Science.gov

Sample records for climate extremes alter

  1. Recent climate extremes alter alpine lake ecosystems

    PubMed Central

    Parker, Brian R.; Vinebrooke, Rolf D.; Schindler, David W.

    2008-01-01

    Here, we show that alpine lake ecosystems are responsive to interannual variation in climate, based on long-term limnological and meteorological data from the Canadian Rockies. In the 2000s, in years with colder winter temperatures, higher winter snowfall, later snowmelt, shorter ice-free seasons, and dryer summers, relative to the 1990s, alpine lakes became clearer, warmer, and mixed to deeper depths. Further, lakes became more dilute and nutrient-poor, the latter leading to significant declines in total phytoplankton biomass. However, increased concentrations of dissolved organic carbon in lake water stimulated the appearance of small mixotrophic algal species, partially offsetting the decline in autotrophic phytoplankton biomass and increasing algal species richness. The climate regime in the 2000s altered the physical, chemical, and biological character and the function of high-elevation aquatic ecosystems. Forecasts of increased climatic variability in the future pose serious ramifications for both the biodiversity and ecosystem function of high-elevation lakes. PMID:18725641

  2. Climatic Extremes Significantly Alter Carbon Fluxes in Time and Space

    NASA Astrophysics Data System (ADS)

    Chen, J.; Ouyan, Z.; John, R.; Chu, H.; Zenone, T.; Deal, M.; Gottgens, J.

    2012-12-01

    It has been increasingly evident that climatic extremes play crucial roles in the magnitudes and directions of carbon fluxes. However, significantly less is known about how these effects may change across multiple time and spatial scales. Here we used several databases collected from eddy-covariance (EC) towers and MODIS to understand these effects for: 1) long-term influences at an oak opening site (i.e. single site); 2) a cluster of EC fluxes from the Maumee watershed (i.e. different ecosystem types under the same climate); 3) several agricultural systems in the Midwest (i.e., same ecosystem among different climates); and 4) long term EVI, ET, GPP and LST (2000-2011) impacts across the Mongolia Plateau. We employed various wavelet analyses (transform, variance, coherency, and cross-wavelet) for the temporal data while an anomaly index was calculated for the spatial data on the plateau. As expected, the occurrences of extreme events and their influences varied greatly by year, but all produced significant and lasting effects on NEE, ER and, particularly on GEP. Three different ecosystems in the Maumee Watershed responded differently in magnitude/direction to the same climate anomaly (e.g. 2012 warmest March on record). Both the beginning time and magnitude of the NEE oscillation of the daily period at Oak Openings and the marshland were influenced by the unusual high March temperature, but the cropland ecosystem was less influenced because crops were not sown until the end of spring. Similarly, crops in different climates responded differently to the similar extremes. Across the broader spatiotemporal scales, we found that the forest biome more resistant to climatic extremes than the grassland and desert biomes on Mongolia Plateau. Frequency distributions of standardized anomalies of EVI during 2000-2010 showed that a number of the positively skewed years were more common in the desert biome compared to grasslands and forests. Positively skewed drought years

  3. Assessing Regional Scale Variability in Extreme Value Statistics Under Altered Climate Scenarios

    SciTech Connect

    Brunsell, Nathaniel; Mechem, David; Ma, Chunsheng

    2015-02-20

    Recent studies have suggested that low-frequency modes of climate variability can significantly influence regional climate. The climatology associated with extreme events has been shown to be particularly sensitive. This has profound implications for droughts, heat waves, and food production. We propose to examine regional climate simulations conducted over the continental United States by applying a recently developed technique which combines wavelet multi–resolution analysis with information theory metrics. This research is motivated by two fundamental questions concerning the spatial and temporal structure of extreme events. These questions are 1) what temporal scales of the extreme value distributions are most sensitive to alteration by low-frequency climate forcings and 2) what is the nature of the spatial structure of variation in these timescales? The primary objective is to assess to what extent information theory metrics can be useful in characterizing the nature of extreme weather phenomena. Specifically, we hypothesize that (1) changes in the nature of extreme events will impact the temporal probability density functions and that information theory metrics will be sensitive these changes and (2) via a wavelet multi–resolution analysis, we will be able to characterize the relative contribution of different timescales on the stochastic nature of extreme events. In order to address these hypotheses, we propose a unique combination of an established regional climate modeling approach and advanced statistical techniques to assess the effects of low-frequency modes on climate extremes over North America. The behavior of climate extremes in RCM simulations for the 20th century will be compared with statistics calculated from the United States Historical Climatology Network (USHCN) and simulations from the North American Regional Climate Change Assessment Program (NARCCAP). This effort will serve to establish the baseline behavior of climate extremes, the

  4. Precipitation Extremes Under Climate Change.

    PubMed

    O'Gorman, Paul A

    The response of precipitation extremes to climate change is considered using results from theory, modeling, and observations, with a focus on the physical factors that control the response. Observations and simulations with climate models show that precipitation extremes intensify in response to a warming climate. However, the sensitivity of precipitation extremes to warming remains uncertain when convection is important, and it may be higher in the tropics than the extratropics. Several physical contributions govern the response of precipitation extremes. The thermodynamic contribution is robust and well understood, but theoretical understanding of the microphysical and dynamical contributions is still being developed. Orographic precipitation extremes and snowfall extremes respond differently from other precipitation extremes and require particular attention. Outstanding research challenges include the influence of mesoscale convective organization, the dependence on the duration considered, and the need to better constrain the sensitivity of tropical precipitation extremes to warming.

  5. Weather Climate Interactions and Extreme Events in the Climate System

    NASA Astrophysics Data System (ADS)

    Roundy, P. E.

    2015-12-01

    The most pronounced local impacts of climate change would occur in association with extreme weather events superimposed on the altered climate. Thus a major thrust of recent efforts in the climate community has been to assess how extreme regional events such as cold air outbreaks, heat waves, tropical cyclones, floods, droughts, and severe weather might change with the climate. Many of these types of events are poorly simulated in climate models because of insufficient spatial resolution and insufficient quality parameterization of sub grid scale convection and radiation processes. This talk summarizes examples selected from those discussed below of how weather and climate events can be interconnected so that the physics of natural climate and weather phenomena depend on each other, thereby complicating our ability to simulate extreme events. A major focus of the chapter is on the Madden Julian oscillation (MJO), which is associated with alternating eastward-moving planetary scale regions of enhanced and suppressed moist deep convection favoring warm pool regions in the tropics. The MJO modulates weather events around the world and influences the evolution of interannual climate variability. We first discuss how the MJO evolves together with the seasonal cycle, the El Niño/southern oscillation (ENSO), and the extratropical circulation, then continue with a case study illustration of how El Niño is intrinsically coupled to intraseasonal and synoptic weather events such as the MJO and westerly wind bursts. This interconnectedness in the system implies that modeling many types of regional extreme weather events requires more than simply downscaling coarse climate model signals to nested regional models because extreme outcomes in a region can depend on poorly simulated extreme weather in distant parts of the world. The authors hope that an improved understanding of these types of interactions between signals across scales of time and space will ultimately yield

  6. Will extreme climatic events facilitate biological invasions?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extreme climatic events, such as intense heat waves, hurricanes, floods and droughts, can dramatically affect ecological and evolutionary processes, and more extreme events are projected with ongoing climate change. However, the implications of these events for biological invasions, which themselves...

  7. Streamflow response to increasing precipitation extremes altered by forest management

    NASA Astrophysics Data System (ADS)

    Kelly, Charlene N.; McGuire, Kevin J.; Miniat, Chelcy Ford; Vose, James M.

    2016-04-01

    Increases in extreme precipitation events of floods and droughts are expected to occur worldwide. The increase in extreme events will result in changes in streamflow that are expected to affect water availability for human consumption and aquatic ecosystem function. We present an analysis that may greatly improve current streamflow models by quantifying the impact of the interaction between forest management and precipitation. We use daily long-term data from paired watersheds that have undergone forest harvest or species conversion. We find that interactive effects of climate change, represented by changes in observed precipitation trends, and forest management regime, significantly alter expected streamflow most often during extreme events, ranging from a decrease of 59% to an increase of 40% in streamflow, depending upon management. Our results suggest that vegetation might be managed to compensate for hydrologic responses due to climate change to help mitigate effects of extreme changes in precipitation.

  8. Climate extremes and climate change: The Russian heat wave and other climate extremes of 2010

    NASA Astrophysics Data System (ADS)

    Trenberth, Kevin E.; Fasullo, John T.

    2012-09-01

    A global perspective is developed on a number of high impact climate extremes in 2010 through diagnostic studies of the anomalies, diabatic heating, and global energy and water cycles that demonstrate relationships among variables and across events. Natural variability, especially ENSO, and global warming from human influences together resulted in very high sea surface temperatures (SSTs) in several places that played a vital role in subsequent developments. Record high SSTs in the Northern Indian Ocean in May 2010, the Gulf of Mexico in August 2010, the Caribbean in September 2010, and north of Australia in December 2010 provided a source of unusually abundant atmospheric moisture for nearby monsoon rains and flooding in Pakistan, Colombia, and Queensland. The resulting anomalous diabatic heating in the northern Indian and tropical Atlantic Oceans altered the atmospheric circulation by forcing quasi-stationary Rossby waves and altering monsoons. The anomalous monsoonal circulations had direct links to higher latitudes: from Southeast Asia to southern Russia, and from Colombia to Brazil. Strong convection in the tropical Atlantic in northern summer 2010 was associated with a Rossby wave train that extended into Europe creating anomalous cyclonic conditions over the Mediterranean area while normal anticyclonic conditions shifted downstream where they likely interacted with an anomalously strong monsoon circulation, helping to support the persistent atmospheric anticyclonic regime over Russia. This set the stage for the "blocking" anticyclone and associated Russian heat wave and wild fires. Attribution is limited by shortcomings in models in replicating monsoons, teleconnections and blocking.

  9. Extreme Weather and Climate: Workshop Report

    NASA Technical Reports Server (NTRS)

    Sobel, Adam; Camargo, Suzana; Debucquoy, Wim; Deodatis, George; Gerrard, Michael; Hall, Timothy; Hallman, Robert; Keenan, Jesse; Lall, Upmanu; Levy, Marc; Orlove, Ben; Rosenzweig, Cynthia; Seager, Richard; Shaman, Jeffrey; Tippett, Michael

    2016-01-01

    Extreme events are the aspects of climate to which human society is most sensitive. Due to both their severity and their rarity, extreme events can challenge the capacity of physical, social, economic and political infrastructures, turning natural events into human disasters. Yet, because they are low frequency events, the science of extreme events is very challenging. Among the challenges is the difficulty of connecting extreme events to longer-term, large-scale variability and trends in the climate system, including anthropogenic climate change. How can we best quantify the risks posed by extreme weather events, both in the current climate and in the warmer and different climates to come? How can we better predict them? What can we do to reduce the harm done by such events? In response to these questions, the Initiative on Extreme Weather and Climate has been created at Columbia University in New York City (extreme weather.columbia.edu). This Initiative is a University-wide activity focused on understanding the risks to human life, property, infrastructure, communities, institutions, ecosystems, and landscapes from extreme weather events, both in the present and future climates, and on developing solutions to mitigate those risks. In May 2015,the Initiative held its first science workshop, entitled Extreme Weather and Climate: Hazards, Impacts, Actions. The purpose of the workshop was to define the scope of the Initiative and tremendously broad intellectual footprint of the topic indicated by the titles of the presentations (see Table 1). The intent of the workshop was to stimulate thought across disciplinary lines by juxtaposing talks whose subjects differed dramatically. Each session concluded with question and answer panel sessions. Approximately, 150 people were in attendance throughout the day. Below is a brief synopsis of each presentation. The synopses collectively reflect the variety and richness of the emerging extreme event research agenda.

  10. Regional Changes in Extreme Climatic Events

    NASA Astrophysics Data System (ADS)

    Bell, J. L.; Sloan, L. C.; Snyder, M. A.

    2002-12-01

    This study focuses on California as a climatically complex region that is vulnerable to changes in water supply and delivery. A regional climate model is employed to assess changes in the frequency and intensity of extreme temperatures and precipitation. Significant increases in daily minimum and maximum temperatures occur with a doubling of atmospheric carbon dioxide concentration. Increases in daily temperatures lead to increases in prolonged heat waves and length of the growing season. Changes in total and extreme precipitation vary by geographic region.

  11. The Pace of Perceivable Extreme Climate Change

    NASA Astrophysics Data System (ADS)

    Tan, X.; Gan, T. Y.

    2015-12-01

    When will the signal of obvious changes in extreme climate emerge over climate variability (Time of Emergence, ToE) is a key question for planning and implementing measures to mitigate the potential impact of climate change to natural and human systems that are generally adapted to potential changes from current variability. We estimated ToEs for the magnitude, duration and frequency of global extreme climate represented by 24 extreme climate indices (16 for temperature and 8 for precipitation) with different thresholds of the signal-to-noise (S/N) ratio based on projections of CMIP5 global climate models under RCP8.5 and RCP4.5 for the 21st century. The uncertainty of ToE is assessed by using 3 different methods to calculate S/N for each extreme index. Results show that ToEs of the projected extreme climate indices based on the RCP4.5 climate scenarios are generally projected to happen about 20 years later than that for the RCP8.5 climate scenarios. Under RCP8.5, the projected magnitude, duration and frequency of extreme temperature on Earth will all exceed 2 standard deviations by 2100, and the empirical 50th percentile of the global ToE for the frequency and magnitude of hot (cold) extreme are about 2040 and 2054 (2064 and 2054) for S/N > 2, respectively. The 50th percentile of global ToE for the intensity of extreme precipitation is about 2030 and 2058 for S/N >0.5 and S/N >1, respectively. We further evaluated the exposure of ecosystems and human societies to the pace of extreme climate change by determining the year of ToE for various extreme climate indices projected to occur over terrestrial biomes, marine realms and major urban areas with large populations. This was done by overlaying terrestrial, ecoregions and population maps with maps of ToE derived, to extract ToEs for these regions. Possible relationships between GDP per person and ToE are also investigated by relating the mean ToE for each country and its average value of GDP per person.

  12. Interactions of Mean Climate Change and Climate Variability on Food Security Extremes

    NASA Technical Reports Server (NTRS)

    Ruane, Alexander C.; McDermid, Sonali; Mavromatis, Theodoros; Hudson, Nicholas; Morales, Monica; Simmons, John; Prabodha, Agalawatte; Ahmad, Ashfaq; Ahmad, Shakeel; Ahuja, Laj R.

    2015-01-01

    Recognizing that climate change will affect agricultural systems both through mean changes and through shifts in climate variability and associated extreme events, we present preliminary analyses of climate impacts from a network of 1137 crop modeling sites contributed to the AgMIP Coordinated Climate-Crop Modeling Project (C3MP). At each site sensitivity tests were run according to a common protocol, which enables the fitting of crop model emulators across a range of carbon dioxide, temperature, and water (CTW) changes. C3MP can elucidate several aspects of these changes and quantify crop responses across a wide diversity of farming systems. Here we test the hypothesis that climate change and variability interact in three main ways. First, mean climate changes can affect yields across an entire time period. Second, extreme events (when they do occur) may be more sensitive to climate changes than a year with normal climate. Third, mean climate changes can alter the likelihood of climate extremes, leading to more frequent seasons with anomalies outside of the expected conditions for which management was designed. In this way, shifts in climate variability can result in an increase or reduction of mean yield, as extreme climate events tend to have lower yield than years with normal climate.C3MP maize simulations across 126 farms reveal a clear indication and quantification (as response functions) of mean climate impacts on mean yield and clearly show that mean climate changes will directly affect the variability of yield. Yield reductions from increased climate variability are not as clear as crop models tend to be less sensitive to dangers on the cool and wet extremes of climate variability, likely underestimating losses from water-logging, floods, and frosts.

  13. Climate extremes and the carbon cycle (Invited)

    NASA Astrophysics Data System (ADS)

    Reichstein, M.; Bahn, M.; Ciais, P.; Mahecha, M. D.; Seneviratne, S. I.; Zscheischler, J.

    2013-12-01

    The terrestrial biosphere is a key component of the global carbon cycle and its carbon balance is strongly influenced by climate. Ongoing environmental changes are thought to increase global terrestrial carbon uptake. But evidence is mounting that rare climate extremes can lead to a decrease in ecosystem carbon stocks and therefore have the potential to negate the expected increase in terrestrial carbon uptake. Here we explore the mechanisms and impacts of climate extremes on the terrestrial carbon cycle, and propose a pathway to improve our understanding of present and future impacts of climate extremes on the terrestrial carbon budget. In addition to direct impact on the carbon fluxes of photosynthesis and respiration via extreme temperature and (or) drought, effects of extreme events may also lead to lagged responses, such as wildfires triggered by heat waves and droughts, or pest and pathogen outbreaks following wind-throw caused by heavy storms, reduced plant health due to drought stress or due to less frequent cold extremes in presently cold regions. One extreme event can potentially override accumulated previous carbon sinks, as shown by the Western European 2003 heat wave.. Extreme events have the potential to affect the terrestrial ecosystem carbon balance through a single factor, or as a combination of factors. Climate extremes can cause carbon losses from accumulated stocks, as well as long-lasting impacts on (e.g. lagged effects) on plant growth and mortality, extending beyond the duration of the extreme event itself. The sensitivity of terrestrial ecosystems and their carbon balance to climate change and extreme events varies according to the type of extreme, the climatic region, the land cover, and the land management. Extreme event impacts are very relevant in forests due to the importance of lagged and memory effects on tree growth and mortality, the longevity of tree species, the large forest carbon stocks and their vulnerability, as well as the

  14. Rainfall variability and extremes over southern Africa: assessment of a climate model to reproduce daily extremes

    NASA Astrophysics Data System (ADS)

    Williams, C.; Kniveton, D.; Layberry, R.

    2009-04-01

    It is increasingly accepted that that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA). This dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. The ability of a climate model to simulate current climate provides some indication of how much confidence can be applied to its future predictions. In this paper, simulations of current climate from the UK Meteorological Office Hadley Centre's climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. This concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of rainfall variability over southern Africa. Secondly, the ability of the model to reproduce daily rainfall extremes will

  15. Stochastic trajectories of succession initiated by extreme climatic events.

    PubMed

    Kreyling, J; Jentsch, A; Beierkuhnlein, C

    2011-08-01

    Deterministic or rule-based succession is expected under homogeneous biotic and abiotic starting conditions. Effects of extreme climatic events such as drought, however, may alter these assembly rules by adding stochastic elements. We monitored the succession of species composition of 30 twin grassland communities with identical biotic and abiotic starting conditions in an initially sown diversity gradient between 1 and 16 species over 13 years. The stochasticity of succession, measured as the synchrony in the development of the species compositions of the twin plots, was strongly altered by the extreme warm and dry summer of 2003. Moreover, it was independent from past and present plant diversity and neighbourhood species compositions. Extreme climatic events can induce stochastic effects in community development and therefore impair predictability even under homogeneous abiotic conditions. Stochastic events may result in lasting shifts of community composition, as well as adverse and unforeseeable effects on the stability of ecological services.

  16. Ongoing climatic extreme dynamics in Siberia

    NASA Astrophysics Data System (ADS)

    Gordov, E. P.; Shulgina, T. M.; Okladnikov, I. G.; Titov, A. G.

    2013-12-01

    Ongoing global climate changes accompanied by the restructuring of global processes in the atmosphere and biosphere are strongly pronounced in the Northern Eurasia regions, especially in Siberia. Recent investigations indicate not only large changes in averaged climatic characteristics (Kabanov and Lykosov, 2006, IPCC, 2007; Groisman and Gutman, 2012), but more frequent occurrence and stronger impacts of climatic extremes are reported as well (Bulygina et al., 2007; IPCC, 2012: Climate Extremes, 2012; Oldenborh et al., 2013). This paper provides the results of daily temperature and precipitation extreme dynamics in Siberia for the last three decades (1979 - 2012). Their seasonal dynamics is assessed using 10th and 90th percentile-based threshold indices that characterize frequency, intensity and duration of climatic extremes. To obtain the geographical pattern of these variations with high spatial resolution, the sub-daily temperature data from ECMWF ERA-Interim reanalysis and daily precipitation amounts from APHRODITE JMA dataset were used. All extreme indices and linear trend coefficients have been calculated using web-GIS information-computational platform Climate (http://climate.scert.ru/) developed to support collaborative multidisciplinary investigations of regional climatic changes and their impacts (Gordov et al., 2012). Obtained results show that seasonal dynamics of daily temperature extremes is asymmetric for tails of cold and warm temperature extreme distributions. Namely, the intensity of warming during cold nights is higher than during warm nights, especially at high latitudes of Siberia. The similar dynamics is observed for cold and warm day-time temperatures. Slight summer cooling was observed in the central part of Siberia. It is associated with decrease in warm temperature extremes. In the southern Siberia in winter, we also observe some cooling mostly due to strengthening of the cold temperature extremes. Changes in daily precipitation extremes

  17. Extreme Weather Events and Climate Change Attribution

    SciTech Connect

    Thomas, Katherine

    2016-03-31

    A report from the National Academies of Sciences, Engineering, and Medicine concludes it is now possible to estimate the influence of climate change on some types of extreme events. The science of extreme event attribution has advanced rapidly in recent years, giving new insight to the ways that human-caused climate change can influence the magnitude or frequency of some extreme weather events. This report examines the current state of science of extreme weather attribution, and identifies ways to move the science forward to improve attribution capabilities. Confidence is strongest in attributing types of extreme events that are influenced by climate change through a well-understood physical mechanism, such as, the more frequent heat waves that are closely connected to human-caused global temperature increases, the report finds. Confidence is lower for other types of events, such as hurricanes, whose relationship to climate change is more complex and less understood at present. For any extreme event, the results of attribution studies hinge on how questions about the event's causes are posed, and on the data, modeling approaches, and statistical tools chosen for the analysis.

  18. Have Large Dams Altered Extreme Precipitation Patterns?

    NASA Astrophysics Data System (ADS)

    Hossain, Faisal; Jeyachandran, Indumathi; Pielke, Roger

    2009-12-01

    Dams and their impounded waters are among the most common civil infrastructures, with a long heritage of modern design and operations experience. In particular, large dams, defined by the International Commission on Large Dams (ICOLD) as having a height greater than 15 meters from the foundation and holding a reservoir volume of more than 3 million cubic meters, have the potential to vastly transform local climate, landscapes, regional economics, and urbanization patterns. In the United States alone, about 75,000 dams are capable of storing a volume of water equaling almost 1 year's mean runoff of the nation [Graf, 1999]. The World Commission on Dams (WCD) reports that at least 45,000 large dams have been built worldwide since the 1930s. These sheer numbers raise the question of the extent to which large dams and their impounded waters alter patterns that would have been pervasive had the dams not been built.

  19. Historical influence of irrigation on climate extremes

    NASA Astrophysics Data System (ADS)

    Thiery, Wim; Davin, Edouard L.; Lawrence, Dave; Hauser, Mathias; Seneviratne, Sonia I.

    2016-04-01

    Land irrigation is an essential practice sustaining global food production and many regional economies. During the last decades, irrigation amounts have been growing rapidly. Emerging scientific evidence indicates that land irrigation substantially affects mean climate conditions in different regions of the world. However, a thorough understanding of the impact of irrigation on extreme climatic conditions, such as heat waves, droughts or intense precipitation, is currently still lacking. In this context, we aim to assess the historical influence of irrigation on the occurrence of climate extremes. To this end, two simulations are conducted over the period 1910-2010 with a state-of-the-art global climate model (the Community Earth System Model, CESM): a control simulation including all major anthropogenic and natural external forcings except for irrigation and a second experiment with transient irrigation enabled. The two simulations are evaluated for their ability to represent (i) hot, dry and wet extremes using the HadEX2 and ERA-Interim datasets as a reference, and (ii) latent heat fluxes using LandFlux-EVAL. Assuming a linear combination of climatic responses to different forcings, the difference between both experiments approximates the influence of irrigation. We will analyse the impact of irrigation on a number of climate indices reflecting the intensity and duration of heat waves. Thereby, particular attention is given to the role of soil moisture changes in modulating climate extremes. Furthermore, the contribution of individual biogeophysical processes to the total impact of irrigation on hot extremes is quantified by application of a surface energy balance decomposition technique to the 90th and 99th percentile surface temperature changes.

  20. Seasonal Climate Extremes : Mechanism, Predictability and Responses to Global Warming

    NASA Astrophysics Data System (ADS)

    Shongwe, M. E.

    2010-01-01

    energy and dynamic horizontal advection of heat. There is clear evidence that the central North Atlantic Ocean was the major source of energy for the Autumn 2006 extreme event. Within Europe, anomalously high atmospheric water-vapor loading played a significant role through its strong greenhouse effect which resulted in an increase of downwelling infrared flux to the surface. Potential influences and connections between boreal snow cover during the melt season (February--April) and near-surface temperature in the spring season are established. Large amounts of snow act as a precursor to cold spring seasons by altering the coupling between the land and the overlying air through a modification of the surface energy and hydrological processes. In operational numerical models, a snow signal is found to provide some seasonal forecast skill for cold spring seasons in Europe. Changes in the intensity of droughts and floods in Africa in response to global warming are investigated and compared with changes in mean precipitation simulated by an ensemble of climate models selected from the Intergovernmental Panel on Climate Change (IPCC) fourth assessment report (AR4) set. The model simulations are objectively combined using a Bayesian weighting procedure. In southern Africa south of about 15° S, the most robust climate-change signal is a shortening of the main rainfall season. This arises from a delayed onset of seasonal rainfall associated with a reduction in lower-tropospheric moisture advection from the southwestern Indian Ocean. The semi-arid areas closer to the Kalahari desert are projected to become drier, while the wet areas are projected to become wetter. East Africa is projected to get wet in the future climate, much wetter than other regions within the same latitudinal belt. The zonal asymmetry in tropical precipitation increase is associated with a shift towards positive Indian Ocean Zonal Mode (IOZM)-like events via an alteration in the structure of the Eastern

  1. The Engineering for Climate Extremes Partnership

    NASA Astrophysics Data System (ADS)

    Holland, G. J.; Tye, M. R.

    2014-12-01

    Hurricane Sandy and the recent floods in Thailand have demonstrated not only how sensitive the urban environment is to the impact of severe weather, but also the associated global reach of the ramifications. These, together with other growing extreme weather impacts and the increasing interdependence of global commercial activities point towards a growing vulnerability to weather and climate extremes. The Engineering for Climate Extremes Partnership brings academia, industry and government together with the goals encouraging joint activities aimed at developing new, robust, and well-communicated responses to this increasing vulnerability. Integral to the approach is the concept of 'graceful failure' in which flexible designs are adopted that protect against failure by combining engineering or network strengths with a plan for efficient and rapid recovery if and when they fail. Such an approach enables optimal planning for both known future scenarios and their assessed uncertainty.

  2. An 'extreme' future for estuaries? Effects of extreme climatic events on estuarine water quality and ecology.

    PubMed

    Wetz, Michael S; Yoskowitz, David W

    2013-04-15

    Recent climate observations suggest that extreme climatic events (ECE; droughts, floods, tropical cyclones, heat waves) have increased in frequency and/or intensity in certain world regions, consistent with climate model projections that account for man's influence on the global climate system. A synthesis of existing literature is presented and shows that ECE affect estuarine water quality by altering: (1) the delivery and processing of nutrients and organic matter, (2) physical-chemical properties of estuaries, and (3) ecosystem structure and function. From the standpoint of estuarine scientists and resource managers, a major scientific challenge will be to project the estuarine response to ECE that will co-occur with other important environmental changes (i.e., natural climate variability, global warming, sea level rise, eutrophication), as this will affect the provisioning of important ecosystem services provided by estuaries.

  3. Extreme Weather in a Changing Climate

    NASA Astrophysics Data System (ADS)

    Wuebbles, D. J.

    2015-12-01

    It is a real honor for me to get the opportunity to pay homage to Steve Schneider and his extensive accomplishments. I also treasured his friendship. Steve was known for being a great communicator and for his expertise in climate policy and solutions, along with being an outstanding scientist with many contributions to understanding the Earth's climate system. One of the major challenges today to all of these areas is the changing trends in extreme weather under a changing climate. My focus in this presentation is to examine these issues by drawing on new research from my own team at Illinois. For example, climate change amplification in the Arctic has raised questions regarding its potential effects on extreme weather at mid-latitudes, especially the United States. In our studies, we find a statistically significant relationship between summer sea ice north of Alaska and geopotential height anomalies in the north Pacific during subsequent winter and spring months. The frequency of these semi-persistent height anomalies exhibits a long-term upward trend that amplify the jet stream off the West Coast of the U.S., driving more persistent precipitation patterns over certain regions of the United States, specifically in the West and Midwest parts of the country. Our results suggest that as sea ice in the Arctic north of Alaska continues to decrease, a more persistent ridge will form in areas adjacent to this location and affect storm tracks over the continental United States. In other studies, we are examining the effects of the changing climate on trends in extreme events throughout the continental U.S. We are also investigating changes in historical severe convective weather over the United States using reanalysis data, the NEXRAD/in situ gauge Climate Data Record (CDR) data set, and storm reports. After analyzing the ability of global climate models to represent the observed trends in severe-thunderstorm environments, projected future trends are also to be analyzed.

  4. Rainfall variability and extremes over southern Africa: Assessment of a climate model to reproduce daily extremes

    NASA Astrophysics Data System (ADS)

    Williams, C. J. R.; Kniveton, D. R.; Layberry, R.

    2009-04-01

    It is increasingly accepted that that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA). This dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. The ability of a climate model to simulate current climate provides some indication of how much confidence can be applied to its future predictions. In this paper, simulations of current climate from the UK Meteorological Office Hadley Centre's climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. This concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of rainfall variability over southern Africa. Secondly, the ability of the model to reproduce daily rainfall extremes will

  5. Impacts of Irrigation on Daily Extremes in the Coupled Climate System

    NASA Technical Reports Server (NTRS)

    Puma, Michael J.; Cook, Benjamin I.; Krakauer, Nir; Gentine, Pierre; Nazarenka, Larissa; Kelly, Maxwell; Wada, Yoshihide

    2014-01-01

    Widespread irrigation alters regional climate through changes to the energy and water budgets of the land surface. Within general circulation models, simulation studies have revealed significant changes in temperature, precipitation, and other climate variables. Here we investigate the feedbacks of irrigation with a focus on daily extremes at the global scale. We simulate global climate for the year 2000 with and without irrigation to understand irrigation-induced changes. Our simulations reveal shifts in key climate-extreme metrics. These findings indicate that land cover and land use change may be an important contributor to climate extremes both locally and in remote regions including the low-latitudes.

  6. Changes in climate extremes indices over Mexico

    NASA Astrophysics Data System (ADS)

    Teufel, B. S.; Mora Rodriguez, J.; Pineda-Martinez, L. F.

    2013-05-01

    There is scientific consensus on the fact that any change in the frequency or intensity of climate extremes (one of the consequences of global climate change) will have a great impact on the environment and on society. There has been an international effort, led by the Expert Team on Climate Change Detection and Indices (ETCCDI), to develop a set of climate extremes indices, so individuals, regions and countries can calculate such indices in the same way, enabling them to be compared across borders. Daily records of temperature and precipitation are required to calculate these climate extremes indices and their behavior over long periods shows if the frequency or intensity of climate extremes has changed. For this work, the full database of the National Meteorological Service of Mexico (Servicio Meteorologico Nacional), which contains data for over 5000 meteorological stations, was used. First, quality control and homogeneity procedures, as recommended by the World Meteorological Organization (WMO), were used to analyze and filter the database, removing erroneous or inconsistent data. The following climate indices were obtained for all stations that met the WMO's criteria for calculating climate normals: - Percentage of days with daily minimum temperatures lower than the 10th percentile. - Percentage of days with daily maximum temperatures lower than the 10th percentile. - Percentage of days with daily minimum temperatures higher than the 90th percentile. - Percentage of days with daily maximum temperatures higher than the 90th percentile. - Percentage of days with daily precipitation above the 95th percentile. - Percentage of days with daily precipitation above the 99th percentile. The results are presented as regionally averaged time series for the period 1930 - 2010. Additionally, the spatial distribution of the magnitude and statistical significance of the changes in the indices is presented. Widespread and statistically significant changes in the temperature

  7. On the response of European phenology to Extreme Climate Events

    NASA Astrophysics Data System (ADS)

    Guido, C.; Gobron, N.

    2012-12-01

    Extreme Climate Events are expected to alter carbon cycle processes, with implications for ecosystems and feedback to regional and global climate. Hence, understanding the interactions between Extreme Climate Events and vegetation dynamics is essential for improved climate prediction. In this work, the authors analyze carbon cycle dynamics over the European domain using Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) derived from Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data (1997-2002) and MERIS (2003-2011) at ~1 km resolution. As part of this analysis, six phenological metrics were defined from FAPAR measurement to characterize the ecosystem response to climate and anthropogenic forcing at the land surface. Based on phenological metrics analysis, the inter-annual vegetation variations, their dependence on drought and heat waves, and the presence of long-term trends were detected. In addition, the authors have assessed Rain Use Efficiency (RUE), represented by the ratio of annual sum FAPAR and annual rainfall, and the correlation between FAPAR, precipitation and temperature anomalies over the same time period. Climate anomalies largely explain the recent anomalies of FAPAR- and consequently of carbon cycle. Hence, well-defined large scale patterns of RUE and phenological metrics are discernible: the large scale drought that struck Europe in year 2003 has a distinct signature, as well as the continuous positive anomaly during summer 2002 (due to intense rainfall) is well-depicted.

  8. Attribution of extreme weather and climate-related events.

    PubMed

    Stott, Peter A; Christidis, Nikolaos; Otto, Friederike E L; Sun, Ying; Vanderlinden, Jean-Paul; van Oldenborgh, Geert Jan; Vautard, Robert; von Storch, Hans; Walton, Peter; Yiou, Pascal; Zwiers, Francis W

    2016-01-01

    Extreme weather and climate-related events occur in a particular place, by definition, infrequently. It is therefore challenging to detect systematic changes in their occurrence given the relative shortness of observational records. However, there is a clear interest from outside the climate science community in the extent to which recent damaging extreme events can be linked to human-induced climate change or natural climate variability. Event attribution studies seek to determine to what extent anthropogenic climate change has altered the probability or magnitude of particular events. They have shown clear evidence for human influence having increased the probability of many extremely warm seasonal temperatures and reduced the probability of extremely cold seasonal temperatures in many parts of the world. The evidence for human influence on the probability of extreme precipitation events, droughts, and storms is more mixed. Although the science of event attribution has developed rapidly in recent years, geographical coverage of events remains patchy and based on the interests and capabilities of individual research groups. The development of operational event attribution would allow a more timely and methodical production of attribution assessments than currently obtained on an ad hoc basis. For event attribution assessments to be most useful, remaining scientific uncertainties need to be robustly assessed and the results clearly communicated. This requires the continuing development of methodologies to assess the reliability of event attribution results and further work to understand the potential utility of event attribution for stakeholder groups and decision makers. WIREs Clim Change 2016, 7:23-41. doi: 10.1002/wcc.380 For further resources related to this article, please visit the WIREs website.

  9. Climate Extremes and the Length of Gestation

    PubMed Central

    Basagaña, Xavier; Sartini, Claudio; Figueras, Francesc; Vrijheid, Martine; de Nazelle, Audrey; Sunyer, Jordi; Nieuwenhuijsen, Mark J.

    2011-01-01

    Background: Although future climate is predicted to have more extreme heat conditions, the available evidence on the impact of these conditions on pregnancy length is very scarce and inconclusive. Objectives: We investigated the impact of maternal short-term exposure to extreme ambient heat on the length of pregnancy. Methods: This study was based on a cohort of births that occurred in a major university hospital in Barcelona during 2001–2005. Three indicators of extreme heat conditions based on 1-day exposure to an unusually high heat–humidity index were applied. Each mother was assigned the measures made by the meteorological station closest to maternal residential postcodes. A two-stage analysis was developed to quantify the change in pregnancy length after maternal exposure to extreme heat conditions adjusted for a range of covariates. The second step was repeated for lags 0 (delivery date) to 6 days. Results: We included data from 7,585 pregnant women in our analysis. We estimated a 5-day reduction in average gestational age at delivery after an unusually high heat–humidity index on the day before delivery. Conclusion: Extreme heat was associated with a reduction in the average gestational age of children delivered the next day, suggesting an immediate effect of this exposure on pregnant women. Further studies are required to confirm our findings in different settings. PMID:21659038

  10. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts.

    PubMed

    Frank, Dorothea; Reichstein, Markus; Bahn, Michael; Thonicke, Kirsten; Frank, David; Mahecha, Miguel D; Smith, Pete; van der Velde, Marijn; Vicca, Sara; Babst, Flurin; Beer, Christian; Buchmann, Nina; Canadell, Josep G; Ciais, Philippe; Cramer, Wolfgang; Ibrom, Andreas; Miglietta, Franco; Poulter, Ben; Rammig, Anja; Seneviratne, Sonia I; Walz, Ariane; Wattenbach, Martin; Zavala, Miguel A; Zscheischler, Jakob

    2015-08-01

    Extreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate extremes drive ecological and physiological processes and alter the carbon balance are poorly understood. Here, we review the literature on carbon cycle relevant responses of ecosystems to extreme climatic events. Given that impacts of climate extremes are considered disturbances, we assume the respective general disturbance-induced mechanisms and processes to also operate in an extreme context. The paucity of well-defined studies currently renders a quantitative meta-analysis impossible, but permits us to develop a deductive framework for identifying the main mechanisms (and coupling thereof) through which climate extremes may act on the carbon cycle. We find that ecosystem responses can exceed the duration of the climate impacts via lagged effects on the carbon cycle. The expected regional impacts of future climate extremes will depend on changes in the probability and severity of their occurrence, on the compound effects and timing of different climate extremes, and on the vulnerability of each land-cover type modulated by management. Although processes and sensitivities differ among biomes, based on expert opinion, we expect forests to exhibit the largest net effect of extremes due to their large carbon pools and fluxes, potentially large indirect and lagged impacts, and long recovery time to regain previous stocks. At the global scale, we presume that droughts have the strongest and most widespread effects on terrestrial carbon cycling. Comparing impacts of climate extremes identified via remote sensing vs. ground-based observational case studies reveals that many regions in the (sub-)tropics are understudied. Hence, regional investigations are needed to allow a global

  11. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts

    PubMed Central

    Frank, Dorothea; Reichstein, Markus; Bahn, Michael; Thonicke, Kirsten; Frank, David; Mahecha, Miguel D; Smith, Pete; van der Velde, Marijn; Vicca, Sara; Babst, Flurin; Beer, Christian; Buchmann, Nina; Canadell, Josep G; Ciais, Philippe; Cramer, Wolfgang; Ibrom, Andreas; Miglietta, Franco; Poulter, Ben; Rammig, Anja; Seneviratne, Sonia I; Walz, Ariane; Wattenbach, Martin; Zavala, Miguel A; Zscheischler, Jakob

    2015-01-01

    Extreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate extremes drive ecological and physiological processes and alter the carbon balance are poorly understood. Here, we review the literature on carbon cycle relevant responses of ecosystems to extreme climatic events. Given that impacts of climate extremes are considered disturbances, we assume the respective general disturbance-induced mechanisms and processes to also operate in an extreme context. The paucity of well-defined studies currently renders a quantitative meta-analysis impossible, but permits us to develop a deductive framework for identifying the main mechanisms (and coupling thereof) through which climate extremes may act on the carbon cycle. We find that ecosystem responses can exceed the duration of the climate impacts via lagged effects on the carbon cycle. The expected regional impacts of future climate extremes will depend on changes in the probability and severity of their occurrence, on the compound effects and timing of different climate extremes, and on the vulnerability of each land-cover type modulated by management. Although processes and sensitivities differ among biomes, based on expert opinion, we expect forests to exhibit the largest net effect of extremes due to their large carbon pools and fluxes, potentially large indirect and lagged impacts, and long recovery time to regain previous stocks. At the global scale, we presume that droughts have the strongest and most widespread effects on terrestrial carbon cycling. Comparing impacts of climate extremes identified via remote sensing vs. ground-based observational case studies reveals that many regions in the (sub-)tropics are understudied. Hence, regional investigations are needed to allow a global

  12. Detecting Extreme Events in Gridded Climate Data

    SciTech Connect

    Ramachandra, Bharathkumar; Gadiraju, Krishna; Vatsavai, Raju; Kaiser, Dale Patrick; Karnowski, Thomas Paul

    2016-01-01

    Detecting and tracking extreme events in gridded climatological data is a challenging problem on several fronts: algorithms, scalability, and I/O. Successful detection of these events will give climate scientists an alternate view of the behavior of different climatological variables, leading to enhanced scientific understanding of the impacts of events such as heat and cold waves, and on a larger scale, the El Nin o Southern Oscillation. Recent advances in computing power and research in data sciences enabled us to look at this problem with a different perspective from what was previously possible. In this paper we present our computationally efficient algorithms for anomalous cluster detection on climate change big data. We provide results on detection and tracking of surface temperature and geopotential height anomalies, a trend analysis, and a study of relationships between the variables. We also identify the limitations of our approaches, future directions for research and alternate approaches.

  13. Climate Extreme Events over Northern Eurasia in Changing Climate

    NASA Astrophysics Data System (ADS)

    Bulygina, O.; Korshunova, N. N.; Razuvaev, V. N.; Groisman, P. Y.

    2014-12-01

    During the period of widespread instrumental observations in Northern Eurasia, the annual surface air temperature has increased by 1.5°C. Close to the north in the Arctic Ocean, the late summer sea ice extent has decreased by 40% providing a near-infinite source of water vapor for the dry Arctic atmosphere in the early cold season months. The contemporary sea ice changes are especially visible in the Eastern Hemisphere All these factors affect the change extreme events. Daily and sub-daily data of 940 stations to analyze variations in the space time distribution of extreme temperatures, precipitation, and wind over Russia were used. Changing in number of days with thaw over Russia was described. The total seasonal numbers of days, when daily surface air temperatures (wind, precipitation) were found to be above (below) selected thresholds, were used as indices of climate extremes. Changing in difference between maximum and minimum temperature (DTR) may produce a variety of effects on biological systems. All values falling within the intervals ranged from the lowest percentile to the 5th percentile and from the 95th percentile to the highest percentile for the time period of interest were considered as daily extremes. The number of days, N, when daily temperatures (wind, precipitation, DTR) were within the above mentioned intervals, was determined for the seasons of each year. Linear trends in the number of days were calculated for each station and for quasi-homogeneous climatic regions. Regional analysis of extreme events was carried out using quasi-homogeneous climatic regions. Maps (climatology, trends) are presented mostly for visualization purposes. Differences in regional characteristics of extreme events are accounted for over a large extent of the Russian territory and variety of its physical and geographical conditions. The number of days with maximum temperatures higher than the 95% percentile has increased in most of Russia and decreased in Siberia in

  14. Is climate change modifying precipitation extremes?

    NASA Astrophysics Data System (ADS)

    Montanari, Alberto; Papalexiou, Simon Michael

    2016-04-01

    The title of the present contribution is a relevant question that is frequently posed to scientists, technicians and managers of local authorities. Although several research efforts were recently dedicated to rainfall observation, analysis and modelling, the above question remains essentially unanswered. The question comes from the awareness that the frequency of floods and the related socio-economic impacts are increasing in many countries, and climate change is deemed to be the main trigger. Indeed, identifying the real reasons for the observed increase of flood risk is necessary in order to plan effective mitigation and adaptation strategies. While mitigation of climate change is an extremely important issue at the global level, at small spatial scales several other triggers may interact with it, therefore requiring different mitigation strategies. Similarly, the responsibilities of administrators are radically different at local and global scales. This talk aims to provide insights and information to address the question expressed by its title. High resolution and long term rainfall data will be presented, as well as an analysis of the frequency of their extremes and its progress in time. The results will provide pragmatic indications for the sake of better planning flood risk mitigation policies.

  15. Impact of climatic extremity upon human health

    SciTech Connect

    Miah, M.A.; Samad, M.A.

    1997-12-31

    The extreme climate generated in the wake of the shortage of the supply of natural water in the lower Ganges basin has triggered a number of environmental diseases in the lower Ganges basin. In the wake of improper sanitation conditions for the scarcity of water, water-borne diseases like cholera, diarrhea, hepatitis, etc., break out and take out the lives of victims. Further, the development of the dry climate has favored an increased amount of suspended particulate matter in the air. The result is the prevalent problem of asthma which is even worse than the water-borne diseases. Almost one in every four families living in this city has an asthma patient. The worst is that more than 10% of the families have three asthma patients. And, most of the elderly asthma patients suffer from diabetes and high blood pressure at the same time. The wide spread of asthma is thought to be related to the triggering allergic action suffered by patients due to the presence of excess particulate matter in the air. More than 50% of the population suffer from nasal allergy, sinusitis, and chronic bronchitis. The suspended particles are mostly fine grains of sands and carbon. The cleanest air (usually, after a heavy rainfall) contains at least one gm of particulate matter in every 2,039 cubic meter of air. An average man will inhale about 1.11 million gallons of air per year which amounts to about 2 gm of particulate matter per year. Additionally, during the dry months, major duststorms appear a couple of times with an uplift of half a million kg of dust in air over about 810 square km each time. The paper will focus on water scarcity, the climatic extremity, suspended particulate matter, the outbreaks of water-borne and the prevalent respiratory diseases, and suggestions to mitigate human sufferings.

  16. Climate teleconnections, weather extremes, and vector-borne disease outbreaks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fluctuations in climate lead to extremes in temperature, rainfall, flooding, and droughts. These climate extremes create ideal ecological conditions that promote mosquito-borne disease transmission that impact global human and animal health. One well known driver of such global scale climate fluctua...

  17. Interpreting the Climatic Effects on Xylem Functional Traits in Two Mediterranean Oak Species: The Role of Extreme Climatic Events

    PubMed Central

    Rita, Angelo; Borghetti, Marco; Todaro, Luigi; Saracino, Antonio

    2016-01-01

    In the Mediterranean region, the widely predicted rise in temperature, change in the precipitation pattern, and increase in the frequency of extreme climatic events are expected to alter the shape of ecological communities and to affect plant physiological processes that regulate ecosystem functioning. Although change in the mean values are important, there is increasing evidence that plant distribution, survival, and productivity respond to extremes rather than to the average climatic condition. The present study aims to assess the effects of both mean and extreme climatic conditions on radial growth and functional anatomical traits using long-term tree-ring time series of two co-existing Quercus spp. from a drought-prone site in Southern Italy. In particular, this is the first attempt to apply the Generalized Additive Model for Location, Scale, and Shape (GAMLSS) technique and Bayesian modeling procedures to xylem traits data set, with the aim of (i) detecting non-linear long-term responses to climate and (ii) exploring relationships between climate extreme and xylem traits variability in terms of probability of occurrence. This study demonstrates the usefulness of long-term xylem trait chronologies as records of environmental conditions at annual resolution. Statistical analyses revealed that most of the variability in tree-ring width and specific hydraulic conductivity might be explained by cambial age. Additionally, results highlighted appreciable relationships between xylem traits and climate variability more than tree-ring width, supporting also the evidence that the plant hydraulic traits are closely linked to local climate extremes rather than average climatic conditions. We reported that the probability of extreme departure in specific hydraulic conductivity (Ks) rises at extreme values of Standardized Precipitation Index (SPI). Therefore, changing frequency or intensity of extreme events might overcome the adaptive limits of vascular transport, resulting

  18. Climatic extremes improve predictions of spatial patterns of tree species

    USGS Publications Warehouse

    Zimmermann, N.E.; Yoccoz, N.G.; Edwards, T.C.; Meier, E.S.; Thuiller, W.; Guisan, A.; Schmatz, D.R.; Pearman, P.B.

    2009-01-01

    Understanding niche evolution, dynamics, and the response of species to climate change requires knowledge of the determinants of the environmental niche and species range limits. Mean values of climatic variables are often used in such analyses. In contrast, the increasing frequency of climate extremes suggests the importance of understanding their additional influence on range limits. Here, we assess how measures representing climate extremes (i.e., interannual variability in climate parameters) explain and predict spatial patterns of 11 tree species in Switzerland. We find clear, although comparably small, improvement (+20% in adjusted D2, +8% and +3% in cross-validated True Skill Statistic and area under the receiver operating characteristics curve values) in models that use measures of extremes in addition to means. The primary effect of including information on climate extremes is a correction of local overprediction and underprediction. Our results demonstrate that measures of climate extremes are important for understanding the climatic limits of tree species and assessing species niche characteristics. The inclusion of climate variability likely will improve models of species range limits under future conditions, where changes in mean climate and increased variability are expected.

  19. Public perceptions of climate change and extreme weather events

    NASA Astrophysics Data System (ADS)

    Bruine de Bruin, W.; Dessai, S.; Morgan, G.; Taylor, A.; Wong-Parodi, G.

    2013-12-01

    Climate experts face a serious communication challenge. Public debate about climate change continues, even though at the same time people seem to complain about extreme weather events becoming increasingly common. As compared to the abstract concept of ';climate change,' (changes in) extreme weather events are indeed easier to perceive, more vivid, and personally relevant. Public perception research in different countries has suggested that people commonly expect that climate change will lead to increases in temperature, and that unseasonably warm weather is likely to be interpreted as evidence of climate change. However, relatively little is known about whether public concerns about climate change may also be driven by changes in other types of extreme weather events, such as exceptional amounts of precipitation or flooding. We therefore examined how perceptions of and personal experiences with changes in these specific weather events are related to public concerns about climate change. In this presentation, we will discuss findings from two large public perception surveys conducted in flood-prone Pittsburgh, Pennsylvania (US) and with a national sample in the UK, where extreme flooding has recently occurred across the country. Participants completed questions about their perceptions of and experiences with specific extreme weather events, and their beliefs about climate change. We then conducted linear regressions to predict individual differences in climate-change beliefs, using perceptions of and experiences with specific extreme weather events as predictors, while controlling for demographic characteristics. The US study found that people (a) perceive flood chances to be increasing over the decades, (b) believe climate change to play a role in increases in future flood chances, and (c) would interpret future increases in flooding as evidence for climate change. The UK study found that (a) UK residents are more likely to perceive increases in ';wet' events such

  20. Combined effects of extreme climatic events and elevation on nutritional quality and herbivory of Alpine plants.

    PubMed

    Leingärtner, Annette; Hoiss, Bernhard; Krauss, Jochen; Steffan-Dewenter, Ingolf

    2014-01-01

    Climatic extreme events can cause the shift or disruption of plant-insect interactions due to altered plant quality, e.g. leaf carbon to nitrogen ratios, and phenology. However, the response of plant-herbivore interactions to extreme events and climatic gradients has been rarely studied, although climatic extremes will increase in frequency and intensity in the future and insect herbivores represent a highly diverse and functionally important group. We set up a replicated climate change experiment along elevational gradients in the German Alps to study the responses of three plant guilds and their herbivory by insects to extreme events (extreme drought, advanced and delayed snowmelt) versus control plots under different climatic conditions on 15 grassland sites. Our results indicate that elevational shifts in CN (carbon to nitrogen) ratios and herbivory depend on plant guild and season. CN ratios increased with altitude for grasses, but decreased for legumes and other forbs. In contrast to our hypotheses, extreme climatic events did not significantly affect CN ratios and herbivory. Thus, our study indicates that nutritional quality of plants and antagonistic interactions with insect herbivores are robust against seasonal climatic extremes. Across the three functional plant guilds, herbivory increased with nitrogen concentrations. Further, increased CN ratios indicate a reduction in nutritional plant quality with advancing season. Although our results revealed no direct effects of extreme climatic events, the opposing responses of plant guilds along elevation imply that competitive interactions within plant communities might change under future climates, with unknown consequences for plant-herbivore interactions and plant community composition.

  1. Altered States of Consciousness during an Extreme Ritual

    PubMed Central

    Loewald, Tonio; Comber, Evelyn M.; Hanson, Sarah A.; Pruitt, Bria

    2016-01-01

    Extreme rituals (body-piercing, fire-walking, etc.) are anecdotally associated with altered states of consciousness—subjective alterations of ordinary mental functioning (Ward, 1984)—but empirical evidence of altered states using both direct and indirect measures during extreme rituals in naturalistic settings is limited. Participants in the “Dance of Souls”, a 3.5-hour event during which participants received temporary piercings with hooks or weights attached to the piercings and danced to music provided by drummers, responded to measures of two altered states of consciousness. Participants also completed measures of positive and negative affect, salivary cortisol (a hormone associated with stress), self-reported stress, sexual arousal, and intimacy. Both pierced participants (pierced dancers) and non-pierced participants (piercers, piercing assistants, observers, drummers, and event leaders) showed evidence of altered states aligned with transient hypofrontality (Dietrich, 2003; measured with a Stroop test) and flow (Csikszentmihalyi, 1990; Csikszentmihalyi & Csikszentmihalyi, 1990; measured with the Flow State Scale). Both pierced and non-pierced participants also reported decreases in negative affect and psychological stress and increases in intimacy from before to after the ritual. Pierced and non-pierced participants showed different physiological reactions, however, with pierced participants showing increases in cortisol and non-pierced participants showing decreases from before to during the ritual. Overall, the ritual appeared to induce different physiological effects but similar psychological effects in focal ritual participants (i.e., pierced dancers) and in participants adopting other roles. PMID:27175897

  2. Multi - Region Analysis of a New Climate Extremes Index

    NASA Astrophysics Data System (ADS)

    Dittus, A. J.; Karoly, D. J.; Lewis, S. C.; Alexander, L. V.

    2014-12-01

    In this study, a new Climate Extremes Index (CEI) is introduced, extending the earlier combined CEI proposed by Karl et al. (1996). It is based on the use of standard extreme indices derived from daily meteorological station data, facilitating the computation of this index and making use of two global gridded extreme indices datasets. The index combines the fraction of area experiencing extreme conditions in daily temperature and daily and annual precipitation, therefore representing a combined measure of extremes. The analysis of this index at the global scale is limited by data availability. In this study, the four continental-scale regions analysed are Europe, North America, Asia and Australia over the period from 1951 to 2010. Additionally, the index is also computed for the entire Northern Hemisphere, corresponding to the first CEI results at the hemispheric scale. Results show statistically significant increases in the percentage area experiencing much above average warm days and nights and much below average cool days and nights for all regions, with the exception of North America for maximum temperature extremes. Increases in the area affected by precipitation extremes are also found for the Northern Hemisphere regions, particularly Europe. This study shows the potential of this new index for climate monitoring and other applications by documenting large-scale changes in the areas experiencing climate extremes. Preliminary detection and attribution results will also be presented using extreme indices computed for the Coupled Model Intercomparison Project Phase 5 climate model simulations (Sillmann et al., 2013). Karl, T. R., R. W. Knight, D. R. Easterling, and R. G. Quayle, 1996: Indices of climate change for the United States. Bull. Amer. Meteor. Soc., 77, 279-292. Sillmann, J., V. V. Kharin, X. Zhang, F. W. Zwiers, and D. Bronaugh (2013), Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate, J. Geophys

  3. Flight Testing Under Extreme Climatic Conditions

    DTIC Science & Technology

    1988-09-01

    FACILITY .. ........ 33 MCKINLEY CIMATIC LABORATORY .... ............ 34 Climatic Laboratory Description ... ........... 35 Climatic Laboratory...with other changes result- ing from a development program. This assures the availability of a globally effective system in the shortest possible time...procedural changes /improvements implemented and an assessment made of objectives achieved. This assessment sets the stage for preparation of the procedures

  4. Biodiversity increases the resistance of ecosystem productivity to climate extremes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It remains unclear whether biodiversity buffers ecosystems against extreme climate events, which are becoming increasingly frequent worldwide. Although early results suggested that biodiversity might provide both resistance and resilience (sensu rapid recovery) of ecosystem productivity to drought, ...

  5. Climate change impacts on hydrological extremes in Central Europe

    NASA Astrophysics Data System (ADS)

    Fokko Hattermann, Fred; Huang, Shaochun; Kundzewicz, Zbigniew W.; Hoffmann, Peter

    2016-04-01

    An increase of hydro-climatic extremes can be observed worldwide and is challenging national and regional risk management and adaptation plans. Our study presents and discusses possible trends in climate drivers and hydro-climatic extremes in Europe observed and under future climate conditions. In a case study for Germany, impacts of different regional climate scenario ensembles are compared. To this end, a hydrological model was applied to transform the scenarios data into river runoff for more than 5000 river reaches in Germany. Extreme Value Distributions have been fitted to the hydrographs of the river reaches to derive the basic flood statistics. The results for each river reach have been linked to related damage functions as provided by the German Insurance Association considering damages on buildings and small enterprises. The robust result is that under scenario conditions a significant increase in flood related losses can be expected in Germany, while also the number of low flow events may rise.

  6. Extreme wind climate in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Pop, L.; Hanslian, D.; Jiri, H.

    2011-12-01

    Extreme wind events belong to the most damaging weather-related hazards in Czech Republic. Therefore a complex survey is performed to exploit the wind data available over the period of industrial measurements in Czech Republic for extreme wind analysis. The object of the survey is to find the limitations of wind data available, to analyze the conditions for extreme wind events and to try to enhance the knowledge about the statistical behavior of extreme wind. The data quality showed itself as a major issue. The homogeneity of extreme wind data is broken in many cases as the extreme wind values are highly dependent on the measuring instrumentation and changes in neighborhood. It also may be difficult to distinguish between correct high wind data and erroneous values. The individual analysis and quality assessment of wind data used in extremal analysis is therefore essential. There are generally two basic groups of extreme wind events typical in the Czech Republic and generally over the mid-latitudes: The "convective" events (can be also called as "squalls") are primarily initiated by deep convection, whereas the primary cause for "non-convective" (synoptic) events is large-scale pressure gradient. The subject is, however, a bit more complex, as the pressure gradient inducing high wind in higher atmospheric levels or wind shear can be a significant factor in convective events; on the other hand, convection may increase wind speeds in otherwise "non-convective" synoptic-scale windstorms. In addition, there are some special phenomena that should be treated individually: the physical principle and climatological behavior (frequency, magnitude and area affected) of tornadoes make them very different from common convective straight winds; this is in lesser scale also the case of "foehn" or "bora" effects belonging to non-convective events. These effects, however, do not play major role over the Czech Republic. In Czech Republic, the overall impact of convective and non

  7. Mekong River flow and hydrological extremes under climate change

    NASA Astrophysics Data System (ADS)

    Phi Hoang, Long; Lauri, Hannu; Kummu, Matti; Koponen, Jorma; van Vliet, Michelle T. H.; Supit, Iwan; Leemans, Rik; Kabat, Pavel; Ludwig, Fulco

    2016-07-01

    Climate change poses critical threats to water-related safety and sustainability in the Mekong River basin. Hydrological impact signals from earlier Coupled Model Intercomparison Project phase 3 (CMIP3)-based assessments, however, are highly uncertain and largely ignore hydrological extremes. This paper provides one of the first hydrological impact assessments using the CMIP5 climate projections. Furthermore, we model and analyse changes in river flow regimes and hydrological extremes (i.e. high-flow and low-flow conditions). In general, the Mekong's hydrological cycle intensifies under future climate change. The scenario's ensemble mean shows increases in both seasonal and annual river discharges (annual change between +5 and +16 %, depending on location). Despite the overall increasing trend, the individual scenarios show differences in the magnitude of discharge changes and, to a lesser extent, contrasting directional changes. The scenario's ensemble, however, shows reduced uncertainties in climate projection and hydrological impacts compared to earlier CMIP3-based assessments. We further found that extremely high-flow events increase in both magnitude and frequency. Extremely low flows, on the other hand, are projected to occur less often under climate change. Higher low flows can help reducing dry season water shortage and controlling salinization in the downstream Mekong Delta. However, higher and more frequent peak discharges will exacerbate flood risks in the basin. Climate-change-induced hydrological changes will have important implications for safety, economic development, and ecosystem dynamics and thus require special attention in climate change adaptation and water management.

  8. Changing step width alters lower extremity biomechanics during running.

    PubMed

    Brindle, Richard A; Milner, Clare E; Zhang, Songning; Fitzhugh, Eugene C

    2014-01-01

    Step width is a spatiotemporal parameter that may influence lower extremity biomechanics at the hip and knee joint. The purpose of this study was to determine the biomechanical response of the lower extremity joints to step width changes during running. Lower extremity data from 30 healthy runners, half of them male, were collected during running in three step width conditions: preferred, wide, and narrow. Dependent variables and step width were analyzed using a mixed model ANOVA and pairwise t-tests for post hoc comparisons. Step width was successfully altered in the wide and narrow conditions. Generally, frontal plane peak values decreased as step width increased from narrow to preferred to wide. Peak hip adduction and rearfoot eversion angles decreased as step width increased from narrow to wide. Peak knee abduction moment and knee abduction impulse also decreased as step width increased from narrow to wide. Although men and women ran differently, gender only influenced the effect of step width on peak rearfoot inversion moment. In conclusion, step width influences lower extremity biomechanics in healthy runners. When step width increased from narrow to wide, peak values of frontal plane variables decreased. In addition to previously reported changes at the rearfoot, the hip and knee joint biomechanics were also influenced by changes in step width.

  9. Observed and Projected Climate Extremities in Chennai Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Anushiya, j.; Andimuthu, R.

    2013-12-01

    Analyses of observed climate throughout world revealed some significant changes in the extremes. Any change in the frequency or severity of extreme climate events would have profound impacts on the resilience of nature and society. It is thus very important to analyze extreme events to reliably monitor and detect climate change. Chennai is the fourth largest metropolis in India and one of the fastest growing economic and Industrial growth centers in South Asia. Population has grown rapidly in the last 20 years due to its major industrialization and tremendous growth. Already Chennai's day and night time Temperature shows an increasing trend. The past incidence of catastrophic flooding was observed in the city due to heavy rains associated with depressions and cyclonic storm lead floods in major rivers. After 2000, the incidents were reported repeatedly. The effort has made in this study to find the observed climate extremities over the past years and in the future. For observed changes, IMD gridded data set, and station data are used. Future high resolution climate scenarios (0.220x0.220) are developed through RCM using PRECIS. The boundary data have provided by the UK Met office. The selected members are simulated under the A1B scenario (a mid range emission scenario) for a continuous run till 2100. Climate indices listed by Expert Team (ET) on Climate Change Detection and Indices (ETCCDI) by the CLIVAR are considered in this study. The indices were obtained using the software package RClimDex. Kendall's tau based slope estimator has been used to find the significance lavel. The results shows the significant increasing tendency of warm days (TX90P) in the past and in future. The trends in extreme wet days (R99P) are also increased. The growth in population, urban and industrial area, economic activities, depletion of natural resources along with changing climate are forced to develop the infrastructure includes climate friendly policies to adopt and to ensure the

  10. Climate Change, Extreme Weather Events, and Human Health Implications in the Asia Pacific Region.

    PubMed

    Hashim, Jamal Hisham; Hashim, Zailina

    2016-03-01

    The Asia Pacific region is regarded as the most disaster-prone area of the world. Since 2000, 1.2 billion people have been exposed to hydrometeorological hazards alone through 1215 disaster events. The impacts of climate change on meteorological phenomena and environmental consequences are well documented. However, the impacts on health are more elusive. Nevertheless, climate change is believed to alter weather patterns on the regional scale, giving rise to extreme weather events. The impacts from extreme weather events are definitely more acute and traumatic in nature, leading to deaths and injuries, as well as debilitating and fatal communicable diseases. Extreme weather events include heat waves, cold waves, floods, droughts, hurricanes, tropical cyclones, heavy rain, and snowfalls. Globally, within the 20-year period from 1993 to 2012, more than 530 000 people died as a direct result of almost 15 000 extreme weather events, with losses of more than US$2.5 trillion in purchasing power parity.

  11. Climatic Extremes and Food Grain Production in India

    NASA Astrophysics Data System (ADS)

    A, A.; Mishra, V.

    2015-12-01

    Climate change is likely to affect food and water security in India. India has witnessed tremendous growth in its food production after the green revolution. However, during the recent decades the food grain yields were significantly affected by the extreme climate and weather events. Air temperature and associated extreme events (number of hot days and hot nights, heat waves) increased significantly during the last 50 years in the majority of India. More remarkably, a substantial increase in mean and extreme temperatures was observed during the winter season in India. On the other hand, India witnessed extreme flood and drought events that have become frequent during the past few decades. Extreme rainfall during the non-monsoon season adversely affected the food grain yields and results in tremendous losses in several parts of the country. Here we evaluate the changes in hydroclimatic extremes and its linkage with the food grain production in India. We use observed food grain yield data for the period of 1980-2012 at district level. We understand the linkages between food grain yield and crop phenology obtained from the high resolution leaf area index and NDVI datasets from satellites. We used long-term observed data of daily precipitation and maximum and minimum temperatures to evaluate changes in the extreme events. We use statistical models to develop relationships between crop yields, mean and extreme temperatures for various crops to understand the sensitivity of these crops towards changing climatic conditions. We find that some of the major crop types and predominant crop growing areas have shown a significant sensitivity towards changes in extreme climatic conditions in India.

  12. Evaluating wind extremes in CMIP5 climate models

    NASA Astrophysics Data System (ADS)

    Kumar, Devashish; Mishra, Vimal; Ganguly, Auroop R.

    2014-09-01

    Wind extremes have consequences for renewable energy sectors, critical infrastructures, coastal ecosystems, and insurance industry. Considerable debates remain regarding the impacts of climate change on wind extremes. While climate models have occasionally shown increases in regional wind extremes, a decline in the magnitude of mean and extreme near-surface wind speeds has been recently reported over most regions of the Northern Hemisphere using observed data. Previous studies of wind extremes under climate change have focused on selected regions and employed outputs from the regional climate models (RCMs). However, RCMs ultimately rely on the outputs of global circulation models (GCMs), and the value-addition from the former over the latter has been questioned. Regional model runs rarely employ the full suite of GCM ensembles, and hence may not be able to encapsulate the most likely projections or their variability. Here we evaluate the performance of the latest generation of GCMs, the Coupled Model Intercomparison Project phase 5 (CMIP5), in simulating extreme winds. We find that the multimodel ensemble (MME) mean captures the spatial variability of annual maximum wind speeds over most regions except over the mountainous terrains. However, the historical temporal trends in annual maximum wind speeds for the reanalysis data, ERA-Interim, are not well represented in the GCMs. The historical trends in extreme winds from GCMs are statistically not significant over most regions. The MME model simulates the spatial patterns of extreme winds for 25-100 year return periods. The projected extreme winds from GCMs exhibit statistically less significant trends compared to the historical reference period.

  13. Evaluating wind extremes in CMIP5 climate models

    NASA Astrophysics Data System (ADS)

    Kumar, Devashish; Mishra, Vimal; Ganguly, Auroop R.

    2015-07-01

    Wind extremes have consequences for renewable energy sectors, critical infrastructures, coastal ecosystems, and insurance industry. Considerable debates remain regarding the impacts of climate change on wind extremes. While climate models have occasionally shown increases in regional wind extremes, a decline in the magnitude of mean and extreme near-surface wind speeds has been recently reported over most regions of the Northern Hemisphere using observed data. Previous studies of wind extremes under climate change have focused on selected regions and employed outputs from the regional climate models (RCMs). However, RCMs ultimately rely on the outputs of global circulation models (GCMs), and the value-addition from the former over the latter has been questioned. Regional model runs rarely employ the full suite of GCM ensembles, and hence may not be able to encapsulate the most likely projections or their variability. Here we evaluate the performance of the latest generation of GCMs, the Coupled Model Intercomparison Project phase 5 (CMIP5), in simulating extreme winds. We find that the multimodel ensemble (MME) mean captures the spatial variability of annual maximum wind speeds over most regions except over the mountainous terrains. However, the historical temporal trends in annual maximum wind speeds for the reanalysis data, ERA-Interim, are not well represented in the GCMs. The historical trends in extreme winds from GCMs are statistically not significant over most regions. The MME model simulates the spatial patterns of extreme winds for 25-100 year return periods. The projected extreme winds from GCMs exhibit statistically less significant trends compared to the historical reference period.

  14. Weather Extremes, Climate Change and Adaptive Governance

    NASA Astrophysics Data System (ADS)

    Veland, S.; Lynch, A. H.

    2014-12-01

    Human societies have become a geologic agent of change, and with this is an increasing awareness of the environment risks that confront human activities and values. More frequent and extreme hydroclimate events, anomalous tropical cyclone seasons, heat waves and droughts have all been documented, and many rigorously attributed to fossil fuel emissions (e.g. DeGaetano 2009; Hoyos et al. 2006). These extremes, however, do not register themselves in the abstract - they occur in particular places, affecting particular populations and ecosystems (Turner et al. 2003). This can be considered to present a policy window to decrease vulnerability and enhance emergency management. However, the asymmetrical character of these events may lead some to treat remote areas or disenfranchised populations as capable of absorbing the environmental damage attributable to the collective behavior of those residing in wealthy, populous, industrialized societies (Young 1989). Sound policies for adaptation to changing extremes must take into account the multiple interests and resource constraints for the populations affected and their broader contexts. Minimizing vulnerability to weather extremes is only one of many interests in human societies, and as noted, this interest competes with the others for limited time, attention, funds and other resources. Progress in reducing vulnerability also depends on policy that integrates the best available local and scientific knowledge and experience elsewhere. This improves the chance that each policy will succeed, but there are no guarantees. Each policy must be recognized as a matter of trial and error to some extent; surprises are inevitable. Thus each policy should be designed to fail gracefully if it fails, to learn from the experience, and to leave resources sufficient to implement the lessons learned. Overall policy processes must be quasi-evolutionary, avoiding replication without modification of failed policies and building on the successes

  15. Contrasting responses of mean and extreme snowfall to climate change.

    PubMed

    O'Gorman, Paul A

    2014-08-28

    Snowfall is an important element of the climate system, and one that is expected to change in a warming climate. Both mean snowfall and the intensity distribution of snowfall are important, with heavy snowfall events having particularly large economic and human impacts. Simulations with climate models indicate that annual mean snowfall declines with warming in most regions but increases in regions with very low surface temperatures. The response of heavy snowfall events to a changing climate, however, is unclear. Here I show that in simulations with climate models under a scenario of high emissions of greenhouse gases, by the late twenty-first century there are smaller fractional changes in the intensities of daily snowfall extremes than in mean snowfall over many Northern Hemisphere land regions. For example, for monthly climatological temperatures just below freezing and surface elevations below 1,000 metres, the 99.99th percentile of daily snowfall decreases by 8% in the multimodel median, compared to a 65% reduction in mean snowfall. Both mean and extreme snowfall must decrease for a sufficiently large warming, but the climatological temperature above which snowfall extremes decrease with warming in the simulations is as high as -9 °C, compared to -14 °C for mean snowfall. These results are supported by a physically based theory that is consistent with the observed rain-snow transition. According to the theory, snowfall extremes occur near an optimal temperature that is insensitive to climate warming, and this results in smaller fractional changes for higher percentiles of daily snowfall. The simulated changes in snowfall that I find would influence surface snow and its hazards; these changes also suggest that it may be difficult to detect a regional climate-change signal in snowfall extremes.

  16. TECA: A Parallel Toolkit for Extreme Climate Analysis

    SciTech Connect

    Prabhat, Mr; Ruebel, Oliver; Byna, Surendra; Wu, Kesheng; Li, Fuyu; Wehner, Michael; Bethel, E. Wes

    2012-03-12

    We present TECA, a parallel toolkit for detecting extreme events in large climate datasets. Modern climate datasets expose parallelism across a number of dimensions: spatial locations, timesteps and ensemble members. We design TECA to exploit these modes of parallelism and demonstrate a prototype implementation for detecting and tracking three classes of extreme events: tropical cyclones, extra-tropical cyclones and atmospheric rivers. We process a modern TB-sized CAM5 simulation dataset with TECA, and demonstrate good runtime performance for the three case studies.

  17. Statistical methods for the analysis of climate extremes

    NASA Astrophysics Data System (ADS)

    Naveau, Philippe; Nogaj, Marta; Ammann, Caspar; Yiou, Pascal; Cooley, Daniel; Jomelli, Vincent

    2005-08-01

    Currently there is an increasing research activity in the area of climate extremes because they represent a key manifestation of non-linear systems and an enormous impact on economic and social human activities. Our understanding of the mean behavior of climate and its 'normal' variability has been improving significantly during the last decades. In comparison, climate extreme events have been hard to study and even harder to predict because they are, by definition, rare and obey different statistical laws than averages. In this context, the motivation for this paper is twofold. Firstly, we recall the basic principles of Extreme Value Theory that is used on a regular basis in finance and hydrology, but it still does not have the same success in climate studies. More precisely, the theoretical distributions of maxima and large peaks are recalled. The parameters of such distributions are estimated with the maximum likelihood estimation procedure that offers the flexibility to take into account explanatory variables in our analysis. Secondly, we detail three case-studies to show that this theory can provide a solid statistical foundation, specially when assessing the uncertainty associated with extreme events in a wide range of applications linked to the study of our climate. To cite this article: P. Naveau et al., C. R. Geoscience 337 (2005).

  18. Genetic and life-history consequences of extreme climate events.

    PubMed

    Vincenzi, Simone; Mangel, Marc; Jesensek, Dusan; Garza, John Carlos; Crivelli, Alain J

    2017-02-08

    Climate change is predicted to increase the frequency and intensity of extreme climate events. Tests on empirical data of theory-based predictions on the consequences of extreme climate events are thus necessary to understand the adaptive potential of species and the overarching risks associated with all aspects of climate change. We tested predictions on the genetic and life-history consequences of extreme climate events in two populations of marble trout Salmo marmoratus that have experienced severe demographic bottlenecks due to flash floods. We combined long-term field and genotyping data with pedigree reconstruction in a theory-based framework. Our results show that after flash floods, reproduction occurred at a younger age in one population. In both populations, we found the highest reproductive variance in the first cohort born after the floods due to a combination of fewer parents and higher early survival of offspring. A small number of parents allowed for demographic recovery after the floods, but the genetic bottleneck further reduced genetic diversity in both populations. Our results also elucidate some of the mechanisms responsible for a greater prevalence of faster life histories after the extreme event.

  19. Biodiversity increases the resistance of ecosystem productivity to climate extremes.

    PubMed

    Isbell, Forest; Craven, Dylan; Connolly, John; Loreau, Michel; Schmid, Bernhard; Beierkuhnlein, Carl; Bezemer, T Martijn; Bonin, Catherine; Bruelheide, Helge; de Luca, Enrica; Ebeling, Anne; Griffin, John N; Guo, Qinfeng; Hautier, Yann; Hector, Andy; Jentsch, Anke; Kreyling, Jürgen; Lanta, Vojtěch; Manning, Pete; Meyer, Sebastian T; Mori, Akira S; Naeem, Shahid; Niklaus, Pascal A; Polley, H Wayne; Reich, Peter B; Roscher, Christiane; Seabloom, Eric W; Smith, Melinda D; Thakur, Madhav P; Tilman, David; Tracy, Benjamin F; van der Putten, Wim H; van Ruijven, Jasper; Weigelt, Alexandra; Weisser, Wolfgang W; Wilsey, Brian; Eisenhauer, Nico

    2015-10-22

    It remains unclear whether biodiversity buffers ecosystems against climate extremes, which are becoming increasingly frequent worldwide. Early results suggested that the ecosystem productivity of diverse grassland plant communities was more resistant, changing less during drought, and more resilient, recovering more quickly after drought, than that of depauperate communities. However, subsequent experimental tests produced mixed results. Here we use data from 46 experiments that manipulated grassland plant diversity to test whether biodiversity provides resistance during and resilience after climate events. We show that biodiversity increased ecosystem resistance for a broad range of climate events, including wet or dry, moderate or extreme, and brief or prolonged events. Across all studies and climate events, the productivity of low-diversity communities with one or two species changed by approximately 50% during climate events, whereas that of high-diversity communities with 16-32 species was more resistant, changing by only approximately 25%. By a year after each climate event, ecosystem productivity had often fully recovered, or overshot, normal levels of productivity in both high- and low-diversity communities, leading to no detectable dependence of ecosystem resilience on biodiversity. Our results suggest that biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events. Anthropogenic environmental changes that drive biodiversity loss thus seem likely to decrease ecosystem stability, and restoration of biodiversity to increase it, mainly by changing the resistance of ecosystem productivity to climate events.

  20. Impacts of Climate Change on the Climate Extremes of the Middle East

    NASA Astrophysics Data System (ADS)

    Turp, M. Tufan; Collu, Kamil; Deler, F. Busra; Ozturk, Tugba; Kurnaz, M. Levent

    2016-04-01

    The Middle East is one of the most vulnerable regions to the impacts of climate change. Because of the importance of the region and its vulnerability to global climate change, the studies including the investigation of projected changes in the climate of the Middle East play a crucial role in order to struggle with the negative effects of climate change. This research points out the relationship between the climate change and climate extremes indices in the Middle East and it investigates the changes in the number of extreme events as described by the joint CCl/CLIVAR/JCOMM Expert Team (ET) on Climate Change Detection and Indices (ETCCDI). As part of the study, the regional climate model (RegCM4.4) of the Abdus Salam International Centre for Theoretical Physics (ICTP) is run to obtain future projection data. This research has been supported by Boǧaziçi University Research Fund Grant Number 10421.

  1. Variable Effects of Climate on Forest Growth in Relation to Climate Extremes, Disturbance, and Forest Dynamics.

    PubMed

    Itter, Malcolm S; Finley, Andrew O; D'Amato, Anthony W; Foster, Jane R; Bradford, John B

    2017-02-09

    Changes in the frequency, duration, and severity of climate extremes are forecast to occur under global climate change. The impacts of climate extremes on forest productivity and health remain difficult to predict due to potential interactions with disturbance events and forest dynamics-changes in forest stand composition, density, size and age structure over time. Such interactions may lead to non-linear forest growth responses to climate involving thresholds and lag effects. Understanding how forest dynamics influence growth responses to climate is particularly important given stand structure and composition can be modified through management to increase forest resistance and resilience to climate change. To inform such adaptive management, we develop a hierarchical Bayesian state space model in which climate effects on tree growth are allowed to vary over time and in relation to past climate extremes, disturbance events, and forest dynamics. The model is an important step toward integrating disturbance and forest dynamics into predictions of forest growth responses to climate extremes. We apply the model to a dendrochronology data set from forest stands of varying composition, structure, and development stage in northeastern Minnesota that have experienced extreme climate years and forest tent caterpillar defoliation events. Mean forest growth was most sensitive to water balance variables representing climatic water deficit. Forest growth responses to water deficit were partitioned into responses driven by climatic threshold exceedances and interactions with insect defoliation. Forest growth was both resistant and resilient to climate extremes with the majority of forest growth responses occurring after multiple climatic threshold exceedances across seasons and years. Interactions between climate and disturbance were observed in a subset of years with insect defoliation increasing forest growth sensitivity to water availability. Forest growth was particularly

  2. A Weather climate change Impact Study at Extreme Resolution (WISER)

    NASA Astrophysics Data System (ADS)

    Gadian, A.; Burton, R.; Bruyere, C. L.; Done, J.; Tye, M. R.; Holland, G. J.; Thielen, J.; Blyth, A. M.

    2014-12-01

    Understanding and simulation of weather scale processes is required to understand extremes in the rapidly changing climate. The resolution required to include meso-scale features, is still out of the reach of climate model resolution, and this project attempts to include the important meso-scale features. WISER (Weather climate change Impact Study at Extreme Resolution) is a regional climate study to use a numerical weather model (WRF), in a channel formulation (+/- 68 degrees latitude) at a resolution of 20 km at the equator reducing to 9 km at the Northern and Southern boundaries. The inner domain nested regional model at a resolution of 3-4 km over Western Europe aims at resolving the larger convective scale precipitation events statistically. (see figure for geometrical domain set up). The outer domain is driven by ERA interim climate reanalysis global fields for recent decades 1989-2001; the nested inner domain d02 is driven by the outer domain. The inner model climatological statistics are compared with observations and with those from the outer domain, with particular reference for the statistical convective precipitation extremes. The extremes of the pdfs are shown to be better represented by the increase in resolution and suggest that this could be a tool useful in examining the likely extremes in future climates. The data also provides an assessment of the uncertainty in the precipitation extremes and an alternative approach to ownscaling. The overall aim is to examine statistical changes in(a) general precipitation over western Europe and the UK,(b) in quantity and frequency of severe and hazardous convective rainfall events. The future work-plan is(i) to complete simulations for the decade 1989-2000 driven by ERA-Interim reanalysis data(ii) to complete simulations for the same decade with boundary CESM/CAM climate model data to compute offset and bias corrections(iii) to complete climate scenarios for decadal periods, 2020-2030 initially and later 2050

  3. Improving Predictions and Management of Hydrological Extremes through Climate Services

    NASA Astrophysics Data System (ADS)

    van den Hurk, Bart; Wijngaard, Janet; Pappenberger, Florian; Bouwer, Laurens; Weerts, Albrecht; Buontempo, Carlo; Doescher, Ralf; Manez, Maria; Ramos, Maria-Helena; Hananel, Cedric; Ercin, Ertug; Hunink, Johannes; Klein, Bastian; Pouget, Laurent; Ward, Philip

    2016-04-01

    The EU Roadmap on Climate Services can be seen as a result of convergence between the society's call for "actionable research", and the climate research community providing tailored data, information and knowledge. However, although weather and climate have clearly distinct definitions, a strong link between weather and climate services exists that is not explored extensively. Stakeholders being interviewed in the context of the Roadmap consider climate as a far distant long term feature that is difficult to consider in present-day decision taking, which is dominated by daily experience with handling extreme events. It is argued that this experience is a rich source of inspiration to increase society's resilience to an unknown future. A newly started European research project, IMPREX, is built on the notion that "experience in managing current day weather extremes is the best learning school to anticipate consequences of future climate". This paper illustrates possible ways to increase the link between information and services addressing weather and climate time scales by discussing the underlying concepts of IMPREX and its expected outcome.

  4. Increasing impacts of climate extremes on critical infrastructures in Europe

    NASA Astrophysics Data System (ADS)

    Forzieri, Giovanni; Bianchi, Alessandra; Feyen, Luc; Silva, Filipe Batista e.; Marin, Mario; Lavalle, Carlo; Leblois, Antoine

    2016-04-01

    The projected increases in exposure to multiple climate hazards in many regions of Europe, emphasize the relevance of a multi-hazard risk assessment to comprehensively quantify potential impacts of climate change and develop suitable adaptation strategies. In this context, quantifying the future impacts of climatic extremes on critical infrastructures is crucial due to their key role for human wellbeing and their effects on the overall economy. Critical infrastructures describe the existing assets and systems that are essential for the maintenance of vital societal functions, health, safety, security, economic or social well-being of people, and the disruption or destruction of which would have a significant impact as a result of the failure to maintain those functions. We assess the direct damages of heat and cold waves, river and coastal flooding, droughts, wildfires and windstorms to energy, transport, industry and social infrastructures in Europe along the 21st century. The methodology integrates in a coherent framework climate hazard, exposure and vulnerability components. Overall damage is expected to rise up to 38 billion €/yr, ten time-folds the current climate damage, with drastic variations in risk scenarios. Exemplificative are drought and heat-related damages that could represent 70% of the overall climate damage in 2080s versus the current 12%. Many regions, prominently Southern Europe, will likely suffer multiple stresses and systematic infrastructure failures due to climate extremes if no suitable adaptation measures will be taken.

  5. Recent Extremes in European Climate: Assessment, Case Studies and Impacts

    NASA Astrophysics Data System (ADS)

    Yiou, P.; Vautard, R.; D'Andrea, F.; Cattiaux, J.; Naveau, P.; Ciais, P.; Garnier, E.

    2008-12-01

    During the last centuries and up to the present decade, extreme climate events have certainly had larger economic impacts than any trend of temperature in Europe. In addition to an intrinsic scientific interest, their study is thus essential for society. One of the challenges of their investigation is that, depending on their definition, extreme climate events potentially have a behavior that is not connected to the secular temperature trend in a simple fashion. This presentation will review the statistical assessments of extremes in Europe, focusing on surface temperature, precipitation, and their connections with large-scale features of the atmospheric circulation. In particular, the questions of modeling their severity and frequency will be discussed in the first part of the presentation. I will then give two kinds of examples of European climate extremes: summer heatwaves and droughts, and winter warm waves. The mechanisms leading to such phenomena will be explored, and I will examine some of the impacts on the biosphere that were recently observed. In order to provide a long term perspective of those events, examples of historical droughts in France will be presented and connected with proxy records of temperature. It appears that the mechanisms that are favored for present-day climate might still have been valid during the past centuries. To conclude, new challenges for dynamical and statistical modeling will be explored.

  6. Identifying causal effects of climate extremes on societies

    NASA Astrophysics Data System (ADS)

    Hsiang, S. M.

    2015-12-01

    We discuss recent advances in the application of quasi-experimental techniques to identify causal effects of climate extremes on human societies using historical data. Results identifying effects on economic productivity, violence, migration, and global trade will be discussed. We will discuss how these statistical findings can be applied to calibrate modeling exercises and areas for future research.

  7. Climate Change and Extreme Weather Impacts on Salt Marsh Plants

    EPA Science Inventory

    Regional assessments of climate change impacts on New England demonstrate a clear rise in rainfall over the past century. The number of extreme precipitation events (i.e., two or more inches of rain falling during a 48-hour period) has also increased over the past few decades. ...

  8. EURO4M: monitoring weather and climate extremes in Europe

    NASA Astrophysics Data System (ADS)

    Klein Tank, A. M. G.

    2010-09-01

    This paper presents a new project called EURO4M: European Reanalysis and Observations for Monitoring (www.euro4m.eu), which is funded under the European Union FP7 programme. The ambitious plans in this project will be illustrated by examples from ongoing work and some early results. EURO4M sets out to develop the capacity for, and deliver the best possible and most complete (gridded) climate change time series and monitoring services covering all of Europe. The focus is on weather and climate extremes. Key questions include: What changes in weather and climate extremes do we observe in Europe over recent decades? How certain are we about these changes? Are our monitoring systems adequate to address these questions? EURO4M addresses the situation of fragmentation and scarcity of long-term climate change monitoring information for Europe. The project will extend, in a cost effective manner, European capacity to systematically monitor climate variability and change on a range of space and time scales. It will do so by combining seamlessly two different but complementary approaches: regional observation datasets of GCOS Essential Climate Variables (ECVs) and newly developed regional reanalysis. EURO4M will reach out with innovative and integrated data products and services to policy-makers, researchers, planners and citizens at European, national and local levels. This will directly address the needs of, for instance, the European Environment Agency for their environmental assessment reports - and even provide online reporting during emerging extreme events. EURO4M intends to become Europe's primary source of timely and reliable information about the state of the climate. The project has the potential to evolve into a future GMES service on climate change monitoring that is fully complimentary and supporting the existing operational GMES services. The EURO4M consortium consists of 9 partners from 8 countries. The project will run from 1 April 2010 until 31 March 2014

  9. Impact of an extreme climatic event on community assembly.

    PubMed

    Thibault, Katherine M; Brown, James H

    2008-03-04

    Extreme climatic events are predicted to increase in frequency and magnitude, but their ecological impacts are poorly understood. Such events are large, infrequent, stochastic perturbations that can change the outcome of entrained ecological processes. Here we show how an extreme flood event affected a desert rodent community that has been monitored for 30 years. The flood (i) caused catastrophic, species-specific mortality; (ii) eliminated the incumbency advantage of previously dominant species; (iii) reset long-term population and community trends; (iv) interacted with competitive and metapopulation dynamics; and (v) resulted in rapid, wholesale reorganization of the community. This and a previous extreme rainfall event were punctuational perturbations-they caused large, rapid population- and community-level changes that were superimposed on a background of more gradual trends driven by climate and vegetation change. Captured by chance through long-term monitoring, the impacts of such large, infrequent events provide unique insights into the processes that structure ecological communities.

  10. Mid-Latitude Circulation and Extremes in a Changing Climate

    SciTech Connect

    Chen, Gang

    2016-08-04

    Mid-latitude extreme weather events are responsible for a large part of climate-related damage. Yet large uncertainties remain in climate model projections of heat waves, droughts, and heavy rain/snow events on regional scales, limiting our ability to effectively use these projections for climate adaptation and mitigation. These uncertainties can be attributed to both the lack of spatial resolution in the models, and to the lack of a dynamical understanding of these extremes. The approach of this project is to relate the fine-scale features to the large scales in current climate simulations, seasonal re-forecasts, and climate change projections in a very wide range of models, including the atmospheric and coupled models of ECMWF over a range of horizontal resolutions (125 to 10 km), aqua-planet configuration of the Model for Prediction Across Scales and High Order Method Modeling Environments (resolutions ranging from 240 km – 7.5 km) with various physics suites, and selected CMIP5 model simulations. The large scale circulation will be quantified both on the basis of the well tested preferred circulation regime approach, and very recently developed measures, the finite amplitude Wave Activity (FAWA) and its spectrum. The fine scale structures related to extremes will be diagnosed following the latest approaches in the literature. The goal is to use the large scale measures as indicators of the probability of occurrence of the finer scale structures, and hence extreme events. These indicators will then be applied to the CMIP5 models and time-slice projections of a future climate.

  11. Compound extremes in a changing climate - a Markov chain approach

    NASA Astrophysics Data System (ADS)

    Sedlmeier, Katrin; Mieruch, Sebastian; Schädler, Gerd; Kottmeier, Christoph

    2016-11-01

    Studies using climate models and observed trends indicate that extreme weather has changed and may continue to change in the future. The potential impact of extreme events such as heat waves or droughts depends not only on their number of occurrences but also on "how these extremes occur", i.e., the interplay and succession of the events. These quantities are quite unexplored, for past changes as well as for future changes and call for sophisticated methods of analysis. To address this issue, we use Markov chains for the analysis of the dynamics and succession of multivariate or compound extreme events. We apply the method to observational data (1951-2010) and an ensemble of regional climate simulations for central Europe (1971-2000, 2021-2050) for two types of compound extremes, heavy precipitation and cold in winter and hot and dry days in summer. We identify three regions in Europe, which turned out to be likely susceptible to a future change in the succession of heavy precipitation and cold in winter, including a region in southwestern France, northern Germany and in Russia around Moscow. A change in the succession of hot and dry days in summer can be expected for regions in Spain and Bulgaria. The susceptibility to a dynamic change of hot and dry extremes in the Russian region will probably decrease.

  12. Extreme developmental temperatures result in morphological abnormalities in painted turtles (Chrysemys picta): a climate change perspective.

    PubMed

    Telemeco, Rory S; Warner, Daniel A; Reida, Molly K; Janzen, Fredric J

    2013-06-01

    Increases in extreme environmental events are predicted to be major results of ongoing global climate change and may impact the persistence of species. We examined the effects of heat and cold waves during embryonic development of painted turtles (Chrysemys picta) in natural nests on the occurrence of abnormal shell morphologies in hatchlings. We found that nests exposed to extreme hot temperatures for >60 h produced more hatchlings with abnormalities than nests exposed to extreme hot temperatures for shorter periods, regardless of whether or not nesting females displayed abnormal morphologies. We observed no effect of extreme cold nest temperatures on the occurrence of hatchlings with abnormalities. Moreover, the frequency of nesting females with abnormal shell morphologies was approximately 2-fold lower than that of their offspring, suggesting that such abnormalities are negatively correlated with survival and fitness. Female turtles could potentially buffer their offspring from extreme heat by altering aspects of nesting behavior, such as choosing shadier nesting sites. We addressed this hypothesis by examining the effects of shade cover on extreme nest temperatures and the occurrence of hatchling abnormalities. While shade cover was negatively correlated with the occurrence of extreme hot nest temperatures, it was not significantly correlated with abnormalities. Therefore, female choice of shade cover does not appear to be a viable target for selection to reduce hatchling abnormalities. Our results suggest that increases in the frequency and intensity of heat waves associated with climate change might perturb developmental programs and thereby reduce the fitness of entire cohorts of turtles.

  13. Assessment of a climate model to reproduce rainfall variability and extremes over Southern Africa

    NASA Astrophysics Data System (ADS)

    Williams, C. J. R.; Kniveton, D. R.; Layberry, R.

    2010-01-01

    It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The sub-continent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite-derived rainfall data from the Microwave Infrared Rainfall Algorithm (MIRA). This dataset covers the period from 1993 to 2002 and the whole of southern Africa at a spatial resolution of 0.1° longitude/latitude. This paper concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of present-day rainfall variability over southern Africa and is not intended to discuss possible future changes in climate as these have been documented elsewhere. Simulations of current climate from the UK Meteorological Office Hadley Centre's climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. Secondly, the ability of the model to reproduce daily rainfall extremes is assessed, again by a comparison with

  14. Ecosystem recovery after climatic extremes enhanced by genotypic diversity

    PubMed Central

    Reusch, Thorsten B. H.; Ehlers, Anneli; Hämmerli, August; Worm, Boris

    2005-01-01

    Contemporary climate change is characterized both by increasing mean temperature and increasing climate variability such as heat waves, storms, and floods. How populations and communities cope with such climatic extremes is a question central to contemporary ecology and biodiversity conservation. Previous work has shown that species diversity can affect ecosystem functioning and resilience. Here, we show that genotypic diversity can replace the role of species diversity in a species-poor coastal ecosystem, and it may buffer against extreme climatic events. In a manipulative field experiment, increasing the genotypic diversity of the cosmopolitan seagrass Zostera marina enhanced biomass production, plant density, and faunal abundance, despite near-lethal water temperatures due to extreme warming across Europe. Net biodiversity effects were explained by genotypic complementarity rather than by selection of particularly robust genotypes. Positive effects on invertebrate fauna suggest that genetic diversity has second-order effects reaching higher trophic levels. Our results highlight the importance of maintaining genetic as well as species diversity to enhance ecosystem resilience in a world of increasing uncertainty. PMID:15710890

  15. Extreme weather events in Iran under a changing climate

    NASA Astrophysics Data System (ADS)

    Alizadeh-Choobari, Omid; Najafi, M. S.

    2017-03-01

    Observations unequivocally show that Iran has been rapidly warming over recent decades, which in sequence has triggered a wide range of climatic impacts. Meteorological records of several ground stations across Iran with daily temporal resolution for the period 1951-2013 were analyzed to investigate the climate change and its impact on some weather extremes. Iran has warmed by nearly 1.3° C during the period 1951-2013 (+0.2° per decade), with an increase of the minimum temperature at a rate two times that of the maximum. Consequently, an increase in the frequency of heat extremes and a decrease in the frequency of cold extremes have been observed. The annual precipitation has decreased by 8 mm per decade, causing an expansion of Iran's dry zones. Previous studies have pointed out that warming is generally associated with more frequent heavy precipitation because a warmer air can hold more moisture. Nevertheless, warming in Iran has been associated with more frequent light precipitation, but less frequent moderate, heavy and extremely heavy precipitation. This is because in the subtropical dry zones, a longer time is required to recharge the atmosphere with water vapour in a warmer climate, causing more water vapour to be transported from the subtropics to high latitudes before precipitations forms. In addition, the altitude of the condensation level increases in a warmer climate in subtropical regions, causing an overall decrease of precipitation. We argue that changing in the frequency of heavy precipitation in response to warming varies depending on the geographical location. Warming over the dry subtropical regions is associated with a decrease in the frequency of heavy precipitation, while an increase is expected over both subpolar and tropical regions. The warmer climate has also led to the increase in the frequency of both thunderstorms (driven by convective heating) and dust events over Iran.

  16. Climate, extreme heat, and electricity demand in California

    SciTech Connect

    Miller, N.L.; Hayhoe, K.; Jin, J.; Auffhammer, M.

    2008-04-01

    Climate projections from three atmosphere-ocean climate models with a range of low to mid-high temperature sensitivity forced by the Intergovernmental Panel for Climate Change SRES higher, middle, and lower emission scenarios indicate that, over the 21st century, extreme heat events for major cities in heavily air-conditioned California will increase rapidly. These increases in temperature extremes are projected to exceed the rate of increase in mean temperature, along with increased variance. Extreme heat is defined here as the 90 percent exceedance probability (T90) of the local warmest summer days under the current climate. The number of extreme heat days in Los Angeles, where T90 is currently 95 F (32 C), may increase from 12 days to as many as 96 days per year by 2100, implying current-day heat wave conditions may last for the entire summer, with earlier onset. Overall, projected increases in extreme heat under the higher A1fi emission scenario by 2070-2099 tend to be 20-30 percent higher than those projected under the lower B1 emission scenario, ranging from approximately double the historical number of days for inland California cities (e.g. Sacramento and Fresno), up to four times for previously temperate coastal cities (e.g. Los Angeles, San Diego). These findings, combined with observed relationships between high temperature and electricity demand for air-conditioned regions, suggest potential shortfalls in transmission and supply during T90 peak electricity demand periods. When the projected extreme heat and peak demand for electricity are mapped onto current availability, maintaining technology and population constant only for demand side calculations, we find the potential for electricity deficits as high as 17 percent. Similar increases in extreme heat days are suggested for other locations across the U.S. southwest, as well as for developing nations with rapidly increasing electricity demands. Electricity response to recent extreme heat events, such

  17. Case studies of extreme climatic events in the Amazon basin

    NASA Technical Reports Server (NTRS)

    Marengo, Jose A.; Hastenrath, Stefan

    1993-01-01

    The present exploration of climate-anomaly mechanisms, on the basis of surface-climatological and hydrological series, as well as upper-air and satellite observations, gives attention to the March-April rainy season peak in northern Amazonia. While the moderately wet year 1986 exhibited a far-southerly location of the Atlantic near-equatorial trough, and an embedded intertropical convergence zone (ITCZ), the extremely dry El Nino year 1983 featured a more northerly ITCZ. Major mechanisms of extreme rainfall events are synthesized on the basis of these analyses.

  18. Spatio-temporal dynamics of climatic extreme indices over Siberia

    NASA Astrophysics Data System (ADS)

    Shulgina, Tamara; Gordov, Evgeny; Genina, Elena

    2013-04-01

    Nowadays numerous investigations are aimed at analysis of regional climatic extremes becoming more pronounced under climate change. In particular, obtained results indicate decrease of number of frost days and increase of growing season length over the most part of Siberian territory, and precipitation intensity increases in the northern part of Siberia [1]. To obtain the complete pattern of ongoing changes in climatic extremes the following indices dynamics should be analyzed: percentage of days when minimum/maximum temperature less than 10th percentile, percentage of days minimum/maximum temperature greater than 90th percentile, maximum length of dry/wet spell. Climatic extreme assessments are obtained based on ECMWF ERA Interim Reanalysis and APHRODITE JMA data for the time period from 1979 to 2007. These datasets reproduce the statistics of observed climate features in Siberia more accurately [1]. Modern techniques of mathematical statistics are used for analysis of the temporal and spatial behavior of above mentioned climatic characteristics. Data analysis has been done using computational-geoinformational web-system for analysis of regional climatic change [2]. Surface temperature and precipitation extreme assessments obtained for Siberian territory can help to get a better understanding of current changes in the biosphere and socio-economic aspects. Partial financial support for this research from the Russian Foundation for Basic Research (project 11-05-01190a), SB RAS projects VIII.80.2.1 and 131, and the Russian Federation Ministry of Education and Science grant # 8345 is acknowledged. 1. Shulgina T.M., Genina E.Yu., Gordov E.P. Dynamics of climatic characteristics influencing vegetation in Siberia // Environmental Research Letters, 2011. - DOI: 10.1088/1748-9326/6/4/045210. - 7 p. 2. Evgeny Gordov et al. Development of Information-Computational Infrastructure for Environmental research in Siberia as a baseline component of the Northern Eurasia Earth

  19. Extreme events evaluation over African cities with regional climate simulations

    NASA Astrophysics Data System (ADS)

    Bucchignani, Edoardo; Mercogliano, Paola; Simonis, Ingo; Engelbrecht, Francois

    2013-04-01

    The warming of the climate system in recent decades is evident from observations and is mainly related to the increase of anthropogenic greenhouse gas concentrations (IPCC, 2012). Given the expected climate change conditions on the African continent, as underlined in different publications, and their associated socio-economic impacts, an evaluation of the specific effects on some strategic African cities on the medium and long-term is of crucial importance with regard to the development of adaptation strategies. Assessments usually focus on averages climate properties rather than on variability or extremes, but often these last ones have more impacts on the society than averages values. Global Coupled Models (GCM) are generally used to simulate future climate scenarios as they guarantee physical consistency between variables; however, due to the coarse spatial resolution, their output cannot be used for impact studies on local scales, which makes necessary the generation of higher resolution climate change data. Regional Climate Models (RCM) describe better the phenomena forced by orography or by coastal lines, or that are related to convection. Therefore they can provide more detailed information on climate extremes that are hard to study and even harder to predict because they are, by definition, rare and obey different statistical laws. The normal bias of the RCM to represent the local climatology is reduced using adequate statistical techniques based on the comparison of the simulated results with long observational time series. In the framework of the EU-FP7 CLUVA (Climate Change and Urban Vulnerability in Africa) project, regional projections of climate change at high resolution (about 8 km), have been performed for selected areas surrounding five African cities. At CMCC, the regional climate model COSMO-CLM has been employed: it is a non-hydrostatic model. For each domain, two simulations have been performed, considering the RCP4.5 and RCP8.5 emission

  20. Impact of climate extremes on wildlife plant flowering over Germany

    NASA Astrophysics Data System (ADS)

    Siegmund, J. F.; Wiedermann, M.; Donges, J. F.; Donner, R. V.

    2015-11-01

    Ongoing climate change is known to cause an increase in the frequency and amplitude of local temperature and precipitation extremes in many regions of the Earth. While gradual changes in the climatological conditions are known to strongly influence plant flowering dates, the question arises if and how extremes specifically impact the timing of this important phenological phase. In this study, we systematically quantify simultaneities between meteorological extremes and the timing of flowering of four shrub species across Germany by means of event coincidence analysis, a novel statistical tool that allows assessing whether or not two types of events exhibit similar sequences of occurrences. Our systematic investigation supports previous findings of experimental studies by highlighting the impact of early spring temperatures on the flowering of wildlife plants. In addition, we find statistically significant indications for some long-term relations reaching back to the previous year.

  1. Using Atmospheric Circulation Patterns to Detect and Attribute Changes in the Risk of Extreme Climate Events

    NASA Astrophysics Data System (ADS)

    Diffenbaugh, N. S.; Horton, D. E.; Singh, D.; Swain, D. L.; Touma, D. E.; Mankin, J. S.

    2015-12-01

    Because of the high cost of extreme events and the growing evidence that global warming is likely to alter the statistical distribution of climate variables, detection and attribution of changes in the probability of extreme climate events has become a pressing topic for the scientific community, elected officials, and the public. While most of the emphasis has thus far focused on analyzing the climate variable of interest (most often temperature or precipitation, but also flooding and drought), there is an emerging emphasis on applying detection and attribution analysis techniques to the underlying physical causes of individual extreme events. This approach is promising in part because the underlying physical causes (such as atmospheric circulation patterns) can in some cases be more accurately represented in climate models than the more proximal climate variable (such as precipitation). In addition, and more scientifically critical, is the fact that the most extreme events result from a rare combination of interacting causes, often referred to as "ingredients". Rare events will therefore always have a strong influence of "natural" variability. Analyzing the underlying physical mechanisms can therefore help to test whether there have been changes in the probability of the constituent conditions of an individual event, or whether the co-occurrence of causal conditions cannot be distinguished from random chance. This presentation will review approaches to applying detection/attribution analysis to the underlying physical causes of extreme events (including both "thermodynamic" and "dynamic" causes), and provide a number of case studies, including the role of frequency of atmospheric circulation patterns in the probability of hot, cold, wet and dry events.

  2. Financial market response to extreme events indicating climatic change

    NASA Astrophysics Data System (ADS)

    Anttila-Hughes, J. K.

    2016-05-01

    A variety of recent extreme climatic events are considered to be strong evidence that the climate is warming, but these incremental advances in certainty often seem ignored by non-scientists. I identify two unusual types of events that are considered to be evidence of climate change, announcements by NASA that the global annual average temperature has set a new record, and the sudden collapse of major polar ice shelves, and then conduct an event study to test whether news of these events changes investors' valuation of energy companies, a subset of firms whose future performance is closely tied to climate change. I find evidence that both classes of events have influenced energy stock prices since the 1990s, with record temperature announcements on average associated with negative returns and ice shelf collapses associated with positive returns. I identify a variety of plausible mechanisms that may be driving these differential responses, discuss implications for energy markets' views on long-term regulatory risk, and conclude that investors not only pay attention to scientifically significant climate events, but discriminate between signals carrying different information about the nature of climatic change.

  3. Antarctic climate change: extreme events disrupt plastic phenotypic response in Adélie penguins.

    PubMed

    Lescroël, Amélie; Ballard, Grant; Grémillet, David; Authier, Matthieu; Ainley, David G

    2014-01-01

    In the context of predicted alteration of sea ice cover and increased frequency of extreme events, it is especially timely to investigate plasticity within Antarctic species responding to a key environmental aspect of their ecology: sea ice variability. Using 13 years of longitudinal data, we investigated the effect of sea ice concentration (SIC) on the foraging efficiency of Adélie penguins (Pygoscelis adeliae) breeding in the Ross Sea. A 'natural experiment' brought by the exceptional presence of giant icebergs during 5 consecutive years provided unprecedented habitat variation for testing the effects of extreme events on the relationship between SIC and foraging efficiency in this sea-ice dependent species. Significant levels of phenotypic plasticity were evident in response to changes in SIC in normal environmental conditions. Maximum foraging efficiency occurred at relatively low SIC, peaking at 6.1% and decreasing with higher SIC. The 'natural experiment' uncoupled efficiency levels from SIC variations. Our study suggests that lower summer SIC than currently observed would benefit the foraging performance of Adélie penguins in their southernmost breeding area. Importantly, it also provides evidence that extreme climatic events can disrupt response plasticity in a wild seabird population. This questions the predictive power of relationships built on past observations, when not only the average climatic conditions are changing but the frequency of extreme climatic anomalies is also on the rise.

  4. Antarctic Climate Change: Extreme Events Disrupt Plastic Phenotypic Response in Adélie Penguins

    PubMed Central

    Lescroël, Amélie; Ballard, Grant; Grémillet, David; Authier, Matthieu; Ainley, David G.

    2014-01-01

    In the context of predicted alteration of sea ice cover and increased frequency of extreme events, it is especially timely to investigate plasticity within Antarctic species responding to a key environmental aspect of their ecology: sea ice variability. Using 13 years of longitudinal data, we investigated the effect of sea ice concentration (SIC) on the foraging efficiency of Adélie penguins (Pygoscelis adeliae) breeding in the Ross Sea. A ‘natural experiment’ brought by the exceptional presence of giant icebergs during 5 consecutive years provided unprecedented habitat variation for testing the effects of extreme events on the relationship between SIC and foraging efficiency in this sea-ice dependent species. Significant levels of phenotypic plasticity were evident in response to changes in SIC in normal environmental conditions. Maximum foraging efficiency occurred at relatively low SIC, peaking at 6.1% and decreasing with higher SIC. The ‘natural experiment’ uncoupled efficiency levels from SIC variations. Our study suggests that lower summer SIC than currently observed would benefit the foraging performance of Adélie penguins in their southernmost breeding area. Importantly, it also provides evidence that extreme climatic events can disrupt response plasticity in a wild seabird population. This questions the predictive power of relationships built on past observations, when not only the average climatic conditions are changing but the frequency of extreme climatic anomalies is also on the rise. PMID:24489657

  5. Hydrological extremes and their agricultural impacts under a changing climate in Texas

    NASA Astrophysics Data System (ADS)

    Lee, K.; Gao, H.; Huang, M.; Sheffield, J.

    2015-12-01

    With the changing climate, hydrologic extremes (such as floods, droughts, and heat waves) are becoming more frequent and intensified. Such changes in extreme events are expected to affect agricultural production and food supplies. This study focuses on the State of Texas, which has the largest farm area and the highest value of livestock production in the U.S. The objectives are two-fold: First, to investigate the climatic impact on the occurrence of future hydrologic extreme events; and second, to evaluate the effects of the future extremes on agricultural production. The Variable Infiltration Capacity (VIC) model, which is calibrated and validated over Texas river basins during the historical period, is employed for this study. The VIC model is forced by the statistically downscaled climate projections from the Coupled Model Intercomparison Project Phase 5 (CMIP5) model ensembles at a spatial resolution of 1/8°. The CMIP5 projections contain four different scenarios in terms of Representative Concentration Pathway (RCP) (i.e. 2.6, 4.5, 6.0 and 8.5 w/m2). To carry out the analysis, VIC outputs forced by the CMIP5 model scenarios over three 30-year periods (1970-1999, 2020-2049 and 2070-2099) are first evaluated to identify how the frequency and the extent of the extreme events will be altered in the ten Texas major river basins. The results suggest that a significant increase in the number of extreme events will occur starting in the first half of the 21st century in Texas. Then, the effects of the predicted hydrologic extreme events on the irrigation water demand are investigated. It is found that future changes in water demand vary by crop type and location, with an east-to-west gradient. The results are expected to contribute to future water management and planning in Texas.

  6. Ensemble climate projections of mean and extreme rainfall over Vietnam

    NASA Astrophysics Data System (ADS)

    Raghavan, S. V.; Vu, M. T.; Liong, S. Y.

    2017-01-01

    A systematic ensemble high resolution climate modelling study over Vietnam has been performed using the PRECIS model developed by the Hadley Center in UK. A 5 member subset of the 17-member Perturbed Physics Ensembles (PPE) of the Quantifying Uncertainty in Model Predictions (QUMP) project were simulated and analyzed. The PRECIS model simulations were conducted at a horizontal resolution of 25 km for the baseline period 1961-1990 and a future climate period 2061-2090 under scenario A1B. The results of model simulations show that the model was able to reproduce the mean state of climate over Vietnam when compared to observations. The annual cycles and seasonal averages of precipitation over different sub-regions of Vietnam show the ability of the model in also reproducing the observed peak and magnitude of monthly rainfall. The climate extremes of precipitation were also fairly well captured. Projections of future climate show both increases and decreases in the mean climate over different regions of Vietnam. The analyses of future extreme rainfall using the STARDEX precipitation indices show an increase in 90th percentile precipitation (P90p) over the northern provinces (15-25%) and central highland (5-10%) and over southern Vietnam (up to 5%). The total number of wet days (Prcp) indicates a decrease of about 5-10% all over Vietnam. Consequently, an increase in the wet day rainfall intensity (SDII), is likely inferring that the projected rainfall would be much more severe and intense which have the potential to cause flooding in some regions. Risks due to extreme drought also exist in other regions where the number of wet days decreases. In addition, the maximum 5 day consecutive rainfall (R5d) increases by 20-25% over northern Vietnam but decreases in a similar range over the central and southern Vietnam. These results have strong implications for the management water resources, agriculture, bio diversity and economy and serve as some useful findings to be

  7. Climate Extremes and Land-Use Change: Effects on Ecosystem Processes and Services

    NASA Astrophysics Data System (ADS)

    Bahn, Michael; Erb, Karlheinz; Hasibeder, Roland; Mayr, Stefan; Niedertscheider, Maria; Oberhuber, Walter; Tappeiner, Ulrike; Tasser, Erich; Viovy, Nicolas; Wieser, Gerhard

    2016-04-01

    Extreme climatic events, in particular droughts and heatwaves, have significant impacts on ecosystem carbon and water cycles and a range of related ecosystem services. It is expected that in the coming decades the return intervals and severities of extreme droughts will increase substantially and may result in the passing of thresholds of ecosystem functioning, potentially causing legacy effects, which are so far poorly understood. Observational evidence suggests that different land cover types (forest, grassland) are differently influenced by extreme drought, but there is a lack of knowledge whether and how future, increasingly severe climate extremes will affect their concurrent and lagged responses, as well as land-use decisions determining future shifts in land cover. The ClimLUC project aims to understand how extreme summer drought affects carbon and water dynamics of mountain ecosystems under different land uses, and to analyse implications for ecosystem service provisioning. Overall, we hypothesize that land-use change alters the effects of extreme summer drought on ecosystem processes and the related services, grassland responding more rapidly and strongly but being more resilient to extreme drought than forest. To address the aims and hypotheses, we will 1) test experimentally how (a) a managed, (b) an abandoned mountain grassland and (c) an adjacent subalpine forest respond to a progressive extreme drought and will analyse threshold responses of carbon and water dynamics and their implications for ecosystem services (timber and fodder production, carbon sequestration, water provisioning); 2) quantify carry-over effects of the extreme event on ecosystem processes and services; 3) project and attribute future carbon and water cycle responses to extreme drought and related socio-economic changes, based on a process-based dynamic general vegetation model; 4) analyse the interrelation between land-use changes and the occurrence and severity of past and future

  8. Pattern Detection and Extreme Value Analysis on Large Climate Data

    NASA Astrophysics Data System (ADS)

    Prabhat, M.; Byna, S.; Paciorek, C.; Weber, G.; Wu, K.; Yopes, T.; Wehner, M. F.; Ostrouchov, G.; Pugmire, D.; Strelitz, R.; Collins, W.; Bethel, W.

    2011-12-01

    We consider several challenging problems in climate that require quantitative analysis of very large data volumes generated by modern climate simulations. We demonstrate new software capable of addressing these challenges that is designed to exploit petascale platforms using state-of-the-art methods in high performance computing. Atmospheric rivers and Hurricanes are important classes of extreme weather phenomena. Developing analysis tools that can automatically detect these events in large climate datasets can provide us with invaluable information about the frequency of these events. Application of these tools to different climate model outputs can provide us with quality metrics that evaluate whether models produce this important class of phenomena and how the statistics of these events will likely vary in the future. In this work, we present an automatic technique for detecting atmospheric rivers. We use techniques from image processing and topological analysis to extract these features. We implement this technique in a massively parallel fashion on modern supercomputing platforms, and apply the resulting software to both observational data and various models from the CMIP-3 archive. We have successfully completed atmospheric river detections on 1TB of data on 10000 hopper cores in 10 seconds. For hurricane tracking, we have adapted code from GFDL to run in parallel on large datasets. We present results from the application of this code to some recent high resolution CAM5 simulations. Our code is capable of processing 1TB of data in 10 seconds. Extreme value analysis involves statistical techniques for estimating the probability of extreme events and variations in the probabilities over time and space. Because of their rarity, there is a high degree of uncertainty when estimating the behavior of extremes from data at any one location. We are developing a local likelihood approach to borrow strength from multiple locations, with uncertainty estimated using the

  9. Quantifying the effect of trend, fluctuation, and extreme event of climate change on ecosystem productivity.

    PubMed

    Liu, Yupeng; Yu, Deyong; Su, Yun; Hao, Ruifang

    2014-12-01

    extreme events can also alter the ecosystem succession process, even resulting in an alternative trajectory. All of these findings could improve our understanding of the impacts of climate change on the provision of ecosystem functions and services and can also provide a basis for policy makers to apply adaptive measures to overcome the unfavorable influence of climate change.

  10. Climate, not conflict, explains extreme Middle East dust storm

    NASA Astrophysics Data System (ADS)

    Parolari, Anthony J.; Li, Dan; Bou-Zeid, Elie; Katul, Gabriel G.; Assouline, Shmuel

    2016-11-01

    The recent dust storm in the Middle East (Sepember 2015) was publicized in the media as a sign of an impending ‘Dust Bowl.’ Its severity, demonstrated by extreme aerosol optical depth in the atmosphere in the 99th percentile compared to historical data, was attributed to the ongoing regional conflict. However, surface meteorological and remote sensing data, as well as regional climate model simulations, support an alternative hypothesis: the historically unprecedented aridity played a more prominent role, as evidenced by unusual climatic and meteorological conditions prior to and during the storm. Remotely sensed normalized difference vegetation index demonstrates that vegetation cover was high in 2015 relative to the prior drought and conflict periods, suggesting that agricultural activity was not diminished during that year, thus negating the media narrative. Instead, meteorological simulations using the Weather Research and Forecasting (WRF) model show that the storm was associated with a cyclone and ‘Shamal’ winds, typical for dust storm generation in this region, that were immediately followed by an unusual wind reversal at low levels that spread dust west to the Mediterranean Coast. These unusual meteorological conditions were aided by a significant reduction in the critical shear stress due to extreme dry and hot conditions, thereby enhancing dust availability for erosion during this storm. Concluding, unusual aridity, combined with unique synoptic weather patterns, enhanced dust emission and westward long-range transport across the region, thus generating the extreme storm.

  11. Early Benefits of Mitigation in Risk of Regional Climate Extremes

    NASA Astrophysics Data System (ADS)

    Ciavarella, Andrew; Stott, Peter; Lowe, Jason

    2015-04-01

    Large differences in climate outcomes are projected over the coming century depending on whether greenhouse gas emissions continue on a business as usual path or are substantially reduced following an aggressive mitigation strategy. However, it has previously been claimed that it will take many decades for there to be any significant difference between paths of aggressive mitigation and business as usual with the emergence of differences only seen towards the middle of the century. Here we show that important differences in our exposure to risk of climate extremes in many land regions emerges much more quickly. Without substantial mitigation, in many regions of the world, extreme (one in 20-year) seasonal, regional near surface air temperatures are found to have become more than twice as likely within only 15 years (i.e. by 2030). Therefore our exposure to climate risk is reduced substantially and rapidly with aggressive mitigation. This demonstrates that the benefits of mitigation are realised rapidly and it is not necessary to wait until the middle of the century as has previously been claimed.

  12. Urban climate effects on extreme temperatures in Madison, Wisconsin, USA

    NASA Astrophysics Data System (ADS)

    Schatz, Jason; Kucharik, Christopher J.

    2015-09-01

    As climate change increases the frequency and intensity of extreme heat, cities and their urban heat island (UHI) effects are growing, as are the urban populations encountering them. These mutually reinforcing trends present a growing risk for urban populations. However, we have limited understanding of urban climates during extreme temperature episodes, when additional heat from the UHI may be most consequential. We observed a historically hot summer and historically cold winter using an array of up to 150 temperature and relative humidity sensors in and around Madison, Wisconsin, an urban area of population 402 000 surrounded by lakes and a rural landscape of agriculture, forests, wetlands, and grasslands. In the summer of 2012 (third hottest since 1869), Madison’s urban areas experienced up to twice as many hours ⩾32.2 °C (90 °F), mean July TMAX up to 1.8 °C higher, and mean July TMIN up to 5.3 °C higher than rural areas. During a record setting heat wave, dense urban areas spent over four consecutive nights above the National Weather Service nighttime heat stress threshold of 26.7 °C (80 °F), while rural areas fell below 26.7 °C nearly every night. In the winter of 2013-14 (coldest in 35 years), Madison’s most densely built urban areas experienced up to 40% fewer hours ⩽-17.8 °C (0 °F), mean January TMAX up to 1 °C higher, and mean January TMIN up to 3 °C higher than rural areas. Spatially, the UHI tended to be most intense in areas with higher population densities. Temporally, both daytime and nighttime UHIs tended to be slightly more intense during more-extreme heat days compared to average summer days. These results help us understand the climates for which cities must prepare in a warming, urbanizing world.

  13. Climate projection of extreme wind speed regime in the Arctic

    NASA Astrophysics Data System (ADS)

    Surkova, Galina; Sokolova, Larisa

    2016-04-01

    Extreme surface wind events over the Arctic (60-90N, 0-360 E) are studied for the modern climate and for its future possible changes on the base of ERA-Interim reanalysis data and CMIP5 scenario RCP8.5. Horizontal surface wind speed (10 m) probability distribution functions in every grid point of reanalysis and models data over the Arctic were evaluated as well as wind speed for 50, 95, 99, 99.9 percentiles (V0.50, V0.95, V0.99, V0.999). At first, changes of V0.50, V0.95, V0.99, V0.999 were studied on the base of ERA-Interim reanalysis for 1981-2010. Results showed regional inhomogenity of wind speed trend intensity. Also, analysis was made for zonal means and separate sectors of the Arctic. To study climate projection of high wind speed there were taken u,v values from CMIP5 numerical experiments for 1961-1990 (Historical) and 2081-2100 (RCP8.5). RCP8.5 scenario was chosen as having the most pronounced response in the climate system, which gave more statistical significance to the calculated trends. Modeled extreme wind speeds for the total Arctic and zonal means show rather good agreement with reanalysis data (compared for decades 1981-1990, 1991-2000). At the same time regional intermodel variability of wind speed is revealed. Trend of extreme surface wind speed in 21 century and for 2081-2100 over the Arctic are analyzed for each model. The study was supported by the Russian Science Foundation (project no. 14-37-00038).

  14. Extreme Rivers for Future Climates - Simulation Using Spatial Weather Generator

    NASA Astrophysics Data System (ADS)

    Kuchar, Leszek; Kosierb, Ryszard; Iwański, Sławomir; Jelonek, Leszek

    2014-05-01

    -80 years. The probability distribution of the extreme river flow gives detailed information on the moment characteristics, confidence intervals and critical values. It is an important tool for a decision support system. In case of extreme daily flow in the Kaczawa River, the catchment shows significant changes depending on the climate change scenario and time to lead. REFERENCES Iwanski, S. and L. Kuchar (2003). Spatial generation of daily meteorological data. Acta Scientiarum Polonorum - Formatio Circumiectu, 2(1): 113-121 (in Polish). Katz, R.W. (1996). Use of conditional stochastic models to generate climate change scenarios. Clim. Change, 35: 397-414. Walpole R.E., Myers R.H., Myers S.L. and K. Ye (2002). Probability and statistics for engineers and scientists. Prentice Hall, 7th Ed., New Jersey.

  15. Tambora and the mackerel year: Phenology and fisheries during an extreme climate event.

    PubMed

    Alexander, Karen E; Leavenworth, William B; Willis, Theodore V; Hall, Carolyn; Mattocks, Steven; Bittner, Steven M; Klein, Emily; Staudinger, Michelle; Bryan, Alexander; Rosset, Julianne; Carr, Benjamin H; Jordaan, Adrian

    2017-01-01

    Global warming has increased the frequency of extreme climate events, yet responses of biological and human communities are poorly understood, particularly for aquatic ecosystems and fisheries. Retrospective analysis of known outcomes may provide insights into the nature of adaptations and trajectory of subsequent conditions. We consider the 1815 eruption of the Indonesian volcano Tambora and its impact on Gulf of Maine (GoM) coastal and riparian fisheries in 1816. Applying complex adaptive systems theory with historical methods, we analyzed fish export data and contemporary climate records to disclose human and piscine responses to Tambora's extreme weather at different spatial and temporal scales while also considering sociopolitical influences. Results identified a tipping point in GoM fisheries induced by concatenating social and biological responses to extreme weather. Abnormal daily temperatures selectively affected targeted fish species-alewives, shad, herring, and mackerel-according to their migration and spawning phenologies and temperature tolerances. First to arrive, alewives suffered the worst. Crop failure and incipient famine intensified fishing pressure, especially in heavily settled regions where dams already compromised watersheds. Insufficient alewife runs led fishers to target mackerel, the next species appearing in abundance along the coast; thus, 1816 became the "mackerel year." Critically, the shift from riparian to marine fisheries persisted and expanded after temperatures moderated and alewives recovered. We conclude that contingent human adaptations to extraordinary weather permanently altered this complex system. Understanding how adaptive responses to extreme events can trigger unintended consequences may advance long-term planning for resilience in an uncertain future.

  16. Urban Heat Island phenomenon in extreme continental climate (Astana, Kazakhstan)

    NASA Astrophysics Data System (ADS)

    Konstantinov, Pavel; Akhmetova, Alina

    2015-04-01

    Urban Heat Island (UHI) phenomenon is well known in scientific literature since first half of the 19th century [1]. By now a wide number of world capitals is described from climatological point of view, especially in mid-latitudes. In beginning of XXI century new studies focus on heat island of tropical cities. However dynamics UHI in extreme continental climates is insufficiently investigated, due to the fact that there isn't large cities in Europe and Northern America within that climate type. In this paper we investigate seasonal and diurnal dynamics UHI intensity for Astana, capital city of Kazakhstan (population larger than 835 000 within the city) including UHI intensity changes on different time scales. Now (since 1998) Astana is the second coldest capital city in the world after Ulaanbaatar, Mongolia [3] For this study we use the UHI investigation technology, described in [2]. According to this paper, we selected three stations: one located into city in high and midrise buildings area (including extensive lowrise and high-energy industrial - LCZ classification) and two others located in rural site (sparsely built or open-set and lightweight lowrise according LCZ classification). Also these stations must be close by distance (less than 100 km) and altitude. Therefore, first for Astana city were obtained numerical evaluations for UHI climate dynamics, UHI dependence of synoptic situations and total UHI climatology on monthly and daily averages. References: 1.Howard, L. (1833) The Climate of London, Deduced from Meteorological Observations. Volume 2, London. 2.Kukanova E.A., Konstantinov P.I. An urban heat islands climatology in Russia and linkages to the climate change In Geophysical Research Abstracts, volume 16 of EGU General Assembly, pages EGU2014-10833-1, Germany, 2014. Germany. 3.www.pogoda.ru.net

  17. Autochthonous Chikungunya Transmission and Extreme Climate Events in Southern France

    PubMed Central

    Roiz, David; Boussès, Philippe; Simard, Frédéric; Paupy, Christophe; Fontenille, Didier

    2015-01-01

    Background Extreme precipitation events are increasing as a result of ongoing global warming, but controversy surrounds the relationship between flooding and mosquito-borne diseases. A common view among the scientific community and public health officers is that heavy rainfalls have a flushing effect on breeding sites, which negatively affects vector populations, thereby diminishing disease transmission. During 2014 in Montpellier, France, there were at least 11 autochthonous cases of chikungunya caused by the invasive tiger mosquito Aedes albopictus in the vicinity of an imported case. We show that an extreme rainfall event increased and extended the abundance of the disease vector Ae. albopictus, hence the period of autochthonous transmission of chikungunya. Methodology/Principal Findings We report results from close monitoring of the adult and egg population of the chikungunya vector Ae. albopictus through weekly sampling over the entire mosquito breeding season, which revealed an unexpected pattern. Statistical analysis of the seasonal dynamics of female abundance in relation to climatic factors showed that these relationships changed after the heavy rainfall event. Before the inundations, accumulated temperatures are the most important variable predicting Ae. albopictus seasonal dynamics. However, after the inundations, accumulated rainfall over the 4 weeks prior to capture predicts the seasonal dynamics of this species and extension of the transmission period. Conclusions/Significance Our empirical data suggests that heavy rainfall events did increase the risk of arbovirus transmission in Southern France in 2014 by favouring a rapid rise in abundance of vector mosquitoes. Further studies should now confirm these results in different ecological contexts, so that the impact of global change and extreme climatic events on mosquito population dynamics and the risk of disease transmission can be adequately understood. PMID:26079620

  18. Urban precipitation extremes: How reliable are regional climate models?

    NASA Astrophysics Data System (ADS)

    Mishra, Vimal; Dominguez, Francina; Lettenmaier, Dennis P.

    2012-02-01

    We evaluate the ability of regional climate models (RCMs) that participated in the North American Regional Climate Change Assessment Program (NARCCAP) to reproduce the historical season of occurrence, mean, and variability of 3 and 24-hour precipitation extremes for 100 urban areas across the United States. We show that RCMs with both reanalysis and global climate model (GCM) boundary conditions behave similarly and underestimate 3-hour precipitation maxima across almost the entire U.S. RCMs with both boundary conditions broadly capture the season of occurrence of precipitation maxima except in the interior of the western U.S. and the southeastern U.S. On the other hand, the RCMs do much better in identifying the season of 24-hour precipitation maxima. For mean annual precipitation maxima, regardless of the boundary condition, RCMs consistently show high (low) bias for locations in the western (eastern) U.S. Our results indicate that RCM-simulated 3-hour precipitation maxima at 100-year return period could be considered acceptable for stormwater infrastructure design at less than 12% of the 100 urban areas (regardless of boundary conditions). RCM performance for 24-hour precipitation maxima was slightly better, with performance acceptable for stormwater infrastructure design judged adequate at about 25% of the urban areas.

  19. Drought, deluge and declines: the impact of precipitation extremes on amphibians in a changing climate.

    PubMed

    Walls, Susan C; Barichivich, William J; Brown, Mary E

    2013-03-11

    The Class Amphibia is one of the most severely impacted taxa in an on-going global biodiversity crisis. Because amphibian reproduction is tightly associated with the presence of water, climatic changes that affect water availability pose a particularly menacing threat to both aquatic and terrestrial-breeding amphibians. We explore the impacts that one facet of climate change-that of extreme variation in precipitation-may have on amphibians. This variation is manifested principally as increases in the incidence and severity of both drought and major storm events. We stress the need to consider not only total precipitation amounts but also the pattern and timing of rainfall events. Such rainfall "pulses" are likely to become increasingly more influential on amphibians, especially in relation to seasonal reproduction. Changes in reproductive phenology can strongly influence the outcome of competitive and predatory interactions, thus potentially altering community dynamics in assemblages of co-existing species. We present a conceptual model to illustrate possible landscape and metapopulation consequences of alternative climate change scenarios for pond-breeding amphibians, using the Mole Salamander, Ambystoma talpoideum, as an example. Although amphibians have evolved a variety of life history strategies that enable them to cope with environmental uncertainty, it is unclear whether adaptations can keep pace with the escalating rate of climate change. Climate change, especially in combination with other stressors, is a daunting challenge for the persistence of amphibians and, thus, the conservation of global biodiversity.

  20. Drought, deluge and declines: the impact of precipitation extremes on amphibians in a changing climate

    USGS Publications Warehouse

    Walls, Susan C.; Barichivich, William J.; Brown, Mary E.

    2013-01-01

    The Class Amphibia is one of the most severely impacted taxa in an on-going global biodiversity crisis. Because amphibian reproduction is tightly associated with the presence of water, climatic changes that affect water availability pose a particularly menacing threat to both aquatic and terrestrial-breeding amphibians. We explore the impacts that one facet of climate change—that of extreme variation in precipitation—may have on amphibians. This variation is manifested principally as increases in the incidence and severity of both drought and major storm events. We stress the need to consider not only total precipitation amounts but also the pattern and timing of rainfall events. Such rainfall “pulses” are likely to become increasingly more influential on amphibians, especially in relation to seasonal reproduction. Changes in reproductive phenology can strongly influence the outcome of competitive and predatory interactions, thus potentially altering community dynamics in assemblages of co-existing species. We present a conceptual model to illustrate possible landscape and metapopulation consequences of alternative climate change scenarios for pond-breeding amphibians, using the Mole Salamander, Ambystoma talpoideum, as an example. Although amphibians have evolved a variety of life history strategies that enable them to cope with environmental uncertainty, it is unclear whether adaptations can keep pace with the escalating rate of climate change. Climate change, especially in combination with other stressors, is a daunting challenge for the persistence of amphibians and, thus, the conservation of global biodiversity.

  1. Drought, Deluge and Declines: The Impact of Precipitation Extremes on Amphibians in a Changing Climate

    PubMed Central

    Walls, Susan C.; Barichivich, William J.; Brown, Mary E.

    2013-01-01

    The Class Amphibia is one of the most severely impacted taxa in an on-going global biodiversity crisis. Because amphibian reproduction is tightly associated with the presence of water, climatic changes that affect water availability pose a particularly menacing threat to both aquatic and terrestrial-breeding amphibians. We explore the impacts that one facet of climate change—that of extreme variation in precipitation—may have on amphibians. This variation is manifested principally as increases in the incidence and severity of both drought and major storm events. We stress the need to consider not only total precipitation amounts but also the pattern and timing of rainfall events. Such rainfall “pulses” are likely to become increasingly more influential on amphibians, especially in relation to seasonal reproduction. Changes in reproductive phenology can strongly influence the outcome of competitive and predatory interactions, thus potentially altering community dynamics in assemblages of co-existing species. We present a conceptual model to illustrate possible landscape and metapopulation consequences of alternative climate change scenarios for pond-breeding amphibians, using the Mole Salamander, Ambystoma talpoideum, as an example. Although amphibians have evolved a variety of life history strategies that enable them to cope with environmental uncertainty, it is unclear whether adaptations can keep pace with the escalating rate of climate change. Climate change, especially in combination with other stressors, is a daunting challenge for the persistence of amphibians and, thus, the conservation of global biodiversity. PMID:24832668

  2. Relating Regional Arctic Sea Ice and climate extremes over Europe

    NASA Astrophysics Data System (ADS)

    Ionita-Scholz, Monica; Grosfeld, Klaus; Lohmann, Gerrit; Scholz, Patrick

    2016-04-01

    The potential increase of temperature extremes under climate change is a major threat to society, as temperature extremes have a deep impact on environment, hydrology, agriculture, society and economy. Hence, the analysis of the mechanisms underlying their occurrence, including their relationships with the large-scale atmospheric circulation and sea ice concentration, is of major importance. At the same time, the decline in Arctic sea ice cover during the last 30 years has been widely documented and it is clear that this change is having profound impacts at regional as well as planetary scale. As such, this study aims to investigate the relation between the autumn regional sea ice concentration variability and cold winters in Europe, as identified by the numbers of cold nights (TN10p), cold days (TX10p), ice days (ID) and consecutive frost days (CFD). We analyze the relationship between Arctic sea ice variation in autumn (September-October-November) averaged over eight different Arctic regions (Barents/Kara Seas, Beaufort Sea, Chukchi/Bering Seas, Central Arctic, Greenland Sea, Labrador Sea/Baffin Bay, Laptev/East Siberian Seas and Northern Hemisphere) and variations in atmospheric circulation and climate extreme indices in the following winter season over Europe using composite map analysis. Based on the composite map analysis it is shown that the response of the winter extreme temperatures over Europe is highly correlated/connected to changes in Arctic sea ice variability. However, this signal is not symmetrical for the case of high and low sea ice years. Moreover, the response of temperatures extreme over Europe to sea ice variability over the different Arctic regions differs substantially. The regions which have the strongest impact on the extreme winter temperature over Europe are: Barents/Kara Seas, Beaufort Sea, Central Arctic and the Northern Hemisphere. For the years of high sea ice concentration in the Barents/Kara Seas there is a reduction in the number

  3. Climate services for an urban area (Baia Mare City, Romania) with a focus on climate extremes

    NASA Astrophysics Data System (ADS)

    Sima, Mihaela; Micu, Dana; Dragota, Carmen-Sofia; Mihalache, Sorin

    2013-04-01

    The Baia Mare Urban System is located in the north-western part of Romania, with around 200,000 inhabitants and represents one of the most important former mining areas in the country, whose socioeconomic profile and environmental conditions have greatly changed over the last 20 years during the transition and post-transition period. Currently the mining is closed in the area, but the historical legacy of this activity has implications in terms of economic growth, social and cultural developments and environmental quality. Baia Mare city lies in an extended depression, particularly sheltered by the mountain and hilly regions located in the north and respectively, in the south-south-eastern part of it, which explains the high frequency of calm conditions and low airstream channeling occurrences. This urban system has a typically moderate temperate-continental climate, subject to frequent westerly airflows (moist), which moderate the thermal regime (without depicting severe extremes, both positive and negative) and enhance the precipitation one (entailing a greater frequency of wet extremes). During the reference period (1971-2000), the climate change signal in the area is rather weak and not statistically significant. However, since the mid 1980s, the warming signal became more evident from the observational data (Baia Mare station), showing a higher frequency of dry spells and positive extremes. The modelling experiments covering the 2021-2050 time horizon using regional (RM5.1/HadRM3Q0/RCA3) and global (ARPEGE/HadCM3Q0/BCM/ECHAM5) circulation models carried out within the ECLISE FP7 project suggest an ongoing temperature rise, associated to an intensification of temperature and precipitation extremes. In this context, the aim of this study was to evaluate how the local authorities consider and include climate change in their activity, as well as in the development plans (e.g. territorial, economic and social development plans). Individual interviews have been

  4. Climate extremes promote fatal co-infections during canine distemper epidemics in African lions.

    PubMed

    Munson, Linda; Terio, Karen A; Kock, Richard; Mlengeya, Titus; Roelke, Melody E; Dubovi, Edward; Summers, Brian; Sinclair, Anthony R E; Packer, Craig

    2008-06-25

    Extreme climatic conditions may alter historic host-pathogen relationships and synchronize the temporal and spatial convergence of multiple infectious agents, triggering epidemics with far greater mortality than those due to single pathogens. Here we present the first data to clearly illustrate how climate extremes can promote a complex interplay between epidemic and endemic pathogens that are normally tolerated in isolation, but with co-infection, result in catastrophic mortality. A 1994 canine distemper virus (CDV) epidemic in Serengeti lions (Panthera leo) coincided with the death of a third of the population, and a second high-mortality CDV epidemic struck the nearby Ngorongoro Crater lion population in 2001. The extent of adult mortalities was unusual for CDV and prompted an investigation into contributing factors. Serological analyses indicated that at least five "silent" CDV epidemics swept through the same two lion populations between 1976 and 2006 without clinical signs or measurable mortality, indicating that CDV was not necessarily fatal. Clinical and pathology findings suggested that hemoparsitism was a major contributing factor during fatal epidemics. Using quantitative real-time PCR, we measured the magnitude of hemoparasite infections in these populations over 22 years and demonstrated significantly higher levels of Babesia during the 1994 and 2001 epidemics. Babesia levels correlated with mortalities and extent of CDV exposure within prides. The common event preceding the two high mortality CDV outbreaks was extreme drought conditions with wide-spread herbivore die-offs, most notably of Cape buffalo (Syncerus caffer). As a consequence of high tick numbers after the resumption of rains and heavy tick infestations of starving buffalo, the lions were infected by unusually high numbers of Babesia, infections that were magnified by the immunosuppressive effects of coincident CDV, leading to unprecedented mortality. Such mass mortality events may become

  5. Dynamical downscaling of present climate extremal episodes for the BINGO research site of Cyprus

    NASA Astrophysics Data System (ADS)

    Zittis, George; Hadjinicolaou, Panos; Bruggeman, Adriana; Camera, Corrado; Lelieveld, Jos

    2016-04-01

    Besides global warming, climate change is expected to cause alterations in precipitation amounts and distribution than can be linked to extreme events such as floods or prolonged droughts. This will have a significant impact in strategic societal sectors that base their activities on water resources. While the global climate projections inform us about the long-term and weather forecasts can give useful information only for a few days or weeks, decision-makers and end-users also need guidance on inter-annual to decadal time scales. In this context, the BINGO (Bringing INnovation to onGOing water management - a better future under climate change) H2020 project aims both at reducing the uncertainty of near-term climate predictions and developing response strategies in order to better manage the remaining uncertainty. One of the project's main objectives is to develop improved decadal predictions, in adequate spatiotemporal scales, with a specific focus on extreme precipitation events. The projected rainfall will be eventually used to drive hydrological impact models. BINGO focuses on research sites that encompass river basins, watersheds and urban areas of six European countries including Norway, Cyprus, Germany, Portugal, The Netherlands and Spain. In this study we present the dynamical downscaling of the ERA-Interim dataset for validation purposes and for the research site of Cyprus. Five extreme rainfall periods were identified from the observed precipitation archives and were simulated in very high horizontal resolutions (4~1 km) using the WRF limited area atmospheric model. To optimize the performance of the model we have tested a combination of three cumulus and five microphysics parameterization schemes that resulted in 15 simulations for each extreme precipitation event. The model output was compared with daily or hourly (where available) representative rain gauge data. A set of statistical metrics was applied in order to objectively select the best

  6. Sea Extremes: Integrated impact assessment in coastal climate adaptation

    NASA Astrophysics Data System (ADS)

    Sorensen, Carlo; Knudsen, Per; Broge, Niels; Molgaard, Mads; Andersen, Ole

    2016-04-01

    We investigate effects of sea level rise and a change in precipitation pattern on coastal flooding hazards. Historic and present in situ and satellite data of water and groundwater levels, precipitation, vertical ground motion, geology, and geotechnical soil properties are combined with flood protection measures, topography, and infrastructure to provide a more complete picture of the water-related impact from climate change at an exposed coastal location. Results show that future sea extremes evaluated from extreme value statistics may, indeed, have a large impact. The integrated effects from future storm surges and other geo- and hydro-parameters need to be considered in order to provide for the best protection and mitigation efforts, however. Based on the results we present and discuss a simple conceptual model setup that can e.g. be used for 'translation' of regional sea level rise evidence and projections to concrete impact measures. This may be used by potentially affected stakeholders -often working in different sectors and across levels of governance, in a common appraisal of the challenges faced ahead. The model may also enter dynamic tools to evaluate local impact as sea level research advances and projections for the future are updated.

  7. Investigating drought using extreme climatic indices over Idaho, USA

    NASA Astrophysics Data System (ADS)

    Sohrabi, M.; Ryu, J.

    2011-12-01

    trends in 46 stations, and 16 and 3 stations show negative and positive significant trends, relatively. Minimum SPI 1, 3, 6 and 12 month time scales indicate 36, 40, 43 and 42 negative trends and 6, 10, 14 and 16 stations out of them have significant trends, respectively. Results of extreme climatic and seasonal indices are completely consistent with that of PDSI and SPI. As such, findings highlight that water shortage in the southern part of Idaho, especially in Snake River basin, likely occurs in the near future possibly due to climate change.

  8. How much do precipitation extremes change in a warming climate?

    NASA Astrophysics Data System (ADS)

    Shiu, Chein-Jung; Liu, Shaw Chen; Fu, Congbin; Dai, Aiguo; Sun, Ying

    2012-09-01

    Daily data from reanalyses of the European Centre for Medium-Range Weather Forecasts (ECMWF) and the National Centers for Environmental Prediction (NCEP) are analyzed to study changes in precipitation intensity with respect to global mean temperature. The results are in good agreement with those derived from the Global Precipitation Climatology Project (GPCP) data by Liu et al. (2009), providing an independent verification for large changes in the precipitation extremes: about 100% increase for the annual top 10% heavy precipitation and about 20% decrease for the light and moderate precipitation for one degree warming in the global temperature. These changes can substantially increase the risk of floods as well as droughts, thus severely affecting the global ecosystems. Atmospheric models used in the reanalysis mode, with the benefit of observed wind and moisture fields, appear to be capable of realistically simulating the change of precipitation intensity with global temperature. In comparison, coupled climate models are capable of simulating the shape of the change in precipitation intensity, but underestimate the magnitude of the change by about one order of magnitude. The most likely reason of the underestimation is that the typical spatial resolution of climate models is too coarse to resolve atmospheric convection.

  9. Climate change and the impact of extreme temperatures on aviation

    NASA Astrophysics Data System (ADS)

    Coffel, E.; Horton, R.

    2014-12-01

    Weather is the most significant factor affecting aircraft operations, accounting for 70-80% of passenger delays and costing airlines hundreds of millions of dollars per year in lost revenue. Temperature and airport elevation significantly influence the maximum allowable takeoff weight of an aircraft by changing the surface air density and thus the lift produced at a given speed. For a given runway length, airport elevation, and aircraft type there is a temperature threshold above which the airplane cannot take off at its maximum weight and thus must be weight restricted. The number of summer days necessitating weight restriction has increased since 1980 along with the observed increase in surface temperature. Climate change is projected to increase mean temperatures at all airports and significantly increase the frequency and severity of extreme heat events at some. These changes will negatively affect aircraft performance, leading to increased weight restrictions especially at airports with short runways and little room to expand. For a Boeing 737-800 aircraft, we find that the number of weight restriction days between May and September will increase by 50-100% at four major airports in the United States by 2050-2070 under the RCP8.5 high emissions scenario. These performance reductions may have a significant economic effect on the airline industry, leading to lower profits and higher passenger fares. Increased weight restrictions have previously been identified as potential impacts of climate change, but this study is the first to quantify the effect of higher temperatures on commercial aviation.

  10. Climate change impacts on extreme events in the United States: an uncertainty analysis

    EPA Science Inventory

    Extreme weather and climate events, such as heat waves, droughts and severe precipitation events, have substantial impacts on ecosystems and the economy. However, future climate simulations display large uncertainty in mean changes. As a result, the uncertainty in future changes ...

  11. Impacts of forced and unforced climate variability on extreme floods using a large climate ensemble

    NASA Astrophysics Data System (ADS)

    Martel, Jean-Luc; Brissette, François; Chen, Jie

    2016-04-01

    Frequency analysis has been widely used for the inference of flood magnitude and rainfall intensity required in engineering design. However, this inference is based on the concept of stationarity. How accurate is it when taking into account climate variability (i.e. both internal- and externally-forced variabilities)? Even in the absence of human-induced climate change, the short temporal horizon of the historical records renders this task extremely difficult to accomplish. To overcome this situation, large ensembles of simulations from a single climate model can be used to assess the impact of climate variability on precipitation and streamflow extremes. Thus, the objective of this project is to determine the reliability of return period estimates using the CanESM2 large ensemble. The spring flood annual maxima metric over snowmelt-dominated watersheds was selected to take into account the limits of global circulation models to properly simulate convective precipitation. The GR4J hydrological model coupled with the CemaNeige snow model was selected and calibrated using gridded observation datasets on snowmelt-dominated watersheds in Quebec, Canada. Using the hydrological model, streamflows were simulated using bias corrected precipitation and temperature data from the 50 members of CanESM2. Flood frequency analyses on the spring flood annual maxima were then computed using the Gumbel distribution with a 90% confidence interval. The 20-year return period estimates were then compared to assess the impact of natural climate variability over the 1971-2000 return period. To assess the impact of global warming, this methodology was then repeated for three time slices: reference period (1971-2000), near future (2036-2065) and far future (2071-2100). Over the reference period results indicate that the relative error between the return period estimates of two members can be up to 25%. Regarding the near future and far future periods, natural climate variability of extreme

  12. Cascading effects of climate extremes on vertebrate fauna through changes to low-latitude tree flowering and fruiting phenology.

    PubMed

    Butt, Nathalie; Seabrook, Leonie; Maron, Martine; Law, Bradley S; Dawson, Terence P; Syktus, Jozef; McAlpine, Clive A

    2015-09-01

    Forest vertebrate fauna provide critical services, such as pollination and seed dispersal, which underpin functional and resilient ecosystems. In turn, many of these fauna are dependent on the flowering phenology of the plant species of such ecosystems. The impact of changes in climate, including climate extremes, on the interaction between these fauna and flora has not been identified or elucidated, yet influences on flowering phenology are already evident. These changes are well documented in the mid to high latitudes. However, there is emerging evidence that the flowering phenology, nectar/pollen production, and fruit production of long-lived trees in tropical and subtropical forests are also being impacted by changes in the frequency and severity of climate extremes. Here, we examine the implications of these changes for vertebrate fauna dependent on these resources. We review the literature to establish evidence for links between climate extremes and flowering phenology, elucidating the nature of relationships between different vertebrate taxa and flowering regimes. We combine this information with climate change projections to postulate about the likely impacts on nectar, pollen and fruit resource availability and the consequences for dependent vertebrate fauna. The most recent climate projections show that the frequency and intensity of climate extremes will increase during the 21st century. These changes are likely to significantly alter mass flowering and fruiting events in the tropics and subtropics, which are frequently cued by climate extremes, such as intensive rainfall events or rapid temperature shifts. We find that in these systems the abundance and duration of resource availability for vertebrate fauna is likely to fluctuate, and the time intervals between episodes of high resource availability to increase. The combined impact of these changes has the potential to result in cascading effects on ecosystems through changes in pollinator and seed

  13. Key ecological responses to nitrogen are altered by climate change

    NASA Astrophysics Data System (ADS)

    Greaver, T. L.; Clark, C. M.; Compton, J. E.; Vallano, D.; Talhelm, A. F.; Weaver, C. P.; Band, L. E.; Baron, J. S.; Davidson, E. A.; Tague, C. L.; Felker-Quinn, E.; Lynch, J. A.; Herrick, J. D.; Liu, L.; Goodale, C. L.; Novak, K. J.; Haeuber, R. A.

    2016-09-01

    Climate change and anthropogenic nitrogen deposition are both important ecological threats. Evaluating their cumulative effects provides a more holistic view of ecosystem vulnerability to human activities, which would better inform policy decisions aimed to protect the sustainability of ecosystems. Our knowledge of the cumulative effects of these stressors is growing, but we lack an integrated understanding. In this Review, we describe how climate change alters key processes in terrestrial and freshwater ecosystems related to nitrogen cycling and availability, and the response of ecosystems to nitrogen addition in terms of carbon cycling, acidification and biodiversity.

  14. Key ecological responses to nitrogen are altered by climate change

    USGS Publications Warehouse

    Greaver, T.L.; Clark, C.M.; Compton, J.E.; Vallano, D.; Talhelm, A. F.; Weaver, C.P.; Band, L.E.; Baron, J. S.; Davidson, E.A.; Tague, C.L.; Felker-Quinn, E.; Lynch, J.A.; Herrick, J.D.; Liu, L.; Goodale, C.L.; Novak, K. J.; Haeuber, R. A.

    2016-01-01

    Climate change and anthropogenic nitrogen deposition are both important ecological threats. Evaluating their cumulative effects provides a more holistic view of ecosystem vulnerability to human activities, which would better inform policy decisions aimed to protect the sustainability of ecosystems. Our knowledge of the cumulative effects of these stressors is growing, but we lack an integrated understanding. In this Review, we describe how climate change alters key processes in terrestrial and freshwater ecosystems related to nitrogen cycling and availability, and the response of ecosystems to nitrogen addition in terms of carbon cycling, acidification and biodiversity.

  15. The spatial distribution of extreme climate events, another climate inequity for the world’s most vulnerable people

    NASA Astrophysics Data System (ADS)

    Green, Donna

    2016-09-01

    Does the climate change signal emerge equally from internal climate variability across the globe? If not, are there particular locations where temperature extremes might disproportionately affect specific populations? The letter by Harrington et al (2016 Environ. Res. Lett. 11 055007) argues that people living in low latitude countries, which contain the majority of the world’s poorest people, are—and will continue to be—disproportionately affected by increases in temperature extremes. Due to differences in expertise of climate scientists, and climate impact and adaptation scientists, few climate extreme event analyses are spatially disaggregated and linked to local populations’ socio-economic characteristics. The research presented in this letter begins to bridge this gap by providing evidence of inequitable spatial impacts from climate extremes on the world’s poorest people.

  16. Riparian responses to extreme climate and land-use change scenarios.

    PubMed

    Fernandes, Maria Rosário; Segurado, Pedro; Jauch, Eduardo; Ferreira, Maria Teresa

    2016-11-01

    Climate change will induce alterations in the hydrological and landscape patterns with effects on riparian ecotones. In this study we assess the combined effect of an extreme climate and land-use change scenario on riparian woody structure and how this will translate into a future risk of riparian functionality loss. The study was conducted in the Tâmega catchment of the Douro basin. Boosted Regression Trees (BRTs) were used to model two riparian landscape indicators related with the degree of connectivity (Mean Width) and complexity (Area Weighted Mean Patch Fractal Dimension). Riparian data were extracted by planimetric analysis of high spatial-resolution Word Imagery Layer (ESRI). Hydrological, climatic and land-use variables were obtained from available datasets and generated with process-based modeling using current climate data (2008-2014), while also considering the high-end RCP8.5 climate-change and "Icarus" socio-economic scenarios for the 2046-2065 time slice. Our results show that hydrological and land-use changes strongly influence future projections of riparian connectivity and complexity, albeit to diverse degrees and with differing effects. A harsh reduction in average flows may impair riparian zones while an increase in extreme rain events may benefit connectivity by promoting hydrologic dynamics with the surrounding floodplains. The expected increase in broad-leaved woodlands and mixed forests may enhance the riparian galleries by reducing the agricultural pressure on the area in the vicinity of the river. According to our results, 63% of river segments in the Tâmega basin exhibited a moderate risk of functionality loss, 16% a high risk, and 21% no risk. Weaknesses and strengths of the method are highlighted and results are discussed based on a resilience perspective with regard to riparian ecosystems.

  17. Evaluation of multiple regional climate models for summer climate extremes over East Asia

    NASA Astrophysics Data System (ADS)

    Park, Changyong; Min, Seung-Ki; Lee, Donghyun; Cha, Dong-Hyun; Suh, Myoung-Seok; Kang, Hyun-Suk; Hong, Song-You; Lee, Dong-Kyou; Baek, Hee-Jeong; Boo, Kyung-On; Kwon, Won-Tae

    2016-04-01

    In this study, five regional climate models (RCMs) participating in the CORDEX-East Asia project (HadGEM3-RA, RegCM4, SNU-MM5, SNU-WRF, and YSU-RSM) are evaluated in terms of their performances in simulating the climatology of summer extremes in East Asia. Seasonal maxima of daily mean temperature and precipitation are analyzed using the generalized extreme value method. RCMs show systematic bias patterns in both seasonal means and extremes. A cold bias is located along the coast, whereas a warm bias occurs in northern China. Overall, wet bias occurs in East Asia, but with a substantial dry bias centered in South Korea. This dry bias appears to be related to the colder ocean surface around South Korea, positioning the monsoonal front further south compared to observations. Taylor diagram analyses reveal that the models simulate temperature means more accurately compared to extremes because of the higher spatial correlation, whereas precipitation extremes are simulated better than their means because of the higher spatial variability. The latter implies that extreme rainfall events can be captured more accurately by RCMs compared to the driving GCM despite poorer simulation of mean rainfall. Inter-RCM analysis indicates a close relationship between the means and extremes in terms of model skills, but it does not show a clear relationship between temperature and precipitation. Sub-regional analysis largely supports the mean-extreme skill relationship. Analyses of frequency and intensity distributions of daily data for three selected sub-regions suggest that overall shifts of temperature distribution and biases in moderate-heavy precipitations contribute importantly to the seasonal mean biases.

  18. Carbon cycle extremes during the 21st century in CMIP5 models: Future evolution and attribution to climatic drivers

    NASA Astrophysics Data System (ADS)

    Zscheischler, Jakob; Reichstein, Markus; von Buttlar, Jannis; Mu, Mingquan; Randerson, James T.; Mahecha, Miguel D.

    2014-12-01

    Climate extremes such as droughts and heat waves affect terrestrial ecosystems and may alter local carbon budgets. However, it still remains uncertain to what degree extreme impacts in the carbon cycle influence the carbon cycle-climate feedback both today and the near future. Here we analyze spatiotemporally contiguous negative extreme anomalies in gross primary production (GPP) and net ecosystem production (NEP) in model output of the Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble and investigate their future development and attribution to climatic drivers. We find that relative to the overall increase in global carbon uptake, negative extremes in GPP and NEP lose importance toward the end of the 21st century. This effect can be related to elevated CO2 concentrations and higher amounts of available water at the global scale, partially mitigating the impacts of droughts and heat waves, respectively. Overall, based on CMIP5 models, we hypothesize that terrestrial ecosystems might be more resilient against future climate extremes than previously thought. Future work will have to further scrutinize these results considering that various biological and biogeochemical feedbacks are not yet integrated within Earth system models.

  19. Adaptive thermoregulation in endotherms may alter responses to climate change.

    PubMed

    Boyles, Justin G; Seebacher, Frank; Smit, Ben; McKechnie, Andrew E

    2011-11-01

    Climate change is one of the major issues facing natural populations and thus a focus of recent research has been to predict the responses of organisms to these changes. Models are becoming more complex and now commonly include physiological traits of the organisms of interest. However, endothermic species have received less attention than have ectotherms in these mechanistic models. Further, it is not clear whether responses of endotherms to climate change are modified by variation in thermoregulatory characteristics associated with phenotypic plasticity and/or adaptation to past selective pressures. Here, we review the empirical data on thermal adaptation and acclimatization in endotherms and discuss how those factors may be important in models of responses to climate change. We begin with a discussion of why thermoregulation and thermal sensitivity at high body temperatures should be co-adapted. Importantly, we show that there is, in fact, considerable variation in the ability of endotherms to tolerate high body temperatures and/or high environmental temperatures, but a better understanding of this variation will likely be critical for predicting responses to future climatic scenarios. Next, we discuss why variation in thermoregulatory characteristics should be considered when modeling the effects of climate change on heterothermic endotherms. Finally, we review some biophysical and biochemical factors that will limit adaptation and acclimation in endotherms. We consider both long-term, directional climate change and short-term (but increasingly common) anomalies in climate such as extreme heat waves and we suggest areas of important future research relating to both our basic understanding of endothermic thermoregulation and the responses of endotherms to climate change.

  20. Increasing climate extremes under global warming - What is the driving force?

    NASA Astrophysics Data System (ADS)

    Yoon, J.; Wang, S. Y.; Gillies, R. R.; Hipps, L.; Kravitz, B.; Rasch, P. J.

    2015-12-01

    More climate extreme events have occurred in recent years, including the continual development of extreme drought in California, the severe cold winters in the eastern U.S. since 2014, 2015 Washington drought, and excessive wildfire events over Alaska in 2015. These have been casually attributed to global warming. However, a need for further understanding of mechanisms responsible for climate extremes is growing. In this presentation, we'll use sets of climate model simulation that designed to identify the role of the oceanic feedback in increasing climate extremes under global warming. One is with a fully coupled climate model forced by 1% ramping CO2, and the other is with an atmosphere only model forced by the same CO2 forcing. By contrasting these two, an importance of the oceanic feedback in increasing climate extremes under global warming can be diagnosed.

  1. The potential impacts of climate variability and change on health impacts of extreme weather events in the United States.

    PubMed

    Greenough, G; McGeehin, M; Bernard, S M; Trtanj, J; Riad, J; Engelberg, D

    2001-05-01

    Extreme weather events such as precipitation extremes and severe storms cause hundreds of deaths and injuries annually in the United States. Climate change may alter the frequency, timing, intensity, and duration of these events. Increases in heavy precipitation have occurred over the past century. Future climate scenarios show likely increases in the frequency of extreme precipitation events, including precipitation during hurricanes, raising the risk of floods. Frequencies of tornadoes and hurricanes cannot reliably be projected. Injury and death are the direct health impacts most often associated with natural disasters. Secondary effects, mediated by changes in ecologic systems and public health infrastructure, also occur. The health impacts of extreme weather events hinge on the vulnerabilities and recovery capacities of the natural environment and the local population. Relevant variables include building codes, warning systems, disaster policies, evacuation plans, and relief efforts. There are many federal, state, and local government agencies and nongovernmental organizations involved in planning for and responding to natural disasters in the United States. Future research on health impacts of extreme weather events should focus on improving climate models to project any trends in regional extreme events and as a result improve public health preparedness and mitigation. Epidemiologic studies of health effects beyond the direct impacts of disaster will provide a more accurate measure of the full health impacts and will assist in planning and resource allocation.

  2. The potential impacts of climate variability and change on health impacts of extreme weather events in the United States.

    PubMed Central

    Greenough, G; McGeehin, M; Bernard, S M; Trtanj, J; Riad, J; Engelberg, D

    2001-01-01

    Extreme weather events such as precipitation extremes and severe storms cause hundreds of deaths and injuries annually in the United States. Climate change may alter the frequency, timing, intensity, and duration of these events. Increases in heavy precipitation have occurred over the past century. Future climate scenarios show likely increases in the frequency of extreme precipitation events, including precipitation during hurricanes, raising the risk of floods. Frequencies of tornadoes and hurricanes cannot reliably be projected. Injury and death are the direct health impacts most often associated with natural disasters. Secondary effects, mediated by changes in ecologic systems and public health infrastructure, also occur. The health impacts of extreme weather events hinge on the vulnerabilities and recovery capacities of the natural environment and the local population. Relevant variables include building codes, warning systems, disaster policies, evacuation plans, and relief efforts. There are many federal, state, and local government agencies and nongovernmental organizations involved in planning for and responding to natural disasters in the United States. Future research on health impacts of extreme weather events should focus on improving climate models to project any trends in regional extreme events and as a result improve public health preparedness and mitigation. Epidemiologic studies of health effects beyond the direct impacts of disaster will provide a more accurate measure of the full health impacts and will assist in planning and resource allocation. PMID:11359686

  3. (When and where) Do extreme climate events trigger extreme ecosystem responses? - Development and initial results of a holistic analysis framework

    NASA Astrophysics Data System (ADS)

    Hauber, Eva K.; Donner, Reik V.

    2015-04-01

    In the context of ongoing climate change, extremes are likely to increase in magnitude and frequency. One of the most important consequences of these changes is that the associated ecological risks and impacts are potentially rising as well. In order to better anticipate and understand these impacts, it therefore becomes more and more crucial to understand the general connection between climate extremes and the response and functionality of ecosystems. Among other region of the world, Europe presents an excellent test case for studies concerning the interaction between climate and biosphere, since it lies in the transition region between cold polar and warm tropical air masses and thus covers a great variety of different climatic zones and associated terrestrial ecosystems. The large temperature differences across the continent make this region particularly interesting for investigating the effects of climate change on biosphere-climate interactions. However, previously used methods for defining an extreme event typically disregard the necessity of taking seasonality as well as seasonal variance appropriately into account. Furthermore, most studies have focused on the impacts of individual extreme events instead of considering a whole inventory of extremes with their respective spatio-temporal extents. In order to overcome the aforementioned research gaps, this work introduces a new approach to studying climate-biosphere interactions associated with extreme events, which comprises three consecutive steps: (1) Since Europe exhibits climatic conditions characterized by marked seasonality, a novel method is developed to define extreme events taking into account the seasonality in all quantiles of the probability distribution of the respective variable of interest. This is achieved by considering kernel density estimates individually for each observation date during the year, including the properly weighted information from adjacent dates. By this procedure, we obtain

  4. Tambora and the mackerel year: Phenology and fisheries during an extreme climate event

    PubMed Central

    Alexander, Karen E.; Leavenworth, William B.; Willis, Theodore V.; Hall, Carolyn; Mattocks, Steven; Bittner, Steven M.; Klein, Emily; Staudinger, Michelle; Bryan, Alexander; Rosset, Julianne; Carr, Benjamin H.; Jordaan, Adrian

    2017-01-01

    Global warming has increased the frequency of extreme climate events, yet responses of biological and human communities are poorly understood, particularly for aquatic ecosystems and fisheries. Retrospective analysis of known outcomes may provide insights into the nature of adaptations and trajectory of subsequent conditions. We consider the 1815 eruption of the Indonesian volcano Tambora and its impact on Gulf of Maine (GoM) coastal and riparian fisheries in 1816. Applying complex adaptive systems theory with historical methods, we analyzed fish export data and contemporary climate records to disclose human and piscine responses to Tambora’s extreme weather at different spatial and temporal scales while also considering sociopolitical influences. Results identified a tipping point in GoM fisheries induced by concatenating social and biological responses to extreme weather. Abnormal daily temperatures selectively affected targeted fish species—alewives, shad, herring, and mackerel—according to their migration and spawning phenologies and temperature tolerances. First to arrive, alewives suffered the worst. Crop failure and incipient famine intensified fishing pressure, especially in heavily settled regions where dams already compromised watersheds. Insufficient alewife runs led fishers to target mackerel, the next species appearing in abundance along the coast; thus, 1816 became the “mackerel year.” Critically, the shift from riparian to marine fisheries persisted and expanded after temperatures moderated and alewives recovered. We conclude that contingent human adaptations to extraordinary weather permanently altered this complex system. Understanding how adaptive responses to extreme events can trigger unintended consequences may advance long-term planning for resilience in an uncertain future. PMID:28116356

  5. Pilot system on extreme climate monitoring and early warning for long range forecast in Korea

    NASA Astrophysics Data System (ADS)

    Cho, K.; Park, B. K.; E-hyung, P.; Gong, Y.; Kim, H. K.; Park, S.; Min, S. K.; Yoo, H. D.

    2015-12-01

    Recently, extreme weather/climate events such as heat waves, flooding/droughts etc. have been increasing in frequency and intensity under climate change over the world. Also, they can have substantial impacts on ecosystem and human society (agriculture, health, and economy) of the affected regions. According to future projections of climate, extreme weather and climate events in Korea are expected to occure more frequently with stronger intensity over the 21st century. For the better long range forecast, it is also fundamentally ruquired to develop a supporting system in terms of extreme weather and climate events including forequency and trend. In this context, the KMA (Korea Meteorological Administration) has recently initiated a development of the extreme climate monintoring and early warning system for long range forecast, which consists of three sub-system components; (1) Real-time climate monitoring system, (2) Ensemble prediction system, and (3) Mechanism analysis and display system for climate extremes. As a first step, a pilot system has been designed focusing on temperature extremes such heat waves and cold snaps using daily, monthly and seasonal observations and model prediction output on the global, regional and national levels. In parallel, the skills of the KMA long range prediction system are being evaluated comprehensively for weather and climate extremes, for which varous case studies are conducted to better understand the observed variations of extrem climates and responsible mechanisms and also to assess predictability of the ensemble prediction system for extremes. Details in the KMA extreme climate monitoring and early warning system will be intorduced and some preliminary results will be discussed for heat/cold waves in Korea.

  6. The Climatology of Climate Extremes in the World's Major Growing Regions

    NASA Astrophysics Data System (ADS)

    Troy, T.; Zhu, X.

    2015-12-01

    A stable food supply is increasingly important as global populations grow and climate variability and extremes affect crop yields. It is therefore critical to quantify the occurrence of extremes in major growing regions globally to understand the vulnerability of the global food supply to climate. First, we grid the GHCN historical climate data and evaluate the effect of gridding on estimation of agriculturally relevant climate extremes, such as heat waves, consecutive dry days, and precipitation intensity. We find that the differences between gridded indices and the raw station indices are small, mostly less than 10%. We then evaluate the climatology of climate extremes and the probability of concurrent extremes, both within one growing region and across multiple regions globally. We find that the correlation of two precipitation or temperature related indices are quite strong, such that the probability of another extreme occurring increases given the occurrence of one extreme. These results provide estimations of the global food supply's vulnerability to climate variability and extremes, which is critical for planning in the coming decades with projections of more frequent and more intense climate extremes.

  7. Climate impacts on extreme energy consumption of different types of buildings.

    PubMed

    Li, Mingcai; Shi, Jun; Guo, Jun; Cao, Jingfu; Niu, Jide; Xiong, Mingming

    2015-01-01

    Exploring changes of building energy consumption and its relationships with climate can provide basis for energy-saving and carbon emission reduction. Heating and cooling energy consumption of different types of buildings during 1981-2010 in Tianjin city, was simulated by using TRNSYS software. Daily or hourly extreme energy consumption was determined by percentile methods, and the climate impact on extreme energy consumption was analyzed. The results showed that days of extreme heating consumption showed apparent decrease during the recent 30 years for residential and large venue buildings, whereas days of extreme cooling consumption increased in large venue building. No significant variations were found for the days of extreme energy consumption for commercial building, although a decreasing trend in extreme heating energy consumption. Daily extreme energy consumption for large venue building had no relationship with climate parameters, whereas extreme energy consumption for commercial and residential buildings was related to various climate parameters. Further multiple regression analysis suggested heating energy consumption for commercial building was affected by maximum temperature, dry bulb temperature, solar radiation and minimum temperature, which together can explain 71.5 % of the variation of the daily extreme heating energy consumption. The daily extreme cooling energy consumption for commercial building was only related to the wet bulb temperature (R2= 0.382). The daily extreme heating energy consumption for residential building was affected by 4 climate parameters, but the dry bulb temperature had the main impact. The impacts of climate on hourly extreme heating energy consumption has a 1-3 hour delay in all three types of buildings, but no delay was found in the impacts of climate on hourly extreme cooling energy consumption for the selected buildings.

  8. Climate Impacts on Extreme Energy Consumption of Different Types of Buildings

    PubMed Central

    Li, Mingcai; Shi, Jun; Guo, Jun; Cao, Jingfu; Niu, Jide; Xiong, Mingming

    2015-01-01

    Exploring changes of building energy consumption and its relationships with climate can provide basis for energy-saving and carbon emission reduction. Heating and cooling energy consumption of different types of buildings during 1981-2010 in Tianjin city, was simulated by using TRNSYS software. Daily or hourly extreme energy consumption was determined by percentile methods, and the climate impact on extreme energy consumption was analyzed. The results showed that days of extreme heating consumption showed apparent decrease during the recent 30 years for residential and large venue buildings, whereas days of extreme cooling consumption increased in large venue building. No significant variations were found for the days of extreme energy consumption for commercial building, although a decreasing trend in extreme heating energy consumption. Daily extreme energy consumption for large venue building had no relationship with climate parameters, whereas extreme energy consumption for commercial and residential buildings was related to various climate parameters. Further multiple regression analysis suggested heating energy consumption for commercial building was affected by maximum temperature, dry bulb temperature, solar radiation and minimum temperature, which together can explain 71.5 % of the variation of the daily extreme heating energy consumption. The daily extreme cooling energy consumption for commercial building was only related to the wet bulb temperature (R2= 0.382). The daily extreme heating energy consumption for residential building was affected by 4 climate parameters, but the dry bulb temperature had the main impact. The impacts of climate on hourly extreme heating energy consumption has a 1-3 hour delay in all three types of buildings, but no delay was found in the impacts of climate on hourly extreme cooling energy consumption for the selected buildings. PMID:25923205

  9. Graceful Failure, Engineering, and Planning for Extremes: The Engineering for Climate Extremes Partnership (ECEP)

    NASA Astrophysics Data System (ADS)

    Bruyere, C. L.; Tye, M. R.; Holland, G. J.; Done, J.

    2015-12-01

    Graceful failure acknowledges that all systems will fail at some level and incorporates the potential for failure as a key component of engineering design, community planning, and the associated research and development. This is a fundamental component of the ECEP, an interdisciplinary partnership bringing together scientific, engineering, cultural, business and government expertise to develop robust, well-communicated predictions and advice on the impacts of weather and climate extremes in support of decision-making. A feature of the partnership is the manner in which basic and applied research and development is conducted in direct collaboration with the end user. A major ECEP focus is the Global Risk and Resilience Toolbox (GRRT) that is aimed at developing public-domain, risk-modeling and response data and planning system in support of engineering design, and community planning and adaptation activities. In this presentation I will outline the overall ECEP and GRIP activities, and expand on the 'graceful failure' concept. Specific examples for direct assessment and prediction of hurricane impacts and damage potential will be included.

  10. Climate extremes can drive biological assemblages to early successional stages compared to several mild disturbances

    PubMed Central

    Sanz-Lázaro, Carlos

    2016-01-01

    Extreme climatic events have a major role in the structuring of biological communities, and their occurrence is expected to increase due to climate change. Here I use a manipulative approach to test the effects of extreme storm events on rocky mid-shore assemblages. This study shows that an extreme storm can cause more negative effects than several mild storms, primarily by bringing the biological assemblages towards early stages of succession. This finding contrasts with the effects of clustering of climatic events due to climate change, which are expected to mitigate its ecological impacts. Thus, the ecological consequences of climatic events that are influenced by climate change may have contrasting effects depending on the features that are considered. These results have relevant implications in the forecasting of the ecological consequences of climate change and should be considered when designing measures to mitigate its effects. PMID:27527612

  11. Climate extremes can drive biological assemblages to early successional stages compared to several mild disturbances

    NASA Astrophysics Data System (ADS)

    Sanz-Lázaro, Carlos

    2016-08-01

    Extreme climatic events have a major role in the structuring of biological communities, and their occurrence is expected to increase due to climate change. Here I use a manipulative approach to test the effects of extreme storm events on rocky mid-shore assemblages. This study shows that an extreme storm can cause more negative effects than several mild storms, primarily by bringing the biological assemblages towards early stages of succession. This finding contrasts with the effects of clustering of climatic events due to climate change, which are expected to mitigate its ecological impacts. Thus, the ecological consequences of climatic events that are influenced by climate change may have contrasting effects depending on the features that are considered. These results have relevant implications in the forecasting of the ecological consequences of climate change and should be considered when designing measures to mitigate its effects.

  12. Perturbing a Stochastic Weather Generator with Different Climate Change Signals to Assess Extreme Precipitation under Influence of Climate Change at Urban Scales

    NASA Astrophysics Data System (ADS)

    Sørup, H. J.; Christensen, O. B.; Arnbjerg-Nielsen, K.; Mikkelsen, P. S.

    2013-12-01

    In recent years, urban flooding has occurred in Denmark due to very short lived local extreme precipitation events. Several of these floods have been among the most severe experienced to date. Climate change is expected to alter the frequency of extreme precipitation events causing floods, but in general climate models are poor in representing extreme precipitation events. The current study demonstrates how the Spatio-Temporal Neyman-Scott Rectangular Pulses weather generator can be applied at urban scale and how it can be used for statistical downscaling by perturbation with a climate change signal. The weather generator is fitted to data from a dense network of high resolution tipping bucket rain gauges in and around Copenhagen. The weather generator is validated by its ability to reproduce realistic extreme precipitation statistics. The model reproduces intensity-duration-frequency statistics down to the one-hour time scale satisfactorily. It furthermore reproduces realistic spatial correlation patterns at the extreme rain event level when output is sampled on a 2-km grid. For downscaling, perturbation with a climate change signal obtained from four different regional climate model simulations has been analyzed. The analyzed data sets originates from two regional climate model (RCM) runs from the European ENSEMBLES project (RACMO/ECHAM and HIRHAM/ECHAM, A1B scenario and 25 km spatial scale) and two RCM runs just for southern Scandinavia performed by the Danish Meteorological Institute (both HIRHAM/EC-EARTH, rcp 4.5 and rcp 8.5 scenarios and 8 km spatial scale). The data sets are all at one-hour time resolution. All data sets result in markedly different perturbation schemes for the weather generator. The downscaled time series are analyzed in accordance to the validation procedure and change factors for the extremes are derived as a function of return period. Despite different perturbation schemes both A1B scenario model runs and the rcp 4.5 scenario model run

  13. Climate variability and extremes, interacting with nitrogen storage, amplify eutrophication risk

    NASA Astrophysics Data System (ADS)

    Lee, Minjin; Shevliakova, Elena; Malyshev, Sergey; Milly, P. C. D.; Jaffé, Peter R.

    2016-07-01

    Despite 30 years of basin-wide nutrient-reduction efforts, severe hypoxia continues to be observed in the Chesapeake Bay. Here we demonstrate the critical influence of climate variability, interacting with accumulated nitrogen (N) over multidecades, on Susquehanna River dissolved nitrogen (DN) loads, known precursors of the hypoxia in the Bay. We used the process model LM3-TAN (Terrestrial and Aquatic Nitrogen), which is capable of capturing both seasonal and decadal-to-century changes in vegetation-soil-river N storage, and produced nine scenarios of DN-load distributions under different short-term scenarios of climate variability and extremes. We illustrate that after 1 to 3 yearlong dry spells, the likelihood of exceeding a threshold DN load (56 kt yr-1) increases by 40 to 65% due to flushing of N accumulated throughout the dry spells and altered microbial processes. Our analyses suggest that possible future increases in climate variability/extremes—specifically, high precipitation occurring after multiyear dry spells—could likely lead to high DN-load anomalies and hypoxia.

  14. Climate variability and extremes, interacting with nitrogen storage, amplify eutrophication risk

    USGS Publications Warehouse

    Lee, Minjin; Shevliakova, Elena; Malyshev, Sergey; Milly, P.C.D.; Jaffe, Peter R.

    2016-01-01

    Despite 30 years of basin-wide nutrient-reduction efforts, severe hypoxia continues to be observed in the Chesapeake Bay. Here we demonstrate the critical influence of climate variability, interacting with accumulated nitrogen (N) over multidecades, on Susquehanna River dissolved nitrogen (DN) loads, known precursors of the hypoxia in the Bay. We used the process model LM3-TAN (Terrestrial and Aquatic Nitrogen), which is capable of capturing both seasonal and decadal-to-century changes in vegetation-soil-river N storage, and produced nine scenarios of DN-load distributions under different short-term scenarios of climate variability and extremes. We illustrate that after 1 to 3 yearlong dry spells, the likelihood of exceeding a threshold DN load (56 kt yr−1) increases by 40 to 65% due to flushing of N accumulated throughout the dry spells and altered microbial processes. Our analyses suggest that possible future increases in climate variability/extremes—specifically, high precipitation occurring after multiyear dry spells—could likely lead to high DN-load anomalies and hypoxia.

  15. Knowledge discovery and nonlinear modeling can complement climate model simulations for predictive insights about climate extremes and their impacts

    NASA Astrophysics Data System (ADS)

    Ganguly, A. R.; Steinbach, M.; Kumar, V.

    2009-12-01

    The IPCC AR4 not only provided conclusive evidence about anticipated global warming at century scales, but also indicated with a high level of certainty that the warming is caused by anthropogenic emissions. However, an outstanding knowledge-gap is to develop credible projections of climate extremes and their impacts. Climate extremes are defined in this context as extreme weather and hydrological events, as well as changes in regional hydro-meteorological patterns, especially at decadal scales. While temperature extremes from climate models have relatively better skills, hydrological variables and their extremes have significant shortcomings. Credible projections about tropical storms, sea level rise, coastal storm surge, land glacier melts, and landslides remain elusive. The next generation of climate models is expected to have higher precision. However, their ability to provide more accurate projections of climate extremes remains to be tested. Projections of observed trends into the future may not be reliable in non-stationary environments like climate change, even though functional relationships derived from physics may hold. On the other hand, assessments of climate change impacts which are useful for stakeholders and policy makers depend critically on regional and decadal scale projections of climate extremes. Thus, climate impacts scientists often need to develop qualitative inferences about the not so-well predicted climate extremes based on insights from observations (e.g., increased hurricane intensity) or conceptual understanding (e.g., relation of wildfires to regional warming or drying and hurricanes to SST). However, neither conceptual understanding nor observed trends may be reliable when extrapolating in a non-stationary environment. These urgent societal priorities offer fertile grounds for nonlinear modeling and knowledge discovery approaches. Thus, qualitative inferences on climate extremes and impacts may be transformed into quantitative

  16. Modeling Shasta Dam operations to regulate temperatures for Chinook salmon under extreme climate and climate change

    NASA Astrophysics Data System (ADS)

    Dai, A.; Saito, L.; Sapin, J. R.; Rajagopalan, B.; Hanna, R. B.; Kauneckis, D. L.

    2014-12-01

    Chinook salmon populations have declined significantly after the construction of Shasta Dam on the Sacramento River in 1945 prevented them from spawning in the cold waters upstream. In 1994, the winter-run Chinook were listed under the Endangered Species Act and 3 years later the US Bureau of Reclamation began operating a temperature control device (TCD) on the dam that allows for selective withdrawal for downstream temperature control to promote salmon spawning while also maximizing power generation. However, dam operators are responsible to other interests that depend on the reservoir for water such as agriculture, municipalities, industry, and recreation. An increase in temperatures due to climate change may place additional strain on the ability of dam operations to maintain spawning habitat for salmon downstream of the dam. We examined the capability of Shasta Dam to regulate downstream temperatures under extreme climates and climate change by using stochastically generated streamflow, stream temperature, and weather inputs with a two-dimensional CE-QUAL-W2 model under several operational options. Operation performance was evaluated using degree days and cold pool volume (volume of water below a temperature threshold). Model results indicated that a generalized operations release schedule, in which release elevations varied over the year to match downstream temperature targets, performed best overall in meeting temperature targets while preserving cold pool volume. Releasing all water out the bottom throughout the year tended to meet temperature targets at the expense of depleting the cold pool, and releasing all water out uppermost gates preserved the cold pool, but released water that was too warm during the critical spawning period. With higher air temperatures due to climate change, both degree day and cold pool volume metrics were worse than baseline conditions, which suggests that Chinook salmon may be more negatively affected under climate change.

  17. Managing the Risks of Extreme Events and Disasters in a Changing Climate: Lessons for Adaptation to Climate Change (Invited)

    NASA Astrophysics Data System (ADS)

    Mastrandrea, M.; Field, C. B.; Mach, K. J.; Barros, V.

    2013-12-01

    The IPCC Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, published in 2012, integrates expertise in climate science, disaster risk reduction, and adaptation to inform discussions on how to reduce and manage the risks of extreme events and disasters in a changing climate. Impacts and the risks of disasters are determined by the interaction of the physical characteristics of weather and climate events with the vulnerability of exposed human society and ecosystems. The Special Report evaluates the factors that make people and infrastructure vulnerable to extreme events, trends in disaster losses, recent and future changes in the relationship between climate change and extremes, and experience with a wide range of options used by institutions, organizations, and communities to reduce exposure and vulnerability, and improve resilience, to climate extremes. Actions ranging from incremental improvements in governance and technology to more transformational changes are assessed. The Special Report provides a knowledge base that is also relevant to the broader context of managing the risks of climate change through mitigation, adaptation, and other responses, assessed in the IPCC's Fifth Assessment Report (AR5), to be completed in 2014. These themes include managing risks through an iterative process involving learning about risks and the effectiveness of responses, employing a portfolio of actions tailored to local circumstances but with links from local to global scales, and considering additional benefits of actions such as improving livelihoods and well-being. The Working Group II contribution to the AR5 also examines the ways that extreme events and their impacts contribute to understanding of vulnerabilities and adaptation deficits in the context of climate change, the extent to which impacts of climate change are experienced through changes in the frequency and severity of extremes as opposed to mean changes

  18. Extreme Weather Events and Interconnected Infrastructures: Toward More Comprehensive Climate Change Planning [Meeting challenges in understanding impacts of extreme weather events on connected infrastructures

    SciTech Connect

    Wilbanks, Thomas J.; Fernandez, Steven J.; Allen, Melissa R.

    2015-06-23

    The President s Climate Change Action Plan calls for the development of better science, data, and tools for climate preparedness. Many of the current questions about preparedness for extreme weather events in coming decades are, however, difficult to answer with assets that have been developed by climate science to answer longer-term questions about climate change. Capacities for projecting exposures to climate-related extreme events, along with their implications for interconnected infrastructures, are now emerging.

  19. Evaluation of reanalysis climate simulations for the prediction of extreme runoff characteristics

    NASA Astrophysics Data System (ADS)

    Coskun, Mehmet; Samaniego, Luis; Kumar, Rohini

    2010-05-01

    Discharge regimes of river basins are expected to be altered due to possible effects of global warming. For planning and water resources management, it is fundamental to estimate the probability of occurrence of extreme hydrological events such as magnitude and frequency of floods and droughts. So far, it is a matter of debate whether actual Global and Regional Climate Model outputs or their reanalysis products (bias corrected) are able to provide a reasonable estimate of the meteorological variables that are required to force a distributed hydrologic model. In this study, we will evaluate various climate simulations for their reliability to predict extreme runoff characteristics in three German mesoscale river basins with various sizes and hydro-meteorological conditions: Neckar (12 700 km2), Bode (3 300 km2), and Mulde (2 700 km2). Reanalysis of the global atmosphere and surface conditions were obtained from the European Centre for Medium-Range Weather Forecast (ECMWF) Reanalysis (ERA-40) for the period from 1957 to 2002. These data will be used to force a grid based mesoscale hydrologic model calibrated with past meteorological and discharge observations. Several runoff characteristics will be estimated based on daily discharge simulations and then compared with their corresponding estimates derived from daily streamflow observations. Finally, nonparametric statistical test (e.g. Kolmogorov-Smirnov test) and Tukey's depth function will be employed to test two null hypotheses: 1) Meteorological observations and the reanalysis data are realisations from a common generating process, and 2) The probability of occurrence of extreme runoff characteristics obtained from both data sets is similar.

  20. Responses of greenhouse gas fluxes to climate extremes in a semiarid grassland

    NASA Astrophysics Data System (ADS)

    Li, Linfeng; Fan, Wenyu; Kang, Xiaoming; Wang, Yanfen; Cui, Xiaoyong; Xu, Chengyuan; Griffin, Kevin L.; Hao, Yanbin

    2016-10-01

    Climate extremes are expected to increase in frequency and intensity as a consequence of anthropogenic climate change attributed to the rise of atmospheric concentrations of greenhouse gases (GHGs). However, studies on the impacts of climate extremes on terrestrial ecosystems are limited. Here, we experimentally imposed extreme drought and a heat wave (∼60-year recurrence) to investigate their effects on GHGs fluxes of a semiarid grassland in China. We estimated a 16% and 38% percent reduction in net ecosystem CO2 uptake caused by the heat wave and drought respectively, but via different mechanisms. Drought reduced gross ecosystem productively (GEP) and to a lower extent ecosystem respiration (ER). By contrast, the simulated heat wave suppressed only GEP while ER remained stable. The climate extremes also created a legacy effect on GEP and NEE lasting until the end of the growing season, whereas ER recovered immediately. Although CH4 and N2O fluxes were unaffected by the heat wave, drought promoted CH4 uptake and suppressed N2O emission during the treatment period. The effect of drought on GHGs fluxes generally overwhelmed that of the heat wave treatment, and there were no interactive effects of these two types of climate extremes. Our results showed that responses of ecosystem GHGs exchange to climate extremes are strongly regulated by soil moisture status. In conclusion, future amplification of climate extremes could decrease the sink for GHGs, especially CO2, in this semiarid grasslands.

  1. Recent Advances in Regional Climate System Modeling and ClimateChange Analyses of Extreme Heat

    SciTech Connect

    Miller, Norman L.

    2004-09-24

    During the period May 2003 to May 2004, there were two CEC/PIER funded primary research activities by the Atmosphere and Ocean Sciences Group/Earth Science Division at LBNL. These activities are the implementation and testing of the National Center for Atmospheric Research Community Land Model (CLM) into MM5, and the analysis of extreme heat days under a new set of climate simulations. The new version of MM5,MM5-CLM, has been tested for a 90 day snowmelt period in the northwestern U.S. Results show that this new code upgrade, as compared to the MM5-NOAH, has improved snowmelt, temperature, and precipitation when compared to observations. These are due in part to a subgrid scheme,advanced snow processes, and advanced vegetation. The climate change analysis is the upper and lower IPCC Special Report on Emission Scenarios, representing fossil fuel intensive and energy conserving future emission scenarios, and medium and low sensitivity Global Climate Models. Results indicate that California cities will see increases in the number of heat wave and temperature threshold days from two to six times.These results may be viewed as potential outcomes based on today's decisions on emissions.

  2. Estimating changes in temperature extremes from millennial-scale climate simulations using generalized extreme value (GEV) distributions

    NASA Astrophysics Data System (ADS)

    Huang, Whitney K.; Stein, Michael L.; McInerney, David J.; Sun, Shanshan; Moyer, Elisabeth J.

    2016-07-01

    Changes in extreme weather may produce some of the largest societal impacts of anthropogenic climate change. However, it is intrinsically difficult to estimate changes in extreme events from the short observational record. In this work we use millennial runs from the Community Climate System Model version 3 (CCSM3) in equilibrated pre-industrial and possible future (700 and 1400 ppm CO2) conditions to examine both how extremes change in this model and how well these changes can be estimated as a function of run length. We estimate changes to distributions of future temperature extremes (annual minima and annual maxima) in the contiguous United States by fitting generalized extreme value (GEV) distributions. Using 1000-year pre-industrial and future time series, we show that warm extremes largely change in accordance with mean shifts in the distribution of summertime temperatures. Cold extremes warm more than mean shifts in the distribution of wintertime temperatures, but changes in GEV location parameters are generally well explained by the combination of mean shifts and reduced wintertime temperature variability. For cold extremes at inland locations, return levels at long recurrence intervals show additional effects related to changes in the spread and shape of GEV distributions. We then examine uncertainties that result from using shorter model runs. In theory, the GEV distribution can allow prediction of infrequent events using time series shorter than the recurrence interval of those events. To investigate how well this approach works in practice, we estimate 20-, 50-, and 100-year extreme events using segments of varying lengths. We find that even using GEV distributions, time series of comparable or shorter length than the return period of interest can lead to very poor estimates. These results suggest caution when attempting to use short observational time series or model runs to infer infrequent extremes.

  3. Effects of Climate Change on Extreme Streamflow Risks in the Olympic National Park

    NASA Astrophysics Data System (ADS)

    Tohver, I. M.; Lee, S.; Hamlet, A.

    2011-12-01

    Conventionally, natural resource management practices are designed within the framework that past conditions serve as a baseline for future conditions. However, the warmer future climate projected for the Pacific Northwest will alter the region's flood and low flow risks, posing considerable challenges to resource managers in the Olympic National Forest (ONF) and Olympic National Park (ONP). Shifts in extreme streamflow will influence two key management objectives in the ONF and ONP: the protection of wildlife and the maintenance of road infrastructure. The ONF is charged with managing habitat for species listed under the Endangered Species Act (ESA), and with maintaining the network of forest roads and culverts. Climate-induced increases in flood severity will introduce additional challenges in road and culvert design. Furthermore, the aging road infrastructure and more extreme summer low flows will compromise aquatic habitats, intrinsic to the health of threatened and endangered fish species listed under the ESA. Current practice uses estimates of Q100 (or the peak flow with an estimated 100 year return frequency) as the standard metric for stream crossing design. Simple regression models relating annual precipitation and basin area to Q100 are used in the design process. Low flow estimates are based on historical streamflow data to calculate the 7-day consecutive lowest flow with a 10-year return interval, or 7Q10. Under the projections a changing climate, these methods for estimating extreme flows are ill equipped to capture the complex and spatially varying effects of seasonal changes in temperature, precipitation, and snowpack on extreme flow risk. As an alternative approach, this study applies a physically-based hydrologic model to estimate historical and future flood risk at 1/16th degree (latitude/longitude) resolution (about 32 km2). We downscaled climate data derived from 10 global climate models to use as input for the Variable Infiltration Capacity

  4. Climate Extreme Effects on the Chemical Composition of Temperate Grassland Species under Ambient and Elevated CO2: A Comparison of Fructan and Non-Fructan Accumulators

    PubMed Central

    Zinta, Gaurav; Van den Ende, Wim; Janssens, Ivan A.; Asard, Han

    2014-01-01

    Elevated CO2 concentrations and extreme climate events, are two increasing components of the ongoing global climatic change factors, may alter plant chemical composition and thereby their economic and ecological characteristics, e.g. nutritional quality and decomposition rates. To investigate the impact of climate extremes on tissue quality, four temperate grassland species: the fructan accumulating grasses Lolium perenne, Poa pratensis, and the nitrogen (N) fixing legumes Medicago lupulina and Lotus corniculatus were subjected to water deficit at elevated temperature (+3°C), under ambient CO2 (392 ppm) and elevated CO2 (620 ppm). As a general observation, the effects of the climate extreme were larger and more ubiquitous in combination with elevated CO2. The imposed climate extreme increased non-structural carbohydrate and phenolics in all species, whereas it increased lignin in legumes and decreased tannins in grasses. However, there was no significant effect of climate extreme on structural carbohydrates, proteins, lipids and mineral contents and stoichiometric ratios. In combination with elevated CO2, climate extreme elicited larger increases in fructan and sucrose content in the grasses without affecting the total carbohydrate content, while it significantly increased total carbohydrates in legumes. The accumulation of carbohydrates in legumes was accompanied by higher activity of sucrose phosphate synthase, sucrose synthase and ADP-Glc pyrophosphorylase. In the legumes, elevated CO2 in combination with climate extreme reduced protein, phosphorus (P) and magnesium (Mg) contents and the total element:N ratio and it increased phenol, lignin, tannin, carbon (C), nitrogen (N) contents and C:N, C:P and N:P ratios. On the other hand, the tissue composition of the fructan accumulating grasses was not affected at this level, in line with recent views that fructans contribute to cellular homeostasis under stress. It is speculated that quality losses will be less

  5. Changing climate cues differentially alter zooplankton dormancy dynamics across latitudes.

    PubMed

    Jones, Natalie T; Gilbert, Benjamin

    2016-03-01

    In seasonal climates, dormancy is a common strategy that structures biodiversity and is necessary for the persistence of many species. Climate change will likely alter dormancy dynamics in zooplankton, the basis of aquatic food webs, by altering two important hatching cues: mean temperatures during the ice-free season, and mean day length when lakes become ice free. Theory suggests that these changes could alter diversity, hatchling abundances and phenology within lakes, and that these responses may diverge across latitudes due to differences in optimal hatching cues and strategies. To examine the role of temperature and day length on hatching dynamics, we collected sediment from 25 lakes across a 1800 km latitudinal gradient and exposed sediment samples to a factorial combination of two photoperiods (12 and 16 h) and two temperatures (8 and 12 °C) representative of historical southern (short photoperiod, warm) and northern (long photoperiod, cool) lake conditions. We tested whether sensitivity to these hatching cues varies by latitudinal origin and differs among taxa. Higher temperatures advanced phenology for all taxa, and these advances were greatest for cladocerans followed by copepods and rotifers. Although phenology differed among taxa, the effect of temperature did not vary with latitude. The latitudinal origin of the egg bank influenced egg abundance and hatchling abundance and diversity, with these latter effects varying with taxa, temperature and photoperiod. Copepod hatchling abundances peaked at mid-latitudes in the high temperature and long photoperiod treatments, whereas hatchling abundances of other zooplankton were greatest at low latitudes and high temperature. The overall diversity of crustacean zooplankton (copepods and cladocerans) also reflected distinct responses of each taxa to our treatments, with the greatest diversity occurring at mid-latitudes (~56 °N) in the shorter photoperiod treatment. Our results demonstrate that hatching cues

  6. Climate extremes are associated with invertebrate taxonomic and functional composition in mountain lakes.

    PubMed

    Boersma, Kate S; Nickerson, Avery; Francis, Clinton D; Siepielski, Adam M

    2016-11-01

    Climate change is expected to increase climate variability and the occurrence of extreme climatic events, with potentially devastating effects on aquatic ecosystems. However, little is known about the role of climate extremes in structuring aquatic communities or the interplay between climate and local abiotic and biotic factors. Here, we examine the relative influence of climate and local abiotic and biotic conditions on biodiversity and community structure in lake invertebrates. We sampled aquatic invertebrates and measured environmental variables in 19 lakes throughout California, USA, to test hypotheses of the relationship between climate, local biotic and environmental conditions, and the taxonomic and functional structure of aquatic invertebrate communities. We found that, while local biotic and abiotic factors such as habitat availability and conductivity were the most consistent predictors of alpha diversity, extreme climate conditions such as maximum summer temperature and dry-season precipitation were most often associated with multivariate taxonomic and functional composition. Specifically, sites with high maximum temperatures and low dry-season precipitation housed communities containing high abundances of large predatory taxa. Furthermore, both climate dissimilarity and abiotic dissimilarity determined taxonomic turnover among sites (beta diversity). These findings suggest that while local-scale environmental variables may predict alpha diversity, climatic variability is important to consider when projecting broad-scale aquatic community responses to the extreme temperature and precipitation events that are expected for much of the world during the next century.

  7. Impacts of ocean albedo alteration on Arctic sea ice restoration and Northern Hemisphere climate

    DOE PAGES

    Cvijanovic, Ivana; Caldeira, Ken; MacMartin, Douglas G.

    2015-04-01

    The Arctic Ocean is expected to transition into a seasonally ice-free state by mid-century, enhancing Arctic warming and leading to substantial ecological and socio-economic challenges across the Arctic region. It has been proposed that artificially increasing high latitude ocean albedo could restore sea ice, but the climate impacts of such a strategy have not been previously explored. Motivated by this, we investigate the impacts of idealized high latitude ocean albedo changes on Arctic sea ice restoration and climate. In our simulated 4xCO₂ climate, imposing surface albedo alterations over the Arctic Ocean leads to partial sea ice recovery and a modestmore » reduction in Arctic warming. With the most extreme ocean albedo changes, imposed over the area 70°–90°N, September sea ice cover stabilizes at ~40% of its preindustrial value (compared to ~3% without imposed albedo modifications). This is accompanied by an annual mean Arctic surface temperature decrease of ~2 °C but no substantial global mean temperature decrease. Imposed albedo changes and sea ice recovery alter climate outside the Arctic region too, affecting precipitation distribution over parts of the continental United States and Northeastern Pacific. For example, following sea ice recovery, wetter and milder winter conditions are present in the Southwest United States while the East Coast experiences cooling. We conclude that although ocean albedo alteration could lead to some sea ice recovery, it does not appear to be an effective way of offsetting the overall effects of CO₂ induced global warming.« less

  8. Impacts of ocean albedo alteration on Arctic sea ice restoration and Northern Hemisphere climate

    SciTech Connect

    Cvijanovic, Ivana; Caldeira, Ken; MacMartin, Douglas G.

    2015-04-01

    The Arctic Ocean is expected to transition into a seasonally ice-free state by mid-century, enhancing Arctic warming and leading to substantial ecological and socio-economic challenges across the Arctic region. It has been proposed that artificially increasing high latitude ocean albedo could restore sea ice, but the climate impacts of such a strategy have not been previously explored. Motivated by this, we investigate the impacts of idealized high latitude ocean albedo changes on Arctic sea ice restoration and climate. In our simulated 4xCO₂ climate, imposing surface albedo alterations over the Arctic Ocean leads to partial sea ice recovery and a modest reduction in Arctic warming. With the most extreme ocean albedo changes, imposed over the area 70°–90°N, September sea ice cover stabilizes at ~40% of its preindustrial value (compared to ~3% without imposed albedo modifications). This is accompanied by an annual mean Arctic surface temperature decrease of ~2 °C but no substantial global mean temperature decrease. Imposed albedo changes and sea ice recovery alter climate outside the Arctic region too, affecting precipitation distribution over parts of the continental United States and Northeastern Pacific. For example, following sea ice recovery, wetter and milder winter conditions are present in the Southwest United States while the East Coast experiences cooling. We conclude that although ocean albedo alteration could lead to some sea ice recovery, it does not appear to be an effective way of offsetting the overall effects of CO₂ induced global warming.

  9. The impact of climate extremes on US agricultural production and the buffering impacts of irrigation

    NASA Astrophysics Data System (ADS)

    Troy, Tara J.; Kipgen, Chinpihoi; Pal, Indrani

    2014-05-01

    In recent years, droughts and floods have occurred over many of the major growing regions of the world, resulting in decreased agricultural production and increased global food prices. Many climate projections call for more frequent extreme events, which could have significant impacts on agricultural yields and water resources in irrigated agricultural regions. In order to better understand the potential impact of climate extremes and the spatial heterogeneity of those impacts, we examine the associations between climate and irrigated and rain fed crop yields, focusing on four main staple crops: wheat, rice, soy, and maize. Because the United States has high spatial resolution data for both yields and weather variables, the analysis focuses on the impact of multiple extremes over these four crops in the US using statistical methods that do not require any assumptions of functional relationships between yields and weather variables. Irrigated and rain fed agricultural yields are analyzed separately to understand the role irrigation plays either as a buffering against climate variability and extremes such as drought, heat waves, and extended dry spells or a mechanism that leads to varied relationships between extremes of climate and yield fluctuations. These results demonstrate that irrigation has varying effects depending on the region, growing season timing, crop type, and type of climate extreme. This work has important implications for future planning of the coupled water-food system and its vulnerabilities to climate.

  10. Synergy of extreme drought and shrub invasion reduce ecosystem functioning and resilience in water-limited climates

    NASA Astrophysics Data System (ADS)

    Caldeira, Maria C.; Lecomte, Xavier; David, Teresa S.; Pinto, Joaquim G.; Bugalho, Miguel N.; Werner, Christiane

    2015-10-01

    Extreme drought events and plant invasions are major drivers of global change that can critically affect ecosystem functioning and alter ecosystem-atmosphere exchange. Invaders are expanding worldwide and extreme drought events are projected to increase in frequency and intensity. However, very little is known on how these drivers may interact to affect the functioning and resilience of ecosystems to extreme events. Using a manipulative shrub removal experiment and the co-occurrence of an extreme drought event (2011/2012) in a Mediterranean woodland, we show that native shrub invasion and extreme drought synergistically reduced ecosystem transpiration and the resilience of key-stone oak tree species. Ecosystem transpiration was dominated by the water use of the invasive shrub Cistus ladanifer, which further increased after the extreme drought event. Meanwhile, the transpiration of key-stone tree species decreased, indicating a competitive advantage in favour of the invader. Our results suggest that in Mediterranean-type climates the invasion of water spending species and projected recurrent extreme drought events may synergistically cause critical drought tolerance thresholds of key-stone tree species to be surpassed, corroborating observed higher tree mortality in the invaded ecosystems. Ultimately, this may shift seasonally water limited ecosystems into less desirable alternative states dominated by water spending invasive shrubs.

  11. Synergy of extreme drought and shrub invasion reduce ecosystem functioning and resilience in water-limited climates.

    PubMed

    Caldeira, Maria C; Lecomte, Xavier; David, Teresa S; Pinto, Joaquim G; Bugalho, Miguel N; Werner, Christiane

    2015-10-13

    Extreme drought events and plant invasions are major drivers of global change that can critically affect ecosystem functioning and alter ecosystem-atmosphere exchange. Invaders are expanding worldwide and extreme drought events are projected to increase in frequency and intensity. However, very little is known on how these drivers may interact to affect the functioning and resilience of ecosystems to extreme events. Using a manipulative shrub removal experiment and the co-occurrence of an extreme drought event (2011/2012) in a Mediterranean woodland, we show that native shrub invasion and extreme drought synergistically reduced ecosystem transpiration and the resilience of key-stone oak tree species. Ecosystem transpiration was dominated by the water use of the invasive shrub Cistus ladanifer, which further increased after the extreme drought event. Meanwhile, the transpiration of key-stone tree species decreased, indicating a competitive advantage in favour of the invader. Our results suggest that in Mediterranean-type climates the invasion of water spending species and projected recurrent extreme drought events may synergistically cause critical drought tolerance thresholds of key-stone tree species to be surpassed, corroborating observed higher tree mortality in the invaded ecosystems. Ultimately, this may shift seasonally water limited ecosystems into less desirable alternative states dominated by water spending invasive shrubs.

  12. Synergy of extreme drought and shrub invasion reduce ecosystem functioning and resilience in water-limited climates

    PubMed Central

    Caldeira, Maria C.; Lecomte, Xavier; David, Teresa S.; Pinto, Joaquim G.; Bugalho, Miguel N.; Werner, Christiane

    2015-01-01

    Extreme drought events and plant invasions are major drivers of global change that can critically affect ecosystem functioning and alter ecosystem-atmosphere exchange. Invaders are expanding worldwide and extreme drought events are projected to increase in frequency and intensity. However, very little is known on how these drivers may interact to affect the functioning and resilience of ecosystems to extreme events. Using a manipulative shrub removal experiment and the co-occurrence of an extreme drought event (2011/2012) in a Mediterranean woodland, we show that native shrub invasion and extreme drought synergistically reduced ecosystem transpiration and the resilience of key-stone oak tree species. Ecosystem transpiration was dominated by the water use of the invasive shrub Cistus ladanifer, which further increased after the extreme drought event. Meanwhile, the transpiration of key-stone tree species decreased, indicating a competitive advantage in favour of the invader. Our results suggest that in Mediterranean-type climates the invasion of water spending species and projected recurrent extreme drought events may synergistically cause critical drought tolerance thresholds of key-stone tree species to be surpassed, corroborating observed higher tree mortality in the invaded ecosystems. Ultimately, this may shift seasonally water limited ecosystems into less desirable alternative states dominated by water spending invasive shrubs. PMID:26461978

  13. Impact of Climate Change on extreme flows across Great Britain: a comparison of extreme value distributions and uncertainty assessment.

    NASA Astrophysics Data System (ADS)

    Collet, Lila; Beevers, Lindsay; Prudhomme, Christel

    2016-04-01

    Floods are the most common and widely distributed natural risk to life and property worldwide, causing over £6B worth of damage to the UK since 2000. Climate projections are predicted to result in the increase of UK properties at risk from flooding. It thus becomes urgent to assess the possible impact of these changes on extreme high flows in particular, and evaluate the uncertainties related to these projections. This paper aims to assess the changes in extreme runoff for the 1:100 year return period event across Great Britain as a result of climate change. It is based on the Future Flow database and analyses daily runoff over 1961-2098 for 281 gauging stations. The Generalized Extreme Value (GEV) and Generalized Pareto (GP) distribution functions are automatically fitted for 11 climate-change ensembles over the baseline (1961-1990) and the 2080s (2069-2098) for each gauging station. The analysis evaluates the uncertainty related to the Extreme Value (EV) distributions, and the uncertainty related to the climate model parameterization. Then it assesses return levels with combined uncertainties across Great Britain for both EV distributions. Ultimately, this work gives a national picture of extreme flows assessed by the two methods and allows a direct comparison between them. Results show that the GP distribution computes higher runoff estimates than the GEV distribution. Generally, the uncertainties associated with both distributions are similar, but the GP computes significantly higher uncertainties for stations in the south and southeast of England. From the baseline to the 2080s horizon, the GEV distribution shows variable runoff trends across Great Britain, while the GP distribution shows an increasing trend of return level estimate and uncertainties, especially in the northeast and southeast of England. The lowest climate model and extreme value uncertainty is generally seen across the west coast of Great Britain. In terms of uncertainty, with the GEV

  14. Thermal variability alters the impact of climate warming on consumer-resource systems.

    PubMed

    Fey, Samuel B; Vasseur, David A

    2016-07-01

    Thermal variation through space and time are prominent features of ecosystems that influence processes at multiple levels of biological organization. Yet, it remains unclear how populations embedded within biological communities will respond to climate warming in thermally variable environments, particularly as climate change alters existing patterns of thermal spatial and temporal variability. As environmental temperatures increase above historical ranges, organisms may increasingly rely on extreme habitats to effectively thermoregulate. Such locations desirable in their thermal attributes (e.g., thermal refugia) are often suboptimal for resource acquisition (e.g., underground tunnels). Thus, via the expected increase in both mean temperatures and diel thermal variation, climate warming may heighten the trade-off for consumers between behaviors maximizing thermal performance and those maximizing resource acquisition. Here, we integrate behavioral, physiological, and trophic ecology to provide a general framework for understanding how temporal thermal variation, mediated by access to a thermal refugium, alters the response of consumer-resource systems to warming. We use this framework to predict how temporal variation and access to thermal refugia affect the persistence of consumers and resources during climate warming, how the quality of thermal refugia impact consumer-resource systems, and how consumer-resource systems with fast vs. slow ecological dynamics respond to warming. Our results show that the spatial thermal variability provided by refugia can elevate consumer biomass at warmer temperatures despite reducing the fraction of time consumers spend foraging, that temporal variability detrimentally impacts consumers at high environmental temperatures, and that consumer-resource systems with fast ecological dynamics are most vulnerable to climate warming. Thus, incorporating both estimates of thermal variability and species interactions may be necessary to

  15. Does Nudging Squelch the Extremes in Regional Climate Modeling?

    EPA Science Inventory

    An important question in regional climate downscaling is whether to constrain (nudge) the interior of the limited-area domain toward the larger-scale driving fields. Prior research has demonstrated that interior nudging can increase the skill of regional climate predictions origin...

  16. Time of Emergence of Climate Extremes in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Lynch, C.; Salathe, E. P., Jr.; Snover, A. K.; Yu, R.

    2014-12-01

    The time at which a climate variable emerges from the noise of climate variability, or "time of emergence" (ToE), is explored from a stakeholder-driven perspective. Using both global and statistically downscaled climate model output from the Coupled Model Intercomparison Project phase 5 (CMIP5) and hydrologic model results, management-relevant measures of the climate and environment are analyzed for the Pacific Northwest (PNW), within the broader context of the continental United States. The specific climate variables were selected through meetings with key regional resource managers at federal, state, and local agencies, and generally relate to exceptional events in temperature, precipitation, and streamflow. Uncertainty in ToE calculations is also examined due to three sources: 1) statistical estimation of emergence 2) future emission scenarios (rcp4.5 and rcp8.5) and 3) multi-model ensemble spread. In the PNW, results show that for temperature related climate variables, ToE is likely within the next 50 years, with a strong positive trend, regardless of emission scenario. Precipitation related variables show a much later ToE, with a weak positive signal despite some model disagreement in direction of change. As this data is intended for socio-economic stakeholders in the PNW, a web tool has been designed to allow for visualizing and analyzing ToE for multiple climate variables and the associated probability statistics across the PNW domain. This information will help guide resource managers in the prioritization and timing of climate change adaption activities.

  17. Impacts of different climate change regimes and extreme climatic events on an alpine meadow community

    PubMed Central

    Alatalo, Juha M.; Jägerbrand, Annika K.; Molau, Ulf

    2016-01-01

    Climate variability is expected to increase in future but there exist very few experimental studies that apply different warming regimes on plant communities over several years. We studied an alpine meadow community under three warming regimes over three years. Treatments consisted of (a) a constant level of warming with open-top chambers (ca. 1.9 °C above ambient), (b) yearly stepwise increases in warming (increases of ca. 1.0, 1.9 and 3.5 °C), and (c) pulse warming, a single first-year pulse event of warming (increase of ca. 3.5 °C). Pulse warming and stepwise warming was hypothesised to cause distinct first-year and third-year effects, respectively. We found support for both hypotheses; however, the responses varied among measurement levels (whole community, canopy, bottom layer, and plant functional groups), treatments, and time. Our study revealed complex responses of the alpine plant community to the different experimentally imposed climate warming regimes. Plant cover, height and biomass frequently responded distinctly to the constant level of warming, the stepwise increase in warming and the extreme pulse-warming event. Notably, we found that stepwise warming had an accumulating effect on biomass, the responses to the different warming regimes varied among functional groups, and the short-term perturbations had negative effect on species richness and diversity PMID:26888225

  18. Climate Extremes Triggered State Shifting of US Great Plains Prairie under Experimental Warming

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Xu, X.; Sherry, R.; Niu, S.; Li, D.; Xia, J.

    2012-04-01

    Ecosystems can exist under multiple stable states. Transition from one stable state to another is usually triggered by perturbations such as climate extremes, which should be large enough to push the ecosystem over a threshold. Ecosystem state changes can alter ecosystem functions and services as dramatically as in Sahara with vegetation changes from tropical forests to grassland and deserts over 6000 years. Thus it is crucial to understand mechanisms underlying ecosystem state changes. State changes of ecosystem vegetation have been well documented in paleo-records and predicted to occur under climate change by dynamic global vegetation models. Paleo-records usually offer broad-scale patterns of ecosystem state changes over time and rarely offer much insight into fundamental mechanisms underlying the state changes. Model predictions may be calibrated against contemporary and paleo vegetation distributions but have not been carefully tested against experimental evidence. The latter, however, is extremely rare largely because global chance experiments are mostly short term. We have observed state shifting of a US Great Plains prairie under long-term experimental warming and clipping treatments. Our analysis of 11-year data from the experiment showed two-stage stimulations of aboveground net primary production (ANPP) with small increases in the first 7 followed by distinctly large increases under experimental warming in comparison with those under control. The two-stage ANPP simulations were corresponded with species reordering with the plant community over time but not related to warming-induced changes in temperature, soil moisture and nitrogen dynamics in the grassland. The state shifting of the grassland under the experimental warming was partly because our experimental site locates in an ecotone between the mixed and tall grass prairies. Under the experimental warming, the prairie was shifting from the mixed prairie as dominated by Schizachyrium scoparium

  19. Extreme rainfall events can alter inter-annual biomass responses to water and N enrichment

    NASA Astrophysics Data System (ADS)

    Kong, D. L.; Lü, X. T.; Jiang, L. L.; Wu, H. F.; Miao, Y.; Kardol, P.

    2013-12-01

    Water availability has profound effects on plant growth and productivity in temperate and semiarid grasslands. However, it remains unclear how variation of inter-annual precipitation by extreme rainfall events will alter the aboveground and belowground responses of plants, and how these responses may be contingent on N availability. In this study, we examined the interactive effects of inter-annual precipitation variation and N addition on aboveground and live fine root biomass of a semiarid grassland in northern China for two consecutive years (2007 and 2008). Inter-annual variation in precipitation resulting mainly from the occurrence of extreme rainfall events in 2008 significantly affected above- and belowground plant biomass responses to water addition. In addition, variation of inter-annual precipitation by this extreme rainfall event suppressed plant responses to nitrogen addition and reduced the interaction effects between water and nitrogen addition. These effects of inter-annual precipitation fluctuation could be attributed to the negative influence of the extreme rainfall event on soil N and water availability, ultimately reducing plant rainfall use efficiency and nitrogen use efficiency. In conclusion, our results suggest ecosystem responses to water and N enrichment could be altered by inter-annual variation of precipitation regime caused by the naturally occurring extreme rainfall events.

  20. A plant’s perspective of extremes: Terrestrial plant responses to changing climatic variability

    PubMed Central

    Reyer, C.; Leuzinger, S.; Rammig, A.; Wolf, A.; Bartholomeus, R. P.; Bonfante, A.; de Lorenzi, F.; Dury, M.; Gloning, P.; Abou Jaoudé, R.; Klein, T.; Kuster, T. M.; Martins, M.; Niedrist, G.; Riccardi, M.; Wohlfahrt, G.; de Angelis, P.; de Dato, G.; François, L.; Menzel, A.; Pereira, M.

    2013-01-01

    We review observational, experimental and model results on how plants respond to extreme climatic conditions induced by changing climatic variability. Distinguishing between impacts of changing mean climatic conditions and changing climatic variability on terrestrial ecosystems is generally underrated in current studies. The goals of our review are thus (1) to identify plant processes that are vulnerable to changes in the variability of climatic variables rather than to changes in their mean, and (2) to depict/evaluate available study designs to quantify responses of plants to changing climatic variability. We find that phenology is largely affected by changing mean climate but also that impacts of climatic variability are much less studied but potentially damaging. We note that plant water relations seem to be very vulnerable to extremes driven by changes in temperature and precipitation and that heatwaves and flooding have stronger impacts on physiological processes than changing mean climate. Moreover, interacting phenological and physiological processes are likely to further complicate plant responses to changing climatic variability. Phenological and physiological processes and their interactions culminate in even more sophisticated responses to changing mean climate and climatic variability at the species and community level. Generally, observational studies are well suited to study plant responses to changing mean climate, but less suitable to gain a mechanistic understanding of plant responses to climatic variability. Experiments seem best suited to simulate extreme events. In models, temporal resolution and model structure are crucial to capture plant responses to changing climatic variability. We highlight that a combination of experimental, observational and /or modeling studies have the potential to overcome important caveats of the respective individual approaches. PMID:23504722

  1. Hydrologic regime alteration of a Mediterranean catchment under climate change projection

    NASA Astrophysics Data System (ADS)

    Sellami, Haykel; Benabdallah, Sihem; La Jeunesse, Isabelle; Herrmann, Frank; Vanclooster, Marnik

    2014-05-01

    Most of the climate models projections for the Mediterranean basin have showed that the region will likely to experience a general tendency towards drier climate conditions with decreases in total precipitation, increases in temperature, alterations in the rainfall extreme events and droughts frequency (IPCC, 2007; Giorgi and Lionello, 2008; López-Moreno et al., 2011). The region is already suffering from water resources scarcity and vulnerability which are expected to amplify in the next century (Ludwig et al., 2011; Schneider et al., 2013). Therefore, assessing the impact of climate change on the hydrologic regime of Mediterranean catchments is with a major concern not only to scientist but also to water resources policy makers and general public. However, most of the climate change impact studies focus on the flow regime on global or regional scale rather than on the catchment scale which is more useful and more appropriate to guide practical mitigation and adaptation policy. This is because hydro-climate modeling at the local scale is confronted to the variability in climate, topography, geology, lack of observations and anthropogenic activities within the catchment. Furthermore, it is well recognized that hydrological and climate models forecasts are always affected with uncertainty making the assessment of climate change impact on Mediterranean catchment hydrology more challenging. This work aims to assess the impact of climate change on a Mediterranean catchment located in North Africa (the Chiba catchment in northeast Tunisia) through a conjunctive use of physically based hydrological model (SWAT) driven with four climate models*. Quantification of the impact of climate change has been conducted by means of the Indicators of Hydrologic Alteration (Richter et al., 1996) which are also ecologically meaningful. By comparing changes in these indicators in the reference period (1971-2000) to the projected ones in the future (2041-2070), it was possible to draw

  2. Deciphering landscape complexity to predict (non)linear responses to extreme climatic events

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extreme events are increasing in frequency and magnitude for many landscapes globally. Ecologically, most of the focus on extreme climatic events has been on effects of either short-term pulses (floods, freezes) or long-term drought. Multi-year increases in precipitation are also occurring with litt...

  3. Why climate change will invariably alter selection pressures on phenology.

    PubMed

    Gienapp, Phillip; Reed, Thomas E; Visser, Marcel E

    2014-10-22

    The seasonal timing of lifecycle events is closely linked to individual fitness and hence, maladaptation in phenological traits may impact population dynamics. However, few studies have analysed whether and why climate change will alter selection pressures and hence possibly induce maladaptation in phenology. To fill this gap, we here use a theoretical modelling approach. In our models, the phenologies of consumer and resource are (potentially) environmentally sensitive and depend on two different but correlated environmental variables. Fitness of the consumer depends on the phenological match with the resource. Because we explicitly model the dependence of the phenologies on environmental variables, we can test how differential (heterogeneous) versus equal (homogeneous) rates of change in the environmental variables affect selection on consumer phenology. As expected, under heterogeneous change, phenotypic plasticity is insufficient and thus selection on consumer phenology arises. However, even homogeneous change leads to directional selection on consumer phenology. This is because the consumer reaction norm has historically evolved to be flatter than the resource reaction norm, owing to time lags and imperfect cue reliability. Climate change will therefore lead to increased selection on consumer phenology across a broad range of situations.

  4. Establishment and performance of an experimental green roof under extreme climatic conditions.

    PubMed

    Klein, Petra M; Coffman, Reid

    2015-04-15

    Green roofs alter the surface energy balance and can help in mitigating urban heat islands. However, the cooling of green roofs due to evapotranspiration strongly depends on the climatic conditions, and vegetation type and density. In the Southern Central Plains of the United States, extreme weather events, such as high winds, heat waves and drought conditions pose challenges for successful implementation of green roofs, and likely alter their standard performance. The National Weather Center Experimental Green Roof, an interdisciplinary research site established in 2010 in Norman, OK, aimed to investigate the ecological performance and surface energy balance of green roof systems. Starting in May 2010, 26 months of vegetation studies were conducted and the radiation balance, air temperature, relative humidity, and buoyancy fluxes were monitored at two meteorological stations during April-October 2011. The establishment of a vegetative community trended towards prairie plant dominance. High mortality of succulents and low germination of grasses and herbaceous plants contributed to low vegetative coverage. In this condition succulent diversity declined. Bouteloua gracilis and Delosperma cooperi showed typological dominance in harsh climatic conditions, while Sedum species experienced high mortality. The plant community diversified through volunteers such as Euphorbia maculate and Portulaca maculate. Net radiation measured at a green-roof meteorological station was higher than at a control station over the original, light-colored roofing material. These findings indicate that the albedo of the green roof was lower than the albedo of the original roofing material. The low vegetative coverage during the heat and drought conditions in 2011, which resulted in the dark substrate used in the green roof containers being exposed, likely contributed to the low albedo values. Nevertheless, air temperatures and buoyancy fluxes were often lower over the green roof indicating

  5. Are Extremes of Consumption in Eating Disorders Related to an Altered Balance between Reward and Inhibition?

    PubMed Central

    Wierenga, Christina E.; Ely, Alice; Bischoff-Grethe, Amanda; Bailer, Ursula F.; Simmons, Alan N.; Kaye, Walter H.

    2014-01-01

    The primary defining characteristic of a diagnosis of an eating disorder (ED) is the “disturbance of eating or eating-related behavior that results in the altered consumption or absorption of food” (DSM V; American Psychiatric Association, 2013). There is a spectrum, ranging from those who severely restrict eating and become emaciated on one end to those who binge and overconsume, usually accompanied by some form of compensatory behaviors, on the other. How can we understand reasons for such extremes of food consummatory behaviors? Recent work on obesity and substance use disorders has identified behaviors and neural pathways that play a powerful role in human consummatory behaviors. That is, corticostriatal limbic and dorsal cognitive neural circuitry can make drugs and food rewarding, but also engage self-control mechanisms that may inhibit their use. Importantly, there is considerable evidence that alterations of these systems also occur in ED. This paper explores the hypothesis that an altered balance of reward and inhibition contributes to altered extremes of response to salient stimuli, such as food. We will review recent studies that show altered sensitivity to reward and punishment in ED, with evidence of altered activity in corticostriatal and insula processes with respect to monetary gains or losses, and tastes of palatable foods. We will also discuss evidence for a spectrum of extremes of inhibition and dysregulation behaviors in ED supported by studies suggesting that this is related to top-down self-control mechanisms. The lack of a mechanistic understanding of ED has thwarted efforts for evidence-based approaches to develop interventions. Understanding how ED behavior is encoded in neural circuits would provide a foundation for developing more specific and effective treatment approaches. PMID:25538579

  6. Providing the Larger Climate Context During Extreme Weather - Lessons from Local Television News

    NASA Astrophysics Data System (ADS)

    Woods, M.; Cullen, H. M.

    2015-12-01

    Local television weathercasters, in their role as Station Scientists, are often called upon to educate viewers about the science and impacts of climate change. Climate Central supports these efforts through its Climate Matters program. Launched in 2010 with support from the National Science Foundation, the program has grown into a network that includes more than 245 weathercasters from across the country and provides localized information on climate and ready-to-use, broadcast quality graphics and analyses in both English and Spanish. This presentation will focus on discussing best practices for integrating climate science into the local weather forecast as well as advances in the science of extreme event attribution. The Chief Meteorologist at News10 (Sacramento, CA) will discuss local news coverage of the ongoing California drought, extreme weather and climate literacy.

  7. Climate Impact Reporter: A New Tool for Archiving and Displaying Climate-related Impacts to Extreme Events

    NASA Astrophysics Data System (ADS)

    Umphlett, N.; Shulski, M.; Lahowetz, J.; Sorensen, W.

    2014-12-01

    The High Plains Regional Climate Center (HPRCC) has been providing users with custom climate services for over 25 years. Stakeholder needs in the High Plains Region have evolved over time from simple data requests to inquiries about the impacts of various climate-related events. At this time, climate impacts may be reported in numerous locations such as newspapers, scholarly journals, and extension articles. In order to meet the increasing demand for climate impact information, HPRCC is beta-testing an online tool which synthesizes, archives, and displays impacts related to extreme climate events from multiple sources. The tool is intended to fulfill the needs of two general types of users - those who need a place to archive climate impact information and those seeking such information. As such, there are two main components to the tool: 1) a back-end interface where an impact information database is populated and 2) a front-end interface where users may browse the impacts. On the front-end, users can select an area (i.e. river basin, state, county warning area) and search for climate-related impacts within that area. Key impacts include the following sectors: agriculture, ecosystems, energy, human health, society, transportation, and water resources. In this regard, information can also be useful for future National Climate Assessment activities. Ultimately, an understanding of impacts to extreme events by sector will provide critical information for improved decision-making and adaptation strategies.

  8. Life stage influences the resistance and resilience of black mangrove forests to winter climate extremes

    USGS Publications Warehouse

    Osland, Michael J.; Day, Richard H.; From, Andrew S.; McCoy, Megan L.; McLeod, Jennie L.; Kelleway, Jeffrey

    2015-01-01

    In subtropical coastal wetlands on multiple continents, climate change-induced reductions in the frequency and intensity of freezing temperatures are expected to lead to the expansion of woody plants (i.e., mangrove forests) at the expense of tidal grasslands (i.e., salt marshes). Since some ecosystem goods and services would be affected by mangrove range expansion, there is a need to better understand mangrove sensitivity to freezing temperatures as well as the implications of changing winter climate extremes for mangrove-salt marsh interactions. In this study, we investigated the following questions: (1) how does plant life stage (i.e., ontogeny) influence the resistance and resilience of black mangrove (Avicennia germinans) forests to freezing temperatures; and (2) how might differential life stage responses to freeze events affect the rate of mangrove expansion and salt marsh displacement due to climate change? To address these questions, we quantified freeze damage and recovery for different life stages (seedling, short tree, and tall tree) following extreme winter air temperature events that occurred near the northern range limit of A. germinans in North America. We found that life stage affects black mangrove forest resistance and resilience to winter climate extremes in a nonlinear fashion. Resistance to winter climate extremes was high for tall A. germinans trees and seedlings, but lowest for short trees. Resilience was highest for tall A. germinans trees. These results suggest the presence of positive feedbacks and indicate that climate-change induced decreases in the frequency and intensity of extreme minimum air temperatures could lead to a nonlinear increase in mangrove forest resistance and resilience. This feedback could accelerate future mangrove expansion and salt marsh loss at rates beyond what would be predicted from climate change alone. In general terms, our study highlights the importance of accounting for differential life stage responses and

  9. Development and assessment of indices to determine stream fish vulnerability to climate change and habitat alteration

    USGS Publications Warehouse

    Sievert, Nicholas A.; Paukert, Craig P.; Tsang, Yin-Phan; Infante, Dana M.

    2016-01-01

    Understanding the future impacts of climate and land use change are critical for long-term biodiversity conservation. We developed and compared two indices to assess the vulnerability of stream fish in Missouri, USA based on species environmental tolerances, rarity, range size, dispersal ability and on the average connectivity of the streams occupied by each species. These two indices differed in how environmental tolerance was classified (i.e., vulnerability to habitat alteration, changes in stream temperature, and changes to flow regimes). Environmental tolerance was classified based on measured species responses to habitat alteration, and extremes in stream temperatures and flow conditions for one index, while environmental tolerance for the second index was based on species’ traits. The indices were compared to determine if vulnerability scores differed by index or state listing status. We also evaluated the spatial distribution of species classified as vulnerable to habitat alteration, changes in stream temperature, and change in flow regimes. Vulnerability scores were calculated for all 133 species with the trait association index, while only 101 species were evaluated using the species response index, because 32 species lacked data to analyze for a response. Scores from the trait association index were greater than the species response index. This is likely due to the species response index's inability to evaluate many rare species, which generally had high vulnerability scores for the trait association index. The indices were consistent in classifying vulnerability to habitat alteration, but varied in their classification of vulnerability due to increases in stream temperature and alterations to flow regimes, likely because extremes in current climate may not fully capture future conditions and their influence on stream fish communities. Both indices showed higher mean vulnerability scores for listed species than unlisted species, which provided a coarse

  10. Adapting to extreme climates: raising animals in hot and arid ecosystems in Australia

    NASA Astrophysics Data System (ADS)

    Seo, S. Niggol

    2015-05-01

    This paper provides an analysis of adaptation to extreme climate changes using the Australian animal husbandry data. The paper finds that farmers have adapted to a hot and arid climate regime through animal husbandry. The number of sheep vastly increases into arid ecosystems while the number of beef cattle does not decline in high temperatures. In the future climate system in which Australia becomes hotter and more arid, we predict that farmers will increase by large percentages the numbers of beef cattle and/or sheep owned in order to adapt to a highly unfavorable climate condition, especially into the arid ecosystems. This paper shows how humanity has adapted to climate extremes taking into account changing ecosystems.

  11. Altered Acer Rubrum Fecundity Induced By Chemical Climate Change

    NASA Astrophysics Data System (ADS)

    Deforest, J. L.; Peters, A.

    2014-12-01

    Red maple (Acer rubrum L.) is becoming the most dominating tree in North American eastern deciduous forests. Concurrently, human activities have altered the chemical climate of terrestrial ecosystems via acidic deposition, which increases the available of nitrogen (N), while decreasing phosphorus (P) availability. Once a minor forest component prior to European settlement, the abundance of red maple may be a symptom of the modern age. The current paradigm explaining red maple's rise to prominence concerns fire suppression that excludes competitors. However, this still does not explain why red maple is unique compared to other functionally similar trees. The objective of this study was to investigate the interactive influence of acid rain mitigation on the fecundity of red maple. Objectives were achieved by measuring flowering, seed production, germination, and growth from red maple on plots that have been experimentally manipulated to increase soil pH, P, or both in three unglaciated eastern deciduous hardwood forests. At least 50% of the red maple population is seed bearing in our control soils, however the median percent of seed-bearing trees declined to zero when mitigating soils from acidic deposition. This can be explained by the curious fact that red maple is polygamodioecious, or has labile sex-expression, in which an individual tree can change its sex-expression in response to the environment. Furthermore, seed-bearing trees in the mitigated plots grew less, produced less seeds, and germinated at lower rates than their counterparts in control soils. Our results provide evidence that chemical climate change could be the primary contributing factor accelerating the dominance of red maple in eastern North American forests. Our observations can provide a boarder conceptual framework for understanding how nutrient limitations can be applied beyond plant productivity towards explaining distribution changes in vegetation.

  12. Characterizing differences in precipitation regimes of extreme wet and dry years: implications for climate change experiments.

    PubMed

    Knapp, Alan K; Hoover, David L; Wilcox, Kevin R; Avolio, Meghan L; Koerner, Sally E; La Pierre, Kimberly J; Loik, Michael E; Luo, Yiqi; Sala, Osvaldo E; Smith, Melinda D

    2015-02-03

    Climate change is intensifying the hydrologic cycle and is expected to increase the frequency of extreme wet and dry years. Beyond precipitation amount, extreme wet and dry years may differ in other ways, such as the number of precipitation events, event size, and the time between events. We assessed 1614 long-term (100 year) precipitation records from around the world to identify key attributes of precipitation regimes, besides amount, that distinguish statistically extreme wet from extreme dry years. In general, in regions where mean annual precipitation (MAP) exceeded 1000 mm, precipitation amounts in extreme wet and dry years differed from average years by ~40% and 30%, respectively. The magnitude of these deviations increased to >60% for dry years and to >150% for wet years in arid regions (MAP<500 mm). Extreme wet years were primarily distinguished from average and extreme dry years by the presence of multiple extreme (large) daily precipitation events (events >99th percentile of all events); these occurred twice as often in extreme wet years compared to average years. In contrast, these large precipitation events were rare in extreme dry years. Less important for distinguishing extreme wet from dry years were mean event size and frequency, or the number of dry days between events. However, extreme dry years were distinguished from average years by an increase in the number of dry days between events. These precipitation regime attributes consistently differed between extreme wet and dry years across 12 major terrestrial ecoregions from around the world, from deserts to the tropics. Thus, we recommend that climate change experiments and model simulations incorporate these differences in key precipitation regime attributes, as well as amount into treatments. This will allow experiments to more realistically simulate extreme precipitation years and more accurately assess the ecological consequences.

  13. Multiple climate cooling prior to Sturtian glaciations: Evidence from chemical index of alteration of sediments in South China

    PubMed Central

    Huang, Jing; Feng, Lianjun; Lu, Dingbiao; Zhang, Qirui; Sun, Tao; Chu, Xuelei

    2014-01-01

    Investigation of climatic conditions prior to the Sturtian glaciations is critical to understanding the trigger mechanism for the series of Neoproterozoic global glaciations. In this study, we report high-resolution chemical index of alteration (CIA) records in the sediments of South China prior to the Sturtian glaciation (820~720 Ma). Our results showed there occurred multiple climate cooling before the Sturtian glaciations in South China: (1) a series of episodic and possibly global climate cooling periods from ca. 750 Ma to 725 Ma, which also caused some diachronous regional glaciations; (2) a permanent climate cooling period between ca. 800 Ma and 770 Ma, probably contemporaneous to the global “Bitter Springs stage” δ13C negative excursion; (3) a climate cooling period between ca. 815 Ma and 810 Ma. The three stages of climate cooling are also supported by their correspondence to previously reported extremely low δ18O records of igneous/metamorphic minerals from South China. These climate cooling periods also coincide with the magmatism and rifting events in South China. We argue that tectonic movements were the primary control on the climate cooling before the Neoproterozoic global glaciations. PMID:25359610

  14. Multiple climate cooling prior to Sturtian glaciations: evidence from chemical index of alteration of sediments in South China.

    PubMed

    Huang, Jing; Feng, Lianjun; Lu, Dingbiao; Zhang, Qirui; Sun, Tao; Chu, Xuelei

    2014-10-31

    Investigation of climatic conditions prior to the Sturtian glaciations is critical to understanding the trigger mechanism for the series of Neoproterozoic global glaciations. In this study, we report high-resolution chemical index of alteration (CIA) records in the sediments of South China prior to the Sturtian glaciation (820~720 Ma). Our results showed there occurred multiple climate cooling before the Sturtian glaciations in South China: (1) a series of episodic and possibly global climate cooling periods from ca. 750 Ma to 725 Ma, which also caused some diachronous regional glaciations; (2) a permanent climate cooling period between ca. 800 Ma and 770 Ma, probably contemporaneous to the global "Bitter Springs stage" δ(13)C negative excursion; (3) a climate cooling period between ca. 815 Ma and 810 Ma. The three stages of climate cooling are also supported by their correspondence to previously reported extremely low δ(18)O records of igneous/metamorphic minerals from South China. These climate cooling periods also coincide with the magmatism and rifting events in South China. We argue that tectonic movements were the primary control on the climate cooling before the Neoproterozoic global glaciations.

  15. Global impacts of hydrological and climatic extremes on vegetation (SAT-EX)

    NASA Astrophysics Data System (ADS)

    van Eck, Christel Melissa; Waegeman, Willem; Papagiannopoulou, Christina; Verhoest, Niko; Depoorter, Mathieu; Regnier, Pierre; Friedlingstein, Pierre; Dolman, A. Johannes; de Jeu, Richard; Dorigo, Wouter; Miralles, Diego G.

    2015-04-01

    Global warming is expected to increase the frequency and severity of droughts, extreme precipitation events and heatwaves. Recent studies have underlined the critical impacts of these extremes on the terrestrial carbon cycle, particularly on the dynamics of vegetation. Yet, the latest IPCC report reveals large uncertainties in extremes trends and biomass impacts. Conversely, new advances in satellite Earth observation have led to the recent development of consistent global historical records of crucial environmental and climatic variables - like surface soil moisture, soil water storage, terrestrial evaporation or vegetation water content. These datasets provide alternative means to unravel the processes driving past climate extremes, uncover the spatiotemporal scales at which these extremes operate and understand their impact on terrestrial biomass. The SAT-EX project (funded by BELSPO) recently raised with the purpose of exploring the potential of the state-of-art remote sensing datasets to study the causes and consequences of the spatiotemporal changes in wet, dry and warm spells over the past three decades. Core methodologies involve the analysis of satellite-based climate extreme indices and vegetation characteristics through a novel combination of machine learning methods, fingerprint identification approaches, and spatio-temporal clustering. First results will show how droughts, heatwaves and extreme rain events have changed in frequency and intensity since the '80s, and attribute these changes to on-going processes like the widening of the tropical belt, ocean-atmospheric teleconnections, the intensification of land-atmospheric feedbacks or the overall rise in greenhouse gasses (and expected acceleration of the hydrological cycle). A specific focus will be given on large-scale vegetation response to climate extremes throughout our analyses. Further phases in the project will involve the evaluation of IPCC Earth System Models on the basis of their skill to

  16. Climate change effects on extreme flows of water supply area in Istanbul: utility of regional climate models and downscaling method.

    PubMed

    Kara, Fatih; Yucel, Ismail

    2015-09-01

    This study investigates the climate change impact on the changes of mean and extreme flows under current and future climate conditions in the Omerli Basin of Istanbul, Turkey. The 15 regional climate model output from the EU-ENSEMBLES project and a downscaling method based on local implications from geophysical variables were used for the comparative analyses. Automated calibration algorithm is used to optimize the parameters of Hydrologiska Byråns Vattenbalansavdel-ning (HBV) model for the study catchment using observed daily temperature and precipitation. The calibrated HBV model was implemented to simulate daily flows using precipitation and temperature data from climate models with and without downscaling method for reference (1960-1990) and scenario (2071-2100) periods. Flood indices were derived from daily flows, and their changes throughout the four seasons and year were evaluated by comparing their values derived from simulations corresponding to the current and future climate. All climate models strongly underestimate precipitation while downscaling improves their underestimation feature particularly for extreme events. Depending on precipitation input from climate models with and without downscaling the HBV also significantly underestimates daily mean and extreme flows through all seasons. However, this underestimation feature is importantly improved for all seasons especially for spring and winter through the use of downscaled inputs. Changes in extreme flows from reference to future increased for the winter and spring and decreased for the fall and summer seasons. These changes were more significant with downscaling inputs. With respect to current time, higher flow magnitudes for given return periods will be experienced in the future and hence, in the planning of the Omerli reservoir, the effective storage and water use should be sustained.

  17. Precipitation extremes and their relation to climatic indices in the Pacific Northwest, USA

    NASA Astrophysics Data System (ADS)

    Zarekarizi, Mahkameh; Rana, Arun; Moradkhani, Hamid

    2016-04-01

    Recently research has focused on the influence of climate indices on precipitation extremes. In the current study, we present the analysis of the precipitation-based extremes in Columbia River Basin (CRB) in the Pacific North-West USA. We first analyzed the precipitation-based extreme indices using statistically downscaled past and future climate projections from ten GCMs. Seven different precipitation-based indices that help inform about the flood duration/intensity are used in the study. These indices would give firsthand information on spatial and temporal scales for different service sectors including energy, agriculture, forestry etc. in the area. Temporally, historical and future projections are analyzed over the whole CRB using ten CMIP5 models. For each scenario, we have mapped out these indices over the area to see the spatial variation of past and future extremes. The analysis shows that high values of extreme indices are clustered in either western or southern parts of the basin while northern part of the basin is experiencing high increase in the indices in future scenarios. Here we focus our attention on evaluating the relation of these extreme and climate indices in historical period to understand which climate indices have more impact on extremes over CRB. Various climate indices are evaluated for their relationship using Principal Component Analysis (PCA) and Singular Value Decomposition (SVD). Results indicated that, out of fifteen climate indices used in the study, CRB is being most affected negatively by East Pacific (EP), Western Pacific Index (WP), Eastern Asia (EA) and North Atlantic Oscillation (NAO).

  18. Sensitivity of UK butterflies to local climatic extremes: which life stages are most at risk?

    PubMed

    McDermott Long, Osgur; Warren, Rachel; Price, Jeff; Brereton, Tom M; Botham, Marc S; Franco, Aldina M A

    2017-01-01

    There is growing recognition as to the importance of extreme climatic events (ECEs) in determining changes in species populations. In fact, it is often the extent of climate variability that determines a population's ability to persist at a given site. This study examined the impact of ECEs on the resident UK butterfly species (n = 41) over a 37-year period. The study investigated the sensitivity of butterflies to four extremes (drought, extreme precipitation, extreme heat and extreme cold), identified at the site level, across each species' life stages. Variations in the vulnerability of butterflies at the site level were also compared based on three life-history traits (voltinism, habitat requirement and range). This is the first study to examine the effects of ECEs at the site level across all life stages of a butterfly, identifying sensitive life stages and unravelling the role life-history traits play in species sensitivity to ECEs. Butterfly population changes were found to be primarily driven by temperature extremes. Extreme heat was detrimental during overwintering periods and beneficial during adult periods and extreme cold had opposite impacts on both of these life stages. Previously undocumented detrimental effects were identified for extreme precipitation during the pupal life stage for univoltine species. Generalists were found to have significantly more negative associations with ECEs than specialists. With future projections of warmer, wetter winters and more severe weather events, UK butterflies could come under severe pressure given the findings of this study.

  19. Exposure and Figure Out of Climate Induced Alterations in the Wetlands of Banglades

    NASA Astrophysics Data System (ADS)

    Siddiquee, S. A.; Rahman, M. Z.

    2015-12-01

    Unique geographic location and geo-morphological conditions of Bangladesh have made the wetlands of this country one of the most vulnerable to climate change. Wetland plays a crucial role in maintaining the ecological balance of ecosystems and cultural figures and which occupy around 50% of the area. Drought, excessive temperature, mountain snowfields and glaciers melting, riverbank erosion, salinity intrusion, flashflood, storm surges, higher water temperatures, precipitation anomalies, coastal cyclones, seasonal anomalies and extremes are main threats to the wetland ecosystem. Enhanced UV-B radiation and increased summer precipitation will significantly increase dissolved organic carbon concentrations altering major biogeochemical cycles and also will result into the expansion of range for many invasive aquatic weeds. Generally, rising temperature will lower water quality through a fall in oxygen concentrations, release of phosphorus from sediments, increased thermal stability, and altered mixing patterns. As a result biodiversity is getting degraded, many species of flora and fauna are getting threatened, and wetland-based ecosystem is getting degenerated. At the same time, the living conditions of local people are deteriorating as livelihoods, socioeconomic institutions, and extensive cultural values as well. For conserving and managing wetlands technology, legislation, educational knowledge, action plan strategy and restoration practices are required. In order to address the human needs in the changing climate community-based adaptation approaches and wetland restoration, practices had been taken in almost every type of wetlands in Bangladesh. Therefore, Bangladesh now needs a comprehensive strategy and integrated system combining political, economic, social, technological approaches and institutional supports to address sustainable wetland restoration, conservation and the newly added crisis, climate change.

  20. Influence of climate variability versus change at multi-decadal time scales on hydrological extremes

    NASA Astrophysics Data System (ADS)

    Willems, Patrick

    2014-05-01

    Recent studies have shown that rainfall and hydrological extremes do not randomly occur in time, but are subject to multidecadal oscillations. In addition to these oscillations, there are temporal trends due to climate change. Design statistics, such as intensity-duration-frequency (IDF) for extreme rainfall or flow-duration-frequency (QDF) relationships, are affected by both types of temporal changes (short term and long term). This presentation discusses these changes, how they influence water engineering design and decision making, and how this influence can be assessed and taken into account in practice. The multidecadal oscillations in rainfall and hydrological extremes were studied based on a technique for the identification and analysis of changes in extreme quantiles. The statistical significance of the oscillations was evaluated by means of a non-parametric bootstrapping method. Oscillations in large scale atmospheric circulation were identified as the main drivers for the temporal oscillations in rainfall and hydrological extremes. They also explain why spatial phase shifts (e.g. north-south variations in Europe) exist between the oscillation highs and lows. Next to the multidecadal climate oscillations, several stations show trends during the most recent decades, which may be attributed to climate change as a result of anthropogenic global warming. Such attribution to anthropogenic global warming is, however, uncertain. It can be done based on simulation results with climate models, but it is shown that the climate model results are too uncertain to enable a clear attribution. Water engineering design statistics, such as extreme rainfall IDF or peak or low flow QDF statistics, obviously are influenced by these temporal variations (oscillations, trends). It is shown in the paper, based on the Brussels 10-minutes rainfall data, that rainfall design values may be about 20% biased or different when based on short rainfall series of 10 to 15 years length, and

  1. Extreme Climate Event Trends: The Data Mining and Evaluation of the A1FI Scenario for 2000???2100

    SciTech Connect

    Erickson III, David J; Ganguly, Auroop R; Steinhaeuser, Karsten J K; Branstetter, Marcia L; Oglesby, Robert; Hoffman, Forrest M; Buja, Lawrence

    2008-01-01

    The authors discuss the implications and resulting alterations of the hydrologic cycle as Earth climate evolves from 2000-2100. Climate simulations based on the assumptions implicit in the A1F1 scenario for the period 2000-2100 using CCSM3 are analyzed. In particular, we will assess the changes in the surface latent and sensible heat energy budget, the Indian regional water budgets including trends in the timing and duration of the Indian monsoon and the resulting impacts on mean river flow and hydroelectric power generation potential. These analyses will also be examined within the context of heat index, droughts, floods and related estimates of societal robustness and resiliency. We will interpret these new A1F1 results within the context of the previous climate simulations based on the SRES A2 and B1 scenarios forced with land cover and atmospheric CO2. Analyses of historical records in the context of the Indian Monsoon Rainfall (IMR) have suggested an evolving relation of IMR with natural climate variability caused by El Nino events. We will report on the combined effects of natural climate variability and global warming on IMR and assess the trend of extreme rain and temperature events in a warming environment.

  2. Global warming and changes in risk of concurrent climate extremes: Insights from the 2014 California drought

    NASA Astrophysics Data System (ADS)

    AghaKouchak, Amir; Cheng, Linyin; Mazdiyasni, Omid; Farahmand, Alireza

    2014-12-01

    Global warming and the associated rise in extreme temperatures substantially increase the chance of concurrent droughts and heat waves. The 2014 California drought is an archetype of an event characterized by not only low precipitation but also extreme high temperatures. From the raging wildfires, to record low storage levels and snowpack conditions, the impacts of this event can be felt throughout California. Wintertime water shortages worry decision-makers the most because it is the season to build up water supplies for the rest of the year. Here we show that the traditional univariate risk assessment methods based on precipitation condition may substantially underestimate the risk of extreme events such as the 2014 California drought because of ignoring the effects of temperature. We argue that a multivariate viewpoint is necessary for assessing risk of extreme events, especially in a warming climate. This study discusses a methodology for assessing the risk of concurrent extremes such as droughts and extreme temperatures.

  3. Temporal and spatial variations in hydro-climatic extremes in the Lake Victoria basin

    NASA Astrophysics Data System (ADS)

    Mbungu, W.; Ntegeka, V.; Kahimba, F. C.; Taye, M.; Willems, P.

    A study was carried out to investigate variability in long term hydro-climatic extremes in the Lake Victoria basin, East Africa. The study aimed at determining whether the long term historical changes in frequency and magnitude of hydro-climatic extremes are statistically significant, to give more light on the differentiation of climate variability from climate change. Long term extremes for 22 rainfall and 10 river flow gauge stations were examined. The hydro-climatic extremes were aggregated at levels from daily, decadal, to monthly scales defined for two wet seasons in the area, the long rainy season extending from March to May (MAM) and the short rainy season extending from October to December (OND), and time slices of 10 years using a sliding window approach. An empirical statistical technique based on Quantile Perturbation Method (QPM) was used. Quantile perturbations that represent empirical changes for precipitation and river flow extremes were derived. Significant decreasing trends in precipitation were observed in the 1930s, 1970s and 1980s, while significant increasing trends were common in the 1960s, late 1980s, and 1990s to the most recent years (2000-2006). In general, significant trends were dominant in the OND compared to MAM season for precipitation and river flow extremes. Results indicated further that there are differences in geographic location of significant trends in the hydro-climatic variables investigated implying that impacts are not spatially coherent. Areas with significant trends appeared to be concentrated in the North to North eastern parts compared to those in the southern parts of the basin.

  4. Know your limits? Climate extremes impact the range of Scots pine in unexpected places

    PubMed Central

    Julio Camarero, J.; Gazol, Antonio; Sancho-Benages, Santiago; Sangüesa-Barreda, Gabriel

    2015-01-01

    Background and Aims Although extreme climatic events such as drought are known to modify forest dynamics by triggering tree dieback, the impact of extreme cold events, especially at the low-latitude margin (‘rear edge’) of species distributional ranges, has received little attention. The aim of this study was to examine the impact of one such extreme cold event on a population of Scots pine (Pinus sylvestris) along the species’ European southern rear-edge range limit and to determine how such events can be incorporated into species distribution models (SDMs). Methods A combination of dendrochronology and field observation was used to quantify how an extreme cold event in 2001 in eastern Spain affected growth, needle loss and mortality of Scots pine. Long-term European climatic data sets were used to contextualize the severity of the 2001 event, and an SDM for Scots pine in Europe was used to predict climatic range limits. Key Results The 2001 winter reached record minimum temperatures (equivalent to the maximum European-wide diurnal ranges) and, for trees already stressed by a preceding dry summer and autumn, this caused dieback and large-scale mortality. Needle loss and mortality were particularly evident in south-facing sites, where post-event recovery was greatly reduced. The SDM predicted European Scots pine distribution mainly on the basis of responses to maximum and minimum monthly temperatures, but in comparison with this the observed effects of the 2001 cold event at the southerly edge of the range limit were unforeseen. Conclusions The results suggest that in order to better forecast how anthropogenic climate change might affect future forest distributions, distribution modelling techniques such as SDMs must incorporate climatic extremes. For Scots pine, this study shows that the effects of cold extremes should be included across the entire distribution margin, including the southern ‘rear edge’, in order to avoid biased predictions based solely

  5. Large-scale drivers of local precipitation extremes in convection-permitting climate simulations

    NASA Astrophysics Data System (ADS)

    Chan, Steven C.; Kendon, Elizabeth J.; Roberts, Nigel M.; Fowler, Hayley J.; Blenkinsop, Stephen

    2016-04-01

    The Met Office 1.5-km UKV convective-permitting models (CPM) is used to downscale present-climate and RCP8.5 60-km HadGEM3 GCM simulations. Extreme UK hourly precipitation intensities increase with local near-surface temperatures and humidity; for temperature, the simulated increase rate for the present-climate simulation is about 6.5% K**-1, which is consistent with observations and theoretical expectations. While extreme intensities are higher in the RCP8.5 simulation as higher temperatures are sampled, there is a decline at the highest temperatures due to circulation and relative humidity changes. Extending the analysis to the broader synoptic scale, it is found that circulation patterns, as diagnosed by MSLP or circulation type, play an increased role in the probability of extreme precipitation in the RCP8.5 simulation. Nevertheless for both CPM simulations, vertical instability is the principal driver for extreme precipitation.

  6. Changing Climate Extremes in the Northeast: CMIP5 Simulations and Projections

    NASA Astrophysics Data System (ADS)

    Thibeault, J. M.; Seth, A.

    2013-12-01

    Extreme climate events are known to have severe impacts on human and natural systems. As greenhouse warming progresses, a major concern is the potential for an increase in the frequency and intensity of extreme events. The Northeast (defined as the Northeast US, southern Quebec, and southeastern Ontario) is sensitive to climate extremes. The region is prone to flooding and drought, which poses challenges for infrastructure and water resource management, and increases risks to agriculture and forests. Extreme heat can be dangerous to human health, especially in the large urban centers of the Northeast. Annual average temperatures have steadily increased since the 1970s, accompanied by more frequent extremely hot weather, a longer growing season, and fewer frost days. Heavy precipitation events have become more frequent in recent decades. This research examines multi-model projections of annual and monthly extreme indices for the Northeast, using extreme indices computed by the Expert Team on Climate Change Detection and Indices (ETCCDI) for twenty-three global climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) for the 20th century historical and RCP8.5 experiments. Model simulations are compared to HadEX2 and ERA-interim gridded observations. CMIP5 simulations are consistent with observations - conditions in the Northeast are already becoming warmer and wetter. Projections indicate significant shifts toward warmer and wetter conditions by the middle century (2041-2070). Most indices are projected to be largely outside their late 20th century ranges by the late century (2071-2099). These results provide important information to stakeholders developing plans to lessen the adverse impacts of a warmer and wetter climate in the Northeast.

  7. Climate Change Impacts on US Precipitation Extremes and Consequences for Hydraulic Infrastructures and Water Resources

    NASA Astrophysics Data System (ADS)

    Pal, S.; Kumar, D.; Mishra, V.; Ganguly, A. R.

    2013-12-01

    Precipitation extremes in the conterminous United States are expected to intensify and grow more frequent with climate change. However, translating this climate insight to metrics relevant for hydraulic infrastructures or water resources remains a challenge. The primary issue is one of scale, which in turn may ultimately stem from the space-time variability in, and our lack of understanding of, fine-scale precipitation processes. Here we examine the hypothesis that credible metrics for civil engineers and hydrologists can be obtained through extreme value analysis of regional climate model simulations. Specifically, we develop intensity-duration-frequency (IDF) curves from the North American Regional Climate Change Assessment Program (NARCCAP) simulations, and characterize uncertainties by comparing with observations. We attempt to understand the nature of the insights, if any, that can be extracted despite the uncertainties.

  8. The immediate and prolonged effects of climate extremes on soil respiration in a mesic grassland

    NASA Astrophysics Data System (ADS)

    Hoover, David L.; Knapp, Alan K.; Smith, Melinda D.

    2016-04-01

    The predicted increase in the frequency and intensity of climate extremes is expected to impact terrestrial carbon fluxes to the atmosphere, potentially changing ecosystems from carbon sinks to sources, with positive feedbacks to climate change. As the second largest terrestrial carbon flux, soil CO2 efflux or soil respiration (Rs) is strongly influenced by soil temperature and moisture. Thus, climate extremes such as heat waves and extreme drought should have substantial impacts on Rs. We investigated the effects of such climate extremes on growing season Rs in a mesic grassland by experimentally imposing 2 years of extreme drought combined with midsummer heat waves. After this 2 year period, we continued to measure Rs during a recovery year. Two consecutive drought years reduced Rs by about 25% each growing season; however, when normal rainfall returned during the recovery year, formerly droughted plots had higher rates of Rs than control plots (up to +17%). The heat wave treatments had no effect on Rs, alone or when combined with drought, and during the growing season, soil moisture was the primary driver of Rs with little evidence for Rs temperature sensitivity. When compared to aboveground net primary production, growing season Rs was much less sensitive to drought but was more responsive postdrought. These results are consistent with the hypothesis that ecosystems become sources of CO2 during drought because carbon inputs (production) are decreased relatively more than outputs (respiration). Moreover, stimulation of Rs postdrought may lengthen the time required for net carbon exchange to return to predrought levels.

  9. Web-based Visual Analytics for Extreme Scale Climate Science

    SciTech Connect

    Steed, Chad A; Evans, Katherine J; Harney, John F; Jewell, Brian C; Shipman, Galen M; Smith, Brian E; Thornton, Peter E; Williams, Dean N.

    2014-01-01

    In this paper, we introduce a Web-based visual analytics framework for democratizing advanced visualization and analysis capabilities pertinent to large-scale earth system simulations. We address significant limitations of present climate data analysis tools such as tightly coupled dependencies, ineffi- cient data movements, complex user interfaces, and static visualizations. Our Web-based visual analytics framework removes critical barriers to the widespread accessibility and adoption of advanced scientific techniques. Using distributed connections to back-end diagnostics, we minimize data movements and leverage HPC platforms. We also mitigate system dependency issues by employing a RESTful interface. Our framework embraces the visual analytics paradigm via new visual navigation techniques for hierarchical parameter spaces, multi-scale representations, and interactive spatio-temporal data mining methods that retain details. Although generalizable to other science domains, the current work focuses on improving exploratory analysis of large-scale Community Land Model (CLM) and Community Atmosphere Model (CAM) simulations.

  10. Overview and Update of the North America Drought Monitor and North America Climate Extremes Monitoring System

    NASA Astrophysics Data System (ADS)

    Heim, R. R.

    2006-12-01

    The North America Drought Monitor (NADM) is a joint operational drought monitoring activity between scientists and other specialists in the United States, Mexico, and Canada. Like all weather phenomena, drought occurs irrespective of political and international boundaries. The monthly map and narrative product created by this first-of-its-kind effort provides an integrated continental-scale drought assessment tool for decision-makers in all three countries involved in drought monitoring, drought mitigation, and related climate services. The product is prepared by a rotating primary author who utilizes drought indicators which are computed using standard methodologies for stations across the continent, plus national drought monitoring products and feedback from local experts in each of the three countries. The participants include, within the United States: the NOAA National Climatic Data Center, NOAA Climate Prediction Center, USDA Joint Agricultural Weather Facility, and National Drought Mitigation Center; within Mexico: Servicio Meteorologico Nacional/Comision Nacional del Agua; and within Canada: Agriculture and Agrifood Canada and the Meteorological Service of Canada. The NADM is part of a North America Climate Extremes Monitoring (NACEM) system which will monitor and assess climate extremes across the continent. Several climate indicators are currently computed from station daily data to measure (in addition to drought) heavy precipitation, heat waves, and cold waves. Future efforts will add indicators to monitor storm severity and severe weather, including the creation of a North America Climate Extremes Index (NACEI) patterned after the U.S. Climate Extremes Index (USCEI). This presentation will review the history of the NADM/NACEM effort, the data utilized, the indicators computed, and the product preparation and peer review process.

  11. Extreme Events in China under Climate Change: Uncertainty and related impacts (CSSP-FOREX)

    NASA Astrophysics Data System (ADS)

    Leckebusch, Gregor C.; Befort, Daniel J.; Hodges, Kevin I.

    2016-04-01

    Suitable adaptation strategies or the timely initiation of related mitigation efforts in East Asia will strongly depend on robust and comprehensive information about future near-term as well as long-term potential changes in the climate system. Therefore, understanding the driving mechanisms associated with the East Asian climate is of major importance. The FOREX project (Fostering Regional Decision Making by the Assessment of Uncertainties of Future Regional Extremes and their Linkage to Global Climate System Variability for China and East Asia) focuses on the investigation of extreme wind and rainfall related events over Eastern Asia and their possible future changes. Here, analyses focus on the link between local extreme events and their driving weather systems. This includes the coupling between local rainfall extremes and tropical cyclones, the Meiyu frontal system, extra-tropical teleconnections and monsoonal activity. Furthermore, the relation between these driving weather systems and large-scale variability modes, e.g. NAO, PDO, ENSO is analysed. Thus, beside analysing future changes of local extreme events, the temporal variability of their driving weather systems and related large-scale variability modes will be assessed in current CMIP5 global model simulations to obtain more robust results. Beyond an overview of FOREX itself, first results regarding the link between local extremes and their steering weather systems based on observational and reanalysis data are shown. Special focus is laid on the contribution of monsoonal activity, tropical cyclones and the Meiyu frontal system on the inter-annual variability of the East Asian summer rainfall.

  12. Local impact analysis of climate change on precipitation extremes: are high-resolution climate models needed for realistic simulations?

    NASA Astrophysics Data System (ADS)

    Tabari, Hossein; De Troch, Rozemien; Giot, Olivier; Hamdi, Rafiq; Termonia, Piet; Saeed, Sajjad; Brisson, Erwan; Van Lipzig, Nicole; Willems, Patrick

    2016-09-01

    This study explores whether climate models with higher spatial resolutions provide higher accuracy for precipitation simulations and/or different climate change signals. The outputs from two convection-permitting climate models (ALARO and CCLM) with a spatial resolution of 3-4 km are compared with those from the coarse-scale driving models or reanalysis data for simulating/projecting daily and sub-daily precipitation quantiles. Validation of historical design precipitation statistics derived from intensity-duration-frequency (IDF) curves shows a better match of the convection-permitting model results with the observations-based IDF statistics compared to the driving GCMs and reanalysis data. This is the case for simulation of local sub-daily precipitation extremes during the summer season, while the convection-permitting models do not appear to bring added value to simulation of daily precipitation extremes. Results moreover indicate that one has to be careful in assuming spatial-scale independency of climate change signals for the delta change downscaling method, as high-resolution models may show larger changes in extreme precipitation. These larger changes appear to be dependent on the timescale, since such intensification is not observed for daily timescales for both the ALARO and CCLM models.

  13. Areas of potential suitability and survival of Dendroctonus valens in China under extreme climate warming scenario.

    PubMed

    He, S Y; Ge, X Z; Wang, T; Wen, J B; Zong, S X

    2015-08-01

    The areas in China with climates suitable for the potential distribution of the pest species red turpentine beetle (RTB) Dendroctonus valens LeConte (Coleoptera: Scolytidae) were predicted by CLIMEX based on historical climate data and future climate data with warming estimated. The model used a historical climate data set (1971-2000) and a simulated climate data set (2010-2039) provided by the Tyndall Centre for Climate Change (TYN SC 2.0). Based on the historical climate data, a wide area was available in China with a suitable climate for the beetle in which every province might contain suitable habitats for this pest, particularly all of the southern provinces. The northern limit of the distribution of the beetle was predicted to reach Yakeshi and Elunchun in Inner Mongolia, and the western boundary would reach to Keerkezi in Xinjiang Province. Based on a global-warming scenario, the area with a potential climate suited to RTB in the next 30 years (2010-2039) may extend further to the northeast. The northern limit of the distribution could reach most parts of south Heilongjiang Province, whereas the western limit would remain unchanged. Combined with the tendency for RTB to spread, the variation in suitable habitats within the scenario of extreme climate warming and the multiple geographical elements of China led us to assume that, within the next 30 years, RTB would spread towards the northeast, northwest, and central regions of China and could be a potentially serious problem for the forests of China.

  14. Hydrological Alterations Due to Climate-Induced Regional Vegetation Change

    NASA Astrophysics Data System (ADS)

    White, A. B.; Vivoni, E. R.; Springer, E. P.

    2010-12-01

    An extended, severe drought in the southwestern U.S. from 2000 to 2003 was accompanied by increased temperatures and bark beetle infestations, inducing the large-scale mortality of woody overstory (Pinus edulis). The consequential redistribution of water, radiation, and nutrient availability modified the ecosystem phenology, species composition, and forced the ecosystem to transition into a new state. We hypothesize that the hydrological processes in the ecosystem were also altered due to the mortality. Thus, our objective is to investigate changes in the soil-vegetation-atmosphere continuum at the watershed scale. The Rio Ojo Caliente Basin is a subbasin of the Upper Rio Grande, located mostly in New Mexico, and is approximately 1,000 km2. Examining a remotely-sensed vegetation index (1-km AVHRR NDVI from 1990 to 2006), there is an increasing trend in the NDVI from 1989 to 1999 (pre-mortality period), a decreasing trend from 2000 to 2003 (mortality period), and a dramatic increasing trend from 2004 to 2006 (post-mortality period) in which the NDVI rebounds to nearly pre-mortality magnitudes. This pattern exists across varying spatial scales (plot to watershed to region) and signifies a profound alteration in the ecosystem, for while the vegetation composition was altered to a great degree, the system rapidly returned to a homeostatic state balancing resource supply and use during the post-mortality period. To investigate hydrological changes due to the mortality, we employ a physically-based, distributed hydrologic model, tRIBS (TIN-based Real-Time Integrated Basin Simulator) for the Rio Ojo Caliente Basin. STATSGO 1-km soils data, 10-meter National Elevation Dataset DEMs, Carson National Forest vegetation species data, and MM5-downscaled NCEP/NCAR Reanalysis-I meteorologic data are used as model inputs. A combination of MODIS and AVHRR remote-sensing data, values from the literature, and field data from a long-term, pi {n}on-juniper (PJ) observation site in Los

  15. Attributing human mortality during extreme heat waves to anthropogenic climate change

    NASA Astrophysics Data System (ADS)

    Mitchell, Daniel; Heaviside, Clare; Vardoulakis, Sotiris; Huntingford, Chris; Masato, Giacomo; Guillod, Benoit P.; Frumhoff, Peter; Bowery, Andy; Wallom, David; Allen, Myles

    2016-07-01

    It has been argued that climate change is the biggest global health threat of the 21st century. The extreme high temperatures of the summer of 2003 were associated with up to seventy thousand excess deaths across Europe. Previous studies have attributed the meteorological event to the human influence on climate, or examined the role of heat waves on human health. Here, for the first time, we explicitly quantify the role of human activity on climate and heat-related mortality in an event attribution framework, analysing both the Europe-wide temperature response in 2003, and localised responses over London and Paris. Using publicly-donated computing, we perform many thousands of climate simulations of a high-resolution regional climate model. This allows generation of a comprehensive statistical description of the 2003 event and the role of human influence within it, using the results as input to a health impact assessment model of human mortality. We find large-scale dynamical modes of atmospheric variability remain largely unchanged under anthropogenic climate change, and hence the direct thermodynamical response is mainly responsible for the increased mortality. In summer 2003, anthropogenic climate change increased the risk of heat-related mortality in Central Paris by ∼70% and by ∼20% in London, which experienced lower extreme heat. Out of the estimated ∼315 and ∼735 summer deaths attributed to the heatwave event in Greater London and Central Paris, respectively, 64 (±3) deaths were attributable to anthropogenic climate change in London, and 506 (±51) in Paris. Such an ability to robustly attribute specific damages to anthropogenic drivers of increased extreme heat can inform societal responses to, and responsibilities for, climate change.

  16. Communicating Climate Uncertainties: Challenges and Opportunities Related to Spatial Scales, Extreme Events, and the Warming 'Hiatus'

    NASA Astrophysics Data System (ADS)

    Casola, J. H.; Huber, D.

    2013-12-01

    Many media, academic, government, and advocacy organizations have achieved sophistication in developing effective messages based on scientific information, and can quickly translate salient aspects of emerging climate research and evolving observations. However, there are several ways in which valid messages can be misconstrued by decision makers, leading them to inaccurate conclusions about the risks associated with climate impacts. Three cases will be discussed: 1) Issues of spatial scale in interpreting climate observations: Local climate observations may contradict summary statements about the effects of climate change on larger regional or global spatial scales. Effectively addressing these differences often requires communicators to understand local and regional climate drivers, and the distinction between a 'signal' associated with climate change and local climate 'noise.' Hydrological statistics in Missouri and California are shown to illustrate this case. 2) Issues of complexity related to extreme events: Climate change is typically invoked following a wide range of damaging meteorological events (e.g., heat waves, landfalling hurricanes, tornadoes), regardless of the strength of the relationship between anthropogenic climate change and the frequency or severity of that type of event. Examples are drawn from media coverage of several recent events, contrasting useful and potentially confusing word choices and frames. 3) Issues revolving around climate sensitivity: The so-called 'pause' or 'hiatus' in global warming has reverberated strongly through political and business discussions of climate change. Addressing the recent slowdown in warming yields an important opportunity to raise climate literacy in these communities. Attempts to use recent observations as a wedge between climate 'believers' and 'deniers' is likely to be counterproductive. Examples are drawn from Congressional testimony and media stories. All three cases illustrate ways that decision

  17. Uncertainty Analysis of Climate Change Impact on Extreme Rainfall Events in the Apalachicola River Basin, Florida

    NASA Astrophysics Data System (ADS)

    Wang, D.; Hagen, S.; Bacopoulos, P.

    2011-12-01

    Climate change impact on the rainfall patterns during the summer season (May -- August) at the Apalachicola River basin (Florida Panhandle coast) is assessed using ensemble regional climate models (RCMs). Rainfall data for both baseline and future years (30-year periods) are obtained from North American Regional Climate Change Assessment Program (NARCCAP) where the A2 emission scenario is used. Trend analysis is conducted based on historical rainfall data from three weather stations. Two methods are used to assess the climate change impact on the rainfall intensity-duration-frequency (IDF) curves, i.e., maximum intensity percentile-based method and sequential bias correction and maximum intensity percentile-based method. As a preliminary result from one RCM, extreme rainfall intensity is found to increase significantly with the increase in rainfall intensity increasing more dramatically with closer proximity to the coast. The projected rainfall pattern changes (spatial and temporal, mean and extreme values) provide guidance for developing adaptation and mitigation strategies on water resources management and ecosystem protections. More rainfall events move from July to June during future years for all three stations; in the upstream, the variability of time occurrence of extreme rainfall increases and more extreme events are shown to occur in June and August instead of May. These temporal shifts of extreme rainfall events will increase the probability of simultaneous heavy rainfall in the downstream and upstream in June during which flooding will be enhanced. The uncertainty analysis on the climate change impact on extreme rainfall events will be presented based on the simulations from the ensemble of RCMs.

  18. Analysis of the Impact of Climate Change on Extreme Hydrological Events in California

    NASA Astrophysics Data System (ADS)

    Ashraf Vaghefi, Saeid; Abbaspour, Karim C.

    2016-04-01

    Estimating magnitude and occurrence frequency of extreme hydrological events is required for taking preventive remedial actions against the impact of climate change on the management of water resources. Examples include: characterization of extreme rainfall events to predict urban runoff, determination of river flows, and the likely severity of drought events during the design life of a water project. In recent years California has experienced its most severe drought in recorded history, causing water stress, economic loss, and an increase in wildfires. In this paper we describe development of a Climate Change Toolkit (CCT) and demonstrate its use in the analysis of dry and wet periods in California for the years 2020-2050 and compare the results with the historic period 1975-2005. CCT provides four modules to: i) manage big databases such as those of Global Climate Models (GCMs), ii) make bias correction using observed local climate data , iii) interpolate gridded climate data to finer resolution, and iv) calculate continuous dry- and wet-day periods based on rainfall, temperature, and soil moisture for analysis of drought and flooding risks. We used bias-corrected meteorological data of five GCMs for extreme CO2 emission scenario rcp8.5 for California to analyze the trend of extreme hydrological events. The findings indicate that frequency of dry period will increase in center and southern parts of California. The assessment of the number of wet days and the frequency of wet periods suggests an increased risk of flooding in north and north-western part of California, especially in the coastal strip. Keywords: Climate Change Toolkit (CCT), Extreme Hydrological Events, California

  19. Impacts of a changing climate on a century of extreme flood regime of northwest Australia

    NASA Astrophysics Data System (ADS)

    Rouillard, A.; Skrzypek, G.; Dogramaci, S.; Turney, C.; Grierson, P. F.

    2014-10-01

    Globally, there has been much recent effort to improve understanding of climate change-related shifts in rainfall patterns, variability and extremes. Comparatively little work have focused on how such shifts might be altering hydrological regimes within arid regional basins, where impacts are expected to be most significant. Here, we sought to identify the main hydroclimatic determinants of the strongly episodic flood regime of a large catchment in the semi-arid, subtropical northwest of Australia and to establish the background of hydrologic variability for the region over the last century. We used a monthly sequence of satellite images to quantify surface water expression on the Fortescue Marsh, the largest water feature of inland northwest Australia, from 1988 to 2012. We used this sequence together with instrumental rainfall data to build a multiple linear model and reconstruct monthly history of floods and droughts since 1912. We found that severe and intense regional rainfall events, as well as the sequence of recharge events both within and between years, determine surface water expression on the floodplain (i.e., total rainfall, number of rain days and carried-over inundated area; R2adj = 0.79; p value < 0.001, ERMSP = 56 km2). The most severe inundation (~1000 km2) over the last century was recorded in 2000. The Fortescue Marsh was completely dry for 32% of all years, for periods of up to four consecutive years. Extremely wet years (seven of the 100 years) caused the Marsh to remain inundated for up to 12 months; only 25% of years (9% of all months) had floods of greater than 300 km2. Duration, severity and frequency of inundations between 1999 and 2006 were above average and unprecedented when compared to the last century. While there is high inter-annual variability in the system, changes to the flooding regime over the last 20 years suggest that the wetland will become more persistent in response to increased frequency and intensity of extreme rainfall

  20. Relevance of land forcings and feedbacks in the attribution of climate extremes

    NASA Astrophysics Data System (ADS)

    Seneviratne, S. I.; Davin, E.; Greve, P.; Gudmundsson, L.; Hauser, M.; Hirschi, M.; Mueller, B.; Orlowsky, B.; Orth, R.

    2014-12-01

    Land forcings and feedbacks play an important role in the climate system, in particular for the occurrence of climate extremes. Recent investigations have for instance highlighted the impacts of soil moisture-climate interactions for the development of droughts and heat waves (e.g. Seneviratne et al. 2012, Mueller and Seneviratne 2012, Seneviratne et al. 2013, Orlowsky and Seneviratne 2013). In addition, forcing from land use and land cover changes through modified albedo or turbulent fluxes can also affect the temperature variability in summer (Davin et al. 2014). These effects are important for better understanding the relationships between climate forcing and regional climate changes, and appear relevant for a recent discrepancy between trends in global mean temperature vs hot extremes over land (Seneviratne et al. 2014). This presentation will provide an overview on the underlying processes and on possible approaches for their consideration in attribution research. References:- Davin, E.L., S.I. Seneviratne, P. Ciais, A. Olioso, T. Wang, 2014: Preferential cooling of hot extremes from cropland albedo management. Proc. Natl. Acad. Sci., Published ahead of print June 23, 2014.- Mueller, B., and S.I. Seneviratne, 2012: Hot days induced by precipitation deficits at the global scale. Proceedings of the National Academy of Sciences, 109 (31), 12398-12403, doi: 10.1073/pnas.1204330109.- Orlowsky, B., and S.I. Seneviratne, 2013: Elusive drought: Uncertainty in observed trends and short- and long-term CMIP5 projections. Hydr. Earth Syst. Sci., 17, 1765-1781, doi:10.5194/hess-17-1765-2013- Seneviratne, S.I., N. Nicholls, et al., 2012: Changes in climate extremes and their impacts on the natural physical environment. In: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation [Field, C.B., et al. (eds.)]. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change, pp. 109-230.- Seneviratne, S.I., et al

  1. Impacts of Climate Change On The Occurrence of Extreme Events: The Mice Project

    NASA Astrophysics Data System (ADS)

    Palutikof, J. P.; Mice Team

    It is widely accepted that climate change due to global warming will have substan- tial impacts on the natural environment, and on human activities. Furthermore, it is increasingly recognized that changes in the severity and frequency of extreme events, such as windstorm and flood, are likely to be more important than changes in the average climate. The EU-funded project MICE (Modelling the Impacts of Climate Extremes) commenced in January 2002. It seeks to identify the likely changes in the occurrence of extremes of rainfall, temperature and windstorm due to global warm- ing, using information from climate models as a basis, and to study the impacts of these changes in selected European environments. The objectives are: a) to evaluate, by comparison with gridded and station observations, the ability of climate models to successfully reproduce the occurrence of extremes at the required spatial and temporal scales. b) to analyse model output with respect to future changes in the occurrence of extremes. Statistical analyses will determine changes in (i) the return periods of ex- tremes, (ii) the joint probability of extremes (combinations of damaging events such as windstorm followed by heavy rain), (iii) the sequential behaviour of extremes (whether events are well-separated or clustered) and (iv) the spatial patterns of extreme event occurrence across Europe. The range of uncertainty in model predictions will be ex- plored by analysing changes in model experiments with different spatial resolutions and forcing scenarios. c) to determine the impacts of the predicted changes in extremes occurrence on selected activity sectors: agriculture (Mediterranean drought), commer- cial forestry and natural forest ecosystems (windstorm and flood in northern Europe, fire in the Mediterranean), energy use (temperature extremes), tourism (heat stress and Mediterranean beach holidays, changes in the snow pack and winter sports ) and civil protection/insurance (windstorm and flood

  2. Extremes of temperature, oxygen and blooms in the Baltic sea in a changing climate.

    PubMed

    Neumann, Thomas; Eilola, Kari; Gustafsson, Bo; Müller-Karulis, Bärbel; Kuznetsov, Ivan; Meier, H E Markus; Savchuk, Oleg P

    2012-09-01

    In the future, the Baltic Sea ecosystem will be impacted both by climate change and by riverine and atmospheric nutrient inputs. Multi-model ensemble simulations comprising one IPCC scenario (A1B), two global climate models, two regional climate models, and three Baltic Sea ecosystem models were performed to elucidate the combined effect of climate change and changes in nutrient inputs. This study focuses on the occurrence of extreme events in the projected future climate. Results suggest that the number of days favoring cyanobacteria blooms could increase, anoxic events may become more frequent and last longer, and salinity may tend to decrease. Nutrient load reductions following the Baltic Sea Action Plan can reduce the deterioration of oxygen conditions.

  3. Improving plot- and regional-scale crop models for simulating impacts of climate variability and extremes

    NASA Astrophysics Data System (ADS)

    Tao, F.; Rötter, R.

    2013-12-01

    Many studies on global climate report that climate variability is increasing with more frequent and intense extreme events1. There are quite large uncertainties from both the plot- and regional-scale models in simulating impacts of climate variability and extremes on crop development, growth and productivity2,3. One key to reducing the uncertainties is better exploitation of experimental data to eliminate crop model deficiencies and develop better algorithms that more adequately capture the impacts of extreme events, such as high temperature and drought, on crop performance4,5. In the present study, in a first step, the inter-annual variability in wheat yield and climate from 1971 to 2012 in Finland was investigated. Using statistical approaches the impacts of climate variability and extremes on wheat growth and productivity were quantified. In a second step, a plot-scale model, WOFOST6, and a regional-scale crop model, MCWLA7, were calibrated and validated, and applied to simulate wheat growth and yield variability from 1971-2012. Next, the estimated impacts of high temperature stress, cold damage, and drought stress on crop growth and productivity based on the statistical approaches, and on crop simulation models WOFOST and MCWLA were compared. Then, the impact mechanisms of climate extremes on crop growth and productivity in the WOFOST model and MCWLA model were identified, and subsequently, the various algorithm and impact functions were fitted against the long-term crop trial data. Finally, the impact mechanisms, algorithms and functions in WOFOST model and MCWLA model were improved to better simulate the impacts of climate variability and extremes, particularly high temperature stress, cold damage and drought stress for location-specific and large area climate impact assessments. Our studies provide a good example of how to improve, in parallel, the plot- and regional-scale models for simulating impacts of climate variability and extremes, as needed for

  4. Simulating the effect of climate extremes on groundwater flow through a lakebed

    USGS Publications Warehouse

    Virdi, Makhan L.; Lee, Terrie M.; Swancar, Amy; Niswonger, Richard G.

    2012-01-01

    Groundwater exchanges with lakes resulting from cyclical wet and dry climate extremes maintain lake levels in the environment in ways that are not well understood, in part because they remain difficult to simulate. To better understand the atypical groundwater interactions with lakes caused by climatic extremes, an original conceptual approach is introduced using MODFLOW-2005 and a kinematic-wave approximation to variably saturated flow that allows lake size and position in the basin to change while accurately representing the daily lake volume and three-dimensional variably saturated groundwater flow responses in the basin. Daily groundwater interactions are simulated for a calibrated lake basin in Florida over a decade that included historic wet and dry departures from the average rainfall. The divergent climate extremes subjected nearly 70% of the maximum lakebed area and 75% of the maximum shoreline perimeter to both groundwater inflow and lake leakage. About half of the lakebed area subject to flow reversals also went dry. A flow-through pattern present for 73% of the decade caused net leakage from the lake 80% of the time. Runoff from the saturated lake margin offset the groundwater deficit only about half of that time. A centripetal flow pattern present for 6% of the decade was important for maintaining the lake stage and generated 30% of all net groundwater inflow. Pumping effects superimposed on dry climate extremes induced the least frequent but most cautionary flow pattern with leakage from over 90% of the actual lakebed area.

  5. Climate change impacts on extreme temperature mortality in select metropolitan areas of the United States

    EPA Science Inventory

    Projected mortality from climate change-driven impacts on extremely hot and cold days increases significantly over the 21st century in a large group of United States Metropolitan Statistical Areas. Increases in projected mortality from more hot days are greater than decreases in ...

  6. Climate change and health in Israel: adaptation policies for extreme weather events.

    PubMed

    Green, Manfred S; Pri-Or, Noemie Groag; Capeluto, Guedi; Epstein, Yoram; Paz, Shlomit

    2013-06-27

    Climatic changes have increased the world-wide frequency of extreme weather events such as heat waves, cold spells, floods, storms and droughts. These extreme events potentially affect the health status of millions of people, increasing disease and death. Since mitigation of climate change is a long and complex process, emphasis has recently been placed on the measures required for adaptation. Although the principles underlying these measures are universal, preparedness plans and policies need to be tailored to local conditions. In this paper, we conducted a review of the literature on the possible health consequences of extreme weather events in Israel, where the conditions are characteristic of the Mediterranean region. Strong evidence indicates that the frequency and duration of several types of extreme weather events are increasing in the Mediterranean Basin, including Israel. We examined the public health policy implications for adaptation to climate change in the region, and proposed public health adaptation policy options. Preparedness for the public health impact of increased extreme weather events is still relatively limited and clear public health policies are urgently needed. These include improved early warning and monitoring systems, preparedness of the health system, educational programs and the living environment. Regional collaboration should be a priority.

  7. Climate change and health in Israel: adaptation policies for extreme weather events

    PubMed Central

    2013-01-01

    Climatic changes have increased the world-wide frequency of extreme weather events such as heat waves, cold spells, floods, storms and droughts. These extreme events potentially affect the health status of millions of people, increasing disease and death. Since mitigation of climate change is a long and complex process, emphasis has recently been placed on the measures required for adaptation. Although the principles underlying these measures are universal, preparedness plans and policies need to be tailored to local conditions. In this paper, we conducted a review of the literature on the possible health consequences of extreme weather events in Israel, where the conditions are characteristic of the Mediterranean region. Strong evidence indicates that the frequency and duration of several types of extreme weather events are increasing in the Mediterranean Basin, including Israel. We examined the public health policy implications for adaptation to climate change in the region, and proposed public health adaptation policy options. Preparedness for the public health impact of increased extreme weather events is still relatively limited and clear public health policies are urgently needed. These include improved early warning and monitoring systems, preparedness of the health system, educational programs and the living environment. Regional collaboration should be a priority. PMID:23805950

  8. Climate change impacts on rainfall extremes and urban drainage: state-of-the-art review

    NASA Astrophysics Data System (ADS)

    Willems, Patrick; Olsson, Jonas; Arnbjerg-Nielsen, Karsten; Beecham, Simon; Pathirana, Assela; Bülow Gregersen, Ida; Madsen, Henrik; Nguyen, Van-Thanh-Van

    2013-04-01

    Under the umbrella of the IWA/IAHR Joint Committee on Urban Drainage, the International Working Group on Urban Rainfall (IGUR) has reviewed existing methodologies for the analysis of long-term historical and future trends in urban rainfall extremes and their effects on urban drainage systems, due to anthropogenic climate change. Current practises have several limitations and pitfalls, which are important to be considered by trend or climate change impact modellers and users of trend/impact results. The review considers the following aspects: Analysis of long-term historical trends due to anthropogenic climate change: influence of data limitation, instrumental or environmental changes, interannual variations and longer term climate oscillations on trend testing results. Analysis of long-term future trends due to anthropogenic climate change: by complementing empirical historical data with the results from physically-based climate models, dynamic downscaling to the urban scale by means of Limited Area Models (LAMs) including explicitly small-scale cloud processes; validation of RCM/GCM results for local conditions accounting for natural variability, limited length of the available time series, difference in spatial scales, and influence of climate oscillations; statistical downscaling methods combined with bias correction; uncertainties associated with the climate forcing scenarios, the climate models, the initial states and the statistical downscaling step; uncertainties in the impact models (e.g. runoff peak flows, flood or surcharge frequencies, and CSO frequencies and volumes), including the impacts of more extreme conditions than considered during impact model calibration and validation. Implications for urban drainage infrastructure design and management: upgrading of the urban drainage system as part of a program of routine and scheduled replacement and renewal of aging infrastructure; how to account for the uncertainties; flexible and sustainable solutions

  9. Expected climate change impacts on extreme flows in Vietnam: The limits of bias correction techniques

    NASA Astrophysics Data System (ADS)

    Laux, Patrick; Dang, Thinh; Kunstmann, Harald

    2016-04-01

    We investigate possible impacts of climate change on future floods in the VuGia-ThuBon river basin, central Vietnam using a multi-model climate ensemble. An ensemble of regional climate projections (SRES) derived from different combinations of global and regional climate models in combination with different emission scenarios are used. In order to correct for the biases between the modelled climate variables and the observations, different bias correction techniques such as linear scaling, local intensity scaling, and quantile mapping are applied to the RCM outputs. Bias-corrected and raw climate data are then used as input for the fully distributed hydrological water balance model WaSIM-ETH to reproduce discharge data at NongSon station. Annual maximum discharges are extracted from the modeled daily series from the control period (1980-1999) and the future periods 2011-2030, 2031-2050, and 2080-2099 for subsequent extreme frequency analyses. To derive flood frequency curves for the four time periods, the generalized extreme value probability distribution is fitted to the data. Our analysis shows that actually none of the bias correction approaches applied to the control runs of simulated precipitation data can satisfactorily correct their distributions towards those of the observations. Therefore, this study builds further on the delta change approach, which adjusts the observed extreme values by the derived signals from the hydrological simulations fed by raw future climate projections. Adjusted return periods of e.g. HQ100 values are calculated based on the delta change method. The results inhibit a remarkable variation among the different climate scenarios in representing extreme values. Results show that MRI-MRI, ECHAM3-REMO, HadCMQ10-HadRM3P and HadCMQ13-HadRM3P models always exhibit a positive signal for all considered time slices and climate change scenarios. On the other hand, CCSM-MM5 frequently shows a negative signal for all time slices. On average, an

  10. Projected changes in climate extremes over Qatar and the Arabian Gulf region

    NASA Astrophysics Data System (ADS)

    Kundeti, K.; Kanikicharla, K. K.; Al sulaiti, M.; Khulaifi, M.; Alboinin, N.; Kito, A.

    2015-12-01

    The climate of the State of Qatar and the adjacent region is dominated by subtropical dry, hot desert climate with low annual rainfall, very high temperatures in summer and a big difference between maximum and minimum temperatures, especially in the inland areas. The coastal areas are influenced by the Arabian Gulf, and have lower maximum, but higher minimum temperatures and a higher moisture percentage in the air. The global warming can have profound impact on the mean climate as well as extreme weather events over the Arabian Peninsula that may affect both natural and human systems significantly. Therefore, it is important to assess the future changes in the seasonal/annual mean of temperature and precipitation and also the extremes in temperature and wind events for a country like Qatar. This study assesses the performance of the Coupled Model Inter comparison Project Phase 5 (CMIP5) simulations in present and develops future climate scenarios. The changes in climate extremes are assessed for three future periods 2016-2035, 2046-2065 and 2080-2099 with respect to 1986-2005 (base line) under two RCPs (Representative Concentrate Pathways) - RCP4.5 and RCP8.5. We analyzed the projected changes in temperature and precipitation extremes using several indices including those that capture heat stress. The observations show an increase in warm extremes over many parts in this region that are generally well captured by the models. The results indicate a significant change in frequency and intensity of both temperature and precipitation extremes over many parts of this region which may have serious implications on human health, water resources and the onshore/offshore infrastructure in this region. Data from a high-resolution (20km) AGCM simulation from Meteorological Research Institute of Japan Meteorological Agency for the present (1979-2003) and a future time slice (2075-2099) corresponding to RCP8.5 have also been utilized to assess the impact of climate change on

  11. Population exposure to heat-related extremes: Demographic change vs climate change

    NASA Astrophysics Data System (ADS)

    Jones, B.; O'Neill, B. C.; Tebaldi, C.; Oleson, K. W.

    2014-12-01

    Extreme heat events are projected to increase in frequency and intensity in the coming decades [1]. The physical effects of extreme heat on human populations are well-documented, and anticipating changes in future exposure to extreme heat is a key component of adequate planning/mitigation [2, 3]. Exposure to extreme heat depends not only on changing climate, but also on changes in the size and spatial distribution of the human population. Here we focus on systematically quantifying exposure to extreme heat as a function of both climate and population change. We compare exposure outcomes across multiple global climate and spatial population scenarios, and characterize the relative contributions of each to population exposure to extreme heat. We consider a 2 x 2 matrix of climate and population output, using projections of heat extremes corresponding to RCP 4.5 and RCP 8.5 from the NCAR community land model, and spatial population projections for SSP 3 and SSP 5 from the NCAR spatial population downscaling model. Our primary comparison is across RCPs - exposure outcomes from RCP 4.5 versus RCP 8.5 - paying particular attention to how variation depends on the choice of SSP in terms of aggregate global and regional exposure, as well as the spatial distribution of exposure. We assess how aggregate exposure changes based on the choice of SSP, and which driver is more important, population or climate change (i.e. does that outcome vary more as a result of RCP or SSP). We further decompose the population component to analyze the contributions of total population change, migration, and changes in local spatial structure. Preliminary results from a similar study of the US suggests a four-to-six fold increase in total exposure by the latter half of the 21st century. Changes in population are as important as changes in climate in driving this outcome, and there is regional variation in the relative importance of each. Aggregate population growth, as well as redistribution of

  12. [Extreme Climatic Events in the Altai Republic According to Dendrochronological Data].

    PubMed

    Barinov, V V; Myglan, V S; Nazarov, A N; Vaganov, E A; Agatova, A R; Nepop, R K

    2016-01-01

    The results of dating of extreme climatic events by damage to the anatomical structure and missing tree rings of the Siberian larch in the upper forest boundary of the Altai Republic are given. An analysis of the spatial distribution of the revealed dates over seven plots (Kokcy, Chind, Ak-ha, Jelo, Tute, Tara, and Sukor) allowed us to distinguish the extreme events on interregional (1700, 1783, 1788, 1812, 1814, 1884), regional (1724, 1775, 1784, 1835, 1840, 1847, 1850, 1852, 1854, 1869, 1871, 1910, 1917, 1927, 1938, 1958, 1961), and local (1702, 1736, 1751, 1785, 1842, 1843,1874, 1885, 1886, 1919, 2007, and 2009) scales. It was shown that the events of an interregional scale correspond with the dates of major volcanic eruptions (Grimsvotn, Lakagigar, Etna, Awu, Tambora, Soufriere St. Vinsent, Mayon, and Krakatau volcanos) and extreme climatic events, crop failures, lean years, etc., registered in historical sources.

  13. Modeling Studies of Climate Impacts and Extreme Events in California Mountain Ecosystems

    NASA Astrophysics Data System (ADS)

    Shupe, J.; Potter, C.; Kramer, M.; Genovese, V.; Gross, P.

    2005-12-01

    This study describes research using the CASA (Carnegie-Ames-Stanford) ecosystem model with HYDRA surface hydrologic model for the state of California to understand the effects of potential land cover and climate events on mountain ecosystems and regional water resources. The models are run at 1-km resolution to capture localized topographic effects at the regional scale. To assess HYDRA's ability to estimate actual water flows in both extreme and non-extreme years, we have compared HYDRA's results with gauge station data throughout the state. Historical predictions for the Northern Coastal Range show that HYDRA's estimate of actual water flow improves as the model progresses downstream within a watershed. Other complex watersheds that display similar characteristics include the Klamath and the San Joaquin Valley. High resolution studies of land cover and surface hydrology are presented for the Central Coast Range of California, which is impacted by extreme events of fire and rapidly changing climate gradients.

  14. Climatic changes of extreme precipitation in Denmark from 1874 to 2100

    NASA Astrophysics Data System (ADS)

    Arnbjerg-Nielsen, Karsten; Bülow Gregersen, Ida; Sunyer, Maria; Madsen, Henrik; Rosbjerg, Dan

    2014-05-01

    During the past 30 years rather dramatic changes in extreme precipitation have been observed in Denmark. These changes are mainly in the frequency of extreme events, but there is also a tendency towards more severe events. Both are considered effects of anthropogenic climate change. The increase in precipitation extremes has led to inundations in most of the larger cities during the last 10 years. The flood in Copenhagen in 2011 implied the second highest damage costs measured in Denmark during the last 100 years. To establish cities that are resilient to pluvial floods robust projections of the frequency and intensity of extreme precipitation events in a changing climate are needed. Additionally, it is equally important to understand the natural variation on which the anthropogenic changes are imposed. This study presents the results of a coordinated effort to estimate the changes and uncertainties in Danish design rainfall. Trends and oscillations are identified in five daily precipitation records from 1874 to present, 83 records from high-resolution rain-gauges from 1979 to present and 18 state-of-the-art climate model simulations. It is shown that the frequency of extreme events in the past has oscillated with a cycle of 25-35 years, a behavior that can in part be explained by sea level pressure differences over the Atlantic. Projections based on the historical observations suggest that precipitation extremes in the Eastern part of Denmark should have been ascending in the last two decades. However, the increase has continued longer than expected and with larger amplitude in the most recent years. This indicates a likely influence from anthropogenic greenhouse gas emissions. With the complex combination of general increase and natural variation several additional years of observation are needed before this hypothesis can be evaluated by statistical means. Extensive analysis of 18 different regional climate model (RCM) simulations shows that anthropogenic

  15. Scaling precipitation extremes with temperature in the Mediterranean: past climate assessment and projection in anthropogenic scenarios

    NASA Astrophysics Data System (ADS)

    Drobinski, Philippe; Silva, Nicolas Da; Panthou, Gérémy; Bastin, Sophie; Muller, Caroline; Ahrens, Bodo; Borga, Marco; Conte, Dario; Fosser, Giorgia; Giorgi, Filippo; Güttler, Ivan; Kotroni, Vassiliki; Li, Laurent; Morin, Efrat; Önol, Bariş; Quintana-Segui, Pere; Romera, Raquel; Torma, Csaba Zsolt

    2016-03-01

    In this study we investigate the scaling of precipitation extremes with temperature in the Mediterranean region by assessing against observations the present day and future regional climate simulations performed in the frame of the HyMeX and MED-CORDEX programs. Over the 1979-2008 period, despite differences in quantitative precipitation simulation across the various models, the change in precipitation extremes with respect to temperature is robust and consistent. The spatial variability of the temperature-precipitation extremes relationship displays a hook shape across the Mediterranean, with negative slope at high temperatures and a slope following Clausius-Clapeyron (CC)-scaling at low temperatures. The temperature at which the slope of the temperature-precipitation extreme relation sharply changes (or temperature break), ranges from about 20 °C in the western Mediterranean to <10 °C in Greece. In addition, this slope is always negative in the arid regions of the Mediterranean. The scaling of the simulated precipitation extremes is insensitive to ocean-atmosphere coupling, while it depends very weakly on the resolution at high temperatures for short precipitation accumulation times. In future climate scenario simulations covering the 2070-2100 period, the temperature break shifts to higher temperatures by a value which is on average the mean regional temperature change due to global warming. The slope of the simulated future temperature-precipitation extremes relationship is close to CC-scaling at temperatures below the temperature break, while at high temperatures, the negative slope is close, but somewhat flatter or steeper, than in the current climate depending on the model. Overall, models predict more intense precipitation extremes in the future. Adjusting the temperature-precipitation extremes relationship in the present climate using the CC law and the temperature shift in the future allows the recovery of the temperature-precipitation extremes

  16. Predicting Ice Sheet and Climate Evolution at Extreme Scales

    SciTech Connect

    Heimbach, Patrick

    2016-02-06

    A main research objectives of PISCEES is the development of formal methods for quantifying uncertainties in ice sheet modeling. Uncertainties in simulating and projecting mass loss from the polar ice sheets arise primarily from initial conditions, surface and basal boundary conditions, and model parameters. In general terms, two main chains of uncertainty propagation may be identified: 1. inverse propagation of observation and/or prior onto posterior control variable uncertainties; 2. forward propagation of prior or posterior control variable uncertainties onto those of target output quantities of interest (e.g., climate indices or ice sheet mass loss). A related goal is the development of computationally efficient methods for producing initial conditions for an ice sheet that are close to available present-day observations and essentially free of artificial model drift, which is required in order to be useful for model projections (“initialization problem”). To be of maximum value, such optimal initial states should be accompanied by “useful” uncertainty estimates that account for the different sources of uncerainties, as well as the degree to which the optimum state is constrained by available observations. The PISCEES proposal outlined two approaches for quantifying uncertainties. The first targets the full exploration of the uncertainty in model projections with sampling-based methods and a workflow managed by DAKOTA (the main delivery vehicle for software developed under QUEST). This is feasible for low-dimensional problems, e.g., those with a handful of global parameters to be inferred. This approach can benefit from derivative/adjoint information, but it is not necessary, which is why it often referred to as “non-intrusive”. The second approach makes heavy use of derivative information from model adjoints to address quantifying uncertainty in high-dimensions (e.g., basal boundary conditions in ice sheet models). The use of local gradient, or

  17. Spatiotemporal variability of extreme precipitation in Shaanxi province under climate change

    NASA Astrophysics Data System (ADS)

    Jiang, Rengui; Xie, Jiancang; Zhao, Yong; He, Hailong; He, Guohua

    2016-09-01

    Extreme climate index is one of the useful tools to monitor and detect climate change. The primary objective of this study is to provide a more comprehensively the changes in extreme precipitation between the periods of 1954-1983 and 1984-2013 in Shaanxi province under climate change, which will hopefully provide a scientific understanding of the precipitation-related natural hazards such as flood and drought. Daily precipitation from 34 surface meteorological stations were used to calculated 13 extreme precipitation indices (EPIs) generated by the joint World Meteorological Organization Commission for Climatology (CCI)/World Climate Research Programme (WCRP) project on Climate Variability and Predictability (CLIVAR) expect Team on climate change Detection, Monitoring and Indices (ETCCDMI). Two periods including 1954-1983 and 1984-2013 were selected and five types of precipitation days (R10mm-R100mm) were defined, to provide more evidences of climate change impacts on the extreme precipitation events, and specially, to investigate the changes in different types of precipitation days. The EPIs were generated using RClimRex software, and the trends were analyzed using Mann-Kendall nonparametric test and Sen's slope estimator. The relationships between the EPIs and the impacts of climate anomalies on typical EPIs were investigated using correlation and composite analysis. The mainly results include: 1) Thirteen EPIs, except consecutive dry day (CDD), were positive trends dominated for the period of 1984-2013, but the trends were not obvious for the period of 1954-1983. Most of the trends were not statistically significant at 5 % significance level. 2) The spatial distributions of stations that exhibited positive and negative trends were scattered. However, the stations that had negative trends mainly distributed in the north of Shaanxi province, and the stations that had positive trends mainly located in the south. 3) The percentage of stations that had positive

  18. Global crop yield response to extreme heat stress under multiple climate change futures

    NASA Astrophysics Data System (ADS)

    Deryng, Delphine; Conway, Declan; Ramankutty, Navin; Price, Jeff; Warren, Rachel

    2014-03-01

    Extreme heat stress during the crop reproductive period can be critical for crop productivity. Projected changes in the frequency and severity of extreme climatic events are expected to negatively impact crop yields and global food production. This study applies the global crop model PEGASUS to quantify, for the first time at the global scale, impacts of extreme heat stress on maize, spring wheat and soybean yields resulting from 72 climate change scenarios for the 21st century. Our results project maize to face progressively worse impacts under a range of RCPs but spring wheat and soybean to improve globally through to the 2080s due to CO2 fertilization effects, even though parts of the tropic and sub-tropic regions could face substantial yield declines. We find extreme heat stress at anthesis (HSA) by the 2080s (relative to the 1980s) under RCP 8.5, taking into account CO2 fertilization effects, could double global losses of maize yield (ΔY = -12.8 ± 6.7% versus - 7.0 ± 5.3% without HSA), reduce projected gains in spring wheat yield by half (ΔY = 34.3 ± 13.5% versus 72.0 ± 10.9% without HSA) and in soybean yield by a quarter (ΔY = 15.3 ± 26.5% versus 20.4 ± 22.1% without HSA). The range reflects uncertainty due to differences between climate model scenarios; soybean exhibits both positive and negative impacts, maize is generally negative and spring wheat generally positive. Furthermore, when assuming CO2 fertilization effects to be negligible, we observe drastic climate mitigation policy as in RCP 2.6 could avoid more than 80% of the global average yield losses otherwise expected by the 2080s under RCP 8.5. We show large disparities in climate impacts across regions and find extreme heat stress adversely affects major producing regions and lower income countries.

  19. Global crop yield response to extreme heat stress under multiple climate change futures

    NASA Astrophysics Data System (ADS)

    Deryng, D.; Conway, D.; Ramankutty, N.; Price, J.; Warren, R.

    2014-12-01

    Extreme heat stress during the crop reproductive period can be critical for crop productivity. Projected changes in the frequency and severity of extreme climatic events are expected to negatively impact crop yields and global food production. This study applies the global crop model PEGASUS to quantify, for the first time at the global scale, impacts of extreme heat stress on maize, spring wheat and soybean yields resulting from 72 climate change scenarios for the 21st century. Our results project maize to face progressively worse impacts under a range of RCPs but spring wheat and soybean to improve globally through to the 2080s due to CO2 fertilization effects, even though parts of the tropic and sub-tropic regions could face substantial yield declines. We find extreme heat stress at anthesis (HSA) by the 2080s (relative to the 1980s) under RCP 8.5, taking into account CO2 fertilization effects, could double global losses of maize yield (dY = -12.8 ± 6.7% versus -7.0 ± 5.3% without HSA), reduce projected gains in spring wheat yield by half (dY = 34.3 ± 13.5% versus 72.0 ± 10.9% without HSA) and in soybean yield by a quarter (dY = 15.3 ± 26.5% versus 20.4 ± 22.1% without HSA). The range reflects uncertainty due to differences between climate model scenarios; soybean exhibits both positive and negative impacts, maize is generally negative and spring wheat generally positive. Furthermore, when assuming CO2 fertilization effects to be negligible, we observe drastic climate mitigation policy as in RCP 2.6 could avoid more than 80% of the global average yield losses otherwise expected by the 2080s under RCP 8.5. We show large disparities in climate impacts across regions and find extreme heat stress adversely affects major producing regions and lower income countries.

  20. Wavelet analysis of precipitation extremes over Canadian ecoregions and teleconnections to large-scale climate anomalies

    NASA Astrophysics Data System (ADS)

    Tan, Xuezhi; Gan, Thian Yew; Shao, Dongguo

    2016-12-01

    To detect significant interannual and interdecadal oscillations and their teleconnections to large-scale climate anomalies such as El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and North Atlantic Oscillation (NAO), monthly and seasonal maximum daily precipitation (MMDP and SMDP) from 131 stations across Canada were analyzed by using variants of wavelet analysis. Interannual (1-8 years) oscillations were found to be more significant than interdecadal (8-30 years) oscillations for all selected stations, and the oscillations are both spatial and time-dependent. Similarly, the significant wavelet coherence and the phase difference between leading principal components of monthly precipitation extremes and climate indices were highly variable in time and in periodicity, and a single climate index explains less than 40% of the total variability. Partial wavelet coherence analysis shows that both ENSO and PDO modulated the interannual variability and PDO modulated the interdecadal variability, of MMDP over Canada. NAO is correlated with the western MMDP at interdecadal scale and the eastern MMDP at interannual scale. The composite analysis shows that precipitation extremes at about three fourths of the stations have been significantly influenced by ENSO and PDO patterns, while about one half of the stations by the NAO patterns. The magnitude of SMDP in extreme El Niño years, and extreme PDO event of positive phase, was mostly lower (higher) over the Canadian Prairies in summer and winter (spring and autumn) than in extreme La Niña years. Overall, the degree of influence of large-scale climate patterns on Canadian precipitation extremes varies by season and by region.

  1. Estimating the impact of extreme climatic events on riverine sediment transport: new tools and methods

    NASA Astrophysics Data System (ADS)

    Lajeunesse, E.; Delacourt, C.; Allemand, P.; Limare, A.; Dessert, C.; Ammann, J.; Grandjean, P.

    2010-12-01

    A series of recent works have underlined that the flux of material exported outside of a watershed is dramatically increased during extreme climatic events, such as storms, tropical cyclones and hurricanes [Dadson et al., 2003 and 2004; Hilton et al., 2008]. Indeed the exceptionally high rainfall rates reached during these events trigger runoff and landsliding which destabilize slopes and accumulate a significant amount of sediments in flooded rivers. This observation raises the question of the control that extreme climatic events might exert on the denudation rate and the morphology of watersheds. Addressing this questions requires to measure sediment transport in flooded rivers. However most conventional sediment monitoring technics rely on manned operated measurements which cannot be performed during extreme climatic events. Monitoring riverine sediment transport during extreme climatic events remains therefore a challenging issue because of the lack of instruments and methodologies adapted to such extreme conditions. In this paper, we present a new methodology aimed at estimating the impact of extreme events on sediment transport in rivers. Our approach relies on the development of two instruments. The first one is an in-situ optical instrument, based on a LISST-25X sensor, capable of measuring both the water level and the concentration of suspended matter in rivers with a time step going from one measurement every hour at low flow to one measurement every 2 minutes during a flood. The second instrument is a remote controlled drone helicopter used to acquire high resolution stereophotogrammetric images of river beds used to compute DEMs and to estimate how flash floods impact the granulometry and the morphology of the river. These two instruments were developed and tested during a 1.5 years field survey performed from june 2007 to january 2009 on the Capesterre river located on Basse-Terre island (Guadeloupe archipelago, Lesser Antilles Arc).

  2. Bias-corrected regional climate projections of extreme rainfall in south-east Australia

    NASA Astrophysics Data System (ADS)

    Evans, Jason P.; Argueso, D.; Olson, R.; Di Luca, A.

    2016-09-01

    This study presents future changes in extreme precipitation as projected within the New South Wales and Australian Capital Territory Regional Climate Modelling (NARCliM) project's regional climate ensemble for south-east Australia. Model performance, independence and projected future changes were considered when designing the ensemble. We applied a quantile mapping bias correction to the climate model outputs based on theoretical distribution functions, and the implications of this for the projected precipitation extremes is investigated. Precipitation extremes are quantified using several indices from the Expert Team on Climate Change Detection and Indices set of indices. The bias correction was successful in removing most of the magnitude bias in extreme precipitation but does not correct biases in the length of maximum wet and dry spells. The bias correction also had a relatively small effect on the projected future changes. Across a range of metrics, robust increases in the magnitude of precipitation extreme indices are found. While these increases are often in-line with a continuation of the trends present over the last century, they are not found to be statistically significant within the ensemble as a whole. The length of the maximum consecutive wet spell is projected to remain at present-day levels, while the length of the maximum dry spell is projected to increase into the future. The combination of longer dry spells and increases in extreme precipitation magnitude indicate an important change in the character of the precipitation time series. This could have considerable hydrological implications since changes in the sequencing of events can be just as important as changes in event magnitude for hydrological impacts.

  3. Toward enhanced understanding and projections of climate extremes using physics-guided data mining techniques

    NASA Astrophysics Data System (ADS)

    Ganguly, A. R.; Kodra, E. A.; Banerjee, A.; Boriah, S.; Chatterjee, S.; Chatterjee, S.; Choudhary, A.; Das, D.; Faghmous, J.; Ganguli, P.; Ghosh, S.; Hayhoe, K.; Hays, C.; Hendrix, W.; Fu, Q.; Kawale, J.; Kumar, D.; Kumar, V.; Liess, S.; Mawalagedara, R.; Mithal, V.; Oglesby, R.; Salvi, K.; Snyder, P. K.; Steinhaeuser, K.; Wang, D.; Wuebbles, D.

    2014-02-01

    Extreme events such as heat waves, cold spells, floods, droughts, tropical cyclones, and tornadoes have potentially devastating impacts on natural and engineered systems, and human communities, worldwide. Stakeholder decisions about critical infrastructures, natural resources, emergency preparedness and humanitarian aid typically need to be made at local to regional scales over seasonal to decadal planning horizons. However, credible climate change attribution and reliable projections at more localized and shorter time scales remain grand challenges. Long-standing gaps include inadequate understanding of processes such as cloud physics and ocean-land-atmosphere interactions, limitations of physics-based computer models, and the importance of intrinsic climate system variability at decadal horizons. Meanwhile, the growing size and complexity of climate data from model simulations and remote sensors increases opportunities to address these scientific gaps. This perspectives article explores the possibility that physically cognizant mining of massive climate data may lead to significant advances in generating credible predictive insights about climate extremes and in turn translating them to actionable metrics and information for adaptation and policy. Specifically, we propose that data mining techniques geared towards extremes can help tackle the grand challenges in the development of interpretable climate projections, predictability, and uncertainty assessments. To be successful, scalable methods will need to handle what has been called "Big Data" to tease out elusive but robust statistics of extremes and change from what is ultimately small data. Physically-based relationships (where available) and conceptual understanding (where appropriate) are needed to guide methods development and interpretation of results. Such approaches may be especially relevant in situations where computer models may not be able to fully encapsulate current process understanding, yet the

  4. Toward enhanced understanding and projections of climate extremes using physics-guided data mining techniques

    NASA Astrophysics Data System (ADS)

    Ganguly, A. R.; Kodra, E. A.; Agrawal, A.; Banerjee, A.; Boriah, S.; Chatterjee, Sn.; Chatterjee, So.; Choudhary, A.; Das, D.; Faghmous, J.; Ganguli, P.; Ghosh, S.; Hayhoe, K.; Hays, C.; Hendrix, W.; Fu, Q.; Kawale, J.; Kumar, D.; Kumar, V.; Liao, W.; Liess, S.; Mawalagedara, R.; Mithal, V.; Oglesby, R.; Salvi, K.; Snyder, P. K.; Steinhaeuser, K.; Wang, D.; Wuebbles, D.

    2014-07-01

    Extreme events such as heat waves, cold spells, floods, droughts, tropical cyclones, and tornadoes have potentially devastating impacts on natural and engineered systems and human communities worldwide. Stakeholder decisions about critical infrastructures, natural resources, emergency preparedness and humanitarian aid typically need to be made at local to regional scales over seasonal to decadal planning horizons. However, credible climate change attribution and reliable projections at more localized and shorter time scales remain grand challenges. Long-standing gaps include inadequate understanding of processes such as cloud physics and ocean-land-atmosphere interactions, limitations of physics-based computer models, and the importance of intrinsic climate system variability at decadal horizons. Meanwhile, the growing size and complexity of climate data from model simulations and remote sensors increases opportunities to address these scientific gaps. This perspectives article explores the possibility that physically cognizant mining of massive climate data may lead to significant advances in generating credible predictive insights about climate extremes and in turn translating them to actionable metrics and information for adaptation and policy. Specifically, we propose that data mining techniques geared towards extremes can help tackle the grand challenges in the development of interpretable climate projections, predictability, and uncertainty assessments. To be successful, scalable methods will need to handle what has been called "big data" to tease out elusive but robust statistics of extremes and change from what is ultimately small data. Physically based relationships (where available) and conceptual understanding (where appropriate) are needed to guide methods development and interpretation of results. Such approaches may be especially relevant in situations where computer models may not be able to fully encapsulate current process understanding, yet the

  5. Amplification of extreme precipitation response to climate change over Lake Victoria

    NASA Astrophysics Data System (ADS)

    Thiery, Wim; Davin, Edouard; Seneviratne, Sonia; Bedka, Kristopher; van Lipzig, Nicole

    2015-04-01

    Casualties among fishermen operating on Lake Victoria are estimated to amount up to several thousand per year, leading to the dubious distinction of "world's most lethal lake". Most of the casualties are caused by severe thunderstorms occurring at night, when surface winds converge over the lake and trigger deep convection of air masses moistened by the lake. With the climate change induced raise in troposphere temperatures, the frequency and intensity of these extremes are likely to increase. However, up to now only very little is known about the processes underlying this nighttime convection, and how it will be affected by climate change. We examine the impact of climate change on hazardous thunderstorms over Lake Victoria by conducting a set of regional climate model simulations which resolve individual lakes and explicitly compute lake temperatures. The regional climate model COSMO-CLM² is used to dynamically downscale a CORDEX-Africa projection (COSMO-CLM/MPI-ESM-LR) under RCP8.5 to 7 km grid spacing for the periods 1981-2010 and 2071-2100. Based on these high resolution simulations, we project that the increase in extreme precipitation is amplified over Lake Victoria compared to surrounding land area, consistent with projections from the (courser-scale) CORDEX-Africa ensemble. Moreover, the strongest extremes are found to follow the Clausius-Clapeyron scaling over the lake surface only. Finally, we investigate controls on the occurrence of this extreme precipitation in the present-day climate using satellite observations and a dynamical reanalysis downscaling, and detect a strong relationship with antecedent daytime land thunderstorms. Besides supplying moisture, these storms also modify mesoscale circulation in favor of strong over-lake convection the following night. Extending this analysis will make it possible to attribute the projected lake amplification effect to changes in the controlling factors.

  6. Climate Resiliency Planning: Making Extreme Event Science Useful for Managers and Planners in Northern Nevada

    NASA Astrophysics Data System (ADS)

    McCarthy, M.; Kenneston, A.; Wall, T. U.; Brown, T. J.; Redmond, K. T.

    2014-12-01

    Effective climate resiliency planning at the regional level requires extensive interactive dialogue among climate scientists, emergency managers, public health officials, urban planners, social scientists, and policy makers. Engaging federal, tribal, state, local governments and private sector business and infrastructure owners/operators in defining, assessing and characterizing the impacts of extreme events allows communities to understand how different events "break the system" forcing local communities to seek support and resources from state/federal governments and/or the private sector and what actions can be taken proactively to mitigate consequences and accelerate recovery. The Washoe County Regional Resiliency Study was prepared in response to potential climate variability related impacts specific to the Northern Nevada Region. The last several decades have seen dramatic growth in the region, coupled with increased resource demands that have forced local governments to consider how those impacts will affect the region and may, in turn, impact the region's ability to provide essential services. The Western Regional Climate Center of the Desert Research Institute provided a synthesis of climate studies with predictions regarding plausible changes in the local climate of Northern California and Nevada for the next 50 years. In general, these predictions indicate that the region's climate is undergoing a gradual shift, which will primarily affect the frequency, amount, and form of precipitation in the Sierra Nevada and Great Basin. Changes in water availability and other extreme events may have serious and long lasting effects in the Northern Nevada Region, and create a variety of social, environmental and economic concerns. A range of extreme events were considered including Adverse Air Quality, Droughts, Floods, Heat Waves, High Wind, Structure Fires, Wildland Fires, and Major Winter Storms. Due to the complexity of our climate systems, and the difficulty in

  7. The historical impact of climate extremes on global agricultural production and trade

    NASA Astrophysics Data System (ADS)

    Troy, T. J.; Pal, I.; Block, P. J.; Lall, U.

    2011-12-01

    How does climate variability at interannual time scales impact the volume and prices of key agricultural products on the global market? Do concurrent climate shocks in major breadbaskets of the world have serious impacts on global stocks and food prices? To what extent may irrigated agriculture or food storage buffer such impacts? Is there evidence of such impacts and/or buffering in the publicly available historical data? This talk explores these questions through empirical data analysis. During the past two years, we have seen drought in China, Europe, and Russia and floods in the United States and Australia. In this study, we examine the relationship between climate and crop yields, focusing on three main grain staples: wheat, rice, and maize. To do this, we use global production, trade, and stock data from the Food and Agricultural Organization and the United States Department of Agriculture for agriculture information and gridded observations of temperature and precipitation from 1960 through 2008. We focus on the impact of climate shocks (extreme temperatures, drought, and floods) on the agricultural production for the top exporting countries and quantify how these shocks propagate through the country's exports, imports, and grain stocks in order to understand the effect climate variability and extremes have on global food security. The ability to forecast these climate shocks at seasonal to longer lead times would significantly improve our ability to cope with perturbations in the global food supply, and we evaluate the ability of current models to produce skillful seasonal forecasts over the major grain producing regions.

  8. Changes in winter precipitation extremes for the western United States under a warmer climate as simulated by regional climate models

    SciTech Connect

    Dominguez, F; Rivera, E; Lettenmaier, D P; Castro1, and C. L.

    2012-03-01

    We find a consistent and statistically significant increase in the intensity of future extreme winter precipitation events over the western United States, as simulated by an ensemble of regional climatemodels (RCMs) driven by IPCC AR4 global climate models (GCMs). All eight simulations analyzed in this work consistently show an increase in the intensity of extreme winter precipitation with the multi-model mean projecting an area-averaged 12.6% increase in 20-year return period and 14.4% increase in 50-year return period daily precipitation. In contrast with extreme precipitation, the multi-model ensemble shows a decrease in mean winter precipitation of approximately 7.5% in the southwestern US, while the interior west shows less statistically robust increases.

  9. Managing the risks of extreme events and disasters to advance climate change adaptation. Special report of the Intergovernmental Panel on Climate Change (IPCC)

    SciTech Connect

    Field, C.B.; Barros, V.; Stocker, T.F.

    2012-07-01

    This Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX) has been jointly coordinated by Working Groups I (WGI) and II (WGII) of the Intergovernmental Panel on Climate Change (IPCC). The report focuses on the relationship between climate change and extreme weather and climate events, the impacts of such events, and the strategies to manage the associated risks. This Special Report, in particular, contributes to frame the challenge of dealing with extreme weather and climate events as an issue in decision making under uncertainty, analyzing response in the context of risk management. The report consists of nine chapters, covering risk management; observed and projected changes in extreme weather and climate events; exposure and vulnerability to as well as losses resulting from such events; adaptation options from the local to the international scale; the role of sustainable development in modulating risks; and insights from specific case studies. (LN)

  10. Combining regional climate and national human development scenarios to estimate future vulnerability to extreme climate and weather events

    NASA Astrophysics Data System (ADS)

    Patt, A.; Nussbaumer, P.

    2009-04-01

    Extreme climate and weather events such as droughts, floods, and tropical cyclones account for over 60% of the loss of life, and over 90% of total impacts, from natural disasters. Both observed trends and global climate models (GCMs) suggest that the frequency and intensity of extreme events is increasing, and will continue to increase as a result of climate change. Among planners and policy-makers at both national and international levels there is thus concern that this rise in extreme events will lead to greater losses in the future. Since low levels of development are associated with greater numbers of people killed and needing emergency assistance from natural disasters, the concern is most pronounced for least developed countries. If, however, these countries make substantial improvements in their levels of human development, as leading forecasters suggest may be the case over the coming decades, then their vulnerability to extreme events may fall. In this study, we examine the potential combined effects of increased extreme event frequency and improved levels of human development, to generate scenarios of risk levels into the second half of the century. It is the African continent for which these results may be the most relevant, since it is widely viewed as most vulnerable to increased risks from climate change; we focus on the particular country of Mozambique, which has experienced high losses from droughts, floods, and tropical cyclones in recent decades, and stands out as being among the most vulnerable in Africa. To assess the change in risk levels from the present until 2060, we pull together three pieces of analysis. The first is a statistical analysis of the losses from 1990-2007 from climate-related disasters, using national level data from the Centre for Research on the Epidemiology of Disasters (CRED) and the United Nations. From this analysis, we establish statistical relationships between several drivers of vulnerability—including country size

  11. Key ecological responses to nitrogen are altered by climate change

    EPA Science Inventory

    Here we review the effects of nitrogen and climate (e.g. temperature and precipitation) on four aspects of ecosystem structure and function including hydrologic-coupled nitrogen cycling, carbon cycling, acidification and biodiversity.

  12. Key ecological responses to nitrogen are altered by climate ...

    EPA Pesticide Factsheets

    Here we review the effects of nitrogen and climate (e.g. temperature and precipitation) on four aspects of ecosystem structure and function including hydrologic-coupled nitrogen cycling, carbon cycling, acidification and biodiversity. Ecosystems are simultaneously exposed to multiple stressors; two dominant drivers threatening ecosystems are anthropogenic nitrogen loading and climate change. Evaluating the cumulative effects of these stressors provides a holistic view of ecosystem vulnerability, which would better inform policy decisions aimed to protect the sustainability of ecosystems. Our current knowledge of the cumulative effects of these stressors is growing, but limited. The goal of this paper is to synthesize the state of scientific knowledge on how ecosystems are affected by the interactions of meteorlogic/climatic factors (e.g., temperature and precipitation) and nitrogen addition. Understanding the interactions of meteorlogic/climatic factors and nitrogen will help to inform how current and projected variability may affect ecosystem response.

  13. Impact of climate change on extreme rainfall events and flood risk in India

    NASA Astrophysics Data System (ADS)

    Guhathakurta, P.; Sreejith, O. P.; Menon, P. A.

    2011-06-01

    The occurrence of exceptionally heavy rainfall events and associated flash floods in many areas during recent years motivate us to study long-term changes in extreme rainfall over India. The analysis of the frequency of rainy days, rain days and heavy rainfall days as well as one-day extreme rainfall and return period has been carried out in this study to observe the impact of climate change on extreme rainfall events and flood risk in India. The frequency of heavy rainfall events are decreasing in major parts of central and north India while they are increasing in peninsular, east and north east India. The study tries to bring out some of the interesting findings which are very useful for hydrological planning and disaster managements. Extreme rainfall and flood risk are increasing significantly in the country except some parts of central India.

  14. Impact of tropical cyclones on modeled extreme wind-wave climate

    NASA Astrophysics Data System (ADS)

    Timmermans, Ben; Stone, Dáithí; Wehner, Michael; Krishnan, Harinarayan

    2017-02-01

    The effect of forcing wind resolution on the extremes of global wind-wave climate are investigated in numerical simulations. Forcing winds from the Community Atmosphere Model at horizontal resolutions of ˜1.0° and ˜0.25° are used to drive Wavewatch III. Differences in extreme wave height are found to manifest most strongly in tropical cyclone (TC) regions, emphasizing the need for high-resolution forcing in those areas. Comparison with observations typically show improvement in performance with increased forcing resolution, with a strong influence in the tail of the distribution, although simulated extremes can exceed observations. A simulation for the end of the 21st century under a RCP 8.5 type emission scenario suggests further increases in extreme wave height in TC regions.

  15. Plant adaptation to extreme environments: the example of Cistus salviifolius of an active geothermal alteration field.

    PubMed

    Bartoli, Giacomo; Bottega, Stefania; Forino, Laura M C; Ciccarelli, Daniela; Spanò, Carmelina

    2014-02-01

    Cistus salviifolius is able to colonise one of the most extreme active geothermal alteration fields in terms of both soil acidity and hot temperatures. The analyses of morpho-functional and physiological characters, investigated in leaves of plants growing around fumaroles (G leaves) and in leaves developed by the same plants after transfer into growth chamber under controlled conditions (C leaves) evidenced the main adaptive traits developed by this pioneer plant in a stressful environment. These traits involved leaf shape and thickness, mesophyll compactness, stomatal and trichome densities, chloroplast size. Changes of functional and physiological traits concerned dry matter content, peroxide and lipid peroxidation, leaf area, relative water and pigment contents. A higher reducing power and antioxidant enzymatic activity were typical of G leaves. Though the high levels of stress parameters, G leaves showed stress-induced specific morphogenic and physiological responses putatively involved in their surviving in active geothermal habitats.

  16. Developing research about extreme events and impacts to support international climate policy

    NASA Astrophysics Data System (ADS)

    Otto, Friederike; James, Rachel; Parker, Hannah; Boyd, Emily; Jones, Richard; Allen, Myles; Mitchell, Daniel; Cornforth, Rosalind

    2015-04-01

    Climate change is expected to have some of its most significant impacts through changes in the frequency and severity of extreme events. There is a pressing need for policy to support adaptation to changing climate risks, and to deal with residual loss and damage from climate change. In 2013, the Warsaw International Mechanism was established by the United Nations Framework Convention on Climate Change (UNFCCC) to address loss and damage in developing countries. Strategies to help vulnerable regions cope with losses from extreme events will presumably require information about the influence of anthropogenic forcing on extreme weather. But what kind of scientific evidence will be most useful for the Warsaw Mechanism? And how can the scientific communities working on extreme events and impacts develop their research to support the advance of this important policy? As climate scientists conducting probabilistic event attribution studies, we have been working with social scientists to investigate these questions. Our own research seeks to examine the role of external drivers, including greenhouse gas emissions, on the risk of extreme weather events such as heatwaves, flooding, and drought. We use large ensembles of climate models to compute the probability of occurrence of extreme events under current conditions and in a world which might have been without anthropogenic interference. In cases where the models are able to simulate extreme weather, the analysis allows for conclusions about the extent to which climate change may have increased, decreased, or made no change to the risk of the event occurring. These results could thus have relevance for the UNFCCC negotiations on loss and damage, and we have been communicating with policymakers and observers to the policy process to better understand how we can develop our research to support their work; by attending policy meetings, conducting interviews, and using a participatory game developed with the Red Cross

  17. Climate Central World Weather Attribution (WWA) project: Real-time extreme weather event attribution analysis

    NASA Astrophysics Data System (ADS)

    Haustein, Karsten; Otto, Friederike; Uhe, Peter; Allen, Myles; Cullen, Heidi

    2015-04-01

    Extreme weather detection and attribution analysis has emerged as a core theme in climate science over the last decade or so. By using a combination of observational data and climate models it is possible to identify the role of climate change in certain types of extreme weather events such as sea level rise and its contribution to storm surges, extreme heat events and droughts or heavy rainfall and flood events. These analyses are usually carried out after an extreme event has occurred when reanalysis and observational data become available. The Climate Central WWA project will exploit the increasing forecast skill of seasonal forecast prediction systems such as the UK MetOffice GloSea5 (Global seasonal forecasting system) ensemble forecasting method. This way, the current weather can be fed into climate models to simulate large ensembles of possible weather scenarios before an event has fully emerged yet. This effort runs along parallel and intersecting tracks of science and communications that involve research, message development and testing, staged socialization of attribution science with key audiences, and dissemination. The method we employ uses a very large ensemble of simulations of regional climate models to run two different analyses: one to represent the current climate as it was observed, and one to represent the same events in the world that might have been without human-induced climate change. For the weather "as observed" experiment, the atmospheric model uses observed sea surface temperature (SST) data from GloSea5 (currently) and present-day atmospheric gas concentrations to simulate weather events that are possible given the observed climate conditions. The weather in the "world that might have been" experiments is obtained by removing the anthropogenic forcing from the observed SSTs, thereby simulating a counterfactual world without human activity. The anthropogenic forcing is obtained by comparing the CMIP5 historical and natural simulations

  18. Will climate change increase the risk for critical infrastructure failures in Europe due to extreme precipitation?

    NASA Astrophysics Data System (ADS)

    Nissen, Katrin; Ulbrich, Uwe

    2016-04-01

    An event based detection algorithm for extreme precipitation is applied to a multi-model ensemble of regional climate model simulations. The algorithm determines extent, location, duration and severity of extreme precipitation events. We assume that precipitation in excess of the local present-day 10-year return value will potentially exceed the capacity of the drainage systems that protect critical infrastructure elements. This assumption is based on legislation for the design of drainage systems which is in place in many European countries. Thus, events exceeding the local 10-year return value are detected. In this study we distinguish between sub-daily events (3 hourly) with high precipitation intensities and long-duration events (1-3 days) with high precipitation amounts. The climate change simulations investigated here were conducted within the EURO-CORDEX framework and exhibit a horizontal resolution of approximately 12.5 km. The period between 1971-2100 forced with observed and scenario (RCP 8.5 and RCP 4.5) greenhouse gas concentrations was analysed. Examined are changes in event frequency, event duration and size. The simulations show an increase in the number of extreme precipitation events for the future climate period over most of the area, which is strongest in Northern Europe. Strength and statistical significance of the signal increase with increasing greenhouse gas concentrations. This work has been conducted within the EU project RAIN (Risk Analysis of Infrastructure Networks in response to extreme weather).

  19. Data informatics for the Detection, Characterization, and Attribution of Climate Extremes

    NASA Astrophysics Data System (ADS)

    Collins, W.; Wehner, M. F.; O'Brien, T. A.; Paciorek, C. J.; Krishnan, H.; Johnson, J. N.; Prabhat, M.

    2015-12-01

    The potential for increasing frequency and intensity of extremephenomena including downpours, heat waves, and tropical cyclonesconstitutes one of the primary risks of climate change for society andthe environment. The challenge of characterizing these risks is thatextremes represent the "tails" of distributions of atmosphericphenomena and are, by definition, highly localized and typicallyrelatively transient. Therefore very large volumes of observationaldata and projections of future climate are required to quantify theirproperties in a robust manner. Massive data analytics are required inorder to detect individual extremes, accumulate statistics on theirproperties, quantify how these statistics are changing with time, andattribute the effects of anthropogenic global warming on thesestatistics. We describe examples of the suite of techniques the climate communityis developing to address these analytical challenges. The techniquesinclude massively parallel methods for detecting and trackingatmospheric rivers and cyclones; data-intensive extensions togeneralized extreme value theory to summarize the properties ofextremes; and multi-model ensembles of hindcasts to quantify theattributable risk of anthropogenic influence on individual extremes.We conclude by highlighting examples of these methods developed by ourCASCADE (Calibrated and Systematic Characterization, Attribution, andDetection of Extremes) project.

  20. Climate Change and Fetal Health: The Impacts of Exposure to Extreme Temperatures in New York City

    NASA Technical Reports Server (NTRS)

    Ngo, Nicole S.; Horton, Radley M.

    2015-01-01

    Background: Climate change is projected to increase the frequency, intensity, and duration of heat waves while reducing cold extremes, yet few studies have examined the relationship between temperature and fetal health. Objectives: We estimate the impacts of extreme temperatures on birth weight and gestational age in Manhattan, a borough in New York City, and explore differences by socioeconomic status (SES). Methods: We combine average daily temperature from 1985 to 2010 with birth certificate data in Manhattan for the same time period. We then generate 33 downscaled climate model time series to project impacts on fetal health. Results: We find exposure to an extra day where average temperature 25 F and 85 F during pregnancy is associated with a 1.8 and 1.7 g (respectively) reduction in birth weight, but the impact varies by SES, particularly for extreme heat, where teen mothers seem most vulnerable. We find no meaningful, significant effect on gestational age. Using projections of temperature from these climate models, we project average net reductions in birth weight in the 2070- 2099 period of 4.6 g in the business-as-usual scenario. Conclusions: Results suggest that increasing heat events from climate change could adversely impact birth weight and vary by SES.

  1. Analysis of climate change effects on extreme precipitation for the area of Sicily (Italy)

    NASA Astrophysics Data System (ADS)

    Forestieri, Angelo; Fowler, Hayley; Lo Conti, Francesco; Noto, Leonardo

    2016-04-01

    In this study possible effects of the climate change on the extreme precipitation events have been analyzed by means of the CORDEX (Coordinated Regional climate Downscaling Experiment) data, a WCRP-sponsored program for the study of climate change effects at regional scales. In particular, some models runs from the EURO-CORDEX and the MED-CORDEX, i.e., two branch of the main project, have been exploited for the analysis of possible effects on extreme rainfall for the area of Sicily (Italy). In order to improve the reliability of reference data retrieved from the CORDEX datasets, a bias correction procedure based on hystorical measurements has been designed. Moreover, a simple cascade temporal downscaling procedure, has been applied for the derivation of sub-daily data. Results highlight that mean annual precipitation for the period 2006-2050 shows a reduction of the average total precipitation for both scenarios, rcp8.5 more than rcp4.5. The precipitation for the shorter durations has shown an increase respect to higher durations. This behaviour is confirmed by many works of the scientific community, which underline this trend. Therefore, results report the indications that in this area the up to date climate predictions are congruent with future scenarios characterized by a decrease of the total amount of precipitation with an increase of the extreme rainfall events.

  2. Controlling a hurricane by altering its internal climate

    NASA Astrophysics Data System (ADS)

    Mardhekar, D.

    2010-09-01

    Atmospheric hazards, like the fury of a hurricane, can be controlled by altering its internal climate. The hurricane controlling technique suggested is eco-friendly, compatible with hurricane size, has a sound scientific base and is practically possible. The key factor is a large scale dilution of the hurricane fuel, vapour, in the eye wall and spiral rain bands where condensation causing vapor volume reduction (a new concept which can be explained by Avogadro's law) and latent heat release drive the storm. This can be achieved by installing multiple storage tanks containing dry liquefied air on the onshore and offshore coastal regions and islands, preferably underground, in the usual path of a hurricane. Each storage tank is designed to hold and release dry liquefied air of around 100,000 tons. Satellite tracking of hurricanes can locate the eye wall and the spiral rain bands. The installed storage tanks coming under these areas will rapidly inject dry air in huge quantities thereby diluting the vapour content of the vapour-rich air in the eye wall and in the spiral rain bands. This will result in reduced natural input of vapour-rich air, reduced release of latent heat, reduced formation of the low pressure zone due to condensation and volume reduction of the vapor, expansion of the artificially introduced dry air as it goes up occupying a larger space with the diluted fuel, absorption of energy from the system by low temperature of the artificially introduced air. It will effect considerable condensation of the vapor near the sea surface thus further starving the hurricane of its fuel in its engine. Seeding materials, or microscopic dust as suggested by Dr. Daniel Rosenfeld in large quantities may also be introduced via the flow of the injected dry air in order to enhance the hurricane controlling ability. All the above factors are in favour of retarding the hurricane's wind speed and power. The sudden weakening of hurricane Lili was found to be partially caused

  3. Adaptation Strategies of Soil and Water Conservation in Taiwan for Extreme Climate

    NASA Astrophysics Data System (ADS)

    Huang, Wen-Cheng; Lin, Cheng-Yu; Hsieh, Ting-Ju

    2016-04-01

    Due to global climate change, the impact caused by extreme climate has become more and more compelling. In Taiwan, the total rainfall stays in the same level, but it brings along changes to rain types. The rainfall with high recurrence interval happens frequently, leading to soil loss of slope-land, and it may further result in flooding and sediment hazards. Although Taiwan is a small island, the population density is ranked at the second highest around the world. Moreover, third-fourth of Taiwan is slope-land, so the soil and water conservation is rather important. This study is based on the international trend analysis approach to review the related researches worldwide and 264 research projects in Taiwan. It indicates that under the pressure of extreme climate and social economic changes, it has higher possibility of slope-land to face the impacts from extreme rainfall events, and meanwhile, the carrying capacity of slope-land is decreasing. The experts' brainstorming meetings were held three times, and it concluded the current problems of soil and water conservation and the goal in 2025 for sustainable resources. Also, the 20-year weather data set was adopted to screen out 3 key watersheds with the potential of flooding (Puzih River Watershed), droughts (Xindian River Watershed), and sediment hazards (Chishan River Watershed) according to the moisture index, and further, to propose countermeasures in order to realize the goal in 2025, which is "regarding to climate and socioeconomic changes, it is based on multiple use to manage watershed resources for avoiding disasters and sustaining soil and water conservation." Keyword: Extreme climate, International trend analysis, Brainstorming, Key watershed

  4. How reliable are the estimates of climate variability in extreme precipitation?

    NASA Astrophysics Data System (ADS)

    Zolina, O.; Simmer, C.; Gulev, S.

    2009-09-01

    Existing estimates of climate variability and trends in precipitation extremes are highly uncertain when quantified from daily and higher resolution rain gauge observations. The major sources of uncertainties are associated with the conceptual definition of extreme precipitation, inhomogeneity of different data types and inaccuracy of statistical methods applied for estimation of precipitation extremes. We assess the impact of these uncertainties on climate variability in extreme precipitation over European continent using different collections of European rain gauge data. We try to discriminate the role of changing precipitation totals and varying characteristics of frequency distributions in forming observed changes in precipitation extremes. These two factors have strong seasonal dependence over Europe with winter growth up to 5% per decade being associated with change in precipitation distribution and summer decrease of 3% per decade primarily implied by changes in total. Changes in extreme precipitation in Western Europe are primarily dominated by frequency distribution characteristics while in the Eastern Europe they are closely linked to the changes in totals. Considering limitations of precipitation metrics based on raw data, we argue for the revision of extreme precipitation indices whose applicability is conditioned by the finite number of wet days and propose a set of new indices based on the newly derived distribution of fractional contribution (DFC) of daily precipitation to the total. The extended indices are more stable compared to the routine ones. In winter new set of indices clearly reveals an increasing occurrence of extreme precipitation in Western European Russia (up to 4% per decade) while during summer a downward tendency in the fractional contribution of very wet days is found in Central Western Europe. Newly established indices also allow to better associate European extreme precipitation with the North Atlantic Oscillation and associated

  5. Back to the Future -Precipitation Extremes, Climate Variability, Environmental Planning and Adaptation

    NASA Astrophysics Data System (ADS)

    Barros, A. P.

    2008-12-01

    --"The last major climatic oscillation peak was about 1856, or 74 years ago. Practically all of our important railroad and public highway work has been done since that time. Most of our parks systems driveways, and roads of all type for auto travel, in the various States, have been completed within the past 30 years, namely, beginning at the very lowest point of our climatic swing (1900-1910). There is every reason to believe, therefore, as the next 20 years comes on apace, we will witness considerable damage to work done during the past regime of weather."-- Schuman, 1931 At the beginning of the 21st century, as at the beginning of the 20th century, the fundamental question is whether the nation is more prepared for natural disasters today than it was eight decades ago. Indeed, the question is whether the best science, engineering and policy tools are in place to prepare for and respond to extreme events. Changes in the risk and magnitude of extreme precipitation events rank among the most studied impacts, and indicators (symptoms) of climatic variations. Extreme precipitation translates generally into extreme flooding, landslides, collapse of lifeline infrastructure, and the breakdown of public health services among others. In approaching the problem of quantifying the risk and magnitude of extreme precipitation events, there are two major challenges: 1) it is difficult to characterize "observed" (20th century) conditions due to the lack of long-term observations - i.e., short and incomplete historical records; and 2) it is difficult to characterize "predicted" (21st century) conditions due to the lack of skill of precipitation forecasts at spatial and temporal scales meaningful for impact studies, and the short-duration of climate model simulations themselves. The first challenge translates in estimating the probability of occurrence (rare) and magnitude (very large) of events that may have not happened yet. The second challenge is that of quantifying

  6. Climate engineering of vegetated land for hot extremes mitigation: An Earth system model sensitivity study

    NASA Astrophysics Data System (ADS)

    Wilhelm, Micah; Davin, Edouard L.; Seneviratne, Sonia I.

    2015-04-01

    Various climate engineering schemes have been proposed as a way to curb anthropogenic climate change. Land climate engineering schemes aiming to reduce the amount of solar radiation absorbed at the surface by changes in land surface albedo have been considered in a limited number of investigations. However, global studies on this topic have generally focused on the impacts on mean climate rather than extremes. Here we present the results of a series of transient global climate engineering sensitivity experiments performed with the Community Earth System Model over the time period 1950-2100 under historical and Representative Concentration Pathway 8.5 scenarios. Four sets of experiments are performed in which the surface albedo over snow-free vegetated grid points is increased respectively by 0.05, 0.10, 0.15, and 0.20. The simulations show a preferential cooling of hot extremes relative to mean temperatures throughout the Northern midlatitudes during boreal summer under the late twentieth century conditions. Two main mechanisms drive this response: On the one hand, a stronger efficacy of the albedo-induced radiative forcing on days with high incoming shortwave radiation and, on the other hand, enhanced soil moisture-induced evaporative cooling during the warmest days relative to the control simulation due to accumulated soil moisture storage and reduced drying. The latter effect is dominant in summer in midlatitude regions and also implies a reduction of summer drought conditions. It thus constitutes another important benefit of surface albedo modifications in reducing climate change impacts. The simulated response for the end of the 21st century conditions is of the same sign as that for the end of the twentieth century conditions but indicates an increasing absolute impact of land surface albedo increases in reducing mean and extreme temperatures under enhanced greenhouse gas forcing.

  7. Climate changes in temperature and precipitation extremes in an alpine grassland of Central Asia

    NASA Astrophysics Data System (ADS)

    Hu, Zengyun; Li, Qingxiang; Chen, Xi; Teng, Zhidong; Chen, Changchun; Yin, Gang; Zhang, Yuqing

    2016-11-01

    The natural ecosystem in Central Asia is sensitive and vulnerable to the arid and semiarid climate variations, especially the climate extreme events. However, the climate extreme events in this area are still unclear. Therefore, this study analyzed the climate variability in the temperature and precipitation extreme events in an alpine grassland (Bayanbuluk) of Central Asia based on the daily minimum temperature, daily maximum temperature, and daily precipitation from 1958 to 2012. Statistically significant ( p < 0.01) increasing trends were found in the minimum temperature, maximum temperature at annual, and seasonal time scales except the winter maximum temperature. In the seasonal changes, the winter temperature had the largest contribution to the annual warming. Further, there appeared increasing trends for the warm nights and the warm days and decreasing trends for the cool nights and the cool days at a 99 % confidence level. These trends directly resulted in an increasing trend for the growing season length (GSL) which could have positively influence on the vegetation productivity. For the precipitation, it displayed an increasing trend for the annual precipitation although it was not significant. And the summer precipitation had the same variations as the annual precipitation which indicated that the precipitation in summer made the biggest contribution to the annual precipitation than the other three seasons. The winter precipitation had a significant increasing trend (1.49 mm/10a) and a decreasing trend was found in spring. We also found that the precipitation of the very wet days mainly contributes to the annual precipitation with the trend of 4.5 mm/10a. The maximum 1-day precipitation and the heavy precipitation days only had slight increasing trend. A sharp decreasing trend was found before the early 1980s, and then becoming increase for the above three precipitation indexes. The climate experienced a warm-wet abrupt climate change in the 1980s

  8. Assessing the impact of future climate extremes on the US corn and soybean production

    NASA Astrophysics Data System (ADS)

    Jin, Z.

    2015-12-01

    Future climate changes will place big challenges to the US agricultural system, among which increasing heat stress and precipitation variability were the two major concerns. Reliable prediction of crop productions in response to the increasingly frequent and severe extreme climate is a prerequisite for developing adaptive strategies on agricultural risk management. However, the progress has been slow on quantifying the uncertainty of computational predictions at high spatial resolutions. Here we assessed the risks of future climate extremes on the US corn and soybean production using the Agricultural Production System sIMulator (APSIM) model under different climate scenarios. To quantify the uncertainty due to conceptual representations of heat, drought and flooding stress in crop models, we proposed a new strategy of algorithm ensemble in which different methods for simulating crop responses to those extreme climatic events were incorporated into the APSIM. This strategy allowed us to isolate irrelevant structure differences among existing crop models but only focus on the process of interest. Future climate inputs were derived from high-spatial-resolution (12km × 12km) Weather Research and Forecasting (WRF) simulations under Representative Concentration Pathways 4.5 (RCP 4.5) and 8.5 (RCP 8.5). Based on crop model simulations, we analyzed the magnitude and frequency of heat, drought and flooding stress for the 21st century. We also evaluated the water use efficiency and water deficit on regional scales if farmers were to boost their yield by applying more fertilizers. Finally we proposed spatially explicit adaptation strategies of irrigation and fertilizing for different management zones.

  9. Variability of Carbon and Water Fluxes Following Climate Extremes over a Tropical Forest in Southwestern Amazonia

    PubMed Central

    Zeri, Marcelo; Sá, Leonardo D. A.; Manzi, Antônio O.; Araújo, Alessandro C.; Aguiar, Renata G.; von Randow, Celso; Sampaio, Gilvan; Cardoso, Fernando L.; Nobre, Carlos A.

    2014-01-01

    The carbon and water cycles for a southwestern Amazonian forest site were investigated using the longest time series of fluxes of CO2 and water vapor ever reported for this site. The period from 2004 to 2010 included two severe droughts (2005 and 2010) and a flooding year (2009). The effects of such climate extremes were detected in annual sums of fluxes as well as in other components of the carbon and water cycles, such as gross primary production and water use efficiency. Gap-filling and flux-partitioning were applied in order to fill gaps due to missing data, and errors analysis made it possible to infer the uncertainty on the carbon balance. Overall, the site was found to have a net carbon uptake of ≈5 t C ha−1 year−1, but the effects of the drought of 2005 were still noticed in 2006, when the climate disturbance caused the site to become a net source of carbon to the atmosphere. Different regions of the Amazon forest might respond differently to climate extremes due to differences in dry season length, annual precipitation, species compositions, albedo and soil type. Longer time series of fluxes measured over several locations are required to better characterize the effects of climate anomalies on the carbon and water balances for the whole Amazon region. Such valuable datasets can also be used to calibrate biogeochemical models and infer on future scenarios of the Amazon forest carbon balance under the influence of climate change. PMID:24558378

  10. Projections of future extreme weather losses under changes in climate and exposure.

    PubMed

    Bouwer, Laurens M

    2013-05-01

    Many attempts are made to assess future changes in extreme weather events due to anthropogenic climate change, but few studies have estimated the potential change in economic losses from such events. Projecting losses is more complex as it requires insight into the change in the weather hazard but also into exposure and vulnerability of assets. This article discusses the issues involved as well as a framework for projecting future losses, and provides an overview of some state-of-the-art projections. Estimates of changes in losses from cyclones and floods are given, and particular attention is paid to the different approaches and assumptions. All projections show increases in extreme weather losses due to climate change. Flood losses are generally projected to increase more rapidly than losses from tropical and extra-tropical cyclones. However, for the period until the year 2040, the contribution from increasing exposure and value of capital at risk to future losses is likely to be equal or larger than the contribution from anthropogenic climate change. Given the fact that the occurrence of loss events also varies over time due to natural climate variability, the signal from anthropogenic climate change is likely to be lost among the other causes for changes in risk, at least during the period until 2040. More efforts are needed to arrive at a comprehensive approach that includes quantification of changes in hazard, exposure, and vulnerability, as well as adaptation effects.

  11. Variability of carbon and water fluxes following climate extremes over a tropical forest in southwestern Amazonia.

    PubMed

    Zeri, Marcelo; Sá, Leonardo D A; Manzi, Antônio O; Araújo, Alessandro C; Aguiar, Renata G; von Randow, Celso; Sampaio, Gilvan; Cardoso, Fernando L; Nobre, Carlos A

    2014-01-01

    The carbon and water cycles for a southwestern Amazonian forest site were investigated using the longest time series of fluxes of CO2 and water vapor ever reported for this site. The period from 2004 to 2010 included two severe droughts (2005 and 2010) and a flooding year (2009). The effects of such climate extremes were detected in annual sums of fluxes as well as in other components of the carbon and water cycles, such as gross primary production and water use efficiency. Gap-filling and flux-partitioning were applied in order to fill gaps due to missing data, and errors analysis made it possible to infer the uncertainty on the carbon balance. Overall, the site was found to have a net carbon uptake of ≈5 t C ha(-1) year(-1), but the effects of the drought of 2005 were still noticed in 2006, when the climate disturbance caused the site to become a net source of carbon to the atmosphere. Different regions of the Amazon forest might respond differently to climate extremes due to differences in dry season length, annual precipitation, species compositions, albedo and soil type. Longer time series of fluxes measured over several locations are required to better characterize the effects of climate anomalies on the carbon and water balances for the whole Amazon region. Such valuable datasets can also be used to calibrate biogeochemical models and infer on future scenarios of the Amazon forest carbon balance under the influence of climate change.

  12. Changes in Large Spatiotemporal Climatic Extreme Events Beyond the Mean Warming Signal

    NASA Astrophysics Data System (ADS)

    Sippel, S.; Mahecha, M. D.; Otto, F. E. L.

    2014-12-01

    Weather and climate extremes impose substantial impacts on human societies and ecosystems. In particular, events that are large in space (areal extent), time (duration) or both are likely to be associated with highly significant consequences. Hence, a better detection, characterization and understanding of such anomalous events is crucial. There is widespread consensus on a global and continental-scale warming trend, which leads to increases in the number, magnitude and frequency of temperature extremes (Hansen et al., 2012). It is less clear, however, if this warming also coincides with a broadening of temperature distributions (Huntingford et al., 2013). Moreover, the question whether other climate variables, such as large-scale precipitation deficits, likewise change, remains largely unanswered (Sheffield et al., 2012; Seneviratne 2012). In this study, we address this issue by investigating the characteristics of large extremes, using an algorithm that detects the n largest spatiotemporally connected climate extremes for any time period. The deployed algorithm detects, depending on the chosen time step and variable, major heat waves, cold spells or droughts. We find a robust increase in the magnitude of large hot temperature extremes on a global and European scale in observations and reanalysis products, whereas the duration and affected area of those extremes does not show any pronounced changes. These results reveal that there is a detectable signal in temperature distributions beyond the mean warming trend, which might imply a structural change in the making of large extreme events. Furthermore, we use the CMIP5 ensemble of models and an ensemble of 100+ members of a regional climate model for Europe (HadRM3P within the weather@home framework[1]) in order to conduct a global and continental-scale analysis of large extreme events in temperature and precipitation. The employment of those model ensembles allows to sample more reliably the tails of the

  13. Evaluation of Multiple Regional Climate Models for Summer Extremes of Temperature and Precipitation over East Asia

    NASA Astrophysics Data System (ADS)

    Park, Changyong; Min, Seung-Ki

    2014-05-01

    The regional climate models (RCMs) have been widely used to generate more detailed information in space and time of climate patterns produced by the global climate models (GCMs). Recently the international collaborative effort has been set up as the CORDEX (Coordinated Regional Climate Downscaling Experiment) project which covers several regional domains including East Asia. In this study, five RCMs (HadGEM3-RA, RegCM4, SNU-MM5, SNU-WRF, and YSU-RSM) participating in the CORDEX-East Asia project are evaluated in terms of their skills at simulating climatology of summer extremes. We examine bias and RMSE and conduct a Taylor diagram analysis using seasonal maxima of daily mean temperature and daily precipitation amount over the East Asia land area from 'historical' experiments of individual RCMs and their multi-model ensemble means (MME). The APHRODITE (Asian Precipitation-Highly-Resolved Observational Data Integration Toward Evaluation) datasets on 0.5° x 0.5° grids are used as observations. Results show similar systematic bias patterns between seasonal means and extremes. A cold bias is found along the coast while a warm bias occurs in the northern China. Overall wet bias appears in East Asia but there is a substantial dry bias in South Korea. This dry bias appears related to be a cold SST (sea surface temperature) around South Korea, positioning the monsoonal front (Changma) further south than observations. Taylor diagram analyses show that temperature has better skill in means than in extremes because of higher spatial correlation whereas precipitation exhibits better skill in extremes than in means due to better spatial variability. The latter implies that extreme rainfall events may be better captured although seasonal mean precipitation tends to be overestimated by RCMs. The model performances between mean and extreme are found to be closely related, but not clearly between temperature and precipitation. Temperatures are always better simulated than

  14. Hydrologic Extremes in a changing climate: how much information can regional climate models provide?

    SciTech Connect

    Lettenmaier, Dennis P.

    2012-08-14

    We proposed to identify a set of about 10 urban areas across the western U.S., and hourly precipitation data within each of these areas, which were extracted from the NCDC TD 3240. We also proposed to analyze the annual maximum series of precipitation extremes simulated for NARCCAP (using Reanalysis boundary forcing) for the grid cells close to station data, and to compare the distributions of annual maximum precipitation for accumulation intervals ranging from one to 28 hours. Recognizing that there may inevitably be differences between the station data and RCM grid cell values, we proposed to examine the scale dependence in the distributions of extremes.

  15. Climate Variability and Weather Extremes: Model-Simulated and Historical Data. Chapter 9

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried D.; Lim, Young-Kwon

    2012-01-01

    Extremes in weather and climate encompass a wide array of phenomena including tropical storms, mesoscale convective systems, snowstorms, floods, heat waves, and drought. Understanding how such extremes might change in the future requires an understanding of their past behavior including their connections to large-scale climate variability and trends. Previous studies suggest that the most robust findings concerning changes in short-term extremes are those that can be most directly (though not completely) tied to the increase in the global mean temperatures. These include the findings that (IPCC 2007): There has been a widespread reduction in the number of frost days in mid-latitude regions in recent decades, an increase in the number of warm extremes, particularly warm nights, and a reduction in the number of cold extremes, particularly cold nights. For North America in particular (CCSP SAP 3.3, 2008): There are fewer unusually cold days during the last few decades. The last 10 years have seen a lower number of severe cold waves than for any other 10-year period in the historical record that dates back to 1895. There has been a decrease in the number of frost days and a lengthening of the frost-free season, particularly in the western part of North America. Other aspects of extremes such as the changes in storminess have a less clear signature of long term change, with considerable interannual, and decadal variability that can obscure any climate change signal. Nevertheless, regarding extratropical storms (CCSP SAP 3.3, 2008): The balance of evidence suggests that there has been a northward shift in the tracks of strong low pressure systems (storms) in both the North Atlantic and North Pacific basins. For North America: Regional analyses suggest that there has been a decrease in snowstorms in the South and lower Midwest of the United States, and an increase in snowstorms in the upper Midwest and Northeast. Despite the progress already made, our understanding of the

  16. Trends and Projections of Climatic Extremes in the Black Volta Basin, West Africa: Towards Climate Change Adaptation.

    NASA Astrophysics Data System (ADS)

    Aziz, F.

    2015-12-01

    The water resources of the Black Volta Basin in West Africa constitute a major resource for the four countries (Burkina Faso, Ghana, Côte d'Ivoire, Mali) that share it. For Burkina Faso and Ghana, the river is the main natural resource around which the development of the diverse sectors of the two economies is built. Whereas Ghana relies heavily on the river for energy, land-locked Burkina Faso continuously develops the water for agricultural purposes. Such important role of the river makes it an element around which there are potential conflicts: either among riparian countries or within the individual countries themselves. This study documents the changes in temperature and precipitation extremes in the Black Volta Basin region for the past (1981-2010) and makes projections for the mid-late 21st century (2051-2080) under two emission scenarios; RCP 2.6 and RCP 8.5. The Expert Team on Climate Change Detection and Indices (ETCCDI) temperature- and precipitation-based indices are computed with the RClimdex software. Observed daily records and downscaled CORDEX data of precipitation and maximum and minimum temperatures are used for historical and future trend analysis respectively. In general low emission scenarios show increases in the cold extremes. The region shows a consistent pattern of trends in hot extremes for the 1990's. An increasing trend in hot extremes is expected in the future under RCP 8.5 while RCP 2.5 shows reductions in hot extremes. Regardless of the emission scenario, projections show more frequent hot nights in the 21st century. Generally, the region shows variability in trends for future extreme precipitation indices with only a few of the trends being statistically significant (5% level). Results obtained provide a basic and first step to understanding how climatic extremes have been changing in the Volta Basin region and gives an idea of what to expect in the future. Such studies will also help in making informed decisions on water management

  17. Large-scale Agroecosytem's Resiliency to Extreme Hydrometeorological and Climate Extreme Events in the Missouri River Basin

    NASA Astrophysics Data System (ADS)

    Munoz-Arriola, F.; Smith, K.; Corzo, G.; Chacon, J.; Carrillo-Cruz, C.

    2015-12-01

    A major challenge for water, energy and food security relies on the capability of agroecosyststems and ecosystems to adapt to a changing climate and land use changes. The interdependency of these forcings, understood through our ability to monitor and model processes across scales, indicate the "depth" of their impact on agroecosystems and ecosystems, and consequently our ability to predict the system's ability to return to a "normal" state. We are particularly interested in explore two questions: (1) how hydrometeorological and climate extreme events (HCEs) affect sub-seasonal to interannual changes in evapotranspiration and soil moisture? And (2) how agroecosystems recover from the effect of such events. To address those questions we use the land surface hydrologic Variable Infiltration Capacity (VIC) model and the Moderate Resolution Imaging Spectrometer-Leaf Area Index (MODIS-LAI) over two time spans (1950-2013 using a seasonal fixed LAI cycle) and 2001-2013 (an 8-day MODIS-LAI). VIC is forced by daily/16th degree resolution precipitation, minimum and maximum temperature, and wind speed. In this large-scale experiment, resiliency is defined by the capacity of a particular agroecosystem, represented by a grid cell's ET, SM, and LAI to return to a historical average. This broad, yet simplistic definition will contribute to identify the possible components and their scales involved in agroecosystems and ecosystems capacity to adapt to the incidence of HCEs and technologies used to intensify agriculture and diversify their use for food and energy production. Preliminary results show that dynamical changes in land use, tracked by MODIS data, require larger time spans to address properly the influence of technologic improvements in crop production as well as the competition for land for biofuel vs. food production. On the other hand, fixed seasonal changes in land use allow us just to identify hydrologic changes mainly due to climate variability.

  18. Assessment of climate variations in temperature and precipitation extreme events over Iran

    NASA Astrophysics Data System (ADS)

    Soltani, M.; Laux, P.; Kunstmann, H.; Stan, K.; Sohrabi, M. M.; Molanejad, M.; Sabziparvar, A. A.; Ranjbar SaadatAbadi, A.; Ranjbar, F.; Rousta, I.; Zawar-Reza, P.; Khoshakhlagh, F.; Soltanzadeh, I.; Babu, C. A.; Azizi, G. H.; Martin, M. V.

    2016-11-01

    In this study, changes in the spatial and temporal patterns of climate extreme indices were analyzed. Daily maximum and minimum air temperature, precipitation, and their association with climate change were used as the basis for tracking changes at 50 meteorological stations in Iran over the period 1975-2010. Sixteen indices of extreme temperature and 11 indices of extreme precipitation, which have been quality controlled and tested for homogeneity and missing data, are examined. Temperature extremes show a warming trend, with a large proportion of stations having statistically significant trends for all temperature indices. Over the last 15 years (1995-2010), the annual frequency of warm days and nights has increased by 12 and 14 days/decade, respectively. The number of cold days and nights has decreased by 4 and 3 days/decade, respectively. The annual mean maximum and minimum temperatures averaged across Iran both increased by 0.031 and 0.059 °C/decade. The probability of cold nights has gradually decreased from more than 20 % in 1975-1986 to less than 15 % in 1999-2010, whereas the mean frequency of warm days has increased abruptly between the first 12-year period (1975-1986) and the recent 12-year period (1999-2010) from 18 to 40 %, respectively. There are no systematic regional trends over the study period in total precipitation or in the frequency and duration of extreme precipitation events. Statistically significant trends in extreme precipitation events are observed at less than 15 % of all weather stations, with no spatially coherent pattern of change, whereas statistically significant changes in extreme temperature events have occurred at more than 85 % of all weather stations, forming strongly coherent spatial patterns.

  19. Precipitation extremes over La Plata Basin – Review and new results from observations and climate simulations

    SciTech Connect

    Cavalcanti, I. F. A.; Carril, A. F.; Penalba, O. C.; Grimm, A. M.; Menéndez, C. G.; Sanchez, E.; Cherchi, A.; Sörensson, A.; Robledo, F.; Rivera, J.; Pántano, V.; Bettolli, L. M.; Zaninelli, P.; Zamboni, L.; Tedeschi, R. G.; Dominguez, M.; Ruscica, R.; Flach, R.

    2015-04-01

    Monthly and daily precipitation extremes over La Plata Basin (LPB) are analyzed in the framework of the CLARIS-LPB Project. A review of the studies developed during the project and results of additional research are presented and discussed. Specific aspects of analysis are focused on large-scale versus local processes impacts on the intensity and frequency of precipitation extremes over LPB, and on the assessment of specific wet and dry spell indices and their changed characteristics in future climate scenarios. The analysis is shown for both available observations of precipitation in the region and ad-hoc global and regional models experiments. The Pacific, Indian and Atlantic Oceans can all impact precipitation intensity and frequency over LPB. In particular, considering the Pacific sector, different types of ENSO events (i.e. canonical vs Modoki or East vs Central) have different influences. Moreover, model projections indicate an increase in the frequency of precipitation extremes over LPB during El Niño and La Ninã events in future climate. Local forcings can also be important for precipitation extremes. Here, the feedbacks between soil moisture and extreme precipitation in LPB are discussed based on hydric conditions in the region and model sensitivity experiments. Concerning droughts, it was found that they were more frequent in the western than in the eastern sector of LPB during the period of 1962–2008. On the other hand, observations and model experiments agree in that the monthly wet extremes were more frequent than the dry extremes in the northern and southern LPB sectors during the period 1979–2001, with higher frequency in the south.

  20. Impacts of multi-scale solar activity on climate. Part I: Atmospheric circulation patterns and climate extremes

    NASA Astrophysics Data System (ADS)

    Weng, Hengyi

    2012-07-01

    The impacts of solar activity on climate are explored in this two-part study. Based on the principles of atmospheric dynamics, Part I propose an amplifying mechanism of solar impacts on winter climate extremes through changing the atmospheric circulation patterns. This mechanism is supported by data analysis of the sunspot number up to the predicted Solar Cycle 24, the historical surface temperature data, and atmospheric variables of NCEP/NCAR Reanalysis up to the February 2011 for the Northern Hemisphere winters. For low solar activity, the thermal contrast between the low- and high-latitudes is enhanced, so as the mid-latitude baroclinic ultra-long wave activity. The land-ocean thermal contrast is also enhanced, which amplifies the topographic waves. The enhanced mid-latitude waves in turn enhance the meridional heat transport from the low to high latitudes, making the atmospheric "heat engine" more efficient than normal. The jets shift southward and the polar vortex is weakened. The Northern Annular Mode (NAM) index tends to be negative. The mid-latitude surface exhibits large-scale convergence and updrafts, which favor extreme weather/climate events to occur. The thermally driven Siberian high is enhanced, which enhances the East Asian winter monsoon (EAWM). For high solar activity, the mid-latitude circulation patterns are less wavy with less meridional transport. The NAM tends to be positive, and the Siberian high and the EAWM tend to be weaker than normal. Thus the extreme weather/climate events for high solar activity occur in different regions with different severity from those for low solar activity. The solar influence on the midto high-latitude surface temperature and circulations can stand out after removing the influence from the El Niño-Southern Oscillation. The atmospheric amplifying mechanism indicates that the solar impacts on climate should not be simply estimated by the magnitude of the change in the solar radiation over solar cycles when it is

  1. Extreme warming challenges sentinel status of kelp forests as indicators of climate change

    PubMed Central

    Reed, Daniel; Washburn, Libe; Rassweiler, Andrew; Miller, Robert; Bell, Tom; Harrer, Shannon

    2016-01-01

    The desire to use sentinel species as early warning indicators of impending climate change effects on entire ecosystems is attractive, but we need to verify that such approaches have sound biological foundations. A recent large-scale warming event in the North Pacific Ocean of unprecedented magnitude and duration allowed us to evaluate the sentinel status of giant kelp, a coastal foundation species that thrives in cold, nutrient-rich waters and is considered sensitive to warming. Here, we show that giant kelp and the majority of species that associate with it did not presage ecosystem effects of extreme warming off southern California despite giant kelp's expected vulnerability. Our results challenge the general perception that kelp-dominated systems are highly vulnerable to extreme warming events and expose the more general risk of relying on supposed sentinel species that are assumed to be very sensitive to climate change. PMID:27958273

  2. Extreme warming challenges sentinel status of kelp forests as indicators of climate change

    NASA Astrophysics Data System (ADS)

    Reed, Daniel; Washburn, Libe; Rassweiler, Andrew; Miller, Robert; Bell, Tom; Harrer, Shannon

    2016-12-01

    The desire to use sentinel species as early warning indicators of impending climate change effects on entire ecosystems is attractive, but we need to verify that such approaches have sound biological foundations. A recent large-scale warming event in the North Pacific Ocean of unprecedented magnitude and duration allowed us to evaluate the sentinel status of giant kelp, a coastal foundation species that thrives in cold, nutrient-rich waters and is considered sensitive to warming. Here, we show that giant kelp and the majority of species that associate with it did not presage ecosystem effects of extreme warming off southern California despite giant kelp's expected vulnerability. Our results challenge the general perception that kelp-dominated systems are highly vulnerable to extreme warming events and expose the more general risk of relying on supposed sentinel species that are assumed to be very sensitive to climate change.

  3. Attributing Human Mortality During Extreme Heat Waves to Anthropogenic Climate Change

    NASA Astrophysics Data System (ADS)

    Mitchell, D.; Heaviside, C.; Vardoulakis, S.; Huntingford, C.; Masato, G.; Guillod, B. P.; Frumhoff, P. C.; Bowery, A.; Allen, M. R.

    2015-12-01

    Climate change is the biggest global health threat of the 21st century (Costello et al, 2009; Watts et al, 2015). Perhaps one of the clearest examples of this is the summer heat wave of 2003, which saw up to seventy thousand excess deaths across Europe (Robine et al, 2007). The extreme temperatures are now thought to be significantly enhanced due to anthropogenic climate change (Stott et al, 2004; Christidis et al, 2015). Here, we consider not only the Europe-wide temperature response of the heat wave, but the localised response using a high-resolution regional model simulating 2003 climate conditions thousands of times. For the first time, by employing end-to-end attribution, we attribute changes in mortality to the increased radiative forcing from climate change, with a specific focus on London and Paris. We show that in both cities, a sizable proportion of the excess mortality can be attributed to human emissions. With European heat waves projected to increase into the future, these results provide a worrying reality for what may lie ahead. Christidis, Nikolaos, Gareth S. Jones, and Peter A. Stott. "Dramatically increasing chance of extremely hot summers since the 2003 European heatwave." Nature Climate Change (2014). Costello, Anthony, et al. "Managing the health effects of climate change: lancet and University College London Institute for Global Health Commission." The Lancet 373.9676 (2009): 1693-1733. Stott, Peter A., Dáithí A. Stone, and Myles R. Allen. "Human contribution to the European heatwave of 2003." Nature 432.7017 (2004): 610-614 Watts, N., et al. "Health and climate change: policy responses to protect public health." Lancet. 2015.

  4. Ecosystem resilience despite large-scale altered hydro climatic conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate change is predicted to increase both drought frequency and duration, and when coupled with substantial warming, will establish a new hydroclimatological paradigm for many regions. Large-scale, warm droughts have recently impacted North America, Africa, Europe, Amazonia, and Australia result...

  5. Variability of extreme climate events in the territory and water area of Russia

    NASA Astrophysics Data System (ADS)

    Serykh, Ilya; Kostianoy, Andrey

    2016-04-01

    The Fourth (2007) and Fifth (2014) Assessment Reports on Climate Change of the Intergovernmental Panel on Climate Change (IPCC) state that in the XXI century, climate change will be accompanied by an increase in the frequency, intensity and duration of extreme nature events such as: extreme precipitation and extreme high and low air temperatures. All these will lead to floods, droughts, fires, shallowing of rivers, lakes and water reservoirs, desertification, dust storms, melting of glaciers and permafrost, algal bloom events in the seas, lakes and water reservoirs. In its turn, these events will lead to chemical and biological contamination of water, land and air. These events will result in a deterioration of quality of life, significant financial loss due to damage to the houses, businesses, roads, agriculture, forestry, tourism, and in many cases they end in loss of life. These predictions are confirmed by the results of the studies presented in the RosHydromet First (2008) and Second (2014) Assessment Reports on Climate Change and its Consequences in Russian Federation. Scientists predictions have been repeatedly confirmed in the last 15 years - floods in Novorossiysk (2002), Krymsk and Gelendzhik (2012), the Far East (2013), heat waves in 2010, unusually cold winter (February) of 2012 and unusually warm winter of 2013/2014 in the European territory of Russia. In this regard, analysis and forecasting of extreme climate events associated with climate change in the territory of Russia are an extremely important task. This task is complicated by the fact that modern atmospheric models used by IPCC and RosHydromet badly reproduce and predict the intensity of precipitation. We are analyzing meteorological reanalysis data (NCEP/NCAR, 20th Century Reanalysis, ERA-20C, JRA-55) and satellite data (NASA and AVISO) on air, water and land temperature, rainfall, wind speed and cloud cover, water levels in seas and lakes, index of vegetation over the past 30-60 years

  6. Understanding the Impacts of Climate and Hydrologic Extremes on Diarrheal Diseases in Southwestern Amazon

    NASA Astrophysics Data System (ADS)

    Fonseca, P. A. M.

    2015-12-01

    Bacterial diarrheal diseases have a high incidence rate during and after flooding episodes. In the Brazilian Amazon, flood extreme events have become more frequent, leading to high incidence rates for infant diarrhea. In this study we aimed to find a statistical association between rainfall, river levels and diarrheal diseases in children under 5, in the river Acre basin, in the State of Acre (Brazil). We also aimed to identify the time-lag and annual season of extreme rainfall and flooding in different cities in the water basin. The results using Tropical Rainfall Measuring Mission (TRMM) Satellite rainfall data show robustness of these estimates against observational stations on-ground. The Pearson coefficient correlation results (highest 0.35) indicate a time-lag, up to 4 days in three of the cities in the water-basin. In addition, a correlation was also tested between monthly accumulated rainfall and the diarrheal incidence during the rainy season (DJF). Correlation results were higher, especially in Acrelândia (0.7) and Brasiléia and Epitaciolândia (0.5). The correlation between water level monthly averages and diarrheal diseases incidence was 0.3 and 0.5 in Brasiléia and Epitaciolândia. The time-lag evidence found in this paper is critical to inform stakeholders, local populations and civil defense authorities about the time available for preventive and adaptation measures between extreme rainfall and flooding events in vulnerable cities. This study was part of a pilot application in the state of Acre of the PULSE-Brazil project (http://www.pulse-brasil.org/tool/), an interface of climate, environmental and health data to support climate adaptation. The next step of this research is to expand the analysis to other climate variables on diarrheal diseases across the whole Brazilian Amazon Basin and estimate the relative risk (RR) of a child getting sick. A statistical model will estimate RR based on the observed values and seasonal forecasts (higher

  7. Hydro-meteorological extreme events caused by climate variability or change and their impacts on infrastructures

    NASA Astrophysics Data System (ADS)

    Ganguly, A. R.

    2008-05-01

    Critical infrastructures and key assets, especially along coastal areas, are vulnerable to sea level rise caused by climate change, and perhaps more importantly, to extremes of precipitation, wind and storm surges, which in turn are likely to be exacerbated by climate change and consequent rise in sea levels. The 2007 IPCC report states that extreme hydro-meteorological events, ranging from heat waves and cold spells to extreme rainfall events or ice storms, are likely to increase in intensity, duration and frequency over the next several decades. While the uncertainties in our current understanding of climate impacts on certain weather extremes like hurricanes may be high, the net damage in the future is expected to increase anyway owing to enhanced stresses caused by population growth and land use changes. The first step is to quantify the expected exacerbation in the intensity- duration-frequency (IDF) of extreme weather and hydrologic events in light of climate change and assess the uncertainties thereof. Climate model projections need to be developed or downscaled at regional to local scales relevant to the scales of such hazards and their impacts on infrastructures and their interdependencies. The second step is to quantify the expected impact on infrastructures caused by the exacerbated hazards. Thus, infrastructures designed to outlast specific return levels of precipitation or wind may be under additional stress if climate change causes the return levels to intensify. The third step is to develop precise and dynamic geospatial risk indices. The risk computations need to consider the IDF of weather or hydrologic hazards, aggregate measures of infrastructure resilience and vulnerability, the consequences of infrastructure damage on population, economy and environment, and the capabilities and measures that can be brought to bear to mitigate the risks. One additional requirement is to investigate specific infrastructures in more depth and quantify the

  8. Decision-support tools for Extreme Weather and Climate Events in the Northeast United States

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Lowery, M.; Whelchel, A.

    2013-12-01

    Decision-support tools were assessed for the 2013 National Climate Assessment technical input document, "Climate Change in the Northeast, A Sourcebook". The assessment included tools designed to generate and deliver actionable information to assist states and highly populated urban and other communities in assessment of climate change vulnerability and risk, quantification of effects, and identification of adaptive strategies in the context of adaptation planning across inter-annual, seasonal and multi-decadal time scales. State-level adaptation planning in the Northeast has generally relied on qualitative vulnerability assessments by expert panels and stakeholders, although some states have undertaken initiatives to develop statewide databases to support vulnerability assessments by urban and local governments, and state agencies. The devastation caused by Superstorm Sandy in October 2012 has raised awareness of the potential for extreme weather events to unprecedented levels and created urgency for action, especially in coastal urban and suburban communities that experienced pronounced impacts - especially in New Jersey, New York and Connecticut. Planning approaches vary, but any adaptation and resiliency planning process must include the following: - Knowledge of the probable change in a climate variable (e.g., precipitation, temperature, sea-level rise) over time or that the climate variable will attain a certain threshold deemed to be significant; - Knowledge of intensity and frequency of climate hazards (past, current or future events or conditions with potential to cause harm) and their relationship with climate variables; - Assessment of climate vulnerabilities (sensitive resources, infrastructure or populations exposed to climate-related hazards); - Assessment of relative risks to vulnerable resources; - Identification and prioritization of adaptive strategies to address risks. Many organizations are developing decision-support tools to assist in the urban

  9. Evaluating regional climate models for simulating sub-daily rainfall extremes

    NASA Astrophysics Data System (ADS)

    Cortés-Hernández, Virginia Edith; Zheng, Feifei; Evans, Jason; Lambert, Martin; Sharma, Ashish; Westra, Seth

    2016-09-01

    Sub-daily rainfall extremes are of significant societal interest, with implications for flash flooding and the design of urban stormwater systems. It is increasingly recognised that extreme subdaily rainfall will intensify as a result of global temperature increases, with regional climate models (RCMs) representing one of the principal lines of evidence on the likely magnitude and spatiotemporal characteristics of these changes. To evaluate the ability of RCMs to simulate subdaily extremes, it is common to compare the simulated statistical characteristics of the extreme rainfall events with those from observational records. While such analyses are important, they provide insufficient insight into whether the RCM reproduces the correct underlying physical processes; in other words, whether the model "gets the right answers for the right reasons". This paper develops a range of metrics to assess the performance of RCMs in capturing the physical mechanisms that produce extreme rainfall. These metrics include the diurnal and seasonal cycles, relationship between rainfall intensity and temperature, temporal scaling, and the spatial structure of extreme rainfall events. We evaluate a high resolution RCM—the Weather Research Forecasting model—over the Greater Sydney region, using three alternative parametrization schemes. The model shows consistency with the observations for most of the proposed metrics. Where differences exist, these are dependent on both the rainfall duration and model parameterization strategy. The use of physically meaningful performance metrics not only enhances the confidence in model simulations, but also provides better diagnostic power to assist with future model improvement.

  10. Using Dynamically Downscaled Climate Model Outputs to Inform Projections of Extreme Precipitation Events

    NASA Technical Reports Server (NTRS)

    Wobus, Cameron; Reynolds, Lara; Jones, Russell; Horton, Radley; Smith, Joel; Fries, J. Stephen; Tryby, Michael; Spero, Tanya; Nolte, Chris

    2015-01-01

    Many of the storms that generate damaging floods are caused by locally intense, sub-daily precipitation, yet the spatial and temporal resolution of the most widely available climate model outputs are both too coarse to simulate these events. Thus there is often a disconnect between the nature of the events that cause damaging floods and the models used to project how climate change might influence their magnitude. This could be a particular problem when developing scenarios to inform future storm water management options under future climate scenarios. In this study we sought to close this gap, using sub-daily outputs from the Weather Research and Forecasting model (WRF) from each of the nine climate regions in the United States. Specifically, we asked 1) whether WRF outputs projected consistent patterns of change for sub-daily and daily precipitation extremes; and 2) whether this dynamically downscaled model projected different magnitudes of change for 3-hourly vs 24-hourly extreme events. We extracted annual maximum values for 3-hour through 24-hour precipitation totals from an 11-year time series of hindcast (1995-2005) and mid-century (2045-2055) climate, and calculated the direction and magnitude of change for 3-hour and 24-hour extreme events over this timeframe. The model results project that the magnitude of both 3-hour and 24-hour events will increase over most regions of the United States, but there was no clear or consistent difference in the relative magnitudes of change for sub-daily vs daily events.

  11. Influence of Climate Extremes and Land Use on Fecal Contamination of Shallow Tubewells in Bangladesh.

    PubMed

    Wu, Jianyong; Yunus, Mohammad; Islam, Md Sirajul; Emch, Michael

    2016-03-01

    Climate extremes in conjunction with some land use practices are expected to have large impacts on water quality. However, the impacts of land use and climate change on fecal contamination of groundwater has not been well characterized. This work quantifies the influences of extreme weather events and land use practices on Escherichia coli presence and concentration in groundwater from 125 shallow wells, a dominant drinking water resource in rural Bangladesh, monitored over a 17 month period. The results showed that E. coli presence was significantly associated with the number of heavy rain days, developed land and areas with more surface water. These variables also had significant impacts on E. coli concentration, with risk ratios of 1.38 (95% CI = 1.16, 1.65), 1.07 (95% CI: 1.05, 1.09), and 1.02 (95% CI = 1.01, 1.03), respectively. Significant synergistic effects on E. coli presence and concentration were observed when land use and weather variables were combined. The findings suggest that climate extremes and land use practices, particularly urbanization, might promote fecal contamination of shallow well water, thus increasing the risk of diarrheal diseases.

  12. Influences of extreme weather, climate and pesticide use on invertebrates in cereal fields over 42 years.

    PubMed

    Ewald, Julie A; Wheatley, Christopher J; Aebischer, Nicholas J; Moreby, Stephen J; Duffield, Simon J; Crick, Humphrey Q P; Morecroft, Michael B

    2015-11-01

    Cereal fields are central to balancing food production and environmental health in the face of climate change. Within them, invertebrates provide key ecosystem services. Using 42 years of monitoring data collected in southern England, we investigated the sensitivity and resilience of invertebrates in cereal fields to extreme weather events and examined the effect of long-term changes in temperature, rainfall and pesticide use on invertebrate abundance. Of the 26 invertebrate groups examined, eleven proved sensitive to extreme weather events. Average abundance increased in hot/dry years and decreased in cold/wet years for Araneae, Cicadellidae, adult Heteroptera, Thysanoptera, Braconidae, Enicmus and Lathridiidae. The average abundance of Delphacidae, Cryptophagidae and Mycetophilidae increased in both hot/dry and cold/wet years relative to other years. The abundance of all 10 groups usually returned to their long-term trend within a year after the extreme event. For five of them, sensitivity to cold/wet events was lowest (translating into higher abundances) at locations with a westerly aspect. Some long-term trends in invertebrate abundance correlated with temperature and rainfall, indicating that climate change may affect them. However, pesticide use was more important in explaining the trends, suggesting that reduced pesticide use would mitigate the effects of climate change.

  13. Quantifying the US Crop Yield in Response to Extreme Climatic Events from 1948 to 2013

    NASA Astrophysics Data System (ADS)

    Jin, Z.; Zhuang, Q.

    2014-12-01

    The increasingly frequent and severe extreme climatic events (ECEs) under climate changes will negatively affect crop productivity and threat the global food security. Reliable forecast of crop yields response to those ECEs is a prerequisite for developing strategies on agricultural risk management. However, the progress of quantifying such responses with ecosystem models has been slow. In this study, we first review existing algorithms of yields response to ECEs among major crops (i.e., Corn, Wheat and Soybean) for the United States from a set of process-based crop models. These algorithms are aggregated into four categories of ECEs: drought, heavy precipitation, extreme heat, and frost. Species-specific ECEs thresholds as tipping point of crop yield response curve are examined. Four constraint scalar functions derived for each category of ECEs are then added to an agricultural ecosystem model, CLM-AG, respectively. The revised model is driven by NCEP/NCAR reanalysis data from 1948 to 2013 to estimate the US major crop yields, and then evaluated with county-level yield statistics from the National Agricultural Statistics Service (NASS). We also include MODIS NPP product as a reference for the period 2001-2013. Our study will help to identify gaps in capturing yield response to ECEs with contemporary crop models, and provide a guide on developing the new generation of crop models to account for the effects of more future extreme climate events.

  14. Potential Geomorphic Consequences of Wave Climate Alterations along Cuspate Coastlines

    NASA Astrophysics Data System (ADS)

    Johnson, J.; Moore, L. J.; Ells, K. D.; Murray, A.

    2012-12-01

    While much attention has been given to the effects of sea level rise on coastal environments, changes in wave climate (in response to predicted increases in tropical storm intensity) may also significantly impact coastal areas in the future. Characterized by rapid alongshore shifts in shoreline orientation, cuspate coastlines are particularly sensitive to changes in wave climate and thus represent the best type of coastline for detecting initial responses to changing wave conditions. Previous work indicates that Cape Hatteras and Cape Lookout, NC have become increasingly asymmetric in response to an increase in Atlantic summer wave heights identified by Komar and Allen (2007). Here, we contrast historic and recent patterns of erosion and accretion for areas surrounding Cape Fear, NC and Fishing Point, VA to determine if a similar coastline response can be detected for a location heavily impacted by shoreline stabilization efforts and a location experiencing a less-pronounced trend of increasing wave energy, respectively. We obtained shorelines from NOAA, the USGS, and the North Carolina Department of Natural Resources and used the Digital Shoreline Analysis System (DSAS) to calculate shoreline change rates for historic (pre-1975) and recent (post-1975) time periods. The 1975 breakpoint was chosen to correspond with the timing of reported increases in hurricane-generated (summer) wave heights. Initial results suggest that the influence of shoreline stabilization efforts (primarily beach nourishment, one jetty and a few groins) has overwhelmed any wave-climate change response that may otherwise have been detectable surrounding Cape Fear, NC. Preliminary results for Fishing Point, VA indicate no discernible wave-climate related trend in shoreline change, suggesting that wave climate changes have not been of a significant magnitude to significantly influence patterns of erosion and accretion along this stretch of coastline. Coastline Evolution Model (CEM) simulations

  15. Climate change alters diffusion of forest pest: A model study

    NASA Astrophysics Data System (ADS)

    Jo, Woo Seong; Kim, Hwang-Yong; Kim, Beom Jun

    2017-01-01

    Population dynamics with spatial information is applied to understand the spread of pests. We introduce a model describing how pests spread in discrete space. The number of pest descendants at each site is controlled by local information such as temperature, precipitation, and the density of pine trees. Our simulation leads to a pest spreading pattern comparable to the real data for pine needle gall midge in the past. We also simulate the model in two different climate conditions based on two different representative concentration pathways scenarios for the future. We observe that after an initial stage of a slow spread of pests, a sudden change in the spreading speed occurs, which is soon followed by a large-scale outbreak. We found that a future climate change causes the outbreak point to occur earlier and that the detailed spatio-temporal pattern of the spread depends on the source position from which the initial pest infection starts.

  16. Preface: Impacts of extreme climate events and disturbances on carbon dynamics

    NASA Astrophysics Data System (ADS)

    Xiao, Jingfeng; Liu, Shuguang; Stoy, Paul C.

    2016-06-01

    The impacts of extreme climate events and disturbances (ECE&D) on the carbon cycle have received growing attention in recent years. This special issue showcases a collection of recent advances in understanding the impacts of ECE&D on carbon cycling. Notable advances include quantifying how harvesting activities impact forest structure, carbon pool dynamics, and recovery processes; observed drastic increases of the concentrations of dissolved organic carbon and dissolved methane in thermokarst lakes in western Siberia during a summer warming event; disentangling the roles of herbivores and fire on forest carbon dioxide flux; direct and indirect impacts of fire on the global carbon balance; and improved atmospheric inversion of regional carbon sources and sinks by incorporating disturbances. Combined, studies herein indicate several major research needs. First, disturbances and extreme events can interact with one another, and it is important to understand their overall impacts and also disentangle their effects on the carbon cycle. Second, current ecosystem models are not skillful enough to correctly simulate the underlying processes and impacts of ECE&D (e.g., tree mortality and carbon consequences). Third, benchmark data characterizing the timing, location, type, and magnitude of disturbances must be systematically created to improve our ability to quantify carbon dynamics over large areas. Finally, improving the representation of ECE&D in regional climate/earth system models and accounting for the resulting feedbacks to climate are essential for understanding the interactions between climate and ecosystem dynamics.

  17. Regional climate extremes in Northern Eurasia associated with atmospheric blockings: Interannual variations and tendencies of change

    NASA Astrophysics Data System (ADS)

    Mokhov, I.; Akperov, M.; Lupo, A. R.; Chernokulsky, A. V.; Timazhev, A.

    2011-12-01

    Large regional climate anomalies associated with atmospheric blockings have been noted during last years in Northern Eurasia. Impact of blockings is exhibited in such extremes as heat and cold waves, droughts, and forest fires. In order to detect changes in the blocking activity characteristics an analysis of different data for the Northern Hemisphere with the use of various methods for blockings detection was carried out. In particular, the data for 500 hPa geopotential from the NCEP/NCAR Reanalysis 1 (1948-2010) and NOAA-CIRES 20th Century Reanalysis v2 (1871-2008) have been used as well as climate model simulations for the 20th and 21st centuries with anthropogenic forcing. Special attention is paid to the analysis of extreme dry conditions in the Northern Eurasia regions and to the 2010 Russian heat wave associated to atmospheric blockings with the use observational data (1891-2010) for surface air temperature, precipitation and different indices for the drought conditions. Tendencies of change and interannual variations are analyzed with an assessment of effects of El-Nino/La-Nina phenomena. Possibility of intensification of blocking-associated climate impacts under global warming is discussed. Changes of blocking characteristics and associated regional climate anomalies in the 21st century based on model simulations with anthropogenic scenarios are analyzed.

  18. Reliability of regional climate model simulations of extremes and of long-term climate

    NASA Astrophysics Data System (ADS)

    Böhm, U.; Kücken, M.; Hauffe, D.; Gerstengarbe, F.-W.; Werner, P. C.; Flechsig, M.; Keuler, K.; Block, A.; Ahrens, W.; Nocke, Th.

    2004-06-01

    We present two case studies that demonstrate how a common evaluation methodology can be used to assess the reliability of regional climate model simulations from different fields of research. In Case I, we focused on the agricultural yield loss risk for maize in Northeastern Brazil during a drought linked to an El-Niño event. In Case II, the present-day regional climatic conditions in Europe for a 10-year period are simulated. To comprehensively evaluate the model results for both kinds of investigations, we developed a general methodology. On its basis, we elaborated and implemented modules to assess the quality of model results using both advanced visualization techniques and statistical algorithms. Besides univariate approaches for individual near-surface parameters, we used multivariate statistics to investigate multiple near-surface parameters of interest together. For the latter case, we defined generalized quality measures to quantify the model's accuracy. Furthermore, we elaborated a diagnosis tool applicable for atmospheric variables to assess the model's accuracy in representing the physical processes above the surface under various aspects. By means of this evaluation approach, it could be demonstrated in Case Study I that the accuracy of the applied regional climate model resides at the same level as that we found for another regional model and a global model. Excessive precipitation during the rainy season in coastal regions could be identified as a major contribution leading to this result. In Case Study II, we also identified the accuracy of the investigated mean characteristics for near-surface temperature and precipitation to be comparable to another regional model. In this case, an artificial modulation of the used initial and boundary data during preprocessing could be identified as the major source of error in the simulation. Altogether, the achieved results for the presented investigations indicate the potential of our methodology to be

  19. Resolving the life cycle alters expected impacts of climate change.

    PubMed

    Levy, Ofir; Buckley, Lauren B; Keitt, Timothy H; Smith, Colton D; Boateng, Kwasi O; Kumar, Davina S; Angilletta, Michael J

    2015-08-22

    Recent models predict contrasting impacts of climate change on tropical and temperate species, but these models ignore how environmental stress and organismal tolerance change during the life cycle. For example, geographical ranges and extinction risks have been inferred from thermal constraints on activity during the adult stage. Yet, most animals pass through a sessile embryonic stage before reaching adulthood, making them more susceptible to warming climates than current models would suggest. By projecting microclimates at high spatio-temporal resolution and measuring thermal tolerances of embryos, we developed a life cycle model of population dynamics for North American lizards. Our analyses show that previous models dramatically underestimate the demographic impacts of climate change. A predicted loss of fitness in 2% of the USA by 2100 became 35% when considering embryonic performance in response to hourly fluctuations in soil temperature. Most lethal events would have been overlooked if we had ignored thermal stress during embryonic development or had averaged temperatures over time. Therefore, accurate forecasts require detailed knowledge of environmental conditions and thermal tolerances throughout the life cycle.

  20. Robust inferences on climate change patterns of precipitation extremes in the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    de Melo-Gonçalves, Paulo; Rocha, Alfredo; Santos, João A.

    2016-08-01

    grid points where a significant climate change is found with a predefined low uncertainty. Results highlight the importance of taking into account the spread across an ensemble of climate simulations when making inferences on climate change from the ensemble-mean or ensemble-median. This is specially true for climate projections of extreme indices such CDD and R95T. For PRCTOT, a decrease in annual precipitation over the entire peninsula is projected, specially in the north and northwest where it can decrease down to 400 mm by the middle of the 21st century. This decrease is expected to occur throughout the year except in winter. Annual CDD is projected to increase till the middle of the 21st century overall the peninsula, reaching more than three weeks in the southwest. This increase is projected to occur in summer and spring. For Rx5day, a decrease is projected to occur during spring and autumn in the major part of the peninsula, and during summer in northern Iberia. Finally, R95T is projected to decrease around 20% in northern Iberia in summer, and around 15% in the south-southwest in autumn.

  1. Tackling air pollution and extreme climate changes in China: Implementing the Paris climate change agreement.

    PubMed

    Tambo, Ernest; Duo-Quan, Wang; Zhou, Xiao-Nong

    2016-10-01

    China still depends on coal for more than 60% of its power despite big investments in the process of shifting to nuclear, solar and wind power renewable energy resources alignment with Paris climate change agreement (Paris CCA). Chinese government through the Communist Party Central Committee (CPCC) ascribes great importance and commitment to Paris CCA legacy and history landmark implementation at all levels. As the world's biggest carbon dioxide emitter, China has embarked on "SMART" pollution and climate changes programs and measures to reduce coal-fired power plants to less than 50% in the next five years include: new China model of energy policies commitment on CO2 and greenhouse gas emissions reductions to less than 20% non-fossil energy use by 2030 without undermining their economic growth, newly introduced electric vehicles transportation benefits, interactive and sustained air quality index (AQI) monitoring systems, decreasing reliance on fossil fuel economic activities, revision of energy price reforms and renewable energy to less energy efficient technologies development. Furthermore, ongoing CPCC improved environmental initiatives, implemented strict regulations and penalties on local companies and firms' pollution production management, massive infrastructures such as highways to reduce CO2 expansion of seven regional emissions trading markets and programs for CO2 emissions and other pollutants are being documented. Maximizing on the centralized nature of the China's government, implemented Chinese pollution, climate changes mitigation and adaptation initiatives, "SMART" strategies and credible measures are promising. A good and practical example is the interactive and dynamic website and database covering 367 Chinese cities and providing real time information on environmental and pollution emissions AQI. Also, water quality index (WQI), radiation and nuclear safety monitoring and management systems over time and space. These are ongoing Chinese

  2. Climate Change Altered Disturbance Regimes in High Elevation Pine Ecosystems

    NASA Astrophysics Data System (ADS)

    Logan, J. A.

    2004-12-01

    Insects in aggregate are the greatest cause of forest disturbance. Outbreaks of both native and exotic insects can be spectacular events in both their intensity and spatial extent. In the case of native species, forest ecosystems have co-evolved (or at least co-adapted) in ways that incorporate these disturbances into the normal cycle of forest maturation and renewal. The time frame of response to changing climate, however, is much shorter for insects (typically one year) than for their host forests (decades or longer). As a result, outbreaks of forest insects, particularly bark beetles, are occurring at unprecedented levels throughout western North America, resulting in the loss of biodiversity and potentially entire ecosystems. In this talk, I will describe one such ecosystem, the whitebark pine association at high elevations in the north-central Rocky Mountains of the United States. White bark pines are keystone species, which in consort with Clark's nutcracker, build entire ecosystems at high elevations. These ecosystems provide valuable ecological services, including the distribution and abundance of water resources. I will briefly describe the keystone nature of whitebark pine and the historic role of mountain pine beetle disturbance in these ecosystems. The mountain pine beetle is the most important outbreak insect in forests of the western United States. Although capable of spectacular outbreak events, in historic climate regimes, outbreak populations were largely restricted to lower elevation pines; for example, lodgepole and ponderosa pines. The recent series of unusually warm years, however, has allowed this insect to expand its range into high elevation, whitebark pine ecosystems with devastating consequences. The aspects of mountain pine beetle thermal ecology that has allowed it to capitalize so effectively on a warming climate will be discussed. A model that incorporates critical thermal attributes of the mountain pine beetle's life cycle was

  3. Split-belt Treadmill Walking Alters Lower Extremity Frontal Plane Mechanics.

    PubMed

    Roper, Jaimie A; Roemmich, Ryan T; Tillman, Mark D; Terza, Matthew J; Hass, Chris J

    2017-01-13

    Interventions that manipulate gait speed may also affect the control of frontal plane mechanics. Expanding the current knowledge of frontal plane adaptations during split-belt treadmill walking could advance our understanding of the influence of asymmetries in gait speed on frontal plane mechanics and provide insight into the breadth of adaptations required by split-belt walking. Thirteen young, healthy participants, free from lower extremity injury walked on a split-belt treadmill with belts moving simultaneously at different speeds. We examined frontal plane mechanics of the ankle, knee, and hip joints during split-belt walking, as well as medio-lateral ground reaction forces (ML-GRF). We did not observe alterations in the frontal mechanics produced during early or late adaptation of split-belt walking when compared to conditions where the belts moved together. We did observe that ML-GRF and hip moment impulse of the fast limb increased over time with adaptation to split-belt walking. These results suggest this modality may provide a unique therapy for individuals with gait pathologies, impairments, or compensation(s).

  4. Temporal Fluctuations in Weather and Climate Extremes That Cause Economic and Human Health Impacts: A Review.

    NASA Astrophysics Data System (ADS)

    Kunkel, Kenneth E.; Pielke, Roger A., Jr.; Changnon, Stanley A.

    1999-06-01

    This paper reviews recent work on trends during this century in societal impacts (direct economic losses and fatalities) in the United States from extreme weather conditions and compares those with trends of associated atmospheric phenomena. Most measures of the economic impacts of weather and climate extremes over the past several decades reveal increasing losses. But trends in most related weather and climate extremes do not show comparable increases with time. This suggests that increasing losses are primarily due to increasing vulnerability arising from a variety of societal changes, including a growing population in higher risk coastal areas and large cities, more property subject to damage, and lifestyle and demographic changes subjecting lives and property to greater exposure.Flood damages and fatalities have generally increased in the last 25 years. While some have speculated that this may be due in part to a corresponding increase in the frequency of heavy rain events, the climate contribution to the observed impacts trends remains to be quantified. There has been a steady increase in hurricane losses. However, when changes in population, inflation, and wealth are considered, there is instead a downward trend. This is consistent with observations of trends in hurricane frequency and intensity. Increasing property losses due to thunderstorm-related phenomena (winds, hail, tornadoes) are explained entirely by changes in societal factors, consistent with the observed trends in the thunderstorm phenomena. Winter storm damages have increased in the last 10-15 years and this appears to be partially due to increases in the frequency of intense nor'easters. There is no evidence of changes in drought-related losses (although data are poor) and no apparent trend in climatic drought frequency. There is also no evidence of changes in the frequency of intense heat or cold waves.

  5. The Last Transition From Extreme Glacial to Extreme Interglacial Climate in NW Patagonia: Regional and Global Implications

    NASA Astrophysics Data System (ADS)

    Moreno, P. I.

    2004-12-01

    The study of interhemispheric climate linkages during and since the last ice age has benefited from the recent development of high-resolution ice core and marine records from the mid- and high latitudes of the Southern Hemisphere. Few paleoclimate records from terrestrial environments in these regions, however, have the temporal continuity, time resolution, and adequate chronologic control to allow a detailed examination of the timing, rates, direction, and phasing of climate change at millennial timescales. Stratigraphic, palynologic, and charcoal records from small, high-sediment accumulating lakes in the Chilean Lake District (41ºS) afford useful data for examining the interval between the LGM to the early Holocene (25-8 ka, ka=cal kyr BP). Millennial-scale changes in glacier extent and vegetation patterns within this interval match key events both in the Northern Hemisphere and Antarctic records, in particular the EPICA Dome C data, highlighting the role of an atmosphere-based conduit for the global propagation of abrupt climate changes. The onset of the last termination in NW Patagonia is marked by glacial collapse and the expansion of rainforest trees at 17.7 ka. An apparent antiphase relationship among the polar hemispheres between 17.7-14.7 ka, might reflect the hemispheric-scale effects of a quasi-total shut down of Atlantic Meridional Overturning circulation driven by Heinrich event 1. Extreme glacial and interglacial modes in the position/strength of the westerlies at multi-millennial timescales in the southern westerlies accompany important shifts in the abundance and composition of rainforest communities during the last termination and the early Holocene. At millennial timescales, this interval is characterised by successive warming pulses interrupted by a generalized reversal in trend with cooling events starting at 14.7 and 13.4 ka. Fires between 12.9-11.5 ka, i.e. Younger Dryas Chron (YDC), led to the expansion of opportunistic rainforest species

  6. Analysis of Extreme Heat in Historical and Projected Climate Simulations for Regional Climate Planning Purposes in the U.S.

    NASA Astrophysics Data System (ADS)

    Geil, K.; Zeng, X.; McMahan, B.; Ferguson, D. B.

    2015-12-01

    The U.S. National Climate Assessment (NCA) states that global climate models predict more extreme temperatures and more frequent, intense, and longer heat waves on a regional basis as global temperatures rise throughout the 21st century, but a thorough test of whether these models can simulate observed heat metrics and trends over the historical period was not included in the assessment. Understanding the capabilities of climate models over the historical period is crucial to assessing our confidence in their predictive ability at regional scales. Our work fills this research gap by evaluating the performance of Coupled Model Intercomparison Phase 5 (CMIP5) models as compared to observational data using multiple heat metrics. Our metrics are targeted for the southwest United States, but our regional analysis covers the entire continental U.S. and Alaska using 7 of the regions delineated by the NCA. The heat metrics include heat wave and cold wave frequency, intensity, and duration, overnight low temperatures, onset and length of the hot season, and human heat stress. For the best performing models, we compute the same heat metrics for the RCP scenarios. In addition to presenting the results of our CMIP5 historical and RCP analyses, we also describe how our results may be applied to the benefit of our community in Southern Arizona as a case study. Our research will be used by NOAA's Climate Assessment for the Southwest (CLIMAS) and by an interdisciplinary collaborative team of researchers from the University of Arizona working with an electric utility to integrate climate information into their strategic planning.

  7. Climate change and the effects of temperature extremes on Australian flying-foxes.

    PubMed

    Welbergen, Justin A; Klose, Stefan M; Markus, Nicola; Eby, Peggy

    2008-02-22

    Little is known about the effects of temperature extremes on natural systems. This is of increasing concern now that climate models predict dramatic increases in the intensity, duration and frequency of such extremes. Here we examine the effects of temperature extremes on behaviour and demography of vulnerable wild flying-foxes (Pteropus spp.). On 12 January 2002 in New South Wales, Australia, temperatures exceeding 42 degrees C killed over 3500 individuals in nine mixed-species colonies. In one colony, we recorded a predictable sequence of thermoregulatory behaviours (wing-fanning, shade-seeking, panting and saliva-spreading, respectively) and witnessed how 5-6% of bats died from hyperthermia. Mortality was greater among the tropical black flying-fox, Pteropus alecto (10-13%) than the temperate grey-headed flying-fox, Pteropus poliocephalus (less than 1%), and young and adult females were more affected than adult males (young, 23-49%; females, 10-15%; males, less than 3%). Since 1994, over 30000 flying-foxes (including at least 24500 P. poliocephalus) were killed during 19 similar events. Although P. alecto was relatively less affected, it is currently expanding its range into the more variable temperature envelope of P. poliocephalus, which increases the likelihood of die-offs occurring in this species. Temperature extremes are important additional threats to Australian flying-foxes and the ecosystem services they provide, and we recommend close monitoring of colonies where temperatures exceeding 42.0 degrees C are predicted. The effects of temperature extremes on flying-foxes highlight the complex implications of climate change for behaviour, demography and species survival.

  8. Estimating the Effect of Climate Change on Crop Yields and Farmland Values: The Importance of Extreme Temperatures

    EPA Pesticide Factsheets

    This is a presentation titled Estimating the Effect of Climate Change on Crop Yields and Farmland Values: The Importance of Extreme Temperatures that was given for the National Center for Environmental Economics

  9. Simulation of Extreme Surface Winds by Regional Climate Models in the NARCCAP Archive

    NASA Astrophysics Data System (ADS)

    Hatteberg, R.; Takle, E. S.

    2011-12-01

    Surface winds play a significant role in many natural processes as well as providing a very important ecological service for many human activities. Surface winds ventilate pollutants and heat from our cities, contribute to pollination for our crops, and regulate the fluxes of heat, moisture, and carbon dioxide from the earth's surface. Many environmental models such as biogeochemical models, crop models, lake models, pollutant transport models, etc., use surface winds as a key variable. Studies of the impacts of climate change and climate variability on a wide range of natural systems and coupled human-natural systems frequently need information on how surface wind speeds will change as greenhouse gas concentrations in the earth's atmosphere change. We have studied the characteristics of extreme winds - both high winds and low winds - created by regional climate models (RCMs) in the NARCCAP archives. We evaluated the capabilities of five RCMs forced by NCEP reanalysis data as well as global climate model (GCM) data for contemporary and future scenario climates to capture the observed statistical distribution of surface winds, both high-wind events and low-wind conditions. Our domain is limited to the Midwest (37°N to 49°N, -82°W to -101°W) with the Great Lakes masked out, which eliminates orographic effects that may contribute to regional circulations. The majority of this study focuses on the warm seasonal in order to examine derechos on the extreme high end and air pollution and plant processes on the low wind speed end. To examine extreme high winds we focus on derechos, which are long-lasting convectively driven extreme wind events that frequently leave a swath of damage extending across multiple states. These events are unusual in that, despite their relatively small spatial scale, they can persist for hours or even days, drawing energy from well-organized larger mesoscale or synoptic scale processes. We examine the ability of NARCCAP RCMs to reproduce

  10. Modeling extreme precipitation events—a climate change simulation for Europe

    NASA Astrophysics Data System (ADS)

    Semmler, Tido; Jacob, Daniela

    2004-12-01

    The regional climate model REMO 5.1 has been applied to the European region to investigate the impact of future climate changes on the frequency and intensity of extreme precipitation events. For today's climate, not only the climatological mean precipitation, but also the 10- and 20-year return levels of daily precipitation are captured fairly well by the use of the following model configuration: REMO 5.1 at 0.5° resolution is driven by an atmospheric global climate model HadAM3H control simulation at the lateral boundaries. Sea surface temperature (SST) and sea ice distribution (SID) are prescribed from the observed data set HadISST1. In mountainous regions, the differences between simulated and observed return levels are larger than in flat regions. Here, a higher horizontal resolution could probably further improve the results. The regional scenario simulation has been carried out with REMO 5.1 driven by a HadAM3H scenario simulation. This simulation is consistent with the SRES-A2 emission scenario and uses changes in sea surface temperature and sea ice distribution simulated by the coupled global climate model HadCM3. Large increases of the precipitation return levels for the 10- and 20-year return periods are simulated in 2070-2100 compared to 1960-1990. Nearly all regions are affected by higher return levels, even if the mean precipitation decreases in some regions. In most regions, the return levels are increasing up to 50%. In the Baltic Sea region, there are increases by more than 100%, which, however, can be partly related to a very strong increase in the sea surface temperature in the coupled global climate model simulation. This increase is stronger compared to other global climate model simulations and very pronounced in the Baltic Sea.

  11. Estimation of the impact of climate change-induced extreme precipitation events on floods

    NASA Astrophysics Data System (ADS)

    Hlavčová, Kamila; Lapin, Milan; Valent, Peter; Szolgay, Ján; Kohnová, Silvia; Rončák, Peter

    2015-09-01

    In order to estimate possible changes in the flood regime in the mountainous regions of Slovakia, a simple physically-based concept for climate change-induced changes in extreme 5-day precipitation totals is proposed in the paper. It utilizes regionally downscaled scenarios of the long-term monthly means of the air temperature, specific air humidity and precipitation projected for Central Slovakia by two regional (RCM) and two global circulation models (GCM). A simplified physically-based model for the calculation of short-term precipitation totals over the course of changing air temperatures, which is used to drive a conceptual rainfall-runoff model, was proposed. In the paper a case study of this approach in the upper Hron river basin in Central Slovakia is presented. From the 1981-2010 period, 20 events of the basin's most extreme average of 5-day precipitation totals were selected. Only events with continual precipitation during 5 days were considered. These 5-day precipitation totals were modified according to the RCM and GCM-based scenarios for the future time horizons of 2025, 2050 and 2075. For modelling runoff under changed 5-day precipitation totals, a conceptual rainfall-runoff model developed at the Slovak University of Technology was used. Changes in extreme mean daily discharges due to climate change were compared with the original flood events and discussed.

  12. Comparing regional precipitation and temperature extremes in climate model and reanalysis products.

    PubMed

    Angélil, Oliver; Perkins-Kirkpatrick, Sarah; Alexander, Lisa V; Stone, Dáithí; Donat, Markus G; Wehner, Michael; Shiogama, Hideo; Ciavarella, Andrew; Christidis, Nikolaos

    2016-09-01

    A growing field of research aims to characterise the contribution of anthropogenic emissions to the likelihood of extreme weather and climate events. These analyses can be sensitive to the shapes of the tails of simulated distributions. If tails are found to be unrealistically short or long, the anthropogenic signal emerges more or less clearly, respectively, from the noise of possible weather. Here we compare the chance of daily land-surface precipitation and near-surface temperature extremes generated by three Atmospheric Global Climate Models typically used for event attribution, with distributions from six reanalysis products. The likelihoods of extremes are compared for area-averages over grid cell and regional sized spatial domains. Results suggest a bias favouring overly strong attribution estimates for hot and cold events over many regions of Africa and Australia, and a bias favouring overly weak attribution estimates over regions of North America and Asia. For rainfall, results are more sensitive to geographic location. Although the three models show similar results over many regions, they do disagree over others. Equally, results highlight the discrepancy amongst reanalyses products. This emphasises the importance of using multiple reanalysis and/or observation products, as well as multiple models in event attribution studies.

  13. Release of Mercury Mine Tailings from Mine Impacted Watersheds by Extreme Events Resulting from Climate Change

    NASA Astrophysics Data System (ADS)

    Rytuba, J. J.

    2015-12-01

    An increase in intensity and frequency of extreme events resulting from climate change is expected to result in extreme precipitation events on both regional and local scales. Extreme precipitation events have the potential to mobilize large volumes of mercury (Hg) mine tailings in watersheds where tailings reside in the floodplain downstream from historic Hg mines. The California Hg mineral belt produced one third of the worlds Hg from over 100 mines from the 1850's to 1972. In the absence of environmental regulations, tailings were disposed of into streams adjacent to the mines in order to have them transported from the mine site during storm events. Thus most of the tailings no longer reside at the mine site. Addition of tailings to the streams resulted in stream aggradation, increased over-bank flow, and deposition of tailings in the floodplain for up to 25 kms downstream from the mines. After cessation of mining, the decrease in tailings entering the streams resulted in degradation, incision of the streams into the floodplain, and inability of the streams to access the floodplain. Thus Hg tailings have remained stored in the floodplain since cessation of mining. Hg phases in these tailings consist of cinnabar, metacinnabar and montroydite based on EXAFS analysis. Size analysis indicates that Hg phases are fine grained, less than 1 um. The last regional scale extreme precipitation events to effect the entire area of the California Hg mineral belt were the ARkStorm events of 1861-1862 that occurred prior to large scale Hg mining. Extreme regional ARkStorm precipitation events as well as local summer storms, such as the July 2006 flood in the Clear Creek Hg mining district, are expected to increase in frequency and have the potential to remobilize the large volume of tailings stored in floodplain deposits. Although Hg mine remediation has decreased Hg release from mine sites in a period of benign climate, no remediation efforts have addressed the large source of

  14. Vulnerability to extreme heat and climate change: is ethnicity a factor?

    PubMed

    Hansen, Alana; Bi, Linda; Saniotis, Arthur; Nitschke, Monika

    2013-01-01

    Background With a warming climate, it is important to identify sub-populations at risk of harm during extreme heat. Several international studies have reported that individuals from ethnic minorities are at increased risk of heat-related illness, for reasons that are not often discussed. Objective The aim of this article is to investigate the underpinning reasons as to why ethnicity may be associated with susceptibility to extreme heat, and how this may be relevant to Australia's population. Design Drawing upon literary sources, the authors provide commentary on this important, yet poorly understood area of heat research. Results Social and economic disparities, living conditions, language barriers, and occupational exposure are among the many factors contributing to heat-susceptibility among minority ethnic groups in the United States. However, there is a knowledge gap about socio-cultural influences on vulnerability in other countries. Conclusion More research needs to be undertaken to determine the effects of heat on tourists, migrants, and refugees who are confronted with a different climatic environment. Thorough epidemiological investigations of the association between ethnicity and heat-related health outcomes are required, and this could be assisted with better reporting of nationality data in health statistics. Climate change adaptation strategies in Australia and elsewhere need to be ethnically inclusive and cognisant of an upward trend in the proportion of the population who are migrants and refugees.

  15. Preface: Monitoring and modelling to guide coastal adaptation to extreme storm events in a changing climate

    NASA Astrophysics Data System (ADS)

    Brown, J. M.; Ciavola, P.; Masselink, G.; McCall, R.; Plater, A. J.

    2016-02-01

    Storms across the globe and their associated consequences in coastal zones (flooding and erosion), combined with the long-term geomorphic evolution of our coastlines, are a threat to life and assets, both socioeconomic and environmental. In a changing climate, with a rising global sea level, potentially changing patterns in storm tracks and storminess, and rising population density and pressures on the coastal zone, the future risk of coastal storm impacts is likely to increase. Coastal managers and policy makers therefore need to make effective and timely decisions on the use of resources for the immediate and longer Research focused on "monitoring and modelling to guide coastal adaptation to extreme storm events in a changing climate" is becoming more common; its goal is to provide science-based decision support for effective adaptation to the consequences of storm impacts, both now and under future climate scenarios at the coast. The growing transfer of information between the science community and end-users is enabling leading research to have a greater impact on the socioeconomic resilience of coastal communities. This special issue covers recent research activities relating to coastal hazard mapping in response to extreme events, economic impacts of long-term change, coastal processes influencing management decisions and the development of online decision support tools.

  16. Attributing regional effects of the 2014 Jordanian extreme drought to external climate drivers

    NASA Astrophysics Data System (ADS)

    Bergaoui, Karim; Mitchell, Dann; Zaaboul, Rashyd; Otto, Friederike; McDonnell, Rachael; Dadson, Simon; Allen, Myles

    2015-04-01

    Throughout 2014, the regions of Jordan, Israel, Lebanon and Syria have experienced a persistent draught with clear impacts on the local populations. In this study we perform an extreme event attribution analysis of how such a draught has changed under climate change, with a specific focus on the flow rate of the Upper Jordan river and the water level of Lake Tiberious (AKA the Sea of Galilee). Both of which hold major societal, political and religious importance. To perform the analysis we make use of distributed computing power to run thousands of modelled years of 2014 with slightly different initial conditions. We use an atmosphere only model (HadAM3p) with a nested 50 km regional model covering Africa and the Middle East. The 50 km model atmospheric variables will be used directly to force offline our 1 km LIS surface model. Two separate experiments and simulations are performed, 1. for all known climate forcings that are present in 2014, and 2. for a naturalised 2014 scenario where we assume humans never impacted the climate. We perform sensitivity analyses on the observed precipitation over the regions of interest, and determine that the TRMM data is in good agreement with station data obtained from the Jordanian Ministry of Water. Using a combination of the TRMM and model data we are able to make clear statements on the attribution of a 2014-like extreme draught event to human causal factors.

  17. Assessment of extreme precipitation events over Amazon simulated by global climate models from HIGEM family

    NASA Astrophysics Data System (ADS)

    Custodio, M. D. S.; Ambrizzi, T.; Da Rocha, R.

    2015-12-01

    The increased horizontal resolution of climate models aims to improve the simulations accuracy and to understand the non-linear processes during interactions between different spatial scales within the climate system. Up to this moment, these interactions did not have a good representation on low horizontal resolution GCMs. The variations of extreme climatic events had been described and analyzed in the scientific literature. In a scenario of global warming it is necessary understanding and explaining extreme events and to know if global models may represent these events. The purpose of this study was to understand the impact of the horizontal resolution in high resolution coupled and atmospheric global models of HiGEM project in simulating atmospheric patterns and processes of interaction between spatial scales. Moreover, evaluate the performance of coupled and uncoupled versions of the High-Resolution Global Environmental Model in capturing the signal of interannual and intraseasonal variability of precipitation over Amazon region. The results indicated that the grid refinement and ocean-atmosphere coupling contributes to a better representation of seasonal patterns, both precipitation and temperature, on the Amazon region. Besides, the climatic models analyzed represent better than other models (regional and global) the climatic characteristics of this region. This indicates a breakthrough in the development of high resolution climate models. Both coupled and uncoupled models capture the observed signal of the ENSO and MJO oscillations, although with reversed phase in some cases. The interannual variability analysis showed that coupled simulations intensify the impact of the ENSO in the Amazon. In the intraseasonal scale, although the simulations intensify this signal, the coupled models present larger similarities with observations than the atmospheric models for the extremes of precipitation. The simulation of ENSO in GCMs can be attributed to their high

  18. A Markov chain method to determine the dynamic properties of compound extremes and their near future climate change signal

    NASA Astrophysics Data System (ADS)

    Sedlmeier, Katrin; Mieruch, Sebastian; Schädler, Gerd

    2014-05-01

    Compound extremes are receiving more and more attention in the scientific world because of their great impact on society. It is therefore of great interest how well state-of-the-art regional climate models can represent the dynamics of multivariate extremes. Furthermore, the near future climate change signal of compound extremes is interesting especially on the regional scale because high resolution information is needed for impact studies and mitigation and adaptation strategies. We use a method based on Markov Chains to assess these two questions. It is based on the representation of multivariate climate anomalies by first order Markov Chains. We partition our dataset into extreme and non-extreme regimes and reduce the multivariate dataset to a univariate time series which can then be described as a discrete stochastic process, a Markov Chain. From the transition matrix several descriptors such as persistence, recurrence time and entropy are derived which characterize the dynamic properties of the multivariate system. By comparing these descriptors for model and observation data, the representation of the dynamics of the climate system by different models is evaluated. Near future shifts or changes of the dynamics of compound extremes are detected by using regional climate projections and comparing the descriptors for different time periods. In order to obtain reliable estimates of a climate change signal, we use an ensemble of simulations to assess the uncertainty which arise in climate projections. Our work is based on an ensemble of high resolution (7 km) regional climate simulations for Central Europe with the COSMO-CLM regional climate model using different global driving data. The time periods considered are a control period (1971-200) and the near future (2021-2050) and running windows within these time periods. For comparison, E-Obs and HYRAS gridded observational datasets are used. The presentation will mainly focus on bivariate temperature and

  19. Climate change alters ecological strategies of soil bacteria.

    PubMed

    Evans, Sarah E; Wallenstein, Matthew D

    2014-02-01

    The timing and magnitude of rainfall events are expected to change in future decades, resulting in longer drought periods and larger rainfall events. Although microbial community composition and function are both sensitive to changes in rainfall, it is unclear whether this is because taxa adopt strategies that maximise fitness under new regimes. We assessed whether bacteria exhibited phylogenetically conserved ecological strategies in response to drying-rewetting, and whether these strategies were altered by historical exposure to experimentally intensified rainfall patterns. By clustering relative abundance patterns, we identified three discrete ecological strategies and found that tolerance to drying-rewetting increased with exposure to intensified rainfall patterns. Changes in strategy were primarily due to changes in community composition, but also to strategy shifts within taxa. These moisture regime-selected ecological strategies may be predictable from disturbance history, and are likely to be linked to traits that influence the functional potential of microbial communities.

  20. Recent advances on reconstruction of climate and extreme events in China for the past 2000 year

    NASA Astrophysics Data System (ADS)

    Zheng, Jingyun; Hao, Zhixin; Ge, Quansheng; Liu, Yang

    2016-04-01

    The study of regional climate changes for past 2000 year could present spatial pattern of climate variation and various historical analogues for the sensitivity and operation of the climate system (e.g., the modulations of internal variability, feedbacks and teleconnections, abrupt changes and regional extreme events, etc.) from inter-annual to centennial scales and provide the knowledge to predict and project climate in the near future. China is distinguished by a prominent monsoon climate in east, continental arid climate in northwest and high land cold climate in Qinghai-Tibetan Plateau located at southwest. The long history of civilization and the variety of climate in China provides an abundant and well-dated documentary records and a wide range of natural archives (e.g., tree-ring, ice core, stalagmite, varved lake sediment, etc.) for high-resolution paleoclimate reconstruction. This paper presented a review of recent advances on reconstruction of climate and extreme events in China for the past 2000 years. In recent 10 years, there were many new high-resolution paleoclimatic reconstructions reported in China, e.g., the annual and decadal resolution series of temperature and precipitation in eastern China derived from historical documents, in western China derived from tree-ring and other natural archives. These new reconstructions provided more proxies and better spatial coverage to understand the characteristics of climate change over China and the uncertainty of regional reconstructions, as well as to reconstruct the high-resolution temperature series and the spatial pattern of precipitation change for whole China in the past millenniums by synthesizing the multi-proxy together. The updated results show that, in China, the warm intervals for the past 2000 years were in AD 1-200, AD 551-760, AD 951-1320, and after AD 1921; as well as the cold intervals were in AD 201-350, AD 441-530, AD 781-950, and AD 1321-1920. The extreme cold winters occurred in periods

  1. Effects of Climate Extremes on the Groundwater Recharge of the Ogallala Aquifer, USA 1950-1999

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Felzer, B. S.

    2014-12-01

    Climate extremes have and will continue to cause significant variations of local and regional groundwater hydrology. It is important to understand the effects of climate extremes on groundwater recharge to properly manage water resources. Using the Soil Water Balance Model (SWB) and Maurer's 1/8-degree daily climatology datasets, this study investigates the dynamics of groundwater recharge of the Ogallala Aquifer in the second half of the 20th century relative to trends of two temperature and six precipitation extreme indices, including consecutive dry days (CDD), consecutive wet days (CWD), heavy precipitation days (ND95), annual total precipitation from heavy precipitation events (TP95), annual total precipitation from wet days (PRCPTOT), annual maximum 5-day precipitation (RX5), annual hot days (TX90) and annual hot nights (TN90). The results show that the highest recharge was about 110 mm yr-1 in eastern Nebraska, followed by central Nebraska and western Kansas, with recharge values of 45 mm yr-1. The range of recharge for the rest of the aquifer area was 0-20 mm yr-1. Temporally, the overall groundwater recharge significantly (p<0.05) increased throughout the Ogallala Aquifer. Spatially, groundwater recharge significantly increased in central Nebraska, eastern Wyoming and parts of northern Texas, while it decreased from southwestern Nebraska to the northern boundary of Texas. The study area experienced enhanced temperature and precipitation extremes over the 50 year period. The changing trends of hot temperatures were not spatially uniform: increasing hot days occurred in the northwestern Ogallala, parts of the central Ogallala, and the entire southern Ogallala; while decreasing hot nights occurred in the northeastern, central, and southern Ogallala. Increases in trends of precipitation extremes were more spatially uniform. Based on spatial non-parameter correlation analysis, increasing precipitation extremes may decrease groundwater recharge in regions with

  2. Climate Products and Services to Meet the Challenges of Extreme Events

    NASA Astrophysics Data System (ADS)

    McCalla, M. R.

    2008-12-01

    The 2002 Office of the Federal Coordinator for Meteorological Services and Supporting Research (OFCM1)-sponsored report, Weather Information for Surface Transportation: National Needs Assessment Report, addressed meteorological needs for six core modes of surface transportation: roadway, railway, transit, marine transportation/operations, pipeline, and airport ground operations. The report's goal was to articulate the weather information needs and attendant surface transportation weather products and services for those entities that use, operate, and manage America's surface transportation infrastructure. The report documented weather thresholds and associated impacts which are critical for decision-making in surface transportation. More recently, the 2008 Climate Change Science Program's (CCSP) Synthesis and Assessment Product (SAP) 4.7 entitled, Impacts of Climate Change and Variability on Transportation Systems and Infrastructure: Gulf Coast Study, Phase I, included many of the impacts from the OFCM- sponsored report in Table 1.1 of this SAP.2 The Intergovernmental Panel on Climate Change (IPCC) reported that since 1950, there has been an increase in the number of heat waves, heavy precipitation events, and areas of drought. Moreover, the IPCC indicated that greater wind speeds could accompany more severe tropical cyclones.3 Taken together, the OFCM, CCSP, and IPCC reports indicate not only the significance of extreme events, but also the potential increasing significance of many of the weather thresholds and associated impacts which are critical for decision-making in surface transportation. Accordingly, there is a real and urgent need to understand what climate products and services are available now to address the weather thresholds within the surface transportation arena. It is equally urgent to understand what new climate products and services are needed to address these weather thresholds, and articulate what can be done to fill the gap between the

  3. Air pollution may alter efforts to mitigate climate change

    NASA Astrophysics Data System (ADS)

    Yassaa, Noureddine

    2016-02-01

    Renewable energy, considered in the past as a mitigation option to climate change by reducing carbon emission, is now becoming a source of energy security and competing fossil fuels in many areas of the world. According to recent reports (e.g., IEA, IRENA, REN21), renewable energy has reached in 2014 a historical record of power generation capacity. With 1712 GW installed capacity in 2014, renewable energy represents 27.7% of the world's power generating capacity. Solar photovoltaic (PV) energy, conversion of solar light to electricity through solar panels, has increased to reach 177 GW mostly due to the political engagement for the deployment of renewable through targeted programs and the decrease of PV panels prize in the market (roughly 80% decrease since 2008 according to IRENA's report). Concentrated Solar Power (CSP), reaching a total capacity of 4.4 GW in 2014 (REN21 Report), is also demonstrating a clear growth and progresses have been made with regards to the efficiency, the storage capacity and the cost. In order to reduce the energy consumption and carbon emissions, water solar heaters are being installed in the rooftop of households and a total capacity of 406 GW thermal was recorded in 2014 (REN21 Report).

  4. An Assessment of Direct and Indirect Economic Losses of Climatic Extreme Events

    NASA Astrophysics Data System (ADS)

    Otto, C.; Willner, S. N.; Wenz, L.; Levermann, A.

    2015-12-01

    Risk of extreme weather events like storms, heat extremes, and floods has already risen due to anthropogenic climate change and is likely to increase further under future global warming. Additionally, the structure of the global economy has changed importantly in the last decades. In the process of globalization, local economies have become more and more interwoven forming a complex network. Together with a trend towards lean production, this has resulted in a strong dependency of local manufacturers on global supply and value added chains, which may render the economic network more vulnerable to climatic extremes; outages of local manufacturers trigger indirect losses, which spread along supply chains and can even outstrip direct losses. Accordingly, in a comprehensive climate risk assessment these inter-linkages should be considered. Here, we present acclimate, an agent based dynamic damage propagation model. Its agents are production and consumption sites, which are interlinked by economic flows accounting for the complexity as well as the heterogeneity of the global supply network. Assessing the economic response on the timescale of the adverse event, the model permits to study temporal and spatial evolution of indirect production losses during the disaster and in the subsequent recovery phase of the economy. In this study, we focus on the dynamic economic resilience defined here as the ratio of direct to total losses. This implies that the resilience of the system under consideration is low if the high indirect losses are high. We find and assess a nonlinear dependence of the resilience on the disaster size. Further, we analyze the influence of the network structure upon resilience and discuss the potential of warehousing as an adaptation option.

  5. Geomorphological records of extreme floods and their relationship to decadal-scale climate change

    NASA Astrophysics Data System (ADS)

    Foulds, S. A.; Griffiths, H. M.; Macklin, M. G.; Brewer, P. A.

    2014-07-01

    Extreme rainfall and flood events in steep upland catchments leave geomorphological traces of their occurrence in the form of boulder berms, debris cones, and alluvial fans. Constraining the age of these features is critical to understanding (i) landscape evolution in response to past, present, and future climate changes; and (ii) the magnitude-frequency of extreme, ungauged floods in small upland catchments. This research focuses on the Cambrian Mountains of Wales, UK, where lichenometric dating of geomorphological features and palaeohydrological reconstructions is combined with climatological data and documentary flood records. Our new data from Wales highlight a distinct flood-rich period between 1900 and 1960, similar to many other UK lichen-dated records. However, this study sheds new light on the underlying climatic controls on upland flooding in small catchments. Although floods can occur in any season, their timing is best explained by the Summer North Atlantic Oscillation (SNAO) and shifts between negative (wetter than average conditions with regular cyclonic flow and flooding) and positive phases (drier than average conditions with less frequent cyclonic flow and flooding), which vary from individual summers to decadal and multidecadal periods. Recent wet summer weather, flooding, and boulder-berm deposition in the UK (2007-2012) are related to a pronounced negative phase shift of the SNAO. There is also increasing evidence that recent summer weather extremes in the mid-latitudes may be related to Arctic amplification and rapid sea ice loss. If this is the case, continuing and future climate change is likely to mean that (i) unusual weather patterns become more frequent; and (ii) upland UK catchments will experience heightened flood risk and significant geomorphological changes.

  6. Changes in US extreme sea levels and the role of large scale climate variations

    NASA Astrophysics Data System (ADS)

    Wahl, T.; Chambers, D. P.

    2015-12-01

    We analyze a set of 20 tide gauge records covering the contiguous United States (US) coastline and the period from 1929 to 2013 to identify long-term trends and multi-decadal variations in extreme sea levels (ESLs) relative to changes in mean sea level (MSL). Significant but small long-term trends in ESLs above/below MSL are found at individual sites along most coastline stretches, but are mostly confined to the southeast coast and the winter season when storm surges are primarily driven by extra-tropical cyclones. We identify six regions with broadly coherent and considerable multi-decadal ESL variations unrelated to MSL changes. Using a quasi-non-stationary extreme value analysis approach we show that the latter would have caused variations in design relevant return water levels (RWLs; 50 to 200 year return periods) ranging from ~10 cm to as much as 110 cm across the six regions. To explore the origin of these temporal changes and the role of large-scale climate variability we develop different sets of simple and multiple linear regression models with RWLs as dependent variables and climate indices, or tailored (toward the goal of predicting multi-decadal RWL changes) versions of them, and wind stress curl as independent predictors. The models, after being tested for spatial and temporal stability, explain up to 97% of the observed variability at individual sites and almost 80% on average. Using the model predictions as covariates for the quasi-non-stationary extreme value analysis also significantly reduces the range of change in the 100-year RWLs over time, turning a non-stationary process into a stationary one. This highlights that the models - when used with regional and global climate model output of the predictors - should also be capable of projecting future RWL changes to be used by decision makers for improved flood preparedness and long-term resiliency.

  7. Common behaviors alterations after extremely low-frequency electromagnetic field exposure in rat animal model.

    PubMed

    Mahdavi, Seyed Mohammad; Sahraei, Hedayat; Rezaei-Tavirani, Mostafa; Najafi Abedi, Akram

    2016-01-01

    Naturally, the presence of electromagnetic waves in our living environment affects all components of organisms, particularly humans and animals, as the large part of their body consists of water. In the present study, we tried to investigate the relation between exposure to the extremely low-frequency electromagnetic field (ELF-EMF) and common behaviors such as body weight, food and water intake, anorexia (poor appetite), plasma glucose concentration, movement, rearing and sniffing in rats. For this purpose, rats were exposed to 40  Hz ELF-EMF once a day for 21 days, then at days 1, 3, 7, 14 and 21 after exposure, any changes in the above-mentioned items were assessed in the exposed rats and compared to the non-exposed group as control. Body weight of irradiated rats significantly increased only a week after exposure and decreased after that. No significant change was observed in food and water intake of irradiated rats compared to the control, and the anorexia parameter in the group exposed to ELF-EMF was significantly decreased at one and two weeks after irradiation. A week after exposure, the level of glucose was significantly increased but at other days these changes were not significant. Movements, rearing and sniffing of rats at day 1 after exposure were significantly decreased and other days these changes did not follow any particular pattern. However, the result of this study demonstrated that exposure to ELF-EMF can alter the normal condition of animals and may represent a harmful impact on behavior.

  8. Using a High-Resolution Global Climate Model to Simulate Extreme Extratropical Cyclones

    NASA Astrophysics Data System (ADS)

    Catalano, A. J.; Kapnick, S. B.; Broccoli, A. J.

    2015-12-01

    Extreme coastal storms devastate heavily populated areas around the world. Our understanding of exposure to extreme storms is limited due to the short duration of the observational record, which causes difficulty in assessing their true probability of occurrence. Global climate models provide a means of simulating a much larger sample of extreme events, allowing for better resolution of the tail of the distribution. Both tropical and extratropical cyclones (ETCs) occur over the northwestern Atlantic Ocean, and the risks associated with ETCs can be just as severe as those associated with tropical storms (e.g. high winds, storm surge). Therefore, we examine the ability of a high-resolution coupled atmosphere-ocean general circulation model (GFDL FLOR) to realistically simulate extreme ETCs in the northwestern Atlantic Ocean. We analyze similarities between results from a long (i.e. multi-century) FLOR simulation and several atmospheric reanalysis products. After considering differences in spatial and temporal resolution, results indicate that atmospheric measures of ETC intensity are comparable to those diagnosed from reanalyses. The full 1500-year simulation provides a higher frequency of the strongest intensity measures over the northwestern Atlantic Ocean compared with reanalyses. This illustrates that the larger number of realizations in the simulation provides a better opportunity to sample the tail of the ETC distribution. We further investigate the realism of simulated ETCs by using a tracking algorithm to conduct quantitative comparisons of feature, track, cyclogenesis, and cyclolysis densities of simulated ETC subsamples with storms from recent history (using reanalyses).

  9. Impact of climate extremes on flowering dates of four shrub species

    NASA Astrophysics Data System (ADS)

    Siegmund, Jonatan; Wiedermann, Marc; Donges, Jonathan; Donner, Reik

    2016-04-01

    Ongoing climate change is known to cause an increase in frequency and amplitude of local temperature and precipitation extremes in central Europe. While gradual changes in the climatological conditions are known to strongly influence plant flowering dates, the question arises if and how extremes specifically impact the timing of this important phenological phase. In this study, we systematically quantify simultaneities between meteorological extremes and the timing of flowering of four shrub species across Germany by means of event coincidence analysis, a novel statistical tool that allows assessing whether or not two types of events exhibit similar sequences of occurrences. Additionally we perform a superimposed epoch analysis in order to investigate the impact of different magnitudes of extremes and to assess possible long term influences. Our systematic investigation supports previous findings of experimental studies by highlighting the impact of early spring temperatures on the flowering of wildlife plants. In addition, we find statistically significant indications for some long-term relations reaching back to the previous year.

  10. Will Global Climate Change Alter Fundamental Human Immune Reactivity: Implications for Child Health?

    PubMed

    Swaminathan, Ashwin; Lucas, Robyn M; Harley, David; McMichael, Anthony J

    2014-11-11

    The human immune system is an interface across which many climate change sensitive exposures can affect health outcomes. Gaining an understanding of the range of potential effects that climate change could have on immune function will be of considerable importance, particularly for child health, but has, as yet, received minimal research attention. We postulate several mechanisms whereby climate change sensitive exposures and conditions will subtly impair aspects of the human immune response, thereby altering the distribution of vulnerability within populations-particularly for children-to infection and disease. Key climate change-sensitive pathways include under-nutrition, psychological stress and exposure to ambient ultraviolet radiation, with effects on susceptibility to infection, allergy and autoimmune diseases. Other climate change sensitive exposures may also be important and interact, either additively or synergistically, to alter health risks. Conducting directed research in this area is imperative as the potential public health implications of climate change-induced weakening of the immune system at both individual and population levels are profound. This is particularly relevant for the already vulnerable children of the developing world, who will bear a disproportionate burden of future adverse environmental and geopolitical consequences of climate change.

  11. Will Global Climate Change Alter Fundamental Human Immune Reactivity: Implications for Child Health?

    PubMed Central

    Swaminathan, Ashwin; Lucas, Robyn M.; Harley, David; McMichael, Anthony J.

    2014-01-01

    The human immune system is an interface across which many climate change sensitive exposures can affect health outcomes. Gaining an understanding of the range of potential effects that climate change could have on immune function will be of considerable importance, particularly for child health, but has, as yet, received minimal research attention. We postulate several mechanisms whereby climate change sensitive exposures and conditions will subtly impair aspects of the human immune response, thereby altering the distribution of vulnerability within populations—particularly for children—to infection and disease. Key climate change-sensitive pathways include under-nutrition, psychological stress and exposure to ambient ultraviolet radiation, with effects on susceptibility to infection, allergy and autoimmune diseases. Other climate change sensitive exposures may also be important and interact, either additively or synergistically, to alter health risks. Conducting directed research in this area is imperative as the potential public health implications of climate change-induced weakening of the immune system at both individual and population levels are profound. This is particularly relevant for the already vulnerable children of the developing world, who will bear a disproportionate burden of future adverse environmental and geopolitical consequences of climate change. PMID:27417487

  12. Climate change. Six centuries of variability and extremes in a coupled marine-terrestrial ecosystem.

    PubMed

    Black, Bryan A; Sydeman, William J; Frank, David C; Griffin, Daniel; Stahle, David W; García-Reyes, Marisol; Rykaczewski, Ryan R; Bograd, Steven J; Peterson, William T

    2014-09-19

    Reported trends in the mean and variability of coastal upwelling in eastern boundary currents have raised concerns about the future of these highly productive and biodiverse marine ecosystems. However, the instrumental records on which these estimates are based are insufficiently long to determine whether such trends exceed preindustrial limits. In the California Current, a 576-year reconstruction of climate variables associated with winter upwelling indicates that variability increased over the latter 20th century to levels equaled only twice during the past 600 years. This modern trend in variance may be unique, because it appears to be driven by an unprecedented succession of extreme, downwelling-favorable, winter climate conditions that profoundly reduce productivity for marine predators of commercial and conservation interest.

  13. Effects of climatic extremes on ground water in western Utah, 1930-2005

    USGS Publications Warehouse

    Gates, Joseph S.

    2007-01-01

    Climatic extremes affect ground-water levels and quality in the basins of western Utah. The five droughts since 1930: 1930-36, 1953-65, 1974-78, 1988-93, and 1999-2004—resulted in much-less-than-average recharge, and the pronounced wet period of 1982-86 resulted in much-greater-than-average recharge. Decreased recharge lowered the ground-water level, and increased recharge raised it. These changes were largest in recharge areas—in discharge areas the water level is relatively constant and the primary effect is a change in the discharge area—smaller during a drought and larger during a pronounced wet period.The largest part of water-level change during climatic extremes, however, is not a result of changes in recharge but is related to changes in ground-water withdrawal. During a drought withdrawals increase to satisfy increased demand for ground water, especially in irrigated areas, and water levels decline. During a pronounced wet period, withdrawals decrease because of less demand and water levels rise. The amount of water-level change in representative observation wells in a basin is generally proportional to the basin’s withdrawal. In undeveloped Tule Valley, water-level changes related to climatic extremes during 1981-2005 are less than 2 feet. In Snake Valley (small withdrawal), Tooele Valley (moderate withdrawal), and Pahvant Valley (large withdrawal), water-level declines in representative wells from 1985-86 to 2005 were 13.4, 23.8, and 63.8 feet, respectively.Ground-water quality is also affected by climatic extremes. In six irrigated areas in western Utah, water-level decline during drought has induced flow of water with large dissolved-solids concentrations toward areas of pumping, increasing the dissolved-solids concentrations in water sampled from observation wells. During the 1982-86 wet period, increased recharge resulted in a later decrease in dissolved-solids concentrations in three basins.

  14. Climate engineering of vegetated land for hot extremes mitigation: an ESM sensitivity study

    NASA Astrophysics Data System (ADS)

    Wilhelm, Micah; Davin, Edouard; Seneviratne, Sonia

    2014-05-01

    Mitigation efforts to reduce anthropogenic climate forcing have thus far proven inadequate, as evident from accelerating greenhouse gas emissions. Many subtropical and mid-latitude regions are expected to experience longer and more frequent heat waves and droughts within the next century. This increased occurrence of weather extremes has important implications for human health, mortality and for socio-economic factors including forest fires, water availability and agricultural production. Various solar radiation management (SRM) schemes that attempt to homogeneously counter the anthropogenic forcing have been examined with different Earth System Models (ESM). Land climate engineering schemes have also been investigated which reduces the amount of solar radiation that is absorbed at the surface. However, few studies have investigated their effects on extremes but rather on mean climate response. Here we present the results of a series of climate engineering sensitivity experiments performed with the Community Earth System Model (CESM) version 1.0.2 at 2°-resolution. This configuration entails 5 fully coupled model components responsible for simulating the Earth's atmosphere, land, land-ice, ocean and sea-ice that interact through a central coupler. Historical and RCP8.5 scenarios were performed with transient land-cover changes and prognostic terrestrial Carbon/Nitrogen cycles. Four sets of experiments are performed in which surface albedo over snow-free vegetated grid points is increased by 0.5, 0.10, 0.15 and 0.20. The simulations show a strong preferential cooling of hot extremes throughout the Northern mid-latitudes during boreal summer. A strong linear scaling between the cooling of extremes and additional surface albedo applied to the land model is observed. The strongest preferential cooling is found in southeastern Europe and the central United States, where increases of soil moisture and evaporative fraction are the largest relative to the control

  15. The Challenges from Extreme Climate Events for Sustainable Development in Amazonia: the Acre State Experience

    NASA Astrophysics Data System (ADS)

    Araújo, M. D. N. M.

    2015-12-01

    In the past ten years Acre State, located in Brazil´s southwestern Amazonia, has confronted sequential and severe extreme events in the form of droughts and floods. In particular, the droughts and forest fires of 2005 and 2010, the 2012 flood within Acre, the 2014 flood of the Madeira River which isolated Acre for two months from southern Brazil, and the most severe flooding throughout the state in 2015 shook the resilience of Acrean society. The accumulated costs of these events since 2005 have exceeded 300 million dollars. For the last 17 years, successive state administrations have been implementing a socio-environmental model of development that strives to link sustainable economic production with environmental conservation, particularly for small communities. In this context, extreme climate events have interfered significantly with this model, increasing the risks of failure. The impacts caused by these events on development in the state have been exacerbated by: a) limitations in monitoring; b) extreme events outside of Acre territory (Madeira River Flood) affecting transportation systems; c) absence of reliable information for decision-making; and d) bureaucratic and judicial impediments. Our experience in these events have led to the following needs for scientific input to reduce the risk of disasters: 1) better monitoring and forecasting of deforestation, fires, and hydro-meteorological variables; 2) ways to increase risk perception in communities; 3) approaches to involve more effectively local and regional populations in the response to disasters; 4) more accurate measurements of the economic and social damages caused by these disasters. We must improve adaptation to and mitigation of current and future extreme climate events and implement a robust civil defense, adequate to these new challenges.

  16. Climate Change Impacts on the Upper Indus Hydrology: Sources, Shifts and Extremes.

    PubMed

    Lutz, A F; Immerzeel, W W; Kraaijenbrink, P D A; Shrestha, A B; Bierkens, M F P

    2016-01-01

    The Indus basin heavily depends on its upstream mountainous part for the downstream supply of water while downstream demands are high. Since downstream demands will likely continue to increase, accurate hydrological projections for the future supply are important. We use an ensemble of statistically downscaled CMIP5 General Circulation Model outputs for RCP4.5 and RCP8.5 to force a cryospheric-hydrological model and generate transient hydrological projections for the entire 21st century for the upper Indus basin. Three methodological advances are introduced: (i) A new precipitation dataset that corrects for the underestimation of high-altitude precipitation is used. (ii) The model is calibrated using data on river runoff, snow cover and geodetic glacier mass balance. (iii) An advanced statistical downscaling technique is used that accounts for changes in precipitation extremes. The analysis of the results focuses on changes in sources of runoff, seasonality and hydrological extremes. We conclude that the future of the upper Indus basin's water availability is highly uncertain in the long run, mainly due to the large spread in the future precipitation projections. Despite large uncertainties in the future climate and long-term water availability, basin-wide patterns and trends of seasonal shifts in water availability are consistent across climate change scenarios. Most prominent is the attenuation of the annual hydrograph and shift from summer peak flow towards the other seasons for most ensemble members. In addition there are distinct spatial patterns in the response that relate to monsoon influence and the importance of meltwater. Analysis of future hydrological extremes reveals that increases in intensity and frequency of extreme discharges are very likely for most of the upper Indus basin and most ensemble members.

  17. Climate Change Impacts on the Upper Indus Hydrology: Sources, Shifts and Extremes

    PubMed Central

    Immerzeel, W. W.; Kraaijenbrink, P. D. A.; Shrestha, A. B.; Bierkens, M. F. P.

    2016-01-01

    The Indus basin heavily depends on its upstream mountainous part for the downstream supply of water while downstream demands are high. Since downstream demands will likely continue to increase, accurate hydrological projections for the future supply are important. We use an ensemble of statistically downscaled CMIP5 General Circulation Model outputs for RCP4.5 and RCP8.5 to force a cryospheric-hydrological model and generate transient hydrological projections for the entire 21st century for the upper Indus basin. Three methodological advances are introduced: (i) A new precipitation dataset that corrects for the underestimation of high-altitude precipitation is used. (ii) The model is calibrated using data on river runoff, snow cover and geodetic glacier mass balance. (iii) An advanced statistical downscaling technique is used that accounts for changes in precipitation extremes. The analysis of the results focuses on changes in sources of runoff, seasonality and hydrological extremes. We conclude that the future of the upper Indus basin’s water availability is highly uncertain in the long run, mainly due to the large spread in the future precipitation projections. Despite large uncertainties in the future climate and long-term water availability, basin-wide patterns and trends of seasonal shifts in water availability are consistent across climate change scenarios. Most prominent is the attenuation of the annual hydrograph and shift from summer peak flow towards the other seasons for most ensemble members. In addition there are distinct spatial patterns in the response that relate to monsoon influence and the importance of meltwater. Analysis of future hydrological extremes reveals that increases in intensity and frequency of extreme discharges are very likely for most of the upper Indus basin and most ensemble members. PMID:27828994

  18. The importance of interacting climate modes on Australia’s contribution to global carbon cycle extremes

    PubMed Central

    Cleverly, James; Eamus, Derek; Luo, Qunying; Restrepo Coupe, Natalia; Kljun, Natascha; Ma, Xuanlong; Ewenz, Cacilia; Li, Longhui; Yu, Qiang; Huete, Alfredo

    2016-01-01

    The global carbon cycle is highly sensitive to climate-driven fluctuations of precipitation, especially in the Southern Hemisphere. This was clearly manifested by a 20% increase of the global terrestrial C sink in 2011 during the strongest sustained La Niña since 1917. However, inconsistencies exist between El Niño/La Niña (ENSO) cycles and precipitation in the historical record; for example, significant ENSO–precipitation correlations were present in only 31% of the last 100 years, and often absent in wet years. To resolve these inconsistencies, we used an advanced temporal scaling method for identifying interactions amongst three key climate modes (El Niño, the Indian Ocean dipole, and the southern annular mode). When these climate modes synchronised (1999–2012), drought and extreme precipitation were observed across Australia. The interaction amongst these climate modes, more than the effect of any single mode, was associated with large fluctuations in precipitation and productivity. The long-term exposure of vegetation to this arid environment has favoured a resilient flora capable of large fluctuations in photosynthetic productivity and explains why Australia was a major contributor not only to the 2011 global C sink anomaly but also to global reductions in photosynthetic C uptake during the previous decade of drought. PMID:26976754

  19. Extreme vulnerability of smallholder farmers to agricultural risks and climate change in Madagascar

    PubMed Central

    Harvey, Celia A.; Rakotobe, Zo Lalaina; Rao, Nalini S.; Dave, Radhika; Razafimahatratra, Hery; Rabarijohn, Rivo Hasinandrianina; Rajaofara, Haingo; MacKinnon, James L.

    2014-01-01

    Across the tropics, smallholder farmers already face numerous risks to agricultural production. Climate change is expected to disproportionately affect smallholder farmers and make their livelihoods even more precarious; however, there is limited information on their overall vulnerability and adaptation needs. We conducted surveys of 600 households in Madagascar to characterize the vulnerability of smallholder farmers, identify how farmers cope with risks and explore what strategies are needed to help them adapt to climate change. Malagasy farmers are particularly vulnerable to any shocks to their agricultural system owing to their high dependence on agriculture for their livelihoods, chronic food insecurity, physical isolation and lack of access to formal safety nets. Farmers are frequently exposed to pest and disease outbreaks and extreme weather events (particularly cyclones), which cause significant crop and income losses and exacerbate food insecurity. Although farmers use a variety of risk-coping strategies, these are insufficient to prevent them from remaining food insecure. Few farmers have adjusted their farming strategies in response to climate change, owing to limited resources and capacity. Urgent technical, financial and institutional support is needed to improve the agricultural production and food security of Malagasy farmers and make their livelihoods resilient to climate change. PMID:24535397

  20. Extreme vulnerability of smallholder farmers to agricultural risks and climate change in Madagascar.

    PubMed

    Harvey, Celia A; Rakotobe, Zo Lalaina; Rao, Nalini S; Dave, Radhika; Razafimahatratra, Hery; Rabarijohn, Rivo Hasinandrianina; Rajaofara, Haingo; Mackinnon, James L

    2014-04-05

    Across the tropics, smallholder farmers already face numerous risks to agricultural production. Climate change is expected to disproportionately affect smallholder farmers and make their livelihoods even more precarious; however, there is limited information on their overall vulnerability and adaptation needs. We conducted surveys of 600 households in Madagascar to characterize the vulnerability of smallholder farmers, identify how farmers cope with risks and explore what strategies are needed to help them adapt to climate change. Malagasy farmers are particularly vulnerable to any shocks to their agricultural system owing to their high dependence on agriculture for their livelihoods, chronic food insecurity, physical isolation and lack of access to formal safety nets. Farmers are frequently exposed to pest and disease outbreaks and extreme weather events (particularly cyclones), which cause significant crop and income losses and exacerbate food insecurity. Although farmers use a variety of risk-coping strategies, these are insufficient to prevent them from remaining food insecure. Few farmers have adjusted their farming strategies in response to climate change, owing to limited resources and capacity. Urgent technical, financial and institutional support is needed to improve the agricultural production and food security of Malagasy farmers and make their livelihoods resilient to climate change.

  1. Climate change impact and uncertainty analysis of extreme rainfall events in the Apalachicola River basin, Florida

    NASA Astrophysics Data System (ADS)

    Wang, Dingbao; Hagen, Scott C.; Alizad, Karim

    2013-02-01

    SummaryClimate change impact on rainfall intensity-duration-frequency (IDF) curves at the Apalachicola River basin (Florida Panhandle coast) is assessed using an ensemble of regional climate models (RCMs) obtained from the North American Regional Climate Change Assessment Program. The suitability of seven RCMs on simulating temporal variation of rainfall at the fine-scale is assessed for the case study region. Two RCMs, HRM3-HADCM3 and RCM3-GFDL, are found to have good skill scores in generating high intensity events at the mid-afternoon (2:00-4:00 PM). These two RCMs are selected for assessing potential climate change impact on IDF curves. Two methods are used to conduct bias correction on future rainfall IDF curves, i.e., maximum intensity percentile-based method, and sequential bias correction and maximum intensity percentile-based method. Based on the projection by HRM3-HADCM3, there is no significant change in rainfall intensity at the upstream and middle stream stations but higher intensity at the downstream station. RCM3-GFDL projected increased rainfall intensity from upstream to downstream, particularly at the downstream. The potential temporal shift of extreme rainfall events coupled with overall increased intensities may exacerbate flood magnitudes and lead to increased sediment and nutrient loadings to the estuary, especially in light of sea level change.

  2. Assessment of extreme precipitation events over Amazon simulated by global climate models from HIGEM family.

    NASA Astrophysics Data System (ADS)

    Custodio, Maria; Ambrizzi, Tercio; da Rocha, Rosmeri

    2015-04-01

    The variations of extreme climatic events had been described and analyzed in the scientific literature. Both extremes of precipitation and temperature until now are not well represented by regional or global climate models. Additionally, it is important to characterize possible changes in extreme events. The only certainty is that the extreme events such as heat waves, floods, droughts, or storms may imply in severe societal and economical impacts, since they cause significant damage to agriculture, ecology and infrastructure, injury, and loss of life. Therefore, in a scenario of global warming it is necessary understanding and explaining extreme events and to know if global models may represent these events. The South America (SA) climate is characterized by different precipitation regimes and its variability has large influences of the large scale phenomena in the interanual (El Niño South Oscilation - ENSO) and intraseasonal (Maden Julian Oscilation - MJO) timescales. Normally, the AGCM and CGM use low horizontal resolution and present difficult in the representation of these low frequency variability phenomena. The goal of this work is to evaluate the performance of coupled and uncoupled versions of the High-Resolution Global Environmental Model, which will be denominated NUGEM (~60 Km), HiGEM (~90 km) and HadGEM (~135 km) and NUGAM (~60 Km), HiGAM (~90 Km) and HadGAM (~135 Km), respectively, in capturing the signal of interannual and intraseasonal variability of precipitation over Amazon. Basically we want discuss the impact of sea surface temperature in the annual cycle of atmospheric variables. The precipitation time-series were filtered on the interanual (period > 365 days) and intraseasonal (30-90 days) timescales using the Fast Fourier Transform (FFT). The occurrence of extreme precipitation events were analyzed in Amazon region. The criterion for selection of extremes was based on the quartiles of rainfall anomalies in the bands of interest. Both

  3. Trend of climate extremes in North America: A comparison between dynamically downscaled CMIP3 and CMIP5 simulations

    NASA Astrophysics Data System (ADS)

    Castro, C. L.; Chang, H. I.; Mearns, L. O.; Bukovsky, M. S.

    2015-12-01

    Ascertaining the impact of anthropogenically-influenced climate change on climate extremes is of high priority for civil infrastructure and water resource planning. The current future projections based on IPCC models, for example as documented in the recent Climate Change Assessment for the Southwest, indicate a declining trend in precipitation with a warming climate, with associated dramatic reductions in streamflow in the Colorado River basin. However, inconsistent precipitation trends are projected by individual IPCC global climate models (i.e. Sheffield et al. 2013, Bukovsky et al., 2013). The North American Monsoon interannual variability is partly controlled by warm season atmospheric teleconnections emanating from the western tropical Pacific, related to the El Niño Southern Oscillation (ENSO) and Pacific Decadal Variability (PDV). Departure from the ensemble mean approach for long-term climate projection analysis, a physics-based methodology is designed to analyze the relationship between climate extremes and the large scale forcing (Chang et al. 2015). Analysis from the observational record and downscaled CMIP3 regional climate runs has shown intensifying warm season precipitation and temperature extremes following the natural variability of large scale forcing. We will utilize the ongoing community effort in dynamically downscaling the CMIP5 climate projection datasets, part of the North American Coordinated Regional Climate Downscaling Experiment (NA-CORDEX), and compare with the previous generation of CMIP3 downscaled products for future climate assessment. We aim to examine the difference in large scale forcing from different generations of the CMIP models, and the related impact on regional scale climate extreme characteristics.

  4. Seasonal changes in the human alteration of fire regimes beyond the climate forcing

    NASA Astrophysics Data System (ADS)

    Fréjaville, Thibaut; Curt, Thomas

    2017-03-01

    Human activities have altered fire regimes for millennia by suppressing or enhancing natural fire activity. However, whether these anthropogenic pressures on fire activity have exceeded and will surpass climate forcing still remains uncertain. We tested if, how and the extent to which seasonal fire activity in southern France has recently (1976–2009) deviated from climate-expected trends. The latter were simulated using an ensemble of detrended fire–climate models. We found both seasonal and regional contrasts in climatic effects through a mixture of drought-driven and fuel-limited fire regimes. Dry contemporary conditions chiefly drove fire frequency and burned area, although higher fire activity was related to wetter conditions in the last three years. Surprisingly, the relative importance of preceding wet conditions was higher in winter than in summer, illustrating the strong potential dependency of regional fire–climate relationships on the human use and control of fires. In the Mediterranean mountains, warm winters and springs favour extensive fires in the following dry summer. These results highlight that increasing dryness with climate change could have antagonistic effects on fire regime by leading to larger fires in summer (moisture-limited), but lower fire activity in winter (fuel-limited fire regime). Furthermore, fire trends have significantly diverged from climatic expectations, with a strong negative alteration in fire activity in the Mediterranean lowlands and the summer burned area in the mountains. In contrast, alteration of winter fire frequency in the Mediterranean and Temperate mountains has shifted from positive to negative (or null) trends during the mid-1990s, a period when fire suppression policy underwent major revisions. Our findings demonstrate that changes in land-use and fire suppression policy have probably exceeded the strength of climate change effects on changing fire regime in southern Europe, making regional predictions of

  5. Interpreting Climate Model Projections of Extreme Weather Events for Decision Makers

    NASA Astrophysics Data System (ADS)

    Vavrus, S. J.; Notaro, M.

    2014-12-01

    The proliferation of output from climate model ensembles, such as CMIP3 and CMIP5, has greatly expanded access to future projections, but there is no accepted blueprint for how this data should be interpreted. Decision makers are thus faced with difficult questions when trying to utilize such information: How reliable are the multi-model mean projections? How should the changes simulated by outlier models be treated? How can raw projections of temperature and precipitation be translated into probabilities? The multi-model average is often regarded as the most accurate single estimate of future conditions, but higher-order moments representing the variance and skewness of the distribution of projections provide important information about uncertainty. We have analyzed a set of statistically downscaled climate model projections from the CMIP3 archive to conduct an assessment of extreme weather events at a level designed to be relevant for decision makers. Our analysis uses the distribution of 13 GCM projections to derive the inter-model standard deviation (and coefficient of variation, COV), skewness, and percentile ranges for simulated changes in extreme heat, cold, and precipitation during the middle and late 21st century for the A1B emissions scenario. These metrics help to establish the overall confidence level across the entire range of projections (via the inter-model COV), relative confidence in the simulated high-end versus low-end changes (via skewness), and probabilistic uncertainty bounds derived from a bootstrapping technique. Over our analysis domain centered on the United States Midwest, some primary findings include: (1) Greater confidence in projections of less extreme cold than more extreme heat and intense precipitation, (2) Greater confidence in the low-end than high-end projections of extreme heat, and (3) Higher spatial and temporal variability in the confidence of projected increases of heavy precipitation. In addition, our bootstrapping

  6. Quantifying the role of climate variability on extreme total water level impacts: An application of a full simulation model to Ocean Beach, California

    NASA Astrophysics Data System (ADS)

    Serafin, K.; Ruggiero, P.; Stockdon, H. F.; Barnard, P.; Long, J.

    2014-12-01

    to examine the probability of coastal change (Stockdon et al., 2013) and thus, the vulnerability to storm-induced coastal hazards that Ocean Beach faces. Future climate variability is easily incorporated into this framework, allowing us to quantify how an evolving climate will alter future extreme TWLs and their related coastal impacts.

  7. Collaborative Project: Understanding Climate Model Biases in Tropical Atlantic and Their Impact on Simulations of Extreme Climate Events

    SciTech Connect

    Chang, Ping

    2016-01-04

    Recent studies have revealed that among all the tropical oceans, the tropical Atlantic has experienced the most pronounced warming trend over the 20th century. Many extreme climate events affecting the U.S., such as hurricanes, severe precipitation and drought events, are influenced by conditions in the Gulf of Mexico and the Atlantic Ocean. It is therefore imperative to have accurate simulations of the climatic mean and variability in the Atlantic region to be able to make credible projections of future climate change affecting the U.S. and other countries adjoining the Atlantic Ocean. Unfortunately, almost all global climate models exhibit large biases in their simulations of tropical Atlantic climate. The atmospheric convection simulation errors in the Amazon region and the associated errors in the trade wind simulations are hypothesized to be a leading cause of the tropical Atlantic biases in climate models. As global climate models have resolutions that are too coarse to resolve some of the atmospheric and oceanic processes responsible for the model biases, we propose to use a high-resolution coupled regional climate model (CRCM) framework to address the tropical bias issue. We propose to combine the expertise in tropical coupled atmosphere-ocean modeling at Texas A&M University (TAMU) and the coupled land-atmosphere modeling expertise at Pacific Northwest National Laboratory (PNNL) to develop a comprehensive CRCM for the Atlantic sector within a general and flexible modeling framework. The atmospheric component of the CRCM will be the NCAR WRF model and the oceanic component will be the Rutgers/UCLA ROMS. For the land component, we will use CLM modified at PNNL to include more detailed representations of vegetation and soil hydrology processes. The combined TAMU-PNNL CRCM model will be used to simulate the Atlantic climate, and the associated land-atmosphere-ocean interactions at a horizontal resolution of 9 km or finer. A particular focus of the model

  8. The effects of climate change and extreme wildfire events on runoff erosion over a mountain watershed

    NASA Astrophysics Data System (ADS)

    Gould, Gregory K.; Liu, Mingliang; Barber, Michael E.; Cherkauer, Keith A.; Robichaud, Peter R.; Adam, Jennifer C.

    2016-05-01

    Increases in wildfire occurrence and severity under an altered climate can substantially impact terrestrial ecosystems through enhancing runoff erosion. Improved prediction tools that provide high resolution spatial information are necessary for location-specific soil conservation and watershed management. However, quantifying the magnitude of soil erosion and its interactions with climate, hydrological processes, and fire occurrences across a large region (>10,000 km2) is challenging because of the large computational requirements needed to capture the fine-scale complexities of the land surface that govern erosion. We apply the physically-based coupled Variable Capacity Infiltration-Water Erosion Prediction Project (VIC-WEPP) model to study how wildfire occurrences can enhance soil erosion in a future climate over a representative watershed in the northern Rocky Mountains - the Salmon River Basin (SRB) in central Idaho. While the VIC model simulates hydrologic processes at larger scales, the WEPP model simulates erosion at the hillslope scale by sampling representative hillslopes. VIC-WEPP model results indicate that SRB streamflow will have an earlier shift in peak flow by one to two months under future climate scenarios in response to a declining snowpack under warming temperatures. The magnitude of peak flow increases with each higher severity fire scenario; and under the highest fire severity, the peak flow is shifted even earlier, exacerbating the effects of climate change. Similarly, sediment yield also increases with higher fire severities for both historical and future climates. Sediment yield is more sensitive to fire occurrence than to climate change by one to two orders of magnitude, which is not unexpected given that our fire scenarios were applied basin wide as worst case scenarios. In reality, fires only occur over portions of the basin in any given year and subsequent years' vegetation regrowth reduces erosion. However, the effects of climate

  9. Influence of Anthropogenic Climate Change on Planetary Wave Resonance and Extreme Weather Events.

    PubMed

    Mann, Michael E; Rahmstorf, Stefan; Kornhuber, Kai; Steinman, Byron A; Miller, Sonya K; Coumou, Dim

    2017-03-27

    Persistent episodes of extreme weather in the Northern Hemisphere summer have been shown to be associated with the presence of high-amplitude quasi-stationary atmospheric Rossby waves within a particular wavelength range (zonal wavenumber 6-8). The underlying mechanistic relationship involves the phenomenon of quasi-resonant amplification (QRA) of synoptic-scale waves with that wavenumber range becoming trapped within an effective mid-latitude atmospheric waveguide. Recent work suggests an increase in recent decades in the occurrence of QRA-favorable conditions and associated extreme weather, possibly linked to amplified Arctic warming and thus a climate change influence. Here, we isolate a specific fingerprint in the zonal mean surface temperature profile that is associated with QRA-favorable conditions. State-of-the-art ("CMIP5") historical climate model simulations subject to anthropogenic forcing display an increase in the projection of this fingerprint that is mirrored in multiple observational surface temperature datasets. Both the models and observations suggest this signal has only recently emerged from the background noise of natural variability.

  10. Influence of Anthropogenic Climate Change on Planetary Wave Resonance and Extreme Weather Events

    PubMed Central

    Mann, Michael E.; Rahmstorf, Stefan; Kornhuber, Kai; Steinman, Byron A.; Miller, Sonya K.; Coumou, Dim

    2017-01-01

    Persistent episodes of extreme weather in the Northern Hemisphere summer have been shown to be associated with the presence of high-amplitude quasi-stationary atmospheric Rossby waves within a particular wavelength range (zonal wavenumber 6–8). The underlying mechanistic relationship involves the phenomenon of quasi-resonant amplification (QRA) of synoptic-scale waves with that wavenumber range becoming trapped within an effective mid-latitude atmospheric waveguide. Recent work suggests an increase in recent decades in the occurrence of QRA-favorable conditions and associated extreme weather, possibly linked to amplified Arctic warming and thus a climate change influence. Here, we isolate a specific fingerprint in the zonal mean surface temperature profile that is associated with QRA-favorable conditions. State-of-the-art (“CMIP5”) historical climate model simulations subject to anthropogenic forcing display an increase in the projection of this fingerprint that is mirrored in multiple observational surface temperature datasets. Both the models and observations suggest this signal has only recently emerged from the background noise of natural variability. PMID:28345645

  11. Climate-driven ground-level ozone extreme in the fall over the Southeast United States.

    PubMed

    Zhang, Yuzhong; Wang, Yuhang

    2016-09-06

    Ground-level ozone is adverse to human and vegetation health. High ground-level ozone concentrations usually occur over the United States in the summer, often referred to as the ozone season. However, observed monthly mean ozone concentrations in the southeastern United States were higher in October than July in 2010. The October ozone average in 2010 reached that of July in the past three decades (1980-2010). Our analysis shows that this extreme October ozone in 2010 over the Southeast is due in part to a dry and warm weather condition, which enhances photochemical production, air stagnation, and fire emissions. Observational evidence and modeling analysis also indicate that another significant contributor is enhanced emissions of biogenic isoprene, a major ozone precursor, from water-stressed plants under a dry and warm condition. The latter finding is corroborated by recent laboratory and field studies. This climate-induced biogenic control also explains the puzzling fact that the two extremes of high October ozone both occurred in the 2000s when anthropogenic emissions were lower than the 1980s and 1990s, in contrast to the observed decreasing trend of July ozone in the region. The occurrences of a drying and warming fall, projected by climate models, will likely lead to more active photochemistry, enhanced biogenic isoprene and fire emissions, an extension of the ozone season from summer to fall, and an increase of secondary organic aerosols in the Southeast, posing challenges to regional air quality management.

  12. Assessing the Land-Ocean Interaction under Extreme Climate Change Condition - a Modeling Approach

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Wang, T.; Leung, R.; Balaguru, K.; Hibbard, K. A.

    2011-12-01

    Many modeling applications, at global and regional scales, have demonstrated that numerical models are useful tools to quantify the uncertainty and the interactions between natural physical and biogeochemical processes and human activities in coastal regions. A regional integrated assessment modeling framework to investigate the interactions of agriculture and land use, coastal ecological issues, energy supply and effects of climate changes is under development by Pacific Northwest National Laboratory (PNNL), with specific application to the Gulf of Mexico. The Gulf is vulnerable to the direct impacts of climate changes, such as sea level rise, hurricane-induced storm surge and extreme floods due to high precipitation and river run-off. This presentation will focus on the coastal modeling aspect of this integrated modeling approach. An unstructured-grid finite volume coastal ocean model, which has the capability of simulating coastal circulation, wave and storm surges, sediment transport and biogeochemical processes, is applied to simulate hurricane storm surges and extreme flood events in the coastal region of Gulf of Mexico. Specifically, storm surge along the US Southeast coasts and freshwater plume in the Mississippi Delta were simulated and compared to observations. Numerical sensitivity studies with boundary conditions and forcing indicated the urgent need of a real observation network as well as the importance of accurate model predictions at regional scales to drive the model at smaller scales. The implication of natural pressures, such as storm surge and flooding to biogeochemical processes and marine ecosystem will be discussed.

  13. Climate-driven ground-level ozone extreme in the fall over the Southeast United States

    PubMed Central

    Wang, Yuhang

    2016-01-01

    Ground-level ozone is adverse to human and vegetation health. High ground-level ozone concentrations usually occur over the United States in the summer, often referred to as the ozone season. However, observed monthly mean ozone concentrations in the southeastern United States were higher in October than July in 2010. The October ozone average in 2010 reached that of July in the past three decades (1980–2010). Our analysis shows that this extreme October ozone in 2010 over the Southeast is due in part to a dry and warm weather condition, which enhances photochemical production, air stagnation, and fire emissions. Observational evidence and modeling analysis also indicate that another significant contributor is enhanced emissions of biogenic isoprene, a major ozone precursor, from water-stressed plants under a dry and warm condition. The latter finding is corroborated by recent laboratory and field studies. This climate-induced biogenic control also explains the puzzling fact that the two extremes of high October ozone both occurred in the 2000s when anthropogenic emissions were lower than the 1980s and 1990s, in contrast to the observed decreasing trend of July ozone in the region. The occurrences of a drying and warming fall, projected by climate models, will likely lead to more active photochemistry, enhanced biogenic isoprene and fire emissions, an extension of the ozone season from summer to fall, and an increase of secondary organic aerosols in the Southeast, posing challenges to regional air quality management. PMID:27551089

  14. Altered dynamics of broad-leaved tree species in a Chinese subtropical montane mixed forest: the role of an anomalous extreme 2008 ice storm episode.

    PubMed

    Ge, Jielin; Xiong, Gaoming; Wang, Zhixian; Zhang, Mi; Zhao, Changming; Shen, Guozhen; Xu, Wenting; Xie, Zongqiang

    2015-04-01

    Extreme climatic events can trigger gradual or abrupt shifts in forest ecosystems via the reduction or elimination of foundation species. However, the impacts of these events on foundation species' demography and forest dynamics remain poorly understood. Here we quantified dynamics for both evergreen and deciduous broad-leaved species groups, utilizing a monitoring permanent plot in a subtropical montane mixed forest in central China from 2001 to 2010 with particular relevance to the anomalous 2008 ice storm episode. We found that both species groups showed limited floristic alterations over the study period. For each species group, size distribution of dead individuals approximated a roughly irregular and flat shape prior to the ice storm and resembled an inverse J-shaped distribution after the ice storm. Furthermore, patterns of mortality and recruitment displayed disequilibrium behaviors with mortality exceeding recruitment for both species groups following the ice storm. Deciduous broad-leaved species group accelerated overall diameter growth, but the ice storm reduced evergreen small-sized diameter growth. We concluded that evergreen broad-leaved species were more susceptible to ice storms than deciduous broad-leaved species, and ice storm events, which may become more frequent with climate change, might potentially threaten the perpetuity of evergreen-dominated broad-leaved forests in this subtropical region in the long term. These results underscore the importance of long-term monitoring that is indispensible to elucidate causal links between forest dynamics and climatic perturbations.

  15. Climatic extreme events combine with impacts of gradual climate change: recent evidence from the Andes and the Alps

    NASA Astrophysics Data System (ADS)

    Huggel, Christian; Giráldez, Claudia; Haeberli, Wilfried; Schneider, Demian; Frey, Holger; Schaub, Yvonne; Cochachin, Alejo; Portocarrero, Cesar; García, Javier; Guillén Ludeña, Sebastián; Rohrer, Mario; McArdell, Brian

    2013-04-01

    In high-mountain areas climatic extreme events can combine with effects of gradual climate change to form cascading processes, occasionally resulting in major disasters. Heavy precipitation events thereby evolve into mass movement processes such as landslides, avalanches and debris flows that can devastate urban areas at the foot of mountains. The transformation and interaction of processes are complex and often not sufficiently understood or difficult to predict, and thus more research is needed. Of particular concern are landslide impacts into existing or new glacier lakes from destabilized mountain flanks in relation with glacier retreat and permafrost degradation. Here we analyze a number of recent events in the Andes of Peru and compare them with observations in the Alps in Europe. In southern Peru debris flow events that were among the largest recent ones worldwide remained largely unstudied although they destroyed entire towns and important traffic and energy infrastructure. We used a combination of field work, satellite images, satellite rainfall data and available meteorological stations as well as numerical modeling to reconstruct origin, type and effect of these events. Large sediment deposits resulting from deglaciation processes represent a key factor, and were mobilized by heavy rainfall events. Tens of millions of m3 sediment were transported downstream in single events, with compound effects on downstream river systems causing destruction and inundation. Other recent events in Peru underline the importance of a cascade of process interaction, with ice avalanches impacting glacier lakes, triggering flood waves and debris flows that travel downstream and eventually impact urban areas. In the Alps recent observations indicate an increase of occurrence of complex compound processes with short-term climatic events overprinting on longer-term effects of gradual climate change (e.g. from glacier retreat and permafrost degradation). Especially important are

  16. Vegetation response to extreme climate events on the Mongolian plateau from 2000-2010

    NASA Astrophysics Data System (ADS)

    John, R.; Chen, J.; Ouyang, Z.; Batkishig, O.; Samanta, A.; Ganguly, S.; Yuan, W.; Xiao, J.

    2012-12-01

    Extreme climatic events on the Mongolian Plateau have lead to severe summer droughts as well as extreme winters in the last decade. We ask the question: What are the vegetation responses to these extremes over time and space and time compared to decadal means on the plateau and are there any significant differences between the biomes? We focused on the effects of drought in the plateau through the mapping of anomalies in MODIS -derived vegetation indices (EVI, EVI2), Land surface temperature (LST), and functional variables (GPP, ET) during the last decade (2000-2010). Frequency distributions of standardized anomalies of EVI during 2000-2010 showed that the number of the positively skewed years were more common in the desert biome as compared to grasslands and forests. Positively skewed drought years (severe droughts in 2000-2001, 2005, 2009) were characterized by the majority of negative anomalies with peak values between -1.5 and -0.5 and were statistically different (p<0.001) from relatively wet years (2003, 2004, 2007). Conversely, frequency distributions of dry years were not statistically different (p< 0.001) from relatively wet years in the grassland biome. Temperature and precipitation inter-annual (1961-2010) linear trends interpolated from 67 climate stations correlated well the MODIS-derived standardized anomalies. In addition, comparisons between biome response in the form of EVI, ET, GPP anomalies and temperature/precipitation linear trends were analyzed using cross correlation functions. Finally, we made efforts in explaining these anomalies with changes in albedo and increasing land use intensity at aimag/prefecture administration level in Mongolia and in Inner Mongolia.

  17. Changes in Seasonal and Extreme Arctic Cyclone Events in the CMIP5 Climate Models

    NASA Astrophysics Data System (ADS)

    Hori, M. E.

    2015-12-01

    Cyclone activities are governed by many boundary conditions, such as the underlying SST or sea ice, the relative heating between the continent and the ocean, and their relative location against the jet stream to name a few. All these factors and their seasonal march is prone to change under the future global warming condition. Especially in the Arctic, the timing of sea ice melting and freezing, seasonal change in snow cover, and the location of upper level jets all contribute towards a change in cyclone seasonal distribution and extreme events. Here, we use a Langrangean method of detecting cyclones and their activity under the historical and rcp 4.5 scenario of 8 CMIP5 climate models to assess the change in Arctic cyclone activities. We find that while the models show weaker cyclone activities than observation and inter-model difference is large in some cases, they simulate the seasonal cycle and extreme events reasonably well. In the winter season under the global warming scenario, many models exhibits a northeastward shift in mid-latitude storm track resulting in mode cyclones entering the Arctic from the mid-latitudes. There is also a marked increase in the number of cyclones in the Barents/Kara Sea where correlation with sea ice is suspected. During the summer season, a large change in the Arctic cyclone activity located near the North Pole is evident in many models. This change in Arctic cyclone is due to contribution of more cyclogenesis within the Arctic circle. In this presentation, we also look at other seasons and the seasonal march of the cyclone activity within the Arctic and its interaction with the mid-latitudes. We also document the change in extreme events under the climate models.

  18. A vulnerability tool for adapting water and aquatic resources to climate change and extremes on the Shoshone National Forest, Wyoming

    NASA Astrophysics Data System (ADS)

    Rice, J.; Joyce, L. A.; Armel, B.; Bevenger, G.; Zubic, R.

    2011-12-01

    Climate change introduces a significant challenge for land managers and decision makers managing the natural resources that provide many benefits from forests. These benefits include water for urban and agricultural uses, wildlife habitat, erosion and climate control, aquifer recharge, stream flows regulation, water temperature regulation, and cultural services such as outdoor recreation and aesthetic enjoyment. The Forest Service has responded to this challenge by developing a national strategy for responding to climate change (the National Roadmap for Responding to Climate Change, July 2010). In concert with this national strategy, the Forest Service's Westwide Climate Initiative has conducted 4 case studies on individual Forests in the western U.S to develop climate adaptation tools. Western National Forests are particularly vulnerable to climate change as they have high-mountain topography, diversity in climate and vegetation, large areas of water limited ecosystems, and increasing urbanization. Information about the vulnerability and capacity of resources to adapt to climate change and extremes is lacking. There is an urgent need to provide customized tools and synthesized local scale information about the impacts to resources from future climate change and extremes, as well as develop science based adaptation options and strategies in National Forest management and planning. The case study on the Shoshone National Forest has aligned its objectives with management needs by developing a climate extreme vulnerability tool that guides adaptation options development. The vulnerability tool determines the likely degree to which native Yellowstone cutthroat trout and water availability are susceptible to, or unable to cope with adverse effects of climate change extremes. We spatially categorize vulnerability for water and native trout resources using exposure, sensitivity, and adaptive capacity indicators that use minimum and maximum climate and GIS data. Results

  19. The effect of future reduction in aerosol emissions on climate extremes in China

    NASA Astrophysics Data System (ADS)

    Wang, Zhili; Lin, Lei; Yang, Meilin; Xu, Yangyang

    2016-11-01

    This study investigates the effect of reduced aerosol emissions on projected temperature and precipitation extremes in China during 2031-2050 and 2081-2100 relative to present-day conditions using the daily data output from the Community Earth System Model ensemble simulations under the Representative Concentration Pathway (RCP) 8.5 with an applied aerosol reduction and RCP8.5 with fixed 2005 aerosol emissions (RCP8.5_FixA) scenarios. The reduced aerosol emissions of RCP8.5 magnify the warming effect due to greenhouse gases (GHG) and lead to significant increases in temperature extremes, such as the maximum of daily maximum temperature (TXx), minimum of daily minimum temperature (TNn), and tropical nights (TR), and precipitation extremes, such as the maximum 5-day precipitation amount, number of heavy precipitation days, and annual total precipitation from days ˃95th percentile, in China. The projected TXx, TNn, and TR averaged over China increase by 1.2 ± 0.2 °C (4.4 ± 0.2 °C), 1.3 ± 0.2 °C (4.8 ± 0.2 °C), and 8.2 ± 1.2 (30.9 ± 1.4) days, respectively, during 2031-2050 (2081-2100) under the RCP8.5_FixA scenario, whereas the corresponding values are 1.6 ± 0.1 °C (5.3 ± 0.2 °C), 1.8 ± 0.2 °C (5.6 ± 0.2 °C), and 11.9 ± 0.9 (38.4 ± 1.0) days under the RCP8.5 scenario. Nationally averaged increases in all of those extreme precipitation indices above due to the aerosol reduction account for more than 30 % of the extreme precipitation increases under the RCP8.5 scenario. Moreover, the aerosol reduction leads to decreases in frost days and consecutive dry days averaged over China. There are great regional differences in changes of climate extremes caused by the aerosol reduction. When normalized by global mean surface temperature changes, aerosols have larger effects on temperature and precipitation extremes over China than GHG.

  20. Regional extreme climate events on the northeastern Tibetan Plateau since AD 1450 inferred from tree rings

    NASA Astrophysics Data System (ADS)

    Qin, Chun; Yang, Bao; Bräuning, Achim; Sonechkin, Dmitry M.; Huang, Kai

    2011-02-01

    Qilian juniper ( Juniperus przewalskii Kom.) is a widely distributed tree species growing on south-facing slopes in the northeastern Tibetan Plateau in arid northwestern China. We established a tree-ring width network based on two new chronologies and four previously published chronologies. Correlation and response function analyses demonstrate that precipitation positively influences radial growth. Despite of minor differences in local climate-growth relations, precipitation for the annual window between previous July and current June shows consistent positive correlations with ring width at all study sites. Similar to the so called 'pointer year' approach, 'anomalous' growth years were defined to extract extreme climate events for the period AD 1450-2006. We defined a dryness-wetness grade series with five grades of climate events inferred from anomalous year analysis. During the last 50 years, the frequency of wet events increased and that of drought events decreased noticeably, implying that the probability of occurrence of dry years in the northeastern Tibetan Plateau will further decrease in the future if regional warming continues. Combining our proxy records with a historical dryness-wetness record from eastern China, we mapped dryness-wetness patterns over large parts of China. By analyzing the atmospheric pressure patterns at the 850 hPa level over China for selected extreme event years, we found that the confluence of cold and hot air is a precondition for a flood event in the northeastern Tibetan Plateau. Thus, a counter-clockwise atmospheric circulation centered in south of Lake Baikal only occurs in flood event years.

  1. Climate Change and Health Risks from Extreme Heat and Air Pollution in the Eastern United States

    NASA Astrophysics Data System (ADS)

    Limaye, V.; Vargo, J.; Harkey, M.; Holloway, T.; Meier, P.; Patz, J.

    2013-12-01

    Climate change is expected to exacerbate health risks from exposure to extreme heat and air pollution through both direct and indirect mechanisms. Directly, warmer ambient temperatures promote biogenic emissions of ozone precursors and favor the formation of ground-level ozone, while an anticipated increase in the frequency of stagnant air masses will allow fine particulates to accumulate. Indirectly, warmer summertime temperatures stimulate energy demand and exacerbate polluting emissions from the electricity sector. Thus, while technological adaptations such as air conditioning can reduce risks from exposures to extreme heat, they can trigger downstream damage to air quality and public health. Through an interdisciplinary modeling effort, we quantify the impacts of climate change on ambient temperatures, summer energy demand, air quality, and public health. The first phase of this work explores how climate change will directly impact the burden of heat-related mortality. Climatic patterns, demographic trends, and epidemiologic risk models suggest that populations in the eastern United States are likely to experience an increasing heat stress mortality burden in response to rising summertime air temperatures. We use North American Regional Climate Change Assessment Program modeling data to estimate mid-century 2-meter air temperatures and humidity across the eastern US from June-August, and quantify how long-term changes in actual and apparent temperatures from present-day will affect the annual burden of heat-related mortality across this region. With the US Environmental Protection Agency's Environmental Benefits Mapping and Analysis Program, we estimate health risks using concentration-response functions, which relate temperature increases to changes in annual mortality rates. We compare mid-century summertime temperature data, downscaled using the Weather Research and Forecasting model, to 2007 baseline temperatures at a 12 km resolution in order to estimate

  2. Climate extremes dominating seasonal and interannual variations in carbon export from the Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Tian, Hanqin; Ren, Wei; Yang, Jia; Tao, Bo; Cai, Wei-Jun; Lohrenz, Steven E.; Hopkinson, Charles S.; Liu, Mingliang; Yang, Qichun; Lu, Chaoqun; Zhang, Bowen; Banger, Kamaljit; Pan, Shufen; He, Ruoying; Xue, Zuo

    2015-09-01

    Knowledge about the annual and seasonal patterns of organic and inorganic carbon (C) exports from the major rivers of the world to the coastal ocean is essential for our understanding and potential management of the global C budget so as to limit anthropogenic modification of global climate. Unfortunately our predictive understanding of what controls the timing, magnitude, and quality of C export is still rudimentary. Here we use a process-based coupled hydrologic/ecosystem biogeochemistry model (the Dynamic Land Ecosystem Model) to examine how climate variability and extreme events, changing land use, and atmospheric chemistry have affected the annual and seasonal patterns of C exports from the Mississippi River basin to the Gulf of Mexico. Our process-based simulations estimate that the average annual exports of dissolved organic C (DOC), particulate organic C (POC), and dissolved inorganic C (DIC) in the 2000s were 2.6 ± 0.4 Tg C yr-1, 3.4 ± 0.3 Tg C yr-1, and 18.8 ± 3.4 Tg C yr-1, respectively. Although land use change was the most important agent of change in C export over the past century, climate variability and extreme events (such as flooding and drought) were primarily responsible for seasonal and interannual variations in C export from the basin. The maximum seasonal export of DIC occurred in summer while for DOC and POC the maximum occurred in winter. Relative to the 10 year average (2001-2010), our modeling analysis indicates that the years of maximal and minimal C export cooccurred with wet and dry years (2008: 32% above average and 2006: 32% below average). Given Intergovernmental Panel on Climate Change-predicted changes in climate variability and the severity of rain events and droughts of wet and dry years for the remainder of the 21st century, our modeling results suggest major changes in the riverine link between the terrestrial and oceanic realms, which are likely to have a major impact on C delivery to the coastal ocean.

  3. Climate Change Alters Seedling Emergence and Establishment in an Old-Field Ecosystem

    SciTech Connect

    Classen, Aimee T; Norby, Richard J; Campany, Courtney E; Sides, Katherine E; Weltzin, Jake

    2010-01-01

    In shaping how ecosystems respond to climatic change, ecosystem structure can dominate over physiological responses of individuals, especially under conditions of multiple, simultaneous changes in environmental factors. Ecological succession drives large-scale changes in ecosystem structure over time, but the mechanisms whereby climatic change alters succession remain unresolved. Here, we investigate effects of atmospheric and climatic change on seedling establishment, recognizing that small shifts in seedling establishment of different species may have long-term repercussions on the transition of fields to forests in the future. Our 4-year experiment in an old-field ecosystem revealed that response of seedling emergence to different combinations of atmospheric CO2 concentration, air temperature, and soil moisture depends on seed phenology, the timing of seed arrival into an ecosystem. We conclude that seed phenology is an important plant trait that can shape, and help predict, the trajectories of ecosystems under climatic change.

  4. Long-term climate and competition explain forest mortality patterns under extreme drought.

    PubMed

    Young, Derek J N; Stevens, Jens T; Earles, J Mason; Moore, Jeffrey; Ellis, Adam; Jirka, Amy L; Latimer, Andrew M

    2017-01-01

    Rising temperatures are amplifying drought-induced stress and mortality in forests globally. It remains uncertain, however, whether tree mortality across drought-stricken landscapes will be concentrated in particular climatic and competitive environments. We investigated the effects of long-term average climate [i.e. 35-year mean annual climatic water deficit (CWD)] and competition (i.e. tree basal area) on tree mortality patterns, using extensive aerial mortality surveys conducted throughout the forests of California during a 4-year statewide extreme drought lasting from 2012 to 2015. During this period, tree mortality increased by an order of magnitude, typically from tens to hundreds of dead trees per km(2) , rising dramatically during the fourth year of drought. Mortality rates increased independently with average CWD and with basal area, and they increased disproportionately in areas that were both dry and dense. These results can assist forest managers and policy-makers in identifying the most drought-vulnerable forests across broad geographic areas.

  5. Changing precipitation extremes in a warming climate: A basis for design flood estimation

    NASA Astrophysics Data System (ADS)

    Wasko, Conrad; Sharma, Ashish

    2016-04-01

    The potential for increasing intensity of future rainfall events has significant implications for flooding and the design of infrastructure. However the questions of how precipitation will change in the future, how important these changes are to flooding, and how engineers incorporate these changes into hydrologic design remain as open questions. In the absence of reliable point based estimates of how precipitation will change, many studies investigate the historical relationship between rainfall intensity and temperature as a proxy for what may happen in a warmer climate. Much of the research to date has focussed on changing precipitation intensity, however, temporal and spatial patterns of precipitation are just as important. Here we link higher temperatures to changes in temporal and spatial patterns of extreme precipitation events. We show, using observed high quality precipitation records from Australia covering all major climatic zones, that storms are intensifying in both time and space resulting in a greater potential for flooding especially in urban locales around the world. Given that precipitation and antecedent conditions are changing, and, the impacts to flooding are significant, methods of incorporating these changes in catchment modelling are required. Continuous simulation offers a natural flexibility to incorporate the many correlated changes in precipitation that may occur in a future climate. An argument for such a framework using existing continuous simulation alternatives is articulated in concluding this presentation.

  6. Climate variability of the hydro-meteorological extreme events in Romania

    NASA Astrophysics Data System (ADS)

    Mares, Constantin; Adler, Mary-Jeanne; Mares, Ileana; Chelcia, Silvia; Branescu, Emilia

    2013-04-01

    The purpose of this study is to analyze climate extremes for monthly and seasonal values of temperatures, precipitation and discharges defined in 27 stations distributed relatively evenly throughout Romania. For the beginning, for each season a drought index was calculated from the difference between standardized temperature and precipitation (STPDI) for a period of 68 years (1931-1998) compared with self-calibrated Palmer Drought Severity Index (sc-PDSI). The sc_PDSI values with a resolution of 0.5 degrees longitude by 0.5 degrees latitude were extracted from Climate Research Unit (http://www.cru.uea.ac.uk/data/). The analyses of histograms of the two indices for several stations in Romania revealed as values defining extremes depend on the season and location, but generally the values higher than 4 in the absolute value, indicate drastic extreme events, with the only difference that the two indices have reverse signs. A negative value of sc_PDSI < - 4 indicates an extreme drought, while a value < - 4 of STPDI shows an extremely wet event and vice versa. The sc-PDSI is more sensitive to location where is calculated, in comparison with classical PDSI and therefore it can give more accurate differentiation between different areas described by this index. In the next step of our analysis we retained only STPDI for several reasons. First, STPDI is a better predictor for discharges in Romania than sc-PDSI (correlations are closer between STPDI and discharge than between sc_PDSI and discharge). Response to large-scale atmospheric circulation expressed here by North Atlantic Oscillation (NAO) is better and this index is easier to estimate from the values simulated by climate models (GCMs / RCMs). In addition, spatial climate differences can be outlined just as well as using sc-PDSI values by means of modes 2 and 3 of the EOF decompositions. Climate variability of STPDI was analyzed both for the entire country by the EOF decomposition and separate for each of the 27

  7. Alterations in flowering strategies and sexual allocation of Caragana stenophylla along a climatic aridity gradient

    PubMed Central

    Xie, Lina; Guo, Hongyu; Ma, Chengcang

    2016-01-01

    Plant can alter reproductive strategies for adaptation to different environments. However, alterations in flowering strategies and sexual allocation for the same species growing in different environments still remain unclear. We examined the sexual reproduction parameters of Caragana stenophylla across four climatic zones from semi-arid, arid, very arid, to intensively arid zones in the Inner Mongolia Steppe, China. Under the relatively favorable climatic conditions of semi-arid zone, C. stenophylla took a K-strategy for flowering (fewer but bigger flowers, and higher seed set). In contrast, under the harsher climatic conditions of intensively arid zone, C. stenophylla took an r-strategy for flowering (more but smaller flowers, and lower seed set). In arid and very arid zones, C. stenophylla exhibited intermediate flowering strategies between K- and r-strategies. In semi-arid, arid and very arid zones, sexual allocation and sexual allocation efficiency (SAE) of C. stenophylla were high, and the population recruitment might be mainly through sexual reproduction; in intensively arid zone, however, sexual allocation and SAE were very low, seed production was very limited, and clonal reproduction might compensate for the decrease in sexual reproduction. Our results suggested that C. stenophylla adapted to the climatic aridity gradient by alterations in flowering strategies and reproductive allocation. PMID:27628093

  8. Impacts of climate change on precipitation and discharge extremes through the use of statistical downscaling approaches in a Mediterranean basin.

    PubMed

    Piras, Monica; Mascaro, Giuseppe; Deidda, Roberto; Vivoni, Enrique R

    2016-02-01

    Mediterranean region is characterized by high precipitation variability often enhanced by orography, with strong seasonality and large inter-annual fluctuations, and by high heterogeneity of terrain and land surface properties. As a consequence, catchments in this area are often prone to the occurrence of hydrometeorological extremes, including storms, floods and flash-floods. A number of climate studies focused in the Mediterranean region predict that extreme events will occur with higher intensity and frequency, thus requiring further analyses to assess their effect at the land surface, particularly in small- and medium-sized watersheds. In this study, climate and hydrologic simulations produced within the Climate Induced Changes on the Hydrology of Mediterranean Basins (CLIMB) EU FP7 research project were used to analyze how precipitation extremes propagate into discharge extremes in the Rio Mannu basin (472.5km(2)), located in Sardinia, Italy. The basin hydrologic response to climate forcings in a reference (1971-2000) and a future (2041-2070) period was simulated through the combined use of a set of global and regional climate models, statistical downscaling techniques, and a process based distributed hydrologic model. We analyzed and compared the distribution of annual maxima extracted from hourly and daily precipitation and peak discharge time series, simulated by the hydrologic model under climate forcing. For this aim, yearly maxima were fit by the Generalized Extreme Value (GEV) distribution using a regional approach. Next, we discussed commonality and contrasting behaviors of precipitation and discharge maxima distributions to better understand how hydrological transformations impact propagation of extremes. Finally, we show how rainfall statistical downscaling algorithms produce more reliable forcings for hydrological models than coarse climate model outputs.

  9. Prevailing trends of climatic extremes across Indus-Delta of Sindh-Pakistan

    NASA Astrophysics Data System (ADS)

    Abbas, Farhat; Rehman, Iqra; Adrees, Muhammad; Ibrahim, Muhammad; Saleem, Farhan; Ali, Shafaqat; Rizwan, Muhammad; Salik, Muhammad Raza

    2017-01-01

    This study examines the variability and change in the patterns of climatic extremes experienced in Indus-Delta of Sindh province of Pakistan, comprising regions of Karachi, Badin, Mohenjodaro, and Rohri. The homogenized daily minimum and maximum temperature and precipitation data for a 36-year period were used to calculate 13 and 11 indices of temperature and precipitation extremes with the help of RClimDex, a program written in the statistical software package R. A non-parametric Mann-Kendall test and Sen's slope estimates were used to determine the statistical significance and magnitude of the calculated trend. Temperatures of summer days and tropical nights increased in the region with overall significant warming trends for monthly maximum temperature as well as for warm days and nights reflecting dry conditions in the study area. The warm extremes and nighttime temperature indices showed greater trends than cold extremes and daytime indices depicting an overall warming trends in the Delta. Historic decrease in the acreage of major crops and over 33% decrease in agriculture credit for Sindh are the indicators of adverse impacts of warmer and drier weather on Sindh agriculture. Trends reported for Karachi and Badin are expected to decrease rice cultivation, hatching of fisheries, and mangroves forest surrounding these cities. Increase in the prevailing temperature trends will lead to increasingly hotter and drier summers resulting to constraints on cotton, wheat, and rice yield in Rohri and Mohenjodaro areas due to increased crop water requirements that may be met with additional groundwater pumping; nonetheless, the depleted groundwater resources would have a direct impact on the region's economy.

  10. Changes in climate extremes and their impacts on the natural physical environment: An overview of the IPCC SREX report

    NASA Astrophysics Data System (ADS)

    Seneviratne, S. I.; Nicholls, N.; Easterling, D.; Goodess, C. M.; Kanae, S.; Kossin, J.; Luo, Y.; Marengo, J.; McInnes, K.; Rahimi, M.; Reichstein, M.; Sorteberg, A.; Vera, C.; Zhang, X.

    2012-04-01

    In April 2009, the Intergovernmental Panel on Climate Change (IPCC) decided to prepare a new special report with involvement of the UN International Strategy for Disaster Reduction (ISDR) on the topic "Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation" (SREX, http://ipcc-wg2.gov/SREX/). This special report reviews the scientific literature on past and projected changes in weather and climate extremes, and the relevance of such changes to disaster risk reduction and climate change adaptation. The SREX Summary for Policymakers was approved at an IPCC Plenary session on November 14-18, 2011, and the full report is planned for release in February 2012. This presentation will provide an overview on the structure and contents of the SREX, focusing on Chapter 3: "Changes in climate extremes and their impacts on the natural physical environment" [1]. It will in particular present the main findings of the chapter, including differences between the SREX's conclusions and those of the IPCC Fourth Assessment of 2007, and the implications of this new assessment for disaster risk reduction. Finally, aspects relevant to impacts on the biogeochemical cycles will also be addressed. [1] Seneviratne, S.I., N. Nicholls, D. Easterling, C.M. Goodess, S. Kanae, J. Kossin, Y. Luo, J. Marengo, K. McInnes, M. Rahimi, M. Reichstein, A. Sorteberg, C. Vera, and X. Zhang, 2012: Changes in climate extremes and their impacts on the natural physical environment. In: Intergovernmental Panel on Climate Change Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation [Field, C. B., Barros, V., Stocker, T.F., Qin, D., Dokken, D., Ebi, K.L., Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., Allen, S. K., Tignor, M. and P. M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  11. Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change.

    PubMed

    Ernakovich, Jessica G; Hopping, Kelly A; Berdanier, Aaron B; Simpson, Rodney T; Kachergis, Emily J; Steltzer, Heidi; Wallenstein, Matthew D

    2014-10-01

    Global climate change is already having significant impacts on arctic and alpine ecosystems, and ongoing increases in temperature and altered precipitation patterns will affect the strong seasonal patterns that characterize these temperature-limited systems. The length of the potential growing season in these tundra environments is increasing due to warmer temperatures and earlier spring snow melt. Here, we compare current and projected climate and ecological data from 20 Northern Hemisphere sites to identify how seasonal changes in the physical environment due to climate change will alter the seasonality of arctic and alpine ecosystems. We find that although arctic and alpine ecosystems appear similar under historical climate conditions, climate change will lead to divergent responses, particularly in the spring and fall shoulder seasons. As seasonality changes in the Arctic, plants will advance the timing of spring phenological events, which could increase plant nutrient uptake, production, and ecosystem carbon (C) gain. In alpine regions, photoperiod will constrain spring plant phenology, limiting the extent to which the growing season can lengthen, especially if decreased water availability from earlier snow melt and warmer summer temperatures lead to earlier senescence. The result could be a shorter growing season with decreased production and increased nutrient loss. These contrasting alpine and arctic ecosystem responses will have cascading effects on ecosystems, affecting community structure, biotic interactions, and biogeochemistry.

  12. The influence of altering push force effectiveness on upper extremity demand during wheelchair propulsion.

    PubMed

    Rankin, Jeffery W; Kwarciak, Andrew M; Mark Richter, W; Neptune, Richard R

    2010-10-19

    Manual wheelchair propulsion has been linked to a high incidence of overuse injury and pain in the upper extremity, which may be caused by the high load requirements and low mechanical efficiency of the task. Previous studies have suggested that poor mechanical efficiency may be due to a low effective handrim force (i.e. applied force that is not directed tangential to the handrim). As a result, studies attempting to reduce upper extremity demand have used various measures of force effectiveness (e.g., fraction effective force, FEF) as a guide for modifying propulsion technique, developing rehabilitation programs and configuring wheelchairs. However, the relationship between FEF and upper extremity demand is not well understood. The purpose of this study was to use forward dynamics simulations of wheelchair propulsion to determine the influence of FEF on upper extremity demand by quantifying individual muscle stress, work and handrim force contributions at different values of FEF. Simulations maximizing and minimizing FEF resulted in higher average muscle stresses (23% and 112%) and total muscle work (28% and 71%) compared to a nominal FEF simulation. The maximal FEF simulation also shifted muscle use from muscles crossing the elbow to those at the shoulder (e.g., rotator cuff muscles), placing greater demand on shoulder muscles during propulsion. The optimal FEF value appears to represent a balance between increasing push force effectiveness to increase mechanical efficiency and minimize upper extremity demand. Thus, care should be taken in using force effectiveness as a metric to reduce upper extremity demand.

  13. Gender and occupational perspectives on adaptation to climate extremes in the Afram Plains of Ghana

    USGS Publications Warehouse

    Codjoe, Samuel N.A.; Atidoh, Lucy K.; Burkett, Virginia

    2012-01-01

    Although sub-Saharan Africa does not contribute significantly to greenhouse gas emissions, significant adverse impacts of climate change are anticipated in this region. Countries in West Africa, which are heavily dependent on rain-fed agriculture, are projected to experience more frequent and intense droughts, altered rainfall patterns and increases in temperature through the end of this century. Changes in hydrology and temperature are likely to affect crop yields, thereby placing pressure on scarce resources in a region that is characterised by limited social, political, technical and financial resources. The success with which communities cope with the impacts of climate change is influenced by existing conditions, forces and characteristics which are peculiar to each of these communities. This paper assesses the preferred adaptation strategies during floods and droughts of males and females in three different occupations (farming, fishing, and charcoal production). Findings are based upon an analysis of focus group discussions and a ranking of preferred adaptation options in three communities in the Afram Plains of Ghana. Assessments of this nature should aid in the selection and implementation of adaptation options for communities and households, which is the level at which climate change adaptation is likely to occur in West Africa.

  14. Role of Soils in Hydrologic Response to Climate Extremes and Land Use Change

    NASA Astrophysics Data System (ADS)

    Scanlon, B. R.; Zhang, Z.; Save, H.; Reedy, R. C.; Faunt, C. C.

    2015-12-01

    Increasing demand for water in response to growing global population underscores the need to better understand linkages and feedbacks between land surface processes and water resources to manage water resources more sustainably. Here we examine the role of soils on hydrologic response to climate extremes and land use change using field scale and remote sensing data at point to basin scales in the U.S. High Plains and California Central Valley. In the U.S. High Plains, soil-textural variations make the difference between sustainable water resources related to coarse-grained soils in the northern High Plains and groundwater mining associated with fine-grained soils in much of the central and southern High Plains. Field data show dynamic response of water resources to droughts and land use change in the northern High Plains with limited response in much of the central and southern High Plains. Soil profiles provide a key to the past by archiving system response to environmental changes in subsurface soil physics and environmental tracer data. Areas with coarse-grained soils are vulnerable to reduced recharge during droughts and increased recharge with land use change from perennial to annual vegetation whereas fine-grained soils are generally insensitive to these stresses. GRACE satellite monitoring of total water storage variations in response to recent droughts is consistent with these spatial variations in soils across the High Plains and hydrologic response to droughts.In the California Central Valley, coarse grained soils in alluvial basins result in dynamic hydrologic responses to climate extremes. GRACE satellite data show marked depletion in total water storage in response to recent droughts reflecting groundwater and surface reservoir storage declines consistent with regional groundwater modeling and monitoring data. The coarse alluvial soils typical of much of the region facilitate managed aquifer recharge in depleted aquifers to complement surface reservoir

  15. Atmospheric Extremes in a Changing Climate: A Strategy for Improved Understanding Driven by International Security Concerns

    NASA Astrophysics Data System (ADS)

    Davis, A. B.; Kao, C. J.

    2001-05-01

    critical threshold crossing. So extreme atmospheric phenomena are of the essence yet they are poorly understood, even in a steady climate, because they challenge both dynamical modelers and statisticians. The authors will describe a preliminary proposal to harness some of the unique human, computational and observational resources at LANL that could lead to a significant breakthrough in our understanding of extreme weather mechanisms and how they relate to climate and climate change. If implemented, this program could open new relationships between the laboratory and presently unsuspecting client-agencies such as FEMA, CDC, EPA, State Department, and so on.

  16. The Response of Different Audiences to Place-based Communication about the Role of Climate Change in Extreme Weather Events

    NASA Astrophysics Data System (ADS)

    Halperin, A.; Walton, P.

    2015-12-01

    As the science of extreme event attribution grows, there is an increasing need to understand how the public responds to this type of climate change communication. Extreme event attribution has the unprecedented potential to locate the effects of climate change in the here and now, but there is little information about how different facets of the public might respond to these local framings of climate change. Drawing on theories of place attachment and psychological distance, this paper explores how people with different beliefs and values shift their willingness to mitigate and adapt to climate change in response to local or global communication of climate change impacts. Results will be presented from a recent survey of over 600 Californians who were each presented with one of three experimental conditions: 1) a local framing of the role of climate change in the California drought 2) a global framing of climate change and droughts worldwide, or 3) a control condition of no text. Participants were categorized into groups based on their prior beliefs about climate change according to the Six Americas classification scheme (Leiserowitz et al., 2011). The results from the survey in conjunction with qualitative results from follow-up interviews shed insight into the importance of place in communicating climate change for people in each of the Six Americas. Additional results examine the role of gender and political affiliation in mediating responses to climate change communication. Despite research that advocates unequivocally for local framing of climate change, this study offers a more nuanced perspective of under which circumstances extreme event attribution might be an effective tool for changing behaviors. These results could be useful for scientists who wish to gain a better understanding of how their event attribution research is perceived or for educators who want to target their message to audiences where it could have the most impact.

  17. Climatic extremes in the north of the west Siberia: millennium chronicle inferred from tree rings.

    NASA Astrophysics Data System (ADS)

    Gorlanova, L.; Hantemirov, R.; Shiyatov, S.; Schweingruber, F.

    2003-04-01

    Extreme climatic events, like frosts and temperature drops, have a strong effect on the functioning of subarctic ecosystems. The best tool for long reconstruction of climatic extremes in the northern regions of Siberia is anatomical analysis of annual rings of trees, and specially shrubs. Frost and light rings of living and dead individuals of Siberian juniper (Juniperus sibirica Burgsd.) and Siberian larch (Larix sibirica Ledeb.) growing at the upper (Polar Ural mountains) and polar (Yamal Peninsula) tree lines in the northwest Siberia have been studied to reconstruct summer frosts and many days abrupt fall of temperature during the second half of growing season over the past 1250 years. The oldest living branches of Siberian juniper we are found 840 years old, the oldest living Siberian larches in this region are 500 years old. However dead stems and branches remain for long centuries. Therefore the chronologies of pathological structures, produced using both living and dried-off stems and branches, are more than 1000-year length. In found juniper, the presence of frost rings provides evidence for frosts that occurred in July. Generally in the same summer larches form frost- or light-rings. Long term and pronounced air temperature drop in the middle of very warm period in the second half of July is the factor responsible for fluctuations of wood density (false rings) in annual rings of juniper and larch. Based on these relationships we can interpret incidence of pathological structures in terms of strong temperature abnormalities. Conclusion has been made, that in July the most severe frosts took place in 801, 1109, 1259, 1278, 1328, 1453, 1466, 1481, 1601, 1783, 1857, and 1882 AD. Pronounced temperature drops in the middle of July took place in 1555, 1610, 1621, 1919, 1947 AD. Comparison our data with data from other regions of the world have been shown that there is agreement in the timing of extreme temperature events of 800-801, 1109, 1258-1259, 1453, 1466

  18. Extreme cyclone wave climate in the Southwest Pacific Ocean: Influence of the El Niño Southern Oscillation and projected climate change

    NASA Astrophysics Data System (ADS)

    Stephens, Scott A.; Ramsay, D. L.

    2014-12-01

    This paper describes the first use of a stochastic cyclone model (SCM) to quantify the extreme significant wave height from tropical cyclones across the Southwest Pacific Ocean. The median extreme significant wave heights across the entire SW Pacific Ocean were 7.5, 10 and 11 m for annual exceedance probabilities (AEPs) of 0.1, 0.02 and 0.01 respectively. Maximum significant wave heights in the region were approximately 1.5 times these values for the same AEP. Tables of extreme significant wave heights are provided for selected inhabited locations. The SCM was used to quantify the effects of the El Niño-Southern Oscillation (ENSO) on extreme significant wave heights, and also the effects of projected climate change on cyclone intensity and frequency of occurrence. West of the International Dateline in the region of the Vanuatu archipelago, the extreme cyclone wave climate was relatively consistent during all phases of the ENSO cycle, but highest during El Niño. Cyclone formation and propagation eastward of the Dateline are more likely to occur during El Niño conditions, however these cyclones tended to be more intense, particularly during extreme El Niño events, leading to a higher long-term extreme wave climate in the eastern SW Pacific, despite the relatively low cyclone observation rate there. Simulations of climate change cyclone intensity increases of 10-20% of the most intense cyclones (categories 4 and 5) along with 10-20% reduction in number of cyclones indicated little change in extreme significant wave heights for low-occurrence AEPs of 1/20 or less. These changes were much less than induced by present-day ENSO variability, suggesting that future changes in extreme wave climate will be sensitive to climate change influences on the frequency and intensity of ENSO events. These results are significant in the light of indications that the frequency of extreme El Nino events might double in response to greenhouse warming.

  19. Generating extreme weather event sets from very large ensembles of regional climate models

    NASA Astrophysics Data System (ADS)

    Massey, Neil; Guillod, Benoit; Otto, Friederike; Allen, Myles; Jones, Richard; Hall, Jim

    2015-04-01

    Generating extreme weather event sets from very large ensembles of regional climate models Neil Massey, Benoit P. Guillod, Friederike E. L. Otto, Myles R. Allen, Richard Jones, Jim W. Hall Environmental Change Institute, University of Oxford, Oxford, UK Extreme events can have large impacts on societies and are therefore being increasingly studied. In particular, climate change is expected to impact the frequency and intensity of these events. However, a major limitation when investigating extreme weather events is that, by definition, only few events are present in observations. A way to overcome this issue it to use large ensembles of model simulations. Using the volunteer distributed computing (VDC) infrastructure of weather@home [1], we run a very large number (10'000s) of RCM simulations over the European domain at a resolution of 25km, with an improved land-surface scheme, nested within a free-running GCM. Using VDC allows many thousands of climate model runs to be computed. Using observations for the GCM boundary forcings we can run historical "hindcast" simulations over the past 100 to 150 years. This allows us, due to the chaotic variability of the atmosphere, to ascertain how likely an extreme event was, given the boundary forcings, and to derive synthetic event sets. The events in these sets did not actually occur in the observed record but could have occurred given the boundary forcings, with an associated probability. The event sets contain time-series of fields of meteorological variables that allow impact modellers to assess the loss the event would incur. Projections of events into the future are achieved by modelling projections of the sea-surface temperature (SST) and sea-ice boundary forcings, by combining the variability of the SST in the observed record with a range of warming signals derived from the varying responses of SSTs in the CMIP5 ensemble to elevated greenhouse gas (GHG) emissions in three RCP scenarios. Simulating the future with a

  20. Extinction of an introduced warm-climate alien species, Xenopus laevis, by extreme weather events.

    PubMed

    Tinsley, Richard C; Stott, Lucy C; Viney, Mark E; Mable, Barbara K; Tinsley, Matthew C

    Invasive, non-native species represent a major threat to biodiversity worldwide. The African amphibian Xenopus laevis is widely regarded as an invasive species and a threat to local faunas. Populations originating at the Western Cape, South Africa, have been introduced on four continents, mostly in areas with a similar Mediterranean climate. Some introduced populations are also established in cooler environments where persistence for many decades suggests a capacity for long-term adaptation. In these cases, recent climate warming might enhance invasion ability, favouring range expansion, population growth and negative effects on native faunas. In the cool temperate UK, populations have been established for about 50 years in Wales and for an unknown period, probably >20 years, in England (Lincolnshire). Our field studies over 30 and 10 years, respectively, show that in favourable conditions there may be good recruitment, fast individual growth rates and large body size; maximum longevity exceeds 23 years. Nevertheless, areas of distribution remained limited, with numbers <500 in each population. In 2010, only a single individual was captured at each locality and further searching failed to record any others in repeated sampling up to 2014. We conclude that both populations are now extinct. The winters of 2009-2010 and 2010-2011 experienced extreme cold and drought (December 2010 was the coldest in 120 years and the third driest in 100 years). The extinction of X. laevis in these areas indicates that even relatively long-established alien species remain vulnerable to rare extreme weather conditions.

  1. Predicted climate change alters the indirect effect of predators on an ecosystem process.

    PubMed

    Lensing, Janet R; Wise, David H

    2006-10-17

    Changes in rainfall predicted to occur with global climate change will likely alter rates of leaf-litter decomposition through direct effects on primary decomposers. In a field experiment replicated at two sites, we show that altered rainfall may also change how cascading trophic interactions initiated by arthropod predators in the leaf litter indirectly influence litter decomposition. On the drier site there was no interaction between rainfall and the indirect effect of predators on decomposition. In contrast, on the moister site spiders accelerated the disappearance rate of deciduous leaf litter under low rainfall, but had no, or possibly a negative, indirect effect under high rainfall. Thus, changes resulting from the more intense hydrological cycle expected to occur with climate change will likely influence how predators indirectly affect an essential ecosystem process.

  2. Changes in large-scale climate alter spatial synchrony of aphid pests

    NASA Astrophysics Data System (ADS)

    Sheppard, Lawrence W.; Bell, James R.; Harrington, Richard; Reuman, Daniel C.

    2016-06-01

    Spatial synchrony, the tendency of distant populations to fluctuate similarly, is a major concern in ecology. Except in special circumstances, researchers historically had difficulty identifying drivers of synchrony in field systems. Perhaps for this reason, the possibility that changes in large-scale climatic drivers may modify synchrony, thereby impacting ecosystems and human concerns, has been little examined. Here, we use wavelets to determine environmental drivers of phenological synchrony across Britain for 20 aphid species, most major crop pests. Consistently across species, changes in drivers produced large changes in aphid synchrony. Different drivers acted on different timescales: using a new wavelet analogue of the Moran theorem, we show that on long timescales (>4 years), 80% of synchrony in aphid first flights is due to synchrony in winter climate; but this explanation accounts for less short-timescale (<=4 years) synchrony. Changes in aphid synchrony over time also differed by timescale: long-timescale synchrony fell from before 1993 to after, caused by similar changes in winter climate; whereas short-timescale synchrony increased. Shifts in winter climate are attributable to the North Atlantic Oscillation, an important climatic phenomenon, so effects described here may influence other taxa. This study documents a new way that climatic changes influence populations, through altered Moran effects.

  3. Comparative assessment of extreme climate variability and human activities on regional hydrologic droughts in the Weihe River basin, North China

    NASA Astrophysics Data System (ADS)

    Shen, H.; Ren, L.; Yuan, F.; Yang, X.

    2015-06-01

    Drought is a comprehensive phenomenon not only resulting from precipitation deficits and climatic factors, but also being related to terrestrial hydrologic conditions and human activities. This paper investigated the relationships among regional hydrologic drought, climate extremes and human activities in the Weihe River basin, northwest China, where is also called Guanzhong Plain. First, the study period was divided into baseline and variation period according to the runoff trend analysis. Subsequently, the variable infiltration capacity (VIC) macroscale distributed hydrologic model was applied to reconstruct the natural runoff series in variation period. Furthermore, the effects of climate change and human activities on runoff were separated by the modelling results. Finally, standardized runoff index (SRI) and extreme climate indices were generated to quantatively assess the relationships among hydrologic droughts, climate extremes and human activity impacts. The results indicated that human activity impacts is a remarkable source of runoff reduction and represented an in-phase pattern of SRI-based drought severity and warm days. It also showed that the SRI-based floods and droughts characteristics are in good correlation with extreme precipitation.

  4. What Can The Engineering for Climate Extremes Partnership Do For Global Resilience?

    NASA Astrophysics Data System (ADS)

    Bruyere, C. L.; Tye, M. R.; Holland, G. J.

    2015-12-01

    ECEP is an interdisciplinary partnership that brings together academia, industry, commerce, societal groups and government to develop robust, well-communicated predictions and advice on the impacts of weather and climate extremes using cutting-edge science. A feature of the partnership is the manner in which basic and applied research and development is conducted in direct collaboration with the end user. ECEP was formally launched at the AGU Fall Meeting in December 2014, and has gained rapid momentum in the subsequent year. Integral to the ECEP approach to resilience is the concept of 'Graceful Failure'. By acknowledging that all designs will fail at some level, and instead adopting flexible designs that combine engineering or network strengths with a plan for efficient, systematic failure and avoid delayed recovery. Such an approach enables optimal planning for both known and future scenarios, and their assessed uncertainty. This presentation will use the Boulder and North Colorado floods of September 2013 as a case study of how Graceful Failure improves resilience to extreme weather.

  5. Extremes of precipitation in the changing Central/Eastern European climate

    NASA Astrophysics Data System (ADS)

    Kis, Anna; Pongrácz, Rita; Bartholy, Judit

    2014-05-01

    Hot weather and increasingly warm climatic conditions are quite straightforward consequences of global warming. Connection to precipitation is not so clear since precipitation is one of the most variable meteorological elements both in time and space. However, it has a huge effect both on vegetation and human activities. Intense precipitation events may result in severe environmental, agricultural and economical damages. In order to avoid them or at least decrease these potential damages, it is necessary to assess the possible changes, and build appropriate regional adaptation strategies. To estimate the future trends, we used 11 regional climate model (RCM) simulations from the ENSEMBLES project. All the models used 25 km horizontal resolution and took into account the SRES A1B emission scenario. Three different global climate models provided the necessary initial and boundary conditions. Validation analyses for the Central/Eastern European region showed that simulated precipitation values usually significantly underestimate the observations in summer and overestimate in the rest of the year. Therefore, we applied bias correction in order to eliminate these systematic errors. We used a quantile matching technique for each RCM simulation: the monthly empirical distribution functions of each grid point were fitted to the observed distributions (reference: E-OBS database), then the calculated multiplicative bias correcting factors are applied to the raw outputs of RCM experiments. After the correction, we analyzed several precipitation-related indices (e.g., CDD, RR10, RR20, RX1, RX5, 90th pctl, 99th pctl) for 9 sub-regions as well as the 10 and 20 year return periods of the daily precipitation amount for the 1951-2100 time period on seasonal and annual scales. According to our results climate change results in more intense and more frequent precipitation extremes in Central/Eastern Europe. The return period of the daily precipitation amount is estimated to increase

  6. Assessing the Impacts of Climate Change on Hydrologic Extremes in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Hamlet, A. F.; Tohver, I.; Lee, S.; Salathe, E.; Lutz, E.

    2010-12-01

    We report on three case studies at the University of Washington assessing the changing nature of hydrologic extremes in the Pacific Northwest (PNW) in response to projected climate change. The first is associated with the Columbia Basin Climate Change Scenarios Project (CBCCSP) which provides estimates of the hundred-year flood (Q100) and the ten-year 7-day low flow (7Q10) for 297 streamflow locations in the PNW. A key finding of the study is that changing flood risks in response to climate change in the PNW are a complex function of both temperature sensitivities related to snow processes (which vary with historical mid-winter temperature regimes) and the spatial distribution of precipitation change. Previous analyses using a less sophisticated statistical downscaling approach, for example, showed declining flood risk in many of the coldest locations in the PNW. Because of increases in precipitation in the northern most portions of the domain, the current results show increasing flood risks in these same areas. Changes in low flow risks, by comparison, are broadly similar for most sites. The ensemble analysis at each streamflow site facilitates assessment of uncertainty. A second case study assesses changing flood risks at relatively small spatial scales with the intent to improve estimates of Q100 that are currently used in professional practice to design infrastructure such as culverts for forest roads. Current methods used in practice would suggest no change in flood risk in response to projected climate change in the PNW. Use of a physically based hydrologic model yields a complex spatial pattern of changing flood risk with topography that also varies with basin size. A third study (currently in progress) uses an ensemble of downscaled scenarios from a regional-scale climate model at 12km resolution to estimate changing flood risks for the same 297 streamflow locations examined in the CBCCSP study. A primary goal of this study is to assess the potential

  7. The impact of an extreme case of irrigation on the southeastern United States climate

    NASA Astrophysics Data System (ADS)

    Selman, Christopher; Misra, Vasubandhu

    2017-02-01

    The impacts of irrigation on southeast United States diurnal climate are investigated using simulations from a regional climate model. An extreme case is assumed, wherein irrigation is set to 100 % of field capacity over the growing season of May through October. Irrigation is applied to the root zone layers of 10-40 and 40-100 cm soil layers only. It is found that in this regime there is a pronounced decrease in monthly averaged temperatures in irrigated regions across all months. In non-irrigated areas a slight warming is simulated. Diurnal maximum temperatures in irrigated areas warm, while diurnal minimum temperatures cool. The daytime warming is attributed to an increase in shortwave flux at the surface owing to diminished low cloud cover. Nighttime and daily mean cooling result as a consequence repartitioning of energy into latent heat flux over sensible heat flux, and of a higher net downward ground heat flux. Excess heat is transported into the deep soil layer, preventing a rapidly intensifying positive feedback loop. Both diurnal and monthly average precipitations are reduced over irrigated areas at a magnitude and spatial pattern similar to one another. Due to the excess moisture availability, evaporation is seen to increase, but this is nearly balanced by a corresponding reduction in sensible heat flux. Concomitant with additional moisture availability is an increase in both transient and stationary moisture flux convergences. However, despite the increase, there is a large-scale stabilization of the atmosphere stemming from a cooled surface.

  8. Observed connections of Arctic stratospheric ozone extremes to Northern Hemisphere surface climate

    NASA Astrophysics Data System (ADS)

    Ivy, Diane J.; Solomon, Susan; Calvo, Natalia; Thompson, David W. J.

    2017-02-01

    We present observational evidence for linkages between extreme Arctic stratospheric ozone anomalies in March and Northern Hemisphere tropospheric climate in spring (March–April). Springs characterized by low Arctic ozone anomalies in March are associated with a stronger, colder polar vortex and circulation anomalies consistent with the positive polarity of the Northern Annular Mode/North Atlantic Oscillation in March and April. The associated spring tropospheric circulation anomalies indicate a poleward shift of zonal winds at 500 hPa over the North Atlantic. Furthermore, correlations between March Arctic ozone and March–April surface temperatures reveal certain regions where a surprisingly large fraction of the interannual variability in spring surface temperatures is associated with interannual variability in ozone. We also find that years with low March Arctic ozone in the stratosphere display surface maximum daily temperatures in March–April that are colder than normal over southeastern Europe and southern Asia, but warmer than normal over northern Asia, adding to the warming from increasing well-mixed greenhouse gases in those locations. The results shown here do not establish causality, but nevertheless suggest that March stratospheric ozone is a useful indicator of spring averaged (March–April) tropospheric climate in certain Northern Hemispheric regions.

  9. The impact of an extreme case of irrigation on the southeastern United States climate

    NASA Astrophysics Data System (ADS)

    Selman, Christopher; Misra, Vasubandhu

    2016-05-01

    The impacts of irrigation on southeast United States diurnal climate are investigated using simulations from a regional climate model. An extreme case is assumed, wherein irrigation is set to 100 % of field capacity over the growing season of May through October. Irrigation is applied to the root zone layers of 10-40 and 40-100 cm soil layers only. It is found that in this regime there is a pronounced decrease in monthly averaged temperatures in irrigated regions across all months. In non-irrigated areas a slight warming is simulated. Diurnal maximum temperatures in irrigated areas warm, while diurnal minimum temperatures cool. The daytime warming is attributed to an increase in shortwave flux at the surface owing to diminished low cloud cover. Nighttime and daily mean cooling result as a consequence repartitioning of energy into latent heat flux over sensible heat flux, and of a higher net downward ground heat flux. Excess heat is transported into the deep soil layer, preventing a rapidly intensifying positive feedback loop. Both diurnal and monthly average precipitations are reduced over irrigated areas at a magnitude and spatial pattern similar to one another. Due to the excess moisture availability, evaporation is seen to increase, but this is nearly balanced by a corresponding reduction in sensible heat flux. Concomitant with additional moisture availability is an increase in both transient and stationary moisture flux convergences. However, despite the increase, there is a large-scale stabilization of the atmosphere stemming from a cooled surface.

  10. Response of vegetation NDVI to climatic extremes in the arid region of Central Asia: a case study in Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Yao, Junqiang; Chen, Yaning; Zhao, Yong; Mao, Weiyi; Xu, Xinbing; Liu, Yang; Yang, Qing

    2017-02-01

    Observed data showed the climatic transition from warm-dry to warm-wet in Xinjiang during the past 30 years and will probably affect vegetation dynamics. Here, we analyze the interannual change of vegetation index based on the satellite-derived normalized difference vegetation index (NDVI) with temperature and precipitation extreme over the Xinjiang, using the 8-km NDVI third-generation (NDVI3g) from the Global Inventory Modelling and Mapping Studies (GIMMS) from 1982 to 2010. Few previous studies analyzed the link between climate extremes and vegetation response. From the satellite-based results, annual NDVI significantly increased in the first two decades (1981-1998) and then decreased after 1998. We show that the NDVI decrease over the past decade may conjointly be triggered by the increases of temperature and precipitation extremes. The correlation analyses demonstrated that the trends of NDVI was close to the trend of extreme precipitation; that is, consecutive dry days (CDD) and torrential rainfall days (R24) positively correlated with NDVI during 1998-2010. For the temperature extreme, while the decreases of NDVI correlate positively with warmer mean minimum temperature (Tnav), it correlates negatively with the number of warmest night days (Rwn). The results suggest that the climatic extremes have possible negative effects on the ecosystem.

  11. Climatic and biotic extreme events moderate long-term responses of above- and belowground sub-Arctic heathland communities to climate change.

    PubMed

    Bokhorst, Stef; Phoenix, Gareth K; Berg, Matty P; Callaghan, Terry V; Kirby-Lambert, Christopher; Bjerke, Jarle W

    2015-11-01

    Climate change impacts are not uniform across the Arctic region because interacting factors causes large variations in local ecosystem change. Extreme climatic events and population cycles of herbivores occur simultaneously against a background of gradual climate warming trends and can redirect ecosystem change along routes that are difficult to predict. Here, we present the results from sub-Arctic heath vegetation and its belowground micro-arthropod community in response to the two main drivers of vegetation damage in this region: extreme winter warming events and subsequent outbreaks of the defoliating autumnal moth caterpillar (Epirrita autumnata). Evergreen dwarf shrub biomass decreased (30%) following extreme winter warming events and again by moth caterpillar grazing. Deciduous shrubs that were previously exposed to an extreme winter warming event were not affected by the moth caterpillar grazing, while those that were not exposed to warming events (control plots) showed reduced (23%) biomass from grazing. Cryptogam cover increased irrespective of grazing or winter warming events. Micro-arthropods declined (46%) following winter warming but did not respond to changes in plant community. Extreme winter warming and caterpillar grazing suppressed the CO2 fluxes of the ecosystem. Evergreen dwarf shrubs are disadvantaged in a future sub-Arctic with more stochastic climatic and biotic events. Given that summer warming may further benefit deciduous over evergreen shrubs, event and trend climate change may both act against evergreen shrubs and the ecosystem functions they provide. This is of particular concern given that Arctic heath vegetation is typically dominated by evergreen shrubs. Other components of the vegetation showed variable responses to abiotic and biotic events, and their interaction indicates that sub-Arctic vegetation response to multiple pressures is not easy to predict from single-factor responses. Therefore, while biotic and climatic events may

  12. Food Prices and Climate Extremes: A Model of Global Grain Price Variability with Storage

    NASA Astrophysics Data System (ADS)

    Otto, C.; Schewe, J.; Frieler, K.

    2015-12-01

    Extreme climate events such as droughts, floods, or heat waves affect agricultural production in major cropping regions and therefore impact the world market prices of staple crops. In the last decade, crop prices exhibited two very prominent price peaks in 2007-2008 and 2010-2011, threatening food security especially for poorer countries that are net importers of grain. There is evidence that these spikes in grain prices were at least partly triggered by actual supply shortages and the expectation of bad harvests. However, the response of the market to supply shocks is nonlinear and depends on complex and interlinked processes such as warehousing, speculation, and trade policies. Quantifying the contributions of such different factors to short-term price variability remains difficult, not least because many existing models ignore the role of storage which becomes important on short timescales. This in turn impedes the assessment of future climate change impacts on food prices. Here, we present a simple model of annual world grain prices that integrates grain stocks into the supply and demand functions. This firstly allows us to model explicitly the effect of storage strategies on world market price, and thus, for the first time, to quantify the potential contribution of trade policies to price variability in a simple global framework. Driven only by reported production and by long--term demand trends of the past ca. 40 years, the model reproduces observed variations in both the global storage volume and price of wheat. We demonstrate how recent price peaks can be reproduced by accounting for documented changes in storage strategies and trade policies, contrasting and complementing previous explanations based on different mechanisms such as speculation. Secondly, we show how the integration of storage allows long-term projections of grain price variability under climate change, based on existing crop yield scenarios.

  13. A spatial assessment framework for evaluating flood risk under extreme climates.

    PubMed

    Chen, Yun; Liu, Rui; Barrett, Damian; Gao, Lei; Zhou, Mingwei; Renzullo, Luigi; Emelyanova, Irina

    2015-12-15

    Australian coal mines have been facing a major challenge of increasing risk of flooding caused by intensive rainfall events in recent years. In light of growing climate change concerns and the predicted escalation of flooding, estimating flood inundation risk becomes essential for understanding sustainable mine water management in the Australian mining sector. This research develops a spatial multi-criteria decision making prototype for the evaluation of flooding risk at a regional scale using the Bowen Basin and its surroundings in Queensland as a case study. Spatial gridded data, including climate, hydrology, topography, vegetation and soils, were collected and processed in ArcGIS. Several indices were derived based on time series of observations and spatial modeling taking account of extreme rainfall, evapotranspiration, stream flow, potential soil water retention, elevation and slope generated from a digital elevation model (DEM), as well as drainage density and proximity extracted from a river network. These spatial indices were weighted using the analytical hierarchy process (AHP) and integrated in an AHP-based suitability assessment (AHP-SA) model under the spatial risk evaluation framework. A regional flooding risk map was delineated to represent likely impacts of criterion indices at different risk levels, which was verified using the maximum inundation extent detectable by a time series of remote sensing imagery. The result provides baseline information to help Bowen Basin coal mines identify and assess flooding risk when making adaptation strategies and implementing mitigation measures in future. The framework and methodology developed in this research offers the Australian mining industry, and social and environmental studies around the world, an effective way to produce reliable assessment on flood risk for managing uncertainty in water availability under climate change.

  14. Vegetation response to extreme climate events on the Mongolian Plateau from 2000 to 2010

    NASA Astrophysics Data System (ADS)

    John, Ranjeet; Chen, Jiquan; Ou-Yang, Zu-Tao; Xiao, Jingfeng; Becker, Richard; Samanta, Arindam; Ganguly, Sangram; Yuan, Wenping; Batkhishig, Ochirbat

    2013-09-01

    Climate change has led to more frequent extreme winters (aka, dzud) and summer droughts on the Mongolian Plateau during the last decade. Among these events, the 2000-2002 combined summer drought-dzud and 2010 dzud were the most severe on vegetation. We examined the vegetation response to these extremes through the past decade across the Mongolian Plateau as compared to decadal means. We first assessed the severity and extent of drought using the Tropical Rainfall Measuring Mission (TRMM) precipitation data and the Palmer drought severity index (PDSI). We then examined the effects of drought by mapping anomalies in vegetation indices (EVI, EVI2) and land surface temperature derived from MODIS and AVHRR for the period of 2000-2010. We found that the standardized anomalies of vegetation indices exhibited positively skewed frequency distributions in dry years, which were more common for the desert biome than for grasslands. For the desert biome, the dry years (2000-2001, 2005 and 2009) were characterized by negative anomalies with peak values between -1.5 and -0.5 and were statistically different (P < 0.001) from relatively wet years (2003, 2004 and 2007). Conversely, the frequency distributions of the dry years were not statistically different (p < 0.001) from those of the relatively wet years for the grassland biome, showing that they were less responsive to drought and more resilient than the desert biome. We found that the desert biome is more vulnerable to drought than the grassland biome. Spatially averaged EVI was strongly correlated with the proportion of land area affected by drought (PDSI <- 1) in Inner Mongolia (IM) and Outer Mongolia (OM), showing that droughts substantially reduced vegetation activity. The correlation was stronger for the desert biome (R2 = 65 and 60, p < 0.05) than for the IM grassland biome (R2 = 53, p < 0.05). Our results showed significant differences in the responses to extreme climatic events (summer drought and dzud) between the

  15. Vulnerability and impact assessment of extreme climatic event: A case study of southern Punjab, Pakistan.

    PubMed

    Aslam, Abdul Qayyum; Ahmad, Sajid R; Ahmad, Iftikhar; Hussain, Yawar; Hussain, Muhammad Sameem

    2017-02-15

    Understanding of frequency, severity, damages and adaptation costs of climate extremes is crucial to manage their aftermath. Evaluation of PRECIS RCM modelled data under IPCC scenarios in Southern Punjab reveals that monthly mean temperature is 30°C under A2 scenario, 2.4°C higher than A1B which is 27.6°C in defined time lapses. Monthly mean precipitation under A2 scenario ranges from 12 to 15mm and for A1B scenario it ranges from 15 to 19mm. Frequency modelling of floods and droughts via poisson distribution shows increasing trend in upcoming decades posing serious impacts on agriculture and livestock, food security, water resources, public health and economic status. Cumulative loss projected for frequent floods without adaptation will be in the range of USD 66.8-79.3 billion in time lapse of 40years from 2010 base case. Drought damage function @ 18% for A2 scenario and @ 13.5% for A1B scenario was calculated; drought losses on agriculture and livestock sectors were modelled. Cumulative loss projected for frequent droughts without adaptation under A2 scenario will be in the range of USD 7.5-8.5 billion while under A1B scenario it will be in the range of USD 3.5-4.2 billion for time lapse of 60years from base case 1998-2002. Severity analysis of extreme events shows that situation get worse if adaptations are not only included in the policy but also in the integrated development framework with required allocation of funds. This evaluation also highlights the result of cost benefit analysis, benefits of the adaptation options (mean & worst case) for floods and droughts in Southern Punjab. Additionally the research highlights the role of integrated extreme events impact assessment methodology in performing the vulnerability assessments and to support the adaptation decisions. This paper is an effort to highlight importance of bottom up approaches to deal with climate change.

  16. Climate change alters plant biogeography in Mediterranean prairies along the West Coast, USA.

    PubMed

    Pfeifer-Meister, Laurel; Bridgham, Scott D; Reynolds, Lorien L; Goklany, Maya E; Wilson, Hannah E; Little, Chelsea J; Ferguson, Aryana; Johnson, Bart R

    2016-02-01

    Projected changes in climate are expected to have widespread effects on plant community composition and diversity in coming decades. However, multisite, multifactor climate manipulation studies that have examined whether observed responses are regionally consistent and whether multiple climate perturbations are interdependent are rare. Using such an experiment, we quantified how warming and increased precipitation intensity affect the relative dominance of plant functional groups and diversity across a broad climate gradient of Mediterranean prairies. We implemented a fully factorial climate manipulation of warming (+2.5-3.0 °C) and increased wet-season precipitation (+20%) at three sites across a 520-km latitudinal gradient in the Pacific Northwest, USA. After seeding with a nearly identical mix of native species at all sites, we measured plant community composition (i.e., cover, richness, and diversity), temperature, and soil moisture for 3 years. Warming and the resultant drying of soils altered plant community composition, decreased native diversity, and increased total cover, with warmed northern communities becoming more similar to communities further south. In particular, after two full years of warming, annual cover increased and forb cover decreased at all sites mirroring the natural biogeographic pattern. This suggests that the extant climate gradient of increasing heat and drought severity is responsible for a large part of the observed biogeographic pattern of increasing annual invasion in US West Coast prairies as one moves further south. Additional precipitation during the rainy season did little to relieve drought stress and had minimal effects on plant community composition. Our results suggest that the projected increase in drought severity (i.e., hotter, drier summers) in Pacific Northwest prairies may lead to increased invasion by annuals and a loss of forbs, similar to what has been observed in central and southern California, resulting in

  17. Climate Change: A New Metric to Measure Changes in the Frequency of Extreme Temperatures using Record Data

    NASA Technical Reports Server (NTRS)

    Munasinghe, L.; Jun, T.; Rind, D. H.

    2012-01-01

    Consensus on global warming is the result of multiple and varying lines of evidence, and one key ramification is the increase in frequency of extreme climate events including record high temperatures. Here we develop a metric- called "record equivalent draws" (RED)-based on record high (low) temperature observations, and show that changes in RED approximate changes in the likelihood of extreme high (low) temperatures. Since we also show that this metric is independent of the specifics of the underlying temperature distributions, RED estimates can be aggregated across different climates to provide a genuinely global assessment of climate change. Using data on monthly average temperatures across the global landmass we find that the frequency of extreme high temperatures increased 10-fold between the first three decades of the last century (1900-1929) and the most recent decade (1999-2008). A more disaggregated analysis shows that the increase in frequency of extreme high temperatures is greater in the tropics than in higher latitudes, a pattern that is not indicated by changes in mean temperature. Our RED estimates also suggest concurrent increases in the frequency of both extreme high and extreme low temperatures during 2002-2008, a period when we observe a plateauing of global mean temperature. Using daily extreme temperature observations, we find that the frequency of extreme high temperatures is greater in the daily minimum temperature time-series compared to the daily maximum temperature time-series. There is no such observable difference in the frequency of extreme low temperatures between the daily minimum and daily maximum.

  18. The analytical derivation of multiple elasticities of runoff to climate change and catchment characteristics alteration

    NASA Astrophysics Data System (ADS)

    Wang, Weiguang; Zou, Shan; Shao, Quanxi; Xing, Wanqiu; Chen, Xi; Jiao, Xiyun; Luo, Yufeng; Yong, Bin; Yu, Zhongbo

    2016-10-01

    The concept of elasticity has been widely employed to quantify the hydrological response to changes in climate and catchments properties. To separate the effect of different climatic variables on runoff, the potential evaporation (E0) elasticity of runoff needs to be presented in term of observed climate variables. To fully reflect the effects of maximum and minimum temperatures and reduce the influence of the correlations of radiation with sunshine duration and relative humidity on the assessment results, we decompose the E0 elasticity into five evaporation-related elasticities (i.e., sunshine duration, maximum and minimum temperature, wind speed and relative humidity) via the first-order differentiation of the FAO 56 Penman equation. As the catchment runoff is frequently affected by the land use/cover change, we also consider changes in catchment characteristics and derive a catchment alteration elasticity based on the Budyko framework. An application was carried out in 30 catchments with widespread climatic types in China. For the two periods (i.e., the baseline period and the changed period) divided by the Pettitt test, the contributions of different climatic variables and land use/cover conditions to runoff change were quantified. In general, the alteration of catchment characteristics and climatic change should be mainly responsible for changes in runoff in water-limited and humid basins, respectively. Although the elasticity of maximum temperature are usually higher than that of minimum temperature, the contributions to runoff change present the opposite direction. Furthermore, additional analysis indicated some overestimation in relative humidity elasticities in the previous studies, further emphasizing the necessity of our extension to alleviate the influence of correlation between climatic variables to the assessment results. Moreover, the results of model performance versus model complexity showed that the choice of model complexity still depends on the

  19. Extraction and use of historical extreme climate databases for nuclear power plants safety assessment

    NASA Astrophysics Data System (ADS)

    Hamdi, Yasser; Bertin, Xavier; Bardet, Lise; Duluc, Claire-Marie; Rebour, Vincent

    2015-04-01

    Safety assessments of nuclear power plants (NPPs) related to natural hazards are a matter of major interest to the nuclear community in France and many European countries. Over the past fewer decades, France has experienced many of these events such as heat waves (2003 and 2006), heavy snowstorms (1958, 1990 and 1992), storms which have given rise to heavy rain and severe floods (1992, 1999, 2010), strong straight-line wind and extreme marine surges (1987, 1999 and 2010) much larger than the other local observations (outliers). These outliers had clearly illustrated the potential to underestimate the extreme surges calculated with the current statistical methods. The estimation of extreme surges then requires the use of a statistical analysis approach having a more solid theoretical framework and using more reliable databases for the assessment of hazards to design NPPs to low or extremely low probabilities of failure. These databases can be produced by collecting historical information (HI) about severe climatic events occurred over short and long timescales. As a matter of fact, natural hazards such as heat waves, droughts, floods, severe storms and snowstorms have affected France and many European countries since the dawn of time. These events would have been such horrific experiences that if they really occurred, there would be unmistakable traces of them. They must have left clues. These catastrophic events have been unforgettably engraved in people's minds and many of them have been traced in archives and history textbooks. The oldest events have certainly left clues and traces somewhere in the geological layers of the earth or elsewhere. The construction of the historical databases and developing probabilistic approaches capable of integrating them correctly is highly challenging for the scientific community (Translating these geological clues to historical data to build historical databases that can be used by the statistical models is a different

  20. The ClimaGrowing Footprint of Climate Change: Can Systems Built Today Cope with Tomorrow's Weather Extremes?

    SciTech Connect

    Kintner-Meyer, Michael CW; Kraucunas, Ian P.

    2013-07-11

    This article describes how current climate conditions--with increasingly extreme storms, droughts, and heat waves and their ensuing effects on water quality and levels--are adding stress to an already aging power grid. Moreover, it explains how evaluations of said grid, built upon past weather patterns, are inaqeduate for measuring if the nation's energy systems can cope with future climate changes. The authors make the case for investing in the development of robust, integrated electricity planning tools that account for these climate change factors as a means for enhancing electricity infrastructure resilience.

  1. Alteration of a human intestinal microbiota under extreme life environment in the Antarctica.

    PubMed

    Jin, Jong-Sik; Touyama, Mutsumi; Yamada, Shin; Yamazaki, Takashi; Benno, Yoshimi

    2014-01-01

    The human intestinal microbiota (HIM) settles from birth and continues to change phenotype by some factors (e.g. host's diet) throughout life. However, the effect of extreme life environment on human HIM composition is not well known. To understand HIM fluctuation under extreme life environment in humans, fecal samples were collected from six Japanese men on a long Antarctic expedition. They explored Antarctica for 3 months and collected their fecal samples at once-monthly intervals. Using terminal restriction fragment length polymorphism (T-RFLP) and real time polymerase chain reaction (PCR) analysis, the composition of HIM in six subjects was investigated. Three subjects presented restoration of HIM after the expedition compared versus before and during the expedition. Two thirds samples collected during the expedition belonged to the same cluster in dendrogram. However, all through the expedition, T-RFLP patterns showed interindividual variability. Especially, Bifidobacterium spp. showed a tendency to decrease during and restore after the expedition. A reduction of Bifidobacterium spp. was observed in five subjects the first 1 month of the expedition. Bacteroides thetaiotaomicron, which is thought to proliferate during emotional stress, significantly decreased in one subject, indicating that other factors in addition to emotional stress may affect the composition of HIM in this study. These findings could be helpful to understand the effect of extreme life environment on HIM.

  2. Development of National Future Extreme Heat Scenario to Enable the Assessment of Climate Impacts on Public Health

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Cresson, William L.; Al-Hamdan, Mohammad Z.; Estes, Maurice G.

    2013-01-01

    The project's emphasis is on providing assessments of the magnitude, frequency and geographic distribution of EHEs to facilitate public health studies. We focus on the daily to weekly time scales on which EHEs occur, not on decadal-scale climate changes. There is, however, a very strong connection between air temperature patterns at the two time scales and long-term climatic changes will certainly alter the frequency of EHEs.

  3. Regional and Household Adaptation Strategies to Climate Extremes: the Case Study of the Beava River Basin, the Czech Republic

    NASA Astrophysics Data System (ADS)

    Duží, Barbora; Stojanov, Robert; Vikhrov, Dmytro

    2013-04-01

    We investigate regional and household adaptation strategies in the region affected by climate extremes, focusing on floods occurrence during past 15 years period. The main research question is: What is the overall state of adaptation measurements to climate extremes on the Bečva river basin? Target area is located along upper and middle part of the Bečva river basin in the east of the Czech Republic. The main theoretical concepts draw from differentiations between coping/adaptation strategies to climate extremes and theory of focusing event as a starter of changes in attention and agenda of problem solution. We apply mixed empirical research and case study approach. First we use qualitative research to serve as an initial entrance to the issue, to find out the perception of adaptation progress and preparedness to climate extremes on regional level. We conducted deep interviews (N=20) with relevant stakeholders. We proceed with quantitative research through the conducting face-to face questionnaires with household residents (N=305) in no, low and no risk area in relation to flood occurrence. We designed set of questions to find out relation among experiences with flood, the level of damages and applied emergency and adaptation measurements.

  4. How Robust are our Hydrologic Models in Simulating Streamflow Alterations in a Changing Climate?

    NASA Astrophysics Data System (ADS)

    Shrestha, R. R.; Schnorbus, M.; Peters, D. L.

    2015-12-01

    Hydrologic models are powerful tools for assessing streamflow alterations from natural and anthropogenically driven changes such as land use, water use, and climate change. However, the ability of the models to replicate the magnitude and direction of changes of different components of the hydrograph is not clear. Hence, we initiated a study to evaluate the replicability of the different streamflow components and their changes by employing the widely used Variable Infiltration Capacity (VIC) hydrologic model for the Fraser River Basin, Canada. We analyzed the replicability of a range of indicators of hydrologic alterations (IHA) by using climate inputs derived from gridded observations and statistically downscaled global climate models. Given that the hydrologic regime of the region is known to be influenced by teleconnections to the Pacific Decadal Oscillation (PDO) and El Niño-Southern Oscillation (ENSO), we used hydrologic responses to the PDO and ENSO states as analogues for evaluating the model's ability to simulate climate-induced changes to streamflow. The results show a generally good skill of the model in replicating the annual and peak flow related IHAs, but more limited replicability of the minimum flow and flow pulse related IHAs. Additionally, while the results revealed a generally good replication of the qualitative patterns and direction of changes between the different climate states, the magnitude of change for some of the indicators showed considerable differences. Hence, there is a need to exercise caution in the use of model-simulated indicators, and the replicability of both magnitude and direction of change need to be carefully examined before using the simulated indicators for projecting future changes to the flow regime.

  5. Water-borne diseases and extreme weather events in Cambodia: review of impacts and implications of climate change.

    PubMed

    Davies, Grace I; McIver, Lachlan; Kim, Yoonhee; Hashizume, Masahiro; Iddings, Steven; Chan, Vibol

    2014-12-23

    Cambodia is prone to extreme weather events, especially floods, droughts and typhoons. Climate change is predicted to increase the frequency and intensity of such events. The Cambodian population is highly vulnerable to the impacts of these events due to poverty; malnutrition; agricultural dependence; settlements in flood-prone areas, and public health, governance and technological limitations. Yet little is known about the health impacts of extreme weather events in Cambodia. Given the extremely low adaptive capacity of the population, this is a crucial knowledge gap. A literature review of the health impacts of floods, droughts and typhoons in Cambodia was conducted, with regional and global information reviewed where Cambodia-specific literature was lacking. Water-borne diseases are of particular concern in Cambodia, in the face of extreme weather events and climate change, due to, inter alia, a high pre-existing burden of diseases such as diarrhoeal illness and a lack of improved sanitation infrastructure in rural areas. A time-series analysis under quasi-Poisson distribution was used to evaluate the association between floods and diarrhoeal disease incidence in Cambodian children between 2001 and 2012 in 16 Cambodian provinces. Floods were significantly associated with increased diarrhoeal disease in two provinces, while the analysis conducted suggested a possible protective effect from toilets and piped water. Addressing the specific, local pre-existing vulnerabilities is vital to promoting population health resilience and strengthening adaptive capacity to extreme weather events and climate change in Cambodia.

  6. Modelling the increased frequency of extreme sea levels in the Ganges-Brahmaputra-Meghna delta due to sea level rise and other effects of climate change.

    PubMed

    Kay, S; Caesar, J; Wolf, J; Bricheno, L; Nicholls, R J; Saiful Islam, A K M; Haque, A; Pardaens, A; Lowe, J A

    2015-07-01

    Coastal flooding due to storm surge and high tides is a serious risk for inhabitants of the Ganges-Brahmaputra-Meghna (GBM) delta, as much of the land is close to sea level. Climate change could lead to large areas of land being subject to increased flooding, salinization and ultimate abandonment in West Bengal, India, and Bangladesh. IPCC 5th assessment modelling of sea level rise and estimates of subsidence rates from the EU IMPACT2C project suggest that sea level in the GBM delta region may rise by 0.63 to 0.88 m by 2090, with some studies suggesting this could be up to 0.5 m higher if potential substantial melting of the West Antarctic ice sheet is included. These sea level rise scenarios lead to increased frequency of high water coastal events. Any effect of climate change on the frequency and severity of storms can also have an effect on extreme sea levels. A shelf-sea model of the Bay of Bengal has been used to investigate how the combined effect of sea level rise and changes in other environmental conditions under climate change may alter the frequency of extreme sea level events for the period 1971 to 2099. The model was forced using atmospheric and oceanic boundary conditions derived from climate model projections and the future scenario increase in sea level was applied at its ocean boundary. The model results show an increased likelihood of extreme sea level events through the 21st century, with the frequency of events increasing greatly in the second half of the century: water levels that occurred at decadal time intervals under present-day model conditions occurred in most years by the middle of the 21st century and 3-15 times per year by 2100. The heights of the most extreme events tend to increase more in the first half of the century than the second. The modelled scenarios provide a case study of how sea level rise and other effects of climate change may combine to produce a greatly increased threat to life and property in the GBM delta by the end

  7. Seasonal Prediction of Hydro-Climatic Extremes in the Greater Horn of Africa Under Evolving Climate Conditions to Support Adaptation Strategies

    NASA Astrophysics Data System (ADS)

    Tadesse, T.; Zaitchik, B. F.; Habib, S.; Funk, C. C.; Senay, G. B.; Dinku, T.; Policelli, F. S.; Block, P.; Baigorria, G. A.; Beyene, S.; Wardlow, B.; Hayes, M. J.

    2014-12-01

    The development of effective strategies to adapt to changes in the character of droughts and floods in Africa will rely on improved seasonal prediction systems that are robust to an evolving climate baseline and can be integrated into disaster preparedness and response. Many efforts have been made to build models to improve seasonal forecasts in the Greater Horn of Africa region (GHA) using satellite and climate data, but these efforts and models must be improved and translated into future conditions under evolving climate conditions. This has considerable social significance, but is challenged by the nature of climate predictability and the adaptability of coupled natural and human systems facing exposure to climate extremes. To address these issues, work is in progress under a project funded by NASA. The objectives of the project include: 1) Characterize and explain large-scale drivers in the ocean-atmosphere-land system associated with years of extreme flood or drought in the GHA. 2) Evaluate the performance of state-of-the-art seasonal forecast methods for prediction of decision-relevant metrics of hydrologic extremes. 3) Apply seasonal forecast systems to prediction of socially relevant impacts on crops, flood risk, and economic outcomes, and assess the value of these predictions to decision makers. 4) Evaluate the robustness of seasonal prediction systems to evolving climate conditions. The National Drought Mitigation Center (University of Nebraska-Lincoln, USA) is leading this project in collaboration with the USGS, Johns Hopkins University, University of Wisconsin-Madison, the International Research Institute for Climate and Society, NASA, and GHA local experts. The project is also designed to have active engagement of end users in various sectors, university researchers, and extension agents in GHA through workshops and/or webinars. This project is expected improve and implement new and existing climate- and remote sensing-based agricultural

  8. The role of regional climate model setup in simulating two extreme precipitation events in the European Alpine region

    NASA Astrophysics Data System (ADS)

    Awan, Nauman Khurshid; Gobiet, Andreas; Suklitsch, Martin

    2014-09-01

    In this study we have investigated the role of domain settings and model's physics in simulating two extreme precipitation events. Four regional climate models, all driven with a re-analysis dataset were used to create an ensemble of 61 high-resolution simulations by varying physical parameterization schemes, domain sizes, nudging and nesting techniques. The two discussed events are three-day time slices taken from approximately 15-months long climate simulations. The results show that dynamical downscaling significantly improves the spatial characteristics such as correlation, variability as well as location and intensity of maximum precipitation. Spatial variability, which is underestimated by most of the simulations can be improved by choosing suitable vertical resolution, convective and microphysics scheme. The results further suggest that for studies focusing on extreme precipitation events relatively small domains or nudging could be advantageous. However, a final conclusion on this issue would be premature, since only two extreme precipitation events are considered.

  9. The role of regional climate model setup in simulating two extreme precipitation events in the European Alpine region

    NASA Astrophysics Data System (ADS)

    Awan, Nauman Khurshid; Gobiet, Andreas; Suklitsch, Martin

    2015-01-01

    In this study we have investigated the role of domain settings and model's physics in simulating two extreme precipitation events. Four regional climate models, all driven with a re-analysis dataset were used to create an ensemble of 61 high-resolution simulations by varying physical parameterization schemes, domain sizes, nudging and nesting techniques. The two discussed events are three-day time slices taken from approximately 15-months long climate simulations. The results show that dynamical downscaling significantly improves the spatial characteristics such as correlation, variability as well as location and intensity of maximum precipitation. Spatial variability, which is underestimated by most of the simulations can be improved by choosing suitable vertical resolution, convective and microphysics scheme. The results further suggest that for studies focusing on extreme precipitation events relatively small domains or nudging could be advantageous. However, a final conclusion on this issue would be premature, since only two extreme precipitation events are considered.

  10. The link between extreme precipitation and convective organization in a warming climate: Global radiative-convective equilibrium simulations

    NASA Astrophysics Data System (ADS)

    Pendergrass, Angeline G.; Reed, Kevin A.; Medeiros, Brian

    2016-11-01

    The rate of increase of extreme precipitation in response to global warming varies dramatically across climate model simulations, particularly over the tropics, for reasons that have yet to be established. Here we propose one potential mechanism: changing organization of convection with climate. We analyze a set of simulations with the Community Atmosphere Model version 5 with an idealized global radiative-convective equilibrium configuration forced by fixed sea surface temperatures varying in 2° increments from 285 to 307 K. In these simulations, convective organization varies from semiorganized in cold simulations, disorganized in warm simulations, and abruptly becomes highly organized at just over 300 K. The change in extreme precipitation with warming also varies across these simulations, including a large increase at the transition from disorganized to organized convection. We develop an extreme precipitation-focused metric for convective organization and use this to explore their connection.

  11. Altered breathing mechanics and ventilatory response during exercise in children born extremely preterm

    PubMed Central

    DeHaan, K; Fuhr, D; Hariharan, S; Kamstra, B; Hendson, L; Adatia, I; Majaesic, C; Lovering, A T; Thompson, R B; Nicholas, D; Thebaud, B; Stickland, M K

    2016-01-01

    Background Extreme preterm birth confers risk of long-term impairments in lung function and exercise capacity. There are limited data on the factors contributing to exercise limitation following extreme preterm birth. This study examined respiratory mechanics and ventilatory response during exercise in a large cohort of children born extremely preterm (EP). Methods This cohort study included children 8–12 years of age who were born EP (≤28 weeks gestation) between 1997 and 2004 and treated in a large regionalised neonatal intensive care unit in western Canada. EP children were divided into no/mild bronchopulmonary dysplasia (BPD) (ie, supplementary oxygen or ventilation ceased before 36 weeks gestational age; n=53) and moderate/severe BPD (ie, continued supplementary oxygen or ventilation at 36 weeks gestational age; n=50). Age-matched control children (n=65) were born at full term. All children attempted lung function and cardiopulmonary exercise testing measurements. Results Compared with control children, EP children had lower airway flows and diffusion capacity but preserved total lung capacity. Children with moderate/severe BPD had evidence of gas trapping relative to other groups. The mean difference in exercise capacity (as measured by oxygen uptake (VO2)% predicted) in children with moderate/severe BPD was −18±5% and −14±5.0% below children with no/mild BPD and control children, respectively. Children with moderate/severe BPD demonstrated a potentiated ventilatory response and greater prevalence of expiratory flow limitation during exercise compared with other groups. Resting lung function did not correlate with exercise capacity. Conclusions Expiratory flow limitation and an exaggerated ventilatory response contribute to respiratory limitation to exercise in children born EP with moderate/severe BPD. PMID:27259338

  12. Exploring the active role of water vapor in creating more extreme SSTs and climate variations

    NASA Astrophysics Data System (ADS)

    Funk, C. C.; Hoell, A.

    2015-12-01

    While it is well-known that water vapor will play an important role in amplifying the direct warming effects of well-mixed greenhouse gasses like CO2 and methane, to date relatively little attention has been placed on the spatial variability of water vapor warming effects: increased diabatic forcing from precipitation and long wave radiation. Here, using 1850-2012 atmospheric simulations from the GEOS5 model, 1948-2015 NCEP-NCAR Reanalysis 1 fields, 1979-2015 MERRA atmospheric reanalyses, and 1979-2015 NOAA OLR observations, we explore two potential thermodynamic contributions associated with water vapor. One contribution comes from the diabatic heating of the atmosphere by longwave radiation emissions. Another contribution comes from diabatic heating of the atmosphere by precipitation. This diabatic heating warms the local atmosphere, and over the tropical oceans, typically warms areas that are already warm. This increases local temperature gradients and potentially increases available potential energy both in the vertical (i.e. CAPE) and in the horizontal (i.e. APE). Using MERRA's detailed thermodynamic budget terms, we examine several recent climate extremes, like the 2011 La Niña and the 2015 El Niño, suggesting that exceptional increases in water vapor radiative warming and precipitation may have helped to make both events more extreme: exceptionally high levels of water vapor in the western Pacific may have helped increase the warm west Pacific - cool Niño 4 SST gradient during the 2011 La Niña. Conversely, in 2015, exceptionally high levels of water vapor in the eastern Pacific may have helped increase the warm Niño 3.4 - cool western Pacific El Niño SST gradient. These water vapor influences can be radiative (warming warm SSTs), as well as dynamic, as enhanced precipitation releases more latent heat. Thus 'anthropogenic' water vapor may move around the climate system, helping to exacerbate warming in warm areas of the atmosphere. We examine this

  13. Extreme climatic events constrain space use and survival of a ground-nesting bird.

    PubMed

    Tanner, Evan P; Elmore, R Dwayne; Fuhlendorf, Samuel D; Davis, Craig A; Dahlgren, David K; Orange, Jeremy P

    2017-05-01

    Two fundamental issues in ecology are understanding what influences the distribution and abundance of organisms through space and time. While it is well established that broad-scale patterns of abiotic and biotic conditions affect organisms' distributions and population fluctuations, discrete events may be important drivers of space use, survival, and persistence. These discrete extreme climatic events can constrain populations and space use at fine scales beyond that which is typically measured in ecological studies. Recently, a growing body of literature has identified thermal stress as a potential mechanism in determining space use and survival. We sought to determine how ambient temperature at fine temporal scales affected survival and space use for a ground-nesting quail species (Colinus virginianus; northern bobwhite). We modeled space use across an ambient temperature gradient (ranging from -20 to 38 °C) through a maxent algorithm. We also used Andersen-Gill proportional hazard models to assess the influence of ambient temperature-related variables on survival through time. Estimated available useable space ranged from 18.6% to 57.1% of the landscape depending on ambient temperature. The lowest and highest ambient temperature categories (<-15 °C and >35 °C, respectively) were associated with the least amount of estimated useable space (18.6% and 24.6%, respectively). Range overlap analysis indicated dissimilarity in areas where Colinus virginianus were restricted during times of thermal extremes (range overlap = 0.38). This suggests that habitat under a given condition is not necessarily a habitat under alternative conditions. Further, we found survival was most influenced by weekly minimum ambient temperatures. Our results demonstrate that ecological constraints can occur along a thermal gradient and that understanding the effects of these discrete events and how they change over time may be more important to conservation of organisms than are

  14. Climatic aspects of the variability of extreme storm occurrence and intensity in the western Black Sea

    NASA Astrophysics Data System (ADS)

    Valchev, Nikolay; Trifonova, Ekaterina; Andreeva, Nataliya; Eftimova, Petya

    2010-05-01

    The study considers potential changes in the storm occurrence and intensity over the western Black Sea through analysis of long term series of wind and wave conditions simulated with relatively high resolution. It is a result of coupling of atmospheric and wave models and spans period of more than 62 years (1948-2009). The wave hincast is driven with the global reanalysis data produced by ECMWF and NCEP/NCAR. The continuous dataset is reduced to a series of storms of considerable intensity and/or destructive potential through application of thresholds for filtration of weak seas. They are primarily based on storm impact on the coastal environment and principles for statistical representativeness. The climatic variability of occurrence and intensity of the selected extreme events is analyzed using different criteria such as number of stormy days, wind speed and wave height extremes. Particular consideration is paid to the mean wave energy per storm season and specific storm energy that are found to be more indicative for understanding of the storm pattern variability. Despite of the overall tendency for storminess decrease, there are no incontestable evidences corroborating a marked reduction of the storm intensity. While the total number of stormy hours diminishes, an increase of the mean wave energy is discernible. This is found to be caused by a change of the storm pattern: storms with short growth stage, energetic stage of full development and fast decay are more frequently observed. This storm type still provides significant energy input in the coastal zone and is able of producing considerable morphological impact, including damages. Such storms develop abruptly, therefore, timely prediction and mitigation of hazard effects become more complex to tackle with. Hence, little potential seems to exist for reducing the vulnerability to storms in the western Black Sea. That means the societies must begin to take such far-reaching implications into serious

  15. Energy Reliability Related to Water Availability under Climate Extremes in Texas

    NASA Astrophysics Data System (ADS)

    Reedy, R. C.; Scanlon, B. R.; Duncan, I.; Young, M.; Wolaver, B. D.

    2012-12-01

    Understanding linkages between water and energy is critical during climate extremes, particularly droughts. With 40% reduction in per capita water storage since the 1980s, Texas is much more vulnerable to droughts now than in the past. Texas experienced the most extreme one year drought on record in 2011, with 60% reduction in precipitation and 40% reduction in reservoir storage relative to the long term mean. Power plants in Texas rely almost entirely on surface water for cooling. We evaluated water requirements for power plants based on fuel types and cooling technologies to assess their vulnerability to future droughts. Water demand was estimated for electricity generation using multiple sources, including Energy Information Agency, Texas Commission on Environmental Quality, and Texas Water Development Board. The following analysis reflects 2010 data; however, 2011 data will be analyzed as soon as they are made available. Analysis of 2010 data showed that Texas generated 411 million MWHr of electricity, mostly from natural gas (46%), coal (37%), nuclear (10%), and renewables (7%). Approximately 70% of net electricity generation in 2010 required water for cooling. Water consumption for electricity generation totaled 0.6 km3, which represents 3% of the states total water consumption in 2010 (22 km3). Water withdrawals totaled 28 km3; however, 97% of this water is returned to the system. Water consumption varies with fuel source (coal, natural gas, nuclear, renewables) and cooling system technology (once-through, pond, and recirculating tower). Coal plants accounted for the majority of water consumption in 2010, followed by natural gas, nuclear, and other. Water consumption varied by cooling system technology, with ponds accounting for most water consumption, followed by recirculating towers, and once-through cooling systems. The vulnerability of the different systems to drought was examined with water requirements for withdrawal and consumption relative to water

  16. DNA and Flavonoids Leach out from Active Nuclei of Taxus and Tsuga after Extreme Climate Stresses

    PubMed Central

    Feucht, Walter; Schmid, Markus; Treutter, Dieter

    2015-01-01

    Severe over-stresses of climate caused dramatic changes in the intracellular distribution of the flavonoids. This was studied in needles from the current year’s growth of the following species and varieties: Tsuga canadensis, Taxus baccata, T. aurea, T. repens, T. nana, and T. compacta. The mode of steady changes in flavonoids was evaluated by microscopic techniques. Most of the flavonoids stain visibly yellow by themselves. The colorless flavanol subgroup can be stained blue by the DMACA reagent. In mid-summer 2013, outstanding high temperatures and intense photo-oxidative irradiation caused in a free-standing tree of Taxus baccata dramatic heat damage in a limited number of cells of the palisade layers. In these cells, the cytoplasm was burned brown. However, the nucleus maintained its healthy “blue” colored appearance which apparently was a result of antioxidant barrier effects by these flavanols. In late May 2014, excessive rainfall greatly affected all study trees. Collectively, in all study trees, a limited number of the mesophyll nuclei from the needless grown in 2013 and 2014 became overly turgid, enlarged in size and the flavanols leached outward through the damaged nuclear membranes. This diffusive stress event was followed one to three days later by a similar efflux of DNA. Such a complete dissolution of the nuclei in young tissues was the most spectacular phenomenon of the present study. As a common feature, leaching of both flavanols and DNA was markedly enhanced with increasing size and age of the cells. There is evidence that signalling flavonoids are sensitized to provide in nuclei and cytoplasm multiple mutual protective mechanisms. However, this well-orchestrated flavonoid system is broken down by extreme climate events. PMID:27135348

  17. DNA and Flavonoids Leach out from Active Nuclei of Taxus and Tsuga after Extreme Climate Stresses.

    PubMed

    Feucht, Walter; Schmid, Markus; Treutter, Dieter

    2015-09-21

    Severe over-stresses of climate caused dramatic changes in the intracellular distribution of the flavonoids. This was studied in needles from the current year's growth of the following species and varieties: Tsuga canadensis, Taxus baccata, T. aurea, T. repens, T. nana, and T. compacta. The mode of steady changes in flavonoids was evaluated by microscopic techniques. Most of the flavonoids stain visibly yellow by themselves. The colorless flavanol subgroup can be stained blue by the DMACA reagent. In mid-summer 2013, outstanding high temperatures and intense photo-oxidative irradiation caused in a free-standing tree of Taxus baccata dramatic heat damage in a limited number of cells of the palisade layers. In these cells, the cytoplasm was burned brown. However, the nucleus maintained its healthy "blue" colored appearance which apparently was a result of antioxidant barrier effects by these flavanols. In late May 2014, excessive rainfall greatly affected all study trees. Collectively, in all study trees, a limited number of the mesophyll nuclei from the needless grown in 2013 and 2014 became overly turgid, enlarged in size and the flavanols leached outward through the damaged nuclear membranes. This diffusive stress event was followed one to three days later by a similar efflux of DNA. Such a complete dissolution of the nuclei in young tissues was the most spectacular phenomenon of the present study. As a common feature, leaching of both flavanols and DNA was markedly enhanced with increasing size and age of the cells. There is evidence that signalling flavonoids are sensitized to provide in nuclei and cytoplasm multiple mutual protective mechanisms. However, this well-orchestrated flavonoid system is broken down by extreme climate events.

  18. Validation of EURO-CORDEX regional climate models in reproducing the variability of precipitation extremes in Romania

    NASA Astrophysics Data System (ADS)

    Dumitrescu, Alexandru; Busuioc, Aristita

    2016-04-01

    EURO-CORDEX is the European branch of the international CORDEX initiative that aims to provide improved regional climate change projections for Europe. The main objective of this paper is to document the performance of the individual models in reproducing the variability of precipitation extremes in Romania. Here three EURO-CORDEX regional climate models (RCMs) ensemble (scenario RCP4.5) are analysed and inter-compared: DMI-HIRHAM5, KNMI-RACMO2.2 and MPI-REMO. Compared to previous studies, when the RCM validation regarding the Romanian climate has mainly been made on mean state and at station scale, a more quantitative approach of precipitation extremes is proposed. In this respect, to have a more reliable comparison with observation, a high resolution daily precipitation gridded data set was used as observational reference (CLIMHYDEX project). The comparison between the RCM outputs and observed grid point values has been made by calculating three extremes precipitation indices, recommended by the Expert Team on Climate Change Detection Indices (ETCCDI), for the 1976-2005 period: R10MM, annual count of days when precipitation ≥10mm; RX5DAY, annual maximum 5-day precipitation and R95P%, precipitation fraction of annual total precipitation due to daily precipitation > 95th percentile. The RCMs capability to reproduce the mean state for these variables, as well as the main modes of their spatial variability (given by the first three EOF patterns), are analysed. The investigation confirms the ability of RCMs to simulate the main features of the precipitation extreme variability over Romania, but some deficiencies in reproducing of their regional characteristics were found (for example, overestimation of the mea state, especially over the extra Carpathian regions). This work has been realised within the research project "Changes in climate extremes and associated impact in hydrological events in Romania" (CLIMHYDEX), code PN II-ID-2011-2-0073, financed by the Romanian

  19. Wearing a Wetsuit Alters Upper Extremity Motion during Simulated Surfboard Paddling

    PubMed Central

    Nessler, J. A.; Silvas, M.; Carpenter, S.; Newcomer, S. C.

    2015-01-01

    Surfers often wear wetsuits while paddling in the ocean. This neoprene covering may be beneficial to upper extremity movement by helping to improve proprioceptive acuity, or it may be detrimental by providing increased resistance. The purpose of this study was to evaluate the effects of wearing a wetsuit on muscle activation, upper extremity motion, heart rate, and oxygen consumption during simulated surfboard paddling in the laboratory. Twelve male, recreational surfers performed two paddling trials at a constant workload on a swim bench ergometer both with and without a wetsuit. Kinematic data and EMG were acquired from the right arm via motion capture, and oxygen consumption and heart rate were recorded with a metabolic cart and heart rate monitor. Wearing a wetsuit had no significant effect on oxygen consumption or heart rate. A significant increase in EMG activation was observed for the middle deltoid but not for any of the other shoulder muscle evaluated. Finally, approximate entropy and estimates of the maximum Lyapunov exponent increased significantly for vertical trajectory of the right wrist (i.e. stroke height) when a wetsuit was worn. These results suggest that a 2mm wetsuit has little effect on the energy cost of paddling at lower workloads but does affect arm motion. These changes may be the result of enhanced proprioceptive acuity due to mechanical compression from the wetsuit. PMID:26551321

  20. Comparison of statistical and dynamical downscaling of extreme precipitations over France in present-day and future climate

    NASA Astrophysics Data System (ADS)

    Colin, Jeanne; Déqué, Michel; Sanchez Gomez, Emila; Somot, Samuel

    2010-05-01

    We present a comparison of two downscaling methods of extreme precipitations over France at a climatic time scale : a dynamical one performed with the Regional Climate Model ALADIN-Climate used at a resolution of 12 km, and a statistical one based on the weather regime approach and using the analog methodology to reconstruct daily fields of precipitations at a 8 km resolution. We focus on the most heavy precipitations of the area of interest, which occur in southeastern France in Autumn. Those involve small-scale processes than can be explicitly resolved only with 2-1 k