and to determine the remaining salient scientific issues and the actions that could be implemented to address them. PhD students and post-doc researchers are welcomed to present their studies. This conference aims to be a brainstorming event leaving abundant time for discussion during oral and poster presentations. Main Topics: - Atmospheric seasonal cycles and coupling with dynamics. - Composition and photochemistry of the atmosphere. - Formation and evolution of aerosols and their role in the atmosphere. - Spectroscopy, optical properties, and radiative transfer modeling of the atmosphere. - Surface composition, liquid reservoirs and interaction with atmosphere. - Evolution of the atmosphere. - Titan after Cassini, open questions and the path forward.
NASA Astrophysics Data System (ADS)
Meyer, Ina; Eder, Brigitte; Hama, Michiko; Leitner, Markus
2016-04-01
Risks associated with climate change are mostly still understood and analyzed in a sector- or hazard-specific and rarely in a systemic, dynamic and scenario-based manner. In addition, socio-economic trends are often neglected in local vulnerability and risk assessments although they represent potential key determinants of risk and vulnerability. The project ARISE (Adaptation and Decision Support via Risk Management Through Local Burning Embers) aims at filling this gap by applying a participatory approach to socio-economic scenario building as building block of a local vulnerability assessment and risk management tool. Overall, ARISE aims at developing a decision support system for climate-sensitive iterative risk management as a key adaptation tool for the local level using Lienz in the East-Tyrol as a test-site City. One central building block is participatory socio-economic scenario building that - together with regionalized climate change scenarios - form a centrepiece in the process-oriented assessment of climate change risks and vulnerability. Major vulnerabilities and risks may stem from the economic performance, the socio-economic or socio-demographic developments or changes in asset exposition and not from climate change impacts themselves. The IPCC 5th assessment report underlines this and states that for most economic sectors, the impact of climate change may be small relative to the impacts of other driving forces such as changes in population growth, age, income, technology, relative prices, lifestyle, regulation, governance and many other factors in the socio-economy (Arent et al., 2014). The paper presents the methodology, process and results with respect to the building of long-term local socio-economic scenarios for the City of Lienz and the surrounding countryside. Scenarios were developed in a participatory approach using a scenario workshop that involved major stakeholders from the region. Participatory approaches are increasingly recognized as an important element in management and decision-making as problems in today's world are complex and require knowledge from many different domains and disciplines. Participation is also said to be a process of collective learning that changes the way people think and act which is a relevant point in forming appropriate region-specific climate adaptation strategies. The scenarios are based on an analysis of data on recent states and trends in major local sector developments concerning absolute and relative employment and value creation as well as on distinct socio-demographic developments in the region. Categories discussed in the scenario workshop cover inter alia institutions and governance, demographics, production and demand, markets, value-chains and trade, scientific and technological innovations, education and health. The derived stakeholder-based socio-economic scenarios were, in a second step, matched with the Shared Socio-economic reference Pathways (SSPs) in order to frame the locally produced scenarios with global narratives. Both strains were, in a third step, combined and backed-up by scientific literature in order to build the local socio-economic scenarios that served as background information in the analysis of risks, vulnerability and appropriate adaptation measures in the case-study region.
Use of the Seasons and Biomes Project in Climate Change Education
NASA Astrophysics Data System (ADS)
Sparrow, E. B.; Morris, K.; . Jaroensutasinee, M.; Jaroensutasinee, K.; Yule, S.; Boger, R.; Gordon, L. S.; Yoshikawa, K.; Kopplin, M. R.; Verbyla, D. L.
2009-04-01
The Seasons and Biomes Project is an inquiry- and project- based initiative that monitors seasons, specifically their interannual variability, with the goal of increasing primary and secondary students' understanding of the earth system, and engaging them in research as a way of learning science, understanding climate change, contributing to climate change studies and participating in the fourth International Polar Year. International professional development workshops have been conducted in the United States, S. Africa, Germany and most recently in Thailand. Primary and secondary teachers and teacher trainers as well as scientists from Argentina, Bahrain, Cameroon, Canada, Czech Republic, Estonia, Germany, Greenland, India, Peru, Paraguay, Mongolia, Norway, Saudi Arabia, South Africa, Switzerland, Thailand and the United States have participated in the training workshops and are working with students. Available to the Seasons and Biomes participants are the rich array of scientific protocols for investigations on atmosphere/weather, hydrology, soils, land cover biology, and phenology as well as learning activities which have been developed by the Global Learning and Observations to Benefit the Environment program (GLOBE) program (www.globe.gov). GLOBE is an international (109 countries involved) earth/environmental science and education program that brings together scientists, teachers, students and parents in inquiry-based studies and in monitoring the Earth, increasing awareness of and care of the environment, and increasing student achievement across the curriculum. Students conduct their studies at or close to their schools and submit the data they have collected to the Data Archive on the GLOBE website. Seasons and Biomes has developed additional learning activities and measurement protocols such as freshwater ice phenology protocols (freeze-up and break-up) and a frost tube (depth of freezing in soils) protocol that are being used in schools. A mosquito protocol developed by Thai scientists as part of the program to determine abundance and types of mosquitoes that are vectors of malaria and dengue fever, has been successfully tested in two schools and will now be used by students in at least 15 other schools in Thailand. African schools are also interested in using the mosquito protocol. A mosquito protocol to determine start of season in northern latitudes will be tested in Alaskan schools. There is a lot of interest in the effect of climate change on environmental parameters, populations of disease vectors and relationship to disease incidence. Changes in plant and ice phenology can be both indicators and impacts of climate change. Seasons and Biomes has also conducted Pole to Pole climate change videoconferences for Alaskan and Argentinean students, and arctic and antarctic scientists. These gave the students the opportunity to share their observations, ask each other questions, ask the scientists their questions on climate change and discuss topics for research investigations. The videoconferences were followed by web chats and web forums to allow more students from other countries to participate. Students are encouraged to present their studies at science fairs and symposiums and during GLOBE conferences. Indeed some students including Alaskan Native students, have done so.
76 FR 4345 - A Method To Assess Climate-Relevant Decisions: Application in the Chesapeake Bay
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-25
... ENVIRONMENTAL PROTECTION AGENCY [FRL-9257-2] A Method To Assess Climate-Relevant Decisions... external peer review workshop to review the external review draft document titled, ``A Method to Assess.../peerreview/register-chesapeake.htm . The draft ``A Method to Assess Climate-Relevant Decisions: Application...
Cyberlearning for Climate Literacy: Challenges and Opportunities
NASA Astrophysics Data System (ADS)
McCaffrey, M. S.; Buhr, S. M.; Gold, A. U.; Ledley, T. S.; Mooney, M. E.; Niepold, F.
2010-12-01
Cyberlearning tools provide cost and carbon-efficient avenues for fostering a climate literate society through online engagement with learners. With climate change education becoming a Presidential Priority in 2009, funding for grants from NSF, NASA and NOAA is leading to a new generation of cyberlearning resources that supplement existing online resources. This paper provides an overview of challenges and opportunities relating to the online delivery of high quality, often complex climate science by examining several existing and emerging efforts, including the Climate Literacy and Energy Awareness Network (CLEAN,) a National Science Digital Library Pathway, the development by CIRES Education and Outreach of the Inspiring Climate Education Excellence (ICEE) online course, TERC’s Earth Exploration Toolbook (EET,) DataTools, and EarthLab modules, the NOAA Climate Stewards Education Program (CSEP) that utilizes the NSTA E-Learning Center, online efforts by members of the Federation of Earth Science Information Partners (ESIP), UCAR’s Climate Discovery program, and the Climate Adaptation, Mitigation e-Learning (CAMeL) project. In addition, we will summarize outcomes of the Cyberlearning for Climate Literacy workshop held in Washington DC in the Fall of 2009 and examine opportunities for teachers to develop and share their own lesson plans based on climate-related web resources that currently lack built-in learning activities, assessments or teaching tips.
NASA Astrophysics Data System (ADS)
Keener, V. W.; Staal, L.
2011-12-01
The NOAA-funded Regional Integrated Sciences and Assessment (RISA) programs act as boundary organizations that both conduct and translate academic climate research in the physical and social sciences for a variety of stakeholder applications, including for local and state governments, natural resource managers, non-climate scientists, and community members. For the past six years, I have worked with two RISAs-one in the southeast United States, and recently in the Pacific region. In confronting the most immediate impacts of climate change, Florida and Hawai'i are both currently dealing with saltwater intrusion effects on infrastructure and water supply, sea level rise impacts on vulnerable coastlines, and expect the problems to worsen in the future. Both RISAs have focused on water resource sustainability as a topic of interest, and held workshops on climate variability and change impacts for water utilities and a wider range of relevant stakeholders. Methods that have been used to communicate climate science, projected impacts, and risk have included: working groups/collaborative learning, scientific presentations and presentations of relevant case studies, beach management planning, in-depth interviews, and educational radio spots. Despite the similarities in the types of issues being confronted, stakeholders in each location have responded with differing levels of acceptance, which has resulted in the usage of different methods of communication of the same types of climate science information. This talk will focus on the success of a variety of different methods in communicating similar information on comparable risks to different audiences.
Climate Ready Estuaries Progress Reports
Climate Ready Estuaries has supported adaptation activities in National Estuary Programs since 2008. In 2012, the program partnered with 23 NEPs, completed a pilot project with water utilities, and held workshops. Download annual reports from 2009-2012.
EarthLabs Meet Sister Corita Kent
NASA Astrophysics Data System (ADS)
Quartini, E.; Ellins, K. K.; Cavitte, M. G.; Thirumalai, K.; Ledley, T. S.; Haddad, N.; Lynds, S. E.
2013-12-01
The EarthLabs project provides a framework to enhance high school students' climate literacy and awareness of climate change. The project provides climate science curriculum and teacher professional development, followed by research on students' learning as teachers implement EarthLabs climate modules in the classroom. The professional development targets high school teachers whose professional growth is structured around exposure to current climate science research, data observation collection and analysis. During summer workshops in Texas and Mississippi, teachers work through the laboratories, experiments, and hand-on activities developed for their students. In summer 2013, three graduate students from the University of Texas at Austin Institute for Geophysics with expertise in climate science participated in two weeklong workshops. The graduate students partnered with exemplary teacher leaders to provide scientific content and lead the EarthLabs learning activities. As an experiment, we integrated a visit to the Blanton Museum and an associated activity in order to motivate participants to think creatively, as well as analytically, about science. This exercise was inspired by the work and educational philosophy of Sister Corita Kent. During the visit to the Blanton Museum, we steered participants towards specific works of art pre-selected to emphasize aspects of the climate of Texas and to draw participants' attention to ways in which artists convey different concepts. For example, artists use of color, lines, and symbols conjure emotional responses to imagery in the viewer. The second part of the exercise asked participants to choose a climate message and to convey this through a collage. We encouraged participants to combine their experience at the museum with examples of Sister Corita Kent's artwork. We gave them simple guidelines for the project based on techniques and teaching of Sister Corita Kent. Evaluation results reveal that participants enjoyed the activity and saw its value for enhancing their own appreciation of climate science. However, participants expressed skepticism about using the exercise with their own students. Teachers' perception was that students would not make the same connections that they did. From our perspective and participants' enthusiasm we encourage collaboration between art and science teachers in joint activities that emphasize the link between art and science.
NASA Technical Reports Server (NTRS)
Bindschadler, Robert A. (Editor)
1990-01-01
The results of a workshop held to discuss the role of the polar ice sheets in global climate change are reported. The participants agreed that the most important aspect of the ice sheets' involvement in climate change is the potential of marine ice sheets to cause a rapid change in global sea level. To address this concern, a research initiative is called for that considers the full complexity of the coupled atmosphere-ocean-cryosphere-lithosphere system. This initiative, called SeaRISE (Sea-level Response to Ice Sheet Evolution) has the goal of predicting the contribution of marine ice sheets to rapid changes in global sea level in the next decade to few centuries. To attain this goal, a coordinated program of multidisciplinary investigations must be launched with the linked objectives of understanding the current state, internal dynamics, interactions, and history of this environmental system. The key questions needed to satisfy these objectives are presented and discussed along with a plan of action to make the SeaRISE project a reality.
The BDA Dental Academic Staff Group Student Elective Workshop.
Walmsley, A D; White, D A; Hobson, R; Ensor, S
2007-08-25
In the current climate in dental education, many schools are re-evaluating the role of the student elective in the curriculum, with two schools no longer running elective programmes. In order to discuss the future of student electives in the dental curriculum, the Dental Academic Staff Group (DASG) of the British Dental Association organised a Student Elective Workshop, which attracted 42 delegates including nine student representatives. The following article is an account of the Workshop and its conclusions.
Sharing the Adventure with the Public - The Value of Excitement: Summary of a Workshop
NASA Technical Reports Server (NTRS)
2011-01-01
The premise of the workshop was that NASA and its associated science and exploration communities have not been as effective as they could be in communicating with the public about what NASA does or how its activities contribute to resolving critical problems on Earth. Although not explicitly stated, an underlying assumption seemed to be that if the public had a better understanding, it would be more supportive of NASA, which in turn could generate more political support for the organization. In the case of global climate change, the broader issue is how to convince the public of the magnitude of the problem and the need for solutions. The role of new social media tools like Facebook and Twitter in interacting with the public was an integral part of the discussion.
Rodríguez, Mireia Alcántara; Angueyra, Andrea; Cleef, Antoine M; Van Andel, Tinde
2018-05-05
The Sierra Nevada del Cocuy-Güicán in the Colombian Andes is protected as a National Natural Park since 1977 because of its fragile páramo ecosystems, extraordinary biodiversity, high plant endemism, and function as water reservoir. The vegetation on this mountain is threatened by expanding agriculture, deforestation, tourism, and climate change. We present an ethnobotanical inventory among local farmer communities and discuss the effects of vegetation change on the availability of useful plants. We used 76 semi-structured, 4 in-depth interviews, and 247 botanical collections to record the ethnoflora of the farmers and surveyed from the high Andean forest to the super-páramo, including native and introduced species. We organized 3 participative workshops with local children, high school students, and campesinos' women to share the data we acquired in the field and empower local plant conservation awareness. We encountered 174 useful plants, most of them native to the area (68%) and almost one third introduced (32%). The Compositae was the most species-rich family, followed by Lamiaceae, Poaceae, and Rosaceae. The majority of plant species were used as medicine, followed by food, firewood, and domestic tools. Local farmers reported declining numbers of páramo species, which were now only found at higher altitudes than before. Although our informants were worried about the preservation of their natural resources and noticed the effects of climate change, for several commercial species, unsustainable land use and overharvesting seemed to be the direct cause of declining medicinal plant resources rather than climate change. We recommend conservation plans that include vegetation monitoring, people's perceptions on climate change, and participative actions with the communities of the Sierra Nevada del Cocuy-Güicán.
The Role of Religious and Scientific Leaders in Bringing Awareness to the Urgency of Climate Change.
NASA Astrophysics Data System (ADS)
Ramanathan, V.
2015-12-01
The release of the Encyclical by Pope Francis has opened a powerful new venue to bring forth the urgency of climate change to the public. The background work that preceded the encyclical was several years in the making. The Church has its own Science Academy, known as the Pontifical Academy of Sciences, consisting of 80 members from around the world with more than a third Nobel Laureates. The members are chosen for their scientific excellence (like most science academies of the world) and not for their religious affiliations. This academy organized a series of scientific meetings for the last 5 years, culminating in a 2014 workshop entitled: Sustainable Humanity, Sustainable Nature , Our Responsibility, jointly organized with the Pontifical Academy of Social Sciences. This meeting of the world's thought leaders in natural and Social sciences, came to a remarkable set of conclusions: Climate Change has become a moral issue. A fundamental change in our attitude towards natue and towards each other is required to solve the problem. Religious leaders can have a transformational effect by mobilizing public opinion for actions to stabilize climate change and protect the people. Being a council member of the Pontifical Academy and watching from within the powerful moral voice of Pope Francis, I conclude that this partnership with religion is a powerful new venue for those researchers, reticent about publicly voicing their grave concerns to pursue. We are going to bring massive public support for urgent actions only when the impacts of climate change and its origins are taught in every church, every temple, every mosque, every synagogue, and other places of worship.
NASA Astrophysics Data System (ADS)
Miller, B. W.; Schuurman, G. W.; Symstad, A.; Fisichelli, N. A.; Frid, L.
2017-12-01
Managing natural resources in this era of anthropogenic climate change is fraught with uncertainties around how ecosystems will respond to management actions and a changing climate. Scenario planning (oftentimes implemented as a qualitative, participatory exercise for exploring multiple possible futures) is a valuable tool for addressing this challenge. However, this approach may face limits in resolving responses of complex systems to altered climate and management conditions, and may not provide the scientific credibility that managers often require to support actions that depart from current practice. Quantitative information on projected climate changes and ecological responses is rapidly growing and evolving, but this information is often not at a scale or in a form that is `actionable' for resource managers. We describe a project that sought to create usable information for resource managers in the northern Great Plains by combining qualitative and quantitative methods. In particular, researchers, resource managers, and climate adaptation specialists co-produced a simulation model in conjunction with scenario planning workshops to inform natural resource management in southwest South Dakota. Scenario planning for a wide range of resources facilitated open-minded thinking about a set of divergent and challenging, yet relevant and plausible, climate scenarios and management alternatives that could be implemented in the simulation. With stakeholder input throughout the process, we built a simulation of key vegetation types, grazing, exotic plants, fire, and the effects of climate and management on rangeland productivity and composition. By simulating multiple land management jurisdictions, climate scenarios, and management alternatives, the model highlighted important tradeoffs between herd sizes and vegetation composition, and between the short- versus long-term costs of invasive species management. It also identified impactful uncertainties related to the effects of fire and grazing on vegetation. Ultimately, this integrative and iterative approach yielded counter-intuitive and surprising findings, and resulted in a more tractable set of possible futures for resource management planning.
Proceedings of the Coastal Benthic Boundary Layer Key West Workshop
1997-06-24
depth are controlled by climatic changes which affect sea level and result in vastly different sedimentary regimes. After several hours of discussion...benthic boundary layer. EOS 75: 201- 206. Tom S.J. and Richardson M.D. (1996) The Key West campaign. Sea Technology 36:17-25. 6 Mi : VA1 I I AI T0. 03 a -1Z...reflectors appear to be unconformable surfaces based on the presence of karst, and probably represent erosion and cementation during sea -level lowstands
Where have all the frogs and toads gone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, K.
1990-06-01
At a recent workshop in California, scientists discussed the decline of amphibian populations and suggested that these animals may be biological indicators of advanced degradation of the environment. One study described the effects of snowmelt contamination with acid deposition from smog and smelters on the breeding ponds of salamanders. Other possible reasons for decline include: heavy metals and pesticides; global climate changes; imbalances in mammal populations that prey on amphibians; predation by fishes stocked in lakes by wildlife managers; and human predation.
NASA Astrophysics Data System (ADS)
Brouns, Karlijn; Eikelboom, Tessa; Jansen, Peter C.; Janssen, Ron; Kwakernaak, Cees; van den Akker, Jan J. H.; Verhoeven, Jos T. A.
2015-02-01
Dutch peatlands have been subsiding due to peat decomposition, shrinkage and compression, since their reclamation in the 11th century. Currently, subsidence amounts to 1-2 cm/year. Water management in these areas is complex and costly, greenhouse gases are being emitted, and surface water quality is relatively poor. Regional and local authorities and landowners responsible for peatland management have recognized these problems. In addition, the Netherlands Royal Meteorological Institute predicts higher temperatures and drier summers, which both are expected to enhance peat decomposition. Stakeholder workshops have been organized in three case study areas in the province of Friesland to exchange knowledge on subsidence and explore future subsidence rates and the effects of land use and management changes on subsidence rates. Subsidence rates were up to 3 cm/year in deeply drained parcels and increased when we included climate change in the modeling exercises. This means that the relatively thin peat layers in this province (ca 1 m) would shrink or even disappear by the end of the century when current practices continue. Adaptation measures were explored, such as extensive dairy farming and the production of new crops in wetter conditions, but little experience has been gained on best practices. The workshops have resulted in useful exchange of ideas on possible measures and their consequences for land use and water management in the three case study areas. The province and the regional water board will use the results to develop land use and water management policies for the next decades.
NASA Astrophysics Data System (ADS)
Pfurtscheller, Clemens; Brucker, Anja; Seebauer, Sebastian
2014-05-01
Voluntary emergency and relief services, such as fire brigades or rescue organisations, form the backbone of disaster management in most of European countries. In Austria, disaster management relies on the cooperation between governmental and non-governmental institutions: When a disaster occurs, the volunteer organizations act as auxiliaries to the responsible disaster management authority. The assessment of costs and benefits of these emergency services is a crucial component of risk and disaster management strategies, since public means are getting scarcer and these costs can reach critical levels for low-income municipalities. As extreme events and emergency operations are likely to increase due to climate change, the efficient allocation of public budgets for risk and disaster management becomes more important. Hence, both, the costs and the benefits must be known, but voluntary and professional work is hardly documented and assessed comprehensively. Whereas the costs of emergency services can be calculated using market values and an analysis of public and institutional budgets, the benefits of voluntary efforts cannot be assessed easily. We present empirical data on costs of voluntary and professional emergency services during the floods of 2002, 2005 and 2013 in Austria and Germany on different scales, obtained from public authorities, fire brigades and by means of public surveys. From these results, we derive a calculation framework and data requirements for assessing costs of emergency services. To consider the different stakeholders needs of administration, emergency institutions and voluntary members, we carried out workshops, first to identify future challenges in voluntary work for disaster management instigated by climate change and second, to develop approaches how the voluntary system can be uphold when facing increasing adverse impacts of natural hazards. The empirical results as well as the workshop outcome shall be translated into policy recommendations and research needs to derive strategies for strengthening resilience at the local and regional level and to design appropriate incentives.
Climate Discovery Online Courses for Educators from NCAR
NASA Astrophysics Data System (ADS)
Henderson, S.; Ward, D. L.; Meymaris, K. K.; Johnson, R. M.; Gardiner, L.; Russell, R.
2008-12-01
The National Center for Atmospheric Research (NCAR) has responded to the pressing need for professional development in climate and global change sciences by creating the Climate Discovery online course series. This series was designed with the secondary geoscience educator in mind. The online courses are based on current and credible climate change science. Interactive learning techniques are built into the online course designs with assignments that encourage active participation. A key element of the online courses is the creation of a virtual community of geoscience educators who exchange ideas related to classroom implementation, student assessment, and lessons plans. Geoscience educators from around the country have participated in the online courses. The ongoing interest from geoscience educators strongly suggests that the NCAR Climate Discovery online courses are a timely and needed professional development opportunity. The intent of NCAR Climate Discovery is to positively impact teachers' professional development scientifically authentic information, (2) experiencing guided practice in conducting activities and using ancillary resources in workshop venues, (3) gaining access to standards-aligned lesson plans, kits that promote hands-on learning, and scientific content that are easily implemented in their classrooms, and (4) becoming a part of a community of educators with whom they may continue to discuss the challenges of pedagogy and content comprehension in teaching climate change in the Earth system context. Three courses make up the Climate Discovery series: Introduction to Climate Change; Earth System Science - A Climate Change Perspective; and Understanding Climate Change Today. Each course, instructed by science education specialists, combines geoscience content, information about current climate research, hands-on activities, and group discussion. The online courses use the web-based Moodle courseware system (open- source software similar to Blackboard and webCT), utilizing its features to promote dialogue as well as provide rich online content and media. A key element of the online courses is the development and support of an online learning community, an essential component in successful online courses. Interactive learning techniques are built into the course designs with assignments that encourage active participation. Educators (both formal and informal) use the courses as a venue to exchange ideas and teaching resources. A unique feature of the courses is the emphasis on hands-on activities, a hallmark of our professional development efforts. This presentation will focus on the lessons learned in the development of the three online courses and our successful recruitment and retention efforts.
NASA Astrophysics Data System (ADS)
Queralt, Arnau; Llasat, Maria del Carmen; Serena, Josep Maria; Pont, Isabel
2017-04-01
In January 2017 the Government of Catalonia (Advisory Council for the Sustainable Development, Catalan Office for Climate Change, and Meteorological Service of Catalonia) and the Institute for Catalan Studies presented the Third Report on Climate Change in Catalonia, whose aims are (1) to gather and summarise the most recent information on climate change and its effects on the natural and human systems in Catalonia (and to identify existing knowledge gaps), (2) to make recommendations to decision-makers, and (3) to rise decision-makers and citizens awareness on the effects of climate change and the importance of reinforce mitigation and adaptation efforts. Although climate change is a global phenomenon, impacts and subsequent adaptive action may differ across countries and regions. In accordance to this, and with the aim of downscaling the contents of the IPCC reports, the first report on climate change in Catalonia was published in 2005 and was followed by a second edition in 2010. Directly linked to this second report, the Catalan Panel on Climate Change was established. During a year and a half more than 130 authors and 40 scientific and technical revisers (assisted by a board and technical staff from the leading institutions) have participated in the third assessment of climate change in Catalonia. The report updates the observations and projections related to the climate evolution at Catalonia and its impacts, gathering the most advanced scientific knowledge and providing the Catalan Government with sectorial recommendations to face these impacts. After its official launch in January 2017, the report will be presented and discussed with several ministers and officials within the Catalan Government, but also with the main stakeholders. These presentations and dialogue are strategic actions for bridging the gap between Science and Policy-making regarding climate change. An executive summary identifying in a very focused way the main messages arising from the report has been prepared to contribute to this information sharing process. The summary has been prepared in English, French and Spanish in order to share the information with the International Community. The promoters of this report are highly interested in making a broad diffusion of its conclusions and recommendations among stakeholders and citizens. According to this, an ambitious communication plan has been designed, including 10 sectorial workshops around Catalonia, specific presentations to selected stakeholders and institutions, and high impact articles and programs in the media. This communication plan will be implemented throughout the year 2017. The report has been published and disseminated thanks to the contribution of "La Caixa" Banking Foundation.
"Climate Matters Documoments": Enabling Regionally-Specific Climate Awareness
NASA Astrophysics Data System (ADS)
Keener, V. W.; Finucane, M.
2012-12-01
The Pacific Regional Integrated Sciences & Assessments (RISA) is a multidisciplinary program that enhances the ability of Pacific Island communities to understand, plan for, and adapt to climate-induced change. Using both social and physical science research methods, the Pacific RISA engages a network of regional decision-makers and stakeholders to help solve climate-related issues. Pacific RISA has a broad audience of local and regional decision-makers (i.e. natural resource managers, community planners, state and federal government agencies) and stakeholders (i.e. farmers and ranchers, fishermen, community and native islander groups). The RISA program engages with this audience through a mixed-method approach of two-way communication, including one-on-one interviews, workshops, consensus discussions and public presentations that allow us to tailor our efforts to the needs of specific stakeholders. A recent Pacific RISA project was the creation and production of four short, educational "documoment" videos that explore the different ways in which climate change in Hawaii affects stakeholders from different sectors. The documoments, generally titled "Climate Matters", start with a quote about why climate matters to each stakeholder: a rancher, a coastal hotel owner, the manager of a landfill, and the local branch of the National Weather Service. The narratives then have each stakeholder discussing how climate impacts their professional and personal lives, and describing the types of climate change they have experienced in the islands. Each video ends with a technical fact about how different climate variables in Hawaii (sea level, precipitation, ENSO) have actually changed within the last century of observational data. Freely available on www.PacificRISA.org, the Documoments have been viewed over 350 times, and have inspired similar video projects and received positive attention from different audiences of stakeholders and scientists. In other assessment work the Pacific RISA has done, we found that many stakeholders who regularly make climate sensitive decisions do not always realize it. By viewing videos like the Climate Matters Documoments, it may help a wide variety of community stakeholders and natural resource decision makers realize the myriad ways in which climate change affects their communities and jobs. In addition, when viewed outside of the Pacific Islands region, the different stories told in the Documoments help foster a greater understanding of the unique climate-related issues faced within the Hawaiian Islands.
NASA Astrophysics Data System (ADS)
Valentina, Gallina; Silvia, Torresan; Anna, Sperotto; Elisa, Furlan; Andrea, Critto; Antonio, Marcomini
2014-05-01
Nowadays, the challenge for coastal stakeholders and decision makers is to incorporate climate change in land and policy planning in order to ensure a sustainable integrated coastal zone management aimed at preserve coastal environments and socio-economic activities. Consequently, an increasing amount of information on climate variability and its impact on human and natural ecosystem is requested. Climate risk services allows to bridge the gap between climate experts and decision makers communicating timely science-based information about impacts and risks related to climate change that could be incorporated into land planning, policy and practice. Within the CLIM-RUN project (FP7), a participatory Regional Risk Assessment (RRA) methodology was applied for the evaluation of water-related hazards in coastal areas (i.e. pluvial flood and sea-level rise inundation risks) taking into consideration future climate change scenarios in the case study of the North Adriatic Sea for the period 2040-2050. Specifically, through the analysis of hazard, exposure, vulnerability and risk and the application of Multi-Criteria Decision Analysis (MCDA), the RRA methodology allowed to identify and prioritize targets (i.e. residential and commercial-industrial areas, beaches, infrastructures, wetlands, agricultural typology) and sub-areas that are more likely to be affected by pluvial flood and sea-level rise impacts in the same region. From the early stages of the climate risk services development and application, the RRA followed a bottom-up approach taking into account the needs, knowledge and perspectives of local stakeholders dealing with the Integrated Coastal Zone Management (ICZM), by means of questionnaires, workshops and focus groups organized within the project. Specifically, stakeholders were asked to provide their needs in terms of time scenarios, geographical scale and resolution, choice of receptors, vulnerability factors and thresholds that were considered in the implementation of the RRA methodology. The main output of the analysis are climate risk products produced with the DEcision support SYstem for COastal climate change impact assessment (DESYCO) and represented by GIS-based maps and statistics of hazard, exposure, physical and environmental vulnerability, risk and damage. These maps are useful to transfer information about climate change impacts to stakeholders and decision makers, to allow the classification and prioritization of areas that are likely to be affected by climate change impacts more severely than others in the same region, and therefore to support the identification of suitable areas for infrastructure, economic activities and human settlements toward the development of regional adaptation plans. The climate risk products and the results of North Adriatic case study will be here presented and discussed.
Climate Information Needs for Financial Decision Making
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higgins, Paul
Climate Information Needs for Financial Decision Making (Final Report) This Department of Energy workshop award (grant #DE-SC0008480) provided primary support for the American Meteorological Society’s study on climate information needs for financial decision making. The goal of this study was to help advance societal decision making by examining the implications of climate variability and change on near-term financial investments. We explored four key topics: 1) the conditions and criteria that influence returns on investment of major financial decisions, 2) the climate sensitivity of financial decisions, 3) climate information needs of financial decision makers, and 4) potential new mechanisms to promotemore » collaboration between scientists and financial decision makers. Better understanding of these four topics will help scientists provide the most useful information and enable financial decision makers to use scientific information most effectively. As a result, this study will enable leaders in business and government to make well-informed choices that help maximize long-term economic success and social wellbeing in the United States The outcomes of the study include a workshop, which brought together leaders from the scientific and financial decision making communities, a publication of the study report, and a public briefing of the results to the policy community. In addition, we will present the results to the scientific community at the AMS Annual Meeting in February, 2014. The study results were covered well by the media including Bloomberg News and E&E News. Upon request, we also briefed the Office of Science Technology Policy (OSTP) and the Council on Environmental Quality (CEQ) on the outcomes. We presented the results to the policy community through a public briefing in December on Capitol Hill. The full report is publicly available at www.ametsoc.org/cin. Summary of Key Findings The United States invests roughly $1.5 trillion U.S. dollars (USD) in capital assets each year across the public and private sectors (Orszag 2008; United States Census Bureau 2013). Extreme weather events create and exacerbate risks to these financial investments by contributing to: • Direct physical impacts on the investments themselves • Degradation of critical supporting infrastructure • Changes in the availability of key natural resources • Changes to workforce availability or capacity • Changes in the customer base • Supply chain disruptions • Legal liability • Shifts in the regulatory environment • Reductions in credit ratings Even small changes in weather can impact operations in critical economic sectors. As a result, maximizing returns on financial investments depends on accurately understanding and effectively accounting for these risks. Climate variability and change can either exacerbate existing risks or cause new sources of risk to emerge. Managing these risks most effectively will depend on scientific advances and increases in the capacity of financial decision makers to use the scientific knowledge that results. Barriers to using climate information must also be overcome. This study proposes three predefined levels of certainty for communicating about weather and climate risks: 1) possible (i.e., unknown likelihood or less than 50% chance of occurrence), 2) probable (greater than 50% chance of occurrence), and 3) effectively certain (at least 95% chance of occurrence). For example, it is effectively certain that a change in climate will alter weather patterns. It is probable that climate warming will cause increases in the intensity of some extreme events. It is possible that climate change will cause major and widespread disruptions to key planetary life-support services. Key recommendations of this study: 1) Identify climate-related risks and opportunities for financial decision making. 2) Create a framework to translate scientific information in clear and actionable terms for financial decision makers. 3) Analyze existing climate assessments and translate projected impacts into possible, probable, and effectively certain impacts. 4) Improve climate projections with respect to precipitation (timing, amount, and intensity), extreme events, and tails of probability distributions (i.e., low-probability but high-consequence events). 5) Increase spatial resolution of climate projections in order to provide climate information at the scale most relevant to financial investments. 6) Improve projections of the societal consequences of climate impacts through integrated assessments of physical, natural, and social sciences. 7) Create a user-friendly information repository and portal that provides easy access to information relevant to financial decision making. 8) Create and maintain opportunities to bring together financial decision makers, scientists, and service providers. Near-term financial decisions have long-term implications for the United States’ social and economic well-being that depend, in part, on climate variability and change. Investments will be most successful, and will advance the interests of society most effectively, if they are grounded in the best available knowledge & understanding.« less
Using Rapid-Response Scenario-Building Methodology for Climate Change Adaptation Planning
NASA Astrophysics Data System (ADS)
Ludwig, K. A.; Stoepler, T. M.; Schuster, R.
2015-12-01
Rapid-response scenario-building methodology can be modified to develop scenarios for slow-onset disasters associated with climate change such as drought. Results of a collaboration between the Department of the Interior (DOI) Strategic Sciences Group (SSG) and the Southwest Colorado Social-Ecological Climate Resilience Project are presented in which SSG scenario-building methods were revised and applied to climate change adaptation planning in Colorado's Gunnison Basin, United States. The SSG provides the DOI with the capacity to rapidly assemble multidisciplinary teams of experts to develop scenarios of the potential environmental, social, and economic cascading consequences of environmental crises, and to analyze these chains to determine actionable intervention points. By design, the SSG responds to acute events of a relatively defined duration. As a capacity-building exercise, the SSG explored how its scenario-building methodology could be applied to outlining the cascading consequences of slow-onset events related to climate change. SSG staff facilitated two workshops to analyze the impacts of drought, wildfire, and insect outbreak in the sagebrush and spruce-fir ecosystems. Participants included local land managers, natural and social scientists, ranchers, and other stakeholders. Key findings were: 1) scenario framing must be adjusted to accommodate the multiple, synergistic components and longer time frames of slow-onset events; 2) the development of slow-onset event scenarios is likely influenced by participants having had more time to consider potential consequences, relative to acute events; 3) participants who are from the affected area may have a more vested interest in the outcome and/or may be able to directly implement interventions.
Earth Observing System (EOS) Snow and Ice Products for Observation and Modeling
NASA Technical Reports Server (NTRS)
Hall, D.; Kaminski, M.; Cavalieri, D.; Dickinson, R.; Marquis, M.; Riggs, G.; Robinson, D.; VanWoert, M.; Wolfe, R.
2005-01-01
Snow and ice are the key components of the Earth's cryosphere, and their influence on the Earth's energy balance is very significant due at least in part to the large areal extent and high albedo characterizing these features. Large changes in the cryosphere have been measured over the last century and especially over the past decade, and remote sensing plays a pivotal role in documenting these changes. Many of NASA's Earth Observing System (EOS) products derived from instruments on the Terra, Aqua, and Ice, Cloud and land Elevation Satellite (ICESat) satellites are useful for measuring changes in features that are associated with climate change. The utility of the products is continually enhanced as the length of the time series increases. To gain a more coherent view of the cryosphere and its historical and recent changes, the EOS products may be employed together, in conjunction with other sources of data, and in models. To further this goal, the first EOS Snow and Ice Products Workshop was convened. The specific goals of the workshop were to provide current and prospective users of EOS snow and ice products up-to-date information on the products, their validation status and future enhancements, to help users utilize the data products through hands-on demonstrations, and to facilitate the integration of EOS products into models. Oral and poster sessions representing a wide variety of snow and ice topics were held; three panels were also convened to discuss workshop themes. Panel discussions focused on data fusion and assimilation of the products into models. Approximately 110 people attended, representing a wide array of interests and organizations in the cryospheric community.
Carnes, Molly; Devine, Patricia G.; Manwell, Linda Baier; Byars-Winston, Angela; Fine, Eve; Ford, Cecilia E.; Forscher, Patrick; Isaac, Carol; Kaatz, Anna; Magua, Wairimu; Palta, Mari; Sheridan, Jennifer
2014-01-01
Purpose Despite sincere commitment to egalitarian, meritocratic principles, subtle gender bias persists, constraining women’s opportunities for academic advancement. The authors implemented a pair-matched, single-blind, cluster-randomized, controlled study of a gender bias habit-changing intervention at a large public university. Method Participants were faculty in 92 departments or divisions at the University of Wisconsin-Madison. Between September 2010 and March 2012, experimental departments were offered a gender bias habit-changing intervention as a 2.5 hour workshop. Surveys measured gender bias awareness; motivation, self-efficacy, and outcome expectations to reduce bias; and gender equity action. A timed word categorization task measured implicit gender/leadership bias. Faculty completed a worklife survey before and after all experimental departments received the intervention. Control departments were offered workshops after data were collected. Results Linear mixed-effects models showed significantly greater changes post-intervention for faculty in experimental vs. control departments on several outcome measures, including self-efficacy to engage in gender equity promoting behaviors (P = .013). When ≥ 25% of a department’s faculty attended the workshop (26 of 46 departments), significant increases in self-reported action to promote gender equity occurred at 3 months (P = .007). Post-intervention, faculty in experimental departments expressed greater perceptions of fit (P = .024), valuing of their research (P = .019), and comfort in raising personal and professional conflicts (P = .025). Conclusions An intervention that facilitates intentional behavioral change can help faculty break the gender bias habit and change department climate in ways that should support the career advancement of women in academic medicine, science, and engineering. PMID:25374039
NASA Astrophysics Data System (ADS)
Cobabe-Ammann, E.; Jakosky, B.
2007-12-01
Historically, there has been a delineation between those activities that promote the education of the general public (formal and information education) and those that involve journalists and the media (public affairs). However, over the last several years, there has been recognition that in the interest of "full spectrum science communication", journalists, who deliver more than 85% of the science news and content to the general public, may be legitimately seen as an audience for education activities. The goal of these activities is not primarily to promote a specific story, event or theme, but instead to broaden and deepen journalists' understanding of space science and to promote increased communication and understanding among journalists, scientists and educators. In the last several years, the Laboratory for Atmospheric and Space Physics has initiated workshops for the professional development of journalists as a cornerstone of its Education program. To date, workshops have covered Mars System Science, Life in Extreme Environments, Extrasolar Planets, Out Planets, and soon, the Role of Uncertainty in Climate Change. These programs bring together 20 elite journalists from both print and broadcast and 6-8 internationally recognized scientists in a 3-4 day encounter. Evaluation of past workshops suggests that the journalists not only feel that these workshops are a worthwhile use of their time, but that they impact the quality of their writing. Several indicated that the quality of the writing and its content had been noticed by their editor and allowed them to more easily 'pitch' space science stories when they were in the news. Many, including several regional journalists, commented that the workshop provided a level of background information that would help them for years to come. In this talk, we present the LASP media workshop model, talk about editorial barriers for journalists and the impact of the workshops, and discuss lessons learned that increase participation by the nation's leading media outlets.
Knowledge exchange for climate adaptation planning in western North America
NASA Astrophysics Data System (ADS)
Garfin, Gregg; Orr, Barron
2015-04-01
In western North America, the combination of sustained drought, rapid ecosystem changes, and land use changes associated with urban population growth has motivated concern among ecosystem managers about the implications of future climate changes for the landscapes which they manage. Through literature review, surveys, and workshop discussions, we assess the process of moving from concern, to planning, to action, with an emphasis on questions, such as: What are the roles of boundary organizations in facilitating knowledge exchange? Which practices lead to effective interactions between scientists, decision-makers, and knowledge brokers? While there is no "one size fits all" science communication method, the co-production of science and policy by research scientists, science translators, and decision-makers, as co-equals, is a resource intensive, but effective practice for moving adaptation planning forward. Constructive approaches make use of alliances with early adopters and opinion leaders, and make strong communication links between predictions, impacts and solutions. Resource managers need information on the basics of regional climate variability and global climate change, region-specific projections of climate changes and impacts, frank discussion of uncertainties, and opportunities for candid exploration of these topics with peers and subject experts. Research scientists play critical roles in adaptation planning discussions, because they assist resource managers in clarifying the cascade of interactions leading to potential impacts and, importantly, because decision-makers want to hear the information straight from the scientists conducting the research, which bolsters credibility. We find that uncertainty, formerly a topic to avoided, forms the foundation for constructive progress in adaptation planning. Candid exploration of the array of uncertainties, including those due to modeling, institutional, policy and economic factors, with practitioners, science translators, and subject experts, stimulates constructive thinking on adaptation strategies. Discussion support to explore multiple future scenarios and research nuances advances the discussion beyond "uncertainty paralysis."
Communicating the Urgency and Challenge of Global Climate Change: Lessons Learned and New Strategies
NASA Astrophysics Data System (ADS)
Dilling, L.; Moser, S. C.
2004-12-01
Climate change can sometimes be characterized as a "creeping environmental problem"--it is complex and long-term, involves long system lags, lacks the immediacy of everyday experience and thus is hard to perceive, and feels overwhelming to most individuals. Climate change thus does not typically attain the status of an urgent concern, taking priority over other matters for individuals, organizations or in the policy arena. We review the major reasons behind this lack of urgency, and document the observed consequences of previous communication strategies, including lack of public understanding, indifference, confusion, fear and uncertainty. We find that certain emotional motivators such as fear and guilt, while oft-employed, do not actually result in improved recognition of the urgency of the issue, nor do they typically result in action. Rather, positive and engaging approaches may be more likely to achieve this goal. We propose seven strategies to improve the communication of climate change and its urgency: 1) Abide by basic communication rules and heed the warnings of communication experts; 2) Address the emotional and the temporal components of "urgency"; 3) Increase the persuasiveness of the message; 4) Use trusted messengers-broaden the circle; 5) Use opportunities well; 6) Tap into individual and cultural strengths and values; and 7) Unite and Conquer. The multi-faceted nature of the proposed strategies reflects the unique challenges of the climate change issue as well as the need to engage all levels and sectors of societies in the solution, from individuals, to businesses, to governments. These strategies and results emerged from a multi-disciplinary, academic/practitioner workshop on the topic held at NCAR in summer 2004.
NASA Astrophysics Data System (ADS)
Mayer, A. S.; Vivoni, E. R.; Halvorsen, K. E.; Kossak, D.
2014-12-01
The Rio Sonora Basin (RSB) in northwest Mexico has a semi-arid and highly variable climate along with urban and agricultural pressures on water resources. Three participatory modeling workshops were held in the RSB in spring 2013. A model of the water resources system, consisting of a watershed hydrology model, a model of the water infrastructure, and groundwater models, was developed deliberatively in the workshops, along with scenarios of future climate and development. Participants were asked to design water resources management strategies by choosing from a range of supply augmentation and demand reduction measures associated with water conservation. Participants assessed water supply reliability, measured as the average daily supply divided by daily demand for historical and future periods, by probing with the climate and development scenarios. Pre- and post-workshop-surveys were developed and administered, based on conceptual models of workshop participants' beliefs regarding modeling and local water resources. The survey results indicate that participants believed their modeling abilities increased and beliefs in the utility of models increased as a result of the workshops. The selected water resources strategies varied widely among participants. Wastewater reuse for industry and aquifer recharge were popular options, but significant numbers of participants thought that inter-basin transfers and desalination were viable. The majority of participants indicated that substantial increases in agricultural water efficiency could be achieved. On average, participants chose strategies that produce reliabilities over the historical and future periods of 95%, but more than 20% of participants were apparently satisfied with reliabilities lower than 80%. The wide range of strategies chosen and associated reliabilities indicate that there is a substantial degree of uncertainty in how future water resources decisions could be made in the region.
NASA Astrophysics Data System (ADS)
Sperotto, Anna; Torresan, Silvia; Gallina, Valentina; Coppola, Erika; Critto, Andrea; Marcomini, Antonio
2015-04-01
Global climate change is expected to affect the intensity and frequency of extreme events (e.g. heat waves, drought, heavy precipitations events) leading to increasing natural disasters and damaging events (e.g. storms, pluvial floods and coastal flooding) worldwide. Especially in urban areas, disasters risks can be exacerbated by changes in exposure and vulnerability patterns (i.e. urbanization, population growth) and should be addressed by adopting a multi-disciplinary approach. A Regional Risk Assessment (RRA) methodology integrating climate and environmental sciences with bottom-up participative processes was developed and applied to the urban territory of the municipality of Venice in order to evaluate the potential consequences of climate change on pluvial flood risk in urban areas. Based on the consecutive analysis of hazard, exposure, vulnerability and risks, the RRA methodology is a screening risk tool to identify and prioritize major elements at risk (e.g. residential, commercial areas and infrastructures) and to localize sub-areas that are more likely to be affected by flood risk due to heavy precipitation events, in the future scenario (2041-2050). From the early stages of its development and application, the RRA followed a bottom-up approach to select and score site-specific vulnerability factors (e.g. slope, permeability of the soil, past flooded areas) and to consider the requests and perspectives of local stakeholders of the North Adriatic region, by means of interactive workshops, surveys and discussions. The main outputs of the assessment are risk and vulnerability maps and statistics aimed at increasing awareness about the potential effect of climate change on pluvial flood risks and at identifying hot-spot areas where future adaptation actions should be required to decrease physical-environmental vulnerabilities or building resilience and coping capacity of human society to climate change. The overall risk assessment methodology and the results of its application to the territory of the municipality of Venice will be here presented and discussed.
NASA Astrophysics Data System (ADS)
Mullendore, G. L.; Munski, L.; Kirilenko, A.; Remer, F.; Baker, M.
2012-12-01
In summer 2010, the University of North Dakota (UND) hosted an internship for undergraduates to learn about climate change in both the classroom and group research projects. As a final project, the undergraduates were tasked to present their findings about different aspects of climate change in webcasts that would be later used in middle school classrooms in the region. Interns indicated that participation significantly improved their own confidence in future scholarly pursuits. Also, communicating about climate change, both during the project and afterwards, helped the interns feel more confident in their own learning. Use of webcasts widened the impact of student projects (e.g. YouTube dissemination), and multiple methods of student communication should continue to be an important piece of climate change education initiatives. Other key aspects of the internship were student journaling and group building. Challenges faced included media accessibility and diverse recruiting. Best practices from the UND internship will be discussed as a model for implementation at other universities. Lesson plans that complement the student-produced webcasts and adhere to regional and national standards were created during 2011. Communication between scientists and K-12 education researchers was found to be a challenge, but improved over the course of the project. These lesson plans have been reviewed both during a teacher workshop in January 2012 and by several Master teachers. Although select middle school educators have expressed enthusiasm for testing of these modules, very little hands-on testing with students has occurred. Wide-ranging roadblocks to implementation exist, including the need for adherence to state standards and texts, inadequate access to technology, and generally negative attitudes toward climate change in the region. Feedback from regional educators will be presented, and possible solutions will be discussed. Although some challenges are specific to the Northern Great Plains region, understanding these challenges are important for agencies and universities with goals of national dissemination.
Uncertainty Quantification in Climate Modeling and Projection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Yun; Jackson, Charles; Giorgi, Filippo
The projection of future climate is one of the most complex problems undertaken by the scientific community. Although scientists have been striving to better understand the physical basis of the climate system and to improve climate models, the overall uncertainty in projections of future climate has not been significantly reduced (e.g., from the IPCC AR4 to AR5). With the rapid increase of complexity in Earth system models, reducing uncertainties in climate projections becomes extremely challenging. Since uncertainties always exist in climate models, interpreting the strengths and limitations of future climate projections is key to evaluating risks, and climate change informationmore » for use in Vulnerability, Impact, and Adaptation (VIA) studies should be provided with both well-characterized and well-quantified uncertainty. The workshop aimed at providing participants, many of them from developing countries, information on strategies to quantify the uncertainty in climate model projections and assess the reliability of climate change information for decision-making. The program included a mixture of lectures on fundamental concepts in Bayesian inference and sampling, applications, and hands-on computer laboratory exercises employing software packages for Bayesian inference, Markov Chain Monte Carlo methods, and global sensitivity analyses. The lectures covered a range of scientific issues underlying the evaluation of uncertainties in climate projections, such as the effects of uncertain initial and boundary conditions, uncertain physics, and limitations of observational records. Progress in quantitatively estimating uncertainties in hydrologic, land surface, and atmospheric models at both regional and global scales was also reviewed. The application of Uncertainty Quantification (UQ) concepts to coupled climate system models is still in its infancy. The Coupled Model Intercomparison Project (CMIP) multi-model ensemble currently represents the primary data for assessing reliability and uncertainties of climate change information. An alternative approach is to generate similar ensembles by perturbing parameters within a single-model framework. One of workshop’s objectives was to give participants a deeper understanding of these approaches within a Bayesian statistical framework. However, there remain significant challenges still to be resolved before UQ can be applied in a convincing way to climate models and their projections.« less
JEODI Workshop: Arctic site survey challenges
NASA Astrophysics Data System (ADS)
Jokat, W.; Backman, J.; Kristoffersen, Y.; Mikkelsen, N.; Thiede, J.
2003-04-01
In past decades the geoscientific activities in the High Arctic were rather low compared to other areas on the globe. The remoteness of the region and the difficult logistical conditions made Arctic research very expensive and the results unpredictable. In the late 80's this situation changed to the better since modern research icebreaker became available to the scientific community. These research platforms provided opportunities in terms of equipment, which was standard in other regions. Where necessary techniques were adapted allowing to conduct the experiments even in difficult ice conditions, e.g. multi-channel seismic. In the last decade the Arctic Ocean were identified to play a key role in our understanding of the Earth's climate. An urgent need for scientific deep drill holes in the central Arctic was obvious to better understand the climate evolution of the past in a regional and global sense. However, to select and prepare the drilling experiments sufficient site survey data, especially seismic data, are needed. These problems were addressed during a recent JEODI workshop in Copenhagen. The participants recommended dedicated expeditions tothe Alpha-Mendeleev Ridge, the Lomonosov Ridge and the Gakkel Ridge to provide a critical amount of geophysical data for future drilling efforts. An international expedition to the Alpha-Mendeleev Ridge was proposed as part of the International Geophysical Polar Year 2006/07 to investigate the least known oceanic ridge of the world's ocean. Besides scientific targets in the High Arctic it became obvious during the workshop that in the marginal seas and plateaux sufficient geophysical data exist to submit drilling proposals like for the Yermak Plateau, the Chukchi Plateau/Northwind Ridge and Laptew Sea continental margin. These proposals would perfectly complement the highly ranked drilling proposal on Lomonosov Ridge, which hopefully can be drilled in 2004 within the ODP/IODP programme. This presentation will provide information on the major results of this workshop as well as the planned activities in the next decade.
Regional Spectral Model Workshop in memory of John Roads and Masao Kanamitsu
Hann-Ming Henry Juang; Shyh-Chin Chen; Songyou Hong; Hideki Kanamaru; Thomas Reichler; Takeshi Enomoto; Dian Putrasahan; Bruce T. Anderson; Sasha Gershunov; Haiqin Li; Kei Yoshimura; Nikolaus Buenning; Diane Boomer
2014-01-01
The committee for the 12th International Regional Spectral Model (RSM) Workshop drew its members from the National Centers for Environmental Prediction (NCEP), the U.S. Forest Service, Yonsei University, the Cooperative Institute for Climate and Satellites, the University of Tokyo, the Food and Agriculture Organization of the United Nations (FAO), Hokkaido University,...
ERIC Educational Resources Information Center
Edwards, Dan
A model is provided for an inservice workshop to provide systematic project review, conduct individual volunteer support and problem solving, and conduct future work planning. Information on model use and general instructions are presented. Materials are provided for 12 sessions covering a 5-day period. The first session on climate setting and…
Ninth Workshop 'Solar Influences on the Magnetosphere, Ionosphere and Atmosphere'
NASA Astrophysics Data System (ADS)
Georgieva, Kayta; Kirov, Boian; Danov, Dimitar
2017-08-01
The 9th Workshop "Solar Influences on the Magnetosphere, Ionosphere and Atmosphere" is an international forum for scientists working in the fields of: Sun and solar activity, Solar wind-magnetosphere-ionosphere interactions, Solar influences on the lower atmosphere and climate, Solar effects in the biosphere, Instrumentation for space weather monitoring and Data processing and modelling.
NASA Astrophysics Data System (ADS)
Simmons, Elizabeth H.
2009-03-01
Thanks to the New FacultyWorkshop, I now have dual identities: as a professor in a research-focused university physics department and as Dean of a teaching-focused undergraduate residential science college within that university (Lyman Briggs College). I'll talk first about how the NFW changed my perspective on education and outreach -- and how that affected the climate in the department I was in at the time. Next, I'll comment on how this shift of perspective eventually led to new professional opportunities, including my current dual position. The lessons from the NFW have contributed directly to my acquiring the skills required of a leader in an interdisciplinary college that encourages its faculty both to be active disciplinary researchers and to take a scholarly approach to teaching. Finally, I'll mention how being part of the college's community of teacher-scholars has helped my teaching to continue evolving in directions compatible with the aims of the New Faculty Workshop.
NASA Astrophysics Data System (ADS)
Foster, S. Q.; Johnson, R. M.; Carbone, L.; Munoz, R.; Eastburn, T.; Ammann, C.; Lu, G.; Richmond, A.; Committee, S.
2004-12-01
The study of climate and global change is an important on-going focus for scientists at the National Center for Atmospheric Research (NCAR). Programs overseen by the University Corporation for Atmospheric Research Office of Education and Outreach (UCAR-EO) help to translate NCAR's scientific programs, methodologies, and technologies and their societal benefits to over 80,000 visitors to the NCAR Mesa Laboratory each year, including about 10,000 K-12 students. This is currently accomplished through the implementation of an increasingly integrated system of exhibits, guided tours, an audiotour, programs for school groups, and a teachers' guide to the exhibits, which is currently in development. The Climate Discovery Exhibit unveiled in July 2003 and expanded in 2004 offers visitors visually engaging and informative text panels, graphics, artifacts, and interactives describing Sun-Earth connections, dynamic processes that contribute to and mediate climate change, and the Earth's climate history. The exhibit seeks to help visitors to understand why scientists model the global climate system and how information about past and current climate is used to validate models and build scenarios for Earth's future climate. Exhibit-viewers are challenged to ask questions and reflect upon decision making challenges while considering the roles various natural and human-induced factors play in shaping these predictions. With support from NASA and NCAR, a K-12 Teacher's Guide has been developed corresponding the Climate Discovery exhibit's sections addressing the Sun-Earth connection and past climates (the Little Ice Age, in particular). This presentation will review efforts to identify the challenges of communicating with the public and school groups about climate change, while also describing several successful strategies for utilizing visitor questionnaires and interviews to learn how to develop and refine educational resources that will target their interests, bolster their knowledge, and address their misconceptions. Visitors view the exhibit every day of the year on their own, using an audiotour, or with a tour guide. NCAR/UCAR's educational content about climate change is increasingly available to national audiences through the new NCAR EO web site (www.ncar.ucar.edu/eo), Windows to the Universe (www.windows.ucar.edu), UCAR-EO's summer teachers workshops, and sessions at the National Science Teacher Association meetings and other professional education venues.
Özkan, Şeyda; Vitali, Andrea; Lacetera, Nicola; Amon, Barbara; Bannink, André; Bartley, Dave J; Blanco-Penedo, Isabel; de Haas, Yvette; Dufrasne, Isabelle; Elliott, John; Eory, Vera; Fox, Naomi J; Garnsworthy, Phil C; Gengler, Nicolas; Hammami, Hedi; Kyriazakis, Ilias; Leclère, David; Lessire, Françoise; Macleod, Michael; Robinson, Timothy P; Ruete, Alejandro; Sandars, Daniel L; Shrestha, Shailesh; Stott, Alistair W; Twardy, Stanislaw; Vanrobays, Marie-Laure; Ahmadi, Bouda Vosough; Weindl, Isabelle; Wheelhouse, Nick; Williams, Adrian G; Williams, Hefin W; Wilson, Anthony J; Østergaard, Søren; Kipling, Richard P
2016-11-01
Climate change has the potential to impair livestock health, with consequences for animal welfare, productivity, greenhouse gas emissions, and human livelihoods and health. Modelling has an important role in assessing the impacts of climate change on livestock systems and the efficacy of potential adaptation strategies, to support decision making for more efficient, resilient and sustainable production. However, a coherent set of challenges and research priorities for modelling livestock health and pathogens under climate change has not previously been available. To identify such challenges and priorities, researchers from across Europe were engaged in a horizon-scanning study, involving workshop and questionnaire based exercises and focussed literature reviews. Eighteen key challenges were identified and grouped into six categories based on subject-specific and capacity building requirements. Across a number of challenges, the need for inventories relating model types to different applications (e.g. the pathogen species, region, scale of focus and purpose to which they can be applied) was identified, in order to identify gaps in capability in relation to the impacts of climate change on animal health. The need for collaboration and learning across disciplines was highlighted in several challenges, e.g. to better understand and model complex ecological interactions between pathogens, vectors, wildlife hosts and livestock in the context of climate change. Collaboration between socio-economic and biophysical disciplines was seen as important for better engagement with stakeholders and for improved modelling of the costs and benefits of poor livestock health. The need for more comprehensive validation of empirical relationships, for harmonising terminology and measurements, and for building capacity for under-researched nations, systems and health problems indicated the importance of joined up approaches across nations. The challenges and priorities identified can help focus the development of modelling capacity and future research structures in this vital field. Well-funded networks capable of managing the long-term development of shared resources are required in order to create a cohesive modelling community equipped to tackle the complex challenges of climate change. Copyright © 2016 Elsevier Inc. All rights reserved.
"no snow - no skiing excursion - consequences of climatic change?"
NASA Astrophysics Data System (ADS)
Neunzig, Thilo
2014-05-01
Climatology and climate change have become central topics in Geography at our school. Because of that we set up a climatological station at our school. The data are an important basis to observe sudden changes in the weather. The present winter (2013/2014) shows the importance of climate change in Alzey / Germany. In winter many students think of the yearly skiing trip to Schwaz / Austria which is part of our school programme. Due to that the following questions arise: Will skiing still be possible if climate change accelerates? How are the skiing regions in the Alpes going to change? What will happen in about 20 years? How does artificial snow change the landscape and the skiing sport? Students have to be aware of the ecological damage of skiing trips. Each class has to come up with a concept how these trips can be as environmentally friendly as possible. - the trip is for a restricted number of students only (year 8 only) - a small skiing region is chosen which is not overcrowded - snow has to be guaranteed in the ski area to avoid the production of artificial snow (avoidance of high water consumption) - the bus arrives with a class and returns with the one that had been there before These are but a few ideas of students in order to make their trip as environmentally friendly as possible. What is missing is only what is going to happen in the future. What will be the effect of climate change for skiing regions in the secondary mountains? How is the average temperature for winter going to develop? Are there possibilities for summer tourism (e.g. hiking) instead of skiing in winter? The students are going to try to find answers to these questions which are going to be presented on a poster on the GIFT-Workshop in Vienna.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephen A. Holditch; Emrys Jones
In 2000, Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deepwater portions of the Gulf of Mexico. A Joint Industry Participation (JIP) group was formed in 2001, and a project partially funded by the U.S. Department of Energy (DOE) began in October 2001. The primary objective of this project is to develop technology and data to assist in the characterization of naturally occurring gas hydrates in the deepwater Gulf of Mexico. These naturally occurring gas hydrates can cause problems relating to drilling and production of oil and gas, as well as buildingmore » and operating pipelines. Other objectives of this project are to better understand how natural gas hydrates can affect seafloor stability, to gather data that can be used to study climate change, and to determine how the results of this project can be used to assess if and how gas hydrates act as a trapping mechanism for shallow oil or gas reservoirs. As part of the project, three workshops were held. The first was a data collection workshop, held in Houston during March 14-15, 2002. The purpose of this workshop was to find out what data exist on gas hydrates and to begin making that data available to the JIP. The second and third workshop, on Geoscience and Reservoir Modeling, and Drilling and Coring Methods, respectively, were held simultaneously in Houston during May 9-10, 2002. The Modeling Workshop was conducted to find out what data the various engineers, scientists and geoscientists want the JIP to collect in both the field and the laboratory. The Drilling and Coring workshop was to begin making plans on how we can collect the data required by the project's principal investigators.« less
Addressing Issues for Land Change Science
NASA Astrophysics Data System (ADS)
Braimoh, Ademola; Huang, He Qing
2009-09-01
Workshop on Vulnerability and Resilience of Land Systems in Asia; Beijing, China, 15-17 June 2009; There is a growing international community of scholars who work within the interdisciplinary field of land change science, a scientific domain that seeks to understand the dynamics of the land system as a coupled human-environment system. A coupled human-environment system is one in which the social and biophysical subsystems are intertwined so that the system's condition and responses to external forcing are based on the synergy of the two subsystems. Research on land system vulnerability, defined as a function of exposure and sensitivity to natural and anthropogenic perturbations, such as climate variability and sudden changes in macroeconomic conditions and the ability to cope with the impacts of those perturbations, is a fundamental component of land change science. To address issues related to land system vulnerability, the Global Land Project (GLP; http://www.glp-beijing.org.cn/index.php and http://www.glp.hokudai.ac.jp) brought together an interdisciplinary group of researchers with backgrounds ranging from environmental to social sciences. Participants came from both developed and developing countries. The workshop sought to (1) improve knowledge of the causal processes that affect a system's vulnerability and capacity to cope with different perturbations and (2) identify factors that hinder the integration of vulnerability assessment into policies and decision making.
NASA Astrophysics Data System (ADS)
Keener, V. W.; Brewington, L.; Jaspers, K.
2016-12-01
To build an effective bridge from the climate modeling community to natural resource managers, we assessed the existing landscape to see where different groups diverge in their perceptions of climate data and needs. An understanding of a given community's shared knowledge and differences can help design more actionable science. Resource managers in Hawaii are eager to have future climate projections at spatial scales relevant to the islands. National initiatives to downscale climate data often exclude US insular regions, so researchers in Hawaii have generated regional dynamically and statistically downscaled projections. Projections of precipitation diverge, however, leading to difficulties in communication and use. Recently, a two day workshop was held with scientists and managers to evaluate available models and determine a set of best practices for moving forward with decision-relevant downscaling in Hawaii. To seed the discussion, the Pacific Regional Integrated Sciences and Assessments (RISA) program conducted a pre-workshop survey (N=65) of climate modelers and freshwater, ecosystem, and wildfire managers working in Hawaii. Scientists reported spending less than half of their time on operational research, although the majority was eager to partner with managers on specific projects. Resource managers had varying levels of familiarity with downscaled climate projections, but reported needing more information about uncertainty for decision making, and were less interested in the technical model details. There were large differences between groups of managers, with 41.7% of freshwater managers reporting that they used climate projections regularly, while a majority of ecosystem and wildfire managers reported having "no familiarity". Scientists and managers rated which spatial and temporal scales were most relevant to decision making. Finally, when asked to compare how confident they were in projections of specific climate variables between the dynamical and statistical data, 80-90% of managers responded that they had no opinion. Workshop attendees were very interested in the survey results, adding to evidence of a need for sustained engagement between modeler and user groups, as well as different strategies for working with different types of resource managers.
NASA Technical Reports Server (NTRS)
Atlas, D. (Editor); Thiele, O. W. (Editor)
1981-01-01
Global climate, agricultural uses for precipitation information, hydrological uses for precipitation, severe thunderstorms and local weather, global weather are addressed. Ground truth measurement, visible and infrared techniques, microwave radiometry and hybrid precipitation measurements, and spaceborne radar are discussed.
USDA Northeast climate hub greenhouse gas mitigation workshop technical report
USDA-ARS?s Scientific Manuscript database
In April 2015, USDA Secretary Vilsack announced the Greenhouse Gas Building Blocks for Climate Smart Agriculture and Forestry in an effort to reduce greenhouse gas emissions, increase carbon sequestration, and expand renewable energy production in the agricultural and forestry sectors. This initiati...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Özkan, Şeyda
Climate change has the potential to impair livestock health, with consequences for animal welfare, productivity, greenhouse gas emissions, and human livelihoods and health. Modelling has an important role in assessing the impacts of climate change on livestock systems and the efficacy of potential adaptation strategies, to support decision making for more efficient, resilient and sustainable production. However, a coherent set of challenges and research priorities for modelling livestock health and pathogens under climate change has not previously been available. To identify such challenges and priorities, researchers from across Europe were engaged in a horizon-scanning study, involving workshop and questionnaire basedmore » exercises and focussed literature reviews. Eighteen key challenges were identified and grouped into six categories based on subject-specific and capacity building requirements. Across a number of challenges, the need for inventories relating model types to different applications (e.g. the pathogen species, region, scale of focus and purpose to which they can be applied) was identified, in order to identify gaps in capability in relation to the impacts of climate change on animal health. The need for collaboration and learning across disciplines was highlighted in several challenges, e.g. to better understand and model complex ecological interactions between pathogens, vectors, wildlife hosts and livestock in the context of climate change. Collaboration between socio-economic and biophysical disciplines was seen as important for better engagement with stakeholders and for improved modelling of the costs and benefits of poor livestock health. The need for more comprehensive validation of empirical relationships, for harmonising terminology and measurements, and for building capacity for under-researched nations, systems and health problems indicated the importance of joined up approaches across nations. The challenges and priorities identified can help focus the development of modelling capacity and future research structures in this vital field. Well-funded networks capable of managing the long-term development of shared resources are required in order to create a cohesive modelling community equipped to tackle the complex challenges of climate change. - Highlights: • Experts identified challenges for health and pathogen modelling under climate change. • Eighteen key challenges and associated research priorities were identified. • Increasing capacity will require improved organisation and sharing knowledge. • Better communication across the diverse topics and approaches in this field is needed.« less
NASA Astrophysics Data System (ADS)
Dixon, K. W.; Balaji, V.; Lanzante, J.; Radhakrishnan, A.; Hayhoe, K.; Stoner, A. K.; Gaitan, C. F.
2013-12-01
Statistical downscaling (SD) methods may be viewed as generating a value-added product - a refinement of global climate model (GCM) output designed to add finer scale detail and to address GCM shortcomings via a process that gleans information from a combination of observations and GCM-simulated climate change responses. Making use of observational data sets and GCM simulations representing the same historical period, cross-validation techniques allow one to assess how well an SD method meets this goal. However, lacking observations of future, the extent to which a particular SD method's skill might degrade when applied to future climate projections cannot be assessed in the same manner. Here we illustrate and describe extensions to a 'perfect model' experimental design that seeks to quantify aspects of SD method performance both for a historical period (1979-2008) and for late 21st century climate projections. Examples highlighting cases in which downscaling performance deteriorates in future climate projections will be discussed. Also, results will be presented showing how synthetic datasets having known statistical properties may be used to further isolate factors responsible for degradations in SD method skill under changing climatic conditions. We will describe a set of input files used to conduct these analyses that are being made available to researchers who wish to utilize this experimental framework to evaluate SD methods they have developed. The gridded data sets cover a region centered on the contiguous 48 United States with a grid spacing of approximately 25km, have daily time resolution (e.g., maximum and minimum near-surface temperature and precipitation), and represent a total of 120 years of model simulations. This effort is consistent with the 2013 National Climate Predictions and Projections Platform Quantitative Evaluation of Downscaling Workshop goal of supporting a community approach to promote the informed use of downscaled climate projections.
Developing rural community health risk assessments for climate change: a Tasmanian pilot study.
Bell, Erica J; Turner, Paul; Meinke, Holger; Holbrook, Neil J
2015-01-01
This article examines the development and pilot implementation of an approach to support local community decision-makers to plan health adaptation responses to climate change. The approach involves health and wellbeing risk assessment supported through the use of an electronic tool. While climate change is a major foreseeable public health threat, the extent to which health services are prepared for, or able to adequately respond to, climate change impact-related risks remains unclear. Building health decision-support mechanisms in order to involve and empower local stakeholders to help create the basis for agreement on these adaptive actions is an important first step. The primary research question was 'What can be learned from pilot implementation of a community health and well-being risk assessment (CHWRA) information technology-based tool designed to support understanding of, and decision-making on, local community challenges and opportunities associated with health risks posed by climate change? The article examines the complexity of climate change science to adaptation translational processes, with reference to existing research literature on community development. This is done in the context of addressing human health risks for rural and remote communities in Tasmania, Australia. This process is further examined through the pilot implementation of an electronic tool designed to support the translation of physically based climate change impact information into community-level assessments of health risks and adaptation priorities. The procedural and technical nature of the CHWRA tool is described, and the implications of the data gathered from stakeholder workshops held at three rural Tasmanian local government sites are considered and discussed. Bushfire, depression and waterborne diseases were identified by community stakeholders as being potentially 'catastrophic' health effects 'likely' to 'almost certain' to occur at one or more Tasmanian rural sites - based on an Intergovernmental Panel on Climate Change style of assessment. Consensus statements from stakeholders also suggested concern with health sector adaptation capacity and community resilience, and what community stakeholders defined as 'last straw' climate effects in already stressed communities. Preventative action and community engagement were also seen as important, especially with regard to managing the ways that climate change can multiply socioeconomic and health outcome inequality. Above all, stakeholder responses emphasised the importance of an applied, complexity-oriented understanding of how climate and climate change impacts affect local communities and local services to compromise the overall quality of human health in these communities. Complex community-level assessments about climate change and related health risks and responses can be captured electronically in ways that offer potentially actionable information about priorities for health sector adaptation, as a first step in planning. What is valuable about these community judgements is the creation of shared values and commitments. Future iteration of the IT tool could include decision-support modules to support best practice health sector adaptation scenarios, providing participants with opportunities to develop their know-how about health sector adaptation to climate change. If managed carefully, such tools could work within a balanced portfolio of measures to help reduce the rising health burden from climate change.
Engaging Communities Where They Are: New Hampshire's Coastal Adaptation Workgroup
NASA Astrophysics Data System (ADS)
Wake, C. P.; Godlewski, S.; Howard, K.; Labranche, J.; Miller, S.; Peterson, J.; Ashcraft, C.
2015-12-01
Rising seas are expected to have significant impacts on infrastructure and natural and cultural resources on New Hampshire's 18 mile open-ocean coastline and 235 miles of tidal shoreline. However, most coastal municipalities in NH lack financial and human resources to even assess vulnerability, let alone plan for climate change. This gap has been filled since 2010 by the NH Coastal Adaptation Workgroup (CAW), composed of 21 regional, state, and federal agencies, businesses, municipalities, academics, and NGOs that bring together stakeholders to discuss climate change challenges and collaboratively develop and implement effective coastal adaptation strategies. Our grassroot efforts serve to nurture existing and build new relationships, disseminate coastal watershed climate assessments, and tap into state, federal, and foundation funds for specific coastal adaptation projects. CAW has achieved collective impact in by connecting federal and state resources to communities by raising money and facilitating projects, translating climate science, educating community members, providing direct technical assistance and general capacity, and sharing success stories and lessons learned. Indicators of success include: 12 coastal communities improved their technical, financial, and human resources for climate adaptation; 80% of the 300 participants in the eleven CAW 'Water, Weather, Climate, and Community Workshops' have increased knowledge, motivation, and capacity to address climate adaptation; $3 million in grants to help communities with climate adaptation; winner of the 2015 EPA Region 1 Environmental Merit Award; and ongoing support for community-led adaptation efforts. In addition, the NH Climate Summit attracts over 100 participants each year, over 90% whom attest to the applicability of what they learn there. CAW also plays a central role in the Coastal Risks and Hazards Commission (established by the state legislature in 2013) to help communities and businesses prepare for the impacts of rising seas and coastal storms.
Data-Driven Synthesis for Investigating Food Systems Resilience to Climate Change
NASA Astrophysics Data System (ADS)
Magliocca, N. R.; Hart, D.; Hondula, K. L.; Munoz, I.; Shelley, M.; Smorul, M.
2014-12-01
The production, supply, and distribution of our food involves a complex set of interactions between farmers, rural communities, governments, and global commodity markets that link important issues such as environmental quality, agricultural science and technology, health and nutrition, rural livelihoods, and social institutions and equality - all of which will be affected by climate change. The production of actionable science is thus urgently needed to inform and prepare the public for the consequences of climate change for local and global food systems. Access to data that spans multiple sectors/domains and spatial and temporal scales is key to beginning to tackle such complex issues. As part of the White House's Climate Data Initiative, the USDA and the National Socio-Environmental Synthesis Center (SESYNC) are launching a new collaboration to catalyze data-driven research to enhance food systems resilience to climate change. To support this collaboration, SESYNC is developing a new "Data to Motivate Synthesis" program designed to engage early career scholars in a highly interactive and dynamic process of real-time data discovery, analysis, and visualization to catalyze new research questions and analyses that would not have otherwise been possible and/or apparent. This program will be supported by an integrated, spatially-enabled cyberinfrastructure that enables the management, intersection, and analysis of large heterogeneous datasets relevant to food systems resilience to climate change. Our approach is to create a series of geospatial abstraction data structures and visualization services that can be used to accelerate analysis and visualization across various socio-economic and environmental datasets (e.g., reconcile census data with remote sensing raster datasets). We describe the application of this approach with a pilot workshop of socio-environmental scholars that will lay the groundwork for the larger SESYNC-USDA collaboration. We discuss the particular challenges of supporting an integrated, repeatable workflow for socio-environmental data synthesis, and the advantages and limitations to using data as a launching point for interdisciplinary research projects.
NASA Astrophysics Data System (ADS)
Mitchell, K. A.; Pandya, R. E.; Kahn-Thornbrugh, C.; Newberry, T.; Carroll, M.; Guinn, M.; Vanlopik, W.; Haines, C.; Wildcat, D.
2010-12-01
Thirty-six Tribal Colleges and Universities (TCUs) serve over 20,000 Native American undergraduate students across the US. TCUs were created in response to the higher education needs of American Indians and generally serve geographically isolated populations that have no other means accessing education beyond the high school level. TCUs have become increasingly important to educational opportunity for Native American students and are unique institutions that combine personal attention with cultural relevance to encourage Native Americans to overcome the barriers they face to higher education. The American Indian Higher Education Consortium (AIHEC) coordinated development of a semester-long geosciences program of study with a unique curriculum that introduces tribal college students to multiple disciplines in the geosciences within the topic of global climate change. Importantly, the curriculum structure does not parallel typical college climate change survey courses, but rather is taught from the perspective of the traditional ecological knowledge held by native peoples of North America. The richly varied history, geography, ecology, culture and scientific knowledge of Native American tribes across the US serves as the starting point from which students are taught about atmospheric and earth sciences and the connection of climate change to all our lives. In addition, examples and case studies focusing specifically on tribal lands foster the development of future Native American leaders with the scientific, technological and cultural skills required to assist tribal communities in managing their lands and maintaining their cultures as they face a climate-altered future. The "Introduction to Climate Change from an Indigenous Perspective" curriculum was developed by tribal college faculty from multiple institutions through a collaborative workshop process. The course was piloted and taught at 5 tribal colleges during spring semester 2010. This presentation provides an overview of the course goals, content and delivery.
Women's legal knowledge: a case study of Mexican urban dwellers.
Rivera Izabal, L M
1995-06-01
In Mexico, the nongovernmental organization Sevisio, Desarrollo y Paz, A.C. (SEDEPAC) is helping poor women acquire legal knowledge in an economic climate characterized by the increased feminization of poverty brought about by the Structural Adjustment Program. The Mexican legal system is grounded in a patriarchal tradition, and the codified laws continue to favor men. Women were not granted full citizenship until 1953, and discrimination against women was not addressed in Mexican law until 1974 as the country prepared to host the First UN International Women's Conference. However, legal advances are not being applied in the family or in larger society where men remain in power. Mexico also distinguishes between private law and public law. Because domestic violence falls in the realm of private law, authorities are loathe to follow-up on women's complaints in this area. Since its founding in 1983, SEDEPAC has applied a gender perspective to its activities and programs. SEDEPAC held its first women's legal workshop in 1987 and realized that most poor women have no knowledge of existing laws or their rights, that alternative legal services for women are scarce, that existing laws must be changed, and that the authoritarian and conservative legal system helps maintain cultural stereotypes. Since then, SEDEPAC has held annual workshops, follow-up meetings, and training sessions and has provided counseling. The main topics addressed are women's social conditions; violence and the penal code; civil rights, power, and dependency; women's bodies and reproductive rights; and women's organization and leadership. The workshops use techniques of popular education such as group participation and use of gossip as a communication tool. The workshops have changed participants' lives and led to the formation of an independent Popular Defenders' Coordination.
NASA Astrophysics Data System (ADS)
Spitzer, W.
2015-12-01
Since 2007, the New England Aquarium has led a national effort to increase the capacity of informal science venues to effectively communicate about climate change. We are now leading the NSF-funded National Network for Ocean and Climate Change Interpretation (NNOCCI), partnering with the Association of Zoos and Aquariums, FrameWorks Institute, Woods Hole Oceanographic Institution, Monterey Bay Aquarium, and National Aquarium, with evaluation conducted by the New Knowledge Organization, Pennsylvania State University, and Ohio State University. NNOCCI enables teams of informal science interpreters across the country to serve as "communication strategists" - beyond merely conveying information they can influence public perceptions, given their high level of commitment, knowledge, public trust, social networks, and visitor contact. We provide in-depth training as well as an alumni network for ongoing learning, implementation support, leadership development, and coalition building. Our goals are to achieve a systemic national impact, embed our work within multiple ongoing regional and national climate change education networks, and leave an enduring legacy. Our project represents a cross-disciplinary partnership among climate scientists, social and cognitive scientists, and informal education practitioners. We have built a growing national network of more than 250 alumni, including approximately 15-20 peer leaders who co-lead both in-depth training programs and introductory workshops. We have found that this alumni network has been assuming increasing importance in providing for ongoing learning, support for implementation, leadership development, and coalition building. As we look toward the future, we are exploring potential partnerships with other existing networks, both to sustain our impact and to expand our reach. This presentation will address what we have learned in terms of network impacts, best practices, factors for success, and future directions.
National K-12 Educator Conference; "Earth Then, Earth Now: Our Changing Climate" (July 23-24, 2008)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flammer, Karen; O'Shaughnessy, Tam
With the support of the Department of Energy, the National Science Teachers Association and the National Oceanic and Atmospheric Administration, Imaginary Lines Inc. (dba Sally Ride Science) delivered a highly successful 2-day conference to 165 K-12 educators on climate change. The event took place on July 23rd and 24th, 2008 at the NOAA facility in Silver Spring, MD. The conference celebrated the 25th anniversary of Dr. Sally Ride’s first flight into space in 1983 and examined how our understanding of Earth has changed in those 25 years. One the first day of the conference, participants heard a keynote talk deliveredmore » by Dr. Sally Ride, followed by presentations by well-known climate change scientists: Dr. Richard Somerville, Dr. Inez Fung and Dr. Susan Solomon. These sessions were concurrently webcast and made available to educators who were unable to attend the conference. On the second day of the conference, participants attended breakout sessions where they performed climate change activities (e.g. “Neato Albedo!”, “Greenhouse in a Bottle”, “Shell-Shocked”) that they could take back to their classrooms. Additional break-out sessions on using remote sensing images to illustrate climate change effects on Earth’s surface and how to address the climate change debate, were also offered. During lunch, participants attended an Educator Street Fair and had the opportunity to interact with representatives from NOAA, NASA, the EPA, NEEF and the JASON project. A follow-up evaluation survey was administered to all conference attendees immediately following the conference to evaluate its effectiveness. The results of this survey were overwhelmingly positive. The conference materials: presentation Power Points, workshop handouts and activities were available for teachers to download after the conference from the Sally Ride Science website. In summary, the approximately $55K support for the Department of Energy was used to help plan, deliver and evaluate the “Earth Then, Earth Now: Our Changing Climate”, conference which took place on July 23rd and 24th, 2008 at the NOAA facility in Silver Spring, MD.« less
Accelerating Adaptation of Natural Resource Management to Address Climate Change
Cross, Molly S; McCarthy, Patrick D; Garfin, Gregg; Gori, David; Enquist, Carolyn AF
2013-01-01
Abstract Natural resource managers are seeking tools to help them address current and future effects of climate change. We present a model for collaborative planning aimed at identifying ways to adapt management actions to address the effects of climate change in landscapes that cross public and private jurisdictional boundaries. The Southwest Climate Change Initiative (SWCCI) piloted the Adaptation for Conservation Targets (ACT) planning approach at workshops in 4 southwestern U.S. landscapes. This planning approach successfully increased participants’ self-reported capacity to address climate change by providing them with a better understanding of potential effects and guiding the identification of solutions. The workshops fostered cross-jurisdictional and multidisciplinary dialogue on climate change through active participation of scientists and managers in assessing climate change effects, discussing the implications of those effects for determining management goals and activities, and cultivating opportunities for regional coordination on adaptation of management plans. Facilitated application of the ACT framework advanced group discussions beyond assessing effects to devising options to mitigate the effects of climate change on specific species, ecological functions, and ecosystems. Participants addressed uncertainty about future conditions by considering more than one climate-change scenario. They outlined opportunities and identified next steps for implementing several actions, and local partnerships have begun implementing actions and conducting additional planning. Continued investment in adaptation of management plans and actions to address the effects of climate change in the southwestern United States and extension of the approaches used in this project to additional landscapes are needed if biological diversity and ecosystem services are to be maintained in a rapidly changing world. Acelerando la Adaptación del Manejo de Recursos Naturales para Atender el Cambio Climático Resumen Los manejadores de recursos naturales están buscando herramientas para ayudarles a atender los efectos actuales y futuros del cambio climático. Presentamos un modelo para la planificación colaborativa enfocada a identificar formas para adaptar las acciones de manejo para atender los efectos del cambio climático en paisajes que cruzan límites jurisdiccionales públicos y privados. La Iniciativa Sudoccidental de Cambio Climático (ISCC) puso a prueba el método de planificación de Adaptación para Metas de Conservación (AMC) en talleres en cuatro paisajes del suroeste de E. U. A. Este método de planificación incrementó exitosamente la capacidad de los participantes para atender el cambio climático al proporcionarles un mejor entendimiento de los efectos potenciales y guiar la identificación de soluciones. Los talleres promovieron el diálogo trans-jurisdiccional y multidisciplinario sobre cambio climático mediante la participación activa de científicos y manejadores en la evaluación de efectos del cambio climático, la discusión de implicaciones de esos efectos para determinar las metas y actividades de manejo y desarrollar oportunidades para la coordinación regional de la adaptación de planes de manejo. La aplicación simplificada del marco AMC llevó las discusiones de grupo más allá de la evaluación de los efectos a la concepción de opciones para mitigar los efectos del cambio climático sobres determinadas especies, funciones ecológicas y ecosistemas. Los participantes abordaron la incertidumbre de las condiciones futuras al considerar más de un escenario de cambio climático. Delinearon oportunidades e identificaron los siguientes pasos para la implementación de varias acciones, y asociaciones locales han comenzado a implementar acciones y realizar planificación adicional. Se requiere inversión continua en la adaptación de planes y acciones de manejo para atender los efectos del cambio climático en el suroeste de Estados Unidos y la extensión de los métodos utilizados en este proyecto en paisajes adicionales si se quiere mantener la diversidad biológica y los servicios de los ecosistemas en un mundo que cambia rápidamente. PMID:23110636
NASA Astrophysics Data System (ADS)
Howarth, C.
2016-12-01
The nexus represents a multi-dimensional means of scientific enquiry encapsulating the complex and non-linear interactions between water, energy, food, environment with the climate, and wider implications for society. These resources are fundamental for human life but are negatively affected by climate change. Methods of analysis, which are currently used, were not built to represent complex systems and are insufficiently equipped to understand positive and negative externalities generated by interactions among different stakeholders involved in the nexus. In addition misalignment between the science that scientists produce and the evidence decision-makers need leads to a range of complexities within the science-policy interface. Adopting a bottom-up, participative approach, the results of five themed workshops organized in the UK (focusing on: shocks and hazards, infrastructure, local economy, governance and governments, finance and insurance) featuring 80 stakeholders from academia, government and industry allow us to map perceptions of opportunities and challenges of better informing decision making on climate change when there is a strong disconnect between the evidence scientists provide and the actions decision makers take. The research identified key areas where gaps could be bridged between science and action and explores how a knowledge co-production approach can help identify opportunities for building a more effective and legitimate policy agenda to face climate risks. Concerns, barriers and opportunities to better inform decision making centred on four themes: communication and collaboration, decision making processes, social and cultural dimensions, and the nature of responses to nexus shocks. In so doing, this analysis provides an assessment of good practice on climate decision-making and highlights opportunities for improvement to bridge gaps in the science-policy interface
European information on climate change impacts, vulnerability and adaptation
NASA Astrophysics Data System (ADS)
Jol, A.; Isoard, S.
2010-09-01
Vulnerability to natural and technological disasters is increasing due to a combination of intensifying land use, increasing industrial development, further urban expansion and expanding infrastructure and also climate change. At EU level the European Commission's White Paper on adaptation to climate change (published in 2009) highlights that adaptation actions should be focused on the most vulnerable areas and communities in Europe (e.g. mountains, coastal areas, river flood prone areas, Mediterranean, Arctic). Mainstreaming of climate change into existing EU policies will be a key policy, including within the Water Framework Directive, Marine Strategy Framework Directive, Nature protection and biodiversity policies, integrated coastal zone management, other (sectoral) policies (agriculture, forestry, energy, transport, health) and disaster risk prevention. 2010 is the international year on biodiversity and the Conference of Parties of the biodiversity convention will meet in autumn 2010 (Japan) to discuss amongst other post-2010 strategies, objectives and indicators. Both within the Biodiversity Convention (CBD) and the Climate Change Convention (UNFCCC) there is increasing recognition of the need for integration of biodiversity conservation into climate change mitigation and adaptation activities. Furthermore a number of European countries and also some regions have started to prepare and/or have adopted national adaptation plans or frameworks. Sharing of good practices on climate change vulnerability methods and adaptation actions is so far limited, but is essential to improve such plans, at national, sub national and local level where much of the adaptation action is already taking place and will be expanding in future, also involving increasingly the business community. The EU Clearinghouse on CC impacts, vulnerability and adaptation should address these needs and it is planned to be operational end of 2011. The EEA is expected to have a role in its development in 2010 and is likely to manage the system after 2011. The European Commission in its Communication in 2009 on disaster risk prevention also calls for improving and better sharing of data on disasters, disaster risk mapping and disaster risk management, in the context of the EU civil protection mechanism. Such information might also be linked to the planned EU Clearinghouse on climate change adaptation. The activities of EEA on climate change impacts, vulnerability and adaptation (including disaster risk reduction) include indicators of the impacts of climate change; a regularly updated overview of national assessments and adaptation plans on the EEA web site and specific focused reports, e.g. on adaptation to the challenges of changing water resources in the Alps (2009) and on analysis of past trends in natural disasters (due in 2010) and regular expert meetings and workshops with EEA member countries. The ECAC presentation will include the latest developments in the EU Clearinghouse on adaptation and progress in relevant EEA activities.
NASA Astrophysics Data System (ADS)
Sheng, Y.; Davis, J. R.; Paramygin, V. A.; LaRow, T.; Chassignet, E.; Stefanova, L. B.; Lu, J.; Xie, L.; Montalvo, S.; Liu, J.; Liu, B.
2012-12-01
75% of the world population lives within 100 km from the coastline. Coastal communities are subject to increasing coastal inundation risk due to the combined effects of hurricane-induced storm surge, tsunami, climate change, and sea level rise. This study is developing the next generation decision support systems (DSS) for storm surge and coastal inundation by incorporating the climate change impacts on hurricanes and sea level rise (SLR) along the Florida and North Carolina coast. Using a new methodology (instead of the "bath tub" approach) enhanced by the Institute for Sustainable Coastal Environment and Infrastructure (InSCEI) at University of Florida (UF), highly accurate and efficient coastal inundation maps (Base Flood Elevations and Surge Atlas) are being produced for current climate conditions. Atmospheric and climate scientists at Florida State University (FSU) and North Carolina State University (NCSU) are using global (FSU/COAPS) and regional (WRF) atmospheric models to estimate the range in hurricane activities during 2020-2040 and 2080-2100, using projected SSTs from the IPCC CMIP5 climate scenarios as lower boundary conditions. SLR experts at NCSU and FSU are analyzing historical sea level data and conducting numerical modeling to estimate the SLR at the coastal boundaries for the same IPCC scenarios. UF and NCSU are using the hurricane ensembles and the SLR scenarios provided by FSU and NCSU as input to storm surge and inundation models (CH3D-SSMS and CMAEPS, respectively) to produce high resolution inundation maps which include climate change effects. These future-climate coastal inundation maps will be much more accurate than the current ones and greatly improve the stakeholders' ability to mitigate coastal inundation risk throughout the U.S. and the world. These inundation maps for current and future climates will be communicated to a wide spectrum of stakeholders for feedback and further improvement. A national workshop will be held in January 2013 to engage stakeholders, researchers, and managers (federal, state, and local) of coastal inundation to develop strategies to improve communications among the various entities and to gather inputs on the development of the next -generation coastal inundation decision support system.
Working Group on Virtual Data Integration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Dean N.
2016-03-07
This report is the outcome of a workshop commissioned by the U.S. Department of Energy’s (DOE) Climate and Environmental Sciences Division (CESD) to examine current and future data infrastructure requirements foundational for achieving CESD scientific mission goals in advancing a robust, predictive understanding of Earth’s climate and environmental systems.
A whole ecosystem approach to studying climate change in interior Alaska
Riggins, Susan; Striegl, Robert G.; McHale, Michael
2011-01-01
Yukon River Basin Principal Investigators Workshop; Portland, Oregon, 18-20 January 2011; High latitudes are known to be particularly susceptible to climate warming, leading to an emphasis of field and modeling research on arctic regions. Subarctic and boreal regions such as the Yukon River Basin (YRB) of interior Alaska and western Canada are less well studied, although they encompass large areas that are vulnerable to changes in forest composition, permafrost distribution, and hydrology. There is an urgent need to understand the resiliency and vulnerability of these complex ecosystems as well as their feedbacks to the global climate system. Consequently, U.S. Geological Survey scientists, with other federal agency, university, and private industry partners, is focusing subarctic interdisciplinary studies on the Beaver Creek Wild and Scenic River watershed (http://www.blm.gov/pgdata/content/ak/en/prog/nlcs/beavercrk_nwsr.html) and Yukon Flats National Wildlife Refuge (http://yukonflats.fws.gov/) in the YRB, south and west of Fort Yukon, Alaska. These areas are national treasures of wetlands, lakes, and uplands that support large populations of wildlife and waterfowl and are home to vibrant native Alaskan communities that depend on the area for a subsistence lifestyle.
Barrett, Tristam; Feola, Giuseppe; Khusnitdinova, Marina; Krylova, Viktoria
2017-01-01
The convergence of climate change and post-Soviet socio-economic and institutional transformations has been underexplored so far, as have the consequences of such convergence on crop agriculture in Central Asia. This paper provides a place-based analysis of constraints and opportunities for adaptation to climate change, with a specific focus on water use, in two districts in southeast Kazakhstan. Data were collected by 2 multi-stakeholder participatory workshops, 21 semi-structured in-depth interviews, and secondary statistical data. The present-day agricultural system is characterised by enduring Soviet-era management structures, but without state inputs that previously sustained agricultural productivity. Low margins of profitability on many privatised farms mean that attempts to implement integrated water management have produced water users associations unable to maintain and upgrade a deteriorating irrigation infrastructure. Although actors engage in tactical adaptation measures, necessary structural adaptation of the irrigation system remains difficult without significant public or private investments. Market-based water management models have been translated ambiguously to this region, which fails to encourage efficient water use and hinders adaptation to water stress. In addition, a mutual interdependence of informal networks and formal institutions characterises both state governance and everyday life in Kazakhstan. Such interdependence simultaneously facilitates operational and tactical adaptation, but hinders structural adaptation, as informal networks exist as a parallel system that achieves substantive outcomes while perpetuating the inertia and incapacity of the state bureaucracy. This article has relevance for critical understanding of integrated water management in practice and adaptation to climate change in post-Soviet institutional settings more broadly.
Martian Surface and Atmosphere Workshop
NASA Astrophysics Data System (ADS)
Schuraytz, Benjamin C.
The NASA-sponsored Martian Surface and Atmosphere Through Time Study Project convened its first major meeting at the University of Colorado in Boulder, September 23-25, 1991. The workshop, co-sponsored by the Lunar and Planetary Institute (LPI) and the Laboratory for Atmospheric and Space Physics at the University of Colorado, brought together an international group of 125 scientists to discuss a variety of issues relevant to the goals of the MSATT Program. The workshop program committee included co-convenors Robert Haberle, MSATT Steering Committee Chairman NASA Ames Research Center) and Bruce Jakosky (University of Colorado), and committee members Amos Banin (NASA Ames Research Center and Hebrew University), Benjamin Schuraytz (LPI), and Kenneth Tanaka (U.S. Geological Survey, Flagstaff, Ariz.).The purpose of the workshop was to begin exploring and defining the relationships between different aspects of Mars science—the evolution of the surface, the atmosphere, upper atmosphere, volatiles, and climate. Specific topics addressed in the 88 contributed abstracts included the current nature of the surface with respect to physical properties and photometric observations and interpretations; the history of geological processes, comprising water and ice-related geomorphology, impact cratering, and volcanism; and the geochemistry and mineralogy of the surface with emphasis on compositional and spectroscopic studies and weathering processes. Also addressed were the present atmosphere, focusing on structure and dynamics, volatile and dust distribution, and the upper atmosphere; long-term volatile evolution based on volatiles in SNC meteorites (certain meteorites thought to have come from Mars) and atmospheric evolution processes; climate history and volatile cycles in relation to early climate and the polar caps, ground ice, and regolith; and future mission concepts.
Rocks, Rain, and Climate: a GIFT Workshop for Teachers in Brazil
NASA Astrophysics Data System (ADS)
Passow, M. J.; Krusche, N.; Carneiro, C. D.
2010-12-01
Classroom teachers and university professors from two continents joined to learn about “Rocks, Rain, and Climate” in the GIFT (Geophysical Information For Teachers) Workshop at the Meeting of the Americas, held in Foz de Iguaçu (Iguassu Falls), Brazil, 8 - 9 August 2010. GIFT workshops have long been part of the AGU Fall Meetings, but among “the pioneers” from this program were the first GIFT in South America and the first GIFT presented in Portuguese and English. Its success will provide a model for future teacher-professor-researcher professional development in Brazil. The two-day course opened with overviews of the “Geology and Relief of South America” from C.D.R. Carneiro and the “Weather and Climate in South America” from Michelle R. Reboita (Federal University of Itajubá/UNIFEI). M.J. Passow organized a discussion about the “Challenges to Teaching about Climate Change,” followed by an exchange among the participants about their teaching experiences. The first day ended with a presentation by Antonio Carlos Alves Carvalho (Ministry of Education) about governmental initiatives to enhance distance learning and educational technology across the country to provide greater access to quality resources for all students and teachers. On the second day, Rachel Albrecht (Center for Weather Forecasting and Climate Studies of the National Space Research Institute/CPTEC-INPE) described her research using Tropical Rainfall Measuring Mission (TRMM)satellite precipitation data. M.J. Passow explained additional classroom applications of satellite data for studying precipitation and other patterns in the Tropics. C.D.R. Carneiro then discussed current research into “Weathering, Rocks, and the Carbon Cycle.” In the final session, Maria Assunção Faus da Silva Dias (University of São Paulo/USP)explained creation and educational uses of mathematical models to study the evolution of climate, especially as it relates to the hydrologic cycle. Participants included secondary school teachers and university professors from Brazil, Argentina, and the USA. Insights gained from developing this international GIFT program will be shared, including strengths, weaknesses, and attendee feedback. Archived versions of the slide shows and other resources (mostly in Portuguese, with some English) are available on http://www.earth2class.org and other websites created by the organizers for further dissemination. A bilingual paper by MJ Passow, “TRMM: Bringing remote sensing of precipitation into your classroom,” is part of Terræ Didatica, v. 6, iss. 1 (2010), available at http://www.ige.unicamp.br/terraedidatica/.
NASA Astrophysics Data System (ADS)
Halversen, C.; McDonnell, J. D.; Apple, J. K.; Weiss, E. L.
2016-02-01
Two university courses, 1) Promoting Climate Literacy and 2) Climate and Data Literacy, developed by the University of California Berkeley provide faculty across the country with course materials to help their students delve into the science underlying global environmental change. The courses include culturally responsive content, such as indigenous and place-based knowledge, and examine how people learn and consequently, how we should teach and communicate science. Promoting Climate Literacy was developed working with Scripps Institution of Oceanography, University of Washington, and Western Washington University. Climate and Data Literacy was developed with Rutgers University and Padilla Bay National Estuarine Research Reserve, WA. The Climate and Data Literacy course also focuses on helping students in science majors participating in U-Teach programs and students in pre-service teacher education programs gain skills in using real and near-real time data through engaging in investigations using web-based and locally-relevant data resources. The course helps these students understand and apply the scientific practices, disciplinary concepts and big ideas described in the Framework for K-12 Science Education and the Next Generation Science Standards (NGSS). This course focuses on students interested in teaching middle school science for three reasons: (1) teachers often have relatively weak understandings of the practices of science, and of complex Earth systems science and climate change; (2) the concepts that underlie climate change align well with the NGSS; and (3) middle school is a critical time for promoting student interest in science and for recruitment to STEM careers and lifelong climate literacy. This course is now being field tested in a number of U-Teach programs including Florida State University, Louisiana State University, as well as pre-service teacher education programs at California State University East Bay, and Western Washington University. The Promoting Climate Literacy course is focused on graduate and undergraduate science students interested in learning how to more effectively communicate climate science, while participating in outreach opportunities with the public. The course has been disseminated through a workshop for faculty at 17 universities.
Barriers to Uptake of Conservation Agriculture in southern Africa: Multi-level Analyses from Malawi
NASA Astrophysics Data System (ADS)
Dougill, Andrew; Stringer, Lindsay; Whitfield, Stephen; Wood, Ben; Chinseu, Edna
2015-04-01
Conservation agriculture is a key set of actions within the growing body of climate-smart agriculture activities being advocated and rolled out across much of the developing world. Conservation agriculture has purported benefits for environmental quality, food security and the sustained delivery of ecosystem services. In this paper, new multi-level analyses are presented, assessing the current barriers to adoption of conservation agriculture practices in Malawi. Despite significant donor initiatives that have targeted conservation agriculture projects, uptake rates remain low. This paper synthesises studies from across 3 levels in Malawi: i.) national level- drawing on policy analysis, interviews and a multi-stakeholder workshop; ii.) district level - via assessments of development plans and District Office and extension service support, and; iii) local level - through data gained during community / household level studies in Dedza District that have gained significant donor support for conservation agriculture as a component of climate smart agriculture initiatives. The national level multi-stakeholder Conservation Agriculture workshop identified three areas requiring collaborative research and outlined routes for the empowerment of the National Conservation Agriculture Task Force to advance uptake of conservation agriculture and deliver associated benefits in terms of agricultural development, climate adaptation and mitigation. District level analyses highlight that whilst District Development Plans are now checked against climate change adaptation and mitigation criteria, capacity and knowledge limitations exist at the District level, preventing project interventions from being successfully up-scaled. Community level assessments highlight the need for increased community participation at the project-design phase and identify a pressing requirement for conservation agriculture planning processes (in particular those driven by investments in climate-smart agriculture) to better accommodate, and respond to, the differentiated needs of marginalised groups (e.g. poor, elderly, carers). We identify good practices that can be used to design, plan and implement conservation agriculture projects such that the multiple benefits can be realised. We further outline changes to multi-level policy and institutional arrangements to facilitate greater adoption of conservation agriculture in Malawi, noting the vital importance of District-level institutions and amendments and capacity building required within agricultural extension services. We highlight the need for capacity building and support to ensure conservation agriculture's multiple benefits are realised more widely as a route towards sustainable land management.
NASA Technical Reports Server (NTRS)
Prather, Michael J. (Editor); Remsburg, Ellis E. (Editor)
1993-01-01
This Workshop on Stratospheric Models and Measurements (M&M) marks a significant expansion in the history of model intercomparisons. It provides a foundation for establishing the credibility of stratospheric models used in environmental assessments of chlorofluorocarbons, aircraft emissions, and climate-chemistry interactions. The core of the M&M comparisons involves the selection of observations of the current stratosphere (i.e., within the last 15 years): these data are believed to be accurate and representative of certain aspects of stratospheric chemistry and dynamics that the models should be able to simulate.
Unmanned Aerial Systems, Moored Balloons, and the U.S. Department of Energy ARM Facilities in Alaska
NASA Astrophysics Data System (ADS)
Ivey, Mark; Verlinde, Johannes
2014-05-01
The U.S. Department of Energy (DOE), through its scientific user facility, the Atmospheric Radiation Measurement (ARM) Climate Research Facility, provides scientific infrastructure and data to the international Arctic research community via its research sites located on the North Slope of Alaska. Facilities and infrastructure to support operations of unmanned aerial systems for science missions in the Arctic and North Slope of Alaska were established at Oliktok Point Alaska in 2013. Tethered instrumented balloons will be used in the near future to make measurements of clouds in the boundary layer including mixed-phase clouds. The DOE ARM Program has operated an atmospheric measurement facility in Barrow, Alaska, since 1998. Major upgrades to this facility, including scanning radars, were added in 2010. Arctic Observing Networks are essential to meet growing policy, social, commercial, and scientific needs. Calibrated, high-quality arctic geophysical datasets that span ten years or longer are especially important for climate studies, climate model initializations and validations, and for related climate policy activities. For example, atmospheric data and derived atmospheric forcing estimates are critical for sea-ice simulations. International requirements for well-coordinated, long-term, and sustained Arctic Observing Networks and easily-accessible data sets collected by those networks have been recognized by many high-level workshops and reports (Arctic Council Meetings and workshops, National Research Council reports, NSF workshops and others). The recent Sustaining Arctic Observation Network (SAON) initiative sponsored a series of workshops to "develop a set of recommendations on how to achieve long-term Arctic-wide observing activities that provide free, open, and timely access to high-quality data that will realize pan-Arctic and global value-added services and provide societal benefits." This poster will present information on opportunities for members of the arctic research community to make atmospheric measurements using unmanned aerial systems or tethered balloons.
2017-11-01
magnitude, intensity, and seasonality of climate. For infrastructure projects, relevant design life often exceeds 30 years—a period of time of...uncertainty about future statistical properties of climate at time and spatial scales required for planning and design purposes. Information...about future statistical properties of climate at time and spatial scales required for planning and design , and for assessing future operational
NASA Astrophysics Data System (ADS)
Idier, D.; Poumadère, M.; Vinchon, C.; Romieu, E.; Oliveros, C.
2009-04-01
1-INTRODUCTION Climate change is considered in the latest reports of the Intergovernmental Panel on Climate Change IPCC (2007) as unequivocal. Induced vulnerability of the system is defined as "the combination of sensitivity to climatic variations, probability of adverse effects, and adaptive capacity". Substantial methodological challenges remain, in particular estimating the risk of adverse climate change impacts and interpreting relative vulnerability across diverse situations. As stated by the IPCC, the "coastal systems should be considered vulnerable to changes in climate". In these areas, amongst the most serious impacts of sea-level rise (Nicholls, 1996) are erosion and marine inundation. Thus, the coast of metropolitan France, being composed of 31% sandy coasts, is potentially vulnerable, as it has been qualitatively assessed on the pilot coasts of Aquitaine and Languedoc-Roussillon in the RESPONSE project (Vinchon et al., 2008). Within the ANR VULSACO project (VULnerability of SAndy COast to climate change and anthropic pressure), the present day erosion tendencies as well as the potentially future erosion trends are investigated. The main objectives are to: (1) assess indicators of vulnerability to climate change for low-lying linear sandy coastal systems, from the shore to the hinterland, facing undergoing climate change and anthropic pressure until the 2030s; and (2) identify the aggravating or improving effect of human pressure on this vulnerability. This second issue is sometimes considered as a main driver of coastal risks. The methodology proposed in the project considers anthropic adaptation (or not) by putting decision makers in front of potential modifications of the physical system, to study the decision process and the choice of adaptation (or not). The coastal system is defined by its morphology, its physical characteristics and its land use. The time scales will range from short-term (days to weeks, e.g. time scale of extreme events) to medium-term (decades), whereas the space scales range from several tens of meters to several tens of kilometers. The project is based on the study of representative coastal units: 4 sites characterised by low-lying linear sandy beaches but different, representative, hydrodynamic and socio-economic environments. These sites are located in: Mediterranean Sea (Lido of Sète), Atlantic coast (Truc Vert beach and Noirmoutier island) and English channel coast (Est of Dunkerque). Each of these sites is studied following the same methodology, on both the physical and socio-economic dimensions, the aim being to identify vulnerability indicators regarding climate change and anthropic pressure. 2 - METHODOLOGY The work is based on the following methodology, for every site: 1) The compartments of the unit are defined: shoreface, coastline, backshore, hinterland, from a physical and socio-economical point of view. 2) The available data are analysed in order to provide some information on the present trend of the coastal unit, regarding climate change and anthropic pressure, but also to support the model validation. 3) The vulnerability is studied. On one hand, the socio-economic dimension is assessed and, in a risk governance perspective, stake holders are identified and involved. This part of the project combines the study of social perceptions of dangers along with a deliberative workshop. On the other hand, numerical models of the physical behaviour of shoreface and coastline are applied. The selected models cover a time scale from short-term (storm time scale) to long-term (decades). Then, vulnerability can be studied: the vulnerability of coast/beach is defined and studied based on in-situ observations and model results. Most of these models needs some forcing conditions (waves at the boundary of the computational domains for instance). The present day conditions can be potentially modified by climate change. However, the model and literature review on climate change show that the few prediction of wave conditions available for the future deal mainly with the significant wave height, and not so much with the wave direction or period. To compensate this lack of knowledge, a sensitivity study is done to get information on the possible changes within the next decades (2030). It consists in studying the influence of a modification in the characteristics of the present day forcing conditions(like waves) within a reasonable magnitude order. 4) The anthropic pressure is taken into account as a modulator of the physical vulnerability. In each context, participative techniques are used to involve representatives of the main stakeholder groups into decision-making simulations. The scenario of a storm in 2030 is adopted to provide structured interactions during the workshop. Along with socio-economic projections, this simulation relies upon a fictive journal article written on the basis of the model outputs. These methodological choices aim at better understanding how decisions are made by stake holders dealing with risks and scientific uncertainty. Some applied results on the study sites will be presented at the EGU. ACKNOWLEDGEMENTS The VULSACO project is financially supported by the ANR (French National Research Agency) within the Vulnérabilité-Milieux-Climat programm.
Sperotto, A; Torresan, S; Gallina, V; Coppola, E; Critto, A; Marcomini, A
2016-08-15
Global climate change is likely to pose increasing threats in nearly all sectors and across all sub-regions worldwide (IPCC, 2014). Particularly, extreme weather events (e.g. heavy precipitations), together with changing exposure and vulnerability patterns, are expected to increase the damaging effect of storms, pluvial floods and coastal flooding. Developing climate and adaptation services for local planners and decision makers is becoming essential to transfer and communicate sound scientific knowledge about climate related risks and foster the development of national, regional and local adaptation strategies. In order to analyze the effect of climate change on pluvial flood risk and advice adaptation planning, a Regional Risk Assessment (RRA) methodology was developed and applied to the urban territory of the municipality of Venice. Based on the integrated analysis of hazard, exposure, vulnerability and risk, RRA allows identifying and prioritizing targets and sub-areas that are more likely to be affected by pluvial flood risk due to heavy precipitation events in the future scenario 2041-2050. From the early stages of its development and application, the RRA followed a bottom-up approach taking into account the requests, knowledge and perspectives of local stakeholders of the North Adriatic region by means of interactive workshops, surveys and discussions. Results of the analysis showed that all targets (i.e. residential, commercial-industrial areas and infrastructures) are vulnerable to pluvial floods due to the high impermeability and low slope of the topography. The spatial pattern of risk mostly reflects the distribution of the hazard and the districts with the higher percentage of receptors' surface in the higher risk classes (i.e. very high, high and medium) are Lido-Pellestrina and Marghera. The paper discusses how risk-based maps and statistics integrate scientific and local knowledge with the final aim to mainstream climate adaptation in the development of risk mitigation and urban plans. Copyright © 2016 Elsevier B.V. All rights reserved.
USDA Southwest Regional Hub for Adaptation to and Mitigation of Climate Change
NASA Astrophysics Data System (ADS)
Rango, A.; Elias, E.; Steele, C. M.; Havstad, K.
2014-12-01
The USDA Southwest (SW) Climate Hub was created in February 2014 to develop risk adaptation and mitigation strategies for coping with climate change effects on agricultural productivity. There are seven regional hubs across the country with three subsidiary hubs. The SW Climate Hub Region is made up of six states: New Mexico, Arizona, Utah, Nevada, California and Hawaii (plus the Trust Territories of the Pacific Islands). The SW Climate Hub has a subsidiary hub located in Davis, California. The Southwest region has high climatic diversity, with the lowest and highest average annual rainfall in the U.S.(6.0 cm in Death Valley, CA and 1168 cm at Mt. Waialeale, HI). There are major deserts in five of the six states, yet most of the states, with exception of Hawaii, depend upon the melting of mountain snowpacks for their surface water supply. Additionally, many of the agricultural areas of the SW Regional Hub depend upon irrigation water to maintain productivity. Scientific climate information developed by the Hub will be used for climate-smart decision making. To do this, the SW Regional Hub will rely upon existing infrastructure of the Cooperative Extension Service at Land-Grant State Universities. Extension service and USDA-NRCS personnel have existing networks to communicate with stakeholders (farmers, ranchers, and forest landowners) through meetings and workshops which have already started in the six states. Outreach through the development of a weather and climate impact modules designed for seventh grade students and their teachers will foster education of future generations of rural land managers. We will be synthesizing and evaluating existing reports, literature and information on regional climate projections, water resources, and agricultural adaptation strategies related to climate in the Southwest. The results will be organized in a spatial format and provided through the SW Hub website (http://swclimatehub.info) and peer-reviewed articles.
Building climate adaptation capabilities through technology and community
NASA Astrophysics Data System (ADS)
Murray, D.; McWhirter, J.; Intsiful, J. D.; Cozzini, S.
2011-12-01
To effectively plan for adaptation to changes in climate, decision makers require infrastructure and tools that will provide them with timely access to current and future climate information. For example, climate scientists and operational forecasters need to access global and regional model projections and current climate information that they can use to prepare monitoring products and reports and then publish these for the decision makers. Through the UNDP African Adaption Programme, an infrastructure is being built across Africa that will provide multi-tiered access to such information. Web accessible servers running RAMADDA, an open source content management system for geoscience information, will provide access to the information at many levels: from the raw and processed climate model output to real-time climate conditions and predictions to documents and presentation for government officials. Output from regional climate models (e.g. RegCM4) and downscaled global climate models will be accessible through RAMADDA. The Integrated Data Viewer (IDV) is being used by scientists to create visualizations that assist the understanding of climate processes and projections, using the data on these as well as external servers. Since RAMADDA is more than a data server, it is also being used as a publishing platform for the generated material that will be available and searchable by the decision makers. Users can wade through the enormous volumes of information and extract subsets for their region or project of interest. Participants from 20 countries attended workshops at ICTP during 2011. They received training on setting up and installing the servers and necessary software and are now working on deploying the systems in their respective countries. This is the first time an integrated and comprehensive approach to climate change adaptation has been widely applied in Africa. It is expected that this infrastructure will enhance North-South collaboration and improve the delivery of technical support and services. This improved infrastructure will enhance the capacity of countries to provide a wide range of robust products and services in a timely manner.
Application of the Elaboration Likelihood Model of Attitude Change to Assertion Training.
ERIC Educational Resources Information Center
Ernst, John M.; Heesacker, Martin
1993-01-01
College students (n=113) participated in study comparing effects of elaboration likelihood model (ELM) based assertion workshop with those of typical assertion workshop. ELM-based workshop was significantly better at producing favorable attitude change, greater intention to act assertively, and more favorable evaluations of workshop content.…
Graves, D.; Maule, A.
2014-01-01
The goal of this study was to support an assessment of the potential effects of climate change on select natural, social, and economic resources in the Yakima River Basin. A workshop with local stakeholders highlighted the usefulness of projecting climate change impacts on anadromous steelhead (Oncorhynchus mykiss), a fish species of importance to local tribes, fisherman, and conservationists. Stream temperature is an important environmental variable for the freshwater stages of steelhead. For this study, we developed water temperature models for the Satus and Toppenish watersheds, two of the key stronghold areas for steelhead in the Yakima River Basin. We constructed the models with the Stream Network Temperature Model (SNTEMP), a mechanistic approach to simulate water temperature in a stream network. The models were calibrated over the April 15, 2008 to September 30, 2008 period and validated over the April 15, 2009 to September 30, 2009 period using historic measurements of stream temperature and discharge provided by the Yakama Nation Fisheries Resource Management Program. Once validated, the models were run to simulate conditions during the spring and summer seasons over a baseline period (1981–2005) and two future climate scenarios with increased air temperature of 1°C and 2°C. The models simulated daily mean and maximum water temperatures at sites throughout the two watersheds under the baseline and future climate scenarios.
NASA Astrophysics Data System (ADS)
Srivastava, Pradeep; Singh, Vimal
2017-05-01
Tectonically active Himalayan mountains evolves via feedbacks from deep earth and surface processes; the complex interaction of various processes results into the landscape which is dynamic both at longer and shorter time scales. The extreme hydrological events that possibly ride over a long term climate cycle bring the changes in the landscape that impact human societies more closely. These events in the Himalaya frequently cause huge damage to economy and human lives. The geologist community under the umbrella of Himalaya-Karakorum-Tibet (HKT) workshop in its 30th edition convened a special session and deliberated on the subject. This special issue "Quaternary of Himalaya" is an outcome of papers presented and discussion held during this session; it consists of 18 papers in three sub-themes (i) Extreme Events in Himalaya (ii) Paleoglaciation in Himalaya and (iii) Expressions of climate and neotectonics in Himalaya.
Phenology for science, resource management, decision making, and education
Nolan, V.P.; Weltzin, J.F.
2011-01-01
Fourth USA National Phenology Network (USA-NPN) Research Coordination Network (RCN) Annual Meeting and Stakeholders Workshop; Milwaukee, Wisconsin, 21-22 September 2010; Phenology, the study of recurring plant and animal life cycle events, is rapidly emerging as a fundamental approach for understanding how ecological systems respond to environmental variation and climate change. The USA National Phenology Network (USA-NPN; http://www.usanpn.org) is a large-scale network of governmental and nongovernmental organizations, academic institutions, resource management agencies, and tribes. The network is dedicated to conducting and promoting repeated and integrated plant and animal phenological observations, identifying linkages with other relevant biological and physical data sources, and developing and distributing the tools to analyze these data at local to national scales. The primary goal of the USA-NPN is to improve the ability of decision makers to design strategies for climate adaptation.
Phenology for Science, Resource Management, Decision Making, and Education
NASA Astrophysics Data System (ADS)
Nolan, Vivian P.; Weltzin, Jake F.
2011-01-01
Fourth USA National Phenology Network (USA-NPN) Research Coordination Network (RCN) Annual Meeting and Stakeholders Workshop; Milwaukee, Wisconsin, 21-22 September 2010; Phenology, the study of recurring plant and animal life cycle events, is rapidly emerging as a fundamental approach for understanding how ecological systems respond to environmental variation and climate change. The USA National Phenology Network (USA-NPN; http://www.usanpn.org) is a large-scale network of governmental and nongovernmental organizations, academic institutions, resource management agencies, and tribes. The network is dedicated to conducting and promoting repeated and integrated plant and animal phenological observations, identifying linkages with other relevant biological and physical data sources, and developing and distributing the tools to analyze these data at local to national scales. The primary goal of the USA-NPN is to improve the ability of decision makers to design strategies for climate adaptation.
Innovation Adoption as Facilitated by a Change-Oriented Workplace
Becan, Jennifer Edwards; Knight, Danica K.; Flynn, Patrick M.
2011-01-01
One of the unique contributions of the current study is a glimpse into the process by which counselors decide to try new innovations in their clinical work. Data were collected from 421 counseling staff from 71 outpatient treatment programs in 4 US regions. Using hierarchical linear modeling, results reveal that the propensity to adopt workshop-based interventions is facilitated by two important mechanisms (1) an innovative organization with creative leadership and (2) change-oriented staff attributes (i.e., seeking professional growth, efficacy, adaptability, and influence on others). Innovative leaders and a climate receptive to change also bolster the development of these change-oriented attributes. One implication of these findings is the cascading effect of leaders’ support of innovative thinking and action resulting in employees strengthening their own adaptive skills and carrying this innovative thinking into individual adoption. PMID:22154030
ERIC Educational Resources Information Center
George, D. A.; Clewett, J. F.; Selvaraju, R.; Birch, C.
2006-01-01
In parts of the world, including many developing countries, climate variability impacts negatively on agricultural production and natural resource management. Workshops in applied climatology were held in Australia, India, Indonesia and Zimbabwe between 1999 and 2002 to provide farmers and agricultural and meteorological staff a better…
NASA Astrophysics Data System (ADS)
Stevens, Catherine; Thomas, Bart; Grommen, Mart
2015-04-01
Climate change is driven by global processes such as the global ocean circulation and its variability over time leading to changing weather patterns on regional scales as well as changes in the severity and occurrence of extreme events such as heavy rain- and windstorms, floods, drought, heat waves, etc. The summer 2003 European heat wave was the hottest summer on record in Europe over the past centuries leading to health crises in several countries like France and caused up to 70.000 excess deaths over four months in Central and Western Europe. The main risks induced by global climate change in urbanised areas are considered to be overheating and resulting health effects, increased exposure to flood events, increased damage losses from extreme weather conditions but also shortages in the provision of life-sustaining services. Moreover, the cities themselves create specific or inherent risks and urban adaptation is often very demanding. As most of Europe's inhabitants live in cities, it is of particular relevance to examine the impact of climate variability on urban areas and their populations. The present study focusses on the identification of heat stress variables related to human health and the extraction of this information by processing daily temperature statistics of local urban climate simulations over multiple timeframes of 20 years and three different European cities based on recent, near future and far future global climate predictions. The analyses have been conducted in the framework of the NACLIM FP7 project funded by the European Commission involving local stakeholders such as the cities of Antwerp (Belgium), Berlin (Germany) and Almada (Portugal) represented by different climate and urban characteristics. Apart from the urban-rural temperature increment (urban heat island effect), additional heat stress parameters such as the average number of heat wave days together with their duration and intensities have been covered during this research. In a subsequent step, the heat stress variables are superposed on relevant socio-economic datasets targeting total population and its distribution per age class as well as vulnerable institutions such as hospitals, schools, rest homes and child/day care facilities in order to generate heat stress exposure maps for each use case city and various climate, urban planning and mitigation scenarios. The specifications and requirements for the various scenarios have been consolidated in close collaboration with the local stakeholders during dedicated end-users workshops. The results of this study will allow urban planners and policy makers facing the challenges of climate change and develop sound strategies for evolving towards sustainable and climate resilient cities.
Northern Eurasia Earth Science Partnership Initiative in 2012: An Update
NASA Astrophysics Data System (ADS)
Groisman, P. Y.; Lawford, R. G.; Kattsov, V.
2012-12-01
Seven years ago NEESPI was launched with the release of its Science Plan (http://neespi.org). Gradually, the Initiative was joined by numerous international projects launched in EU, Russia, the United States, Canada, Japan, and China. Throughout its duration, NEESPI served and is serving as an umbrella for more than 150 individual international research projects. Currently, the Initiative is in full swing. The total number of the ongoing NEESPI projects (as on July 2012) is 50 and has changed but slightly compared to its peak (87 in 2008). The past one and half years (2011 through mid-2012) were extremely productive in the NEESPI outreach. We organized five Open Science Sessions at the three major Geoscience Unions/Assembly Meetings (AGU, EGU, and JpGU) and four International NEESPI Workshops. The programs of two of these Workshops (in Tomsk and Irkutsk, Russia) included Summer Schools for early career scientists. More than 230 peer-reviewed papers, books, and/or book chapters were published or are in press (this list was still incomplete at the time of preparation of this abstract). In particular, a suite of 24 peer-reviewed NEESPI articles was published in the Forth Special NEESPI Issue of "Environmental Research Letters" (http://iopscience.iop.org/1748-9326/focus/NEESPI3). Northern Eurasia is a large study domain. Therefore, it was decided to describe the latest findings related to its environmental changes in several regional monographs in English. Three books on Environmental Changes in the NEESPI domain were published by Springer Publishing. House (Gutman and Reissell, eds., 2011; Groisman and Gutman eds. 2013) and "Naukova Dumka" of Ukraine (Groisman and Lyalko, eds. 2012) being devoted to the high latitudes of Eurasia, to Siberia, and to Eastern Europe respectively. One more book by J. Chen et al. (eds.) Dryland East Asia: Land Dynamics amid Social and Climate Change has been prepared by the members of the NEESPI team for Springer and will be published in the first half of 2013. In this presentation, the description of the NEESPI Program will be complemented with an overview of the results presented in three latest our books "Earth System Change over Eastern Europe", "Regional Environmental Changes in Siberia and Their Global Consequences", and "Dryland East Asia: Land Dynamics amid Social and Climate Change". Cited references: Gutman, G. and A. Reissell (eds.) 2011: Arctic land cover and land use in a changing climate: Focus on Eurasia. VI, Springer, Amsterdam, The Netherlands, 306 pp. Groisman, P.Ya. and V.I. Lyalko (eds.), 2012: Earth Systems Change over Eastern Europe. Naukova Dumka, Kiev, The Ukraine, 487 pp. Groisman and Gutman (eds), 2013: Environmental Changes in Siberia: Regional Changes and their Global Consequences. Springer, Amsterdam, The Netherlands, 357 pp.
Preparing Teachers to Support the Development of Climate Literate Students
NASA Astrophysics Data System (ADS)
Haddad, N.; Ledley, T. S.; Ellins, K. K.; Bardar, E. W.; Youngman, E.; Dunlap, C.; Lockwood, J.; Mote, A. S.; McNeal, K.; Libarkin, J. C.; Lynds, S. E.; Gold, A. U.
2014-12-01
The EarthLabs climate project includes curriculum development, teacher professional development, teacher leadership development, and research on student learning, all directed at increasing high school teachers' and students' understanding of the factors that shape our planet's climate. The project has developed four new modules which focus on climate literacy and which are part of the larger Web based EarthLabs collection of Earth science modules. Climate related themes highlighted in the new modules include the Earth system with its positive and negative feedback loops; the range of temporal and spatial scales at which climate, weather, and other Earth system processes occur; and the recurring question, "How do we know what we know about Earth's past and present climate?" which addresses proxy data and scientific instrumentation. EarthLabs climate modules use two central strategies to help students navigate the multiple challenges inherent in understanding climate science. The first is to actively engage students with the content by using a variety of learning modes, and by allowing students to pace themselves through interactive visualizations that address particularly challenging content. The second strategy, which is the focus of this presentation, is to support teachers in a subject area where few have substantive content knowledge or technical skills. Teachers who grasp the processes and interactions that give Earth its climate and the technical skills to engage with relevant data and visualizations are more likely to be successful in supporting students' understanding of climate's complexities. This presentation will briefly introduce the EarthLabs project and will describe the steps the project takes to prepare climate literate teachers, including Web based resources, teacher workshops, and the development of a cadre of teacher leaders who are prepared to continue leading the workshops after project funding ends.
Paleohydrology Workshops for Water Resource Managers Using an Iterative Evaluation Process
NASA Astrophysics Data System (ADS)
Woodhouse, C.; Lukas, J.
2008-12-01
Workshops can be an effective avenue for the exchange of information and ideas between scientists and decision-makers. The interactive aspects of workshops promote more active participation and interactions between the two groups. In 2006, at the suggestion of water resource managers, we began presenting a series of small workshops (10-25 participants) on the use and application of tree-ring data in water resource management. The one-day workshops cover the basic science behind tree-ring reconstructions of hydrology, resources available, and applications of the data to resource management, with presentations by both tree-ring scientists and water resource professionals. They also include plenty of time for informal discussion. We have now held ten workshops across the western U.S., and several more are planned. We use pre-workshop surveys to tailor the workshop to the needs of the participants, and we assess the workshop's effectiveness through participant evaluations completed at the end of the workshop. We also receive post-workshop feedback in the form of follow-up emails or via word of mouth. This iterative process of evaluation, with each workshop, has enabled us to fine-tune the format and content of the workshops and respond to additional needs such as data, web resources, online tools for using paleodata, as well as follow-up workshops. This approach has resulted in an improvement in the credibility, acceptance, and use of tree-ring data in water resource applications, as evidenced by an independent survey of workshop participants. Although the focus of these workshops has been on paleohydrologic data, this approach would be applicable to other climate-stakeholder issues as well.
NASA Astrophysics Data System (ADS)
Eicken, H.; Sam, J. M.; Mueller-stoffels, M.; Lovecraft, A. L.; Fresco, N. L.
2017-12-01
Tracking and responding to rapid Arctic change benefits from time series of indicator variables that describe the state of the system and can inform anticipatory action. A key challenge is to identify and monitor sets of indicators that capture relevant variability, trends, and transitions in social-environmental systems. We present findings from participatory scenarios focused on community health and sustainability in northern Alaska. In a series of workshops in 2015 and 2016 (Kotzebue workshop photo shown below), over 50 experts, mostly local, identified determinants of community health and sustainability by 2040 in the Northwest Arctic and North Slope Boroughs, Alaska. Drawing on further research, an initial set of factors and uncertainties was refined and prioritized into a total of 20 key drivers, ranging from governance issues to socio-economic and environmental factors. The research team then developed sets of future projections that describe plausible outcomes by mid-century for each of these drivers. A plausibility and consistency analysis of all pairwise combinations of these projections (following Mueller-Stoffels and Eicken, In: North by 2020 - Perspectives on Alaska's Changing Social-Ecological Systems, University of Alaska Press, 2011) resulted in the identification of robust scenarios. The latter were further reviewed by workshop participants, and a set of indicator variables, including indicators of relevant cryospheric change, was identified to help track trajectories towards plausible future states. Publically accessible recorded data only exist for a subset of the more than 70 indicators, reaching back a few years to several decades. For several indicators, the sampling rate or time series length are insufficient for tracking of and response to change. A core set of variables has been identified that meets indicator requirements and can serve as a tool for Alaska Arctic communities in adapting to or mitigating rapid change affecting community health and sustainability. The study provides guidance on Arctic observing system design, highlighting the importance of knowledge co-production to capture those aspects of climate, cryospheric and environmental change that are relevant in the context of broader responses to rapid Arctic change.
Evapotranspiration as a Regional Climate Priority: Results from a NASA/USDA Workshop
NASA Technical Reports Server (NTRS)
Lawford, Richard; Kustas, Bill; Toll, David; Anderson, Martha; Doorn, Bradley; Allen, Richard; Engman, Ted; Morse, Tony
2011-01-01
On April 5 to 7, 2011, the National Aeronautics and Space Administration (NASA) and the United States Department of Agriculture-Agricultural Research Service (USDA-ARS) sponsored a Workshop on Evapotranspiration (ET) in Silver Spring Maryland. The workshop was a response to a recommendation in the 2009-2011 GEO (Group on Earth Observations) Work Plan that a workshop on ET should be held to discuss issues related to ET products and services and the potential for incorporating ET activities into the 2012-2015 GEO Work Plan. The workshop had a regional emphasis, although there were several excellent international and global presentations including one on the GEWEX LANDFLUX project. The different scales of these activities suggests that a framework is needed that can accommodate both regional and global ET activities. Despite limitations with the workshop's scheduling, it attracted 76 experts who contributed informative presentations and insightful discussions. The goals of the workshop involved the exchange of information and ideas and the development of plans for providing more visibility for ET issues. Specific objectives included 1) defining the needs and requirements for evapotranspiration data in weather and climate studies, in natural and agro-ecoystem monitoring, and in water resource management; 2) reviewing the methods used to measure and model evapotranspiration; 3) assessing surface and satellite observation systems required to support ET measurement, modeling and evaluation; 4) assessing the feasibility of developing a proposal for a task on evapotranspiration for the 2012-2015 GEO Work Plan, and 5) exploring the level of support and consensus for developing a strategy for establishing evapotranspiration as an Essential Climate Variable (ECV) within the Global Climate Observing System (GCOS) framework The workshop featured a combination of oral presentations and breakout group sessions focused on the above objectives. There were also poster presentations providing opportunities for one-on-one discussions of ET modeling and measurement techniques. Presentations by users of ET data set the tone for the workshop. In the USA at the national and regional levels water rights issues represent a major opportunity for ET applications. ET data play a major role in estimating water loss due to irrigation, the largest cause of consumptive water loss in the USA, particularly in the West. Irrigation requirements are relatively specific since the needs are clearly defined by the geometry and number of the irrigation systems and can be monitored with high resolution satellite data. There was a strong consensus that land surface temperature (LST) at high resolution is critical for monitoring irrigation. State governments have made commitments to more efficient water management in the western US, but they need full access to improved and more timely ET data and applications to implement this plan. Water managers also reported that in spite of the recent development of. new techniques, the procedures used in some of the water balance calculations in some states are out of date and do not take advantage of new observational and data assimilation systems. The development of ET forecasts for water management is also seen as a priority. Although ET forecasts are currently being produced on an experimental basis these predictions could be improved by considering ET as a dynamic prediction variable in models and by increasing the time resolution of these ET predictions.
NASA Astrophysics Data System (ADS)
Dearing, John; Hoffmann, Thomas
2010-05-01
LUCIFS is a global research program which is concerned with understanding past interactions between climate, human activity and fluvial systems. Its focus is on evaluating the geomorphic impact of humans on landscapes, with a strong emphasis on geomorphological and sedimentological perspectives on mid- to long-term man-landscape interactions. Of particular relevance are aspects of sediment redistribution systems such as non-linear behaviour, the role of system configuration, scale effects, and emergent properties Over the last decade the LUCIFS program has been investigating both contemporary and long-term river response to global change with the principal aims of i)quantifying land use and climate change impacts of river-borne fluxes of water, sediment, C, N and P; ii) identification of key controls on these fluxes at the catchment scale; and iii) identification of the feedback on both human society and biogeochemical cycles of long-term changes in the fluxes of these materials The major scientific tasks of the LUCIFS-program are: • synthesising results of regional case studies • identify regional gaps and encouraging new case studies • addressing research gaps and formulating new research questions • organising workshops and conferences In this paper we present the LUCIFS program within the new PAGES structure. LUCIFS is located in the Focus 4 (PHAROS) dealing with how a knowledge of human-climate-ecosystem interactions in the past can help inform understanding and management today. In conjunction with the other working groups HITE (Human Impacts on Terrestrial Ecosystems), LIMPACS (Human Impacts on Lake Ecosystems) and IHOPE (Integrated History of People on Earth) PHAROS aims to compare regional-scale reconstructions of environmental and climatic processes using natural archives, documentary and instrumental data, with evidence of past human activity obtained from historical, paleoecological and archaeological records.
Understanding the South Pacific Convergence Zone and Its Impacts
NASA Astrophysics Data System (ADS)
Power, Scott
2011-02-01
International Workshop on the South Pacific Convergence Zone; Apia, Samoa, 24-26 August 2010 ; During the Southern Hemisphere summer the South Pacific Convergence Zone (SPCZ) in the southwestern Pacific Ocean produces the largest rainfall band in the world. The SPCZ tends to move northeast during southern winter and El Niño and move southwest during southern summer and La Niña. These changes in position have a profound influence on climate (e.g., rainfall, winds, and tropical cyclone frequencies) and life in most of the nations in the southwestern Pacific. Despite the importance of the SPCZ to the region and its prominence in the general circulation of the Southern Hemisphere, the SPCZ has been studied relatively little compared with convergence zones in the Northern Hemisphere. An international workshop on the SPCZ was held in Samoa and brought together 30 experts from Australia, the Cook Islands, Fiji, France, India, New Caledonia, New Zealand, Samoa, the Solomon Islands, Tonga, Tuvalu, the United Kingdom, the United States, and Vanuatu.
A multiple-proxy approach to understanding rapid Holocene climate change in Southeast Greenland
NASA Astrophysics Data System (ADS)
Davin, S. H.; Bradley, R. S.; Balascio, N. L.; de Wet, G.
2012-12-01
The susceptibility of the Arctic to climate change has made it an excellent workshop for paleoclimatological research. Although there have been previous studies concerning climate variability carried out in the Arctic, there remains a critical dearth of knowledge due the limited number of high-resolution Holocene climate-proxy records available from this region. This gap skews our understanding of observed and predicted climate change, and fuels uncertainty both in the realms of science and policy. This study takes a comprehensive approach to tracking Holocene climate variability in the vicinity of Tasiilaq, Southeast Greenland using a ~5.6 m sediment core from Lower Sermilik Lake. An age-depth model for the core has been established using 8 radiocarbon dates, the oldest of which was taken at 4 m down core and has been been dated to approximately 6.2 kyr BP. The bottom meter of the core below the final radiocarbon date contains a transition from cobbles and coarse sand to organic-rich laminations, indicating the termination of direct glacial influence and therefore likely marking the end of the last glacial period in this region. The remainder of the core is similarly organic-rich, with light-to-dark brown laminations ranging from 0.5 -1 cm in thickness and riddled with turbidites. Using this core in tandem with findings from an on-site assessment of the geomorphic history of the locale we attempt to assess and infer the rapid climatic shifts associated with the Holocene on a sub-centennial scale. Such changes include the termination of the last glacial period, the Mid-Holocene Climatic Optimum, the Neoglacial Period, the Medieval Climatic Optimum, and the Little Ice Age. A multiple proxy approach including magnetic susceptibility, bulk organic geochemistry, elemental profiles acquired by XRF scanning, grain-size, and spectral data will be used to characterize the sediment and infer paleoclimate conditions. Additionally, percent biogenic silica by weight has been quantified via diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and validated by a traditional wet leaching method. The use of the emerging DRIFTS technology to obtain inferred biogenic silica concentrations has not been widely applied to arctic lacustrine sediments and will help to contribute to the presently limited pool of literature on the topic. Preliminary results of the data reveal high frequency fluctuations between laminations superimposed on long-term trends, which has revealed already some correlation with Holocene climatic events. The data provided by this barrage of proxies is to be presented and will contribute to the understanding of Holocene Arctic climate change at a sub-centennial scale.
GLOBE Hydrology Workshop SEIP program
NASA Technical Reports Server (NTRS)
2005-01-01
Matt Krigbaum (left), a teacher at Mitchell Elementary in Ann Arbor, Mich., pours water from the Pearl River into a turbidity tube to measure the river's light penetration. Krigbaum, along with Lois Williams, principal at Elizabeth Courville Elementary in Detroit, Mich.; and Carolyn Martin and Arlene Wittmer, teachers at Elizabeth Courville Elementary; conducted the experiment during a GLOBE (Global Learning and Observations to Benefit the Environment) hydrology workshop. GLOBE is a worldwide, hands-on science education program in which teachers can become certified to implement the program at their schools after taking hydrology, land cover/biology, atmosphere/climate and soil protocol workshops. Twelve teachers from across the country attended the recent weeklong GLOBE training at SSC, offered through its Educator Resource Center and the NASA Explorer Schools program. All workshops are free and offer continuing education units.
GLOBE Hydrology Workshop SEIP program
2005-06-30
Matt Krigbaum (left), a teacher at Mitchell Elementary in Ann Arbor, Mich., pours water from the Pearl River into a turbidity tube to measure the river's light penetration. Krigbaum, along with Lois Williams, principal at Elizabeth Courville Elementary in Detroit, Mich.; and Carolyn Martin and Arlene Wittmer, teachers at Elizabeth Courville Elementary; conducted the experiment during a GLOBE (Global Learning and Observations to Benefit the Environment) hydrology workshop. GLOBE is a worldwide, hands-on science education program in which teachers can become certified to implement the program at their schools after taking hydrology, land cover/biology, atmosphere/climate and soil protocol workshops. Twelve teachers from across the country attended the recent weeklong GLOBE training at SSC, offered through its Educator Resource Center and the NASA Explorer Schools program. All workshops are free and offer continuing education units.
Collaboration for Actionable Climate Science in Hawaii and the US-Affiliated Pacific Islands
NASA Astrophysics Data System (ADS)
Keener, V. W.; Grecni, Z. N.; Helweg, D. A.
2016-12-01
Hawaii and the US-Affiliated Pacific Islands (USAPI) encompass more than 2000 islands spread across millions of square miles of ocean. Islands can be high volcanic or low atolls, and vary widely in terms of geography, climate, ecology, language, culture, economies, government, and vulnerability to climate change impacts. For these reasons, meaningful collaboration across research groups and climate organizations is not only helpful, it is mandatory. No single group can address all the needs of every island, stakeholder, or sector, which has led to close collaboration and leveraging of research in the region to fill different niches. The NOAA-funded Pacific Regional Integrated Sciences & Assessments (RISA) program, DOI Pacific Islands Climate Science Center (PICSC), and the DOI LCC the Pacific Islands Climate Change Cooperative (PICCC) all take a stakeholder oriented approach to climate research, and have successfully collaborated on both specific projects and larger initiatives. Examples of these collaborations include comprising the core team of the Pacific Islands Regional Climate Assessment (PIRCA), the regional arm of the US National Climate Assessment, co-sponsoring a workshop on regional downscaling for scientists and managers, leveraging research projects across multiple sectors on a single island, collaborating on communication products such as handouts and websites to ensure a consistent message, and in the case of the Pacific RISA and the PICSC, jointly funding a PIRCA Sustained Assessment Specialist position. Barriers to collaboration have been around topics such as roles of research versus granting groups, perceived research overlap, and funding uncertainties. However, collaborations have been overwhelming positive in the Pacific Islands region due to communication, recognition of partners' strengths and expertise, and especially because of the "umbrella" organization and purpose provided by the PIRCA structure, which provides a shared platform for all regional groups working on climate science and adaptation, not owned by any one group. This work will give examples of successes and barriers encountered in the region.
NASA Astrophysics Data System (ADS)
Smith, R.; Kasprzyk, J. R.; Dilling, L.; Basdekas, L.; Kaatz, L.
2016-12-01
In light of the unpredictable effects of climate change and population shifts, responsible resource management will require new types of information and strategies going forward. For water utilities, this means that water supply infrastructure systems must be expanded and/or managed for changes in overall supply and increased extremes. Utilities have begun seeking innovative tools and methods to support planning and decision making, but there are limited channels through which they can gain exposure to emerging tools from the research world, and for researchers to uptake important real-world planning and decision context. A transdisciplinary team of engineers, social and climate scientists, and water managers designed this study to develop and apply a co-production framework which explores the potential of an emerging decision support tool to enhance flexibility and adaptability in water utility planning. It also demonstrates how to improve the link between research and practice in the water sector. In this study we apply the co-production framework to the use of Multiobjective Evolutionary Algorithms (MOEAs). MOEAs have shown promise in being able to generate and evaluate new planning alternatives but they have had little testing or application in water utilities. Anchored by two workshops, this study (1) elicited input from water managers from six water suppliers on the Front Range of Colorado, USA, to create a testbed MOEA application, and (2) evaluated the managers' responses to multiobjective optimization results. The testbed consists of a Front Range-relevant hypothetical water supply model, the Borg MOEA, hydrology and demand scenarios, and a set of planning decisions and performance objectives that drive the link between the algorithm and the model. In this presentation we describe researcher-manager interactions at the initial workshop that served to establish relationships and provide in-depth information to researchers about regional water management context. We also describe the development of, and experiences from, the second workshop which included activities for water managers to interact directly with MOEA testbed results. Finally, we evaluate the co-production framework itself and the potential for the feedback from managers to shape future development of decision support tools.
Arctic in Rapid Transition: Priorities for the future of marine and coastal research in the Arctic
NASA Astrophysics Data System (ADS)
Werner, Kirstin; Fritz, Michael; Morata, Nathalie; Keil, Kathrin; Pavlov, Alexey; Peeken, Ilka; Nikolopoulos, Anna; Findlay, Helen S.; Kędra, Monika; Majaneva, Sanna; Renner, Angelika; Hendricks, Stefan; Jacquot, Mathilde; Nicolaus, Marcel; O'Regan, Matt; Sampei, Makoto; Wegner, Carolyn
2016-09-01
Understanding and responding to the rapidly occurring environmental changes in the Arctic over the past few decades require new approaches in science. This includes improved collaborations within the scientific community but also enhanced dialogue between scientists and societal stakeholders, especially with Arctic communities. As a contribution to the Third International Conference on Arctic Research Planning (ICARPIII), the Arctic in Rapid Transition (ART) network held an international workshop in France, in October 2014, in order to discuss high-priority requirements for future Arctic marine and coastal research from an early-career scientists (ECS) perspective. The discussion encompassed a variety of research fields, including topics of oceanographic conditions, sea-ice monitoring, marine biodiversity, land-ocean interactions, and geological reconstructions, as well as law and governance issues. Participants of the workshop strongly agreed on the need to enhance interdisciplinarity in order to collect comprehensive knowledge about the modern and past Arctic Ocean's geo-ecological dynamics. Such knowledge enables improved predictions of Arctic developments and provides the basis for elaborate decision-making on future actions under plausible environmental and climate scenarios in the high northern latitudes. Priority research sheets resulting from the workshop's discussions were distributed during the ICARPIII meetings in April 2015 in Japan, and are publicly available online.
Cross-Cultural Collaboration in Earth Science Education
NASA Astrophysics Data System (ADS)
Sparrow, E. B.; Stephens, S.; Gordon, L. S.; Kopplin, M. R.
2006-12-01
Alaskan Native elders, other local experts, scientists and educators worked collaboratively in providing professional development science workshops and follow-up support for K-12 teachers. Cognizant of the commonalities between western science and Native knowledge, the Observing Locally Connecting Globally (OLCG) program blended GLOBE Earth science measurements, traditional knowledge and best teaching practices including culturally responsive science curriculum, in engaging teachers and students in climate change research. Native observations and knowledge were used to scaffold some local environmental studies undertaken by Alaskan teachers and their students. OLCG partnered with the Project Jukebox of the University of Alaska Fairbanks Oral History Program to produce digitized interviews of Native experts and a scientist on climate change. Sample interviews for students to use in asking Native experts about their observations and knowledge on environmental changes as well as other educational materials have been posted on the program website http://www.uaf.edu/olcg. Links to the climate change interviews, the Alaska Cultural Standards for Schools, Teachers and Students, and other relevant resource materials have also been included in the website. Results of pre- and post-institute assessment showed an increase in teacher comfort level with teaching science and integrating Native knowledge in the classroom. Teacher journals indicated the program's positive influence on their math and science teaching methods and curriculum. Student attitude and achievement assessments showed a significant increase in post-test (end of school year) scores from pre-test (beginning of the school year) scores. Other lessons learned from this project will also be presented.
Methods for Assessing Uncertainties in Climate Change, Impacts and Responses (Invited)
NASA Astrophysics Data System (ADS)
Manning, M. R.; Swart, R.
2009-12-01
Assessing the scientific uncertainties or confidence levels for the many different aspects of climate change is particularly important because of the seriousness of potential impacts and the magnitude of economic and political responses that are needed to mitigate climate change effectively. This has made the treatment of uncertainty and confidence a key feature in the assessments carried out by the Intergovernmental Panel on Climate Change (IPCC). Because climate change is very much a cross-disciplinary area of science, adequately dealing with uncertainties requires recognition of their wide range and different perspectives on assessing and communicating those uncertainties. The structural differences that exist across disciplines are often embedded deeply in the corresponding literature that is used as the basis for an IPCC assessment. The assessment of climate change science by the IPCC has from its outset tried to report the levels of confidence and uncertainty in the degree of understanding in both the underlying multi-disciplinary science and in projections for future climate. The growing recognition of the seriousness of this led to the formation of a detailed approach for consistent treatment of uncertainties in the IPCC’s Third Assessment Report (TAR) [Moss and Schneider, 2000]. However, in completing the TAR there remained some systematic differences between the disciplines raising concerns about the level of consistency. So further consideration of a systematic approach to uncertainties was undertaken for the Fourth Assessment Report (AR4). The basis for the approach used in the AR4 was developed at an expert meeting of scientists representing many different disciplines. This led to the introduction of a broader way of addressing uncertainties in the AR4 [Manning et al., 2004] which was further refined by lengthy discussions among many IPCC Lead Authors, for over a year, resulting in a short summary of a standard approach to be followed for that assessment [IPCC, 2005]. This paper extends a review of the treatment of uncertainty in the IPCC assessments by Swart et al [2009]. It is shown that progress towards consistency has been made but that there also appears to be a need for continued use of several complementary approaches in order to cover the wide range of circumstances across different disciplines involved in climate change. While this reflects the situation in the science community, it also raises the level of complexity for policymakers and other users of the assessments who would prefer one common consensus approach. References IPCC (2005), Guidance Notes for Lead Authors of the IPCC Fourth Assessment Report on Addressing Uncertainties, IPCC, Geneva. Manning, M., et al. (2004), IPCC Workshop on Describing Scientific Uncertainties in Climate Change to Support Analysis of Risk and of Options. IPCC Moss, R., and S. Schneider (2000), Uncertainties, in Guidance Papers on the Cross Cutting Issues of the Third Assessment Report of the IPCC, edited by R. Pachauri, et al., Intergovernmental Panel on Climate Change (IPCC), Geneva. Swart, R., et al. (2009), Agreeing to disagree: uncertainty management in assessing climate change, impacts and responses by the IPCC Climatic Change, 92(1-2), 1 - 29.
NASA Astrophysics Data System (ADS)
Lackner, Bettina C.; Kirchengast, Gottfried
2015-04-01
Besides written and spoken language, graphical displays play an important role in communicating scientific findings or explaining scientific methods, both within one and between various disciplines. Uncertainties and probabilities are generally difficult to communicate, especially via graphics. Graphics including uncertainty sometimes need detailed written or oral descriptions to be understood. "Good" graphics should ease scientific communication, especially amongst different disciplines. One key objective of the Doctoral Programme "Climate Change: Uncertainties, Thresholds and Coping Strategies" (http://dk-climate-change.uni-graz.at/en/), located at the University of Graz, is to reach a better understanding of climate change uncertainties by bridging research in multiple disciplines, including physical climate sciences, geosciences, systems and sustainability sciences, environmental economics, and climate ethics. This asks for efforts into the formulation of a "common language", not only as to words, but also as to graphics. The focus of this work is on two topics: (1) What different kinds of uncertainties (e.g., data uncertainty, model uncertainty) are included in the graphics of the recent IPCC reports of all three working groups (WGs) and in what ways do uncertainties get illustrated? (2) How are these graphically displayed uncertainties perceived by researchers of a similar research discipline and from researchers of different disciplines than the authors of the graphics? To answer the first question, the IPCC graphics including uncertainties are grouped and analyzed with respect to different kinds of uncertainties to filter out most of the commonly used types of displays. The graphics will also be analyzed with respect to their WG origin, as we assume that graphics from researchers rooted in, e.g., physical climate sciences and geosciences (mainly IPCC WG 1) differ from those of researchers rooted in, e.g., economics or system sciences (mainly WG 3). In a subsequent analysis, some basic types of graphics displaying uncertainty are selected to serve as input for the construction of "makeshift graphics" (displaying only the main features but including no detailed title or caption). These makeshift graphics are then used to assess how the displayed features are perceived and understood by researchers of various disciplines. In this initial study, this analysis will be based on results of a workshop including the wide diversity of researchers within the FWF-DK Climate Change. We will present first results of this work.
McDermott, T K J; Surminski, S
2018-06-13
Urban areas already suffer substantial losses in both economic and human terms from climate-related disasters. These losses are anticipated to grow substantially, in part as a result of the impacts of climate change. In this paper, we investigate the process of translating climate risk data into action for the city level. We apply a commonly used decision-framework as our backdrop and explore where in this process climate risk assessment and normative political judgements intersect. We use the case of flood risk management in Cork city in Ireland to investigate what is needed for translating risk assessment into action at the local city level. Evidence presented is based on focus group discussions at two stakeholder workshops, and a series of individual meetings and phone-discussions with stakeholders involved in local decision-making related to flood risk management and adaptation to climate change, in Ireland. Respondents were chosen on the basis of their expertise or involvement in the decision-making processes locally and nationally. Representatives of groups affected by flood risk and flood risk management and climate adaptation efforts were also included. The Cork example highlights that, despite ever more accurate data and an increasing range of theoretical approaches available to local decision-makers, it is the normative interpretation of this information that determines what action is taken. The use of risk assessments for decision-making is a process that requires normative decisions, such as setting 'acceptable risk levels' and identifying 'adequate' protection levels, which will not succeed without broader buy-in and stakeholder participation. Identifying and embracing those normative views up-front could strengthen the urban adaptation process-this may, in fact, turn out to be the biggest advantage of climate risk assessment: it offers an opportunity to create a shared understanding of the problem and enables an informed evaluation and discussion of remedial action.This article is part of the theme issue 'Advances in risk assessment for climate change adaptation policy'. © 2018 The Author(s).
NASA Astrophysics Data System (ADS)
McDermott, T. K. J.; Surminski, S.
2018-06-01
Urban areas already suffer substantial losses in both economic and human terms from climate-related disasters. These losses are anticipated to grow substantially, in part as a result of the impacts of climate change. In this paper, we investigate the process of translating climate risk data into action for the city level. We apply a commonly used decision-framework as our backdrop and explore where in this process climate risk assessment and normative political judgements intersect. We use the case of flood risk management in Cork city in Ireland to investigate what is needed for translating risk assessment into action at the local city level. Evidence presented is based on focus group discussions at two stakeholder workshops, and a series of individual meetings and phone-discussions with stakeholders involved in local decision-making related to flood risk management and adaptation to climate change, in Ireland. Respondents were chosen on the basis of their expertise or involvement in the decision-making processes locally and nationally. Representatives of groups affected by flood risk and flood risk management and climate adaptation efforts were also included. The Cork example highlights that, despite ever more accurate data and an increasing range of theoretical approaches available to local decision-makers, it is the normative interpretation of this information that determines what action is taken. The use of risk assessments for decision-making is a process that requires normative decisions, such as setting `acceptable risk levels' and identifying `adequate' protection levels, which will not succeed without broader buy-in and stakeholder participation. Identifying and embracing those normative views up-front could strengthen the urban adaptation process-this may, in fact, turn out to be the biggest advantage of climate risk assessment: it offers an opportunity to create a shared understanding of the problem and enables an informed evaluation and discussion of remedial action. This article is part of the theme issue `Advances in risk assessment for climate change adaptation policy'.
Ocean Heat and Carbon Uptake in Transient Climate Change: Identifying Model Uncertainty
NASA Technical Reports Server (NTRS)
Romanou, Anastasia; Marshall, John
2015-01-01
Global warming on decadal and centennial timescales is mediated and ameliorated by the oceansequestering heat and carbon into its interior. Transient climate change is a function of the efficiency by whichanthropogenic heat and carbon are transported away from the surface into the ocean interior (Hansen et al. 1985).Gregory and Mitchell (1997) and Raper et al. (2002) were the first to identify the importance of the ocean heat uptakeefficiency in transient climate change. Observational estimates (Schwartz 2012) and inferences from coupledatmosphere-ocean general circulation models (AOGCMs; Gregory and Forster 2008; Marotzke et al. 2015), suggest thatocean heat uptake efficiency on decadal timescales lies in the range 0.5-1.5 W/sq m/K and is thus comparable to theclimate feedback parameter (Murphy et al. 2009). Moreover, the ocean not only plays a key role in setting the timing ofwarming but also its regional patterns (Marshall et al. 2014), which is crucial to our understanding of regional climate,carbon and heat uptake, and sea-level change. This short communication is based on a presentation given by A.Romanou at a recent workshop, Oceans Carbon and Heat Uptake: Uncertainties and Metrics, co-hosted by US CLIVARand OCB. As briefly reviewed below, we have incomplete but growing knowledge of how ocean models used in climatechange projections sequester heat and carbon into the interior. To understand and thence reduce errors and biases inthe ocean component of coupled models, as well as elucidate the key mechanisms at work, in the final section we outlinea proposed model intercomparison project named FAFMIP. In FAFMIP, coupled integrations would be carried out withprescribed overrides of wind stress and freshwater and heat fluxes acting at the sea surface.
Professional learning communities (PLCs) for early childhood science education
NASA Astrophysics Data System (ADS)
Eum, Jungwon
This study explored the content, processes, and dynamics of Professional Learning Community (PLC) sessions. This study also investigated changes in preschool teachers' attitudes and beliefs toward science teaching after they participated in two different forms of PLCs including workshop and face-to-face PLC as well as workshop and online PLC. Multiple sources of data were collected for this study including participant artifacts and facilitator field notes during the PLC sessions. The participants in this study were eight teachers from NAEYC-accredited child care centers serving 3- to 5-year-old children in an urban Midwest city. All teachers participated in a workshop entitled, "Ramps and Pathways." Following the workshop, the first group engaged in face-to-face PLC sessions and the other group engaged in online PLC sessions. Qualitative data were collected through audio recordings, online archives, and open-ended surveys. The teachers' dialogue during the face-to-face PLC sessions was audiotaped, transcribed, and analyzed for emerging themes. Online archives during the online PLC sessions were collected and analyzed for emerging themes. Four main themes and 13 subthemes emanated from the face-to-face sessions, and 3 main themes and 7 subthemes emanated from the online sessions. During the face-to-face sessions, the teachers worked collaboratively by sharing their practices, supporting each other, and planning a lesson together. They also engaged in inquiry and reflection about their science teaching and child learning in a positive climate. During the online sessions, the teachers shared their thoughts and documentation and revisited their science teaching and child learning. Five themes and 15 subthemes emanated from the open-ended survey responses of face-to-face group teachers, and 3 themes and 7 subthemes emanated from the open-ended survey responses of online group teachers. Quantitative data collected in this study showed changes in teachers' attitudes and beliefs toward science teaching. Face-to-face group teachers' comfort with planning and doing different science activities increased significantly after the workshop and after the combination of workshop and face-to-face PLC. This study contributes to the research about various forms of professional development and their process and outcome in early childhood science education and informs early childhood professional communities of creative ways to improve science teaching and learning.
Deriving user-informed climate information from climate model ensemble results
NASA Astrophysics Data System (ADS)
Huebener, Heike; Hoffmann, Peter; Keuler, Klaus; Pfeifer, Susanne; Ramthun, Hans; Spekat, Arne; Steger, Christian; Warrach-Sagi, Kirsten
2017-07-01
Communication between providers and users of climate model simulation results still needs to be improved. In the German regional climate modeling project ReKliEs-De a midterm user workshop was conducted to allow the intended users of the project results to assess the preliminary results and to streamline the final project results to their needs. The user feedback highlighted, in particular, the still considerable gap between climate research output and user-tailored input for climate impact research. Two major requests from the user community addressed the selection of sub-ensembles and some condensed, easy to understand information on the strengths and weaknesses of the climate models involved in the project.
NASA Astrophysics Data System (ADS)
Buhr, S. M.; Lynds, S. E.; McCaffrey, M. S.; Morton, E.
2010-12-01
Inspiring Climate Education Excellence (ICEE) is a NASA-funded project to develop online course modules and self-directed learning resources aligned with the Essential Principles of Climate Science. Following a national needs assessment survey and a face to face workshop to pilot test topics, a suite of online modules is being developed suitable for self-directed learning by secondary science teachers. Modules are designed around concepts and topics in which teachers express the most interest and need for instruction. Module design also includes attention to effective teaching strategies, such as awareness of student misconceptions, strategies for forestalling controversy and advice from master teachers on implementation and curriculum development. The resources are being developed in partnership with GLOBE, and the National Science Digital Library (NSDL) and is informed by the work of the Climate Literacy and Energy Awareness Network (CLEAN) project. ICEE will help to meet the professional development needs of teachers, including those participating in the GLOBE Student Climate Research Campaign. Modules and self-directed learning resources will be developed and disseminated in partnership with the National Science Digital Library (NSDL). This presentation introduces the needs assessment and pilot workshop data upon which the modules are based, and describes the modules that are available and in development.
NASA Astrophysics Data System (ADS)
Wagemann, Julia; Siemen, Stephan
2017-04-01
The European Centre for Medium-Range Weather Forecasts (ECMWF) has been providing an increasing amount of data to the public. One of the most widely used datasets include the global climate reanalyses (e.g. ERA-interim) and atmospheric composition data, which are available to the public free of charge. The centre is further operating, on behalf of the European Commission, two Copernicus Services, the Copernicus Atmosphere Monitoring Service (CAMS) and Climate Change Service (C3S), which are making up-to-date environmental information freely available for scientists, policy makers and businesses. However, to fully benefit from open data, large environmental datasets also have to be easily accessible in a standardised, machine-readable format. Traditional data centres, such as ECMWF, currently face challenges in providing interoperable standardised access to increasingly large and complex datasets for scientists and industry. Therefore, ECMWF put open data in the spotlight during a week of events in March 2017 exploring the potential of freely available weather- and climate-related data and to review technological solutions serving these data. Key events included a Workshop on Meteorological Operational Systems (MOS) and a two-day hackathon. The MOS workshop aimed at reviewing technologies and practices to ensure efficient (open) data processing and provision. The hackathon focused on exploring creative uses of open environmental data and to see how open data is beneficial for various industries. The presentation aims to give a review of the outcomes and conclusions of the Open Data Week at ECMWF. A specific focus will be set on the importance of data standards and web services to make open environmental data a success. The presentation overall examines the opportunities and challenges of open environmental data from a data provider's perspective.
Recent advances in understanding secondary organic aerosols: implications for global climate forcing
NASA Astrophysics Data System (ADS)
Shrivastava, Manish
2017-04-01
Anthropogenic emissions and land-use changes have modified atmospheric aerosol concentrations and size distributions over time. Understanding pre-industrial conditions and changes in organic aerosol due to anthropogenic activities is important because these features 1) influence estimates of aerosol radiative forcing and 2) can confound estimates of the historical response of climate to increases in greenhouse gases (e.g. the 'climate sensitivity'). Secondary organic aerosol (SOA), formed in the atmosphere by oxidation of organic gases, often represents a major fraction of global submicron-sized atmospheric organic aerosol. Over the past decade, significant advances in understanding SOA properties and formation mechanisms have occurred through measurements, yet current climate models typically do not comprehensively include all important processes. This presentation is based on a US Department of Energy Atmospheric Systems Research sponsored workshop, which highlighted key SOA processes overlooked in climate models that could greatly affect climate forcing estimates. We will highlight the importance of processes that influence the growth of SOA particles to sizes relevant for clouds and radiative forcing, including: formation of extremely low-volatility organics in the gas-phase; isoprene epoxydiols (IEPOX) multi-phase chemistry; particle-phase oligomerization; and physical properties such as viscosity. We also highlight some of the recently discovered important processes that involve interactions between natural biogenic emissions and anthropogenic emissions such as effects of sulfur and NOx emissions on SOA. We will present examples of integrated model-measurement studies that relate the observed evolution of organic aerosol mass and number with knowledge of particle properties such as volatility and viscosity. We will also highlight the importance of continuing efforts to rank the most influential SOA processes that affect climate forcing, but are often missing in climate models. Ultimately, gas- and particle-phase chemistry processes that capture the dynamic evolution of number and mass concentrations of SOA particles need to be accurately and efficiently represented in regional and global atmospheric chemistry-climate models.
Ralston, Barbara E.; Sarr, Daniel A.; Ralston, Barbara E.; Sarr, Daniel A.
2017-07-18
Globally, rivers and streams are highly altered by impoundments, diversions, and stream channelization associated with agricultural and water delivery needs. Climate change imposes additional challenges by further reducing discharge, introducing variability in seasonal precipitation patterns, and increasing temperatures. Collectively, these changes in a river or stream’s annual hydrology affects surface and groundwater dynamics, fluvial processes, and the linked aquatic and riparian responses, particularly in arid regions. Recognizing the inherent ecosystem services that riparian and aquatic habitats provide, society increasingly supports restoring the functionality of riparian and aquatic ecosystems.Given the wide range in types and scales of riparian impacts, approaches to riparian restoration can range from tactical, short-term, and site-specific efforts to strategic projects and long-term collaborations best pursued at the watershed scale. In the spirit of sharing information, the U.S. Geological Survey’s Grand Canyon Monitoring and Research Center convened a workshop June 23-25, 2015, in Flagstaff, Ariz. for practitioners in restoration science to share general principles, successful restoration practices, and discuss the challenges that face those practicing riparian restoration in the southwestern United States. Presenters from the Colorado River and the Rio Grande basins, offered their perspectives and experiences in restoration at the local, reach and watershed scale. Outcomes of the workshop include this Proceedings volume, which is composed of extended abstracts of most of the presentations given at the workshop, and recommendations or information needs identified by participants. The organization of the Proceedings follows a general progression from local scale restoration to river and watershed scale approaches, and finishes with restoration assessments and monitoring.
Building Strong Geoscience Departments Through the Visiting Workshop Program
NASA Astrophysics Data System (ADS)
Ormand, C. J.; Manduca, C. A.; Macdonald, H.; Bralower, T. J.; Clemens-Knott, D.; Doser, D. I.; Feiss, P. G.; Rhodes, D. D.; Richardson, R. M.; Savina, M. E.
2011-12-01
The Building Strong Geoscience Departments project focuses on helping geoscience departments adapt and prosper in a changing and challenging environment. From 2005-2009, the project offered workshop programs on topics such as student recruitment, program assessment, preparing students for the workforce, and strengthening geoscience programs. Participants shared their departments' challenges and successes. Building on best practices and most promising strategies from these workshops and on workshop leaders' experiences, from 2009-2011 the project ran a visiting workshop program, bringing workshops to 18 individual departments. Two major strengths of the visiting workshop format are that it engages the entire department in the program, fostering a sense of shared ownership and vision, and that it focuses on each department's unique situation. Departments applied to have a visiting workshop, and the process was highly competitive. Selected departments chose from a list of topics developed through the prior workshops: curriculum and program design, program elements beyond the curriculum, recruiting students, preparing students for the workforce, and program assessment. Two of our workshop leaders worked with each department to customize and deliver the 1-2 day programs on campus. Each workshop incorporated exercises to facilitate active departmental discussions, presentations incorporating concrete examples drawn from the leaders' experience and from the collective experiences of the geoscience community, and action planning to scaffold implementation. All workshops also incorporated information on building departmental consensus and assessing departmental efforts. The Building Strong Geoscience Departments website complements the workshops with extensive examples from the geoscience community. Of the 201 participants in the visiting workshop program, 140 completed an end of workshop evaluation survey with an overall satisfaction rating of 8.8 out of a possible 10 points. Workshops resulted in changes in faculty attitudes and planned changes in programming. Participants wrote that they felt a greater ownership of their curricula and had a deeper understanding of the importance of general education offerings; they recognized a need for improvement; and they recognized a need to communicate the value of the geosciences to their institutions. Planned programmatic changes focused on curriculum revision, program assessment, student recruitment, and interactions with the institutional administration and the public. Leaders noted that the most effective workshops were those where the faculty cancelled all other activities for the duration of the workshop to focus on workshop goals.
Abstracts for the International Workshop on Meteorite Impact on the Early Earth
NASA Technical Reports Server (NTRS)
1990-01-01
This volume contains abstracts that were accepted for presentation at the International Workshop on Meteorite Impact on the Early Earth, September 21-22, 1990, in Perth, Western Australia. The effects these impacts had on the young Earth are emphasized and a few of the topics covered are as follows: impact induced hot atmosphere, crater size and distribution, late heavy bombardment, terrestrial mantle and crust, impact damage, continental growth, volcanism, climate catastrophes, shocked quartz, and others.
Workshop on the Martian Surface and Atmosphere Through Time
NASA Technical Reports Server (NTRS)
Haberle, Robert M. (Editor); Jakosky, Bruce M. (Editor)
1992-01-01
The purpose of the workshop was to bring together the Mars Surface and Atmosphere Through Time (MSATT) Community and interested researchers to begin to explore the interdisciplinary nature of, and to determine the relationships between, various aspects of Mars science that involve the geological and chemical evolution of its surface, the structure and dynamics of its atmosphere, interactions between the surface and atmosphere, and the present and past states of its volatile endowment and climate system.
ERIC Educational Resources Information Center
McCann, Alyson; Gold, Arthur J.
2012-01-01
Based on a follow-up mail survey conducted in 2009, we found that structured, one-time workshops can influence and impact participant behavior change. Survey results suggest that brief workshops, staffed by key resource personnel, can have a powerful influence on participant behavior change and fill an important gap in rural drinking water…
"It Takes a Network": Building National Capacity for Climate Change Interpretation
NASA Astrophysics Data System (ADS)
Spitzer, W.
2014-12-01
Since 2007, the New England Aquarium has led a national effort to increase the capacity of informal science venues to effectively communicate about climate change. We are now leading the NSF-funded National Network for Ocean and Climate Change Interpretation (NNOCCI), partnering with the Association of Zoos and Aquariums, FrameWorks Institute, Woods Hole Oceanographic Institution, Monterey Bay Aquarium, and National Aquarium, with evaluation conducted by the New Knowledge Organization, Pennsylvania State University, and Ohio State University. More than 1,500 informal science venues (science centers, museums, aquariums, zoos, nature centers, national parks) are visited annually by 61% of the U.S. population. These visitors expect reliable information about environmental issues and solutions. NNOCCI enables teams of informal science interpreters across the country to serve as "communication strategists" - beyond merely conveying information they can influence public perceptions, given their high level of commitment, knowledge, public trust, social networks, and visitor contact. Beyond providing in-depth training, we have found that our "alumni network" is assuming an increasingly important role in achieving our goals: 1. Ongoing learning - Training must be ongoing given continuous advances in climate and social science research. 2. Implementation support - Social support is critical as interpreters move from learning to practice, given complex and potentially contentious subject matter. 3. Leadership development - We rely on a national cadre of interpretive leaders to conduct workshops, facilitate study circle trainings, and support alumni. 4. Coalition building - A peer network helps to build and maintain connections with colleagues, and supports further dissemination through the informal science community. We are experimenting with a variety of online and face to face strategies to support the growing alumni network. Our goals are to achieve a systemic national impact, embed our work within multiple ongoing regional and national climate change education networks, and leave an enduring legacy.
Proceedings of the Polar Processes on Mars Workshop
NASA Technical Reports Server (NTRS)
Haberle, Robert M.
1988-01-01
Included in this publication is a collection of abstracts from the NASA-sponsored workshop, Polar Processes on Mars, which was held at the Sunnyvale Hilton Hotel, Sunnyvale, California, on 12 to 13 May 1988. Support for the workshop came from NASA's Planetary Geology and Geophysics program managed by Dr. Jospeh Boyce. The workshop is one of a series identified by MECA (an acronym for Mars: Evolution of its Climate and Atmosphere) as being worthy of focused research, but one for which it was not possible to hold during the project's lifetime. Consequently, it was held after the project ended. The MECA project was part of the Mars Data Analysis program. The workshop consisted of four sessions: The Polar Caps, Dynamics/Atmospheric Processes, Polar Geology, and Future Measurements. To put things into perspective, each of the first three sessions began with a review. All sessions were scheduled to allow ample time for discussion. A brief review of each session is provided.
Evolution of strategic risks under future scenarios for improved utility master plans.
Luís, Ana; Lickorish, Fiona; Pollard, Simon
2016-01-01
Integrated, long-term risk management in the water sector is poorly developed. Whilst scenario planning has been applied to singular issues (e.g. climate change), it often misses a link to risk management because the likelihood of impacts in the long-term are frequently unaccounted for in these analyses. Here we apply the morphological approach to scenario development for a case study utility, Empresa Portuguesa das Águas Livres (EPAL). A baseline portfolio of strategic risks threatening the achievement of EPAL's corporate objectives was evolved through the lens of three future scenarios, 'water scarcity', 'financial resource scarcity' and 'strong economic growth', built on drivers such as climate, demographic, economic, regulatory and technological changes and validated through a set of expert workshops. The results represent how the baseline set of risks might develop over a 30 year period, allowing threats and opportunities to be identified and enabling strategies for master plans to be devised. We believe this to be the first combined use of risk and futures methods applied to a portfolio of strategic risks in the water utility sector. Copyright © 2015 Elsevier Ltd. All rights reserved.
Growing Diversity in Space Weather and Climate Change Research
NASA Astrophysics Data System (ADS)
Johnson, L. P.; Ng, C.; Marchese, P.; Austin, S.; Frost, J.; Cheung, T. D.; Robbins, I.; Carlson, B. E.; Steiner, J. C.; Tremberger, G.; Paglione, T.; Damas, C.; Howard, A.; Scalzo, F.
2013-12-01
Space Weather and Global Climate Impacts are critical items on the present national and international science agendas. Understanding and forecasting solar activity is increasingly important for manned space flight, unmanned missions (including communications satellites, satellites that monitor the space and earth environment), and regional power grids. The ability to predict the effects of forcings and feedback mechanisms on global and local climate is critical to survival of the inhabitants of planet Earth. It is therefore important to motivate students to continue their studies via advanced degrees and pursue careers related to these areas. This CUNY-based initiative, supported by NASA and NSF, provided undergraduate research experience for more than 70 students in topics ranging from urban impacts of global climate change to magnetic rope structure, solar flares and CMEs. Other research topics included investigations of the ionosphere using a CubeSat, stratospheric aerosols in Jupiter's atmosphere, and ocean climate modeling. Mentors for the primarily summer research experiences included CUNY faculty, GISS and GSFC scientists. Students were recruited from CUNY colleges as well as other colleges including Spelman, Cornell, Rutgers and SUNY colleges. Fifty-eight percent of the undergraduate students were under-represented minorities and thirty-four percent were female. Many of the research teams included high school teachers and students as well as graduate students. Supporting workshops for students included data analysis and visualization tools, space weather, planetary energy balance and BalloonSats. The project is supported by NASA awards NNX10AE72G and NNX09AL77G, and NSF REU Site award 0851932.
Workshop: Socio-Economic Causes and Consequences of Future Environmental Changes Workshop (2005)
Workshop co-sponsored by EPA's National Center for Environmental Economics and National Center for Environmental Research on results from Science to Achieve Results (STAR) grants on impacts of land use changes, consequences of growth on aquaculture and GHG
Climate observing system studies: An element of the NASA Climate Research Program: Workshop report
NASA Technical Reports Server (NTRS)
1980-01-01
Plans for NASA's efforts in climatology were discussed. Targets for a comprehensive observing system for the early 1990's were considered. A program to provide useful data in the near and mid-term, and a program to provide for a feasibility assessment of instruments and methods for the development of a long-term system were discussed. Climate parameters that cannot be measured from space were identified. Long-term calibration, intercomparison, standards, and ground truth were discussed.
NASA Astrophysics Data System (ADS)
Tadesse, T.; Zaitchik, B. F.; Habib, S.; Funk, C. C.; Senay, G. B.; Dinku, T.; Policelli, F. S.; Block, P.; Baigorria, G. A.; Beyene, S.; Wardlow, B.; Hayes, M. J.
2014-12-01
The development of effective strategies to adapt to changes in the character of droughts and floods in Africa will rely on improved seasonal prediction systems that are robust to an evolving climate baseline and can be integrated into disaster preparedness and response. Many efforts have been made to build models to improve seasonal forecasts in the Greater Horn of Africa region (GHA) using satellite and climate data, but these efforts and models must be improved and translated into future conditions under evolving climate conditions. This has considerable social significance, but is challenged by the nature of climate predictability and the adaptability of coupled natural and human systems facing exposure to climate extremes. To address these issues, work is in progress under a project funded by NASA. The objectives of the project include: 1) Characterize and explain large-scale drivers in the ocean-atmosphere-land system associated with years of extreme flood or drought in the GHA. 2) Evaluate the performance of state-of-the-art seasonal forecast methods for prediction of decision-relevant metrics of hydrologic extremes. 3) Apply seasonal forecast systems to prediction of socially relevant impacts on crops, flood risk, and economic outcomes, and assess the value of these predictions to decision makers. 4) Evaluate the robustness of seasonal prediction systems to evolving climate conditions. The National Drought Mitigation Center (University of Nebraska-Lincoln, USA) is leading this project in collaboration with the USGS, Johns Hopkins University, University of Wisconsin-Madison, the International Research Institute for Climate and Society, NASA, and GHA local experts. The project is also designed to have active engagement of end users in various sectors, university researchers, and extension agents in GHA through workshops and/or webinars. This project is expected improve and implement new and existing climate- and remote sensing-based agricultural, meteorological, and hydrologic drought and flood monitoring products (or indicators) that can enhance the preparedness for extreme climate events and climate change adaptation and mitigation strategies in the GHA. Even though this project is in its first year, the preliminary results and future plans to carry out the objectives will be presented.
Sustainability of future coasts and estuaries: A synthesis
NASA Astrophysics Data System (ADS)
Newton, Alice; Harff, Jan; You, Zai-Jin; Zhang, Hua; Wolanski, Eric
2016-12-01
Coasts are at the nexus of the Anthropocene, where land, marginal seas and atmosphere meet along a thin strip that is inhabited by nearly half the human population (Wolanski and Elliott, 2015). Coasts are often fringed by rich habitats such as mangroves, salt-marshes, inter-tidal mud and sand flats, seagrass meadows, kelp forests and coral reefs that provide a valuable range of ecosystem services to humans and to the adjacent marginal seas (Van den Belt and Costanza, 2011). It is the highly dynamic system that is constantly being reshaped by changing natural forces and anthropogenic activities. Coastal systems and human societies form coastal social-ecological systems that increasingly face multiple pressures, which threaten their ecological and economical sustainability. Common pressures include changes to land use and hydrology, land reclamation, coastal sand mining, harbour dredging, pollution and eutrophication, overexploitation such as overfishing, all in the context of climate change. During the 20th Century, coastal scientists studied the problems and issues arising along the coasts (Ramesh et al., 2015). Now, in the 21st Century, their focus must increasingly be about how to solve these problems and issues through better management and innovative approaches. To study these matters, two workshops were held in Yantai, P.R. China, in September 2015, hosted by the Yantai Institute of Coastal Zone Research, CAS. The outcome of these workshops is this special issue of Estuarine, Coastal and Shelf Science.
NASA Technical Reports Server (NTRS)
Dreschel, Thomas W.
1996-01-01
The National Aeronautics and Space Administration holds summer teacher workshops to motivate teachers to use space science in their lessons. In evaluating these workshops, the areas of interest were participant beliefs about science and science teaching and concerns about educational change and innovation. The teachers attending workshops in 1995, past participants, teachers that received materials but had not attended a workshop, and science researchers were surveyed using the Beliefs about Science and Science Education Survey and/or the Stages of Concern Questionnaire. Comparisons were made by workshop length, time since workshop, and highest grade taught. Reductions in concerns were most evident in the four week workshop. Changes in beliefs were also observed relative to teaching approach and ability. Differences in beliefs were observed between teachers and science researchers. Differences were also observed relative to time since attendance and by grade level taught. It is recommended that the workshops be at least four weeks in length and in length and target specific grade levels, that refresher workshops be offered.
NASA Astrophysics Data System (ADS)
Metzger, E. P.; Santone, S.; Smith, G.; Cordero, E.
2013-12-01
Sustainability education is an approach to learning that builds knowledge, skills, and values needed to create lasting economic prosperity, environmental health, and social justice. In collaboration with Creative Change Educational Solutions (http://www.creativechange.net/) and with funding from the Clarence E. Heller Charitable Foundation and NASA, scientists and science educators at San José State University (SJSU) are developing an online 'Introduction for Sustainability' course for middle and high school educators. The module will introduce sustainability as a context for learning, highlight connections to climate change science and solutions, and provide strategies for linking the environmental, economic and social dimensions of climate destabilization to fundamental sustainability concepts. This self-paced course will be piloted during the 2013-2014 academic year. Upon completion, participants will receive inexpensive university credit ( $50/unit) from SJSU. Course goals are to demonstrate the applicability of sustainability themes across disciplines; increase learners' knowledge about the causes and impacts of climate change and related sustainability challenges; and support learners in integrating course content and methods into their classroom teaching. Course activities combine: 1) reading selections and questions; 2) online discussion; 3) digital media (short videos and tutorials); and 4) journal entries and other written assignments, including consideration of how course content aligns with the Common Core and Next Generation Science Standards. The module is divided into five sections: 1) Defining What Matters - What Do We All Need for a Fulfilling Life?; 2) The Commons and Ecosystem Services; 3) Causes and Impacts of Climate Change; 4) Individual and Collective Actions to Mitigate Its Effects; and 5) Integrating Sustainability into the Curriculum. Initial recruitment for the course will take place among participants in workshops offered by the Bay Area Earth Science Institute (BAESI), SJSU's long-standing teacher professional development program. The course will be refined based on teacher feedback and course assessments, and then will be made available to any teacher anywhere via links from the BAESI and Creative Change Educational Solutions web sites, and SJSU's Green Ninja Project (www.greenninja.org).
February 2012 workshop jumpstarts the Mekong Fish Monitoring Network
Andersen, Matthew E.; Ainsley, Shaara M.
2012-01-01
The Mekong River in Southeast Asia travels through a basin rich in natural resources. The river originates on the northern slope of the world's tallest mountains, the Himalaya Range, and then drops elevation quickly through steep mountain gorges, tumbling out of China into Myanmar (Burma) and the Lao People's Democratic Republic (Lao PDR). The precipitous terrain of Lao PDR and Thailand generates interest in the river and its tributaries for hydropower development. The terrain, soils, water, and climate make it one of the world's most biologically rich regions. The Mekong's bounty is again on display in the Mekong River Delta, where rice production has successfully been increased to high levels making Vietnam second only to Thailand as the world's largest rice exporters. At least 800 fish species contribute to the natural resource bounty of the Mekong River and are the basis for one of the world's most productive fisheries that provide the primary protein source to more than 50 million people. Against this backdrop of rich natural resources, the U.S. Geological Survey (USGS) is working with the consulting firm FISHBIO, colleagues from the international Delta Research and Global Observation Network (DRAGON) Institute, and a broad contingent of Southeast Asian representatives and partners from abroad to increase knowledge of the Mekong River fisheries and to develop the capacity of permanent residents to investigate and understand these fisheries resources. With the Lower Mekong Basin (LMB) region facing the likelihood of significant environmental changes as a result of both human activities and global climate change, enhancing environmental understanding is critical. To encourage cooperation among the LMB scientists and managers in the study of the Mekong River's fisheries, FISHBIO and the USGS, with generous support from the U.S. State Department, hosted a workshop in Phnom Penh, Cambodia, in February 2012. Workshop participants were from Lao PDR, Thailand, Cambodia, and Vietnam. Representatives from the governments, universities, nongovernmental organizations, and the Mekong River Commission discussed current and potential methods and mechanisms of the Mekong Fish Monitoring Network. The goals of the workshop were to determine if the Network and associated databases were of interest and value to the LMB nations, to determine if future fisheries monitoring data would be comparable among the nations, and to establish methods and an organizational structure for collaborating on future monitoring and research. The participants in this international workshop agreed that the Network would be useful but would require additional funding to secure their full participation. The USGS and FISHBIO are collaboratively seeking additional funding to expand research participation and projects in all four LMB nations. If the Network can facilitate cooperation among many fisheries researchers in the LMB, the basin would become a model of cooperative international fishery studies and would increase the understanding of a river basin rich in natural resources.
Innovative Interactive Visitor Experiences Focused on Climate Change
NASA Astrophysics Data System (ADS)
Lettvin, E. E.
2011-12-01
Pacific Science Center has adopted a multi-pronged approach to introduce visitors to the concepts of climate change and linkages to human behavior in an informal science education setting. We leverage key fixed exhibit assets derived from collaborations with NOAA: Science on a Sphere and an exhibit kiosk showcasing local CO2 measurements that are adjacent on our exhibit floor. NOAA PMEL Scientists deployed a sensor at the top of the Space Needle that measures variability in atmospheric CO2 over Seattle; the kiosk showcases these near-real-time, daily, weekly and monthly measurements as well as similar observations from a NOAA buoy near Aberdeen, Washington. Displays of these data enable visitors to see first-hand varying CO2 levels in urban and remote marine environments as well as seasonal cycling. It also reveals quantifiable increases in CO2 levels over a relatively short time (~5 years). Trained interpreters help visitors understand linkages between personal behavior and corresponding CO2 footprints. Interpreters discuss connections between local and regional CO2 measurements displayed on the kiosk, and global Sphere datasets including NOAA Carbon Tracker, changing arctic sea ice coverage and sea level rise projections. Portable Discovery Carts, consisting of props and interactive, hands-on activities provide a platform for facilitated interpretation on a series of topics. We have developed two climate focused carts: 'Sinks and Sources' that examines materials and activities that produce and absorb carbon, and 'Ocean Acidification' that shows how absorption of atmospheric CO2 is changing ocean composition and its habitability for marine life. These carts can be deployed anywhere on the exhibit floor but are primarily used adjacent to the Sphere and the kiosk, making it possible to have a range of conversations about global and local CO2 levels, linkages to individual and collective behaviour and associated implications. Additional collaborations with members of the regional climate research community are showcased during regularly scheduled 'scientist spotlights' and 'research weekends'. Additional climate programs were developed targeting high school students. During the summer of 2010, 10 participants in a teen development program had summer internships with climate researchers working in horticulture, policy, arctic science and geology. The following fall, the teens hosted 4 'Family Climate Workshops' at community centers around Seattle. For these events, the teens developed hands-on activities and posters showcasing the climate research focus of their internships. These events were held in collaboration with the 'Cool School Challenge', a program that teaches how to conduct a greenhouse gas inventory and develop a corresponding action plan. The program culminated in the convening of the first 'High School Climate Change Symposium', held at Pacific Science Center. Nearly 200 teens attended on-site, and hundreds more live-streamed the event. The Symposium consisted of two panels: one focused on the scientific underpinnings of climate change and one focused on policies and implications. This innovative program provided a rare opportunity for teens to directly ask experts questions about climate change and its implications.
ARM Unmanned Aerial Systems Implementation Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmid, Beat; Ivey, Mark
Recent advances in Unmanned Aerial Systems (UAS) coupled with changes in the regulatory environment for operations of UAS in the National Airspace increase the potential value of UAS to the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility. UAS include unmanned aerial vehicles (UAV) and tethered balloon systems (TBS). The roles UAVs and TBSs could play within the ARM Facility, particularly science questions they could help address, have been discussed in several workshops, reports, and vision documents, including: This document describes the implementation of a robust and vigorous program for use of UAV and TBS formore » the science missions ARM supports.« less
A Death Awareness Workshop: Theory, Application, and Results.
ERIC Educational Resources Information Center
Whelan, W. Michael; Warren, William M.
1980-01-01
Describes an experimental death awareness workshop based on Kubler-Ross' theory. The effects of the workshop reveal cognitive and emotional changes indicating participants in the workshop to be moving towards an acceptance of death. (Author)
Workshop on the Martian Northern Plains: Sedimentological, Periglacial, and Paleoclimatic Evolution
NASA Technical Reports Server (NTRS)
Kargel, Jeffrey S. (Editor); Moore, Jeffrey (Editor); Parker, Timothy (Editor)
1993-01-01
Papers that have been accepted for presentation at the Workshop on the Martian Northern Plains: Sedimentological, Periglacial, and Paleoclimatic Evolution, on 12-14 Aug. 1993 in Fairbanks, Alaska are included. Topics covered include: hydrological consequences of ponded water on Mars; morphological and morphometric studies of impact craters in the Northern Plains of Mars; a wet-geology and cold-climate Mars model: punctuation of a slow dynamics approach to equilibrium; the distribution of ground ice on Mars; and stratigraphy of the Martian Northern Plains.
Climate Literacy: Supporting Teacher Professional Development
NASA Astrophysics Data System (ADS)
Haddad, N.; Ledley, T. S.; Dunlap, C.; Bardar, E.; Youngman, B.; Ellins, K. K.; McNeal, K. S.; Libarkin, J.
2012-12-01
Confronting the Challenges of Climate Literacy (CCCL) is an NSF-funded (DRK-12) project that includes curriculum development, teacher professional development, teacher leadership development, and research on student learning, all directed at high school teachers and students. The project's evaluation efforts inform and guide all major components of the project. The research effort addresses the question of what interventions are most effective in helping high school students grasp the complexities of the Earth system and climate processes, which occur over a range of spatial and temporal scales. The curriculum unit includes three distinct but related modules: Climate and the Cryosphere; Climate, Weather, and the Biosphere; and Climate and the Carbon Cycle. Climate-related themes that cut across all three modules include the Earth system, with the complexities of its positive and negative feedback loops; the range of temporal and spatial scales at which climate, weather, and other Earth system processes occur; and the recurring question, "How do we know what we know about Earth's past and present climate?" which addresses proxy data and scientific instrumentation. The professional development component of the project includes online science resources to support the teaching of the curriculum modules, summer workshops for high school teachers, and a support system for developing the teacher leaders who plan and implement those summer workshops. When completed, the project will provide a model high school curriculum with online support for implementing teachers and a cadre of leaders who can continue to introduce new teachers to the resource. This presentation will introduce the curriculum and the university partnerships that are key to the project's success, and describe how the project addresses the challenge of helping teachers develop their understanding of climate science and their ability to convey climate-related concepts articulated in the Next Generation Science Standards to their students. We will also describe the professional development and support system to develop teacher leaders and explain some of the challenges that accompany this approach of developing teacher leaders in the area of climate literacy.
McKenzie, Anne; Alpers, Kirsten; Heyworth, Jane; Phuong, Cindy; Hanley, Bec
2016-01-01
In Australia, since 2009, the Consumer and Community Involvement Program (formerly the Consumer and Community Participation Program) has developed and run workshops to help people working in health and medical research involve more consumers (patients) and community members (the public) in their research. In 2012, workshop attendees were invited to do an online survey to find out the effect, if any, that attending a workshop had on their awareness of and attitudes to consumer and community involvement. They were also asked about changes in their behaviour when it came to the involvement of consumers and the community in their work. The study found that, for people who answered the survey, more than double the number found consumer and community involvement very relevant after attending a workshop, compared with the number who thought that before attending one. Also, amongst those who answered the survey, 94 % thought that the workshop increased their understanding about involvement. Background There is limited evidence of the benefits of providing training workshops for researchers on how to involve consumers (patients) and the community (public) in health and medical research. Australian training workshops were evaluated to contribute to the evidence base. The key objective was to evaluate the impact of the workshops in increasing awareness of consumer and community involvement; changing attitudes to future implementation of involvement activities and influencing behaviour in the methods of involvement used. A secondary objective was to use a formal evaluation survey to build on the anecdotal feedback received from researchers about changes in awareness, attitudes and behaviours. Methods The study used a cross-sectional, online survey of researchers, students, clinicians, administrators and members of non-government organisations who attended Consumer and Community Involvement Program training workshops between 2009 and 2012 to ascertain changes to awareness, attitudes and behaviours related to consumer and community involvement in health and medical research. Results Changes in awareness and attitudes were demonstrated by more than double the number of respondents finding involvement very relevant after attending a workshop compared with those who did so before attending; 94 % of respondents agreed that the workshops increased their understanding of how involvement can add value to research. Conclusions The training workshops raised awareness and increased relevance of consumer and community involvement among Australian researchers who attended a workshop and responded to the survey. The results of the survey are also suggestive that the training led to behaviour changes through increased consumer and community involvement.
Strong schools against suicidality and self-injury: Evaluation of a workshop for school staff.
Groschwitz, Rebecca; Munz, Lara; Straub, Joana; Bohnacker, Isabelle; Plener, Paul L
2017-06-01
Nonsuicidal self-injury (NSSI) and suicidality are common among adolescents. School staff are often the first adults to be confronted with those behaviors. However, previous studies have shown a lack of knowledge and confidence in dealing with self-harming behaviors. Objectives of this study were to evaluate a workshop on NSSI and suicidality in adolescence for teachers, school social workers and school psychologists. In total, N = 267 school staff participated in 1 of 16 two-day workshops, which were offered in different cities in southern Germany. Pre-, post- and 6-month follow-up assessments were conducted concerning attitudes, confidence in own skills, perceived knowledge, and knowledge on NSSI and suicidality. Satisfaction with the workshop was evaluated directly after the workshop; changes in handling situations involving youth with self-harm were evaluated at follow-up. Overall, participants were very satisfied with the workshop. Few negative attitudes regarding NSSI and suicidality were prevalent before and after the workshop. Large effect sizes were found for improvement in confidence, perceived knowledge, and knowledge at postassessment, which were still present at 6-month follow-up. There were significant differences between professions, with teachers seemingly benefitting the most from the workshop. At follow-up, participants reported more changes in their own behavior than having been able to implement changes on a school level. A 2-day workshop seems to be effective in changing knowledge and confidence in school staff regarding NSSI and suicidality. Workshops catered to different professions (i.e., teachers and school psychologists) might be feasible. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Decision Making Under Uncertainty - Bridging the Gap Between End User Needs and Science Capability
NASA Astrophysics Data System (ADS)
Verdon-Kidd, D. C.; Kiem, A.; Austin, E. K.
2012-12-01
Successful adaptation outcomes depend on decision making based on the best available climate science information. However, a fundamental barrier exists, namely the 'gap' between information that climate science can currently provide and the information that is practically useful for end users and decision makers. This study identifies the major contributing factors to the 'gap' from an Australian perspective and provides recommendations as to ways in which the 'gap' may be narrowed. This was achieved via a literature review, online survey (targeted to providers of climate information and end users of that information), workshop (where both climate scientists and end users came together to discuss key issues) and focus group. The study confirmed that uncertainty in climate science is a key barrier to adaptation. The issue of uncertainty was found to be multi-faceted, with issues identified in terms of communication of uncertainty, misunderstanding of uncertainty and the lack of tools/methods to deal with uncertainty. There were also key differences in terms of expectations for the future - most end users were of the belief that uncertainty associated with future climate projections would reduce within the next five to 10 years, however producers of climate science information were well aware that this would most likely not be the case. This is a concerning finding as end users may delay taking action on adaptation and risk planning until the uncertainties are reduced - a situation which may never eventuate or may occur after the optimal time for action. Improved communication and packaging of climate information was another key theme that was highlighted in this study. Importantly, it was made clear that improved communication is not just about more glossy brochures and presentations by climate scientists, rather there is a role for a program or group to fill this role (coined a 'knowledge broker' during the workshop and focus group). The role of the 'knowledge broker' would be to package, translate (both from end user to scientist and scientist to end user) and transform climate information. Importantly communication of uncertainty needs to be improved so that end users are aware of all the caveats and what can realistically be expected from climate science now and in the near future. Overall this study confirmed that there is indeed a 'gap' between end user's needs and science capability, particularly with respect to uncertainty, communication and packaging of climate information. This 'gap' has been a barrier to successful climate change adaptation in the past. While it is unrealistic to think we could ever close the 'gap' completely, based on the recommendations provided in this paper, it may be possible to bridge the 'gap' (or at least improve people's awareness of the 'gap'). Furthermore, the insights gained and recommendations provided from this study, while based on an Australian context, are likely to be applicable to many other regions of the world, grappling with similar issues.
Teachers Explore Earth Science in South America
NASA Astrophysics Data System (ADS)
Passow, Michael; Krusche, Nisia; Carneiro, Celso D. R.
2010-11-01
Rain, Rocks, and Climate: A Geophysical Information for Teachers Workshop; Foz do Iguaçu, Brazil, 8-9 August 2010; Classroom teachers and university professors from two continents joined to learn about “rocks, rain, and climate” in the Geophysical Information for Teachers (GIFT) workshop at the AGU Meeting of the Americas held in Brazil. This was the first GIFT workshop in South America. GIFT workshops have long been part of AGU Fall Meetings in San Francisco, European Geosciences Union Spring Meetings in Vienna, and other AGU conferences. Two Brazilian geoscience professors, Celso Dal Ré Carneiro of State University of Campinas and Nisia Krusche of Federal University of Rio Grande, organized the program, together with a high-school teacher from the United States, Michael J. Passow of Dwight Morrow High School, Englewood, N. J. Joining the presenters were 15 Brazilian teachers and another teacher from New Jersey.
The importance of being informed
NASA Astrophysics Data System (ADS)
Draganova, Tamara
2013-04-01
"Science needs a lot of inspiration and that is why it is very important to draw the students` inspiration because it is the inspiration that is the future of science." For 10 years on students, teachers, parents and citizens harmonize knowledge and skills, competencies and energy, renewable ideas and shared experience on the topic "Climate change" at our High School of Humanitarian "St. st. Cyril and Methodius". During the last 3 years we have been doing our utmost to encourage the students from our school to participate actively in different eco projects such as: 8 workshops and 2 conferences, 63 multimedia lessons in ecology, geography, world and personality; 15 interactive art lessons through the Forum-theatre, 7 photo exhibitions and 29 exhibitions on the topic "The Archives of the Planet Speak", 5 roundtable workshops, 19 eco-races, 7 scenarios of decision taking, 12 open lessons, 26 discussions, 5 scientific lectures given by professors from V. Tarnovo University, Department Geography, 9 questionnaires, 17 practical lessons and experiments held in the classroom, 13 training and 11 ecological campaigns named - "It depends on You", "Striped Rug - Colourful Beans", "Let`s Plant Life", "Saving Energy between Nations", "Save Today to Have Tomorrow", "Grey Is Not Fashionable" etc. Numerous meetings were held with representatives of NGOs, the Regional Inspectorate of Education, the Regional Inspectorate of Environment and Water Safety, V. Tarnovo University, Department Geography, V. Tarnovo Municipality and other communities. Students and university students were organized around the core activity of renewable energy sources, presenting scientific and creative activities such as models, presentations, poems, essays, drawing posters and more. Students under the guidance of a teacher in geography studied history, current treatment processes and phenomena, the signs of expression, the similarities and differences between different parts of the country and other parts of the world. Young people exchanged ideas and knowledge about the nature of this change and its natural development when attending the scientific conference in geographical sciences "Intercultural Dialogue and Education in the Balkans and Eastern Europe" dedicated to the 80th anniversary of the Bulgarian geologist Academician Prof. Todor Nikolov held at the University "St. st. Cyril and Methodius". At this conference the students followed the climate change and the dynamics of today. Interesting and unique data and photos were presented by academician Todor Nikolov, who impressed not only the students, but everyone present with scientific facts of climate change on the planet as a natural move in the evolution of Earth's climate. Our mission as teachers was to help students to understand the nature of climate change and its impact on local, national and international level, to track and analyze the relationship of climate change to other global contemporary issues such as poverty, children's rights, pollution of the planet, urbanization, and many other. The most important focus is directed to the formation of citizenship among young people and help them understand the vital and important issues related to climate change and environmental protection, and after examining the scientific basis of the problem to be ready to face the scientific vision of climate cycles of the Earth and their dynamics. It is very important for us that the students should learn more about the people who make decisions and represent them, and how young people can influence the process of decision making. An important point of the entire development of the project is that students are in school from class journalism and law, which was to challenge them to seek legal force and follow the legislation on climate a national and global level. Thanks journalism they managed to leave this information at school, and it spread and share in the local and regional community, including students from other schools in the region and the country. Campaigns were reflected in regional and national media. However, the capital invested in the young people is our responsibility - students, teachers and research workers, parents and citizens should be informed. And this is the power of us all today in order to face the future calmly and confidently, with the knowledge, attitudes and respect for our planet Earth. And we all, teachers are obliged and responsible to be conductors of Geosciences in the classroom today, for the future of our children... "If thou hast Knowledge, let others light their candle at thine..." Thomas Fuller