Quantifying the impacts of climatic trend and fluctuation on crop yields in northern China.
Qiao, Jianmin; Yu, Deyong; Liu, Yupeng
2017-10-01
Climate change plays a critical role in crop yield variations, which has attracted a great deal of concern worldwide. However, the mechanisms of how climatic trend and fluctuations affect crop yields are not well understood and need to be further investigated. Thus, using the GIS-based Environmental Policy Integrated Climate (EPIC) model, we simulated the yields of major crops (i.e., wheat, maize, and rice) and evaluated the impacts of climatic factors on crop yields in the Agro-Pastoral Transitional Zone (APTZ) of northern China between 1980 and 2010. The partial least squares regression model was used to assess the contribution rates of climatic factors (i.e., precipitation, photosynthetically active radiation (PAR), minimum temperature (T min ), maximum temperature (T max )) to the variation of crop yields. The Breaks for Additive Season and Trend (BFAST) model was adopted to decompose the climate factors into trend and fluctuation components, and the relative contributions of climate trend and fluctuation were then evaluated. The results indicated that the contributions of climatic factors to yield variations of wheat, maize, and rice were 31.7, 37.7, and 23.1%, respectively. That is, climate change had larger impacts on maize than wheat and rice. More cultivated areas were significantly and positively correlated with precipitation than with other climatic factors due to the limited precipitation in the APTZ. Also, climatic trend component had positive impacts on crop yields in the whole region, whereas the climate fluctuation was associated mainly with the areas where the crop yields decreased. This study helps improve our understanding of the mechanisms of climate change impacts on crop yields, and provides useful scientific information for designing regional-scale strategies of adaptation to climate change.
Influence of climate on malaria transmission depends on daily temperature variation.
Paaijmans, Krijn P; Blanford, Simon; Bell, Andrew S; Blanford, Justine I; Read, Andrew F; Thomas, Matthew B
2010-08-24
Malaria transmission is strongly influenced by environmental temperature, but the biological drivers remain poorly quantified. Most studies analyzing malaria-temperature relations, including those investigating malaria risk and the possible impacts of climate change, are based solely on mean temperatures and extrapolate from functions determined under unrealistic laboratory conditions. Here, we present empirical evidence to show that, in addition to mean temperatures, daily fluctuations in temperature affect parasite infection, the rate of parasite development, and the essential elements of mosquito biology that combine to determine malaria transmission intensity. In general, we find that, compared with rates at equivalent constant mean temperatures, temperature fluctuation around low mean temperatures acts to speed up rate processes, whereas fluctuation around high mean temperatures acts to slow processes down. At the extremes (conditions representative of the fringes of malaria transmission, where range expansions or contractions will occur), fluctuation makes transmission possible at lower mean temperatures than currently predicted and can potentially block transmission at higher mean temperatures. If we are to optimize control efforts and develop appropriate adaptation or mitigation strategies for future climates, we need to incorporate into predictive models the effects of daily temperature variation and how that variation is altered by climate change.
USDA-ARS?s Scientific Manuscript database
An increase in abnormal climate change patterns and unsustainable irrigation in uplands cause drought and affect agricultural water security, crop productivity, and price fluctuations. In this study, we developed a soil moisture model to project irrigation requirements (IR) for upland crops under cl...
Paleoclimate and bubonic plague: a forewarning of future risk?
McMichael, Anthony J
2010-08-27
Pandemics of bubonic plague have occurred in Eurasia since the sixth century AD. Climatic variations in Central Asia affect the population size and activity of the plague bacterium's reservoir rodent species, influencing the probability of human infection. Using innovative time-series analysis of surrogate climate records spanning 1,500 years, a study in BMC Biology concludes that climatic fluctuations may have influenced these pandemics. This has potential implications for health risks from future climate change.
Glacier mass-balance fluctuations in the Pacific Northwest and Alaska, USA
Josberger, E.G.; Bidlake, W.R.; March, R.S.; Kennedy, B.W.
2007-01-01
The more than 40 year record of net and seasonal mass-balance records from measurements made by the United States Geological Survey on South Cascade Glacier, Washington, and Wolverine and Gulkana Glaciers, Alaska, shows annual and interannual fluctuations that reflect changes in the controlling climatic conditions at regional and global scales. As the mass-balance record grows in length, it is revealing significant changes in previously described glacier mass-balance behavior, and both inter-glacier and glacier-climate relationships. South Cascade and Wolverine Glaciers are strongly affected by the warm and wet maritime climate of the northeast Pacific Ocean. Their net balances have generally been controlled by winter accumulation, with fluctuations that are strongly related to the Pacific Decadal Oscillation (PDO). Recently, warm dry summers have begun to dominate the net balance of the two maritime glaciers, with a weakening of the correlation between the winter balance fluctuations and the PDO. Non-synchronous periods of positive and negative net balance for each glacier prior to 1989 were followed by a 1989-2004 period of synchronous and almost exclusively negative net balances that averaged -0.8 m for the three glaciers.
Linning, Shannon J; Andresen, Martin A; Brantingham, Paul J
2017-12-01
This study investigates whether crime patterns fluctuate periodically throughout the year using data containing different property crime types in two Canadian cities with differing climates. Using police report data, a series of ordinary least squares (OLS; Vancouver, British Columbia) and negative binomial (Ottawa, Ontario) regressions were employed to examine the corresponding temporal patterns of property crime in Vancouver (2003-2013) and Ottawa (2006-2008). Moreover, both aggregate and disaggregate models were run to examine whether different weather and temporal variables had a distinctive impact on particular offences. Overall, results suggest that cities that experience greater variations in weather throughout the year have more distinct increases of property offences in the summer months and that different climate variables affect certain crime types, thus advocating for disaggregate analysis in the future.
van der Valk, Arnold; Mushet, David M.
2016-01-01
Mean water depth and range of interannual water-level fluctuations over wet-dry cycles in precipitation are major drivers of vegetation zone formation in North American prairie potholes. We used harmonic hydrological models, which require only mean interannual water depth and amplitude of water-level fluctuations over a wet–dry cycle, to examine how the vegetation zones in a pothole would respond to small changes in water depth and/or amplitude of water-level fluctuations. Field data from wetlands in Saskatchewan, North Dakota, and South Dakota were used to parameterize harmonic models for four pothole classes. Six scenarios in which small negative or positive changes in either mean water depth, amplitude of interannual fluctuations, or both, were modeled to predict if they would affect the number of zones in each wetland class. The results indicated that, in some cases, even small changes in mean water depth when coupled with a small change in amplitude of water-level fluctuations can shift a prairie pothole wetland from one class to another. Our results suggest that climate change could alter the relative proportion of different wetland classes in the prairie pothole region.
NASA Astrophysics Data System (ADS)
Torres-Romero, Erik Joaquín; Varela, Sara; Fisher, Jason T.; Olalla-Tárraga, Miguel Á.
2017-07-01
Climate has played a key role in shaping the geographic patterns of biodiversity. The imprint of Quaternary climatic fluctuations is particularly evident on the geographic distribution of Holarctic faunas, which dramatically shifted their ranges following the alternation of glacial-interglacial cycles during the Pleistocene. Here, we evaluate the existence of differences between climatically stable and unstable regions - defined on the basis of climatic change velocity since the Last Glacial Maximum - in the geographic distribution of several biological attributes of extant terrestrial mammals of the Nearctic and Western Palearctic regions. Specifically, we use a macroecological approach to assess the dissimilarities in species richness, range size, body size, longevity and litter size of species that inhabit regions with contrasting histories of climatic stability. While several studies have documented how the distributional ranges of animals can be affected by long-term historic climatic fluctuations, there is less evidence on the species-specific traits that determine their responsiveness under such climatic instability. We find that climatically unstable areas have more widespread species and lower mammal richness than stable regions in both continents. We detected stronger signatures of historical climatic instability on the geographic distribution of body size in the Nearctic region, possibly reflecting lagged responses to recolonize deglaciated regions. However, the way that animals respond to climatic fluctuations varies widely among species and we were unable to find a relationship between climatic instability and other mammal life-history traits (longevity and litter size) in any of the two biogeographic regions. We, therefore, conclude that beyond some biological traits typical of macroecological analyses such as geographic range size and body size, it is difficult to infer the responsiveness of species distributions to climate change solely based on particular life-history traits.
Interannual to multidecadal climate forcings on groundwater resources of the U.S. West Coast
Velasco, Elzie M.; Gurdak, Jason J.; Dickinson, Jesse; Ferré, T.P.A.; Corona, Claudia
2017-01-01
Study regionThe U.S. West Coast, including the Pacific Northwest and California Coastal Basins aquifer systems.Study focusGroundwater response to interannual to multidecadal climate variability has important implications for security within the water–energy–food nexus. Here we use Singular Spectrum Analysis to quantify the teleconnections between AMO, PDO, ENSO, and PNA and precipitation and groundwater level fluctuations. The computer program DAMP was used to provide insight on the influence of soil texture, depth to water, and mean and period of a surface infiltration flux on the damping of climate signals in the vadose zone.New hydrological insights for the regionWe find that PDO, ENSO, and PNA have significant influence on precipitation and groundwater fluctuations across a north-south gradient of the West Coast, but the lower frequency climate modes (PDO) have a greater influence on hydrologic patterns than higher frequency climate modes (ENSO and PNA). Low frequency signals tend to be preserved better in groundwater fluctuations than high frequency signals, which is a function of the degree of damping of surface variable fluxes related to soil texture, depth to water, mean and period of the infiltration flux. The teleconnection patterns that exist in surface hydrologic processes are not necessarily the same as those preserved in subsurface processes, which are affected by damping of some climate variability signals within infiltrating water.
Climatic and land-use driven change of runoff throughout Sweden
NASA Astrophysics Data System (ADS)
Worman, A. L. E.; Riml, J.; Lindstrom, G.
2015-12-01
Changes in runoff can be caused by climatic variations, land-use changes and water regulation. In this paper we propose a separation of the power spectral response of runoff in watersheds in terms of the product of the power spectra of precipitation and the impulse response function for the watershed. This allows a formal separation of the spectral response in climatic factors - the precipitation - from those of land-use change and regulation - the impulse response function. The latter function characterizes the surface water-groundwater interaction, stream network topology and open channel hydraulics. Based on daily data of digitalized hydro-climatological data from 1961, we constructed synthetic, but calibrated data of runoff from 1001 watersheds in Sweden. From spectral analysis of the data we found periodic fluctuations occurring on time scales of about a decade and a bi-annual peak. These multi-annual fluctuations could be statistically linked through the coherence spectra to climatic indices like the NAO, PDO, geostrophic wind velocity and sun spot numbers on common periods of 3,6 and 7,6 years. Such long-term fluctuations in runoff are not significantly affected by the land-use or regulation other than indirectly through impact on local hydro-climate. Based on a spectral separation of precipitation and impulse response function of the watersheds, we found that the intra-annual variation in runoff was primarily affected by the land-use change in 79 unregulated catchments with up to century-long time series of measured daily discharge. There is a statistically significant increasing slope of the catchments impulse response function for 63 of the 79 catchments and this suggest a significant hydrological effect of land-use practice in agriculture, urbanisation and forestry.
Shifts in deep-sea community structure linked to climate and food supply.
Ruhl, Henry A; Smith, Kenneth L
2004-07-23
A major change in the community structure of the dominant epibenthic megafauna was observed at 4100 meters depth in the northeast Pacific and was synchronous to a major El Niño/La Niña event that occurred between 1997 and 1999. Photographic abundance estimates of epibenthic megafauna from 1989 to 2002 show that two taxa decreased in abundance after 1998 by 2 to 3 orders of magnitude, whereas several other species increased in abundance by 1 to 2 orders of magnitude. These faunal changes are correlated to climate fluctuations dominated by El Niño/La Niña. Megafauna even in remote marine areas appear to be affected by contemporary climatic fluctuations. Such faunal changes highlight the importance of an adequate temporal perspective in describing biodiversity, ecology, and anthropogenic impacts in deep-sea communities.
Influences of climate on aflatoxin producing fungi and aflatoxin contamination.
Cotty, Peter J; Jaime-Garcia, Ramon
2007-10-20
Aflatoxins are potent mycotoxins that cause developmental and immune system suppression, cancer, and death. As a result of regulations intended to reduce human exposure, crop contamination with aflatoxins causes significant economic loss for producers, marketers, and processors of diverse susceptible crops. Aflatoxin contamination occurs when specific fungi in the genus Aspergillus infect crops. Many industries frequently affected by aflatoxin contamination know from experience and anecdote that fluctuations in climate impact the extent of contamination. Climate influences contamination, in part, by direct effects on the causative fungi. As climate shifts, so do the complex communities of aflatoxin-producing fungi. This includes changes in the quantity of aflatoxin-producers in the environment and alterations to fungal community structure. Fluctuations in climate also influence predisposition of hosts to contamination by altering crop development and by affecting insects that create wounds on which aflatoxin-producers proliferate. Aflatoxin contamination is prevalent both in warm humid climates and in irrigated hot deserts. In temperate regions, contamination may be severe during drought. The contamination process is frequently broken down into two phases with the first phase occurring on the developing crop and the second phase affecting the crop after maturation. Rain and temperature influence the phases differently with dry, hot conditions favoring the first and warm, wet conditions favoring the second. Contamination varies with climate both temporally and spatially. Geostatistics and multiple regression analyses have shed light on influences of weather on contamination. Geostatistical analyses have been used to identify recurrent contamination patterns and to match these with environmental variables. In the process environmental conditions with the greatest impact on contamination are identified. Likewise, multiple regression analyses allow ranking of environmental variables based on relative influence on contamination. Understanding the impact of climate may allow development of improved management procedures, better allocation of monitoring efforts, and adjustment of agronomic practices in anticipation of global climate change.
Centennial-scale Holocene climate variations amplified by Antarctic Ice Sheet discharge
NASA Astrophysics Data System (ADS)
Bakker, Pepijn; Clark, Peter U.; Golledge, Nicholas R.; Schmittner, Andreas; Weber, Michael E.
2017-01-01
Proxy-based indicators of past climate change show that current global climate models systematically underestimate Holocene-epoch climate variability on centennial to multi-millennial timescales, with the mismatch increasing for longer periods. Proposed explanations for the discrepancy include ocean-atmosphere coupling that is too weak in models, insufficient energy cascades from smaller to larger spatial and temporal scales, or that global climate models do not consider slow climate feedbacks related to the carbon cycle or interactions between ice sheets and climate. Such interactions, however, are known to have strongly affected centennial- to orbital-scale climate variability during past glaciations, and are likely to be important in future climate change. Here we show that fluctuations in Antarctic Ice Sheet discharge caused by relatively small changes in subsurface ocean temperature can amplify multi-centennial climate variability regionally and globally, suggesting that a dynamic Antarctic Ice Sheet may have driven climate fluctuations during the Holocene. We analysed high-temporal-resolution records of iceberg-rafted debris derived from the Antarctic Ice Sheet, and performed both high-spatial-resolution ice-sheet modelling of the Antarctic Ice Sheet and multi-millennial global climate model simulations. Ice-sheet responses to decadal-scale ocean forcing appear to be less important, possibly indicating that the future response of the Antarctic Ice Sheet will be governed more by long-term anthropogenic warming combined with multi-centennial natural variability than by annual or decadal climate oscillations.
Askeyev, O V; Tischin, D; Sparks, T H; Askeyev, I V
2005-03-01
Our data, collected in the extreme east of Europe, show that a significant biological effect of climate change has been experienced even in territories where temperature increase has been the lowest. This study documents the climatic response of pedunculate oak (Quercus robur) growing near its north-eastern limits in Europe. It demonstrates the potential of oak trees in old-growth forest to act as proxy climate indicators. Many factors may influence the temporal stability of the growth-climate, acorn crop-climate and first leafing-climate relationships. Climate data, climatic fluctuations, reproduction, genetics and tree-age may relate to this instability. Our results stress that an increase in climate variability or climatic warming resulting from warmer winters or summers could affect the oak population in eastern Europe in a similar way to that in western Europe. These findings, from remnants of oak forest in the middle Volga region of Russia, allow a further understanding of how species could be affected by future climates.
Anteau, Michael J.
2012-01-01
Availability of aquatic invertebrates on migration and breeding areas influences recruitment of ducks and shorebirds. In wetlands of Prairie Pothole Region (PPR), aquatic invertebrate production primarily is driven by interannual fluctuations of water levels in response to wet-dry cycles in climate. However, this understanding comes from studying basins that are minimally impacted by agricultural landscape modifications. In the past 100–150 years, a large proportion of wetlands within the PPR have been altered; often water was drained from smaller to larger wetlands at lower elevations creating consolidated, interconnected basins. Here I present a case study and I hypothesize that large basins receiving inflow from consolidation drainage have reduced water-level fluctuations in response to climate cycles than those in undrained landscapes, resulting in relatively stable wetlands that have lower densities of invertebrate forage for ducks and shorebirds and also less foraging habitat, especially for shorebirds. Furthermore, stable water-levels and interconnected basins may favor introduced or invasive species (e.g., cattail [Typha spp.] or fish) because native communities "evolved" in a dynamic and isolated system. Accordingly, understanding interactions between water-level fluctuations and landscape modifications is a prerequisite step to modeling effects of climate change on wetland hydrology and productivity and concomitant recruitment of waterbirds.
Climate variability has a stabilizing effect on the coexistence of prairie grasses
Adler, Peter B.; HilleRisLambers, Janneke; Kyriakidis, Phaedon C.; Guan, Qingfeng; Levine, Jonathan M.
2006-01-01
How expected increases in climate variability will affect species diversity depends on the role of such variability in regulating the coexistence of competing species. Despite theory linking temporal environmental fluctuations with the maintenance of diversity, the importance of climate variability for stabilizing coexistence remains unknown because of a lack of appropriate long-term observations. Here, we analyze three decades of demographic data from a Kansas prairie to demonstrate that interannual climate variability promotes the coexistence of three common grass species. Specifically, we show that (i) the dynamics of the three species satisfy all requirements of “storage effect” theory based on recruitment variability with overlapping generations, (ii) climate variables are correlated with interannual variation in species performance, and (iii) temporal variability increases low-density growth rates, buffering these species against competitive exclusion. Given that environmental fluctuations are ubiquitous in natural systems, our results suggest that coexistence based on the storage effect may be underappreciated and could provide an important alternative to recent neutral theories of diversity. Field evidence for positive effects of variability on coexistence also emphasizes the need to consider changes in both climate means and variances when forecasting the effects of global change on species diversity. PMID:16908862
NASA Astrophysics Data System (ADS)
Gajewski, Konrad J.
Pollen records from varved-lake sediments at seven locations in the northeastern United States record late Holocene climate changes over the past 1000-2000 years. Simplification of pollen diagrams by principal component analysis documents that climate changes affect vegetation at all sites, and not just at "sensitive" sites or ecotones. All seven pollen records show a long-term trend, medium frequency oscillations and higher frequency fluctuations. The between-site similarity of the trend and the coherency of the medium frequency oscillations demonstrates the importance of climate forcing to vegetation change at these scales. Response of vegetation to a climatic change is quite rapid, and depends not only on the nature of the climate fluctuation, but also on the pre-existing state of the vegetation. Multiple regression and canonical correlation techniques were used to calculate calibration functions from a spatial network of modern pollen and climate data. When analyzed at comparable scales, the spatial distribution of pollen assemblages in northeastern United States are related both to summer temperature and annual precipitation. Although summer temperature and annual precipitation are coupled, this coupling is not so strong as to negate the use of univariate calibration models. Over the 2000-year period of time, a gradual summer cooling of about 1.0(DEGREES)C/1000 years has occurred. Superimposed on the long-term trend are medium frequency temperature fluctuations of amplitude about 0.5(DEGREES)C that persist for several centuries. Annual precipitation is relatively constant, except for a period of increased rainfall from 600 years ago to the present in southern Maine.
NASA Astrophysics Data System (ADS)
Wang, Zhu; Shi, Peijun; Zhang, Zhao; Meng, Yongchang; Luan, Yibo; Wang, Jiwei
2017-09-01
Separating out the influence of climatic trend, fluctuations and extreme events on crop yield is of paramount importance to climate change adaptation, resilience, and mitigation. Previous studies lack systematic and explicit assessment of these three fundamental aspects of climate change on crop yield. This research attempts to separate out the impacts on rice yields of climatic trend (linear trend change related to mean value), fluctuations (variability surpassing the "fluctuation threshold" which defined as one standard deviation (1 SD) of the residual between the original data series and the linear trend value for each climatic variable), and extreme events (identified by absolute criterion for each kind of extreme events related to crop yield). The main idea of the research method was to construct climate scenarios combined with crop system simulation model. Comparable climate scenarios were designed to express the impact of each climate change component and, were input to the crop system model (CERES-Rice), which calculated the related simulated yield gap to quantify the percentage impacts of climatic trend, fluctuations, and extreme events. Six Agro-Meteorological Stations (AMS) in Hunan province were selected to study the quantitatively impact of climatic trend, fluctuations and extreme events involving climatic variables (air temperature, precipitation, and sunshine duration) on early rice yield during 1981-2012. The results showed that extreme events were found to have the greatest impact on early rice yield (-2.59 to -15.89%). Followed by climatic fluctuations with a range of -2.60 to -4.46%, and then the climatic trend (4.91-2.12%). Furthermore, the influence of climatic trend on early rice yield presented "trade-offs" among various climate variables and AMS. Climatic trend and extreme events associated with air temperature showed larger effects on early rice yield than other climatic variables, particularly for high-temperature events (-2.11 to -12.99%). Finally, the methodology use to separate out the influences of the climatic trend, fluctuations, and extreme events on crop yield was proved to be feasible and robust. Designing different climate scenarios and feeding them into a crop system model is a potential way to evaluate the quantitative impact of each climate variable.
Poleward energy transport: is the standard definition physically relevant at all time scales?
NASA Astrophysics Data System (ADS)
Liang, Minyi; Czaja, Arnaud; Graversen, Rune; Tailleux, Remi
2018-03-01
Poleward energy transport in the atmosphere and oceans constitutes an important branch of the global energy budget, and its role in the climate system has been the subject of many studies. In the atmosphere, the transport is affected by "eddies" and large scale meridional cells, both with zero net mass transport across latitude circles, but also partly by processes associated with a net transport of mass across latitude circles. The latter must cease to operate in steady state, but they may be significant when time variability of the heat budget is considered. Indeed, examination of reanalysis data on short (daily to monthly) timescales shows that mass variations on these timescales result in surprisingly large fluctuations (in excess of 10^{15} W = 1 PW) in the poleward heat transport. These fluctuations are referred to as "extensive", for they primarily alter the mass integrated energy of the region considered, but not its averaged value. It is suggested that extensive fluctuations mask more meaningful climate signals present in the heat transport variability on monthly and interannual timescales, and a new formulation is proposed to isolate the latter. This new formulation is applied successfully to reanalysis data and climate model simulations.
Poleward Energy Transport: Is the Standard Definition Physically Relevant at All Time Scales?
NASA Astrophysics Data System (ADS)
Liang, M.; Czaja, A.; Graversen, R.; Tailleux, R.
2017-12-01
Poleward energy transport in the atmosphere and oceans constitutes an important branch of the global energy budget, and its role in the climate system has been the subject of many studies. In the atmosphere, the transport is affected by ''eddies'' and large scale meridional cells, both with zero net mass transport across latitude circles, but also partly by processes associated with a net transport of mass across latitude circles. The latter must cease to operate in steady state, but they may be significant when time variability of the heat budget is considered. Indeed, examination of reanalysis data on short (daily to monthly) timescales shows that mass variations on these timescales result in surprisingly large fluctuations (in excess of 1015W = 1PW) in the poleward heat transport. These fluctuations are referred to as ''extensive'', for they primarily alter the mass integrated energy of the region considered, but not its averaged value. It is suggested that extensive fluctuations mask more meaningful climate signals present in the heat transport variability, and a new formulation is proposed to isolate the latter. This new formulation is applied successfully to reanalysis data and climate model simulations.
Liu, Yupeng; Yu, Deyong; Su, Yun; Hao, Ruifang
2014-12-01
Climate change comprises three fractions of trend, fluctuation, and extreme event. Assessing the effect of climate change on terrestrial ecosystem requires an understanding of the action mechanism of these fractions, respectively. This study examined 11 years of remotely sensed-derived net primary productivity (NPP) to identify the impacts of the trend and fluctuation of climate change as well as extremely low temperatures caused by a freezing disaster on ecosystem productivity in Hunan province, China. The partial least squares regression model was used to evaluate the contributions of temperature, precipitation, and photosynthetically active radiation (PAR) to NPP variation. A climatic signal decomposition and contribution assessment model was proposed to decompose climate factors into trend and fluctuation components. Then, we quantitatively evaluated the contributions of each component of climatic factors to NPP variation. The results indicated that the total contribution of the temperature, precipitation, and PAR to NPP variation from 2001 to 2011 in Hunan province is 85 %, and individual contributions of the temperature, precipitation, and PAR to NPP variation are 44 % (including 34 % trend contribution and 10 % fluctuation contribution), 5 % (including 4 % trend contribution and 1 % fluctuation contribution), and 36 % (including 30 % trend contribution and 6 % fluctuation contribution), respectively. The contributions of temperature fluctuation-driven NPP were higher in the north and lower in the south, and the contributions of precipitation trend-driven NPP and PAR fluctuation-driven NPP are higher in the west and lower in the east. As an instance of occasionally triggered disturbance in 2008, extremely low temperatures and a freezing disaster produced an abrupt decrease of NPP in forest and grass ecosystems. These results prove that the climatic trend change brought about great impacts on ecosystem productivity and that climatic fluctuations and extreme events can also alter the ecosystem succession process, even resulting in an alternative trajectory. All of these findings could improve our understanding of the impacts of climate change on the provision of ecosystem functions and services and can also provide a basis for policy makers to apply adaptive measures to overcome the unfavorable influence of climate change.
Neandertal versus Modern Human Dietary Responses to Climatic Fluctuations
El Zaatari, Sireen; Grine, Frederick E.; Ungar, Peter S.; Hublin, Jean-Jacques
2016-01-01
The Neandertal lineage developed successfully throughout western Eurasia and effectively survived the harsh and severely changing environments of the alternating glacial/interglacial cycles from the middle of the Pleistocene until Marine Isotope Stage 3. Yet, towards the end of this stage, at the time of deteriorating climatic conditions that eventually led to the Last Glacial Maximum, and soon after modern humans entered western Eurasia, the Neandertals disappeared. Western Eurasia was by then exclusively occupied by modern humans. We use occlusal molar microwear texture analysis to examine aspects of diet in western Eurasian Paleolithic hominins in relation to fluctuations in food supplies that resulted from the oscillating climatic conditions of the Pleistocene. There is demonstrable evidence for differences in behavior that distinguish Upper Paleolithic humans from members of the Neandertal lineage. Specifically, whereas the Neandertals altered their diets in response to changing paleoecological conditions, the diets of Upper Paleolithic humans seem to have been less affected by slight changes in vegetation/climatic conditions but were linked to changes in their technological complexes. The results of this study also indicate differences in resource exploitation strategies between these two hominin groups. We argue that these differences in subsistence strategies, if they had already been established at the time of the first contact between these two hominin taxa, may have given modern humans an advantage over the Neandertals, and may have contributed to the persistence of our species despite habitat-related changes in food availabilities associated with climate fluctuations. PMID:27119336
Neandertal versus Modern Human Dietary Responses to Climatic Fluctuations.
El Zaatari, Sireen; Grine, Frederick E; Ungar, Peter S; Hublin, Jean-Jacques
2016-01-01
The Neandertal lineage developed successfully throughout western Eurasia and effectively survived the harsh and severely changing environments of the alternating glacial/interglacial cycles from the middle of the Pleistocene until Marine Isotope Stage 3. Yet, towards the end of this stage, at the time of deteriorating climatic conditions that eventually led to the Last Glacial Maximum, and soon after modern humans entered western Eurasia, the Neandertals disappeared. Western Eurasia was by then exclusively occupied by modern humans. We use occlusal molar microwear texture analysis to examine aspects of diet in western Eurasian Paleolithic hominins in relation to fluctuations in food supplies that resulted from the oscillating climatic conditions of the Pleistocene. There is demonstrable evidence for differences in behavior that distinguish Upper Paleolithic humans from members of the Neandertal lineage. Specifically, whereas the Neandertals altered their diets in response to changing paleoecological conditions, the diets of Upper Paleolithic humans seem to have been less affected by slight changes in vegetation/climatic conditions but were linked to changes in their technological complexes. The results of this study also indicate differences in resource exploitation strategies between these two hominin groups. We argue that these differences in subsistence strategies, if they had already been established at the time of the first contact between these two hominin taxa, may have given modern humans an advantage over the Neandertals, and may have contributed to the persistence of our species despite habitat-related changes in food availabilities associated with climate fluctuations.
Climate effects on historic bluefin tuna captures in the Gibraltar Strait and Western Mediterranean
NASA Astrophysics Data System (ADS)
Ganzedo, Unai; Polanco-Martínez, Josué M.; Caballero-Alfonso, Ángela M.; Faria, Sérgio H.; Li, Jianke; Castro-Hernández, José J.
2016-06-01
Historical capture records of bluefin tuna (Thunnus thynnus; BFT hereafter) from the Gibraltar Strait and Western Mediterranean show pronounced short- and long-term fluctuations. Some of these fluctuations are believed to be associated with biological and ecological process, as well as distinct climate factors. For the period of study (1700-1936) of this work, we found a long-term increasing trend in the BFT captures and in the climate variables. After applying a statistical time series analysis of relevant climate variables and long-term tuna capture records, it is highlighted the role played by sea-surface temperature (SST) on bluefin population variations. The most relevant result of this study is the strong correlation found between the total solar irradiance (TSI) - an external component of the climate system - and bluefin captures. The solar irradiance could have affected storminess during the period under study, mainly during the time interval 1700-1810. We suggest physico-biological mechanisms that explain the BFT catch fluctuations in two consecutive time intervals. In the first period, from 1700 to 1810, this mechanism could be high storm and wind activity, which would have made the BFT fisheries activities more difficult by reducing their efficacy. In contrast, during the interval from 1810 to 1907, the effects of wind and storms could be on spawning behaviour and larval ecology, and hence on year class strength, rather than on fish or fisherman's behaviour. These findings open up a range of new lines of enquiry that are relevant for both, fisheries and climate change research.
NASA Astrophysics Data System (ADS)
Budyko, Mikhail
1999-05-01
Climate catastrophes, which many times occurred in the geological past, caused the extinction of large or small populations of animals and plants. Changes in the terrestrial and marine biota caused by the catastrophic climate changes undoubtedly resulted in considerable fluctuations in global carbon cycle and atmospheric gas composition. Primarily, carbon dioxide and other greenhouse gas contents were affected. The study of these catastrophes allows a conclusion that climate system is very sensitive to relatively small changes in climate-forcing factors (transparency of the atmosphere, changes in large glaciations, etc.). It is important to take this conclusion into account while estimating the possible consequences of now occurring anthropogenic warming caused by the increase in greenhouse gas concentration in the atmosphere.
Orbital Noise in the Earth System and Climate Fluctuations
NASA Technical Reports Server (NTRS)
Liu, Han-Shou; Smith, David E. (Technical Monitor)
2001-01-01
Frequency noise in the variations of the Earth's obliquity (tilt) can modulate the insolation signal for climate change. Including this frequency noise effect on the incoming solar radiation, we have applied an energy balance climate model to calculate the climate fluctuations for the past one million years. Model simulation results are in good agreement with the geologically observed paleoclimate data. We conclude that orbital noise in the Earth system may be the major cause of the climate fluctuation cycles.
Caraballo, Manuel A; Macías, Francisco; Nieto, José Miguel; Ayora, Carlos
2016-01-01
Water resources management and restoration strategies, and subsequently ecological and human life quality, are highly influenced by the presence of short and long term cycles affecting the intensity of a targeted pollution. On this respect, a typical acid mine drainage (AMD) groundwater from a sulfide mining district with dry Mediterranean climate (Iberian Pyrite Belt, SW Spain) was studied to unravel the effect of long term weather changes in water flow rate and metal pollutants concentration. Three well differentiated polluting stages were observed and the specific geochemical, mineralogical and hydrological processes involved (pyrite and enclosing rocks dissolution, evaporitic salts precipitation-redisolution and pluviometric long term fluctuations) were discussed. Evidencing the importance of including longer background monitoring stage in AMD management and restoration strategies, the present study strongly advise a minimum 5-years period of AMD continuous monitoring previous to the design of any AMD remediation system in regions with dry Mediterranean climate. Copyright © 2015 Elsevier B.V. All rights reserved.
Li, Kai; Liu, Xingqi; Herzschuh, Ulrike; Wang, Yongbo
2016-01-01
Abrupt climate changes and fluctuations over short time scales are superimposed on long-term climate changes. Understanding rapid climate fluctuations at the decadal time scale over the past millennium will enhance our understanding of patterns of climate variability and aid in forecasting climate changes in the future. In this study, climate changes on the southeastern Tibetan Plateau over the past millennium were determined from a 4.82-m-long sediment core from Basomtso Lake. At the centennial time scale, the Medieval Climate Anomaly (MCA), Little Ice Age (LIA) and Current Warm Period (CWP) are distinct in the Basomtso region. Rapid climate fluctuations inferred from five episodes with higher sediment input and likely warmer conditions, as well as seven episodes with lower sediment input and likely colder conditions, were well preserved in our record. These episodes with higher and lower sediment input are characterized by abrupt climate changes and short time durations. Spectral analysis indicates that the climate variations at the centennial scale on the southeastern Tibetan Plateau are influenced by solar activity during the past millennium. PMID:27091591
NASA Technical Reports Server (NTRS)
Welker, J. E.
2004-01-01
Ideally, the Crop Country Inventory, CCI, is a methodology for the pre-harvest prediction of large variations in a country s crop production. This is accomplished by monitoring the historical climatic fluctuations, especially during the crop calendar period, in a climate sensitive large crop production region or sub-country, rather than the entire country. The argument can be made that the climatic fluctuations in the climatic sensitive region are responsible for the major annual crop country variations and that the remainder of the country, without major climatic fluctuations for a given year, can be assumed to be a steady-state crop producer. The principal data set that has been used is the Global Climate Mode (GCM) data from the National Center for Environmental Prediction (NCEP), taken over the last half century. As a test of its accuracy, GCM data can and has been correlated with the actual meteorological station data at the station site.
Strong influence of palaeoclimate on the structure of modern African mammal communities.
Rowan, John; Kamilar, Jason M; Beaudrot, Lydia; Reed, Kaye E
2016-10-12
Ecological research often assumes that species are adapted to their current climatic environments. However, climate fluctuations over geologic timescales have influenced species dispersal and extinction, which in turn may affect community structure. Modern community structure is likely to be the product of both palaeoclimate and modern climate, with the relative degrees of influence of past and present climates unknown. Here, we assessed the influence of climate at different time periods on the phylogenetic and functional trait structure of 203 African mammal communities. We found that the climate of the mid-Holocene (approx. 6000 years ago) and Last Glacial Maximum (approx. 22 000 years ago) were frequently better predictors of community structure than modern climate for mammals overall, carnivorans and ungulates. Primate communities were more strongly influenced by modern climate than palaeoclimate. Overall, community structure of African mammals appears to be related to the ecological flexibility of the groups considered here and the regions of continental Africa that they occupy. Our results indicate that the future redistribution, expansion and contraction of particular biomes due to human activity, such as climate and land-use change, will differentially affect mammal groups that vary in their sensitivity to environmental change. © 2016 The Author(s).
NASA Astrophysics Data System (ADS)
Rossita, A.; Witono, A.; Darusman, T.; Lestari, D. P.; Risdiyanto, I.
2018-03-01
As it is the main role to maintain hydrological function, peatland has been a limelight since drainage construction for agriculture evolved. Drainage construction will decrease water table depth (WTD) and result in CO2 emission release to the atmosphere. Regardless of human intervention, WTD fluctuations can be affected by seasonal climate and climate variability, foremost El Niño Southern Oscillation (ENSO). This study aims to determine the correlation between rainfall in Katingan and ENSO index, analyze the pattern of WTD fluctuation of open area and forest area in 2015 (during very strong El Niño) and 2016 (during weak La Niña), calculate the WTD trendline slope during the dry season, and rainfall and WTD correlation. The result showed that open area has a sharper slope of decreasing or increasing WTD when entering the dry, compared to the forest area. Also, it is found that very strong El Niño in 2015 generated a pattern of more extreme decreasing WTD during the dry season than weak La Niña in 2016.
NASA Astrophysics Data System (ADS)
Zampieri, M.; Ceglar, A.; Dentener, F.; Toreti, A.
2017-06-01
Heat waves and drought are often considered the most damaging climatic stressors for wheat. In this study, we characterize and attribute the effects of these climate extremes on wheat yield anomalies (at global and national scales) from 1980 to 2010. Using a combination of up-to-date heat wave and drought indexes (the latter capturing both excessively dry and wet conditions), we have developed a composite indicator that is able to capture the spatio-temporal characteristics of the underlying physical processes in the different agro-climatic regions of the world. At the global level, our diagnostic explains a significant portion (more than 40%) of the inter-annual production variability. By quantifying the contribution of national yield anomalies to global fluctuations, we have found that just two concurrent yield anomalies affecting the larger producers of the world could be responsible for more than half of the global annual fluctuations. The relative importance of heat stress and drought in determining the yield anomalies depends on the region. Moreover, in contrast to common perception, water excess affects wheat production more than drought in several countries. We have also performed the same analysis at the subnational level for France, which is the largest wheat producer of the European Union, and home to a range of climatic zones. Large subnational variability of inter-annual wheat yield is mostly captured by the heat and water stress indicators, consistently with the country-level result.
Early kit mortality and growth in farmed mink are affected by litter size rather than nest climate.
Schou, T M; Malmkvist, J
2017-09-01
We investigated the effects of nest box climate on early mink kit mortality and growth. We hypothesised that litters in warm nest boxes experience less hypothermia-induced mortality and higher growth rates during the 1st week of life. This study included data from 749, 1-year-old breeding dams with access to nesting materials. Kits were weighed on days 1 and 7, dead kits were collected daily from birth until day 7 after birth, and nest climate was measured continuously from days 1 to 6. We tested the influences of the following daily temperature (T) and humidity (H) parameters on the number of live-born kit deaths and kit growth: T mean, T min, T max, T var (fluctuation) and H mean. The nest microclimate experienced by the kits was buffered against the ambient climate, with higher temperatures and reduced climate fluctuation. Most (77.0%) live-born kit deaths in the 1st week occurred on days 0 and 1. Seven of 15 climate parameters on days 1 to 3 had significant effects on live-born kit mortality. However, conflicting effects among days, marginal effects and late effects indicated that climate was not the primary cause of kit mortality. Five of 30 climate parameters had significant effects on kit growth. Few and conflicting effects indicated that the climate effect on growth was negligible. One exception was that large nest temperature fluctuations on day 1 were associated with reduced deaths of live-born kit (P<0.001) and increased kit growth (P=0.003). Litter size affected kit vitality; larger total litter size at birth was associated with greater risks of kit death (P<0.001) and reduced growth (P<0.001). The number of living kits in litters had the opposite effect, as kits in large liveborn litters had a reduced risk of death (P<0.001) and those with large mean litter size on days 1 to 7 had increased growth (P=0.026). Nest box temperature had little effect on early kit survival and growth, which could be due to dams' additional maternal behaviour. Therefore, we cannot confirm that temperature is the primary reason for kit mortality, under the conditions of plenty straw access for maternal nest building. Instead, prenatal and/or parturient litter size is the primary factor influencing early kit vitality. The results indicate that the focus should be on litter size and dam welfare around the times of gestation and birth to increase early kit survival in farmed mink.
Ketola, Tarmo; Mikonranta, Lauri; Zhang, Ji; Saarinen, Kati; Ormälä, Anni-Maria; Friman, Ville-Petri; Mappes, Johanna; Laakso, Jouni
2013-10-01
Environmental fluctuations can select for generalism, which is also hypothesized to increase organisms' ability to invade novel environments. Here, we show that across a range of temperatures, opportunistic bacterial pathogen Serratia marcescens that evolved in fluctuating temperature (daily variation between 24°C and 38°C, mean 31°C) outperforms the strains that evolved in constant temperature (31°C). The growth advantage was also evident in novel environments in the presence of parasitic viruses and predatory protozoans, but less clear in the presence of stressful chemicals. Adaptation to fluctuating temperature also led to reduced virulence in Drosophila melanogaster host, which suggests that generalism can still be costly in terms of reduced fitness in other ecological contexts. While supporting the hypothesis that evolution of generalism is coupled with tolerance to several novel environments, our results also suggest that thermal fluctuations driven by the climate change could affect both species' invasiveness and virulence. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
NASA Astrophysics Data System (ADS)
Lürig, M.; Kunzmann, A.
2015-05-01
As global climate change is predicted to gradually alter the oceans' carbonate system and water temperature, knowledge about the effects an altered marine environment has on the physiology of reef building (hermatypic) coral species is more widely established. However, although it is recognized that seawater temperature and the carbonate system of a coral reef can change rapidly and with great amplitude, little is known about how the interaction of these natural fluctuations with long term effects of climate change may affect the metabolism and productivity of hermatypic corals. To investigate this, we acclimated the hermatypic coral Stylophora pistillata to a "worst case" scenario for carbon dioxide emissions (aragonite saturation state [ΩARAG] = 1.6), and tested how exposure to short term (24 h) elevated temperature (+ 3 °C) and further lowered ΩARAG (-1 unit) affected its photosynthesis and respiration. While episodic exposure to very low ΩARAG had only little effect on S. pistillata's physiology, short term heat stress caused a shift from net oxygen production to consumption and partial coral bleaching. Higher gross coral respiration, and lowered photosynthetic activity under episodically elevated temperature may have been the result of photoinhibition and partial coral bleaching. These findings suggest that fluctuating environmental conditions in combination with a low ΩARAG background signal may impair basic metabolic processes in calcifying corals. In a future high-CO2 world short term stress could be relevant for reef ecosystem processes, and may affect the resilience of coral reefs to other external influences and effects of climate change.
Imprint of long-term solar signal in groundwater recharge fluctuation rates from Northwest China
NASA Astrophysics Data System (ADS)
Tiwari, R. K.; Rajesh, Rekapalli
2014-05-01
Multiple spectral and statistical analyses of a 700 yearlong temporal record of groundwater recharge from the dry lands, Badain Jaran Desert (Inner Mongolia) of Northwest China reveal a stationary harmonic cycle at ~200 ± 20 year. Interestingly, the underlying periodicity in groundwater recharge fluctuations is similar to those of solar-induced climate cycle "Suess wiggles" and appears to be coherent with phases of the climate fluctuations and solar cycles. Matching periodicity of groundwater recharge rates and solar and climate cycles renders a strong impression that solar-induced climate signals may act as a critical amplifier for driving the underlying hydrographic cycle through the common coupling of long-term Sun-climate groundwater linkages.
Water level fluctuations in an urban pond: Climatic or anthropogenic impact?
Benton, S.E.
2002-01-01
In 1996, the Illinois State Geological Survey began an investigation of fluctuating water levels in a pond in Cary, Illinois. The cause of the fluctuations appeared to be ground water discharge into a storm sewer recently installed by the Illinois Department of Transportation. However, analysis of climatic data provided an equally likely explanation of the fluctuations. Distinguishing the effect of climatic variations from the effect of the storm sewer was hampered by the lack of antecedent ground water and surface water data. In similar settings, it is recommended that ground water and surface water data be collected prior to initiating any infrastructure improvements.
Hereford, R.; Webb, R.H.; Longpre, C.I.
2006-01-01
Precipitation varied substantially in the Mojave Desert through the 20th century in a manner broadly similar to the other warm North American deserts. Episodes of drought and prolonged dry conditions (1893-1904, ca. 1942-1975, and 1999-present) alternated with relatively wet periods (1905-ca. 1941 and ca. 1976-1998), probably because of global-scale climate fluctuations. These are the El Nin??o-Southern Oscillation that affects interannual climate and the Pacific Decadal Oscillation that evidently causes decadal-scale variability such as prolonged dry and wet episodes. Studies done in the late 20th century demonstrate that precipitation fluctuations affected populations of perennial vegetation, annuals, and small herbivores. Landscape rephotography reveals that several species, particularly creosote bush, increased in size and density during the ca. 1976-1998 wet period. A brief, intense drought from 1989 to 1991 and the ongoing drought caused widespread mortality of certain species; for example, chenopods and perennial grasses suffered up to 100% mortality. Drought pruning, the shedding of above-ground biomass to reduce carbon allocation, increased substantially during drought. Overall, drought had the greatest influence on the Mojave Desert ecosystem. ?? 2006.
Climate and sex ratio variation in a viviparous lizard.
Cunningham, George D; While, Geoffrey M; Wapstra, Erik
2017-05-01
The extent to which key biological processes, such as sex determination, respond to environmental fluctuations is fundamental for assessing species' susceptibility to ongoing climate change. Few studies, however, address how climate affects offspring sex in the wild. We monitored two climatically distinct populations of the viviparous skink Niveoscincus ocellatus for 16 years, recording environmental temperatures, offspring sex and date of birth. We found strong population-specific effects of temperature on offspring sex, with female offspring more common in warm years at the lowland site but no effect at the highland site. In contrast, date of birth advanced similarly in response to temperature at both sites. These results suggest strong population-specific effects of temperature on offspring sex that are independent of climatic effects on other physiological processes. These results have significant implications for our understanding of the ecological and evolutionary consequences of variation in sex ratios under climate change. © 2017 The Author(s).
Edlund, Stefan; Davis, Matthew; Douglas, Judith V; Kershenbaum, Arik; Waraporn, Narongrit; Lessler, Justin; Kaufman, James H
2012-09-18
The role of the Anopheles vector in malaria transmission and the effect of climate on Anopheles populations are well established. Models of the impact of climate change on the global malaria burden now have access to high-resolution climate data, but malaria surveillance data tends to be less precise, making model calibration problematic. Measurement of malaria response to fluctuations in climate variables offers a way to address these difficulties. Given the demonstrated sensitivity of malaria transmission to vector capacity, this work tests response functions to fluctuations in land surface temperature and precipitation. This study of regional sensitivity of malaria incidence to year-to-year climate variations used an extended Macdonald Ross compartmental disease model (to compute malaria incidence) built on top of a global Anopheles vector capacity model (based on 10 years of satellite climate data). The predicted incidence was compared with estimates from the World Health Organization and the Malaria Atlas. The models and denominator data used are freely available through the Eclipse Foundation's Spatiotemporal Epidemiological Modeller (STEM). Although the absolute scale factor relating reported malaria to absolute incidence is uncertain, there is a positive correlation between predicted and reported year-to-year variation in malaria burden with an averaged root mean square (RMS) error of 25% comparing normalized incidence across 86 countries. Based on this, the proposed measure of sensitivity of malaria to variations in climate variables indicates locations where malaria is most likely to increase or decrease in response to specific climate factors. Bootstrapping measures the increased uncertainty in predicting malaria sensitivity when reporting is restricted to national level and an annual basis. Results indicate a potential 20x improvement in accuracy if data were available at the level ISO 3166-2 national subdivisions and with monthly time sampling. The high spatial resolution possible with state-of-the-art numerical models can identify regions most likely to require intervention due to climate changes. Higher-resolution surveillance data can provide a better understanding of how climate fluctuations affect malaria incidence and improve predictions. An open-source modelling framework, such as STEM, can be a valuable tool for the scientific community and provide a collaborative platform for developing such models.
NASA Astrophysics Data System (ADS)
Park, E.; Jeong, J.
2017-12-01
A precise estimation of groundwater fluctuation is studied by considering delayed recharge flux (DRF) and unsaturated zone drainage (UZD). Both DRF and UZD are due to gravitational flow impeded in the unsaturated zone, which may nonnegligibly affect groundwater level changes. In the validation, a previous model without the consideration of unsaturated flow is benchmarked where the actual groundwater level and precipitation data are divided into three periods based on the climatic condition. The estimation capability of the new model is superior to the benchmarked model as indicated by the significantly improved representation of groundwater level with physically interpretable model parameters.
NASA Astrophysics Data System (ADS)
Alberti, Tommaso; Lepreti, Fabio; Vecchio, Antonio; Carbone, Vincenzo
2017-04-01
The Earth's climate is an extremely unstable complex system consisting of nonlinear and still rather unknown interactions among atmosphere, land surface, ice and oceans. The system is mainly driven by solar irradiance, even if internal components as volcanic eruptions and human activities affect the atmospheric composition thus acting as a driver for climate changes. Since the extreme climate variability is the result of a set of phenomena operating from daily to multi-millennial timescales, with different correlation times, a study of the scaling properties of the system can evidence non-trivial persistent structures, internal or external physical processes. Recently, the scaling properties of the paleoclimate changes have been analyzed by distinguish between interglacial and glacial climates [Shao and Ditlevsen, 2016]. The results show that the last glacial record (20-120 kyr BP) presents some elements of multifractality, while the last interglacial period (0-10 kyr BP), say the Holocene period, seems to be characterized by a mono-fractal structure. This is associated to the absence of Dansgaard-Oeschger (DO) events in the interglacial climate that could be the cause for the absence of multifractality. This hypothesis is supported by the analysis of the period between 18 and 27 kyr BP, i.e. during the Last Glacial Period, in which a single DO event have been registred. Through the Empirical Mode Decomposition (EMD) we were able to detect a timescale separation within the Last Glacial Period (20-120 kyr BP) in two main components: a high-frequency component, related to the occurrence of DO events, and a low-frequency one, associated to the cooling/warming phase switch [Alberti et al., 2014]. Here, we investigate the scaling properties of the climate fluctuations within the Last Glacial Period, where abrupt climate changes, characterized by fast increase of temperature usually called Dansgaard-Oeschger (DO) events, have been particularly pronounced. By using the MultiFractal Detrended Fluctuation Analysis (MF-DFA), we show that a multifractal structure exists for both high- and low-frequency fluctuations in Northern and Southern hemispheres, with different scaling exponents, thus indicating a long-range persistence of the climatic variability within the whole Last Glacial Period. Our results evidence that both DO events and cooling/warming cycles must be considered as processes of the internal component of the Earth's climate, rather than processes related to external forcings. This study should be helpful for investigation of the internal origin of climate changes. References Shao, Z.G. and Ditlevsen, P.D., Nature Commun., 7, 10951, (2016). Alberti, T., Lepreti, F., Vecchio, A., Bevacqua, E., Capparelli, V. and Carbone, V., Clim. Past, 10, 1751 (2014).
Effect of climate fluctuation on long-term vegetation dynamics in Carolina bay wetlands
Chrissa Stroh; Diane De Steven; Glenn Guntenspergen
2008-01-01
Carolina bays and similar depression wetlands of the U. S. Southeastern Coastal Plain have hydrologic regimes that are driven primarily by rainfall. Therefore, climate fluctuations such as drought cycles have the potential to shape long-term vegetation dynamics. Models suggest two potential long-term responses to hydrologic fluctuations, either cyclic change...
Li, Y; Akimoto, S
2017-07-01
Frequency-dependent selection is a fundamental principle of adaptive sex ratio evolution in all sex ratio theories but has rarely been detected in the wild. Through long-term censuses, we confirmed large fluctuations in the population sex ratio of the aphid Prociphilus oriens and detected frequency-dependent selection acting on these fluctuations. Fluctuations in the population sex ratio were partly attributable to climatic factors during the growing season. Climatic factors likely affected the growth conditions of host plants, which in turn led to yearly fluctuations in maternal conditions and sex ratios. In the process of frequency-dependent selection, female proportion higher or lower than ca. 60% was associated with a reduction or increase in female proportion, respectively, the next year. The rearing of aphid clones in the laboratory indicated that mothers of each clone produced an increasing number of females as maternal size increased. However, the mean male number was not related to maternal size, but varied largely among clones. Given genetic variance in the ability to produce males among clones, selection should favour clones that can produce more numerous males in years with a high female proportion. Population-level sex allocation to females was on average 71%-73% for three localities and more female-biased when maternal conditions were better. This tendency was accounted for by the hypothesis of competition among foundresses rather than the hypothesis of local mate competition. We conclude that despite consistent operation of frequency-dependent selection, the sex ratio continues to fluctuate because environmental conditions always push it away from equilibrium. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
[Dendrochronology of Chinese pine in Mulan-Weichang, Hebei Province: a primary study].
Cui, Ming-xing; He, Xing-yuan; Chen, Wei; Chen, Zhen-ju; Zhou, Chang-hong; Wu, Tao
2008-11-01
Dendroclimatic methods were used to investigate the relationships between the growth of Chinese pine (Pinus tabulaeformis Carr.) and the climatic parameters in Mulan-Weichang of Hebei Province. The results showed that Chinese pine presented high sensitivity to climatic changes, and its earlywood width showed the highest sensitivity. There was a significant negative correlation between the tree-ring width chronology of Chinese pine and the air temperature in May-June. The precipitation and relative humidity in June had strong positive effects on the growth of earlywood, the precipitation from September to next September had significant positive effects on Chinese pine growth, and the relative humidity in winter more strongly affected the growth of latewood than of earlywood. There was a definite correlation between the tree-ring width chronology of Chinese pine and the large scale climate fluctuation. From 1951 to 2006, the increase of air temperature in study area was significant, and the sensitivity of Chinese pine to the variations of local temperature and precipitation decreased, presenting an inverse transforming trend with increasing temperature. Greater differences were observed between the reconstructed and observed data of mean temperature in May - June in a century scale, suggesting that the tree-ring growth of Chinese pine in study area had a greater fluctuation of sensitivity to the variation of climatic factors.
Orbital forcing of climate 1.4 billion years ago.
Zhang, Shuichang; Wang, Xiaomei; Hammarlund, Emma U; Wang, Huajian; Costa, M Mafalda; Bjerrum, Christian J; Connelly, James N; Zhang, Baomin; Bian, Lizeng; Canfield, Donald E
2015-03-24
Fluctuating climate is a hallmark of Earth. As one transcends deep into Earth time, however, both the evidence for and the causes of climate change become difficult to establish. We report geochemical and sedimentological evidence for repeated, short-term climate fluctuations from the exceptionally well-preserved ∼1.4-billion-year-old Xiamaling Formation of the North China Craton. We observe two patterns of climate fluctuations: On long time scales, over what amounts to tens of millions of years, sediments of the Xiamaling Formation record changes in geochemistry consistent with long-term changes in the location of the Xiamaling relative to the position of the Intertropical Convergence Zone. On shorter time scales, and within a precisely calibrated stratigraphic framework, cyclicity in sediment geochemical dynamics is consistent with orbital control. In particular, sediment geochemical fluctuations reflect what appear to be orbitally forced changes in wind patterns and ocean circulation as they influenced rates of organic carbon flux, trace metal accumulation, and the source of detrital particles to the sediment.
Current spring warming as a driver of selection on reproductive timing in a wild passerine.
Marrot, Pascal; Charmantier, Anne; Blondel, Jacques; Garant, Dany
2018-05-01
Evolutionary adaptation as a response to climate change is expected for fitness-related traits affected by climate and exhibiting genetic variance. Although the relationship between warmer spring temperature and earlier timing of reproduction is well documented, quantifications and predictions of the impact of global warming on natural selection acting on phenology in wild populations remain rare. If global warming affects fitness in a similar way across individuals within a population, or if fitness consequences are independent of phenotypic variation in key-adaptive traits, then no evolutionary response is expected for these traits. Here, we quantified the selection pressures acting on laying date during a 24-year monitoring of blue tits in southern Mediterranean France, a hot spot of climate warming. We explored the temporal fluctuation in annual selection gradients and we determined its temperature-related drivers. We first investigated the month-specific warming since 1970 in our study site and tested its influence on selection pressures, using a model averaging approach. Then, we quantified the selection strength associated with temperature anomalies experienced by the blue tit population. We found that natural selection acting on laying date significantly fluctuated both in magnitude and in sign across years. After identifying a significant warming in spring and summer, we showed that warmer daily maximum temperatures in April were significantly associated with stronger selection pressures for reproductive timing. Our results indicated an increase in the strength of selection by 46% for every +1°C anomaly. Our results confirm the general assumption that recent climate change translates into strong selection favouring earlier breeders in passerine birds. Our findings also suggest that differences in fitness among individuals varying in their breeding phenology increase with climate warming. Such climate-driven influence on the strength of directional selection acting on laying date could favour an adaptive response in this trait, since it is heritable. © 2018 The Authors. Journal of Animal Ecology © 2018 British Ecological Society.
Influence of Wave Energetics on Nearshore Storms and Adjacent Shoreline Morphology
NASA Astrophysics Data System (ADS)
Wadman, H. M.; McNinch, J. E.; Hanson, J.
2008-12-01
Large-scale climatic forcings (such as NAO and ENSO) are known to induce fluctuations in regional storm frequency and intensity. Morphology-based studies have traditionally focused on individual storms and their influence on the nearshore coastal wave regime and shoreline response. Few studies have attempted to link long-term observed changes in shoreline position, beach, and nearshore morphology with large-scale climatic forcings that influence regional storm patterns. In order to predict the response of coastlines to future sea level rise and climate change, we need to understand how changes in the frequency of storms affecting nearshore regions (nearshore storms) may influence trends in shoreline position and nearshore morphology. Nearly 30 years of wave data (deep and shallow) collected off of Duck, NC are examined for trends in storm frequency and/or intensity. Changes in shoreline position and shoreface elevation, as observed from monthly beach transects over the same period, are also investigated in light of the observed trends in hydrodynamic forcings. Our preliminary analysis was unable to identify any consistent linear trends (increases or decreases) in frequency or intensity over the ~30-year time period in either the offshore wave heights or the nearshore storm record. These data might suggest that previous observations of recent increases in storm intensity and frequency, speculated to be due to climate change, might be spatially limited. Future analyses will partition the contributions from individual wind sea and swell events in order to better identify long-term trends in wave energetics from the various wave generation regions in the Atlantic. At this location, offshore wave height and the nearshore storm record are dominated by seasonal fluctuations and a strong interdecadal- to decadal periodicity. Previous research in Duck, NC has suggested that changes in shoreline position and shoreface elevations are related both to seasonal trends as well as "storm groupiness". Our analyses support these findings, but also identify interdecadal- to decadal trends in the nearshore morphology. Despite these fluctuations, the overall position of the shoreline and elevation of the shoreface shows little net change over the 30 years investigated. We hypothesize that the interdecadal- to decadal periodicity in the morphology is driven largely by the influences of large-scale climatic forcings on the nearshore wave regime as reflected in the storm record. We also explore the relationship between morphological periodicity, storm and wave height periodicity, and climatic fluctuations.
Malaria transmission in two localities in north-western Argentina
Dantur Juri, María J; Zaidenberg, Mario; Claps, Guillermo L; Santana, Mirta; Almirón, Walter R
2009-01-01
Background Malaria is one of the most important tropical diseases that affects people globally. The influence of environmental conditions in the patterns of temporal distribution of malaria vectors and the disease has been studied in different countries. In the present study, ecological aspects of the malaria vector Anopheles (Anopheles) pseudopunctipennis and their relationship with climatic variables, as well as the seasonality of malaria cases, were studied in two localities, El Oculto and Aguas Blancas, in north-western Argentina. Methods The fluctuation of An. pseudopunctipennis and the malaria cases distribution was analysed with Random Effect Poisson Regression. This analysis takes into account the effect of each climatic variable on the abundance of both vector and malaria cases, giving as results predicted values named Incidence Rate Radio. Results The number of specimens collected in El Oculto and Aguas Blancas was 4224 (88.07%) and 572 (11.93%), respectively. In El Oculto no marked seasonality was found, different from Aguas Blancas, where high abundance was detected at the end of spring and the beginning of summer. The maximum mean temperature affected the An. pseudopunctipennis fluctuation in El Oculto and Aguas Blancas. When considering the relationship between the number of malaria cases and the climatic variables in El Oculto, maximum mean temperature and accumulated rainfall were significant, in contrast with Aguas Blancas, where mean temperature and humidity showed a closer relationship to the fluctuation in the disease. Conclusion The temporal distribution patterns of An. pseudopunctipennis vary in both localities, but spring appears as the season with better conditions for mosquito development. Maximum mean temperature was the most important variable in both localities. Malaria cases were influenced by the maximum mean temperature in El Oculto, while the mean temperature and humidity were significant in Aguas Blancas. In Aguas Blancas peaks of mosquito abundance and three months later, peaks of malaria cases were observed. The study reported here will help to increase knowledge about not only vectors and malaria seasonality but also their relationships with the climatic variables that influence their appearances and abundances. PMID:19152707
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heckel, P.H.
1992-01-01
Only glacial-eustatic sea-level fluctuations can account for all the characteristics of Upper Pennsylvanian marine cyclothems in the Midcontinent. Because this control is global, it must have affected deposition during this time everywhere. In the Appalachian basin widespread well developed paleosols represent long-term sea-level lowstand. During Conemaugh marine incursions, rising sea level ponded fresh-water influx to form peat swamps that migrated landward ahead of transgression and produced early transgressive coals. Marine highstand deposits commonly are conodont-rich limestones, typically skeletal packstone with glaucony and phosphorite. Regression resulted in progradation of detrital shorelines with local delta cycles, followed eventually by more paleosol formationmore » and local erosional incision that removed older sediments including the marine units in places. Fluvial sands filled many of these channels. During Monongahela deposition when marine incursions no longer entered the Appalachian basin, the climatic fluctuations recognized by Cecil can reasonably be related to sea-level fluctuations nearby, but with shifts in climatic significance of gross lithotopes. Coal swamps would more likely have formed at maximum marine highstand when the nearby sea would have provided both high base level and an abundant source of rainfall. Nonmarine limestones would more likely have formed at maximum lowstand when the sea was most distant and the climate driest. The intervening detrital deposits between the coals and limestones formed under intermediate seasonal rainfall regimes during both marine transgression and regression farther west in the Midcontinent. Conemaugh and Allegheny coals without overlying marine units probably also represent mainly marine highstand elsewhere, and nonmarine limestones of these ages typically are associated with lowstand paleosols.« less
Climate events synchronize the dynamics of a resident vertebrate community in the high Arctic.
Hansen, Brage B; Grøtan, Vidar; Aanes, Ronny; Sæther, Bernt-Erik; Stien, Audun; Fuglei, Eva; Ims, Rolf A; Yoccoz, Nigel G; Pedersen, Ashild Ø
2013-01-18
Recently accumulated evidence has documented a climate impact on the demography and dynamics of single species, yet the impact at the community level is poorly understood. Here, we show that in Svalbard in the high Arctic, extreme weather events synchronize population fluctuations across an entire community of resident vertebrate herbivores and cause lagged correlations with the secondary consumer, the arctic fox. This synchronization is mainly driven by heavy rain on snow that encapsulates the vegetation in ice and blocks winter forage availability for herbivores. Thus, indirect and bottom-up climate forcing drives the population dynamics across all overwintering vertebrates. Icing is predicted to become more frequent in the circumpolar Arctic and may therefore strongly affect terrestrial ecosystem characteristics.
Pärn, Henrik; Ringsby, Thor Harald; Jensen, Henrik; Sæther, Bernt-Erik
2012-01-01
Dispersal plays a key role in the response of populations to climate change and habitat fragmentation. Here, we use data from a long-term metapopulation study of a non-migratory bird, the house sparrow (Passer domesticus), to examine the influence of increasing spring temperature and density-dependence on natal dispersal rates and how these relationships depend on spatial variation in habitat quality. The effects of spring temperature and population size on dispersal rate depended on the habitat quality. Dispersal rate increased with temperature and population size on poor-quality islands without farms, where house sparrows were more exposed to temporal fluctuations in weather conditions and food availability. By contrast, dispersal rate was independent of spring temperature and population size on high-quality islands with farms, where house sparrows had access to food and shelter all the year around. This illustrates large spatial heterogeneity within the metapopulation in how population density and environmental fluctuations affect the dispersal process. PMID:21613299
Biological responses to environmental heterogeneity under future ocean conditions.
Boyd, Philip W; Cornwall, Christopher E; Davison, Andrew; Doney, Scott C; Fourquez, Marion; Hurd, Catriona L; Lima, Ivan D; McMinn, Andrew
2016-08-01
Organisms are projected to face unprecedented rates of change in future ocean conditions due to anthropogenic climate-change. At present, marine life encounters a wide range of environmental heterogeneity from natural fluctuations to mean climate change. Manipulation studies suggest that biota from more variable marine environments have more phenotypic plasticity to tolerate environmental heterogeneity. Here, we consider current strategies employed by a range of representative organisms across various habitats - from short-lived phytoplankton to long-lived corals - in response to environmental heterogeneity. We then discuss how, if and when organismal responses (acclimate/migrate/adapt) may be altered by shifts in the magnitude of the mean climate-change signal relative to that for natural fluctuations projected for coming decades. The findings from both novel climate-change modelling simulations and prior biological manipulation studies, in which natural fluctuations are superimposed on those of mean change, provide valuable insights into organismal responses to environmental heterogeneity. Manipulations reveal that different experimental outcomes are evident between climate-change treatments which include natural fluctuations vs. those which do not. Modelling simulations project that the magnitude of climate variability, along with mean climate change, will increase in coming decades, and hence environmental heterogeneity will increase, illustrating the need for more realistic biological manipulation experiments that include natural fluctuations. However, simulations also strongly suggest that the timescales over which the mean climate-change signature will become dominant, relative to natural fluctuations, will vary for individual properties, being most rapid for CO2 (~10 years from present day) to 4 decades for nutrients. We conclude that the strategies used by biota to respond to shifts in environmental heterogeneity may be complex, as they will have to physiologically straddle wide-ranging timescales in the alteration of ocean conditions, including the need to adapt to rapidly rising CO2 and also acclimate to environmental heterogeneity in more slowly changing properties such as warming. © 2016 John Wiley & Sons Ltd.
Fluctuating viability selection on morphology of cliff swallows is driven by climate
Brown, Charles R.; Brown, Mary Bomberger; Roche, Erin A.
2014-01-01
The extent to which fluctuating selection can maintain evolutionary stasis in most populations remains an unresolved question in evolutionary biology. Climate has been hypothesized to drive reversals in the direction of selection among different time periods and may also be responsible for intense episodic selection caused by rare weather events. We measured viability selection associated with morphological traits in cliff swallows (Petrochelidon pyrrhonota) in western Nebraska, U.S.A., over a 14-year period following a rare climatic event. We used mark-recapture to estimate the annual apparent survival of over 26,000 individuals whose wing, tail, tarsus, and bill had been measured. The fitness functions associated with tarsus length and bill dimensions fluctuated depending on annual climate conditions on the birds’ breeding grounds. The oscillating yearly patterns may have slowed and occasionally reversed directional change in trait trajectories, although there was a trend over time for for all traits except tarsus to increase in size. The net positive directional selection on some traits, despite periodic climate-associated fluctuations, suggests that cliff swallow morphology in the population is likely to keep changing and supports recent work contending that selection in general does not fluctuate enough to be an effective driver of stasis. PMID:23510182
Rainfall estimation with TFR model using Ensemble Kalman filter
NASA Astrophysics Data System (ADS)
Asyiqotur Rohmah, Nabila; Apriliani, Erna
2018-03-01
Rainfall fluctuation can affect condition of other environment, correlated with economic activity and public health. The increasing of global average temperature is influenced by the increasing of CO2 in the atmosphere, which caused climate change. Meanwhile, the forests as carbon sinks that help keep the carbon cycle and climate change mitigation. Climate change caused by rainfall intensity deviations can affect the economy of a region, and even countries. It encourages research on rainfall associated with an area of forest. In this study, the mathematics model that used is a model which describes the global temperatures, forest cover, and seasonal rainfall called the TFR (temperature, forest cover, and rainfall) model. The model will be discretized first, and then it will be estimated by the method of Ensemble Kalman Filter (EnKF). The result shows that the more ensembles used in estimation, the better the result is. Also, the accurateness of simulation result is influenced by measurement variable. If a variable is measurement data, the result of simulation is better.
Modeling 100,000-year climate fluctuations in pre-Pleistocene time series
NASA Technical Reports Server (NTRS)
Crowley, Thomas J.; Kim, Kwang-Yul; Mengel, John G.; Short, David A.
1992-01-01
A number of pre-Pleistocene climate records exhibit significant fluctuations at the 100,000-year (100-ky) eccentricity period, before the time of such fluctuations in global ice volume. The origin of these fluctuations has been obscure. Results reported here from a modeling study suggest that such a response can occur over low-altitude land areas involved in monsoon fluctuations. The twice yearly passage of the sun across the equator and the seasonal timing of perihelion interact to increase both 100-ky and 400-ky power in the modeled temperature field. The magnitude of the temperature response is sufficiently large to leave an imprint on the geologic record, and simulated fluctuations resemble those found in records of Triassic lake levels.
Discrete-storm water-table fluctuation method to estimate episodic recharge.
Nimmo, John R.; Horowittz, Charles; Mitchell, Lara
2015-01-01
We have developed a method to identify and quantify recharge episodes, along with their associated infiltration-related inputs, by a consistent, systematic procedure. Our algorithm partitions a time series of water levels into discrete recharge episodes and intervals of no episodic recharge. It correlates each recharge episode with a specific interval of rainfall, so storm characteristics such as intensity and duration can be associated with the amount of recharge that results. To be useful in humid climates, the algorithm evaluates the separability of events, so that those whose recharge cannot be associated with a single storm can be appropriately lumped together. Elements of this method that are subject to subjectivity in the application of hydrologic judgment are values of lag time, fluctuation tolerance, and master recession parameters. Because these are determined once for a given site, they do not contribute subjective influences affecting episode-to-episode comparisons. By centralizing the elements requiring scientific judgment, our method facilitates such comparisons by keeping the most subjective elements openly apparent, making it easy to maintain consistency. If applied to a period of data long enough to include recharge episodes with broadly diverse characteristics, the method has value for predicting how climatic alterations in the distribution of storm intensities and seasonal duration may affect recharge.
Aharonson-Raz, K; Steinman, A; Kavkovsky, A; Bumbarov, V; Berlin, D; Lichter-Peled, A; Berke, O; Klement, E
2017-04-01
It is claimed that the distribution of Culicoides-borne viruses is highly influenced by climate. Equine encephalosis virus (EEV) is a Culicoides-borne orbivirus which affects horses and was recently found to be endemic in Israel. To test whether climate is a crucial factor in the geographical distribution of EEV, we collected blood samples from horses in Israel during the years 2002, 2007 and 2010 and tested them for the abundance of antibodies to EEV. Samples were also collected in 2011 from horses that were seronegative to the virus in 2010, to determine the rate of infection with EEV. It was found that seroprevalence fluctuated between the years and that in each year it was highest in a different climatic region. Interestingly, analysis of infection rate at the different farms showed a negative association with seroprevalence at prior observations. In addition, analysis of precipitation preceding the outbreak of EEV which occurred during 2008 revealed that an extremely dry period existed several months prior to the febrile outbreak with the average precipitation of spring 2008 being significantly lower than the average spring precipitation of the years 1997-2009. It is therefore conjectured that exposure to EEV is not climate specific. Rather, it is highly influenced by herd immunity and weather fluctuations which might change annually. This finding may have important implications for the prediction of the abundance of Culicoides-borne viruses in endemic regions. © 2015 Blackwell Verlag GmbH.
Ramírez, Alonso; Pringle, Catherine M.
2018-01-01
Understanding how environmental variables influence the distribution and density of organisms over relatively long temporal scales is a central question in ecology given increased climatic variability (e.g., precipitation, ENSO events). The primary goal of our study was to evaluate long-term (15y time span) patterns of climate, as well as environmental parameters in two Neotropical streams in lowland Costa Rica, to assess potential effects on aquatic macroinvertebrates. We also examined the relative effects of an 8y whole-stream P-enrichment experiment on macroinvertebrate assemblages against the backdrop of this long-term study. Climate, environmental variables and macroinvertebrate samples were measured monthly for 7y and then quarterly for an additional 8y in each stream. Temporal patterns in climatic and environmental variables showed high variability over time, without clear inter-annual or intra-annual patterns. Macroinvertebrate richness and abundance decreased with increasing discharge and was positively related to the number of days since the last high discharge event. Findings show that fluctuations in stream physicochemistry and macroinvertebrate assemblage structure are ultimately the result of large-scale climatic phenomena, such as ENSO events, while the 8y P-enrichment did not appear to affect macroinvertebrates. Our study demonstrates that Neotropical lowland streams are highly dynamic and not as stable as is commonly presumed, with high intra- and inter-annual variability in environmental parameters that change the structure and composition of freshwater macroinvertebrate assemblages. PMID:29420548
Climate change impacts on food system
NASA Astrophysics Data System (ADS)
Zhang, X.; Cai, X.; Zhu, T.
2014-12-01
Food system includes biophysical factors (climate, land and water), human environments (production technologies and food consumption, distribution and marketing), as well as the dynamic interactions within them. Climate change affects agriculture and food systems in various ways. Agricultural production can be influenced directly by climatic factors such as mean temperature rising, change in rainfall patterns, and more frequent extreme events. Eventually, climate change could cause shift of arable land, alteration of water availability, abnormal fluctuation of food prices, and increase of people at risk of malnutrition. This work aims to evaluate how climate change would affect agricultural production biophysically and how these effects would propagate to social factors at the global level. In order to model the complex interactions between the natural and social components, a Global Optimization model of Agricultural Land and Water resources (GOALW) is applied to the analysis. GOALW includes various demands of human society (food, feed, other), explicit production module, and irrigation water availability constraint. The objective of GOALW is to maximize global social welfare (consumers' surplus and producers' surplus).Crop-wise irrigation water use in different regions around the world are determined by the model; marginal value of water (MVW) can be obtained from the model, which implies how much additional welfare benefit could be gained with one unit increase in local water availability. Using GOALW, we will analyze two questions in this presentation: 1) how climate change will alter irrigation requirements and how the social system would buffer that by price/demand adjustment; 2) how will the MVW be affected by climate change and what are the controlling factors. These results facilitate meaningful insights for investment and adaptation strategies in sustaining world's food security under climate change.
NASA Astrophysics Data System (ADS)
Porporato, A. M.
2013-05-01
We discuss the key processes by which hydrologic variability affects the probabilistic structure of soil moisture dynamics in water-controlled ecosystems. These in turn impact biogeochemical cycling and ecosystem structure through plant productivity and biodiversity as well as nitrogen availability and soil conditions. Once the long-term probabilistic structure of these processes is quantified, the results become useful to understand the impact of climatic changes and human activities on ecosystem services, and can be used to find optimal strategies of water and soil resources management under unpredictable hydro-climatic fluctuations. Particular applications regard soil salinization, phytoremediation and optimal stochastic irrigation.
NASA Astrophysics Data System (ADS)
Malone, A.; Pierrehumbert, R.; Insel, N.; Lowell, T. V.; Kelly, M. A.
2012-12-01
The response of the tropics to climate forcing mechanisms is poorly understood, and there is limited data regarding past tropical climate fluctuations. Past climate fluctuations often leave a detectable record of glacial response in the location of moraines. Computer reconstructions of glacial length variations can thus help constrain past climate fluctuations. Chronology and position data for Holocene moraines are available for the Quelccaya Ice Cap in the Peruvian Andes. The Quelccaya Ice Cap is the equatorial region's largest glaciated area, and given its size and the available data, it is an ideal location at which to use a computer glacier model to reconstruct past glacial extents and constrain past tropical climate fluctuations. We can reproduce the current length and shape of the glacier in the Huancane Valley of the Quelccaya Ice Cap using a 1-D mountain glacier flowline model with an orographic precipitation scheme, an energy balance model for the ablation scheme, and reasonable modern climate conditions. We conduct two experiments. First, we determine the amount of cooling necessary to reproduce the observed Holocene moraine locations by holding the precipitation profile constant and varying the mean sea surface temperature (SST) values. Second, we determine the amount of precipitation increase necessary to reproduce the observed moraine locations by holding the mean SST value constant and varying the maximum precipitation values. We find that the glacier's length is highly sensitive to changes in temperature while only weakly sensitive to changes in precipitation. In the constant precipitation experiment, a decrease in the mean SST of only 0.35 °C can reproduce the nearest Holocene moraine downslope from the current glacier terminus and a decrease in the mean SST of only 1.43 °C can reproduce the furthest Holocene moraine downslope from the current terminus. In the experiment with constant SST, the necessary increase in maximum precipitation is much greater. An increase in the maximum precipitation of 30% is necessary to reproduce the nearest Holocene moraine and an increase in the maximum precipitation of 130% is necessary to reproduce the furthest Holocene moraine. Our results provide a range of values for the mean SST and maximum precipitation that can reproduce the location of Holocene glacial moraines, constraining some of the climate fluctuations in the tropics during the Holocene. These constraints can be used to test hypotheses for climate forcing mechanisms during Holocene events such as the Little Ice Age and possibly provide insight into future tropical climate fluctuations given current and future forcing mechanisms.
NASA Astrophysics Data System (ADS)
Selvam, A. M.
2017-01-01
Dynamical systems in nature exhibit self-similar fractal space-time fluctuations on all scales indicating long-range correlations and, therefore, the statistical normal distribution with implicit assumption of independence, fixed mean and standard deviation cannot be used for description and quantification of fractal data sets. The author has developed a general systems theory based on classical statistical physics for fractal fluctuations which predicts the following. (1) The fractal fluctuations signify an underlying eddy continuum, the larger eddies being the integrated mean of enclosed smaller-scale fluctuations. (2) The probability distribution of eddy amplitudes and the variance (square of eddy amplitude) spectrum of fractal fluctuations follow the universal Boltzmann inverse power law expressed as a function of the golden mean. (3) Fractal fluctuations are signatures of quantum-like chaos since the additive amplitudes of eddies when squared represent probability densities analogous to the sub-atomic dynamics of quantum systems such as the photon or electron. (4) The model predicted distribution is very close to statistical normal distribution for moderate events within two standard deviations from the mean but exhibits a fat long tail that are associated with hazardous extreme events. Continuous periodogram power spectral analyses of available GHCN annual total rainfall time series for the period 1900-2008 for Indian and USA stations show that the power spectra and the corresponding probability distributions follow model predicted universal inverse power law form signifying an eddy continuum structure underlying the observed inter-annual variability of rainfall. On a global scale, man-made greenhouse gas related atmospheric warming would result in intensification of natural climate variability, seen immediately in high frequency fluctuations such as QBO and ENSO and even shorter timescales. Model concepts and results of analyses are discussed with reference to possible prediction of climate change. Model concepts, if correct, rule out unambiguously, linear trends in climate. Climate change will only be manifested as increase or decrease in the natural variability. However, more stringent tests of model concepts and predictions are required before applications to such an important issue as climate change. Observations and simulations with climate models show that precipitation extremes intensify in response to a warming climate (O'Gorman in Curr Clim Change Rep 1:49-59, 2015).
NASA Astrophysics Data System (ADS)
Mercier, Franck; Cazenave, Anny; Maheu, Caroline
2002-04-01
Water level fluctuations of continental lakes are related to regional to global scale climate changes. Water level fluctuations reflect variations in evaporation and precipitation over the lake area and its catchment area. Over such inland water bodies, the satellite altimetry technique offers both a world-wide coverage and a satisfying accuracy. We present here results of lake level variations of 12 African lakes based on 7 years of Topex/Poseidon (T/P) altimetry data acquired between 1993 and 1999. Among the 12 African lakes presented in this study, three are reservoirs whose level fluctuations are mainly driven by anthropogenic usage of the water. Either closed or open, the nine remaining lakes are sensitive indicators of the climate evolution over Africa during the 1990s. Seasonal signals of each lake are clearly identified and filtered out to focus on the interannual fluctuations. Clear correlated regional variations are reported among the east African lakes: several lakes exhibit a regular level decrease between 1993 and 1997, probably due to intense droughts. However, the most spectacular feature is an abrupt water level rise occurring in late 1997-early 1998 and affecting most of the lakes located within the Rift Valley. This major anomalous pattern, explained by a large excess rainfall anomaly occurring in late 1997, is quantified in both space and time domains through an EOF analysis of the lake level height time series. The spatial distribution of the leading mode of lake level height correlates with the dominant mode of precipitation computed over the same time span. Nevertheless, similar rainfall anomaly, but with lesser intensity, occurred in late 1994 without any noticeable consequence on lake level. The precipitation anomaly appears related to the equatorial Indian Ocean warming reported during the 1997-1998 ENSO event.
Shinneman, Douglas J.; Baker, William L.
2009-01-01
Fire is known to structure tree populations, but the role of broad-scale climate variability is less clear. For example, the influence of climatic “teleconnections” (the relationship between oceanic–atmospheric fluctuations and anomalous weather patterns across broad scales) on forest age structure is relatively unexplored. We sampled semiarid piñon–juniper (Pinus edulis–Juniperus osteosperma) woodlands in western Colorado, USA, to test the hypothesis that woodland age structures are shaped by climate, including links to oceanic–atmospheric fluctuations, and by past fires and livestock grazing. Low-severity surface fire was lacking, as fire scars were absent, and did not influence woodland densities, but stand-replacing fires served as long-rotation (>400–600 years), stand-initiating events. Old-growth stands (>300 years old) were found in 75% of plots, consistent with a long fire rotation. Juniper and piñon age structures suggest contrasting responses during the past several centuries to dry and wet episodes linked to the Atlantic Multidecadal Oscillation (AMO) and Pacific Decadal Oscillation (PDO). Juniper density increased slightly during periods of drought, positive (warm) AMO (after ∼10-year lag), and negative (cool) PDO. In contrast, piñon populations may still be recovering from a long, drought-filled period (AD 1620–1820), with pulses of recovery favored during cool AMO, warm PDO, and above-average moisture periods. Analysis of 20th-century tree establishment and instrumental climate data corroborate the long-term relationships between age structure and climate. After Euro–American settlement (AD 1881), livestock grazing reduced understory grasses and forbs, reducing competition with tree seedlings and facilitating climate-induced increases in piñons. Thus tree populations in these woodlands are in flux, affected by drought and wet periods linked to oceanic–atmospheric variability, Euro–American livestock grazing, and long-rotation, high-severity fires. Reductions in livestock grazing levels may aid ecological restoration efforts. However, given long-term fluctuations in tree density and composition, and expected further drought, thinning or burning to reduce tree populations may be misdirected.
Population response to climate change: linear vs. non-linear modeling approaches.
Ellis, Alicia M; Post, Eric
2004-03-31
Research on the ecological consequences of global climate change has elicited a growing interest in the use of time series analysis to investigate population dynamics in a changing climate. Here, we compare linear and non-linear models describing the contribution of climate to the density fluctuations of the population of wolves on Isle Royale, Michigan from 1959 to 1999. The non-linear self excitatory threshold autoregressive (SETAR) model revealed that, due to differences in the strength and nature of density dependence, relatively small and large populations may be differentially affected by future changes in climate. Both linear and non-linear models predict a decrease in the population of wolves with predicted changes in climate. Because specific predictions differed between linear and non-linear models, our study highlights the importance of using non-linear methods that allow the detection of non-linearity in the strength and nature of density dependence. Failure to adopt a non-linear approach to modelling population response to climate change, either exclusively or in addition to linear approaches, may compromise efforts to quantify ecological consequences of future warming.
Understanding the link between malaria risk and climate.
Paaijmans, Krijn P; Read, Andrew F; Thomas, Matthew B
2009-08-18
The incubation period for malaria parasites within the mosquito is exquisitely temperature-sensitive, so that temperature is a major determinant of malaria risk. Epidemiological models are increasingly used to guide allocation of disease control resources and to assess the likely impact of climate change on global malaria burdens. Temperature-based malaria transmission is generally incorporated into these models using mean monthly temperatures, yet temperatures fluctuate throughout the diurnal cycle. Here we use a thermodynamic malaria development model to demonstrate that temperature fluctuation can substantially alter the incubation period of the parasite, and hence malaria transmission rates. We find that, in general, temperature fluctuation reduces the impact of increases in mean temperature. Diurnal temperature fluctuation around means >21 degrees C slows parasite development compared with constant temperatures, whereas fluctuation around <21 degrees C speeds development. Consequently, models which ignore diurnal variation overestimate malaria risk in warmer environments and underestimate risk in cooler environments. To illustrate the implications further, we explore the influence of diurnal temperature fluctuation on malaria transmission at a site in the Kenyan Highlands. Based on local meteorological data, we find that the annual epidemics of malaria at this site cannot be explained without invoking the influence of diurnal temperature fluctuation. Moreover, while temperature fluctuation reduces the relative influence of a subtle warming trend apparent over the last 20 years, it nonetheless makes the effects biologically more significant. Such effects of short-term temperature fluctuations have not previously been considered but are central to understanding current malaria transmission and the consequences of climate change.
Impacts of abrupt climate changes in the Levant from Last Glacial Dead Sea levels
NASA Astrophysics Data System (ADS)
Torfstein, Adi; Goldstein, Steven L.; Stein, Mordechai; Enzel, Yehouda
2013-06-01
A new, detailed lake level curve for Lake Lisan (the Last Glacial Dead Sea) reveals a high frequency of abrupt fluctuations during Marine Isotope Stage 3 (MIS3) compared to the relatively high stand characterizing MIS2, and the significantly lower Holocene lake. The lake level fluctuations reflect the hydrological conditions in the large watershed of the lake, which in turn reflects the hydro-climatic conditions in the central Levant region. The new curve shows that the fluctuations coincide on millennial timescales with temperature variations recorded in Greenland. Four patterns of correlation are observed through the last ice age: (1) maximum lake elevations were reached during MIS2, the coldest interval; (2) abrupt lake level drops to the lowest elevations coincided with the occurrence of Heinrich (H) events; (3) the lake returned to higher-stand conditions along with warming in Greenland that followed H-events; (4) significant lake level fluctuations coincided with virtually every Greenland stadial-interstadial cycle. Over glacial-interglacial time-scales, Northern Hemisphere glacial cooling induces extreme wetness in the Levant, with high lake levels reaching ˜160 m below mean sea level (mbmsl), approximately 240 m above typical Holocene levels of ˜400 mbmsl. These orbital time-scale shifts are driven by expansions of the European ice sheet, which deflect westerly storm tracks southward to the Eastern Mediterranean, resulting in increased sea-air temperature gradients that invoke increased cyclogenesis, and enhanced moisture delivery to the Levant. The millennial-scale lake level drops associated with Greenland stadials are most extreme during Heinrich stadials and reflect abrupt cooling of the Eastern Mediterranean atmosphere and sea-surface, which weaken the cyclogenic rain engine and cause extreme Levant droughts. During the recovery from the effect of Heinrich stadials, the regional climate configuration resumed typical glacial conditions, with enhanced Levant precipitation and a rise in Lake Lisan levels. Similar cyclicity in the transfer of moisture to the Levant affected lake levels during all of the non-Heinrich stadial-interstadial cycles.
Effects of local and regional climatic fluctuations on dengue outbreaks in southern Taiwan
Chaves, Luis Fernando; Chen, Po-Jiang
2017-01-01
Background Southern Taiwan has been a hotspot for dengue fever transmission since 1998. During 2014 and 2015, Taiwan experienced unprecedented dengue outbreaks and the causes are poorly understood. This study aims to investigate the influence of regional and local climate conditions on the incidence of dengue fever in Taiwan, as well as to develop a climate-based model for future forecasting. Methodology/Principle findings Historical time-series data on dengue outbreaks in southern Taiwan from 1998 to 2015 were investigated. Local climate variables were analyzed using a distributed lag non-linear model (DLNM), and the model of best fit was used to predict dengue incidence between 2013 and 2015. The cross-wavelet coherence approach was used to evaluate the regional El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) effects on dengue incidence and local climate variables. The DLNM results highlighted the important non-linear and lag effects of minimum temperature and precipitation. Minimum temperature above 23°C or below 17°C can increase dengue incidence rate with lag effects of 10 to 15 weeks. Moderate to high precipitation can increase dengue incidence rates with a lag of 10 or 20 weeks. The model of best fit successfully predicted dengue transmission between 2013 and 2015. The prediction accuracy ranged from 0.7 to 0.9, depending on the number of weeks ahead of the prediction. ENSO and IOD were associated with nonstationary inter-annual patterns of dengue transmission. IOD had a greater impact on the seasonality of local climate conditions. Conclusions/Significance Our findings suggest that dengue transmission can be affected by regional and local climatic fluctuations in southern Taiwan. The climate-based model developed in this study can provide important information for dengue early warning systems in Taiwan. Local climate conditions might be influenced by ENSO and IOD, to result in unusual dengue outbreaks. PMID:28575035
Effects of local and regional climatic fluctuations on dengue outbreaks in southern Taiwan.
Chuang, Ting-Wu; Chaves, Luis Fernando; Chen, Po-Jiang
2017-01-01
Southern Taiwan has been a hotspot for dengue fever transmission since 1998. During 2014 and 2015, Taiwan experienced unprecedented dengue outbreaks and the causes are poorly understood. This study aims to investigate the influence of regional and local climate conditions on the incidence of dengue fever in Taiwan, as well as to develop a climate-based model for future forecasting. Historical time-series data on dengue outbreaks in southern Taiwan from 1998 to 2015 were investigated. Local climate variables were analyzed using a distributed lag non-linear model (DLNM), and the model of best fit was used to predict dengue incidence between 2013 and 2015. The cross-wavelet coherence approach was used to evaluate the regional El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) effects on dengue incidence and local climate variables. The DLNM results highlighted the important non-linear and lag effects of minimum temperature and precipitation. Minimum temperature above 23°C or below 17°C can increase dengue incidence rate with lag effects of 10 to 15 weeks. Moderate to high precipitation can increase dengue incidence rates with a lag of 10 or 20 weeks. The model of best fit successfully predicted dengue transmission between 2013 and 2015. The prediction accuracy ranged from 0.7 to 0.9, depending on the number of weeks ahead of the prediction. ENSO and IOD were associated with nonstationary inter-annual patterns of dengue transmission. IOD had a greater impact on the seasonality of local climate conditions. Our findings suggest that dengue transmission can be affected by regional and local climatic fluctuations in southern Taiwan. The climate-based model developed in this study can provide important information for dengue early warning systems in Taiwan. Local climate conditions might be influenced by ENSO and IOD, to result in unusual dengue outbreaks.
Contrasted demographic responses facing future climate change in Southern Ocean seabirds.
Barbraud, Christophe; Rivalan, Philippe; Inchausti, Pablo; Nevoux, Marie; Rolland, Virginie; Weimerskirch, Henri
2011-01-01
1. Recent climate change has affected a wide range of species, but predicting population responses to projected climate change using population dynamics theory and models remains challenging, and very few attempts have been made. The Southern Ocean sea surface temperature and sea ice extent are projected to warm and shrink as concentrations of atmospheric greenhouse gases increase, and several top predator species are affected by fluctuations in these oceanographic variables. 2. We compared and projected the population responses of three seabird species living in sub-tropical, sub-Antarctic and Antarctic biomes to predicted climate change over the next 50 years. Using stochastic population models we combined long-term demographic datasets and projections of sea surface temperature and sea ice extent for three different IPCC emission scenarios (from most to least severe: A1B, A2, B1) from general circulation models of Earth's climate. 3. We found that climate mostly affected the probability to breed successfully, and in one case adult survival. Interestingly, frequent nonlinear relationships in demographic responses to climate were detected. Models forced by future predicted climatic change provided contrasted population responses depending on the species considered. The northernmost distributed species was predicted to be little affected by a future warming of the Southern Ocean, whereas steep declines were projected for the more southerly distributed species due to sea surface temperature warming and decrease in sea ice extent. For the most southerly distributed species, the A1B and B1 emission scenarios were respectively the most and less damaging. For the two other species, population responses were similar for all emission scenarios. 4. This is among the first attempts to study the demographic responses for several populations with contrasted environmental conditions, which illustrates that investigating the effects of climate change on core population dynamics is feasible for different populations using a common methodological framework. Our approach was limited to single populations and have neglected population settlement in new favourable habitats or changes in inter-specific relations as a potential response to future climate change. Predictions may be enhanced by merging demographic population models and climatic envelope models. © 2010 The Authors. Journal compilation © 2010 British Ecological Society.
April, Julien; Hanner, Robert H; Mayden, Richard L; Bernatchez, Louis
2013-01-01
Taxonomically exhaustive and continent wide patterns of genetic divergence within and between species have rarely been described and the underlying evolutionary causes shaping biodiversity distribution remain contentious. Here, we show that geographic patterns of intraspecific and interspecific genetic divergence among nearly all of the North American freshwater fish species (>750 species) support a dual role involving both the late Pliocene-Pleistocene climatic fluctuations and metabolic rate in determining latitudinal gradients of genetic divergence and very likely influencing speciation rates. Results indicate that the recurrent glacial cycles caused global reduction in intraspecific diversity, interspecific genetic divergence, and species richness at higher latitudes. At the opposite, longer geographic isolation, higher metabolic rate increasing substitution rate and possibly the rapid accumulation of genetic incompatibilities, led to an increasing biodiversity towards lower latitudes. This indicates that both intrinsic and extrinsic factors similarly affect micro and macro evolutionary processes shaping global patterns of biodiversity distribution. These results also indicate that factors favouring allopatric speciation are the main drivers underlying the diversification of North American freshwater fishes.
April, Julien; Hanner, Robert H.; Mayden, Richard L.; Bernatchez, Louis
2013-01-01
Taxonomically exhaustive and continent wide patterns of genetic divergence within and between species have rarely been described and the underlying evolutionary causes shaping biodiversity distribution remain contentious. Here, we show that geographic patterns of intraspecific and interspecific genetic divergence among nearly all of the North American freshwater fish species (>750 species) support a dual role involving both the late Pliocene-Pleistocene climatic fluctuations and metabolic rate in determining latitudinal gradients of genetic divergence and very likely influencing speciation rates. Results indicate that the recurrent glacial cycles caused global reduction in intraspecific diversity, interspecific genetic divergence, and species richness at higher latitudes. At the opposite, longer geographic isolation, higher metabolic rate increasing substitution rate and possibly the rapid accumulation of genetic incompatibilities, led to an increasing biodiversity towards lower latitudes. This indicates that both intrinsic and extrinsic factors similarly affect micro and macro evolutionary processes shaping global patterns of biodiversity distribution. These results also indicate that factors favouring allopatric speciation are the main drivers underlying the diversification of North American freshwater fishes. PMID:23922969
2014-01-01
Background Complete mitochondrial DNA (mtDNA) genome analyses have greatly improved the phylogeny and phylogeography of human mtDNA. Human mitochondrial DNA haplogroup U6 has been considered as a molecular signal of a Paleolithic return to North Africa of modern humans from southwestern Asia. Results Using 230 complete sequences we have refined the U6 phylogeny, and improved the phylogeographic information by the analysis of 761 partial sequences. This approach provides chronological limits for its arrival to Africa, followed by its spreads there according to climatic fluctuations, and its secondary prehistoric and historic migrations out of Africa colonizing Europe, the Canary Islands and the American Continent. Conclusions The U6 expansions and contractions inside Africa faithfully reflect the climatic fluctuations that occurred in this Continent affecting also the Canary Islands. Mediterranean contacts drove these lineages to Europe, at least since the Neolithic. In turn, the European colonization brought different U6 lineages throughout the American Continent leaving the specific sign of the colonizers origin. PMID:24885141
Singer, Michael Bliss; Sargeant, Christopher I; Piégay, Hervé; Riquier, Jérémie; Wilson, Rob J S; Evans, Cristina M
2014-05-01
Seasonal and annual partitioning of water within river floodplains has important implications for ecohydrologic links between the water cycle and tree growth. Climatic and hydrologic shifts alter water distribution between floodplain storage reservoirs (e.g., vadose, phreatic), affecting water availability to tree roots. Water partitioning is also dependent on the physical conditions that control tree rooting depth (e.g., gravel layers that impede root growth), the sources of contributing water, the rate of water drainage, and water residence times within particular storage reservoirs. We employ instrumental climate records alongside oxygen isotopes within tree rings and regional source waters, as well as topographic data and soil depth measurements, to infer the water sources used over several decades by two co-occurring tree species within a riparian floodplain along the Rhône River in France. We find that water partitioning to riparian trees is influenced by annual (wet versus dry years) and seasonal (spring snowmelt versus spring rainfall) fluctuations in climate. This influence depends strongly on local (tree level) conditions including floodplain surface elevation and subsurface gravel layer elevation. The latter represents the upper limit of the phreatic zone and therefore controls access to shallow groundwater. The difference between them, the thickness of the vadose zone, controls total soil moisture retention capacity. These factors thus modulate the climatic influence on tree ring isotopes. Additionally, we identified growth signatures and tree ring isotope changes associated with recent restoration of minimum streamflows in the Rhône, which made new phreatic water sources available to some trees in otherwise dry years. Water shifts due to climatic fluctuations between floodplain storage reservoirsAnthropogenic changes to hydrology directly impact water available to treesEcohydrologic approaches to integration of hydrology afford new possibilities.
Singer, Michael Bliss; Sargeant, Christopher I; Piégay, Hervé; Riquier, Jérémie; Wilson, Rob J S; Evans, Cristina M
2014-01-01
Seasonal and annual partitioning of water within river floodplains has important implications for ecohydrologic links between the water cycle and tree growth. Climatic and hydrologic shifts alter water distribution between floodplain storage reservoirs (e.g., vadose, phreatic), affecting water availability to tree roots. Water partitioning is also dependent on the physical conditions that control tree rooting depth (e.g., gravel layers that impede root growth), the sources of contributing water, the rate of water drainage, and water residence times within particular storage reservoirs. We employ instrumental climate records alongside oxygen isotopes within tree rings and regional source waters, as well as topographic data and soil depth measurements, to infer the water sources used over several decades by two co-occurring tree species within a riparian floodplain along the Rhône River in France. We find that water partitioning to riparian trees is influenced by annual (wet versus dry years) and seasonal (spring snowmelt versus spring rainfall) fluctuations in climate. This influence depends strongly on local (tree level) conditions including floodplain surface elevation and subsurface gravel layer elevation. The latter represents the upper limit of the phreatic zone and therefore controls access to shallow groundwater. The difference between them, the thickness of the vadose zone, controls total soil moisture retention capacity. These factors thus modulate the climatic influence on tree ring isotopes. Additionally, we identified growth signatures and tree ring isotope changes associated with recent restoration of minimum streamflows in the Rhône, which made new phreatic water sources available to some trees in otherwise dry years. Key Points Water shifts due to climatic fluctuations between floodplain storage reservoirs Anthropogenic changes to hydrology directly impact water available to trees Ecohydrologic approaches to integration of hydrology afford new possibilities PMID:25506099
Effects of climate change on surface-water photochemistry: a review.
De Laurentiis, Elisa; Minella, Marco; Maurino, Valter; Minero, Claudio; Vione, Davide
2014-10-01
Information concerning the link between surface-water photochemistry and climate is presently very scarce as only a few studies have been dedicated to the subject. On the basis of the limited knowledge that is currently available, the present inferences can be made as follows: (1) Warming can cause enhanced leaching of ionic solutes from the catchments to surface waters, including cations and more biologically labile anions such as sulphate. Preferential sulphate biodegradation followed by removal as organic sulphides in sediment could increase alkalinity, favouring the generation of the carbonate radical, CO3 (·-). However, this phenomenon would be easily offset by fluctuations of the dissolved organic carbon (DOC), which is strongly anticorrelated with CO3 (·-). Therefore, obtaining insight into DOC evolution is a key issue in understanding the link between photochemistry and climate. (2) Climate change could exacerbate water scarcity in the dry season in some regions. Fluctuations in the water column could deeply alter photochemistry that is usually favoured in shallower waters. However, the way water is lost would strongly affect the prevailing photoinduced processes. Water outflow without important changes in solute concentration would mostly favour reactions induced by the hydroxyl and carbonate radicals (·OH and CO3 (·-)). In contrast, evaporative concentration would enhance reactions mediated by singlet oxygen ((1)O2) and by the triplet states of chromophoric dissolved organic matter ((3)CDOM*). (3) In a warmer climate, the summer stratification period of lakes would last longer, thereby enhancing photochemical reactions in the epilimnion but at the same time keeping the hypolimnion water in the dark for longer periods.
Habitable planets with high obliquities
NASA Technical Reports Server (NTRS)
Williams, D. M.; Kasting, J. F.
1997-01-01
Earth's obliquity would vary chaotically from 0 degrees to 85 degrees were it not for the presence of the Moon (J. Laskar, F. Joutel, and P. Robutel, 1993, Nature 361, 615-617). The Moon itself is thought to be an accident of accretion, formed by a glancing blow from a Mars-sized planetesimal. Hence, planets with similar moons and stable obliquities may be extremely rare. This has lead Laskar and colleagues to suggest that the number of Earth-like planets with high obliquities and temperate, life-supporting climates may be small. To test this proposition, we have used an energy-balance climate model to simulate Earth's climate at obliquities up to 90 degrees. We show that Earth's climate would become regionally severe in such circumstances, with large seasonal cycles and accompanying temperature extremes on middle- and high-latitude continents which might be damaging to many forms of life. The response of other, hypothetical, Earth-like planets to large obliquity fluctuations depends on their land-sea distribution and on their position within the habitable zone (HZ) around their star. Planets with several modest-sized continents or equatorial supercontinents are more climatically stable than those with polar supercontinents. Planets farther out in the HZ are less affected by high obliquities because their atmospheres should accumulate CO2 in response to the carbonate-silicate cycle. Dense, CO2-rich atmospheres transport heat very effectively and therefore limit the magnitude of both seasonal cycles and latitudinal temperature gradients. We conclude that a significant fraction of extrasolar Earth-like planets may still be habitable, even if they are subject to large obliquity fluctuations.
NASA Astrophysics Data System (ADS)
Vieten, Rolf; Warken, Sophie; Winter, Amos; Scholz, Denis; Black, David; Zanchettin, Davide; Miller, Thomas E.
2017-04-01
At the end of the last deglaciation North Atlantic meltwater pulses from the retreating Laurentide ice sheet triggered a chain of oceanic and atmospheric responses including temporary slow-down of the thermohaline circulation and hemispheric-scale alterations of the atmospheric circulation. The 8.2 ka event (occurring about 8.2 ka BP) is the most pronounced meltwater pulse during the Holocene and serves as an analogue to understand how North Atlantic fresh water influxes can affect the ocean-atmosphere coupled system on a basin, hemispheric or global scale. This event left strong regional climate imprints, such as abrupt cooling reconstructed over the North Atlantic and Europe lasting 100 to 150 years and drying in the northern hemispheric tropics. However, there is a lack of high resolution proxies to learn about the event's temporal structure especially in the tropics. We present geochemical evidence from a stalagmite indicating sudden climate fluctuations towards drier conditions in the northeastern Caribbean possibly related to rapid cooling in the high northern latitudes and a southward shift of the Inter-Tropical Convergence Zone (ITCZ). Stalagmite PR-PA-1 was collected in Palco cave, Puerto Rico, and it is a remarkable record of the 8.2 ka event because 15 MC-ICPMS 230Th/U-dates produce a precise chronology of its Holocene period growing solely between 9.0 ka BP to 7.5 ka BP. Based on 240 trace element and stable isotope ratio measurement we reconstructed hydrological changes with sub-decadal resolution. Our proxy data show large and rapid climate variations before 8.0 ka. Pronounced peaks in the Mg/Ca and δ13C records indicate three major events of abrupt drying. These fluctuations towards drier conditions took place in less than 10 years and the climate remained drier than the natural range for 10 to 20 years, before it returned to pre-fluctuation conditions again. Our observations confirm previous studies suggesting that repeated meltwater pulses affected the thermohaline circulation leading to the temporal and spatial extension of the 8.2 ka event. Moreover, based on our results we hypothesize that three large meltwater pulses decreased the thermohaline circulation, cooled the North Atlantic region and pushed the region of ITCZ influence further southward leading to decreased rainfall in the northeastern Caribbean.
Discrete-storm water-table fluctuation method to estimate episodic recharge.
Nimmo, John R; Horowitz, Charles; Mitchell, Lara
2015-01-01
We have developed a method to identify and quantify recharge episodes, along with their associated infiltration-related inputs, by a consistent, systematic procedure. Our algorithm partitions a time series of water levels into discrete recharge episodes and intervals of no episodic recharge. It correlates each recharge episode with a specific interval of rainfall, so storm characteristics such as intensity and duration can be associated with the amount of recharge that results. To be useful in humid climates, the algorithm evaluates the separability of events, so that those whose recharge cannot be associated with a single storm can be appropriately lumped together. Elements of this method that are subject to subjectivity in the application of hydrologic judgment are values of lag time, fluctuation tolerance, and master recession parameters. Because these are determined once for a given site, they do not contribute subjective influences affecting episode-to-episode comparisons. By centralizing the elements requiring scientific judgment, our method facilitates such comparisons by keeping the most subjective elements openly apparent, making it easy to maintain consistency. If applied to a period of data long enough to include recharge episodes with broadly diverse characteristics, the method has value for predicting how climatic alterations in the distribution of storm intensities and seasonal duration may affect recharge. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
Calderón, Luciano; Campagna, Leonardo; Wilke, Thomas; Lormee, Hervé; Eraud, Cyril; Dunn, Jenny C; Rocha, Gregorio; Zehtindjiev, Pavel; Bakaloudis, Dimitrios E; Metzger, Benjamin; Cecere, Jacopo G; Marx, Melanie; Quillfeldt, Petra
2016-11-07
Understanding how past climatic oscillations have affected organismic evolution will help predict the impact that current climate change has on living organisms. The European turtle dove, Streptopelia turtur, is a warm-temperature adapted species and a long distance migrant that uses multiple flyways to move between Europe and Africa. Despite being abundant, it is categorized as vulnerable because of a long-term demographic decline. We studied the demographic history and population genetic structure of the European turtle dove using genomic data and mitochondrial DNA sequences from individuals sampled across Europe, and performing paleoclimatic niche modelling simulations. Overall our data suggest that this species is panmictic across Europe, and is not genetically structured across flyways. We found the genetic signatures of demographic fluctuations, inferring an effective population size (Ne) expansion that occurred between the late Pleistocene and early Holocene, followed by a decrease in the Ne that started between the mid Holocene and the present. Our niche modelling analyses suggest that the variations in the Ne are coincident with recent changes in the availability of suitable habitat. We argue that the European turtle dove is prone to undergo demographic fluctuations, a trait that makes it sensitive to anthropogenic impacts, especially when its numbers are decreasing. Also, considering the lack of genetic structure, we suggest all populations across Europe are equally relevant for conservation.
Climate change and water table fluctuation: Implications for raised bog surface variability
NASA Astrophysics Data System (ADS)
Taminskas, Julius; Linkevičienė, Rita; Šimanauskienė, Rasa; Jukna, Laurynas; Kibirkštis, Gintautas; Tamkevičiūtė, Marija
2018-03-01
Cyclic peatland surface variability is influenced by hydrological conditions that highly depend on climate and/or anthropogenic activities. A low water level leads to a decrease of peatland surface and an increase of C emissions into the atmosphere, whereas a high water level leads to an increase of peatland surface and carbon sequestration in peatlands. The main aim of this article is to evaluate the influence of hydrometeorological conditions toward the peatland surface and its feedback toward the water regime. A regional survey of the raised bog water table fluctuation and surface variability was made in one of the largest peatlands in Lithuania. Two appropriate indicators for different peatland surface variability periods (increase and decrease) were detected. The first one is an 200 mm y- 1 average net rainfall over a three-year range. The second one is an average annual water depth of 25-30 cm. The application of these indicators enabled the reconstruction of Čepkeliai peatland surface variability during a 100 year period. Processes of peatland surface variability differ in time and in separate parts of peatland. Therefore, internal subbasins in peatland are formed. Subbasins involve autogenic processes that can later affect their internal hydrology, nutrient status, and vegetation succession. Internal hydrological conditions, surface fluctuation, and vegetation succession in peatland subbasins should be taken into account during evaluation of their state, nature management projects, and other peatland research works.
NASA Astrophysics Data System (ADS)
Eggenschwiler, Loren; Hajdas, Irka; Cherubini, Paolo; Picotti, Vincenzo; Saurer, Matthias
2017-04-01
The presence of Pinus [sylvestris] provides an insight into dramatic events due to climatic changes. Several major and minor climatic fluctuations have had a strong impact on terrestrial and marine environments since the last glacial period to present day (Ravazzi et al. 2006). This study aims to describe the response of a fluvial environment through the use of dendrochronology and stratigraphy. Here, we intend to get a better understanding of how these climatic fluctuations affect the behavior of the Senio River (Lotter et al. 1992). In Tebano, Italy, several Pinus sylvestris subfossil trunks were discovered during excavation for an irrigation pool. Subfossil samples were collected to analyze the climate during the Younger Dryas (11,000 years BP) in detail. Charcoal samples from the Bubano clay quarry extend our research to further to 35,500 cal. years BP. The combination of dendrochronology along with stratigraphy allowed us to examine the climate at a detailed local and apply it to a broader spectrum. Tree-ring measurements and cross dating provided a better understanding and verification of extreme events that occurred during the lifespans of the trees. The use of stable isotopes indicates the extreme conditions that occurred. Radiocarbon dating validates the age of the samples and what geological period they come from. Along with stratigraphy, we were able to compile depth data to create a sediment curve. Using various methods throughout this study, we discovered the climatic situation of Pinus 11,000 years BP and are able to compare them with samples from today. These present day samples mark two of the southernmost extents of the Pinus population. We were then able to comprehend the magnitude of sediment supply and precipitation. Through this collection of methods and data, we are able to understand the influence of climate change in the past and the potential changes of the future. REFERENCES Lotter, A. F.; Eicher, U.; Siegenthaler, U.; Birks, H. J. B. (1992): Late-glacial climatic oscillations as recorded in Swiss lake sediments. In Journal of Quaternary Science 7. DOI: 10.1002/jqs.3390070302. Ravazzi, Cesare; Donegana, Marta; Vescovi, Elisa; Arpenti, Enrico; Caccianiga, Marco; Kaltenrieder, Petra et al. (2006): A new Late-glacial site with Picea abies in the northern Apennine foothills. An exception to the model of glacial refugia of trees. In Veget Hist Archaeobot 15 (4), pp. 357-371. DOI: 10.1007/s00334-006-0055-9.
NASA Astrophysics Data System (ADS)
Shi, Songlin; Li, Zongshan; Wang, Hao; von Arx, Georg; Lü, Yihe; Wu, Xing; Wang, Xiaochun; Liu, Guohua; Fu, Bojie
2016-06-01
Growth of herbaceous plants responds sensitively and rapidly to climate variability. Yet, little is known regarding how climate warming influences the growth of herbaceous plants, particularly in semi-arid sites. This contrasts with widely reported tree growth decline and even mortality in response to severe water deficits due to climate warming around the world. Here, we use the relatively novel approach of herb-chronology to analyze the correlation between climatic factors and annual ring width in the root xylem of two perennial forb species (Medicago sativa, Potentilla chinensis) in the Loess Plateau of China. We show that warming-induced water deficit has a significant negative effect on the growth of herbaceous plants in the Loess Plateau. Our results indicate that the growth of forbs responds rapidly and sensitively to drought variability, implying that water availability plays a dominant role in regulating the growth of herbaceous plants in semi-arid areas. If warming and drying in the Loess Plateau continue in the future, further affects the growth of herbaceous plants, potentially driving regional changes in the relationship between herbaceous vegetation and climate.
NASA Astrophysics Data System (ADS)
Shi, S.
2016-12-01
Growth of herbaceous plants responds sensitively and rapidly to climate variability. Yet, little is known regarding how climate warming influences the growth of herbaceous plants, particularly in semi-arid sites. This contrasts with widely reported tree growth decline and even mortality in response to severe water deficits due to climate warming around the world. Here, we use the relatively novel approach of herb-chronology to analyze the correlation between climatic factors and annual ring width in the root xylem of two perennial forb species (Medicago sativa, Potentilla chinensis) in the Loess Plateau of China. We show that warming-induced water deficit has a significant negative effect on the growth of herbaceous plants in the Loess Plateau. Our results indicate that the growth of forbs responds rapidly and sensitively to drought variability, implying that water availability plays a dominant role in regulating the growth of herbaceous plants in semi-arid areas. If warming and drying in the Loess Plateau continue in the future, further affects the growth of herbaceous plants, potentially driving regional changes in the relationship between herbaceous vegetation and climate.
Topography and Radiative Forcing Patterns on Glaciers in the Karakoram Himalaya
NASA Astrophysics Data System (ADS)
Dobreva, I. D.; Bishop, M. P.; Liu, J. C.; Liang, D.
2015-12-01
Glaciers in the western Himalaya exhibit significant spatial variations in morphology and dynamics. Climate, topography and debris cover variations are thought to significantly affect glacier fluctuations and glacier sensitivity to climate change, although the role of topography and radiative forcing have not been adequately characterized and related to glacier fluctuations and dynamics. Consequently, we examined the glaciers in the Karakoram Himalaya, as they exhibit high spatial variability in glacier fluctuation rates and ice dynamics including flow velocity and surging. Specifically, we wanted to examine the relationships between these glacier characteristics and temporal patterns of surface irradiance over the ablation season. To accomplish this, we developed and used a rigorous GIS-based solar radiative transfer model that accounts for the direct and diffuse-skylight irradiance components. The model accounts for multiple topographic effects on the magnitude of irradiance reaching glacier surfaces. We specifically used the ASTER GDEM digital elevation model for irradiance simulations. We then examined temporal patterns of irradiance at the grid-cell level to identify the dominant patterns that were used to train a 3-layer artificial neural network. Our results demonstrate that there are unique spatial and temporal patterns associated with downwasting and surging glaciers, and that these patterns partially account for the spatial distribution of advancing and retreating glaciers. Lower-altitude terminus regions of surging glaciers exhibited relatively low surface irradiance values that decreased in magnitude with time, demonstrating that high-velocity surging glaciers facilitate relief production and exhibit steeper surface irradiance gradients with altitude. Collectively, these results demonstrate the important role that local and regional topography play in governing climate-glacier dynamics in the Himalaya.
Do GCM's predict the climate.... Or the low frequency weather?
NASA Astrophysics Data System (ADS)
Lovejoy, S.; Schertzer, D.; Varon, D.
2012-04-01
Over twenty-five years ago, a three-regime scaling model was proposed describing the statistical variability of the atmosphere over time scales ranging from weather scales out to ≈ 100 kyrs. Using modern in situ data reanalyses, monthly surface series (at 5ox5o), 8 "multiproxy" (yearly) series of the Northern hemisphere from 1500 - 1980, and GRIP and Vostok paleotemperatures at 5.2 and ≈ 100 year resolutions (over the past 91-420 kyrs), we refine the model and show how it can be understood with the help of new developments in nonlinear dynamics, especially multifractals and cascades. In a scaling range, mean fluctuations in state variables such as temperature ΔT vary in power law manners ≈ Δt**H the where Δt is the duration. At small (weather) scales the fluctuation exponents are generally H>0; they grow with scale (Δt). At longer scales Δt >τw (≈ 10 days) H changes sign, the fluctuations decrease with scale; this is the low variability, "low frequency weather" regime. In this regime, the spectrum is a relatively flat "plateau", it's variability is low, stable, corresponding to our usual idea of "long term weather statistics". Finally for longer times, Δt>τc ≈ 10 - 100 years, once again H>0, so that the variability increases with scale: the true climate regime. These scaling regimes allow us to objectively define the weather as fluctuations over periods <τw, to define "climate states" as fluctuations at scale τc and then "climate change" as the fluctuations at longer periods (Δt>τc). We show that the intermediate low frequency weather regime is the result of the weather regime undergoing a "dimensional transition": at temporal scales longer than the typical lifetime of planetary structures (τw), the spatial degrees of freedom are rapidly quenched so that only the temporal degrees of freedom are important. This low frequency weather regime has statistical properties well reproduced not only by stochastic cascade models of weather, but also by control runs (i.e. without climate forcing) of GCM based climate forecasting systems including those of the Institut Pierre Simon Laplace (Paris) and the Earth Forecasting System (Hamburg). In order for these systems to go beyond simply predicting low frequency weather i.e. in order for them to predict the climate, they need appropriate climate forcings and/ or new internal mechanisms of variability. Using statistical scaling techniques we examine the scale dependence of fluctuations from forced and unforced GCM outputs, including from the ECHO-G and EFS simulations in the Millenium climate reconstruction project and compare this with data, multiproxies and paleo data. Our general conclusion is that the models systematically underestimate the multidecadal, multicentennial scale variability.
Role of model structure on the response of soil biogeochemistry to hydro-climatic fluctuations
NASA Astrophysics Data System (ADS)
Manzoni, S.; Porporato, A.
2005-05-01
Soil carbon and nutrient cycles are strongly affected by hydro-climatic variability, which interacts with the internal ecosystem structure. Here we test the implications of biogeochemical model structure on such dynamics by extending an existing model by the authors and coworkers. When forced by hydro-climatic fluctuations, the different model structures induce specific preferential nutrient paths among the soil pools, which in turn affect nutrient distribution and availability to microbes and plants. In particular, if it is assumed that microbes can directly assimilate organic nitrogen, plants tend to be inferior competitors for nutrients even in well-watered conditions, while if a certain amount of organic nitrogen is assumed to be mineralized without being first incorporated into microbial cells, vegetation can be advantaged over a wide range of soil moisture values. We also investigate the intensification of competition for nutrients (e.g., nitrogen) between plant and soil microbial communities under extreme hydrologic conditions, such as droughts and intense storms. Frequent rainfall events may determine ideal soil moisture conditions for plant uptake, enhancing nitrogen leaching while lowering oxygen concentration and inhibiting microbial activity. During droughts, the soil water potential often drops to the point of hampering the plant nutrient uptake while still remaining high enough for microbial decomposition and nitrogen immobilization. The interplay of microbe and vegetation water stress is investigated in depth as it controls the ability of one community (e.g., plants or soil microbes) to establish competitive advantage on the other. The long-term effects of these dynamics of competition and nutrient allocation are explored under steady-state and stochastic soil moisture conditions to analyze the feedbacks between soil organic matter and vegetation dynamics.
Glacier Sensitivity Across the Andes
NASA Astrophysics Data System (ADS)
Sagredo, E. A.; Lowell, T. V.; Rupper, S.
2010-12-01
Most of the research on causes driving former glacial fluctuations, and the climatic signals involved, has focused on the comparisons of sequences of glacial events in separate regions of the world and their temporal-phasing relationship with terrestrial or extraterrestrial climate-forcing mechanisms. Nevertheless the climatic signals related with these glacial advances are still under debate. This impossibility to resolve these questions satisfactorily have been generally attributed to the insufficiently precise chronologies and unevenly distributed records. However, behind these ideas lies the implicit assumption that glaciers situated in different climate regimes respond uniformly to similar climatic perturbations. This ongoing research is aimed to explore the climate-glacier relationship at regional scale, through the analysis of the spatial variability of glacier sensitivity to climatic change. By applying a Surface Energy Mass Balance model (SEMB) developed by Rupper and Roe (2008) to glaciers located in different climatic regimes, we analyzed the spatial variability of mass balance changes under different baseline conditions and under different scenarios of climatic change. For the sake of this research, the analysis is being focused on the Andes, which in its 9,000 km along the western margin of South America offers an unparalleled climatic diversity. Preliminary results suggest that above some threshold of climate change (a hypothetical uniform perturbation), all the glaciers across the Andes would respond in the “same direction” (advancing or retreating). Below that threshold, glaciers located in some climatic regimes may be insensitive to the specific perturbation. On the other hand, glaciers located in different climatic regimes may exhibit a “different magnitude” of change under a uniform climatic perturbation. Thus, glaciers located in the dry Andes of Perú, Chile and Argentina are more sensitive to precipitation changes than variations in temperatures, while glaciers located in the wet Patagonian Andes seem to exhibit an opposite behavior. In an intermediate position are those glaciers located in the Tropical Andes, and Tierra del Fuego, which even though still more sensitive to temperature, they can be affected by temperature changes as well. With this regional approach towards the comprehension of climate-glacial dynamic interaction, we expect to contribute to the understanding the causes and mechanism driving former episodes of glacial fluctuations, and in turn, to the development of future scenarios of climate change.
Rainfall effects on rare annual plants
Levine, J.M.; McEachern, A.K.; Cowan, C.
2008-01-01
Variation in climate is predicted to increase over much of the planet this century. Forecasting species persistence with climate change thus requires understanding of how populations respond to climate variability, and the mechanisms underlying this response. Variable rainfall is well known to drive fluctuations in annual plant populations, yet the degree to which population response is driven by between-year variation in germination cueing, water limitation or competitive suppression is poorly understood.We used demographic monitoring and population models to examine how three seed banking, rare annual plants of the California Channel Islands respond to natural variation in precipitation and their competitive environments. Island plants are particularly threatened by climate change because their current ranges are unlikely to overlap regions that are climatically favourable in the future.Species showed 9 to 100-fold between-year variation in plant density over the 5–12 years of censusing, including a severe drought and a wet El Niño year. During the drought, population sizes were low for all species. However, even in non-drought years, population sizes and per capita growth rates showed considerable temporal variation, variation that was uncorrelated with total rainfall. These population fluctuations were instead correlated with the temperature after the first major storm event of the season, a germination cue for annual plants.Temporal variation in the density of the focal species was uncorrelated with the total vegetative cover in the surrounding community, suggesting that variation in competitive environments does not strongly determine population fluctuations. At the same time, the uncorrelated responses of the focal species and their competitors to environmental variation may favour persistence via the storage effect.Population growth rate analyses suggested differential endangerment of the focal annuals. Elasticity analyses and life table response experiments indicated that variation in germination has the same potential as the seeds produced per germinant to drive variation in population growth rates, but only the former was clearly related to rainfall.Synthesis. Our work suggests that future changes in the timing and temperatures associated with the first major rains, acting through germination, may more strongly affect population persistence than changes in season-long rainfall.
Disease and thermal acclimation in a more variable and unpredictable climate
NASA Astrophysics Data System (ADS)
Raffel, Thomas R.; Romansic, John M.; Halstead, Neal T.; McMahon, Taegan A.; Venesky, Matthew D.; Rohr, Jason R.
2013-02-01
Global climate change is shifting the distribution of infectious diseases of humans and wildlife with potential adverse consequences for disease control. As well as increasing mean temperatures, climate change is expected to increase climate variability, making climate less predictable. However, few empirical or theoretical studies have considered the effects of climate variability or predictability on disease, despite it being likely that hosts and parasites will have differential responses to climatic shifts. Here we present a theoretical framework for how temperature variation and its predictability influence disease risk by affecting host and parasite acclimation responses. Laboratory experiments conducted in 80 independent incubators, and field data on disease-associated frog declines in Latin America, support the framework and provide evidence that unpredictable temperature fluctuations, on both monthly and diurnal timescales, decrease frog resistance to the pathogenic chytrid fungus Batrachochytrium dendrobatidis. Furthermore, the pattern of temperature-dependent growth of the fungus on frogs was opposite to the pattern of growth in culture, emphasizing the importance of accounting for the host-parasite interaction when predicting climate-dependent disease dynamics. If similar acclimation responses influence other host-parasite systems, as seems likely, then present models, which generally ignore small-scale temporal variability in climate, might provide poor predictions for climate effects on disease.
Insects in fluctuating thermal environments.
Colinet, Hervé; Sinclair, Brent J; Vernon, Philippe; Renault, David
2015-01-07
All climate change scenarios predict an increase in both global temperature means and the magnitude of seasonal and diel temperature variation. The nonlinear relationship between temperature and biological processes means that fluctuating temperatures lead to physiological, life history, and ecological consequences for ectothermic insects that diverge from those predicted from constant temperatures. Fluctuating temperatures that remain within permissive temperature ranges generally improve performance. By contrast, those which extend to stressful temperatures may have either positive impacts, allowing repair of damage accrued during exposure to thermal extremes, or negative impacts from cumulative damage during successive exposures. We discuss the mechanisms underlying these differing effects. Fluctuating temperatures could be used to enhance or weaken insects in applied rearing programs, and any prediction of insect performance in the field-including models of climate change or population performance-must account for the effect of fluctuating temperatures.
Irrigation trends in Kansas, 1991-2011
Kenny, Joan F.; Juracek, Kyle E.
2013-01-01
This fact sheet examines trends in total reported irrigation water use and acres irrigated as well as irrigation water use by crop type and system type in Kansas for the years 1991 through 2011. During the 21-year period, total reported irrigation water diversions varied substantially from year to year as affected primarily by climatic fluctuations. Total reported acres irrigated remained comparatively constant during this time, although acreages of irrigated corn increased and center pivots with drop nozzles became the dominant system type used for irrigation.
Climate Change and Respiratory Infections.
Mirsaeidi, Mehdi; Motahari, Hooman; Taghizadeh Khamesi, Mojdeh; Sharifi, Arash; Campos, Michael; Schraufnagel, Dean E
2016-08-01
The rate of global warming has accelerated over the past 50 years. Increasing surface temperature is melting glaciers and raising the sea level. More flooding, droughts, hurricanes, and heat waves are being reported. Accelerated changes in climate are already affecting human health, in part by altering the epidemiology of climate-sensitive pathogens. In particular, climate change may alter the incidence and severity of respiratory infections by affecting vectors and host immune responses. Certain respiratory infections, such as avian influenza and coccidioidomycosis, are occurring in locations previously unaffected, apparently because of global warming. Young children and older adults appear to be particularly vulnerable to rapid fluctuations in ambient temperature. For example, an increase in the incidence in childhood pneumonia in Australia has been associated with sharp temperature drops from one day to the next. Extreme weather events, such as heat waves, floods, major storms, drought, and wildfires, are also believed to change the incidence of respiratory infections. An outbreak of aspergillosis among Japanese survivors of the 2011 tsunami is one such well-documented example. Changes in temperature, precipitation, relative humidity, and air pollution influence viral activity and transmission. For example, in early 2000, an outbreak of Hantavirus respiratory disease was linked to a local increase in the rodent population, which in turn was attributed to a two- to threefold increase in rainfall before the outbreak. Climate-sensitive respiratory pathogens present challenges to respiratory health that may be far greater in the foreseeable future.
Effects of Climate Change on Eelgrass Wasting Disease
NASA Astrophysics Data System (ADS)
Groner, M. L.; Burge, C. A.; Friedman, C. S.; Van Alstyne, K.; Wyllie-Echeverria, S.; Eisenlord, M. E.; Bucci, J.; Cox, R.; Turner, M.
2016-02-01
Climate change affects the health of marine organisms. Ocean acidification (OA) and rising water temperature can alter species interactions, extend organisms beyond their physiological optima and thus are predicted to increase infectious disease events. When disease impacts ecosystem engineers, community level change is possible. Eelgrass, Zostera marina, are ecosystem engineers providing ecosystem services including carbon sequestration and local mitigation of OA. Eelgrass wasting disease (WD), caused by infection from the opportunist pathogen, Labyrinthula zosterae, can be associated with rapid population declines of Z. marina. We conducted two experiments to determine the influence of OA and increased water temperature (separately) on the presence and severity of the WD. In the first, we grew Z. marina under three C02 conditions, 400, 800, and 1600 ppm, to represent current, 'bad day' and 'future' climate scenarios. After acclimation to these conditions, half the treatments were exposed to L. zosterae. In the high CO2, low pH water, the proportion of diseased Z. marina leaves decreased when compared to leaves in the low CO2, high pH water. In a second experiment, Z. marina adults and seedlings were allowed to acclimate to low (11° C), high (18° C) and fluctuating (between 11 and 18° C) water temperatures and then half these individuals were exposed to L. zosterae. Disease occurred more rapidly and with higher severity in seedlings and at high and fluctuating temperatures. Further analyses will allow us to quantify Labyrinthula load, and production of potential host defenses (total phenols and condensed tannins) among these samples. Our results suggest that host-pathogen relationships for this system will be altered in changing climatic conditions and that further research is needed to understand how climate change influences community resilience and ecosystem system services provided by eelgrass meadows.
NASA Astrophysics Data System (ADS)
Dey, Saptarshi; Thiede, Rasmus C.; Schildgen, Taylor F.; Wittmann, Hella; Bookhagen, Bodo; Scherler, Dirk; Jain, Vikrant; Strecker, Manfred R.
2016-09-01
Deciphering the response of sediment routing systems to climatic forcing is fundamental for understanding the impacts of climate change on landscape evolution. In the Kangra Basin (northwest Sub-Himalaya, India), upper Pleistocene to Holocene alluvial fills and fluvial terraces record periodic fluctuations of sediment supply and transport capacity on timescales of 103 to 105 yr. To evaluate the potential influence of climate change on these fluctuations, we compare the timing of aggradation and incision phases recorded within remnant alluvial fans and terraces with climate archives. New surface-exposure dating of six terrace levels with in-situ cosmogenic 10Be indicates the onset of incision phases. Two terrace surfaces from the highest level (T1) sculpted into the oldest preserved alluvial fan (AF1) date back to 53.4 ± 3.2 ka and 43.0 ± 2.7 ka (1σ). T2 surfaces sculpted into the remnants of AF1 have exposure ages of 18.6 ± 1.2 ka and 15.3 ± 0.9 ka, while terraces sculpted into the upper Pleistocene-Holocene fan (AF2) provide ages of 9.3 ± 0.4 ka (T3), 7.1 ± 0.4 ka (T4), 5.2 ± 0.4 ka (T5) and 3.6 ± 0.2 ka (T6). Together with previously published OSL ages yielding the timing of aggradation, we find a correlation between variations in sediment transport with oxygen-isotope records from regions affected by the Indian Summer Monsoon. During periods of increased monsoon intensity and post-Last Glacial Maximum glacial retreat, aggradation occurred in the Kangra Basin, likely due to high sediment flux, whereas periods of weakened monsoon intensity or lower sediment supply coincide with incision.
Mahler, Barbara J.; Bourgeais, Renan
2013-01-01
Karst aquifers and springs provide the dissolved oxygen critical for survival of endemic stygophiles worldwide, but little is known about fluctuations of dissolved oxygen concentrations (DO) and factors that control those concentrations. We investigated temporal variation in DO at Barton Springs, Austin, Texas, USA. During 2006–2012, DO fluctuated by as much as a factor of 2, and at some periods decreased to concentrations that adversely affect the Barton Springs salamander (Eurycea sorosum) (≤4.4 mg/L), a federally listed endangered species endemic to Barton Springs. DO was lowest (≤4.4 mg/L) when discharge was low (≤1 m3/s) and spring water temperature was >21 °C, although not at a maximum; the minimum DO recorded was 4.0 mg/L. Relatively low DO (3/s) and maximum T (22.2 °C). A four-segment linear regression model with daily data for discharge and spring water temperature as explanatory variables provided an excellent fit for mean daily DO (Nash–Sutcliffe coefficient for the validation period of 0.90). DO also fluctuated at short-term timescales in response to storms, and DO measured at 15-min intervals could be simulated with a combination of discharge, spring temperature, and specific conductance as explanatory variables. On the basis of the daily-data regression model, we hypothesize that more frequent low DO corresponding to salamander mortality could result from (i) lower discharge from Barton Springs resulting from increased groundwater withdrawals or decreased recharge as a result of climate change, and (or) (ii) higher groundwater temperature as a result of climate change.
Changes toward earlier streamflow timing across western North America
Stewart, I.T.; Cayan, D.R.; Dettinger, M.D.
2005-01-01
The highly variable timing of streamflow in snowmelt-dominated basins across western North America is an important consequence, and indicator, of climate fluctuations. Changes in the timing of snowmelt-derived streamflow from 1948 to 2002 were investigated in a network of 302 western North America gauges by examining the center of mass for flow, spring pulse onset dates, and seasonal fractional flows through trend and principal component analyses. Statistical analysis of the streamflow timing measures with Pacific climate indicators identified local and key large-scale processes that govern the regionally coherent parts of the changes and their relative importance. Widespread and regionally coherent trends toward earlier onsets of springtime snowmelt and streamflow have taken place across most of western North America, affecting an area that is much larger than previously recognized. These timing changes have resulted in increasing fractions of annual flow occurring earlier in the water year by 1-4 weeks. The immediate (or proximal) forcings for the spatially coherent parts of the year-to-year fluctuations and longer-term trends of streamflow timing have been higher winter and spring temperatures. Although these temperature changes are partly controlled by the decadal-scale Pacific climate mode [Pacific decadal oscillation (PDO)], a separate and significant part of the variance is associated with a springtime warming trend that spans the PDO phases. ?? 2005 American Meteorological Society.
A demographic approach to study effects of climate change in desert plants.
Salguero-Gómez, Roberto; Siewert, Wolfgang; Casper, Brenda B; Tielbörger, Katja
2012-11-19
Desert species respond strongly to infrequent, intense pulses of precipitation. Consequently, indigenous flora has developed a rich repertoire of life-history strategies to deal with fluctuations in resource availability. Examinations of how future climate change will affect the biota often forecast negative impacts, but these-usually correlative-approaches overlook precipitation variation because they are based on averages. Here, we provide an overview of how variable precipitation affects perennial and annual desert plants, and then implement an innovative, mechanistic approach to examine the effects of precipitation on populations of two desert plant species. This approach couples robust climatic projections, including variable precipitation, with stochastic, stage-structured models constructed from long-term demographic datasets of the short-lived Cryptantha flava in the Colorado Plateau Desert (USA) and the annual Carrichtera annua in the Negev Desert (Israel). Our results highlight these populations' potential to buffer future stochastic precipitation. Population growth rates in both species increased under future conditions: wetter, longer growing seasons for Cryptantha and drier years for Carrichtera. We determined that such changes are primarily due to survival and size changes for Cryptantha and the role of seed bank for Carrichtera. Our work suggests that desert plants, and thus the resources they provide, might be more resilient to climate change than previously thought.
A demographic approach to study effects of climate change in desert plants
Salguero-Gómez, Roberto; Siewert, Wolfgang; Casper, Brenda B.; Tielbörger, Katja
2012-01-01
Desert species respond strongly to infrequent, intense pulses of precipitation. Consequently, indigenous flora has developed a rich repertoire of life-history strategies to deal with fluctuations in resource availability. Examinations of how future climate change will affect the biota often forecast negative impacts, but these—usually correlative—approaches overlook precipitation variation because they are based on averages. Here, we provide an overview of how variable precipitation affects perennial and annual desert plants, and then implement an innovative, mechanistic approach to examine the effects of precipitation on populations of two desert plant species. This approach couples robust climatic projections, including variable precipitation, with stochastic, stage-structured models constructed from long-term demographic datasets of the short-lived Cryptantha flava in the Colorado Plateau Desert (USA) and the annual Carrichtera annua in the Negev Desert (Israel). Our results highlight these populations' potential to buffer future stochastic precipitation. Population growth rates in both species increased under future conditions: wetter, longer growing seasons for Cryptantha and drier years for Carrichtera. We determined that such changes are primarily due to survival and size changes for Cryptantha and the role of seed bank for Carrichtera. Our work suggests that desert plants, and thus the resources they provide, might be more resilient to climate change than previously thought. PMID:23045708
Paleoclimate and Amerindians: Evidence from stable isotopes and atmospheric circulation
Lovvorn, M.B.; Frison, G.C.; Tieszen, L.L.
2001-01-01
Two Amerindian demographic shifts are attributed to climate change in the northwest plains of North America: at ???11,000 calendar years before present (yr BP), Amerindian culture apparently split into foothills-mountains vs. plains biomes; and from 8,000-5,000 yr BP, scarce archaeological sites on the open plains suggest emigration during xeric "Altithermal" conditions. We reconstructed paleoclimates from stable isotopes in prehistoric bison bone and relations between weather and fractions of C4 plants in forage. Further, we developed a climate-change model that synthesized stable isotope, existing qualitative evidence (e.g., palynological, erosional), and global climate mechanisms affecting this midlatitude region. Our isotope data indicate significant warming from ???12,400 to 11,900 yr BP, supporting climate-driven cultural separation. However, isotope evidence of apparently wet, warm conditions at 7,300 yr BP refutes emigration to avoid xeric conditions. Scarcity of archaeological sites is best explained by rapid climate fluctuations after catastrophic draining of the Laurentide Lakes, which disrupted North Atlantic Deep Water production and subsequently altered monsoonal inputs to the open plains.
Lake-level variability and water availability in the Great Lakes
Wilcox, Douglas A.; Thompson, Todd A.; Booth, Robert K.; Nicholas, J.R.
2007-01-01
In this report, we present recorded and reconstructed (pre-historical) changes in water levels in the Great Lakes, relate them to climate changes of the past, and highlight major water-availability implications for storage, coastal ecosystems, and human activities. 'Water availability,' as conceptualized herein, includes a recognition that water must be available for human and natural uses, but the balancing of how much should be set aside for which use is not discussed. The Great Lakes Basin covers a large area of North America. The lakes capture and store great volumes of water that are critical in maintaining human activities and natural ecosystems. Water enters the lakes mostly in the form of precipitation and streamflow. Although flow through the connecting channels is a primary output from the lakes, evaporation is also a major output. Water levels in the lakes vary naturally on timescales that range from hours to millennia; storage of water in the lakes changes at the seasonal to millennial scales in response to lake-level changes. Short-term changes result from storm surges and seiches and do not affect storage. Seasonal changes are driven by differences in net basin supply during the year related to snowmelt, precipitation, and evaporation. Annual to millennial changes are driven by subtle to major climatic changes affecting both precipitation (and resulting streamflow) and evaporation. Rebounding of the Earth's surface in response to loss of the weight of melted glaciers has differentially affected water levels. Rebound rates have not been uniform across the basin, causing the hydrologic outlet of each lake to rise in elevation more rapidly than some parts of the coastlines. The result is a long-term change in lake level with respect to shoreline features that differs from site to site. The reconstructed water-level history of Lake Michigan-Huron over the past 4,700 years shows three major high phases from 2,300 to 3,300, 1,100 to 2,000, and 0 to 800 years ago. Within that record is a quasi-periodic rise and fall of about 160 ? 40 years in duration and a shorter fluctuation of 32 ? 6 years that is superimposed on the 160-year fluctuation. Recorded lake-level history from 1860 to the present falls within the longer-term pattern and appears to be a single 160-year quasi-periodic fluctuation. Independent investigations of past climate change in the basin over the long-term period of record confirm that most of these changes in lake level were responses to climatically driven changes in water balance, including lake-level highstands commonly associated with cooler climatic conditions and lows with warm climate periods. The mechanisms underlying these large hydroclimatic anomalies are not clear, but they may be related to internal dynamics of the ocean-atmosphere system or dynamical responses of the ocean-atmosphere system to variability in solar radiation or volcanic activity. The large capacities of the Great Lakes allow them to store great volumes of water. As calculated at chart datum, Lake Superior stores more water (2,900 mi3) than all the other lakes combined (2,539 mi3). Lake Michigan's storage is 1,180 mi3; Lake Huron's, 850 mi3; Lake Ontario's, 393 mi3; and Lake Erie's, 116 mi3. Seasonal lake-level changes alter storage by as much as 6 mi3 in Lake Superior and as little as 2.1 mi3 in Lake Erie. The extreme high and low lake levels measured in recorded lake-level history have altered storage by as much as 31 mi3 in Lake Michigan-Huron and as little as 9 mi3 in Lake Ontario. Diversions of water into and out of the lakes are very small compared to the total volume of water stored in the lakes. The water level of Lake Superior has been regulated since about 1914 and levels of Lake Ontario since about 1960. The range of Lake Superior water-level fluctuations and storage has not been altered greatly by regulation. However, fluctuations on Lake Ontario have been reduced from 6.6 ft preregulation
Analysis of Compound Water Hazard in Coastal Urbanized Areas under the Future Climate
NASA Astrophysics Data System (ADS)
Shibuo, Y.; Taniguchi, K.; Sanuki, H.; Yoshimura, K.; Lee, S.; Tajima, Y.; Koike, T.; Furumai, H.; Sato, S.
2017-12-01
Several studies indicate the increased frequency and magnitude of heavy rainfalls as well as the sea level rise under the future climate, which implies that coastal low-lying urbanized areas may experience increased risk against flooding. In such areas, where river discharge, tidal fluctuation, and city drainage networks altogether influence urban inundation, it is necessary to consider their potential interference to understand the effect of compound water hazard. For instance, pump stations cannot pump out storm water when the river water level is high, and in the meantime the river water level shall increase when it receives pumped water from cities. At the further downstream, as the tidal fluctuation regulates the water levels in the river, it will also affect the functionality of pump stations and possible inundation from rivers. In this study, we estimate compound water hazard in the coastal low-lying urbanized areas of the Tsurumi river basin under the future climate. We developed the seamlessly integrated river, sewerage, and coastal hydraulic model that can simulate river water levels, water flow in sewerage network, and inundation from the rivers and/or the coast to address the potential interference issue. As a forcing, the pseudo global warming method, which applies the changes in GCM anomaly to re-analysis data, is employed to produce ensemble typhoons to drive the seamlessly integrated model. The results show that heavy rainfalls caused by the observed typhoon generally become stronger under the pseudo global climate condition. It also suggests that the coastal low-lying areas become extensively inundated if the onset of river flooding and storm surge coincides.
Kotowska, Martyna M; Leuschner, Christoph; Triadiati, Triadiati; Hertel, Dietrich
2016-02-01
Tropical landscapes are not only rapidly transformed by ongoing land-use change, but are additionally confronted by increasing seasonal climate variation. There is an increasing demand for studies analyzing the effects and feedbacks on ecosystem functioning of large-scale conversions of tropical natural forest into intensively managed cash crop agriculture. We analyzed the seasonality of aboveground litterfall, fine root litter production, and aboveground woody biomass production (ANPP(woody)) in natural lowland forests, rubber agroforests under natural tree cover ("jungle rubber"), rubber and oil palm monocultures along a forest-to-agriculture transformation gradient in Sumatra. We hypothesized that the temporal fluctuation of litter production increases with increasing land-use intensity, while the associated nutrient fluxes and nutrient use efficiency (NUE) decrease. Indeed, the seasonal variation of aboveground litter production and ANPP(woody) increased from the natural forest to the plantations, while aboveground litterfall generally decreased. Nutrient return through aboveground litter was mostly highest in the natural forest; however, it was significantly lower only in rubber plantations. NUE of N, P and K was lowest in the oil palm plantations, with natural forest and the rubber systems showing comparably high values. Root litter production was generally lower than leaf litter production in all systems, while the root-to-leaf ratio of litter C flux increased along the land-use intensity gradient. Our results suggest that nutrient and C cycles are more directly affected by climate seasonality in species-poor agricultural systems than in species-rich forests, and therefore might be more susceptible to inter-annual climate fluctuation and climate change.
Schramm, Harold; Richardson, William B.; Knights, Brent C.
2015-01-01
Floodplains are vital to the structure and function of river-floodplain ecosystems. Among the many ecological services provided by floodplains are nutrient cycling and seasonal habitats for fish, including spawning, nursery, foraging and wintering habitats. Connections between the river channel and floodplain habitats are essential to realize these ecological services, but spatial and temporal aspects of the connection and contemporary geomorphology must also be considered in restoration efforts. This chapter synthesizes available information to compare floodplain function and needed management strategies in two extensive reaches (upper impounded and lower free-flowing) of the Mississippi River, USA. The upper impounded reach is the 523-km reach from about Minneapolis, Minnesota to Clinton, Iowa. This reach has been impounded and channelized for navigation. Mean annual water-level fluctuation ranges from 1 to 2 m in the navigation pools in this reach. Floodplain environmental conditions that affect nitrogen cycling and fish production vary seasonally and longitudinally within and among navigation pools. Significant issues affecting ecological services include sedimentation, constrained water level fluctuations, island erosion and seasonal hypoxia. The lower free-flowing reach, the 1570-km reach from the confluence of the Ohio and Mississippi rivers to the Gulf of Mexico, has no dams and average annual fluctuations of 7 m throughout most of the reach. Despite the substantial flood pulse, floodplain inundation is often brief and may not occur annually. Significant issues affecting floodplain ecological function are the short duration and thermal asynchrony of the flood pulse, sedimentation and loss of connection between the river channel and permanent/semi-permanent floodplain water bodies due to channel incision. Needs and strategies for floodplain enhancement to increase ecological services, particularly nitrogen cycling and fish production, differ along the longitudinal gradient of the Mississippi River and provide informative contrasts to guide floodplain management. Prediction of the effects of climate change on this system will be complicated by the magnitude of the watershed that encompasses 41 % of the continental USA and multiple climatic regions.
The effect of climatic forcing on population synchrony and genetic structuring of the Canadian lynx
Stenseth, Nils Chr.; Ehrich, Dorothee; Rueness, Eli Knispel; Lingjærde, Ole Chr.; Chan, Kung-Sik; Boutin, Stan; O'Donoghue, Mark; Robinson, David A.; Viljugrein, Hildegunn; Jakobsen, Kjetill S.
2004-01-01
The abundance of Canadian lynx follows 10-year density fluctuations across the Canadian subcontinent. These cyclic fluctuations have earlier been shown to be geographically structured into three climatic regions: the Atlantic, Continental, and Pacific zones. Recent genetic evidence revealed an essentially similar spatial structuring. Introducing a new population model, the “climate forcing of ecological and evolutionary patterns” model, we link the observed ecological and evolutionary patterns. Specifically, we demonstrate that there is greater phase synchrony within climatic zones than between them and show that external climatic forcing may act as a synchronizer. We simulated genetic drift by using data on population dynamics generated by the climate forcing of ecological and evolutionary patterns model, and we demonstrate that the observed genetic structuring can be seen as an emerging property of the spatiotemporal ecological dynamics. PMID:15067131
National Centers for Environmental Prediction (NCEP)
Tropical Marine Fire Weather Forecast Maps Unified Surface Analysis Climate Climate Prediction Climate forecasts of hazardous flight conditions at all levels within domestic and international air space. Climate Prediction Center monitors and forecasts short-term climate fluctuations and provides information on the
Holocene Glacier Fluctuations in the Peruvian Andes Indicate Northern Climate Linkages
NASA Astrophysics Data System (ADS)
Licciardi, Joseph M.; Schaefer, Joerg M.; Taggart, Jean R.; Lund, David C.
2009-09-01
The role of the tropics in triggering, transmitting, and amplifying interhemispheric climate signals remains a key debate in paleoclimatology. Tropical glacier fluctuations provide important insight on regional paleoclimatic trends and forcings, but robust chronologies are scarce. Here, we report precise moraine ages from the Cordillera Vilcabamba (13°20‧S) of southern Peru that indicate prominent glacial events and associated climatic shifts in the outer tropics during the early Holocene and late in the “Little Ice Age” period. Our glacier chronologies differ from the New Zealand record but are broadly correlative with well-dated glacial records in Europe, suggesting climate linkages between the tropics and the North Atlantic region.
Climate teleconnections, weather extremes, and vector-borne disease outbreaks
USDA-ARS?s Scientific Manuscript database
Fluctuations in climate lead to extremes in temperature, rainfall, flooding, and droughts. These climate extremes create ideal ecological conditions that promote mosquito-borne disease transmission that impact global human and animal health. One well known driver of such global scale climate fluctua...
Does Change in the Arctic Sea Ice Indicate Climate Change? A Lesson Using Geospatial Technology
ERIC Educational Resources Information Center
Bock, Judith K.
2011-01-01
The Arctic sea ice has not since melted to the 2007 extent, but annual summer melt extents do continue to be less than the decadal average. Climate fluctuations are well documented by geologic records. Averages are usually based on a minimum of 10 years of averaged data. It is typical for fluctuations to occur from year to year and season to…
NASA Astrophysics Data System (ADS)
Roskin, Joel; Katra, Itzhak; Blumberg, Dan G.
2013-04-01
The study of the effects of past climates on ancient cultures is usually based on geologic records pertaining to rainfall and temperature fluctuations and shifts. This study proposes a paradigm of anthropogenic activity and windiness fluctuations to explain aeolian sedimentation and dune mobilization in the northwestern (NW) Negev Desert dunefield (Israel). The proposed paradigm contributes a different approach to estimating the effect of climate changes on the unprecedented agricultural and urban settlement expansion during the late Roman to Early Islamic period in the northern and central Negev Desert. This study builds upon the late Holocene cluster of luminescence ages of Roskin et al. (Age, origin and climatic controls on vegetated linear dunes in the northwestern Negev Desert (Israel), Quaternary Science Reviews 30 (2011), 1649-1674) coupled with analysis of archaeological finds and historical texts. We suggest that whereas the NW Negev dunefield was generally stable during the Holocene, intermittent dune mobilization during the late Holocene, at ~1.8 ka and mostly 1.4-1.1 ka (~600-900 CE), are linked to periods of human occupation. The idea that the last glacial dune encroachments alone that formed the NW Negev dunefield is connected to cold-event windy climates that may have intensified East Mediterranean cyclonic winter storms, cannot explain the late Holocene dune mobilizations. We conceptually model a connection between late Holocene dune mobilization, widespread anthropogenic occupation and activity, and windiness. We maintain that historic grazing and uprooting shrubs for fuel in the past by nomads and sedentary populations led to decimation of dune stabilizers, biogenic soil crusts and vegetation, causing dune erodibility and low-grade activity. Short-term events of amplified wind power in conjunction with periods of augmented anthropogenic activity that triggered major events of dune mobilization (elongation) and accretion have been preserved in the dune chronostratigraphy. Because they were short lived, the dune mobilization events, corresponding windiness, and probable dustiness which were examined affected the northern Negev landscape differentially. However, they cannot be proved to have affected the environment sufficiently to influence the decline of the late Byzantine and Early Islam agricultural establishment. This study demonstrates the sensitivity of dunes in arid and semi-arid regions to a combination of local and short-term fluctuations in windiness at times of widespread grazing (anthropogenic activity). The results remind us that in similar future scenarios, sand mobilization may be similarly retriggered to varying degrees.
Climatic Changes in the East-European Forest-Steppe and Effects on Scots Pine Productivity
NASA Astrophysics Data System (ADS)
Matveev, S. M.; Chendev, Yu. G.; Lupo, A. R.; Hubbart, J. A.; Timashchuk, D. A.
2017-01-01
Climate change during the 20th and early 21st centuries in the transitional zone between forests and grasslands at the center of the East-European Plain (Voronezh oblast) was determined by examining climate trends and variability using tree ring radial increment data as representative of productivity. An increase in atmospheric moisture for the warm period of the year (May-September) since 1890s, and mean annual temperatures since the 1950s was identified. During the same time period, there was a marked increase in amplitude of the annual variations for temperature and precipitation. Study results revealed trends, variability in the climatic indices, and corresponding radial wood increment for the regional stands of Pinus sylvestris L. These fluctuations are consistent with 10-12-years Schwabe-Wolf, 22-years Hale, and the 32-36-years Bruckner Solar Cycles. There was an additional relationship found between high-frequency (short-period) climate fluctuations, lasting for about three years, and 70-90-years fluctuations of the moisture regime in the study region corresponding to longer cycles. The results of this study can help guide management decisions in the study region and elsewhere, especially where climate change induced alterations to the state and productivity of forest ecosystems and associated natural resource commodities are of growing concern.
NASA Astrophysics Data System (ADS)
Zhang, Juan; Hao, Yonghong; Hu, Bill X.; Huo, Xueli; Hao, Pengmei; Liu, Zhongfang
2017-01-01
Karst aquifers supply drinking water for 25 % of the world's population, and they are, however, vulnerable to climate change. This study is aimed to investigate the effects of various monsoons and teleconnection patterns on Niangziguan Karst Spring (NKS) discharge in North China for sustainable exploration of the karst groundwater resources. The monsoons studied include the Indian Summer Monsoon, the West North Pacific Monsoon and the East Asian Summer Monsoon. The climate teleconnection patterns explored include the Indian Ocean Dipole, E1 Niño Southern Oscillation, and the Pacific Decadal Oscillation. The wavelet transform and wavelet coherence methods are used to analyze the karst hydrological processes in the NKS Basin, and reveal the relations between the climate indices with precipitation and the spring discharge. The study results indicate that both the monsoons and the climate teleconnections significantly affect precipitation in the NKS Basin. The time scales that the monsoons resonate with precipitation are strongly concentrated on the time scales of 0.5-, 1-, 2.5- and 3.5-year, and that climate teleconnections resonate with precipitation are relatively weak and diverged from 0.5-, 1-, 2-, 2.5-, to 8-year time scales, respectively. Because the climate signals have to overcome the resistance of heterogeneous aquifers before reaching spring discharge, with high energy, the strong climate signals (e.g. monsoons) are able to penetrate through aquifers and act on spring discharge. So the spring discharge is more strongly affected by monsoons than the climate teleconnections. During the groundwater flow process, the precipitation signals will be attenuated, delayed, merged, and changed by karst aquifers. Therefore, the coherence coefficients between the spring discharge and climate indices are smaller than those between precipitation and climate indices. Further, the fluctuation of the spring discharge is not coincident with that of precipitation in most situations. Karst spring discharge as a proxy can represent groundwater resource variability at a regional scale, and is more strongly influenced by climate variation.
Gamelon, Marlène; Grøtan, Vidar; Nilsson, Anna L. K.; Engen, Steinar; Hurrell, James W.; Jerstad, Kurt; Phillips, Adam S.; Røstad, Ole W.; Slagsvold, Tore; Walseng, Bjørn; Stenseth, Nils C.; Sæther, Bernt-Erik
2017-01-01
Climate change will affect the population dynamics of many species, yet the consequences for the long-term persistence of populations are poorly understood. A major reason for this is that density-dependent feedback effects caused by fluctuations in population size are considered independent of stochastic variation in the environment. We show that an interplay between winter temperature and population density can influence the persistence of a small passerine population under global warming. Although warmer winters favor an increased mean population size, density-dependent feedback can cause the local population to be less buffered against occasional poor environmental conditions (cold winters). This shows that it is essential to go beyond the population size and explore climate effects on the full dynamics to elaborate targeted management actions. PMID:28164157
Attribution of glacier fluctuations to climate change
NASA Astrophysics Data System (ADS)
Oerlemans, J.
2012-04-01
Glacier retreat is a worlwide phenomenon, which started around the middle of the 19th century. During the period 1800-1850 the number of retreating and advancing glaciers was roughly equal (based on 42 records from different continents). During the period 1850-1900 about 92% of all mountain glaciers became shorter (based on 65 records). After this, the percentage of shrinking glaciers has been around 90% until the present time. The glacier signal is rather coherent over the globe, especially when surging and calving glaciers are not considered (for such glaciers the response to climate change is often masked by length changes related to internal dynamics). From theoretical studies as well as extensive meteorological work on glaciers, the processes that control the response of glaciers to climate change are now basically understood. It is useful to make a difference between geometric factors (e.g. slope, altitudinal range, hypsometry) and climatic setting (e.g. seasonal cycle, precipitation). The most sensitive glaciers appear to be flat glaciers in a maritime climate. Characterizing the dynamic properties of a glacier requires at least two quantities: the climate sensitivity, expressing how the equilibrium glacier state depends on the climatic conditions, and the response time, indicating how fast a glacier approaches a new equilibrium state after a stepwise change in the climatic forcing. These quantities can be estimated from relatively simple theory, showing that differences among glaciers are substantial. For larger glaciers, climate sensitivities (in terms of glacier length) vary from 1 to 8 km per 100 m change in the equilibrium-line altitude. Response times are mainly in the range of 20 to 200 years, with most values between 30 and 80 years. Changes in the equilibrium-line altitude or net mass balance of a glacier are mainly driven by fluctuations in air temperature, precipitation, and global radiation. Energy-balance modelling for many glaciers shows that, globally speaking, a 1 K temperature increase has the same effect as a ~25% decrease in precipitation, or a ~15% increase in global radiation. However, the relative importance of these drivers depends significantly on the climatic setting (notably continentality). In this contribution I will give a brief survey of glacier fluctuations over the past few centuries, and provide arguments that on the worldwide scale air temperature must have been the main driver of these fluctuations. A history of global mean temperature that explains the observed glacier fluctuations best will be discussed. On smaller spatial (regional) and temporal (decades) scales, changes in precipitation become important. Both with respect to the attribution problem (what caused the glacier fluctuations in the past?) and the projection issue (what will happen in the next 100 years?), it is important that many more glaciers are explicitly studied with numerical models. I will argue that for non-calving glaciers these models can be relatively simple.
Nonequilibrium life-cycles in Ocean Heat Content
NASA Astrophysics Data System (ADS)
Weiss, Jeffrey B.; Fox-Kemper, Baylor; Mandal, Dibyendu; Zia, Royce K. P.
2014-03-01
Natural climate variability can be considered as fluctuations in a nonequilibrium steady state. A fundamental property of nonequilibrium steady states is the phase space current which provides a preferred direction for fluctuations, and is manifested as preferred life-cycles for climate fluctuations. We propose a new quantity, the phase space angular momentum, to quantify the phase space rotation. In analogy with traditional angular momentum, which quantifies the rotation of mass in physical space, the phase space angular momentum quantifies the rotation of probability in phase space. It has the additional advantage that it is straightforward to calculate from a time series. We investigate the phase space angular momentum for fluctuations in ocean heat content in both observations and ocean general circulation models. We gratefully acknowledge financial support from the National Science Foundation (USA) under grant OCE 1245944.
Tracking climate impacts on the migratory monarch butterfly
Zipkin, Elise F.; Ries, Leslie; Reeves, Rick; Regetz, James; Oberhauser, Karen S.
2012-01-01
Understanding the impacts of climate on migratory species is complicated by the fact that these species travel through several climates that may be changing in diverse ways throughout their complete migratory cycle. Most studies are not designed to tease out the direct and indirect effects of climate at various stages along the migration route. We assess the impacts of spring and summer climate conditions on breeding monarch butterflies, a species that completes its annual migration cycle over several generations. No single, broad-scale climate metric can explain summer breeding phenology or the substantial year-to-year fluctuations observed in population abundances. As such, we built a Poisson regression model to help explain annual arrival times and abundances in the Midwestern United States. We incorporated the climate conditions experienced both during a spring migration/breeding phase in Texas as well as during subsequent arrival and breeding during the main recruitment period in Ohio. Using data from a state-wide butterfly monitoring network in Ohio, our results suggest that climate acts in conflicting ways during the spring and summer seasons. High spring precipitation in Texas is associated with the largest annual population growth in Ohio and the earliest arrival to the summer breeding ground, as are intermediate spring temperatures in Texas. On the other hand, the timing of monarch arrivals to the summer breeding grounds is not affected by climate conditions within Ohio. Once in Ohio for summer breeding, precipitation has minimal impacts on overall abundances, whereas warmer summer temperatures are generally associated with the highest expected abundances, yet this effect is mitigated by the average seasonal temperature of each location in that the warmest sites receive no benefit of above average summer temperatures. Our results highlight the complex relationship between climate and performance for a migrating species and suggest that attempts to understand how monarchs will be affected by future climate conditions will be challenging.
Climate Variability and Yields of Major Staple Food Crops in Northern Ghana
NASA Astrophysics Data System (ADS)
Amikuzuno, J.
2012-12-01
Climate variability, the short-term fluctuations in average weather conditions, and agriculture affect each other. Climate variability affects the agroecological and growing conditions of crops and livestock, and is recently believed to be the greatest impediment to the realisation of the first Millennium Development Goal of reducing poverty and food insecurity in arid and semi-arid regions of developing countries. Conversely, agriculture is a major contributor to climate variability and change by emitting greenhouse gases and reducing the agroecology's potential for carbon sequestration. What however, is the empirical evidence of this inter-dependence of climate variability and agriculture in Sub-Sahara Africa? In this paper, we provide some insight into the long run relationship between inter-annual variations in temperature and rainfall, and annual yields of the most important staple food crops in Northern Ghana. Applying pooled panel data of rainfall, temperature and yields of the selected crops from 1976 to 2010 to cointegration and Granger causality models, there is cogent evidence of cointegration between seasonal, total rainfall and crop yields; and causality from rainfall to crop yields in the Sudano-Guinea Savannah and Guinea Savannah zones of Northern Ghana. This suggests that inter-annual yields of the crops have been influenced by the total mounts of rainfall in the planting season. Temperature variability over the study period is however stationary, and is suspected to have minimal effect if any on crop yields. Overall, the results confirm the appropriateness of our attempt in modelling long-term relationships between the climate and crop yield variables.
Disease in a more variable and unpredictable climate
NASA Astrophysics Data System (ADS)
McMahon, T. A.; Raffel, T.; Rohr, J. R.; Halstead, N.; Venesky, M.; Romansic, J.
2014-12-01
Global climate change is shifting the dynamics of infectious diseases of humans and wildlife with potential adverse consequences for disease control. Despite this, the role of global climate change in the decline of biodiversity and the emergence of infectious diseases remains controversial. Climate change is expected to increase climate variability in addition to increasing mean temperatures, making climate less predictable. However, few empirical or theoretical studies have considered the effects of climate variability or predictability on disease, despite it being likely that hosts and parasites will have differential responses to climatic shifts. Here we present a theoretical framework for how temperature variation and its predictability influence disease risk by affecting host and parasite acclimation responses. Laboratory experiments and field data on disease-associated frog declines in Latin America support this framework and provide evidence that unpredictable temperature fluctuations, on both monthly and diurnal timescales, decrease frog resistance to the pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd). Furthermore, the pattern of temperature-dependent growth of the fungus on frogs was inconsistent with the pattern of Bd growth in culture, emphasizing the importance of accounting for the host-parasite interaction when predicting climate-dependent disease dynamics. Consistent with our laboratory experiments, increased regional temperature variability associated with global El Niño climatic events was the best predictor of widespread amphibian losses in the genus Atelopus. Thus, incorporating the effects of small-scale temporal variability in climate can greatly improve our ability to predict the effects of climate change on disease.
Hypotheses to explain the origin of species in Amazonia.
Haffer, J
2008-11-01
The main hypotheses proposed to explain barrier formation separating populations and causing the differentiation of species in Amazonia during the course of geological history are based on different factors, as follow: (1) Changes in the distribution of land and sea or in the landscape due to tectonic movements or sea level fluctuations (Paleogeography hypothesis), (2) the barrier effect of Amazonian rivers (River hypothesis), (3) a combination of the barrier effect of broad rivers and vegetational changes in northern and southern Amazonia (River-refuge hypothesis), (4) the isolation of humid rainforest blocks near areas of surface relief in the periphery of Amazonia separated by dry forests, savannas and other intermediate vegetation types during dry climatic periods of the Tertiary and Quaternary (Refuge hypothesis), (5) changes in canopy-density due to climatic reversals (Canopy-density hypothesis) (6) the isolation and speciation of animal populations in small montane habitat pockets around Amazonia due to climatic fluctuations without major vegetational changes (Museum hypothesis), (7) competitive species interactions and local species isolations in peripheral regions of Amazonia due to invasion and counterinvasion during cold/warm periods of the Pleistocene (Disturbance-vicariance hypothesis) and (8) parapatric speciation across steep environmental gradients without separation of the respective populations (Gradient hypothesis). Several of these hypotheses probably are relevant to a different degree for the speciation processes in different faunal groups or during different geological periods. The basic paleogeography model refers mainly to faunal differentiation during the Tertiary and in combination with the Refuge hypothesis. Milankovitch cycles leading to global main hypotheses proposed to explain barrier formation separating populations and causing the differentiation of species in Amazonia during the course of geological history are based on different factors, as follow: (1) Changes in the distribution of land and sea or in the landscape due to tectonic movements or sea level fluctuations (Paleogeography hypothesis), (2) the barrier effect of Amazonian rivers (River hypothesis), (3) a combination of the barrier effect of broad rivers and vegetational changes in northern and southern Amazonia (River-refuge hypothesis), (4) the isolation of humid rainforest blocks near areas of surface relief in the periphery of Amazonia separated by dry forests, savannas and other intermediate vegetation types during dry climatic periods of the Tertiary and Quaternary (Refuge hypothesis), (5) changes in canopy-density due to climatic reversals (Canopy-density hypothesis) (6) the isolation and speciation of animal populations in small montane habitat pockets around Amazonia due to climatic fluctuations without major vegetational changes (Museum hypothesis), (7) competitive species interactions and local species isolations in peripheral regions of Amazonia due to invasion and counterinvasion during cold/warm periods of the Pleistocene (Disturbance-vicariance hypothesis) and (8) parapatric speciation across steep environmental gradients without separation of the respective populations (Gradient hypothesis). Several of these hypotheses probably are relevant to a different degree for the speciation processes in different faunal groups or during different geological periods. The basic paleogeography model refers mainly to faunal differentiation during the Tertiary and in combination with the Refuge hypothesis. Milankovitch cycles leading to global climatic-vegetational changes affected the biomes of the world not only during the Pleistocene but also during the Tertiary and earlier geological periods. New geoscientific evidence for the effect of dry climatic periods in Amazonia supports the predictions of the Refuge hypothesis. The disturbance-vicariance hypothesis refers to the presumed effect of cold/warm climatic phases of the Pleistocene only and is of limited general relevance because most extant species originated earlier and probably through paleogeographic changes and the formation of ecological refuges during the Tertiary.
Merello, Paloma; García-Diego, Fernando-Juan; Zarzo, Manuel
2014-08-01
Chemometrics has been applied successfully since the 1990s for the multivariate statistical control of industrial processes. A new area of interest for these tools is the microclimatic monitoring of cultural heritage. Sensors record climatic parameters over time and statistical data analysis is performed to obtain valuable information for preventive conservation. A case study of an open-air archaeological site is presented here. A set of 26 temperature and relative humidity data-loggers was installed in four rooms of Ariadne's house (Pompeii). If climatic values are recorded versus time at different positions, the resulting data structure is equivalent to records of physical parameters registered at several points of a continuous chemical process. However, there is an important difference in this case: continuous processes are controlled to reach a steady state, whilst open-air sites undergo tremendous fluctuations. Although data from continuous processes are usually column-centred prior to applying principal components analysis, it turned out that another pre-treatment (row-centred data) was more convenient for the interpretation of components and to identify abnormal patterns. The detection of typical trajectories was more straightforward by dividing the whole monitored period into several sub-periods, because the marked climatic fluctuations throughout the year affect the correlation structures. The proposed statistical methodology is of interest for the microclimatic monitoring of cultural heritage, particularly in the case of open-air or semi-confined archaeological sites. Copyright © 2014 Elsevier B.V. All rights reserved.
Marie Oliver; David W. Peterson; Becky Kerns
2016-01-01
Earth's climate is changing, as evidenced by warming temperatures, increased temperature variability, fluctuating precipitation patterns, and climate-related environmental disturbances. And with considerable uncertainty about the future, Forest Service land managers are now considering climate change adaptation in their planning efforts. They want practical...
NASA Astrophysics Data System (ADS)
Lanfredi, M.; Simoniello, T.; Cuomo, V.; Macchiato, M.
2009-02-01
This study originated from recent results reported in literature, which support the existence of long-range (power-law) persistence in atmospheric temperature fluctuations on monthly and inter-annual scales. We investigated the results of Detrended Fluctuation Analysis (DFA) carried out on twenty-two historical daily time series recorded in Europe in order to evaluate the reliability of such findings in depth. More detailed inspections emphasized systematic deviations from power-law and high statistical confidence for functional form misspecification. Rigorous analyses did not support scale-free correlation as an operative concept for Climate modelling, as instead suggested in literature. In order to understand the physical implications of our results better, we designed a bivariate Markov process, parameterised on the basis of the atmospheric observational data by introducing a slow dummy variable. The time series generated by this model, analysed both in time and frequency domains, tallied with the real ones very well. They accounted for both the deceptive scaling found in literature and the correlation details enhanced by our analysis. Our results seem to evidence the presence of slow fluctuations from another climatic sub-system such as ocean, which inflates temperature variance up to several months. They advise more precise re-analyses of temperature time series before suggesting dynamical paradigms useful for Climate modelling and for the assessment of Climate Change.
NASA Astrophysics Data System (ADS)
Lanfredi, M.; Simoniello, T.; Cuomo, V.; Macchiato, M.
2009-07-01
This study originated from recent results reported in literature, which support the existence of long-range (power-law) persistence in atmospheric temperature fluctuations on monthly and inter-annual scales. We investigated the results of Detrended Fluctuation Analysis (DFA) carried out on twenty-two historical daily time series recorded in Europe in order to evaluate the reliability of such findings in depth. More detailed inspections emphasized systematic deviations from power-law and high statistical confidence for functional form misspecification. Rigorous analyses did not support scale-free correlation as an operative concept for Climate modelling, as instead suggested in literature. In order to understand the physical implications of our results better, we designed a bivariate Markov process, parameterised on the basis of the atmospheric observational data by introducing a slow dummy variable. The time series generated by this model, analysed both in time and frequency domains, tallied with the real ones very well. They accounted for both the deceptive scaling found in literature and the correlation details enhanced by our analysis. Our results seem to evidence the presence of slow fluctuations from another climatic sub-system such as ocean, which inflates temperature variance up to several months. They advise more precise re-analyses of temperature time series before suggesting dynamical paradigms useful for Climate modelling and for the assessment of Climate Change.
Historical Changes and remediation Measures of Agricultural Streams
NASA Astrophysics Data System (ADS)
Wörman, Anders; Riml, Joakim; Morén, Ida
2017-04-01
Changes in landscapes and climate during the last centuries in Sweden can be tracer in dramatic changes in the runoff pattern over large areas. Particularly, extensive drainage works aimed at expanding arable land and reduce risks for local floods. The availability of long-term monitoring runoff time series make it possible to distinguish the effects of landscape changes from climate fluctuations. However, it is expected that these changes also have an effect on retention and attenuation of nutrients in agricultural streams. This work focuses on design approaches for remediation actions in streams that can restore some of the previous self-purifying capacity and, hence, contribute to improved eutrophication status of the Baltic Sea. For analysis of historical time-series we propose a separation of the power spectral response of runoff in watersheds in terms of the product of the power spectra of precipitation and the impulse response function for the watershed. This allows a formal separation of the spectral response in climatic factors - the precipitation - from those of land-use change and regulation - the impulse response function. We found periodic fluctuations in runoff all over Sweden that can be explained by various climate indices. In addition, we found that the intra-annual variation in runoff was primarily affected by the land-use change in 79 unregulated catchments with up to century-long time series of measured daily discharge. Finally, we developed a design approach for stream remediation actions that restored the self-purification capacity while also increasing the risk for local floods. It is shown that step-structures, like check dams, are effective measures for inducing hyporheic exchange and thereby increasing potential for adsorption of phosphorus to soil and denitrification of nitrogen in biofilms.
Brand, Samuel P C; Keeling, Matt J
2017-03-01
It is a long recognized fact that climatic variations, especially temperature, affect the life history of biting insects. This is particularly important when considering vector-borne diseases, especially in temperate regions where climatic fluctuations are large. In general, it has been found that most biological processes occur at a faster rate at higher temperatures, although not all processes change in the same manner. This differential response to temperature, often considered as a trade-off between onward transmission and vector life expectancy, leads to the total transmission potential of an infected vector being maximized at intermediate temperatures. Here we go beyond the concept of a static optimal temperature, and mathematically model how realistic temperature variation impacts transmission dynamics. We use bluetongue virus (BTV), under UK temperatures and transmitted by Culicoides midges, as a well-studied example where temperature fluctuations play a major role. We first consider an optimal temperature profile that maximizes transmission, and show that this is characterized by a warm day to maximize biting followed by cooler weather to maximize vector life expectancy. This understanding can then be related to recorded representative temperature patterns for England, the UK region which has experienced BTV cases, allowing us to infer historical transmissibility of BTV, as well as using forecasts of climate change to predict future transmissibility. Our results show that when BTV first invaded northern Europe in 2006 the cumulative transmission intensity was higher than any point in the last 50 years, although with climate change such high risks are the expected norm by 2050. Such predictions would indicate that regular BTV epizootics should be expected in the UK in the future. © 2017 The Author(s).
Soto, A; Robledo-Arnuncio, J J; González-Martínez, S C; Smouse, P E; Alía, R
2010-04-01
Quaternary climatic fluctuations have left contrasting historical footprints on the neutral genetic diversity patterns of existing populations of different tree species. We should expect the demography, and consequently the neutral genetic structure, of taxa less tolerant to particular climatic extremes to be more sensitive to long-term climate fluctuations. We explore this hypothesis here by sampling all six pine species found in the Iberian Peninsula (2464 individuals, 105 populations), using a common set of chloroplast microsatellite markers, and by looking at the association between neutral genetic diversity and species-specific climatic requirements. We found large variation in neutral genetic diversity and structure among Iberian pines, with cold-enduring mountain species (Pinus uncinata, P. sylvestris and P. nigra) showing substantially greater diversity than thermophilous taxa (P. pinea and P. halepensis). Within species, we observed a significant positive correlation between population genetic diversity and summer precipitation for some of the mountain pines. The observed pattern is consistent with the hypotheses that: (i) more thermophilous species have been subjected to stronger demographic fluctuations in the past, as a consequence of their maladaptation to recurrent glacial cold stages; and (ii) altitudinal migrations have allowed the maintenance of large effective population sizes and genetic variation in cold-tolerant species, especially in more humid regions. In the light of these results and hypotheses, we discuss some potential genetic consequences of impending climate change.
Incubation under climate warming affects learning ability and survival in hatchling lizards.
Dayananda, Buddhi; Webb, Jonathan K
2017-03-01
Despite compelling evidence for substantial individual differences in cognitive performance, it is unclear whether cognitive ability influences fitness of wild animals. In many animals, environmental stressors experienced in utero can produce substantial variation in the cognitive abilities of offspring. In reptiles, incubation temperatures experienced by embryos can influence hatchling brain function and learning ability. Under climate warming, the eggs of some lizard species may experience higher temperatures, which could affect the cognitive abilities of hatchlings. Whether such changes in cognitive abilities influence the survival of hatchlings is unknown. To determine whether incubation-induced changes in spatial learning ability affect hatchling survival, we incubated velvet gecko, Amalosia lesueurii , eggs using two fluctuating temperature regimes to mimic current (cold) versus future (hot) nest temperatures. We measured the spatial learning ability of hatchlings from each treatment, and released individually marked animals at two field sites in southeastern Australia. Hatchlings from hot-incubated eggs were slower learners than hatchlings from cold-incubated eggs. Survival analyses revealed that hatchlings with higher learning scores had higher survival than hatchlings with poor learning scores. Our results show that incubation temperature affects spatial learning ability in hatchling lizards, and that such changes can influence the survival of hatchlings in the wild. © 2017 The Author(s).
Smith, G.I.
1984-01-01
Nine distinct paleohydrologic regimes in the southwestern Great Basin over the last 3.2 my are recorded by the lacustrine deposits in KM-3, a 930-m core from Searles Lake, California. These are characterized as being "wet," "intermediate," or "dry" (like today). Excepting the present incomplete regime, each lasted 0.12 to 0.76 my. Major regime changes 0.01, 0.13, 0.6, and 2.5 my ago appear to coincide with recognized changes in global ice-sheet histories as represented by 18O and other records from marine sediments, but comparable changes 0.3, 1.0, 1.3, and 2.0 my ago do not appear to coincide closely with comparable perturbations in ice-sheet histories. However, all regime boundaries (during the last 1.75 my) coincide closely in time with changes in sea-surface temperatures in the tropical Atlantic, and many coincide with other deep-sea and continental paleoclimatic boundaries.The average duration of these paleohydrologic regimes was about 0.4 my (standard deviation, 0.2 my or less, depending on assumptions), and it is suggested that the regime boundaries reflect times of change in global(?) sea-surface temperatures, possibly controlled in part by the Earth's 413,000-yr orbital eccentricity cycle. During the wettest and driest regimes in the Searles Lake area, lake levels were not sufficiently affected by the 23,000-, to 42,000-, or 100,000-yr climate cycles related to high-latitude ice-sheet fluctuations to produce changes in the lacustrine sediment character. During intermediate regimes, however, when lacustrine sedimentation in this area was more sensitive to climate, the sediments, in KM-3, record lake fluctuations with average frequencies near those of the ice sheets. This seems to indicate that the high-latitude ice-sheet fluctuations caused local climatic perturbations but did not dominate the hydrologic component of climate in this area. Other lacustrine deposits in the southwestern Great Basin of California and Nevada have ages comparable in part to those of the wet to intermediate regimes indicated by KM-3, and they may all be products of finite periods when lake expansion, alluvial fan growth, increased spring discharge, and fluvial deposition were promoted in this area by widespread wet climates. Glacier expansion in the Sierra Nevada may also have been primarily an expression of, and in phase with, these wet regimes. ?? 1984.
Synchronous population dynamics in California butterflies explained by climatic forcing
Shapiro, Arthur M.
2017-01-01
A long-standing challenge for population biology has been to understand why some species are characterized by populations that fluctuate in size independently, while populations of other species fluctuate synchronously across space. The effects of climatic variation and dispersal have been invoked to explain synchronous population dynamics, however an understanding of the relative influence of these drivers in natural populations is lacking. Here we compare support for dispersal- versus climate-driven models of interspecific variation in synchrony using 27 years of observations of 65 butterfly species at 10 sites spanning 2750 m of elevation in Northern California. The degree of spatial synchrony exhibited by each butterfly species was used as a response in a unique approach that allowed us to investigate whether interspecific variation in response to climate or dispersal propensity was most predictive of interspecific variation in synchrony. We report that variation in sensitivity to climate explained 50% of interspecific variation in synchrony, whereas variation in dispersal propensity explained 23%. Sensitivity to the El Niño Southern Oscillation, a primary driver of regional climate, was the best predictor of synchrony. Combining sensitivity to climate and dispersal propensity into a single model did not greatly increase model performance, confirming the primacy of climatic sensitivity for driving spatial synchrony in butterflies. Finally, we uncovered a relationship between spatial synchrony and population decline that is consistent with theory, but small in magnitude, which suggests that the degree to which populations fluctuate in synchrony is of limited use for understanding the ongoing decline of the Northern California butterfly fauna. PMID:28791146
Molina, Oswaldo; Saldarriaga, Victor
2017-02-01
The discussion on the effects of climate change on human activity has primarily focused on how increasing temperature levels can impair human health. However, less attention has been paid to the effect of increased climate variability on health. We investigate how in utero exposure to temperature variability, measured as the fluctuations relative to the historical local temperature mean, affects birth outcomes in the Andean region. Our results suggest that exposure to a temperate one standard deviation relative to the municipality's long-term temperature mean during pregnancy reduces birth weight by 20g. and increases the probability a child is born with low birth weight by a 0.7 percentage point. We also explore potential channels driving our results and find some evidence that increased temperature variability can lead to a decrease in health care and increased food insecurity during pregnancy. Copyright © 2016 Elsevier B.V. All rights reserved.
Exploring Connections between Global Climate Indices and African Vegetation Phenology
NASA Technical Reports Server (NTRS)
Brown, Molly E.; deBeurs, Kirsten; Vrieling, Anton
2009-01-01
Variations in agricultural production due to rainfall and temperature fluctuations are a primary cause of food insecurity on the continent in Africa. Agriculturally destructive droughts and floods are monitored from space using satellite remote sensing by organizations seeking to provide quantitative and predictive information about food security crises. Better knowledge on the relation between climate indices and food production may increase the use of these indices in famine early warning systems and climate outlook forums on the continent. Here we explore the relationship between phenology metrics derived from the 26 year AVHRR NDVI record and the North Atlantic Oscillation index (NAO), the Indian Ocean Dipole (IOD), the Pacific Decadal Oscillation (PDO), the Multivariate ENSO Index (MEI) and the Southern Oscillation Index (SOI). We explore spatial relationships between growing conditions as measured by the NDVI and the five climate indices in Eastern, Western and Southern Africa to determine the regions and periods when they have a significant impact. The focus is to provide a clear indication as to which climate index has the most impact on the three regions during the past quarter century. We found that the start of season and cumulative NDVI were significantly affected by variations in the climate indices. The particular climate index and the timing showing highest correlation depended heavily on the region examined. The research shows that climate indices can contribute to understanding growing season variability in Eastern, Western and Southern Africa.
Do GCM's Predict the Climate.... Or the Low Frequency Weather?
NASA Astrophysics Data System (ADS)
Lovejoy, S.; Varon, D.; Schertzer, D. J.
2011-12-01
Over twenty-five years ago, a three-regime scaling model was proposed describing the statistical variability of the atmosphere over time scales ranging from weather scales out to ≈ 100 kyrs. Using modern in situ data reanalyses, monthly surface series (at 5ox5o), 8 "multiproxy" (yearly) series of the Northern hemisphere from 1500- 1980, and GRIP and Vostok paleotemperatures at 5.2 and ≈ 100 year resolutions (over the past 91-420 kyrs), we refine the model and show how it can be understood with the help of new developments in nonlinear dynamics, especially multifractals and cascades. In a scaling range, mean fluctuations in state variables such as temperature ΔT ≈ ΔtH the where Δt is the duration. At small (weather) scales the fluctuation exponents are generally H>0; they grow with scale. At longer scales Δt >τw (≈ 10 days) they change sign, the fluctuations decrease with scale; this is the low variability, "low frequency weather" regime the spectrum is a relatively flat "plateau", it's variability is that of the usual idea of "long term weather statistics". Finally for longer times, Δt>τc ≈ 10 - 100 years, again H>0, the variability again increases with scale. This is the true climate regime. These scaling regimes allow us to objectively define the weather as fluctuations over periods <τw, "climate states", as fluctuations at scale τc and "climate change" as the fluctuations at longer periods >τc). We show that the intermediate regime is the result of the weather regime undergoing a "dimensional transition": at temporal scales longer than the typical lifetime of planetary structures (τw), the spatial degrees of freedom are rapidly quenched, only the temporal degrees of freedom are important. This low frequency weather regime has statistical properties well reproduced not only by weather cascade models, but also by control runs (i.e. without climate forcing) of GCM's (including IPSL and ECHAM GCM's). In order for GCM's to go beyond simply predicting this low frequency weather so as to predict the climate, they need appropriate climate forcings and/ or new internal mechanisms of variability. We examine this using wavelet analyses of forced and unforced GCM outputs, including the ECHO-G simulation used in the Millenium project. For example, we find that climate scenarios with large CO2 increases do give rise to a climate regime but that Hc>1 i.e. much larger than that of natural variability which for temperatures has Hc≈0.4. In comparison, the (largely volcanic) forcing of the ECHO-G Millenium simulation is fairly realistic (Hc≈0.4), although it is not clear that this mechanism can explain the even lower frequency variability found in the paleotemperature series, nor is it clear that this is compatible with low frequency solar or orbital forcings.
ERIC Educational Resources Information Center
Landsberg, Helmut E.
1970-01-01
Reviews environmental studies which show that national climatic fluctuations vary over a wide range. Solar radiation, earth temperatures, precipitation, atmospheric gases and suspended particulates are discussed in relation to urban and extraurban effects. Local weather modifications and attempts at climate control by man seem to have substantial…
Climate of Priest River Experimental Forest, northern Idaho
Arnold I. Finklin
1983-01-01
Detailed climatic description of Priest River Experimental Forest; applies to much of the northern Idaho panhandle. Covers year-round pattern and focuses on the fire season. Topographic and local site differences in climate are examined; also, climatic trends or fluctuations during the past 70 years. Includes numerous tables and graphs. Written particularly for forest...
Holocene climatic fluctuations and periodic changes in the Asian southwest monsoon region
NASA Astrophysics Data System (ADS)
Zhang, Wenxiang; Niu, Jie; Ming, Qingzhong; Shi, Zhengtao; Lei, Guoliang; Huang, Linpei; Long, Xian'e.; Chang, Fengqin
2018-05-01
Climatic changes in the Asian southwest monsoon (ASWM) during the Holocene have become a topic of recent studies. It is important to understand the patterns and causes of Holocene climatic changes and their relationship with global changes. Based on the climate proxies and wavelet analysis of Lugu Lake in the ASWM region, the climatic fluctuations and periodic changes in the ASWM region during the Holocene have been reconstructed with a high-precision chronology. The results indicate the intensification of ASWM began to increase with Northern Hemisphere low-latitude solar insolation (LSI) and solar activity during the early Holocene, and gradually decreased during the late Holocene, exhibiting an apparent synchrony with numerous records of ASWM region. Meanwhile, an apparent 1000-a quasi-periodic signal is present in the environment proxies, and it demonstrates that the environmental change in the ASWM region has been driven mainly by LSI and solar activity.
Climate fluctuations in the Czech Lands from AD 1500 compiled from various proxies
NASA Astrophysics Data System (ADS)
Dobrovolný, Petr; Brázdil, Rudolf; Možný, Martin; Trnka, Miroslav; Řezníčková, Ladislava; Kotyza, Oldřich; Valášek, Hubert; Dolák, Lukáš
2017-04-01
The territory of the Czech Lands (recent Czech Republic) belongs to European areas well covered by dedrochronological, documentary and instrumental data which can be used for climate reconstructions for the last c. 500 years, i.e. for description of climate fluctuations during the greater part of the Little Ice Age (LIA) and the subsequent period of the recent Global Warming. Synthesis of various existing reconstructions should help to create more consistent description of climate variability in that period in Central Europe. The contribution starts from characteristic of the basic features of three existing data sources and a general method of climate reconstruction. Monthly, seasonal and annual climate reconstructions based on different data are presented: a) temperature reconstructions derived from series of temperature indices, winter wheat harvest days and grape harvest days; b) precipitation reconstructions derived from series of precipitation indices and fir tree-rings; c) drought indices (SPI, SPEI, Z-index and PDSI) reconstructions derived from series of fir tree-rings, grape harvest days and documentary-based temperature and precipitation reconstructions. Basic features of past c. 500 years are represented by various time intervals of cooler and warmer climate on the one hand and wetter and drier climate on the other. Examples of such particularly warmer and drier period can be the 1530s (with extreme 1540 year) or colder and wetter conditions during the 1590s and 1690s. Outstanding extreme weather events during LIA in Central Europe are briefly mentioned and our findings are discussed with respect to climate fluctuations and forcings in wider European context. (This study was supported by Czech Science Foundation, project nos. 13-04291S and 17-10026S).
Cayan, Daniel R.; Bromirski, Peter; Hayhoe, Katharine; Tyree, Mary; Dettinger, Mike; Flick, Reinhard
2006-01-01
California’s coastal observations and global model projections indicate that California’s open coast and estuaries will experience increasing sea levels over the next century. Sea level rise has affected much of the coast of California, including the Southern California coast, the Central California open coast, and the San Francisco Bay and upper estuary. These trends, quantified from a small set of California tide gages, have ranged from 10–20 centimeters (cm) (3.9–7.9 inches) per century, quite similar to that estimated for global mean sea level. So far, there is little evidence that the rate of rise has accelerated, and the rate of rise at California tide gages has actually flattened since 1980, but projections suggest substantial sea level rise may occur over the next century. Climate change simulations project a substantial rate of global sea level rise over the next century due to thermal expansion as the oceans warm and runoff from melting land-based snow and ice accelerates. Sea level rise projected from the models increases with the amount of warming. Relative to sea levels in 2000, by the 2070–2099 period, sea level rise projections range from 11–54 cm (4.3–21 in) for simulations following the lower (B1) greenhouse gas (GHG) emissions scenario, from 14–61 cm (5.5–24 in) for the middle-upper (A2) emission scenario, and from 17–72 cm (6.7–28 in) for the highest (A1fi) scenario. In addition to relatively steady secular trends, sea levels along the California coast undergo shorter period variability above or below predicted tide levels and changes associated with long-term trends. These variations are caused by weather events and by seasonal to decadal climate fluctuations over the Pacific Ocean that in turn affect the Pacific coast. Highest coastal sea levels have occurred when winter storms and Pacific climate disturbances, such as El Niño, have coincided with high astronomical tides. This study considers a range of projected future global sea level rises in examining possible impacts at California coastal and estuarine stations. Two climate models and three scenarios considered in this scenarios study provide a set of possible future weather and short-period climate fluctuations, and a range of potential long-term sea level rise values. A range of mean sea level rise was considered in combination with weather and El Niño fluctuations extracted from two global climate models and two GHG emissions scenarios. The mean sea level rise values, determined from a survey of several climate models, range from approximately 10–80 cm (3.9–31 in) between 2000 and 2100. The middle to higher end of this range would substantially exceed the historical rate of sea level rise of 15–20 cm (5.9–7.9 in)per century observed at San Francisco and San Diego during the last 100 years. Gradual sea level rise progressively worsens the impacts of high tides and the surge and waves associated with storms. The potential for impacts of future sea level rise was assessed from the occurrence of hourly sea level extremes. The occurrence of extreme events follows a sharply escalating pattern as the magnitude of future sea level rise increases. The confluence of Low barometric pressures from storms and the presence large waves at the same time substantially increases the likelihood of high, damaging sea levels along the California coast. Similarly, astronomical tides and disturbances in sea level that are caused by weather and climate fluctuations are x transmitted into the San Francisco Bay and Delta, and on into the lower reaches of the Sacramento River. In addition to elevating Bay and Delta sea levels directly through inverse barometer and wind effects, storms may generate heavy precipitation and high fresh water runoff and cause floods in the Sacramento/San Joaquin Delta, increasing the potential for inundation of levees and other structures. There may also be increased risk of levee failure due to the hydraulics and geometry of these structures. Rising sea levels from climate change will increase the frequency and duration of extreme high water levels, causing historical coastal and San Francisco Bay/Delta structure design criteria to be exceeded.
How scaling fluctuation analyses can transform our view of the climate
NASA Astrophysics Data System (ADS)
Lovejoy, Shaun; Schertzer, Daniel
2013-04-01
There exist a bewildering diversity of proxy climate data including tree rings, ice cores, lake varves, boreholes, ice cores, pollen, foraminifera, corals and speleothems. Their quantitative use raises numerous questions of interpretation and calibration. Even in classical cases - such as the isotope signal in ice cores - the usual assumption of linear dependence on ambient temperature is only a first approximation. In other cases - such as speleothems - the isotope signals arise from multiple causes (which are not always understood) and this hinders their widespread use. We argue that traditional interpretations and calibrations - based on essentially deterministic comparisons between instrumental data, model outputs and proxies (albeit with the help of uncertainty analyses) - have been both overly ambitious while simultaneously underexploiting the data. The former since comparisons typically involve series at different temporal resolutions and from different geographical locations - one does not expect agreement in a deterministic sense, while with respect to climate models, one only expects statistical correspondences. The proxies are underexploited since comparisons are done at unique temporal and / or spatial resolutions whereas the fluctuations they describe provide information over wide ranges of scale. A convenient method of overcoming these difficulties is the use of fluctuation analysis systematically applied over the full range of available scales to determine the scaling proeprties. The new transformative element presented here, is to define fluctuations ΔT in a series T(t) at scale Δt not by differences (ΔT(Δt) = T(t+Δt) - T(t)) but rather by the difference in the means over the first and second halves of the lag Δt . This seemingly minor change - technically from "poor man's" to "Haar" wavelets - turns out to make a huge difference since for example, it is adequate for analysing temperatures from seconds to hundreds of millions of years yet remaining simple to interpret [Lovejoy and Schertzer, 2012]. It has lead for example to the discovery of the new "macroweather" regime between weather (Δt <≈ 10days) and climate (Δt ≈> 30 yrs) in which fluctuations decrease rather than increase with scale [Lovejoy, 2013]. We illustrate the transformative power of combining such fluctuation analysis with scaling by giving numerous examples from instrumental data, multiproxies, ice core proxies, corals, speleothems and GCM outputs [Lovejoy and Schertzer, 2013]. References: Lovejoy, S. (2013), What is climate?, EOS, 94, (1), 1 January, p1-2. Lovejoy, S., and D. Schertzer (2012), Haar wavelets, fluctuations and structure functions: convenient choices for geophysics, Nonlinear Proc. Geophys. , 19, 1-14 doi: 10.5194/npg-19-1-2012. Lovejoy, S., and D. Schertzer (2013), The Weather and Climate: Emergent Laws and Multifractal Cascades, 480 pp., Cambridge University Press, Cambridge.
Runoff response to climate change and human activities in a typical karst watershed, SW China.
Xu, Yan; Wang, Shijie; Bai, Xiaoyong; Shu, Dongcai; Tian, Yichao
2018-01-01
This study aims to reveal the runoff variation characteristics of long time series in a karst region, analyse comprehensively its different driving factors, and estimate quantitatively the contribution rates of climate change and human activities to net runoff variation. Liudong river basin, a typical karst watershed in southwest China, is the study site. Statistical methods, such as linear fitting, the Morlet wavelet analysis, normalized curve and double mass curve, are applied to analyse the runoff of the watershed. Results show that the runoff in the karst watershed during the research period exhibits a three-stage change and the abrupt change points are the years 1981 and 2007: (1) 1968-1980, the runoff initially exhibited a trend of sustained decreasing and then an abrupt fluctuation. The runoff was obviously destroyed through precipitation-producing processes. Improper land utilisation and serious forest and grass destruction intensified the fluctuation variation amplitude of the runoff. (2) 1981-2006, the changing processes of runoff and precipitation exhibited good synchronism. Precipitation significantly affected runoff variation and human activities had a slight interference degree. (3) 2007-2013, the fluctuation range of runoff was considerably smaller than that of precipitation. The significant growth of forest and grassland areas and the increase in water consumption mitigated runoff fluctuation and greatly diminished runoff variation amplitude. According to calculation, the relative contribution rates of precipitation and human activities to net runoff variation with 1981-2007 as the reference period were -81% and 181% in average, respectively, during 1968-1980, and -117% and 217% in average, respectively, during 2007-2013. In general, the analysis of runoff variation trend and of the contribution rate of its main influencing factors in the typical karst watershed for nearly half a century may be significant to solve the drought problem in the karst region and for the sustainable development of the drainage basin.
Runoff response to climate change and human activities in a typical karst watershed, SW China
Xu, Yan; Wang, Shijie; Shu, Dongcai; Tian, Yichao
2018-01-01
This study aims to reveal the runoff variation characteristics of long time series in a karst region, analyse comprehensively its different driving factors, and estimate quantitatively the contribution rates of climate change and human activities to net runoff variation. Liudong river basin, a typical karst watershed in southwest China, is the study site. Statistical methods, such as linear fitting, the Morlet wavelet analysis, normalized curve and double mass curve, are applied to analyse the runoff of the watershed. Results show that the runoff in the karst watershed during the research period exhibits a three-stage change and the abrupt change points are the years 1981 and 2007: (1) 1968–1980, the runoff initially exhibited a trend of sustained decreasing and then an abrupt fluctuation. The runoff was obviously destroyed through precipitation-producing processes. Improper land utilisation and serious forest and grass destruction intensified the fluctuation variation amplitude of the runoff. (2) 1981–2006, the changing processes of runoff and precipitation exhibited good synchronism. Precipitation significantly affected runoff variation and human activities had a slight interference degree. (3) 2007–2013, the fluctuation range of runoff was considerably smaller than that of precipitation. The significant growth of forest and grassland areas and the increase in water consumption mitigated runoff fluctuation and greatly diminished runoff variation amplitude. According to calculation, the relative contribution rates of precipitation and human activities to net runoff variation with 1981–2007 as the reference period were −81% and 181% in average, respectively, during 1968–1980, and −117% and 217% in average, respectively, during 2007–2013. In general, the analysis of runoff variation trend and of the contribution rate of its main influencing factors in the typical karst watershed for nearly half a century may be significant to solve the drought problem in the karst region and for the sustainable development of the drainage basin. PMID:29494602
NASA Astrophysics Data System (ADS)
Zeh, Jeanne A.; Bonilla, Melvin M.; Su, Eleanor J.; Padua, Michael V.; Anderson, Rachel V.; Zeh, David W.
2014-01-01
Recent theory suggests that global warming may be catastrophic for tropical ectotherms. Although most studies addressing temperature effects in ectotherms utilize constant temperatures, Jensen's inequality and thermal stress considerations predict that this approach will underestimate warming effects on species experiencing daily temperature fluctuations in nature. Here, we tested this prediction in a neotropical pseudoscorpion. Nymphs were reared in control and high-temperature treatments under a constant daily temperature regime, and results compared to a companion fluctuating-temperature study. At constant temperature, pseudoscorpions outperformed their fluctuating-temperature counterparts. Individuals were larger, developed faster, and males produced more sperm, and females more embryos. The greatest impact of temperature regime involved short-term, adult exposure, with constant temperature mitigating high-temperature effects on reproductive traits. Our findings demonstrate the importance of realistic temperature regimes in climate warming studies, and suggest that exploitation of microhabitats that dampen temperature oscillations may be critical in avoiding extinction as tropical climates warm.
Final Report: Synthesis of aquatic climate change vulnerability assessments for the Interior West
Megan M. Friggens; Carly K. Woodlief
2015-01-01
Water is a critical resource for humans and ecological systems in the western United States. Aquatic ecosystems including lakes, rivers, riparian areas and wetlands, are at high risk of climate impacts because they experience relatively high exposure to climate fluctuations and extremes. In turn, impacts arising from climate change are far reaching because these...
Structure and Function of Intra-Annual Density Fluctuations: Mind the Gaps.
Battipaglia, Giovanna; Campelo, Filipe; Vieira, Joana; Grabner, Michael; De Micco, Veronica; Nabais, Cristina; Cherubini, Paolo; Carrer, Marco; Bräuning, Achim; Čufar, Katarina; Di Filippo, Alfredo; García-González, Ignacio; Koprowski, Marcin; Klisz, Marcin; Kirdyanov, Alexander V; Zafirov, Nikolay; de Luis, Martin
2016-01-01
Tree rings are natural archives of climate and environmental information with a yearly resolution. Indeed, wood anatomical, chemical, and other properties of tree rings are a synthesis of several intrinsic and external factors, and their interaction during tree growth. In particular, Intra-Annual Density Fluctuations (IADFs) can be considered as tree-ring anomalies that can be used to better understand tree growth and to reconstruct past climate conditions with intra-annual resolution. However, the ecophysiological processes behind IADF formation, as well as their functional impact, remain unclear. Are IADFs resulting from a prompt adjustment to fluctuations in environmental conditions to avoid stressful conditions and/or to take advantage from favorable conditions? In this paper we discuss: (1) the influence of climatic factors on the formation of IADFs; (2) the occurrence of IADFs in different species and environments; (3) the potential of new approaches to study IADFs and identify their triggering factors. Our final aim is to underscore the advantages offered by network analyses of data and the importance of high-resolution measurements to gain insight into IADFs formation processes and their relations with climatic conditions, including extreme weather events.
Structure and Function of Intra–Annual Density Fluctuations: Mind the Gaps
Battipaglia, Giovanna; Campelo, Filipe; Vieira, Joana; Grabner, Michael; De Micco, Veronica; Nabais, Cristina; Cherubini, Paolo; Carrer, Marco; Bräuning, Achim; Čufar, Katarina; Di Filippo, Alfredo; García-González, Ignacio; Koprowski, Marcin; Klisz, Marcin; Kirdyanov, Alexander V.; Zafirov, Nikolay; de Luis, Martin
2016-01-01
Tree rings are natural archives of climate and environmental information with a yearly resolution. Indeed, wood anatomical, chemical, and other properties of tree rings are a synthesis of several intrinsic and external factors, and their interaction during tree growth. In particular, Intra-Annual Density Fluctuations (IADFs) can be considered as tree-ring anomalies that can be used to better understand tree growth and to reconstruct past climate conditions with intra-annual resolution. However, the ecophysiological processes behind IADF formation, as well as their functional impact, remain unclear. Are IADFs resulting from a prompt adjustment to fluctuations in environmental conditions to avoid stressful conditions and/or to take advantage from favorable conditions? In this paper we discuss: (1) the influence of climatic factors on the formation of IADFs; (2) the occurrence of IADFs in different species and environments; (3) the potential of new approaches to study IADFs and identify their triggering factors. Our final aim is to underscore the advantages offered by network analyses of data and the importance of high-resolution measurements to gain insight into IADFs formation processes and their relations with climatic conditions, including extreme weather events. PMID:27200063
Uetake, Katsuji; Une, Yumi; Ito, Shu; Yamabe, Marino; Toyoda, Hideto; Tanaka, Toshio
2014-10-01
To assess the stress level of cheetahs reared in Japan and to identify the prime components of the climatic conditions that affect their thermal stress, fecal corticosterone was monitored for 8 months from May to the following January. A total of 203 fecal samples were gathered in the morning from seven adult cheetahs that were kept at a zoological garden in Wakayama, Japan. Cheetahs were on exhibit singly or together with a harmonious conspecific during the day, but housed singly at night. Although the monthly fluctuation in corticosterone concentrations was not significant, the concentrations were relatively low during the summer season. Individual differences among cheetahs and the interaction effect between individual and month on the corticosterone concentrations were significant. Whereas the corticosterone concentrations negatively correlated with air temperature, they were positively correlated with the amount of rainfall. The highest air temperature and the amount of rainfall were extracted as the prime factors affecting corticosterone concentrations. These results suggest that cheetahs reared in Japan are somewhat subjected to thermal stress, particularly on cooler and/or rainy days. © 2014 Japanese Society of Animal Science.
NASA Astrophysics Data System (ADS)
Igarashi, Yaeko; Irino, Tomohisa; Sawada, Ken; Song, Lu; Furota, Satoshi
2018-04-01
We reconstructed fluctuations in the East Asian monsoon and vegetation in the Japan Sea region since the middle Pliocene based on pollen data obtained from sediments collected by the Integrated Ocean Drilling Program off the southwestern coast of northern Japan. Taxodiaceae conifers Metasequoia and Cryptomeria and Sciadopityacere conifer Sciadopitys are excellent indicators of a humid climate during the monsoon. The pollen temperature index (Tp) can be used as a proxy for relative air temperature. Based on changes in vegetation and reconstructed climate over a period of 4.3 Ma, we classified the sediment sequence into six pollen zones. From 4.3 to 3.8 Ma (Zone 1), the climate fluctuated between cool/moist and warm/moist climatic conditions. Vegetation changed between warm temperate mixed forest and cool temperate conifer forest. The Neogene type tree Carya recovered under a warm/moist climate. The period from 3.8 to 2.5 Ma (Zone 2) was characterized by increased Metasequoia pollen concentration. Warm temperate mixed forest vegetation developed under a cool/moist climate. The period from 2.5 to 2.2 Ma (Zone 3) was characterized by an abrupt increase in Metasequoia and/or Cryptomeria pollen and a decrease in warm broadleaf tree pollen, indicating a cool/humid climate. The Zone 4 period (2.2-1.7 Ma) was characterized by a decrease in Metasequoia and/or Cryptomeria pollen and an increase in cool temperate conifer Picea and Tsuga pollen, indicating a cool/moist climate. The period from 1.7 to 0.3 Ma (Zone 5) was characterized by orbital-scale climate fluctuations. Cycles of abrupt increases and decreases in Cryptomeria and Picea pollen and in Tp values indicated changes between warm/humid and cold/dry climates. The alpine fern Selaginella selaginoides appeared as of 1.6 Ma. Vegetation alternated among warm mixed, cool mixed, and cool temperate conifer forests. Zone 6 (0.3 Ma to present) was characterized by a decrease in Cryptomeria pollen. The warm temperate broadleaf forest and cool temperate conifer forest developed alternately under warm/moist and cold/dry climate. Zone 2 corresponded to a weak Tsushima Current breaking through the Tsushima Strait, and the beginning of orbital-scale climatic changes at 1.7 Ma during Zone 5 corresponded to the strong inflow of the Tsushima Current into the Japan Sea during interglacial periods (Gallagher et al., 2015).
Peatlands as a unique climatic hotspots
NASA Astrophysics Data System (ADS)
Slowinska, S.; Marcisz, K.; Slowinski, M. M.; Blazejczyk, K.; Lamentowicz, M.
2017-12-01
Peatlands are unique environments, often acting as microrefugia of various taxa. High groundwater table, organic soils, specific vegetation and topography are important determinants of their local climatic conditions. However, relations between those determinants are not stable. For example, seasonal changes in weather patterns, hydrological dynamics, and local vegetation may alter microclimate. Additionally, long-term changes are important factor, as for example overgrowing due to significant change of microclimate conditions, what in turn changes geochemical and biological processes in the peat layer. We have been investigating interactions between abiotic and biotic factors of a small Sphagnum mire (ca. 6.0 ha) for over ten years now. The mire is located in Poland in transitional temperate climate and is the only place in polish lowlands where glacial relict Betula nana occurs. Identification of local climate of the mire, its microclimatic differentiation and its influence on surroundings were objectives of the study. We recorded water level fluctuations, photosynthetically active radiation (PAR), air temperature and humidity, and peat temperature at five monitoring plots at the mire and observed significant differences between them. We also investigated Sphagnum mosses growth and testate amoeba diversity and community structure to understand biological response of those differences. We observed that local climate of the mire was significantly different from open area reference place, it was much colder especially during nights. The average minimal temperature at the height 30 cm for growing seasons 2010-2012 was 3.7oC lower there and ground frosts occurred even in the summer. The climate of the mire affected the forest directly adjacent to it, and depending on weather conditions the strength and the distance of this interaction was different. Our results show that micro-environmental changes affects on biological processes and should be taken into consideration in palaeoecological investigations.
Desertification of forest, range and desert in Tehran province, affected by climate change
NASA Astrophysics Data System (ADS)
Eskandari, Hadi; Borji, Moslem; Khosravi, Hassan; Mesbahzadeh, Tayebeh
2016-06-01
Climate change has been identified as a leading human and environmental crisis of the twenty-first century. Drylands throughout the world have always undergone periods of degradation due to naturally occurring fluctuation in climate. Persistence of widespread degradation in arid and semiarid regions of Iran necessitates monitoring and evaluation. This paper aims to monitor the desertification trend in three types of land use, including range, forest and desert, affected by climate change in Tehran province for the 2000s and 2030s. For assessing climate change at Mehrabad synoptic station, the data of two emission scenarios, including A2 and B2, were used, utilizing statistical downscaling techniques and data generated by the Statistical DownScaling Model (SDSM). The index of net primary production (NPP) resulting from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images was employed as an indicator of destruction from 2001 to 2010. The results showed that temperature is the most significant driving force which alters the net primary production in rangeland, forest and desert land use in Tehran province. On the basis of monitoring findings under real conditions, in the 2000s, over 60 % of rangelands and 80 % of the forest were below the average production in the province. On the other hand, the long-term average changes of NPP in the rangeland and forests indicated the presence of relatively large areas of these land uses with a production rate lower than the desert. The results also showed that, assuming the existence of circumstances of each emission scenarios, the desertification status will not improve significantly in the rangelands and forests of Tehran province.
Statistical structure of intrinsic climate variability under global warming
NASA Astrophysics Data System (ADS)
Zhu, Xiuhua; Bye, John; Fraedrich, Klaus
2017-04-01
Climate variability is often studied in terms of fluctuations with respect to the mean state, whereas the dependence between the mean and variability is rarely discussed. We propose a new climate metric to measure the relationship between means and standard deviations of annual surface temperature computed over non-overlapping 100-year segments. This metric is analyzed based on equilibrium simulations of the Max Planck Institute-Earth System Model (MPI-ESM): the last millennium climate (800-1799), the future climate projection following the A1B scenario (2100-2199), and the 3100-year unforced control simulation. A linear relationship is globally observed in the control simulation and thus termed intrinsic climate variability, which is most pronounced in the tropical region with negative regression slopes over the Pacific warm pool and positive slopes in the eastern tropical Pacific. It relates to asymmetric changes in temperature extremes and associates fluctuating climate means with increase or decrease in intensity and occurrence of both El Niño and La Niña events. In the future scenario period, the linear regression slopes largely retain their spatial structure with appreciable changes in intensity and geographical locations. Since intrinsic climate variability describes the internal rhythm of the climate system, it may serve as guidance for interpreting climate variability and climate change signals in the past and the future.
Wu, Jianguo; Zhang, Guobin
2015-01-01
The distributions of bird species have changed over the past 50 years in China. To evaluate whether the changes can be attributed to the changing climate, we analyzed the distributions of 20 subspecies of resident birds in relation to climate change. Long-term records of bird distributions, gray relational analysis, fuzzy-set classification techniques, and attribution methods were used. Among the 20 subspecies of resident birds, the northern limits of over half of the subspecies have shifted northward since the 1960s, and most changes have been related to the thermal index. Driven by climate change over the past 50 years, the suitable range and latitude or longitude of the distribution centers of certain birds have exhibited increased fluctuations. The northern boundaries of over half of the subspecies have shifted northward compared with those in the 1960s. The consistency between the observed and predicted changes in the range limits was quite high for some subspecies. The changes in the northern boundaries or the latitudes of the centers of distribution of nearly half of the subspecies can be attributed to climate change. The results suggest that climate change has affected the distributions of particular birds. The method used to attribute changes in bird distributions to climate change may also be effective for other animals. PMID:26078858
Wu, Jianguo; Zhang, Guobin
2015-06-01
The distributions of bird species have changed over the past 50 years in China. To evaluate whether the changes can be attributed to the changing climate, we analyzed the distributions of 20 subspecies of resident birds in relation to climate change. Long-term records of bird distributions, gray relational analysis, fuzzy-set classification techniques, and attribution methods were used. Among the 20 subspecies of resident birds, the northern limits of over half of the subspecies have shifted northward since the 1960s, and most changes have been related to the thermal index. Driven by climate change over the past 50 years, the suitable range and latitude or longitude of the distribution centers of certain birds have exhibited increased fluctuations. The northern boundaries of over half of the subspecies have shifted northward compared with those in the 1960s. The consistency between the observed and predicted changes in the range limits was quite high for some subspecies. The changes in the northern boundaries or the latitudes of the centers of distribution of nearly half of the subspecies can be attributed to climate change. The results suggest that climate change has affected the distributions of particular birds. The method used to attribute changes in bird distributions to climate change may also be effective for other animals.
Canals, M; Figueroa, D; Alfaro, C; Kawamoto, T; Torres-Contreras, H; Sabat, P; Veloso, C
2011-11-01
The metabolic and water evaporation strategies in spiders may be part of a set of physiological adaptations to tolerate low or unpredictable food availability, buffering spiders against environmental fluctuations such as those of the high mountains of the central Andes. The aim of this study is to analyze experimentally the variations in metabolic rate and the rate of evaporative water with food and/or water restriction in a high mountain mygalomorph spider population (Paraphysa sp.). We found that the low metabolism of this spider was not affected by water restriction, but its metabolism was depressed after 3 weeks of food deprivation. The spider did not show seasonal metabolic changes but it presented seasonal changes in the rate of evaporative water loss at high temperatures. Females with egg sacs reduced their metabolic rate and evaporative water at high temperatures. These findings constitute a set of possible adaptations to a highly fluctuating Mediterranean environment, which is completely covered with snow for many months and then progresses rapidly to a very dry climate with high temperatures. Copyright © 2011 Elsevier Ltd. All rights reserved.
Comparison of Solar and Other Influences on Long-term Climate
NASA Technical Reports Server (NTRS)
Hansen, James E.; Lacis, Andrew A.; Ruedy, Reto A.
1990-01-01
Examples are shown of climate variability, and unforced climate fluctuations are discussed, as evidenced in both model simulations and observations. Then the author compares different global climate forcings, a comparison which by itself has significant implications. Finally, the author discusses a new climate simulation for the 1980s and 1990s which incorporates the principal known global climate forcings. The results indicate a likelihood of rapid global warming in the early 1990s.
Propagation of hydroclimatic variability through the critical zone
NASA Astrophysics Data System (ADS)
Porporato, A. M.; Calabrese, S.; Parolari, A.
2016-12-01
The interaction between soil moisture dynamics and mineral-weathering reactions (e.g., ion exchange, precipitation-dissolution) affects the availability of nutrients to plants, composition of soils, soil acidification, as well as CO2 sequestration. Across the critical zone (CZ), this interaction is responsible for propagating hydroclimatic fluctuations to deeper soil layers, controlling weathering rates via leaching events which intermittently alter the alkalinity levels. In this contribution, we analyze these dynamics using a stochastic modeling approach based on spatially lumped description of soil hydrology and chemical weathering reactions forced by multi-scale temporal hydrologic variability. We quantify the role of soil moisture dynamics in filtering the rainfall fluctuations through its impacts on soil water chemistry, described by a system of ordinary differential equations (and algebraic equations, for the equilibrium reactions), driving the evolution of alkalinity, pH, the chemical species of the soil solution, and the mineral-weathering rate. A probabilistic description of the evolution of the critical zone is thus obtained, allowing us to describe the CZ response to long-term climate fluctuations, ecosystem and land-use conditions, in terms of key variables groups. The model is applied to the weathering rate of albite in the Calhoun CZ observatory and then extended to explore similarities and differences across other CZs. Typical time scales of response and degrees of sensitivities of CZ to hydroclimatic fluctuations and human forcing are also explored.
Stillman, Jonathon H; Tagmount, Abderrahmane
2009-10-01
Central predictions of climate warming models include increased climate variability and increased severity of heat waves. Physiological acclimatization in populations across large-scale ecological gradients in habitat temperature fluctuation is an important factor to consider in detecting responses to climate change related increases in thermal fluctuation. We measured in vivo cardiac thermal maxima and used microarrays to profile transcriptome heat and cold stress responses in cardiac tissue of intertidal zone porcelain crabs across biogeographic and seasonal gradients in habitat temperature fluctuation. We observed acclimatization dependent induction of heat shock proteins, as well as unknown genes with heat shock protein-like expression profiles. Thermal acclimatization had the largest effect on heat stress responses of extensin-like, beta tubulin, and unknown genes. For these genes, crabs acclimatized to thermally variable sites had higher constitutive expression than specimens from low variability sites, but heat stress dramatically induced expression in specimens from low variability sites and repressed expression in specimens from highly variable sites. Our application of ecological transcriptomics has yielded new biomarkers that may represent sensitive indicators of acclimatization to habitat temperature fluctuation. Our study also has identified novel genes whose further description may yield novel understanding of cellular responses to thermal acclimatization or thermal stress.
Lake level fluctuations boost toxic cyanobacterial "oligotrophic blooms".
Callieri, Cristiana; Bertoni, Roberto; Contesini, Mario; Bertoni, Filippo
2014-01-01
Global warming has been shown to strongly influence inland water systems, producing noticeable increases in water temperatures. Rising temperatures, especially when combined with widespread nutrient pollution, directly favour the growth of toxic cyanobacteria. Climate changes have also altered natural water level fluctuations increasing the probability of extreme events as dry periods followed by heavy rains. The massive appearance of Dolichospermum lemmermannii ( = planktonic Anabaena), a toxic species absent from the pelagic zone of the subalpine oligotrophic Lake Maggiore before 2005, could be a consequence of the unusual fluctuations of lake level in recent years. We hypothesized that these fluctuations may favour the cyanobacterium as result of nutrient pulses from the biofilms formed in the littoral zone when the lake level is high. To help verify this, we exposed artificial substrates in the lake, and evaluated their nutrient enrichment and release after desiccation, together with measurements of fluctuations in lake level, precipitation and D. lemmermannii population. The highest percentage of P release and the lowest C:P molar ratio of released nutrients coincided with the summer appearance of the D. lemmermannii bloom. The P pulse indicates that fluctuations in level counteract nutrient limitation in this lake and it is suggested that this may apply more widely to other oligotrophic lakes. In view of the predicted increase in water level fluctuations due to climate change, it is important to try to minimize such fluctuations in order to mitigate the occurrence of cyanobacterial blooms.
The effects of climatic fluctuations and extreme events on running water ecosystems
Woodward, Guy; Bonada, Núria; Brown, Lee E.; Death, Russell G.; Durance, Isabelle; Gray, Clare; Hladyz, Sally; Ledger, Mark E.; Milner, Alexander M.; Ormerod, Steve J.; Thompson, Ross M.
2016-01-01
Most research on the effects of environmental change in freshwaters has focused on incremental changes in average conditions, rather than fluctuations or extreme events such as heatwaves, cold snaps, droughts, floods or wildfires, which may have even more profound consequences. Such events are commonly predicted to increase in frequency, intensity and duration with global climate change, with many systems being exposed to conditions with no recent historical precedent. We propose a mechanistic framework for predicting potential impacts of environmental fluctuations on running-water ecosystems by scaling up effects of fluctuations from individuals to entire ecosystems. This framework requires integration of four key components: effects of the environment on individual metabolism, metabolic and biomechanical constraints on fluctuating species interactions, assembly dynamics of local food webs, and mapping the dynamics of the meta-community onto ecosystem function. We illustrate the framework by developing a mathematical model of environmental fluctuations on dynamically assembling food webs. We highlight (currently limited) empirical evidence for emerging insights and theoretical predictions. For example, widely supported predictions about the effects of environmental fluctuations are: high vulnerability of species with high per capita metabolic demands such as large-bodied ones at the top of food webs; simplification of food web network structure and impaired energetic transfer efficiency; and reduced resilience and top-down relative to bottom-up regulation of food web and ecosystem processes. We conclude by identifying key questions and challenges that need to be addressed to develop more accurate and predictive bio-assessments of the effects of fluctuations, and implications of fluctuations for management practices in an increasingly uncertain world. PMID:27114576
NASA Astrophysics Data System (ADS)
Enku, Temesgen; Melesse, Assefa; Ayana, Essaya; Tilahun, Seifu; Abate, Mengiste; Steenhuis, Tammo
2017-04-01
Given the increasing demand for water resources and the need for better management of regional water resources, it is essential to quantify the groundwater use by phreatophytes in tropical monsoon climates. Phreatophytes, like eucalyptus plantations are reported to be a groundwater sink and it could significantly affect the regional groundwater resources. In our study, the consumptive groundwater use of a closed eucalyptus plantation was calculated based on the diurnal water table fluctuations observed in monitoring wells for two dry monsoon phases in the Fogera plain, northwest of Ethiopia. Automated recorders were installed to monitor the hourly groundwater table fluctuations. The groundwater table fluctuates from maximum at early in the morning to minimum in the evening daily and generally declined linearly during the dry phase averaging 3.1 cm/day during the two year period under the eucalyptus plantations. The hourly eucalypts transpiration rate over the daylight hours follows the daily solar irradiance curve for clear sky days. It is minimal during the night and reaches maximum of 1.65mm/hour at mid-day. The evapotranspiration from the groundwater by eucalyptus plantations during the dry phases was estimated at about 2300mm from October 1 to 31 May, in 2015 compared to about 900mm without eucalyptus trees. The average daily evapotranspiration was 9.6mm. This is almost twice of the reference evapotranspiration in the area and 2.5 times the actual rate under fallow agricultural fields. Thus, water resources planning and management in the region needs to consider the effect of eucalyptus plantations on the availability of groundwater resources in the highlands of Ethiopia. Key words: Eucalyptus, Evapotranspiration, Groundwater, Ethiopia, Lake Tana
NASA Astrophysics Data System (ADS)
Fazhan, Hanafiah; Waiho, Khor; Darin Azri, Mohammad Farhan; Al-Hafiz, Ismail; Norfaizza, Wan Ibrahim Wan; Megat, Fadhlul Hazmi; Jasmani, Safiah; Ma, Hongyu; Ikhwanuddin, Mhd
2017-11-01
Mud crabs (Scylla spp.) are known to exist sympatrically in the wild. However, information on their population dynamics and the influence of climate parameters and lunar phase, especially along the equatorial region, are limited. Four sampling stations representing three seas (the Strait of Malacca, South China Sea and Sulu Sea) along the equator were selected. Mud crabs were collected using baited traps during spring tides from April 2012 to July 2013. All three Scylla species, S. olivacea, S. tranquebarica and S. paramamosain live in sympatry in the three seas. Scylla olivacea is the most prevalent species in the Strait of Malacca and South China Sea, whereas S. paramamosain dominates the Sulu Sea. The total crab abundance was not affected by rainfall or temperature. The abundance of S. tranquebarica in Strait of Malacca was negatively correlated with temperature and positively correlated with rainfall whereas the abundance of S. paramamosain positively correlated with temperature only at South China Sea. Scylla tranquebarica was the largest in terms of body size and it showed interchanging abundance trends with S. paramamosain. The average body size of S. paramamosain did not differ significantly with that of S. tranquebarica and S. olivacea. This decrease is most likely attributed to overfishing. Significant seasonal fluctuations in mean carapace width were detected in S. tranquebarica and S. paramamosain, but not in S. olivacea. The monthly sex ratio of all three species occasionally fluctuates above the equal sex ratio value. Lunar phase did not affect species abundance, but males and females were significantly heavier during full moon. These findings serve as a baseline of seasonal variation in crab population dynamics that are useful in mud crab fisheries and resource management.
Neuwald, Jennifer L; Valenzuela, Nicole
2011-03-23
Climate change is expected to disrupt biological systems. Particularly susceptible are species with temperature-dependent sex determination (TSD), as in many reptiles. While the potentially devastating effect of rising mean temperatures on sex ratios in TSD species is appreciated, the consequences of increased thermal variance predicted to accompany climate change remain obscure. Surprisingly, no study has tested if the effect of thermal variance around high-temperatures (which are particularly relevant given climate change predictions) has the same or opposite effects as around lower temperatures. Here we show that sex ratios of the painted turtle (Chrysemys picta) were reversed as fluctuations increased around low and high unisexual mean-temperatures. Unexpectedly, the developmental and sexual responses around female-producing temperatures were decoupled in a more complex manner than around male-producing values. Our novel observations are not fully explained by existing ecological models of development and sex determination, and provide strong evidence that thermal fluctuations are critical for shaping the biological outcomes of climate change.
Climate-driven flushing of pore water in peatlands
NASA Astrophysics Data System (ADS)
Siegel, D. I.; Reeve, A. S.; Glaser, P. H.; Romanowicz, E. A.
1995-04-01
NORTHERN peatlands can act as either important sources or sinks for atmospheric carbon1,2. It is therefore important to understand how carbon cycling in these regions will respond to a changing climate. Existing carbon balance models for peatlands assume that fluid flow and advective mass transport are negligible at depth3,4, and that the effects of climate change should be essentially limited to the near-surface. Here we report the response of groundwater flow and porewater chemistry in the Glacial Lake Agassiz peat-lands of northern Minnesota to the regional drought cycle. Comparison of field observations and numerical simulations indicates that climate fluctuations of short duration may temporarily reverse the vertical direction of fluid flow through the peat, although this has little effect on water chemistry5. On the other hand, periods of drought persisting for at least 3-5 years produce striking changes in the chemistry of the pore water. These longer-term changes in hydrology influence the flux of nutrients and dissolved organic matter through the deeper peat, and therefore affect directly the rates of fermentation and methanogenesis, and the export of dissolved carbon compounds from the peatland.
Market-oriented ethanol and corn-trade policies can reduce climate-induced US corn price volatility
NASA Astrophysics Data System (ADS)
Verma, Monika; Hertel, Thomas; Diffenbaugh, Noah
2014-05-01
Agriculture is closely affected by climate. Over the past decade, biofuels have emerged as another important factor shaping the agricultural sector. We ask whether the presence of the US ethanol sector can play a role in moderating increases in US corn price variability, projected to occur in response to near-term global warming. Our findings suggest that the answer to this question depends heavily on the underlying forces shaping the ethanol industry. If mandate-driven, there is little doubt that the presence of the corn-ethanol sector will exacerbate price volatility. However, if market-driven, then the emergence of the corn-ethanol sector can be a double-edged sword for corn price volatility, possibly cushioning the impact of increased climate driven supply volatility, but also inheriting volatility from the newly integrated energy markets via crude oil price fluctuations. We find that empirically the former effect dominates, reducing price volatility by 27%. In contrast, mandates on ethanol production increase future price volatility by 54% in under future climate after 2020. We also consider the potential for liberalized international corn trade to cushion corn price volatility in the US. Our results suggest that allowing corn to move freely internationally serves to reduce the impact of near-term climate change on US corn price volatility by 8%.
Yuan, Zhi-Yong; Suwannapoom, Chatmongkon; Yan, Fang; Poyarkov, Nikolay A.; Nguyen, Sang Ngoc; Chen, Hong-man; Chomdej, Siriwadee; Murphy, Robert W.
2016-01-01
South China and Indochina host striking species diversity and endemism. Complex tectonic and climatic evolutions appear to be the main drivers of the biogeographic patterns. In this study, based on the geologic history of this region, we test 2 hypotheses using the evolutionary history of Microhyla fissipes species complex. Using DNA sequence data from both mitochondrial and nuclear genes, we first test the hypothesis that the Red River is a barrier to gene flow and dispersal. Second, we test the hypothesis that Pleistocene climatic cycling affected the genetic structure and population history of these frogs. We detect 2 major genetic splits that associate with the Red River. Time estimation suggests that late Miocene tectonic movement associated with the Red River drove their diversification. Species distribution modeling (SDM) resolves significant ecological differences between sides of the Red River. Thus, ecological divergence also probably promoted and maintained the diversification. Genogeography, historical demography, and SDM associate patterns in southern China with climate changes of the last glacial maximum (LGM), but not Indochina. Differences in geography and climate between the 2 areas best explain the discovery. Responses to the Pleistocene glacial–interglacial cycling vary among species and regions. PMID:29491943
Forests synchronize their growth in contrasting Eurasian regions in response to climate warming.
Shestakova, Tatiana A; Gutiérrez, Emilia; Kirdyanov, Alexander V; Camarero, Jesús Julio; Génova, Mar; Knorre, Anastasia A; Linares, Juan Carlos; Resco de Dios, Víctor; Sánchez-Salguero, Raúl; Voltas, Jordi
2016-01-19
Forests play a key role in the carbon balance of terrestrial ecosystems. One of the main uncertainties in global change predictions lies in how the spatiotemporal dynamics of forest productivity will be affected by climate warming. Here we show an increasing influence of climate on the spatial variability of tree growth during the last 120 y, ultimately leading to unprecedented temporal coherence in ring-width records over wide geographical scales (spatial synchrony). Synchrony in growth patterns across cold-constrained (central Siberia) and drought-constrained (Spain) Eurasian conifer forests have peaked in the early 21st century at subcontinental scales (∼ 1,000 km). Such enhanced synchrony is similar to that observed in trees co-occurring within a stand. In boreal forests, the combined effects of recent warming and increasing intensity of climate extremes are enhancing synchrony through an earlier start of wood formation and a stronger impact of year-to-year fluctuations of growing-season temperatures on growth. In Mediterranean forests, the impact of warming on synchrony is related mainly to an advanced onset of growth and the strengthening of drought-induced growth limitations. Spatial patterns of enhanced synchrony represent early warning signals of climate change impacts on forest ecosystems at subcontinental scales.
Forests synchronize their growth in contrasting Eurasian regions in response to climate warming
Shestakova, Tatiana A.; Gutiérrez, Emilia; Kirdyanov, Alexander V.; Camarero, Jesús Julio; Génova, Mar; Knorre, Anastasia A.; Linares, Juan Carlos; Sánchez-Salguero, Raúl; Voltas, Jordi
2016-01-01
Forests play a key role in the carbon balance of terrestrial ecosystems. One of the main uncertainties in global change predictions lies in how the spatiotemporal dynamics of forest productivity will be affected by climate warming. Here we show an increasing influence of climate on the spatial variability of tree growth during the last 120 y, ultimately leading to unprecedented temporal coherence in ring-width records over wide geographical scales (spatial synchrony). Synchrony in growth patterns across cold-constrained (central Siberia) and drought-constrained (Spain) Eurasian conifer forests have peaked in the early 21st century at subcontinental scales (∼1,000 km). Such enhanced synchrony is similar to that observed in trees co-occurring within a stand. In boreal forests, the combined effects of recent warming and increasing intensity of climate extremes are enhancing synchrony through an earlier start of wood formation and a stronger impact of year-to-year fluctuations of growing-season temperatures on growth. In Mediterranean forests, the impact of warming on synchrony is related mainly to an advanced onset of growth and the strengthening of drought-induced growth limitations. Spatial patterns of enhanced synchrony represent early warning signals of climate change impacts on forest ecosystems at subcontinental scales. PMID:26729860
Yuan, Zhi-Yong; Suwannapoom, Chatmongkon; Yan, Fang; Poyarkov, Nikolay A; Nguyen, Sang Ngoc; Chen, Hong-Man; Chomdej, Siriwadee; Murphy, Robert W; Che, Jing
2016-12-01
South China and Indochina host striking species diversity and endemism. Complex tectonic and climatic evolutions appear to be the main drivers of the biogeographic patterns. In this study, based on the geologic history of this region, we test 2 hypotheses using the evolutionary history of Microhyla fissipes species complex. Using DNA sequence data from both mitochondrial and nuclear genes, we first test the hypothesis that the Red River is a barrier to gene flow and dispersal. Second, we test the hypothesis that Pleistocene climatic cycling affected the genetic structure and population history of these frogs. We detect 2 major genetic splits that associate with the Red River. Time estimation suggests that late Miocene tectonic movement associated with the Red River drove their diversification. Species distribution modeling (SDM) resolves significant ecological differences between sides of the Red River. Thus, ecological divergence also probably promoted and maintained the diversification. Genogeography, historical demography, and SDM associate patterns in southern China with climate changes of the last glacial maximum (LGM), but not Indochina. Differences in geography and climate between the 2 areas best explain the discovery. Responses to the Pleistocene glacial-interglacial cycling vary among species and regions.
Imholt, Christian; Reil, Daniela; Eccard, Jana A; Jacob, Daniela; Hempelmann, Nils; Jacob, Jens
2015-02-01
Central European outbreak populations of the bank vole (Myodes glareolus Schreber) are known to cause damage in forestry and to transmit the most common type of Hantavirus (Puumala virus, PUUV) to humans. A sound estimation of potential effects of future climate scenarios on population dynamics is a prerequisite for long-term management strategies. Historic abundance time series were used to identify the key weather conditions associated with bank vole abundance, and were extrapolated to future climate scenarios to derive potential long-term changes in bank vole abundance dynamics. Classification and regression tree analysis revealed the most relevant weather parameters associated with high and low bank vole abundances. Summer temperatures 2 years prior to trapping had the highest impact on abundance fluctuation. Extrapolation of the identified parameters to future climate conditions revealed an increase in years with high vole abundance. Key weather patterns associated with vole abundance reflect the importance of superabundant food supply through masting to the occurrence of bank vole outbreaks. Owing to changing climate, these outbreaks are predicted potentially to increase in frequency 3-4-fold by the end of this century. This may negatively affect damage patterns in forestry and the risk of human PUUV infection in the long term. © 2014 Society of Chemical Industry.
Dynamics of Cholera Outbreaks in Great Lakes Region of Africa, 1978–2008
Nkoko, Didier Bompangue; Giraudoux, Patrick; Plisnier, Pierre-Denis; Tinda, Annie Mutombo; Piarroux, Martine; Sudre, Bertrand; Horion, Stephanie; Tamfum, Jean-Jacques Muyembe; Ilunga, Benoît Kebela
2011-01-01
Cholera outbreaks have occurred in Burundi, Rwanda, Democratic Republic of Congo, Tanzania, Uganda, and Kenya almost every year since 1977–1978, when the disease emerged in these countries. We used a multiscale, geographic information system–based approach to assess the link between cholera outbreaks, climate, and environmental variables. We performed time-series analyses and field investigations in the main affected areas. Results showed that cholera greatly increased during El Niño warm events (abnormally warm El Niños) but decreased or remained stable between these events. Most epidemics occurred in a few hotspots in lakeside areas, where the weekly incidence of cholera varied by season, rainfall, fluctuations of plankton, and fishing activities. During lull periods, persistence of cholera was explained by outbreak dynamics, which suggested a metapopulation pattern, and by endemic foci around the lakes. These links between cholera outbreaks, climate, and lake environments need additional, multidisciplinary study. PMID:22099090
Hirsch, Philipp Emanuel; Schillinger, Sebastian; Weigt, Hannes; Burkhardt-Holm, Patricia
2014-01-01
Water level fluctuations in lakes lead to shoreline displacement. The seasonality of flooding or beaching of the littoral area affects nutrient cycling, redox gradients in sediments, and life cycles of aquatic organisms. Despite the ecological importance of water level fluctuations, we still lack a method that assesses water levels in the context of hydropower operations. Water levels in reservoirs are influenced by the operator of a hydropower plant, who discharges water through the turbines or stores water in the reservoir, in a fashion that maximizes profit. This rationale governs the seasonal operation scheme and hence determines the water levels within the boundaries of the reservoir's water balance. For progress towards a sustainable development of hydropower, the benefits of this form of electricity generation have to be weighed against the possible detrimental effects of the anthropogenic water level fluctuations. We developed a hydro-economic model that combines an economic optimization function with hydrological estimators of the water balance of a reservoir. Applying this model allowed us to accurately predict water level fluctuations in a reservoir. The hydro-economic model also allowed for scenario calculation of how water levels change with climate change scenarios and with a change in operating scheme of the reservoir (increase in turbine capacity). Further model development will enable the consideration of a variety of additional parameters, such as water withdrawal for irrigation, drinking water supply, or altered energy policies. This advances our ability to sustainably manage water resources that must meet both economic and environmental demands.
Hirsch, Philipp Emanuel; Schillinger, Sebastian; Weigt, Hannes; Burkhardt-Holm, Patricia
2014-01-01
Water level fluctuations in lakes lead to shoreline displacement. The seasonality of flooding or beaching of the littoral area affects nutrient cycling, redox gradients in sediments, and life cycles of aquatic organisms. Despite the ecological importance of water level fluctuations, we still lack a method that assesses water levels in the context of hydropower operations. Water levels in reservoirs are influenced by the operator of a hydropower plant, who discharges water through the turbines or stores water in the reservoir, in a fashion that maximizes profit. This rationale governs the seasonal operation scheme and hence determines the water levels within the boundaries of the reservoir's water balance. For progress towards a sustainable development of hydropower, the benefits of this form of electricity generation have to be weighed against the possible detrimental effects of the anthropogenic water level fluctuations. We developed a hydro-economic model that combines an economic optimization function with hydrological estimators of the water balance of a reservoir. Applying this model allowed us to accurately predict water level fluctuations in a reservoir. The hydro-economic model also allowed for scenario calculation of how water levels change with climate change scenarios and with a change in operating scheme of the reservoir (increase in turbine capacity). Further model development will enable the consideration of a variety of additional parameters, such as water withdrawal for irrigation, drinking water supply, or altered energy policies. This advances our ability to sustainably manage water resources that must meet both economic and environmental demands. PMID:25526619
Sarah C. Elmendorf; Gregory H.R. Henry; Robert D. Hollisterd; Anna Maria Fosaa; William A. Gould; Luise Hermanutz; Annika Hofgaard; Ingibjorg I. Jonsdottir; Janet C. Jorgenson; Esther Levesque; Borgbor Magnusson; Ulf Molau; Isla H. Myers-Smith; Steven F. Oberbauer; Christian Rixen; Craig E. Tweedie; Marilyn Walkers
2015-01-01
Inference about future climate change impacts typically relies on one of three approaches: manipulative experiments, historical comparisons (broadly defined to include monitoring the response to ambient climate fluctuations using repeat sampling of plots, dendroecology, and paleoecology techniques), and space-for-time substitutions derived from sampling along...
Rapid coupling between ice volume and polar temperature over the past 150,000 years.
Grant, K M; Rohling, E J; Bar-Matthews, M; Ayalon, A; Medina-Elizalde, M; Ramsey, C Bronk; Satow, C; Roberts, A P
2012-11-29
Current global warming necessitates a detailed understanding of the relationships between climate and global ice volume. Highly resolved and continuous sea-level records are essential for quantifying ice-volume changes. However, an unbiased study of the timing of past ice-volume changes, relative to polar climate change, has so far been impossible because available sea-level records either were dated by using orbital tuning or ice-core timescales, or were discontinuous in time. Here we present an independent dating of a continuous, high-resolution sea-level record in millennial-scale detail throughout the past 150,000 years. We find that the timing of ice-volume fluctuations agrees well with that of variations in Antarctic climate and especially Greenland climate. Amplitudes of ice-volume fluctuations more closely match Antarctic (rather than Greenland) climate changes. Polar climate and ice-volume changes, and their rates of change, are found to covary within centennial response times. Finally, rates of sea-level rise reached at least 1.2 m per century during all major episodes of ice-volume reduction.
Southern westerly winds: a pacemaker of Holocene glacial fluctuations in Patagonia?
NASA Astrophysics Data System (ADS)
Sagredo, E. A.; Reynhout, S.; Kaplan, M. R.; Patricio, M. I.; Aravena, J. C.; Martini, M. A.; Schaefer, J. M.
2017-12-01
A well-resolved glacial chronology is crucial to compare sequences of glacial/climate events within and between regions, and thus, to unravel mechanisms underlying past climate changes. Important efforts have been made towards understanding the Holocene climate evolution of the Southern Andes; however, the timing, patterns and causes of glacial fluctuations during this period still remain elusive. Recent advances in terrestrial cosmogenic nuclide surface exposure dating, together with the establishment of a Patagonian 10Be production rate, have opened new possibilities for establishing high-resolution glacial chronologies at centennial/decadal scale. Here we present a 10Be surface exposure chronology of fluctuations of a small, climate-sensitive mountain glacier at Mt. Fitz Roy area (49.3°S), spanning from the last glacial termination to the present. Thirty new 10Be ages show glacial advances and moraine building events at 17.1±0.9 ka, 13.5±0.5 ka, 10.2±0.7 ka or 9.9±0.5 ka, 6.9±0.2 ka, 6.1±0.3 ka, 4.5±0.2 ka and 0.5±0.1 ka. Similar to the pattern observed in New Zealand, this sequence features progressively less extensive glacial advances during the late-glacial and early Holocene, followed by advances of roughly similar extent during the mid- to late-Holocene. We suggest that while the magnitude of Holocene glacial fluctuations in Patagonia is modulated by SH summer insolation ("modulator"), the specific timing of these glacial events is influenced by centennial-scale shifts of the Southern Westerly Winds ("pacemaker").
Prazeres, Martina; Roberts, T Edward; Pandolfi, John M
2017-03-23
Large benthic foraminifera (LBF) are crucial marine calcifiers in coral reefs, and sensitive to environmental changes. Yet, many species successfully colonise a wide range of habitats including highly fluctuating environments. We tested the combined effects of ocean warming, local impacts and different light levels on populations of the common LBF Amphistegina lobifera collected along a cross-shelf gradient of temperature and nutrients fluctuations. We analysed survivorship, bleaching frequency, chlorophyll a content and fecundity. Elevated temperature and nitrate significantly reduced survivorship and fecundity of A. lobifera across populations studied. This pattern was exacerbated when combined with below optimum light levels. Inshore populations showed a consistent resistance to increased temperature and nitrate levels, but all populations studied were significantly affected by light reduction. These findings demonstrated the capacity of some populations of LBF to acclimate to local conditions; nonetheless improvements in local water quality can ultimately ameliorate effects of climate change in local LBF populations.
Housset, Johann M; Nadeau, Simon; Isabel, Nathalie; Depardieu, Claire; Duchesne, Isabelle; Lenz, Patrick; Girardin, Martin P
2018-04-01
Local adaptation in tree species has been documented through a long history of common garden experiments where functional traits (height, bud phenology) are used as proxies for fitness. However, the ability to identify genes or genomic regions related to adaptation to climate requires the evaluation of traits that precisely reflect how and when climate exerts selective constraints. We combine dendroecology with association genetics to establish a link between genotypes, phenotypes and interannual climatic fluctuations. We illustrate this approach by examining individual tree responses embedded in the annual rings of 233 Pinus strobus trees growing in a common garden experiment representing 38 populations from the majority of its range. We found that interannual variability in growth was affected by low temperatures during spring and autumn, and by summer heat and drought. Among-population variation in climatic sensitivity was significantly correlated with the mean annual temperature of the provenance, suggesting local adaptation. Genotype-phenotype associations using these new tree-ring phenotypes validated nine candidate genes identified in a previous genetic-environment association study. Combining dendroecology with association genetics allowed us to assess tree vulnerability to past climate at fine temporal scales and provides avenues for future genomic studies on functional adaptation in forest trees. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Rockström, J
2004-01-01
Coping with climatic variability for livelihood security is part of everyday life for rural communities in semi-arid and dry sub-humid savannas. Water scarcity caused by rainfall fluctuations is common, causing meteorological droughts and dry spells. However, this paper indicates, based on experiences in sub-Saharan Africa and India, that the social impact on rural societies of climatically induced droughts is exaggerated. Instead, water scarcity causing food deficits is more often caused by management induced droughts and dry spells. A conceptual framework to distinguish between manageable and unmanageable droughts is presented. It is suggested that climatic droughts require focus on social resilience building instead of land and water resource management. Focus is then set on the manageable part of climatic variability, namely the almost annual occurrence of dry spells, short 2-4 week periods of no rainfall, affecting farmer yields. On-farm experiences in savannas of sub-Saharan Africa of water harvesting systems for dry spell mitigation are presented. It is shown that bridging dry spells combined with soil fertility management can double and even triple on-farm yield levels. Combined with innovative systems to ensure maximum plant water availability and water uptake capacity, through adoption of soil fertility improvement and conservation tillage systems, there is a clear opportunity to upgrade rainfed farming systems in vulnerable savanna environments, through appropriate local management of climatic variability.
Fluctuating environments, sexual selection and the evolution of flexible mate choice in birds.
Botero, Carlos A; Rubenstein, Dustin R
2012-01-01
Environmentally-induced fluctuation in the form and strength of natural selection can drive the evolution of morphology, physiology, and behavior. Here we test the idea that fluctuating climatic conditions may also influence the process of sexual selection by inducing unexpected reversals in the relative quality or sexual attractiveness of potential breeding partners. Although this phenomenon, known as 'ecological cross-over', has been documented in a variety of species, it remains unclear the extent to which it has driven the evolution of major interspecific differences in reproductive behavior. We show that after controlling for potentially influential life history and demographic variables, there are significant positive associations between the variability and predictability of annual climatic cycles and the prevalence of infidelity and divorce within populations of a taxonomically diverse array of socially monogamous birds. Our results are consistent with the hypothesis that environmental factors have shaped the evolution of reproductive flexibility and suggest that in the absence of severe time constraints, secondary mate choice behaviors can help prevent, correct, or minimize the negative consequences of ecological cross-overs. Our findings also illustrate how a basic evolutionary process like sexual selection is susceptible to the increasing variability and unpredictability of climatic conditions that is resulting from climate change.
Mushet, David M.; Euliss, Ned H.; Chen, Yongjiu; Stockwell, Craig A.
2013-01-01
In contrast to most local amphibian populations, northeastern populations of the Northern Leopard Frog (Lithobates pipiens) have displayed uncharacteristically high levels of genetic diversity that have been attributed to large, stable populations. However, this widely distributed species also occurs in areas known for great climatic fluctuations that should be reflected in corresponding fluctuations in population sizes and reduced genetic diversity. To test our hypothesis that Northern Leopard Frog genetic diversity would be reduced in areas subjected to significant climate variability, we examined the genetic diversity of L. pipiens collected from 12 sites within the Prairie Pothole Region of North Dakota. Despite the region's fluctuating climate that includes periods of recurring drought and deluge, we found unexpectedly high levels of genetic diversity approaching that of northeastern populations. Further, genetic structure at a landscape scale was strikingly homogeneous; genetic differentiation estimates (Dest) averaged 0.10 (SD = 0.036) across the six microsatellite loci we studied, and two Bayesian assignment tests (STRUCTURE and BAPS) failed to reveal the development of significant population structure across the 68 km breadth of our study area. These results suggest that L. pipiens in the Prairie Pothole Region consists of a large, panmictic population capable of maintaining high genetic diversity in the face of marked climate variability.
Application of solar max ACRIM data to analyze solar-driven climatic variability on Earth
NASA Technical Reports Server (NTRS)
Hoffert, M. I.
1986-01-01
Terrestrial climatic effects associated with solar variability have been proposed for at least a century, but could not be assessed quantitatively owing to observational uncertainities in solar flux variations. Measurements from 1980 to 1984 by the Active Cavity Radiometer Irradiance Monitor (ACRIM), capable of resolving fluctuations above the sensible atmosphere less than 0.1% of the solar constant, permit direct albeit preliminary assessments of solar forcing effects on global temperatures during this period. The global temperature response to ACRIM-measured fluctuations was computed from 1980 to 1985 using the NYU transient climate model including thermal inertia effects of the world ocean; and compared the results with observations of recent temperature trends. Monthly mean ACRIM-driven global surface temperature fluctuations computed with the climate model are an order of magnitude smaller, of order 0.01 C. In constrast, global mean surface temperature observations indicate an approx. 0.1 C increase during this period. Solar variability is therefore likely to have been a minor factor in global climate change during this period compared with variations in atmospheric albedo, greenhouse gases and internal self-inducedoscillations. It was not possible to extend the applicability of the measured flux variations to longer periods since a possible correlation of luminosity with solar annual activity is not supported by statistical analysis. The continuous monitoring of solar flux by satellite-based instruments over timescales of 20 years or more comparable to timescales for thermal relaxation of the oceans and of the solar cycle itself is needed to resolve the question of long-term solar variation effects on climate.
Abrupt climate change and extinction events
NASA Technical Reports Server (NTRS)
Crowley, Thomas J.
1988-01-01
There is a growing body of theoretical and empirical support for the concept of instabilities in the climate system, and indications that abrupt climate change may in some cases contribute to abrupt extinctions. Theoretical indications of instabilities can be found in a broad spectrum of climate models (energy balance models, a thermohaline model of deep-water circulation, atmospheric general circulation models, and coupled ocean-atmosphere models). Abrupt transitions can be of several types and affect the environment in different ways. There is increasing evidence for abrupt climate change in the geologic record and involves both interglacial-glacial scale transitions and the longer-term evolution of climate over the last 100 million years. Records from the Cenozoic clearly show that the long-term trend is characterized by numerous abrupt steps where the system appears to be rapidly moving to a new equilibrium state. The long-term trend probably is due to changes associated with plate tectonic processes, but the abrupt steps most likely reflect instabilities in the climate system as the slowly changing boundary conditions caused the climate to reach some threshold critical point. A more detailed analysis of abrupt steps comes from high-resolution studies of glacial-interglacial fluctuations in the Pleistocene. Comparison of climate transitions with the extinction record indicates that many climate and biotic transitions coincide. The Cretaceous-Tertiary extinction is not a candidate for an extinction event due to instabilities in the climate system. It is quite possible that more detailed comparisons and analysis will indicate some flaws in the climate instability-extinction hypothesis, but at present it appears to be a viable candidate as an alternate mechanism for causing abrupt environmental changes and extinctions.
NASA Astrophysics Data System (ADS)
Drury, A.; John, C. M.; Lee, G.; Shevenell, A.
2012-12-01
The late Miocene (11.61 - 5.33 Ma) was one of the more stable climatic periods of the Cenozoic. Superimposed on this stable background climate, a number of threshold events occurred, including the late Miocene Carbon Isotope Shift (CIS, 7.6-6.6 Ma) and the Messinian Salinity Crisis (MSC, 5.96-5.33 Ma). The goal of our study is to constrain the background climate cyclicity during the late Miocene. A better knowledge of the background cyclicity in the Earth's climate system is required to advance understanding of, and to successfully model, climate variability. Improving understanding of how changes in background climate variability affect important parameters and fluxes, such as ice volume and the carbon pump, is crucial for explaining the occurrence of threshold events such as the CIS and MSC during an otherwise climatically stable period. The study site is located in the Eastern Equatorial Pacific (IODP Site U1338, Expedition 321). U1338 was chosen, as the equatorial Pacific is an important component of the global climate system, representing half of the total tropical ocean and a quarter of the global ocean. We present δ18O and δ13C records from 3.5 to 8.5 Ma using the benthic foraminiferal species Cibicidoides mundulus, with a resolution of 3-4 kyr, which resolves all Milankovitch scale cycles. We present a revised shipboard age model, generated from new biostratigraphic age constraints based on planktic foraminiferal datums. Benthic δ18O records at IODP Site U1338 reflect the stable nature of the late Miocene climate accurately, with long-term trends showing low-amplitude (0.2‰) variations. Superimposed on this are higher-amplitude short-term fluctuations (0.3-0.4‰). Deep-sea benthic foraminferal δ18O records both temperature and the δ18O composition of global deep seawater (δ18Odsw). δ18Odsw largely reflects glacio-eustatic change. Our benthic δ18O implies that long-term trends in ice volume were minimal during the late Miocene. However, the short-term variations imply that some significant sea level fluctuations occurred. The benthic δ13C long-term trend varies by ~0.75‰. The late Miocene CIS is visible as a ~1.25‰ excursion. Short-term fluctuations in δ13C record are slightly lower amplitude (~0.50‰). Preliminary spectral analysis highlights the strength of the eccentricity forcing (400 and 100-kyr cycles) in both the δ18O and δ13C records. The 41-kyr obliquity cycles are also visible in the δ18O records. The benthic δ13C records are combined with preliminary low-resolution δ13C records measured on the planktic foraminiferal species Globigerinoides sacculifer from the same samples. Co-varying benthic-planktic δ13C is driven by changes in the ocean reservoir δ13C, whereas con/diverging benthic-planktic δ13C is related to changes in surface productivity. This initial comparison may shed some light on the forcing of the CIS, and the implications for late Miocene climate. Future work will combine benthic δ18O with independent temperature proxies, such as Mg/Ca and clumped isotopes, to isolate the δ18Odsw signal and make more robust inferences about the background cryosphere dynamics during this time. We will also increase the resolution of the planktic foraminiferal records to enable comparison of the dominant forcing in the benthic and planktic records.
NASA Astrophysics Data System (ADS)
Spellman, P.; Griffis, V. W.; LaFond, K.
2013-12-01
A changing climate brings about new challenges for flood risk analysis and water resources planning and management. Current methods for estimating flood risk in the US involve fitting the Pearson Type III (P3) probability distribution to the logarithms of the annual maximum flood (AMF) series using the method of moments. These methods are employed under the premise of stationarity, which assumes that the fitted distribution is time invariant and variables affecting stream flow such as climate do not fluctuate. However, climate change would bring about shifts in meteorological forcings which can alter the summary statistics (mean, variance, skew) of flood series used for P3 parameter estimation, resulting in erroneous flood risk projections. To ascertain the degree to which future risk may be misrepresented by current techniques, we use climate scenarios generated from global climate models (GCMs) as input to a hydrological model to explore how relative changes to current climate affect flood response for watersheds in the northeastern United States. The watersheds were calibrated and run on a daily time step using the continuous, semi-distributed, process based Soil and Water Assessment Tool (SWAT). Nash Sutcliffe Efficiency (NSE), RMSE to Standard Deviation ratio (RSR) and Percent Bias (PBIAS) were all used to assess model performance. Eight climate scenarios were chosen from GCM output based on relative precipitation and temperature changes from the current climate of the watershed and then further bias-corrected. Four of the scenarios were selected to represent warm-wet, warm-dry, cool-wet and cool-dry future climates, and the other four were chosen to represent more extreme, albeit possible, changes in precipitation and temperature. We quantify changes in response by comparing the differences in total mass balance and summary statistics of the logarithms of the AMF series from historical baseline values. We then compare forecasts of flood quantiles from fitting a P3 distribution to the logs of historical AMF data to that of generated AMF series.
Glacial greenhouse-gas fluctuations controlled by ocean circulation changes.
Schmittner, Andreas; Galbraith, Eric D
2008-11-20
Earth's climate and the concentrations of the atmospheric greenhouse gases carbon dioxide (CO(2)) and nitrous oxide (N(2)O) varied strongly on millennial timescales during past glacial periods. Large and rapid warming events in Greenland and the North Atlantic were followed by more gradual cooling, and are highly correlated with fluctuations of N(2)O as recorded in ice cores. Antarctic temperature variations, on the other hand, were smaller and more gradual, showed warming during the Greenland cold phase and cooling while the North Atlantic was warm, and were highly correlated with fluctuations in CO(2). Abrupt changes in the Atlantic meridional overturning circulation (AMOC) have often been invoked to explain the physical characteristics of these Dansgaard-Oeschger climate oscillations, but the mechanisms for the greenhouse-gas variations and their linkage to the AMOC have remained unclear. Here we present simulations with a coupled model of glacial climate and biogeochemical cycles, forced only with changes in the AMOC. The model simultaneously reproduces characteristic features of the Dansgaard-Oeschger temperature, as well as CO(2) and N(2)O fluctuations. Despite significant changes in the land carbon inventory, CO(2) variations on millennial timescales are dominated by slow changes in the deep ocean inventory of biologically sequestered carbon and are correlated with Antarctic temperature and Southern Ocean stratification. In contrast, N(2)O co-varies more rapidly with Greenland temperatures owing to fast adjustments of the thermocline oxygen budget. These results suggest that ocean circulation changes were the primary mechanism that drove glacial CO(2) and N(2)O fluctuations on millennial timescales.
Daily Fluctuation in Negative Affect for Family Caregivers of Individuals With Dementia
Liu, Yin; Kim, Kyungmin; Almeida, David M.; Zarit, Steven H.
2017-01-01
Objective The study examined associations of intrinsic fluctuation in daily negative affect (i.e., depression and anger) with adult day service (ADS) use, daily experiences, and other caregiving characteristics. Methods This was an 8-day diary of 173 family caregivers of individuals with dementia. Multilevel models with common within-person variance were fit first to show average associations between daily stressors and mean level of daily affect. Then multilevel models with heterogeneous within-person variance were fit to test the hypotheses on associations between ADS use, daily experiences, and intrinsic fluctuation in daily affect. Results The study showed that, when the sum of ADS days was greater than average, there was a stabilizing effect of ADS use on caregivers’ within-person fluctuation in negative affect. Moreover, fewer daily stressors and greater-than-average daily care-related stressors, more positive events, not being a spouse, greater-than-average duration of caregiving, and less-than-average dependency of individuals with dementia on activities of daily living were associated with less fluctuation. Better sleep quality was associated with less intrinsic fluctuation in anger; and younger age and more years of education were associated with less intrinsic fluctuation in daily depression. Conclusions Because emotional stability has been argued as an aspect of emotional well-being in the general populations, intrinsic fluctuation of emotional experience was suggested as an outcome of evidence-based interventions for family caregivers. PMID:25365414
Hawkins, S J; Evans, A J; Mieszkowska, N; Adams, L C; Bray, S; Burrows, M T; Firth, L B; Genner, M J; Leung, K M Y; Moore, P J; Pack, K; Schuster, H; Sims, D W; Whittington, M; Southward, E C
2017-11-30
Marine ecosystems are subject to anthropogenic change at global, regional and local scales. Global drivers interact with regional- and local-scale impacts of both a chronic and acute nature. Natural fluctuations and those driven by climate change need to be understood to diagnose local- and regional-scale impacts, and to inform assessments of recovery. Three case studies are used to illustrate the need for long-term studies: (i) separation of the influence of fishing pressure from climate change on bottom fish in the English Channel; (ii) recovery of rocky shore assemblages from the Torrey Canyon oil spill in the southwest of England; (iii) interaction of climate change and chronic Tributyltin pollution affecting recovery of rocky shore populations following the Torrey Canyon oil spill. We emphasize that "baselines" or "reference states" are better viewed as envelopes that are dependent on the time window of observation. Recommendations are made for adaptive management in a rapidly changing world. Copyright © 2017. Published by Elsevier Ltd.
Zhou, Xiaoming; Lin, Haiyan; Zhang, Shigang; Ren, Jianwei; Wang, Zhe; Zhang, Yun; Wang, Mansen; Zhang, Qunye
2016-01-01
The rules and mechanisms of seasonal changes in plasma lipid levels, which may be related to annual rhythmicity of incidence and mortality of cardiovascular diseases, are still controversial. The objectives of this study were to study the effects of climatic factors on plasma lipid levels and to preliminarily reveal mechanisms of annual rhythmicity of plasma lipid levels. A longitudinal study was performed using health examination data of 5 consecutive years (47,270 subjects) in Jinan, China. The climate in Jinan is typical temperate continental monsoon climate with huge temperature difference between winter and summer (>30°C). After considering and adjusting those classical lipid-associated risk factors, such as age, gender, diet, exercise, blood pressure, body weight, change of body weight, body mass index, glycemia, alanine aminotransferase, and creatinine, only air temperature could still significantly affect plasma lipid levels among the main climatic factors (humidity, precipitation, and so forth). For men, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol was decreased significantly 0.35, 0.18, and 0.06 mmol/L, respectively, whereas triglyceride was increased significantly 0.12 mmol/L for every 10°C increase in air temperature. For women, total cholesterol and high-density lipoprotein cholesterol were decreased notably 0.73 and 0.32 mmol/L, and low-density lipoprotein cholesterol was increased significantly 0.26 mmol/L for every 10°C increase in air temperature, whereas triglyceride was not significantly affected by air temperature. Air temperature is an independent risk factor for plasma lipid levels besides those classical lipid-associated risk factors. The annual air temperature fluctuations might be an important mechanism of the seasonal changes of lipids. Copyright © 2016 National Lipid Association. Published by Elsevier Inc. All rights reserved.
Time variations in the Earth's gravity field
NASA Astrophysics Data System (ADS)
Shum, C. K.; Eanes, R. J.
1992-01-01
At the present time, the causes and consequences of changes in the Earth's gravity field due to geophysical and meteorological phenomena are not well understood. The Earth's gravity field represents the complicated distribution of all of the matter that makes up our planet. Its variations are caused by the motions of the solid Earth interacting with the gravitational attraction of the Sun and the Moon (tides) and with the Earth's atmosphere, oceans, polar ice caps and groundwater due to changing weather patterns. These variations influence the rotation of the Earth, alter the orbits of Earth satellites, cause sea level fluctuations, and indirectly affect the global climate pattern.
Majda, Andrew J; Abramov, Rafail; Gershgorin, Boris
2010-01-12
Climate change science focuses on predicting the coarse-grained, planetary-scale, longtime changes in the climate system due to either changes in external forcing or internal variability, such as the impact of increased carbon dioxide. The predictions of climate change science are carried out through comprehensive, computational atmospheric, and oceanic simulation models, which necessarily parameterize physical features such as clouds, sea ice cover, etc. Recently, it has been suggested that there is irreducible imprecision in such climate models that manifests itself as structural instability in climate statistics and which can significantly hamper the skill of computer models for climate change. A systematic approach to deal with this irreducible imprecision is advocated through algorithms based on the Fluctuation Dissipation Theorem (FDT). There are important practical and computational advantages for climate change science when a skillful FDT algorithm is established. The FDT response operator can be utilized directly for multiple climate change scenarios, multiple changes in forcing, and other parameters, such as damping and inverse modelling directly without the need of running the complex climate model in each individual case. The high skill of FDT in predicting climate change, despite structural instability, is developed in an unambiguous fashion using mathematical theory as guidelines in three different test models: a generic class of analytical models mimicking the dynamical core of the computer climate models, reduced stochastic models for low-frequency variability, and models with a significant new type of irreducible imprecision involving many fast, unstable modes.
NASA Astrophysics Data System (ADS)
Cumming, William Frank Preston
Fine scale studies are rarely performed to address landscape level responses to microclimatic variability. Is it the timing, distribution, and magnitude of soil temperature and moisture that affects what species emerge each season and, in turn, their resilience to fluctuations in microclimate. For this dissertation research, I evaluated the response of vegetation change to microclimatic variability within two communities over a three year period (2009-2012) utilizing 25 meter transects at two locations along the Front Range of Colorado near Boulder, CO and Golden, CO respectively. To assess microclimatic variability, spatial and temporal autocorrelation analyses were performed with soil temperature and moisture. Species cover was assessed along several line transects and correlated with microclimatic variability. Spatial and temporal autocorrelograms are useful tools in identifying the degree of dependency of soil temperature and moisture on the distance and time between pairs of measurements. With this analysis I found that a meter spatial resolution and two-hour measurements are sufficient to capture the fine scale variability in soil properties throughout the year. By comparing this to in situ measurements of soil properties and species percent cover I found that there are several plant functional types and/or species origin in particular that are more sensitive to variations in temperature and moisture than others. When all seasons, locations, correlations, and regional climate are looked at, it is the month of March that stands out in terms of significance. Additionally, of all of the vegetation types represented at these two sites C4, C3, native, non-native, and forb species seem to be the most sensitive to fluctuations in soil temperature, moisture, and regional climate in the spring season. The steady decline in percent species cover the study period and subsequent decrease in percent species cover and size at both locations may indicate that certain are unable to respond to continually higher temperatures and lower moisture availability that is inevitable with future climatic variability.
López-Gálvez, Francisco; Gil, Maria Isabel; Allende, Ana
2018-04-01
The effects of relative humidity (RH), fluctuating climate conditions, inoculum size and carrier on the survival of Salmonella enterica serovar Typhimurium on baby lettuce in environmental test chambers were studied. Buffered peptone water (BPW), distilled water (DW), and irrigation water (IW) were compared as inoculum carriers. Additionally, survival of Salmonella in suspensions prepared using filtered and unfiltered IW was assessed. Salmonella Typhimurium survived better on baby lettuce plants at high RH independently of the inoculum size. When lettuce plants were grown under fluctuating environmental conditions, Salmonella survival was similar under both RH conditions. Regarding the inoculum carrier, the inoculated microorganism survived better on lettuce plants when BPW was used as carrier both at high and low RH. Survival rate of Salmonella in IW was affected by the presence of native microbiota. Native microbiota present in IW did not affect survival of Salmonella or the levels of mesophilic bacteria on the baby lettuce leaves. The information obtained in the present study contributes to the knowledge on the effect of environmental conditions on pathogenic bacteria survival on growing edible plants. These results are useful when selecting the methodology to carry out experimental studies on the survival of microbial pathogens under different pre-harvest conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Willard, D.A.; Bernhardt, C.E.
2011-01-01
We synthesize existing evidence on the ecological history of the Florida Everglades since its inception ~7 ka (calibrated kiloannum) and evaluate the relative impacts of sea level rise, climate variability, and human alteration of Everglades hydrology on wetland plant communities. Initial freshwater peat accumulation began between 6 and 7 ka on the platform underlying modern Florida Bay when sea level was ~6.2 m below its current position. By 5 ka, sawgrass and waterlily peats covered the area bounded by Lake Okeechobee to the north and the Florida Keys to the south. Slower rates of relative sea level rise ~3 ka stabilized the south Florida coastline and initiated transitions from freshwater to mangrove peats near the coast. Hydrologic changes in freshwater marshes also are indicated ~3 ka. During the last ~2 ka, the Everglades wetland was affected by a series of hydrologic fluctuations related to regional to global-scale fluctuations in climate and sea level. Pollen evidence indicates that regional-scale droughts lasting two to four centuries occurred ~1 ka and ~0.4 ka, altering wetland community composition and triggering development of characteristic Everglades habitats such as sawgrass ridges and tree islands. Intercalation of mangrove peats with estuarine muds ~1 ka indicates a temporary slowing or stillstand of sea level. Although sustained droughts and Holocene sea level rise played large roles in structuring the greater Everglades ecosystem, twentieth century reductions in freshwater flow, compartmentalization of the wetland, and accelerated rates of sea level rise had unprecedented impacts on oxidation and subsidence of organic soils, changes/loss of key Everglades habitats, and altered distribution of coastal vegetation.
NASA Astrophysics Data System (ADS)
Moernaut, J.; Verschuren, D.; Charlet, F.; Kristen, I.; Fagot, M.; De Batist, M.
2010-02-01
Seismic-reflection data from crater lake Challa (Mt. Kilimanjaro, equatorial East Africa) reveal a ˜ 210-m thick sedimentary infill containing distinct seismic-stratigraphic signatures of late-Quaternary lake-level fluctuations. Extrapolation of a well-constrained age model on the cored upper part of the sequence suggests that these lake-level fluctuations represent a detailed and continuous record of moisture-balance variation in equatorial East Africa over the last 140 kyr. This record indicates that the most severe aridity occurred during peak Penultimate glaciation immediately before ˜ 128 kyr BP (coeval with Heinrich event 11) and during a Last Interglacial 'megadrought' period between ˜ 114 and ˜ 97 kyr BP; in comparison, Last Glacial Maximum (LGM) aridity was modest. It was preceded by ˜ 75 000 years of relatively stable and moist climate conditions interrupted by eleven short-lived dry spells, five of which match the timing of Heinrich events 2 to 6. Climate history near the East African equator reflects variation in the precessional forcing of monsoon rainfall modulated by orbital eccentricity, but precession-driven moisture fluctuations were less extreme than those observed in northern and southern tropical Africa. The near-continuous moist climate from ˜ 97 to 20.5 kyr BP recorded in the Lake Challa record contrasts with the trend towards greater aridity after ˜ 70 kyr BP documented in equatorial West Africa. This long period of moist glacial climate and a short, relatively modest LGM drought can be attributed to greater independence of western Indian Ocean monsoon dynamics from northern high-latitude glaciation than those in the tropical Atlantic Ocean. This rather persistent moist glacial climate regime may have helped maintain high biodiversity in the tropical forest ecosystems of the Eastern Arc mountains in Tanzania.
Yu, Dan; Chen, Ming; Tang, Qiongying; Li, Xiaojuan; Liu, Huanzhang
2014-10-25
Rhynchocypris oxycephalus is a cold water fish with a wide geographic distribution including the relatively warm temperate regions of southern China. It also occurs in second- and third-step geomorphic areas in China. Previous studies have postulated that high-altitude populations of R. oxycephalus in southern China are Quaternary glacial relics. In this study, we used the mitochondrial gene Cytb and the nuclear gene RAG2 to investigate the species phylogeographical patterns and to test two biogeographic hypotheses: (1) that divergence between lineages supports the three-step model and (2) climatic fluctuations during the Quaternary resulted in the present distribution in southern China. Phylogenetic analysis detected three major matrilines (A, B, and C); with matrilines B and C being further subdivided into two submatrilines. Based on genetic distances and morphological differences, matriline A potentially represents a cryptic subspecies. The geographic division between matrilines B and C coincided with the division of the second and third geomorphic steps in China, suggesting a historical vicariance event. Pliocene climatic fluctuations might have facilitated the southwards dispersal of R. oxycephalus in matriline C, with the subsequent warming resulting in its split into submatrilines C1 and C2, leaving submatriline C2 as a relic in southern China. Our study demonstrates that geological events (three steps orogenesis) and climate fluctuations during the Pliocene were important factors in shaping phylogeographical patterns in R. oxycephalus. Notably, no genetic diversity was detected in several populations, all of which possessed unique genotypes. This indicates the uniqueness of local populations and calls for a special conservation plan for the whole species at the population level.
NASA Astrophysics Data System (ADS)
Ortega-Guerrero, Beatriz; Lozano-García, Socorro; Herrera-Hernández, Dimitris; Caballero, Margarita; Beramendi-Orosco, Laura; Bernal, Juan Pablo; Torres-Rodríguez, Esperanza; Avendaño-Villeda, Diana
2017-11-01
The recognition of past climatic fluctuations in sedimentary sequences in central Mexico is relevant for understanding the forcing mechanisms and responses of climatic system in the northern American tropic. Moreover, in this active volcanic setting the sedimentary record preserves the history of past volcanic activity. Climatic and environmental variability has been documented for the last tenths of thousands of years from the upper lacustrine sediments in Chalco basin. A series of cores drilled down to 122 m depth in this basin offer a long, continuous and high resolution record of past climatic changes of the last ca. 150 kyr in this region. Here we present the detailed lithostratigraphy and some physical properties (magnetic susceptibility and density) of the master sequence. Sedimentary components and their abundance were identified and quantified in smear slides and direct core observations. Age model is based on 13 14C and one 230Th/U dates. Based on their facies association seven lithostratigraphic units were defined, which reflect the main stages of lake Chalco evolution. These phases closely match the marine isotopic stages. The data reveal that at the end of MIS6 Chalco was a relatively deep and stratified freshwater lake. During MIS5 the depositional environment fluctuated between low lake stands to marshy and marginal playa settings with sporadic flooding events, and severe arid periods resulted in aerial exposure of lake sediments. Low lake stands persisted during MIS4 and MIS3, with minor fluctuations towards slightly deeper phases. The Last Glacial Maximum (LGM) and the deglacial period (21-13 kyr) are characterized by intense volcanism. The early and mid-Holocene high calcareous content and alkaline-subsaline lake suggest dry conditions. The fluctuations of lake levels inferred provide the basis for future paleoclimatic works.
Spotswood, Erica N.; Bartolome, James W.; Allen-Diaz, Barbara
2015-01-01
Community response to external drivers such climate and disturbance can lead to fluctuations in community composition, or to directional change. Temporal dynamics can be influenced by a combination of drivers operating at multiple spatial scales, including external landscape scale drivers, local abiotic conditions, and local species pools. We hypothesized that spatial variation in these factors can create heterogeneity in temporal dynamics within landscapes. We used understory plant species composition from an 11 year dataset from a California oak woodland to compare plots where disturbance was experimentally manipulated with the removal of livestock grazing and a prescribed burn. We quantified three properties of temporal variation: compositional change (reflecting the appearance and disappearance of species), temporal fluctuation, and directional change. Directional change was related most strongly to disturbance type, and was highest at plots where grazing was removed during the study. Temporal fluctuations, compositional change, and directional change were all related to intrinsic abiotic factors, suggesting that some locations are more responsive to external drivers than others. Temporal fluctuations and compositional change were linked to local functional composition, indicating that environmental filters can create subsets of the local species pool that do not respond in the same way to external drivers. Temporal dynamics are often assumed to be relatively static at the landscape scale, provided disturbance and climate are continuous. This study shows that local and landscape scale factors jointly influence temporal dynamics creating hotspots that are particularly responsive to climate and disturbance. Thus, adequate predictions of response to disturbance or to changing climate will only be achieved by considering how factors at multiple spatial scales influence community resilience and recovery. PMID:26222069
NASA Astrophysics Data System (ADS)
Allison, Lesley; Hawkins, Ed; Woollings, Tim
2015-01-01
Many previous studies have shown that unforced climate model simulations exhibit decadal-scale fluctuations in the Atlantic meridional overturning circulation (AMOC), and that this variability can have impacts on surface climate fields. However, the robustness of these surface fingerprints across different models is less clear. Furthermore, with the potential for coupled feedbacks that may amplify or damp the response, it is not known whether the associated climate signals are linearly related to the strength of the AMOC changes, or if the fluctuation events exhibit nonlinear behaviour with respect to their strength or polarity. To explore these questions, we introduce an objective and flexible method for identifying the largest natural AMOC fluctuation events in multicentennial/multimillennial simulations of a variety of coupled climate models. The characteristics of the events are explored, including their magnitude, meridional coherence and spatial structure, as well as links with ocean heat transport and the horizontal circulation. The surface fingerprints in ocean temperature and salinity are examined, and compared with the results of linear regression analysis. It is found that the regressions generally provide a good indication of the surface changes associated with the largest AMOC events. However, there are some exceptions, including a nonlinear change in the atmospheric pressure signal, particularly at high latitudes, in HadCM3. Some asymmetries are also found between the changes associated with positive and negative AMOC events in the same model. Composite analysis suggests that there are signals that are robust across the largest AMOC events in each model, which provides reassurance that the surface changes associated with one particular event will be similar to those expected from regression analysis. However, large differences are found between the AMOC fingerprints in different models, which may hinder the prediction and attribution of such events in reality.
Spotswood, Erica N; Bartolome, James W; Allen-Diaz, Barbara
2015-01-01
Community response to external drivers such climate and disturbance can lead to fluctuations in community composition, or to directional change. Temporal dynamics can be influenced by a combination of drivers operating at multiple spatial scales, including external landscape scale drivers, local abiotic conditions, and local species pools. We hypothesized that spatial variation in these factors can create heterogeneity in temporal dynamics within landscapes. We used understory plant species composition from an 11 year dataset from a California oak woodland to compare plots where disturbance was experimentally manipulated with the removal of livestock grazing and a prescribed burn. We quantified three properties of temporal variation: compositional change (reflecting the appearance and disappearance of species), temporal fluctuation, and directional change. Directional change was related most strongly to disturbance type, and was highest at plots where grazing was removed during the study. Temporal fluctuations, compositional change, and directional change were all related to intrinsic abiotic factors, suggesting that some locations are more responsive to external drivers than others. Temporal fluctuations and compositional change were linked to local functional composition, indicating that environmental filters can create subsets of the local species pool that do not respond in the same way to external drivers. Temporal dynamics are often assumed to be relatively static at the landscape scale, provided disturbance and climate are continuous. This study shows that local and landscape scale factors jointly influence temporal dynamics creating hotspots that are particularly responsive to climate and disturbance. Thus, adequate predictions of response to disturbance or to changing climate will only be achieved by considering how factors at multiple spatial scales influence community resilience and recovery.
NASA Astrophysics Data System (ADS)
Cabaleri, Nora G.; Benavente, Cecilia A.
2013-02-01
The Las Chacritas Member is the lower part of the Cañadón Asfalto Formation (Jurassic). The unit is a completely continental limestone succession with volcanic contributions that were deposited during the development of the Cañadón Asfalto Rift Basin (Chubut province, Patagonia, Argentina). A detailed sedimentological analysis was performed in the Fossati depocenter to determine the paleoenvironments that developed in the context of this rift. The Las Chacritas Member represents a carbonate paleolake system with ramp-shaped margins associated with wetlands that were eventually affected by subaerial exposure and pedogenesis. This process is represented by three main subenvironments: a) a lacustrine setting sensu stricto (lacustrine limestone facies association), represented by Mudstones/Wackestones containing porifera spicules (F1), Intraclastic packstones (F6) and Tabular stromatolites (F10) in which deposition and diagenesis were entirely subaqueous; b) a palustrine setting (palustrine limestone facies association) containing Microbial Mudstones (F2), Intraclastic sandy packstone with ostracode remains (F3), Oncolitic packstone (F5), Brecciated limestone (F7) and Nodular-Mottled limestone (F8) representing shallow marginal areas affected by groundwater fluctuations and minor subaerial exposure; and c) a pedogenic paleoenvironment (pedogenic limestone facies association) including Intraclastic limestone (F4) and Packstones containing Microcodium (F9) facies displaying the major features of subaerial exposure, pedogenic diagenesis and the development of paleosols. The fluvial-palustrine-lacustrine succession shows a general shallow upward trend in which contraction-expansion cycles are represented (delimited by exposure and surface erosion). The variations in the successive formations reflect the responses to fluctuations in a combination of two major controls, the tectonic and local climatic variables. The predominance of the palustrine facies associations was determined by its accommodation space as well as the local climate conditions. The variations in the lacustrine limestone facies associations reflect differential patterns of subsidence within the sub-basin. The diagnostic features of the palustrine limestone facies associations (organic matter (OM) content, microinvertebrate fauna, abundant mud cracks, brecciation, presence of evaporitic minerals) frame the sub-basin in a climatic context intermediate between arid and subhumid conditions.
Using Scaling to Understand, Model and Predict Global Scale Anthropogenic and Natural Climate Change
NASA Astrophysics Data System (ADS)
Lovejoy, S.; del Rio Amador, L.
2014-12-01
The atmosphere is variable over twenty orders of magnitude in time (≈10-3 to 1017 s) and almost all of the variance is in the spectral "background" which we show can be divided into five scaling regimes: weather, macroweather, climate, macroclimate and megaclimate. We illustrate this with instrumental and paleo data. Based the signs of the fluctuation exponent H, we argue that while the weather is "what you get" (H>0: fluctuations increasing with scale), that it is macroweather (H<0: fluctuations decreasing with scale) - not climate - "that you expect". The conventional framework that treats the background as close to white noise and focuses on quasi-periodic variability assumes a spectrum that is in error by a factor of a quadrillion (≈ 1015). Using this scaling framework, we can quantify the natural variability, distinguish it from anthropogenic variability, test various statistical hypotheses and make stochastic climate forecasts. For example, we estimate the probability that the warming is simply a giant century long natural fluctuation is less than 1%, most likely less than 0.1% and estimate return periods for natural warming events of different strengths and durations, including the slow down ("pause") in the warming since 1998. The return period for the pause was found to be 20-50 years i.e. not very unusual; however it immediately follows a 6 year "pre-pause" warming event of almost the same magnitude with a similar return period (30 - 40 years). To improve on these unconditional estimates, we can use scaling models to exploit the long range memory of the climate process to make accurate stochastic forecasts of the climate including the pause. We illustrate stochastic forecasts on monthly and annual scale series of global and northern hemisphere surface temperatures. We obtain forecast skill nearly as high as the theoretical (scaling) predictability limits allow: for example, using hindcasts we find that at 10 year forecast horizons we can still explain ≈ 15% of the anomaly variance. These scaling hindcasts have comparable - or smaller - RMS errors than existing GCM's. We discuss how these be further improved by going beyond time series forecasts to space-time.
Icy Layers and Climate Fluctuations near the Martian North Pole
2010-03-31
The Martian north polar layered deposits are an ice sheet much like the Greenland ice sheet on the Earth in this image from NASA Mars Reconnaissance Orbiter. This Martian ice sheet contains many layers that record variations in the Martian climate.
Bennitt, Emily; Bonyongo, Mpaphi Casper; Harris, Stephen
2014-01-01
Seasonal fluctuations in water availability cause predictable changes in the profitability of habitats in tropical ecosystems, and animals evolve adaptive behavioural and spatial responses to these fluctuations. However, stochastic changes in the distribution and abundance of surface water between years can alter resource availability at a landscape scale, causing shifts in animal behaviour. In the Okavango Delta, Botswana, a flood-pulsed ecosystem, the volume of water entering the system doubled between 2008 and 2009, creating a sudden change in the landscape. We used African buffalo (Syncerus caffer) to test the hypotheses that seasonal habitat selection would be related to water availability, that increased floodwater levels would decrease forage abundance and affect habitat selection, and that this would decrease buffalo resting time, reduce reproductive success and decrease body condition. Buffalo selected contrasting seasonal habitats, using habitats far from permanent water during the rainy season and seasonally-flooded habitats close to permanent water during the early and late flood seasons. The 2009 water increase reduced forage availability in seasonally-flooded habitats, removing a resource buffer used by the buffalo during the late flood season, when resources were most limited. In response, buffalo used drier habitats in 2009, although there was no significant change in the time spent moving or resting, or daily distance moved. While their reproductive success decreased in 2009, body condition increased. A protracted period of high water levels could prove detrimental to herbivores, especially to smaller-bodied species that require high quality forage. Stochastic annual fluctuations in water levels, predicted to increase as a result of anthropogenically-induced climate change, are likely to have substantial impacts on the functioning of water-driven tropical ecosystems, affecting environmental conditions within protected areas. Buffer zones around critical seasonal resources are essential to allow animals to engage in compensatory behavioural and spatial mechanisms in response to changing environmental conditions. PMID:24983377
Bennitt, Emily; Bonyongo, Mpaphi Casper; Harris, Stephen
2014-01-01
Seasonal fluctuations in water availability cause predictable changes in the profitability of habitats in tropical ecosystems, and animals evolve adaptive behavioural and spatial responses to these fluctuations. However, stochastic changes in the distribution and abundance of surface water between years can alter resource availability at a landscape scale, causing shifts in animal behaviour. In the Okavango Delta, Botswana, a flood-pulsed ecosystem, the volume of water entering the system doubled between 2008 and 2009, creating a sudden change in the landscape. We used African buffalo (Syncerus caffer) to test the hypotheses that seasonal habitat selection would be related to water availability, that increased floodwater levels would decrease forage abundance and affect habitat selection, and that this would decrease buffalo resting time, reduce reproductive success and decrease body condition. Buffalo selected contrasting seasonal habitats, using habitats far from permanent water during the rainy season and seasonally-flooded habitats close to permanent water during the early and late flood seasons. The 2009 water increase reduced forage availability in seasonally-flooded habitats, removing a resource buffer used by the buffalo during the late flood season, when resources were most limited. In response, buffalo used drier habitats in 2009, although there was no significant change in the time spent moving or resting, or daily distance moved. While their reproductive success decreased in 2009, body condition increased. A protracted period of high water levels could prove detrimental to herbivores, especially to smaller-bodied species that require high quality forage. Stochastic annual fluctuations in water levels, predicted to increase as a result of anthropogenically-induced climate change, are likely to have substantial impacts on the functioning of water-driven tropical ecosystems, affecting environmental conditions within protected areas. Buffer zones around critical seasonal resources are essential to allow animals to engage in compensatory behavioural and spatial mechanisms in response to changing environmental conditions.
Fourcade, Yoan; Ranius, Thomas; Öckinger, Erik
2017-10-01
Prediction of species distributions in an altered climate requires knowledge on how global- and local-scale factors interact to limit their current distributions. Such knowledge can be gained through studies of spatial population dynamics at climatic range margins. Here, using a butterfly (Pyrgus armoricanus) as model species, we first predicted based on species distribution modelling that its climatically suitable habitats currently extend north of its realized range. Projecting the model into scenarios of future climate, we showed that the distribution of climatically suitable habitats may shift northward by an additional 400 km in the future. Second, we used a 13-year monitoring dataset including the majority of all habitat patches at the species northern range margin to assess the synergetic impact of temperature fluctuations and spatial distribution of habitat, microclimatic conditions and habitat quality, on abundance and colonization-extinction dynamics. The fluctuation in abundance between years was almost entirely determined by the variation in temperature during the species larval development. In contrast, colonization and extinction dynamics were better explained by patch area, between-patch connectivity and host plant density. This suggests that the response of the species to future climate change may be limited by future land use and how its host plants respond to climate change. It is, thus, probable that dispersal limitation will prevent P. armoricanus from reaching its potential future distribution. We argue that models of range dynamics should consider the factors influencing metapopulation dynamics, especially at the range edges, and not only broad-scale climate. It includes factors acting at the scale of habitat patches such as habitat quality and microclimate and landscape-scale factors such as the spatial configuration of potentially suitable patches. Knowledge of population dynamics under various environmental conditions, and the incorporation of realistic scenarios of future land use, appears essential to provide predictions useful for actions mitigating the negative effects of climate change. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
García de León, David; García-Mozo, Herminia; Galán, Carmen; Alcázar, Purificación; Lima, Mauricio; González-Andújar, José L
2015-10-15
Pollen allergies are the most common form of respiratory allergic disease in Europe. Most studies have emphasized the role of environmental processes, as the drivers of airborne pollen fluctuations, implicitly considering pollen production as a random walk. This work shows that internal self-regulating processes of the plants (negative feedback) should be included in pollen dynamic systems in order to give a better explanation of the observed pollen temporal patterns. This article proposes a novel methodological approach based on dynamic systems to investigate the interaction between feedback structure of plant populations and climate in shaping long-term airborne Poaceae pollen fluctuations and to quantify the effects of climate change on future airborne pollen concentrations. Long-term historical airborne Poaceae pollen data (30 years) from Cordoba city (Southern Spain) were analyzed. A set of models, combining feedback structure, temperature and actual evapotranspiration effects on airborne Poaceae pollen were built and compared, using a model selection approach. Our results highlight the importance of first-order negative feedback and mean annual maximum temperature in driving airborne Poaceae pollen dynamics. The best model was used to predict the effects of climate change under two standardized scenarios representing contrasting temporal patterns of economic development and CO2 emissions. Our results predict an increase in pollen levels in southern Spain by 2070 ranging from 28.5% to 44.3%. The findings from this study provide a greater understanding of airborne pollen dynamics and how climate change might impact the future evolution of airborne Poaceae pollen concentrations and thus the future evolution of related pollen allergies. Copyright © 2015 Elsevier B.V. All rights reserved.
Trans-pacific glacial response to the Antarctic Cold Reversal in the southern mid-latitudes
NASA Astrophysics Data System (ADS)
Sagredo, Esteban A.; Kaplan, Michael R.; Araya, Paola S.; Lowell, Thomas V.; Aravena, Juan C.; Moreno, Patricio I.; Kelly, Meredith A.; Schaefer, Joerg M.
2018-05-01
Elucidating the timing and regional extent of abrupt climate events during the last glacial-interglacial transition (∼18-11.5 ka) is critical for identifying spatial patterns and mechanisms responsible for large-magnitude climate events. The record of climate change in the Southern Hemisphere during this time period, however, remains scarce and unevenly distributed. We present new geomorphic, chronological, and equilibrium line altitude (ELA) data from a climatically sensitive mountain glacier at Monte San Lorenzo (47°S), Central Patagonia. Twenty-four new cosmogenic 10Be exposure ages from moraines provide a comprehensive glacial record in the mid-latitudes of South America, which constrain the timing, spatial extent and magnitude of glacial fluctuations during the Antarctic Cold Reversal (ACR, ∼14.5-12.9 ka). Río Tranquilo glacier advanced and reached a maximum extent at 13.9 ± 0.7 ka. Three additional inboard moraines afford statistically similar ages, indicating repeated glacier expansions or marginal fluctuations over the ACR. Our record represents the northernmost robust evidence of glacial fluctuations during the ACR in southern South America, documenting not only the timing of the ACR maximum, but also the sequence of glacier changes within this climate event. Based on ELA reconstructions, we estimate a cooling of >1.6-1.8 °C at the peak of the ACR. The Río Tranquilo record along with existing glacial reconstructions from New Zealand (43°S) and paleovegetation records from northwestern (41°S) and central-west (45°S) Patagonia, suggest an uniform trans-Pacific glacier-climate response to an ACR trigger across the southern mid-latitudes. We posit that the equatorial migration of the southern westerly winds provides an adequate mechanism to propagate a common ACR signal across the Southern Hemisphere.
Life cycle and masting of a recovering keystone indicator species under climate fluctuation
Qinfeng Guo; Stanley J. Zarnoch; Xiongwen Chen; Dale G. Brockway
2016-01-01
Ecosystem health and sustainability, to a large degree, depend on the performance of keystone or dominant species. The role of climate on population dynamics of such species has been extensively examined, especially for health indicator species. Yet the life-cycle processes and response lags for many species could complicate efforts to detect clear climate signals....
Effects of global climate change on biodiversity in forests of the Southern United States
Margaret S. Devall; Bernard R. Parresol
1998-01-01
Climate has not been stable in the past. Fluctuations of pine (Pinus) pollen in a 50,000-year sequence from Lake Tulane in Florida indicate that major vegetation shifts occurred during the last glacial cycle. Phases of pollen dominated by pine (indicating a wet climate) were interspersed with periods with plentiful oak (Quercus), ragweed, and marsh elder (...
Plessis, Anne; Hafemeister, Christoph; Wilkins, Olivia; Gonzaga, Zennia Jean; Meyer, Rachel Sarah; Pires, Inês; Müller, Christian; Septiningsih, Endang M; Bonneau, Richard; Purugganan, Michael
2015-11-26
Plants rely on transcriptional dynamics to respond to multiple climatic fluctuations and contexts in nature. We analyzed the genome-wide gene expression patterns of rice (Oryza sativa) growing in rainfed and irrigated fields during two distinct tropical seasons and determined simple linear models that relate transcriptomic variation to climatic fluctuations. These models combine multiple environmental parameters to account for patterns of expression in the field of co-expressed gene clusters. We examined the similarities of our environmental models between tropical and temperate field conditions, using previously published data. We found that field type and macroclimate had broad impacts on transcriptional responses to environmental fluctuations, especially for genes involved in photosynthesis and development. Nevertheless, variation in solar radiation and temperature at the timescale of hours had reproducible effects across environmental contexts. These results provide a basis for broad-based predictive modeling of plant gene expression in the field.
Virah-Sawmy, Malika; Bonsall, Michael B; Willis, Katherine J
2009-12-23
Madagascar's rainforests are among the most biodiverse in the world. Understanding the population dynamics of important species within these forests in response to past climatic variability provides valuable insight into current and future species composition. Here, we use a population-level approach to analyse palaeoecological records over the last 5300 years to understand how populations of Symphonia cf. verrucosa became locally extinct in some rainforest fragments along the southeast coast of Madagascar in response to rapid climate change, yet persisted in others. Our results indicate that regional (climate) variability contributed to synchronous decline of S. cf. verrucosa populations in these forests. Superimposed on regional fluctuations were local processes that could have contributed or mitigated extinction. Specifically, in the forest with low soil nutrients, population model predictions indicated that there was coexistence between S. cf. verrucosa and Erica spp., but in the nutrient-rich forest, interspecific effects between Symphonia and Erica spp. may have pushed Symphonia to extinction at the peak of climatic change. We also demonstrate that Symphonia is a good indicator of a threshold event, exhibiting erratic fluctuations prior to and long after the critical climatic point has passed.
NASA Astrophysics Data System (ADS)
Romanovskaya, M.; Bessudnov, A. N.; Kuznetsova, T. V.; Sukhanova, T. V.; Krilkov, N. M.
2017-12-01
The study area belongs to the East European Plain. In paleoclimatic terms the northern limits of this area were covered by ice sheet during the Last Glacial Maximum (LGM) and the entire area was located within the permafrost zone of the Last Permafrost Maximum (LPM) according to the published maps. The results of our geological and geomorphologic exploration of the area have clearly shown that this area is an actively growing neo-tectonic structure. Geomorphologic study and modeling have revealed the presence of erosion-shaped surfaces of different age which were formed by neo-tectonic movements and the effects of climate fluctuations. The entire landscape of the area is a system of altitudinal steps. Each surface has its own complex of recent deposits, which closely related to climate change. The fluvial terraces of the rivers Don and Tikhaya Sosna were formed under the influence of the Don, Dnepr, Moscow and, Valdai Glaciations. There are many calcareous loess layers and paleosol layers in the Quaternary geological sections of the area. Radiocarbon dating of fossils and paleosol layers found at the archaeological site Divnogorie-9 located in loess-like loam parts of the section (50.9649ºN, 39.3031ºE) provides the age 12-14 ka BP. Our rock-magnetism studies of this section have shown that its formation was affected by regional paleoclimate. We believe that a decrease of the erosion basis during the LGM led to a deepening of the erosion network. Later on, when the climate warmed the powerful but short-lived water streams filled the ravines with thick proluvial deposits. The degradation of the permafrost after LPM within the study area apparently had no significant effects on its landscape formation, as evidenced by the very small number of ice-wedge pseudomorphs and specific morphological features reported for this area. This conclusion is also supported by the results of our carbon research of loess-like loam and paleosol layers. Thus the emerging picture of the landscape of the study area being formed by the work of exogenous agents and neo-tectonic movements and also reflects climatic fluctuations during the Pleistocene and Holocene.
NASA Astrophysics Data System (ADS)
Schwarz, Anja; Turner, Falko; Lauterbach, Stefan; Plessen, Birgit; Krahn, Kim J.; Glodniok, Sven; Mischke, Steffen; Stebich, Martina; Witt, Roman; Mingram, Jens; Schwalb, Antje
2017-12-01
Arid Central Asia represents a key region for understanding climate variability and interactions in the Northern Hemisphere. Patterns and mechanisms of Holocene climate change in arid Central Asia are, however, only partially understood. Multi-proxy data combining diatom, ostracod, sedimentological, geochemical and stable isotope analyses from a ca. 6000-year-old lake sediment core from Son Kol (Central Kyrgyzstan) show distinct and repeated changes in species assemblages. Diatom- and ostracod-inferred conductivity shifts between meso-euhaline and freshwater conditions suggest water balance and regime shifts. Organism-derived data are corroborated by stable isotope, mineralogical and geochemical records, underlining that Son Kol was affected by strong lake level fluctuations of several meters. The δ13Ccarb/δ18Ocarb correlation shows repeated switchovers from a closed to an open lake system. From 6000 to 3800 and 3250 to 1950 cal. yr BP, Son Kol was a closed basin lake with higher conductivities, increased nutrient availability and a water level located below the modern outflow. Son Kol became again a hydrologically open lake at 3800 and 1950 cal. yr BP. Comparisons to other local and regional paleoclimate records indicate that these regime shifts were largely controlled by changing intensity and position of the Westerlies and the Siberian Anticyclone that triggered changes in the amount of winter precipitation. A strong influence of the Westerlies ca. 5000-4400, 3800-3250 and since 1950 cal. yr BP enhanced the amount of precipitation during spring, autumn and winter, whereas cold and dry winters prevailed during phases with a strong Siberian Anticyclone and southward shifted Westerlies at ca. 6000-5000, 4400-3800 and 3250-1950 cal. yr BP. Similarities between variations in winter precipitation at Son Kol and records of the predominant NAO-mode further suggest a teleconnection between wet (dry) winter climate in Central Asia and a positive (negative) NAO-mode. Thus, this study identifies climate fluctuations as the main driver for hydrological regime shifts in Son Kol controlling physicochemical conditions and consequently causing abrupt species assemblage changes. This emphasizes the importance of multi-proxy approaches to identify triggers, thresholds and cascades of aquatic ecosystem transformations.
NASA Astrophysics Data System (ADS)
Yun, Sang Woong; Seul Kim, Ye; Kim, Dong Hyun; Kim, Ho Chul; Shin, Min Cheol; Park, Jae Yong; Kim, Heejung; Lee, Jin-Yong
2013-04-01
Groundwater occupies a considerable proportion of the world's water resources and is affected by climate change. It is important to understand how water budget responds to future precipitation variability for sustainable management of groundwater resources. In order to evaluate the effects of climate change on groundwater resources in the future, it is necessary to not only collect field data but also predict groundwater change using some groundwater numerical modelling. In this study, a relevant climate change scenario (RCP 4.5) was adopted and Visual MODFLOW was used as a main tool for predicting water budget. The predicted precipitation and air temperature data were obtained from Climate Change Information Center (CCIC) of Korea. By using the data on the scenario from 2011 to 2100, the future water budget was calculated using groundwater numerical modelling for both Wonju (WJ: urban area) and Yanggu (YG: rural area) of Gangwon Province in Korea. The model calibration was done by the groundwater level measured at 10 monitoring wells. For the numerical prediction, the groundwater recharge (WJ: 10.1%, YG: 13.3%) was estimated using watertable fluctuation (WTF) method and a concept of threshold precipitation (WJ: 240.5 mm, YG: 363.8 mm) was applied. Consequently, the water levels in both Wonju and Yanggu showed gradually increasing trends and ranged from 3.0 to 10.8 m, from 0.5 to 1.8 m in 2100, respectively. Under annual precipitation fluctuation on the scenario (2011-2100), water budget IN-OUT value (-0.87~1.07 m3/day) in Wonju city gradually increases while that (-0.73~0.46 m3/day) of Yanggu county does not. However, its annual difference is enlarged with year for both areas. The results indicate that securing groundwater resource and its management will be difficult because of frequent annual change of the groundwater storage. This work was supported by Science High School R&E program (No. C1008804-01-01) and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2012-0002628).
Impact of neutral density fluctuations on gas puff imaging diagnostics
NASA Astrophysics Data System (ADS)
Wersal, C.; Ricci, P.
2017-11-01
A three-dimensional turbulence simulation of the SOL and edge regions of a toroidally limited tokamak is carried out. The simulation couples self-consistently the drift-reduced two-fluid Braginskii equations to a kinetic equation for neutral atoms. A diagnostic neutral gas puff on the low-field side midplane is included and the impact of neutral density fluctuations on D_α light emission investigated. We find that neutral density fluctuations affect the D_α emission. In particular, at a radial distance from the gas puff smaller than the neutral mean free path, neutral density fluctuations are anti-correlated with plasma density, electron temperature, and D_α fluctuations. It follows that the neutral fluctuations reduce the D_α emission in most of the observed region and, therefore, have to be taken into account when interpreting the amplitude of the D_α emission. On the other hand, higher order statistical moments (skewness, kurtosis) and turbulence characteristics (such as correlation length, or the autocorrelation time) are not significantly affected by the neutral fluctuations. At distances from the gas puff larger than the neutral mean free path, a non-local shadowing effect influences the neutral density fluctuations. There, the D_α fluctuations are correlated with the neutral density fluctuations, and the high-order statistical moments and measurements of other turbulence properties are strongly affected by the neutral density fluctuations.
Maldonado-Sánchez, Denisse; Gutiérrez-Rodríguez, Carla; Ornelas, Juan Francisco
2016-06-01
By integrating mitochondrial DNA (mtDNA), microsatellites and ecological niche modelling (ENM), we investigated the phylogeography of Mexican populations of the common bush-tanager Chlorospingus ophthalmicus to examine the relative role of geographical and ecological features, as well as Pleistocene climatic oscillations in driving the diversification. We sequenced mtDNA of individuals collected throughout the species range in Mexico and genotyped them at seven microsatellite loci. Phylogeographic, population genetics and coalescent methods were used to assess patterns of genetic structure, gene flow and demographic history. ENM was used to infer contractions and expansions at different time periods as well as differences in climatic conditions among lineages. The retrieved mitochondrial and microsatellite groups correspond with the fragmented cloud forest distribution in mountain ranges and morphotectonic provinces. Differing climatic conditions between mountain ranges were detected, and palaeodistribution modelling as well as demographic history analyses, indicated recent population expansions throughout the Sierra Madre Oriental (SMO). The marked genetic structure of C. ophthalmicus was promoted by the presence of ecological and geographical barriers that restricted the movement of individuals among mountain ranges. The SMO was mainly affected by Pleistocene climatic oscillations, with the moist forests model best fitting the displayed genetic patterns of populations in this mountain range. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wörman, A.; Bottacin-Busolin, A.; Zmijewski, N.; Riml, J.
2017-08-01
Climate-driven fluctuations in the runoff and potential energy of surface water are generally large in comparison to the capacity of hydropower regulation, particularly when hydropower is used to balance the electricity production from covarying renewable energy sources such as wind power. To define the bounds of reservoir storage capacity, we introduce a dedicated reservoir volume that aggregates the storage capacity of several reservoirs to handle runoff from specific watersheds. We show how the storage bounds can be related to a spectrum of the climate-driven modes of variability in water availability and to the covariation between water and wind availability. A regional case study of the entire hydropower system in Sweden indicates that the longest regulation period possible to consider spans from a few days of individual subwatersheds up to several years, with an average limit of a couple of months. Watershed damping of the runoff substantially increases the longest considered regulation period and capacity. The high covariance found between the potential energy of the surface water and wind energy significantly reduces the longest considered regulation period when hydropower is used to balance the fluctuating wind power.
Imprint of Late Quaternary Climate Change on the Mid-Atlantic Landscape
NASA Astrophysics Data System (ADS)
Pavich, M.; Markewich, H.; Newell, W. L.; Litwin, R.; Smoot, J.; Brook, G.
2009-12-01
Recent geomorphic, lithostratigraphic, palynologic and chronostratigraphic investigations of the mid-Atlantic region show that much of the modern landscape flanking the Chesapeake Bay and the Potomac River is developed on late Quaternary sediments. These deposits, dated by OSL and 14C, include transgressive marine and estuarine sediments deposited between 120ka and 32ka, and parabolic dunes formed between 32ka and 15ka. The stacked estuarine units were deposited in a subsiding basin as eustatic sea level fell from +7m to -60m. The estuarine units contain pollen that provides evidence for millennial scale climate fluctuations. The dunes formed during the period of rapid expansion of the Laurentide Ice Sheet as sea level fell to -120m. Permafrost features such as frost wedges and periglacial “pots” formed during cold intervals associated with marine oxygen isotope stages 4 and 2. This periglacial climate, along with glacioisostatic adjustments to growth and decay of the Laurentide Ice Sheet, affected landscape processes at least as far south as the Potomac River valley. While many of these features were recognized in earlier mapping and stratigraphic investigations, OSL dating has greatly extended the range of available dates and significantly improved our understanding of the impacts of highly variable periglacial climate on this region.
NASA Astrophysics Data System (ADS)
Fuwape, Ibiyinka A.; Ogunjo, Samuel T.
2016-12-01
Radio refractivity index is used to quantify the effect of atmospheric parameters in communication systems. Scaling and dynamical complexities of radio refractivity across different climatic zones of Nigeria have been studied. Scaling property of the radio refractivity across Nigeria was estimated from the Hurst Exponent obtained using two different scaling methods namely: The Rescaled Range (R/S) and the detrended fluctuation analysis(DFA). The delay vector variance (DVV), Largest Lyapunov Exponent (λ1) and Correlation Dimension (D2) methods were used to investigate nonlinearity and the results confirm the presence of deterministic nonlinear profile in the radio refractivity time series. The recurrence quantification analysis (RQA) was used to quantify the degree of chaoticity in the radio refractivity across the different climatic zones. RQA was found to be a good measure for identifying unique fingerprint and signature of chaotic time series data. Microwave radio refractivity was found to be persistent and chaotic in all the study locations. The dynamics of radio refractivity increases in complexity and chaoticity from the Coastal region towards the Sahelian climate. The design, development and deployment of robust and reliable microwave communication link in the region will be greatly affected by the chaotic nature of radio refractivity in the region.
Control of the multimillennial wildfire size in boreal North America by spring climatic conditions
Ali, Adam A.; Blarquez, Olivier; Girardin, Martin P.; Hély, Christelle; Tinquaut, Fabien; El Guellab, Ahmed; Valsecchi, Verushka; Terrier, Aurélie; Bremond, Laurent; Genries, Aurélie; Gauthier, Sylvie; Bergeron, Yves
2012-01-01
Wildfire activity in North American boreal forests increased during the last decades of the 20th century, partly owing to ongoing human-caused climatic changes. How these changes affect regional fire regimes (annual area burned, seasonality, and number, size, and severity of fires) remains uncertain as data available to explore fire–climate–vegetation interactions have limited temporal depth. Here we present a Holocene reconstruction of fire regime, combining lacustrine charcoal analyses with past drought and fire-season length simulations to elucidate the mechanisms linking long-term fire regime and climatic changes. We decomposed fire regime into fire frequency (FF) and biomass burned (BB) and recombined these into a new index to assess fire size (FS) fluctuations. Results indicated that an earlier termination of the fire season, due to decreasing summer radiative insolation and increasing precipitation over the last 7.0 ky, induced a sharp decrease in FF and BB ca. 3.0 kyBP toward the present. In contrast, a progressive increase of FS was recorded, which is most likely related to a gradual increase in temperatures during the spring fire season. Continuing climatic warming could lead to a change in the fire regime toward larger spring wildfires in eastern boreal North America. PMID:23213207
Climatic impact of volcanic eruptions
NASA Technical Reports Server (NTRS)
Rampino, Michael R.
1991-01-01
Studies have attempted to 'isolate' the volcanic signal in noisy temperature data. This assumes that it is possible to isolate a distinct volcanic signal in a record that may have a combination of forcings (ENSO, solar variability, random fluctuations, volcanism) that all interact. The key to discovering the greatest effects of volcanoes on short-term climate may be to concentrate on temperatures in regions where the effects of aerosol clouds may be amplified by perturbed atmospheric circulation patterns. This is especially true in subpolar and midlatitude areas affected by changes in the position of the polar front. Such climatic perturbation can be detected in proxy evidence such as decrease in tree-ring widths and frost rings, changes in the treeline, weather anomalies, severity of sea-ice in polar and subpolar regions, and poor grain yields and crop failures. In low latitudes, sudden temperature drops were correlated with the passage overhead of the volcanic dust cloud (Stothers, 1984). For some eruptions, such as Tambora, 1815, these kinds of proxy and anectdotal information were summarized in great detail in a number of papers and books (e.g., Post, 1978; Stothers, 1984; Stommel and Stommel, 1986; C. R. Harrington, in press). These studies lead to the general conclusion that regional effects on climate, sometimes quite severe, may be the major impact of large historical volcanic aerosol clouds.
The long-range correlation and evolution law of centennial-scale temperatures in Northeast China.
Zheng, Xiaohui; Lian, Yi; Wang, Qiguang
2018-01-01
This paper applies the detrended fluctuation analysis (DFA) method to investigate the long-range correlation of monthly mean temperatures from three typical measurement stations at Harbin, Changchun, and Shenyang in Northeast China from 1909 to 2014. The results reveal the memory characteristics of the climate system in this region. By comparing the temperatures from different time periods and investigating the variations of its scaling exponents at the three stations during these different time periods, we found that the monthly mean temperature has long-range correlation, which indicates that the temperature in Northeast China has long-term memory and good predictability. The monthly time series of temperatures over the past 106 years also shows good long-range correlation characteristics. These characteristics are also obviously observed in the annual mean temperature time series. Finally, we separated the centennial-length temperature time series into two time periods. These results reveal that the long-range correlations at the Harbin station over these two time periods have large variations, whereas no obvious variations are observed at the other two stations. This indicates that warming affects the regional climate system's predictability differently at different time periods. The research results can provide a quantitative reference point for regional climate predictability assessment and future climate model evaluation.
Stream temperature variability: why it matters to salmon
E. Ashley Steel; Brian Beckman; Marie Oliver
2014-01-01
Salmon evolved in natural river systems, where temperatures fluctuate daily, weekly, seasonally, and all along a streamâs pathâfrom the mountains to the sea. Climate change and human activities alter this natural variability. Dams, for example, tend to reduce thermal fluctuations.Currently, scientists gauge habitat suitability for aquatic species by...
Climate variability slows evolutionary responses of Colias butterflies to recent climate change.
Kingsolver, Joel G; Buckley, Lauren B
2015-03-07
How does recent climate warming and climate variability alter fitness, phenotypic selection and evolution in natural populations? We combine biophysical, demographic and evolutionary models with recent climate data to address this question for the subalpine and alpine butterfly, Colias meadii, in the southern Rocky Mountains. We focus on predicting patterns of selection and evolution for a key thermoregulatory trait, melanin (solar absorptivity) on the posterior ventral hindwings, which affects patterns of body temperature, flight activity, adult and egg survival, and reproductive success in Colias. Both mean annual summer temperatures and thermal variability within summers have increased during the past 60 years at subalpine and alpine sites. At the subalpine site, predicted directional selection on wing absorptivity has shifted from generally positive (favouring increased wing melanin) to generally negative during the past 60 years, but there is substantial variation among years in the predicted magnitude and direction of selection and the optimal absorptivity. The predicted magnitude of directional selection at the alpine site declined during the past 60 years and varies substantially among years, but selection has generally been positive at this site. Predicted evolutionary responses to mean climate warming at the subalpine site since 1980 is small, because of the variability in selection and asymmetry of the fitness function. At both sites, the predicted effects of adaptive evolution on mean population fitness are much smaller than the fluctuations in mean fitness due to climate variability among years. Our analyses suggest that variation in climate within and among years may strongly limit evolutionary responses of ectotherms to mean climate warming in these habitats. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
15 CFR 917.21 - National needs and problems.
Code of Federal Regulations, 2012 CFR
2012-01-01
... and problems with respect to ocean and coastal resources:global and regional climate and primary... global sea-level change and determine the impact of this change on coastal areas. (3) Define the... relationship to fluctuations in global and regional climate, primary productivity, and fisheries production. (4...
15 CFR 917.21 - National needs and problems.
Code of Federal Regulations, 2014 CFR
2014-01-01
... and problems with respect to ocean and coastal resources:global and regional climate and primary... global sea-level change and determine the impact of this change on coastal areas. (3) Define the... relationship to fluctuations in global and regional climate, primary productivity, and fisheries production. (4...
15 CFR 917.21 - National needs and problems.
Code of Federal Regulations, 2013 CFR
2013-01-01
... and problems with respect to ocean and coastal resources:global and regional climate and primary... global sea-level change and determine the impact of this change on coastal areas. (3) Define the... relationship to fluctuations in global and regional climate, primary productivity, and fisheries production. (4...
15 CFR 917.21 - National needs and problems.
Code of Federal Regulations, 2010 CFR
2010-01-01
... and problems with respect to ocean and coastal resources:global and regional climate and primary... global sea-level change and determine the impact of this change on coastal areas. (3) Define the... relationship to fluctuations in global and regional climate, primary productivity, and fisheries production. (4...
Paleotempertures retrieved from the groundwater archives in the largest watershed (≈800 km2) in the Olympic Mountains suggest asynchronous Olympic Peninsula climate responses during the Everson interstade period after the last continental glacial maximum. Dissolved noble gases fr...
NASA Astrophysics Data System (ADS)
Joo, Y. J.; Nam, S. I.; Son, Y. J.; Forwick, M.
2017-12-01
Fjords in the Svalbard archipelago are characterized by an extreme environmental gradient between 1) the glacial system affected by tidewater glaciers and seasonal sea ice inside the fjords and 2) the warm Atlantic Water intrusion by the West Spitsbergen Current from open ocean. As sediment is largely supplied from the terrestrial source area exposed along the steep slopes of the fjords, the changes in the surface processes affected by glaciers are likely preserved in the sediments in the inner fjords. On the other hand, variations in the influence of the warm Atlantic Water in the marine realm (e.g. marine productivity) can be archived in the sediment deposited in the vicinity of the entrance to the fjords. Since the last deglaciation of the Svalbard-Barents ice sheet ( 13000 yrs BP), the Svalbard fjords have faced dramatic climate changes including the early Holocene Climate Optimum (HCO) and subsequent cooling that eventually led to the current cold and dry climate. We investigate the Holocene environmental changes in both terrestrial and marine realms based on stable isotopic and inorganic geochemical analyses of sediments deposited in Dicksonfjorden and Woodfjorden in the western and northern Spitsbergen, respectively. The two fjords are expected to provide intriguing information regarding how terrestrial and marine realms of the Arctic fjords system responded to regional and global climate changes. Being a branch of the larger Isfjorden, Dicksonfjorden penetrates deeply to the land, whereas Woodfjorden is rather directly connected to the open ocean. Accordingly, the results suggest that the Dicksonfjorden sediment records mainly terrestrial signals with marked fluctuations in sediment composition that coincide with major climate changes (e.g. HCO). On the contrary, the two Woodfjorden cores collected from different parts of the fjord exhibit contrasting results, likely illustrating differing response of terrestrial and marine realms to the climate changes in terms of behavior of tidewater glaciers and inflow of the warm West Spitsbergen Current and their possible interactions. This study aims to disentangle the interaction between the fjords and the global climate changes and provide a holistic view to the Arctic fjords system with strong environmental gradients.
Code of Federal Regulations, 2011 CFR
2011-07-01
... monetary provisions of the Act may reveal changes in the annual gross volume or other determinative factors... 29 Labor 3 2011-07-01 2011-07-01 false Fluctuations in annual gross volume affecting enterprise... Employment to Which the Act May Apply; Enterprise Coverage Computing the Annual Volume § 779.267 Fluctuations...
NASA Astrophysics Data System (ADS)
Xu, Lichen; Liu, Yan; Sun, Qianli; Chen, Jing; Cheng, Peng; Chen, Zhongyuan
2017-05-01
High-resolution climate variations since the last 4500 years in the monsoonal-arid transition zone of north-central China were revealed through the integration of proxies from sediment cores in the Lake Daihai basin. Human occupations in the lake basin deduced from archeological findings and historical literatures were then incorporated into the climate sequence to demonstrate the patterns of human responses to the climate changes, and the recent anthropogenic effects. It indicated that: (1) Climate dominated human-environment adaptations prevailed prior to ∼2700 cal yr BP. An amicable climate setting before ∼4100 cal yr BP would facilitate the growth of the Laohushan Culture (LC) in the lake basin, while a pronounced deterioration of water thermal condition after that had led to human exodus and the collapse of the LC. The reduced human activity in the lake basin indicated at ∼3800-3500 cal yr BP and a subsequent cultural blank at ∼3500-2700 cal yr BP, were both in response to the climate and lake level fluctuations during ∼3800-2800 cal yr BP. (2) Transition to a positive human adaptation was seen at ∼2700-1100 cal yr BP, represented by the exploitation of arable land for cultivation and animal husbandry as the lake contracted. (3) An increasing human presence that affected environmental processes became more severe over the last ∼1100 cal yr BP. This was basically due to the ongoing lake shore reclamation for cropping, and more recently heavy metals emissions from fossil fuel combustion and local industries.
Afonso Silva, Ana C; Bragg, Jason G; Potter, Sally; Fernandes, Carlos; Coelho, Maria Manuela; Moritz, Craig
2017-08-01
Species endemic to the tropical regions are expected to be vulnerable to future climate change due in part to their relatively narrow climatic niches. In addition, these species are more likely to have responded strongly to past climatic change, and this can be explored through phylogeographic analyses. To test the hypothesis that tropical specialists are more sensitive to climate change than climate generalists, we generated and analyse sequence data from mtDNA and ~2500 exons to compare scales of historical persistence and population fluctuation in two sister species of Australian rainbow skinks: the tropical specialist Carlia johnstonei and the climate generalist C. triacantha. We expect the tropical specialist species to have deeper and finer-scale phylogeographic structure and stronger demographic fluctuations relative to the closely related climate generalist species, which should have had more stable populations through periods of harsh climate in the late Quaternary. Within C. johnstonei, we find that some populations from the northern Kimberley islands are highly divergent from mainland populations. In C. triacantha, one major clade occurs across the deserts and into the mesic Top End, and another occurs primarily in the Kimberley with scattered records eastwards. Where their ranges overlap in the Kimberley, both mitochondrial DNA and nuclear DNA suggest stronger phylogeographic structure and range expansion within the tropical specialist, whereas the climate generalist has minimal structuring and no evidence of recent past range expansion. These results are consistent with the hypothesis that tropical specialists are more sensitive to past climatic change. © 2017 John Wiley & Sons Ltd.
ON IMPROVING THE ECONOMIC STATUS OF THE NEGRO.
ERIC Educational Resources Information Center
TOBIN, JAMES
EFFORTS TO ELIMINATE NEGRO POVERTY MUST BE UNDERTAKEN WITHIN A FAVORABLE OVERALL ECONOMIC CLIMATE, AND THE CURRENT CLIMATE IS NOT FAVORABLE BECAUSE MANPOWER AND PLANT CAPACITY ARE NOT FULLY UTILIZED. SUCH FACTORS AS LIMITED JOBS, EXAGGERATED JOB REQUIREMENTS, LOWER EARNING CAPACITY, DURATION OF UNEMPLOYMENT, FLUCTUATIONS OF THE BUSINESS CYCLE, AND…
Scaling Properties and Spatial Interpolation of Soil Moisture
2004-08-24
the sensitivities is useful not only for characterizing soil moisture but also for forecasting the vulnerability of a region’s water cycle to climate...regional water balance was presented that can be used to assess the impact of climatic fluctuations and changes on the water cycle of a region. In
Global Enhanced Vegetation Index
NASA Technical Reports Server (NTRS)
2002-01-01
By carefully measuring the wavelengths and intensity of visible and near-infrared light reflected by the land surface back up into space, the Moderate-resolution Imaging Spectroradiometer (MODIS) Team can quantify the concentrations of green leaf vegetation around the world. The above MODIS Enhanced Vegetation Index (EVI) map shows the density of plant growth over the entire globe. Very low values of EVI (white and brown areas) correspond to barren areas of rock, sand, or snow. Moderate values (light greens) represent shrub and grassland, while high values indicate temperate and tropical rainforests (dark greens). The MODIS EVI gives scientists a new tool for monitoring major fluctuations in vegetation and understanding how they affect, and are affected by, regional climate trends. For more information, read NASA Unveils Spectacular Suite of New Global Data Products from MODIS. Image courtesy MODIS Land Group/Vegetation Indices, Alfredo Huete, Principal Investigator, and Kamel Didan, University of Arizona
Long-term oceanic changes prior the end-Triassic mass extinction
NASA Astrophysics Data System (ADS)
Clémence, Marie-Emilie; Mette, Wolfgang; Thibault, Nicolas; Korte, Christoph
2014-05-01
A number of potential causes and kill mechanisms have been proposed for the end-Triassic mass extinction such as palaeoclimatic and sea-level variations, massive volcanism and ocean acidification. Recent analysis of the stomatal index and density of fossil leaves and geochemical research on pedogenic carbonate nodules are suggestive of rising atmospheric CO2 concentration and fluctuating climate in the Rhaetian. It seems therefore probable that the end-Triassic event was preceded by large climatic fluctuations and environmental perturbations in the Rhaetian which might have partly affected the composition and diversity of the terrestrial and marine biota prior to the end-Triassic interval. The Northern Calcareous Alps (NCA) has long been favored for the study of the Rhaetian, since the GSSP of the Triassic/Jurassic (T/J) boundary and other important T/J sections are situated in this region. However, the most famous Rhaetian sections in the NCA are composed of carbonates from the Koessen Formation and were situated in a large isolated intraplatform Basin (the Eiberg Basin), bordered to the south-east by a well-developed coral reef in the NW of the Tethys border. Several Rhaetian sections composed of marls and shales of the Zlambach Formation were deposited at the same time on the other side of this reef, in the oceanic Halstatt Basin, which was in direct connection to the Tethys. Here, we present new results on sedimentology, stable isotope and trace element analysis of both intraplatform and oceanic basin deposits in the NCA. Intraplatform Rhaetian sections from the Koessen Formation bear a few minor intervals of shales with enrichments in organic matter, some of which are associated to carbon isotopic excursions. Oceanic sections from the Hallstatt Basin are characterized at the base by very cyclic marl-limestone alternations. Higher up in the section, sediments progressively turn into pure shale deposits and the top of the Formation is characterized by organic-rich, laminated black shales. This interval of black shales is associated with a 2 per mil negative carbon isotopic excursion and a strong warming as suggested by fluctuations in oxygen isotopes. Forthcoming geochemical and paleontological analysis on these two Formations should help us : (1) better constrain the stratigraphy of the Rhaetian in the NCA by correlating geochemical and climatic events that took place both in the intraplaform (Eiberg) and oceanic (Hallstatt) Basin, (2) decipher localized vs large Tethyan anoxic events and associated carbon-cycle perturbations and (3) constrain the possible influence of Rhaetian climatic perturbations on the biota before the end-Triassic mass extinction.
Zimmerman, Jess K; Hogan, James Aaron; Nytch, Christopher J; Bithorn, John E
2018-06-01
Interannual changes in global climate and weather disturbances may influence reproduction in tropical forests. Phenomena such as the El Niño Southern Oscillation (ENSO) are known to produce interannual variation in reproduction, as do severe storms such as hurricanes. Using stationary trap-based phenology data collected fortnightly from 1993 to 2014 from a hurricane-affected (1989 Hugo, 1998 Georges) subtropical wet forest in northeastern Puerto Rico, we conducted a time series analysis of flowering and seed production. We addressed (1) the degree to which interannual variation in flower and seed production was influenced by global climate drivers and time since hurricane disturbance, and (2) how long-term trends in reproduction varied with plant lifeform. The seasonally de-trended number of species in flower fluctuated over time while the number of species producing seed exhibited a declining trend, one that was particularly evident during the second half of the study period. Lagged El Niño indices and time series hurricane disturbance jointly influenced the trends in numbers of flowering and fruiting species, suggesting complex global influences on tropical forest reproduction with variable periodicities. Lag times affecting flowering tended to be longer than those affecting fruiting. Long-term patterns of reproduction in individual lifeforms paralleled the community-wide patterns, with most groups of lifeform exhibiting a long-term decline in seed but not flower production. Exceptions were found for hemiepiphytes, small trees, and lianas whose seed reproduction increased and then declined over time. There was no long-term increase in flower production as reported in other Neotropical sites. © 2018 by the Ecological Society of America.
Review of the hydrologic data-collection network in the St Joseph River basin, Indiana
Crompton, E.J.; Peters, J.G.; Miller, R.L.; Stewart, J.A.; Banaszak, K.J.; Shedlock, R.J.
1986-01-01
The St. Joseph River Basin data-collection network in the St. Joseph River for streamflow, lake, ground water, and climatic stations was reviewed. The network review included only the 1700 sq mi part of the basin in Indiana. The streamflow network includes 11 continuous-record gaging stations and one partial-record station. Based on areal distribution, lake effect , contributing drainage area, and flow-record ratio, six of these stations can be used to describe regional hydrology. Gaging stations on lakes are used to collect long-term lake-level data on which to base legal lake levels, and to monitor lake-level fluctuations after legal levels are established. More hydrogeologic data are needed for determining the degree to which grouhd water affects lake levels. The current groundwater network comprises 15 observation wells and has four purposes: (1) to determine the interaction between groundwater and lakes; (2) to measure changes in groundwater levels near irrigation wells; (3) to measure water levels in wells at special purpose sites; and (4) to measure long-term changes in water levels in areas not affected by pumping. Seven wells near three lakes have provided sufficient information for correlating water levels in wells and lakes but are not adequate to quantify the effect of groundwater on lake levels. Water levels in five observation wells located in the vicinity of intensive irrigation are not noticeably affected by seasonal withdrawals. The National Weather Sevice operates eight climatic stations in the basin primarily to characterize regional climatic conditions and to aid in flood forecasting. The network meets network-density guidelines established by the World Meterological Organization for collection of precipitation and evaporation data but not guidelines suggested by the National Weather Service for density of precipitation gages in areas of significant convective rainfalls. (Author 's abstract)
Zhao, Shancen; Zheng, Pingping; Dong, Shanshan; Zhan, Xiangjiang; Wu, Qi; Guo, Xiaosen; Hu, Yibo; He, Weiming; Zhang, Shanning; Fan, Wei; Zhu, Lifeng; Li, Dong; Zhang, Xuemei; Chen, Quan; Zhang, Hemin; Zhang, Zhihe; Jin, Xuelin; Zhang, Jinguo; Yang, Huanming; Wang, Jian; Wang, Jun; Wei, Fuwen
2013-01-01
The panda lineage dates back to the late Miocene and ultimately leads to only one extant species, the giant panda (Ailuropoda melanoleuca). Although global climate change and anthropogenic disturbances are recognized to shape animal population demography their contribution to panda population dynamics remains largely unknown. We sequenced the whole genomes of 34 pandas at an average 4.7-fold coverage and used this data set together with the previously deep-sequenced panda genome to reconstruct a continuous demographic history of pandas from their origin to the present. We identify two population expansions, two bottlenecks and two divergences. Evidence indicated that, whereas global changes in climate were the primary drivers of population fluctuation for millions of years, human activities likely underlie recent population divergence and serious decline. We identified three distinct panda populations that show genetic adaptation to their environments. However, in all three populations, anthropogenic activities have negatively affected pandas for 3,000 years.
Ba, Kamarel; Thiaw, Modou; Lazar, Najih; Sarr, Alassane; Brochier, Timothée; Ndiaye, Ismaïla; Faye, Alioune; Sadio, Oumar; Panfili, Jacques; Thiaw, Omar Thiom; Brehmer, Patrice
2016-01-01
The stock of the Senegalese flat sardinella, Sardinella maderensis, is highly exploited in Senegal, West Africa. Its growth and reproduction parameters are key biological indicators for improving fisheries management. This study reviewed these parameters using landing data from small-scale fisheries in Senegal and literature information dated back more than 25 years. Age was estimated using length-frequency data to calculate growth parameters and assess the growth performance index. With global climate change there has been an increase in the average sea surface temperature along the Senegalese coast but the length-weight parameters, sex ratio, size at first sexual maturity, period of reproduction and condition factor of S. maderensis have not changed significantly. The above parameters of S. maderensis have hardly changed, despite high exploitation and fluctuations in environmental conditions that affect the early development phases of small pelagic fish in West Africa. This lack of plasticity of the species regarding of the biological parameters studied should be considered when planning relevant fishery management plans.
Climate Variability, Climate Change and Social Vulnerability in the Semi-arid Tropics
NASA Astrophysics Data System (ADS)
Ribot, Jesse C.; Rocha Magalhaes, Antonio; Panagides, Stahis
1996-06-01
Climate changes can trigger events that lead to mass migration, hunger, and even famine. Rather than focus on the impacts that result from climatic fluctuations, the authors look at the underlying conditions that cause social vulnerability. Once we understand why individuals, households, nations, and regions are vulnerable, and how they have buffered themselves against climatic and environmental shifts, then present and future vulnerability can be redressed. By using case studies from across the globe, the authors explore past experiences with climate variability, and the likely effects of--and the possible policy responses to--the types of climatic events that global warming might bring.
NASA Astrophysics Data System (ADS)
Papadopoulou, Pinelopi; Iliopoulos, George; Koukouvelas, Ioannis; Rentoumi, Evaggelia; Groumpos, Peter
2017-04-01
Palaeoecological analyses are important tools for the reconstruction of palaeoenvironmental changes. In this paper microfossil assemblages (ostracodes and palynomorphs) of Lower Pleistocene age, are used to reconstruct the biological and physical conditions of the palaeoenvironment during a time interval when palaeoclimatic and palaeoecological data from the Balkan Peninsula are scarce. Lower Pleistocene is an epoch when major changes in the palaeoclimate occurred (commencement of the Quaternary glaciations) affecting the palaeoenvironments worldwide. The studied section, geotectonically belongs to the Northeastern Corinth gulf, and lies near the town Ag. Theodoroi, west of Athens, consisting of alterations of marls and marly limestones with intercalations of organic rich sediments and gypsum beds. Detailed logging of the section was carried out and 76 samples were collected for micropalaeontological analysis. Additionally, 22 samples were studied for their palynological content. The results were statistically processed using standard palaeoecological methods (percentage abundance diagrams, biodiversity indices and multivariate analysis). Our interpretation was further supported by fuzzy logic methods, in order to remove subjectivity from the biostratigraphical data providing a higher degree of detail. Despite this though, their use in geology remains limited until now. In our case study, fuzzy sets examine the data from a more general perspective and contain natural variations that are present in species abundance gradients between evolving environments. The lithological and micropalaeontological analysis revealed a brackish lagoonal environment dominated by the typical brackish ostracode species Cyprideis torosa. The studied sequence shows cyclically changing subenvironments fluctuating from the outer to the inner zone of a lagoon as imposed by the alternating occurrence of the ostracode families Tyrrhenocytheridae and Candonidae and the foraminifera species A. tepida. The palynological analysis revealed a vegetation of Mediterranean type with altitudinal zonation and a more or less stable climate with minor fluctuations in aridity. These fluctuations correspond to the zonation of the palaeoenvironment suggesting that it is climatically controlled. The combination, for the first time, of typical micropalaeontological analyses and fuzzy modeling results enabled the generation of a high-resolution palaeoenvironmental reconstruction model and eventually allowed the determination of the main factors that affected the evolution of the palaeoenvironment in the wider Sousaki basin during the Lower Pleistocene.
Orbital pacing of carbon fluxes by a ∼9-My eccentricity cycle during the Mesozoic.
Martinez, Mathieu; Dera, Guillaume
2015-10-13
Eccentricity, obliquity, and precession are cyclic parameters of the Earth's orbit whose climatic implications have been widely demonstrated on recent and short time intervals. Amplitude modulations of these parameters on million-year time scales induce "grand orbital cycles," but the behavior and the paleoenvironmental consequences of these cycles remain debated for the Mesozoic owing to the chaotic diffusion of the solar system in the past. Here, we test for these cycles from the Jurassic to the Early Cretaceous by analyzing new stable isotope datasets reflecting fluctuations in the carbon cycle and seawater temperatures. Our results document a prominent cyclicity of ∼9 My in the carbon cycle paced by changes in the seasonal dynamics of hydrological processes and long-term sea level fluctuations. These paleoenvironmental changes are linked to a great eccentricity cycle consistent with astronomical solutions. The orbital forcing signal was mainly amplified by cumulative sequestration of organic matter in the boreal wetlands under greenhouse conditions. Finally, we show that the ∼9-My cycle faded during the Pliensbachian, which could either reflect major paleoenvironmental disturbances or a chaotic transition affecting this cycle.
Radiocarbon variability recorded in coral skeletons from the northwest of Luzon Island, Philippines
NASA Astrophysics Data System (ADS)
Hirabayashi, Shoko; Yokoyama, Yusuke; Suzuki, Atsushi; Miyairi, Yosuke; Aze, Takahiro; Siringan, Fernando; Maeda, Yasuo
2017-12-01
The North Equatorial Current (NEC) bifurcates at the eastern coast of the Philippines and moves northward as the Kuroshio, a North Pacific western boundary current. The NEC bifurcation point and Kuroshio variability are known to be affected by changes in climate such as the El Niño-Southern Oscillation and the pacific decadal oscillation. However, observational data are not sufficient to examine the mechanisms of decadal fluctuation. Here, we report seasonal radiocarbon data recorded from 1968 to 1995 in coral skeletons northwest of Luzon Island. The data suggest that the East Asian winter monsoon is a dominant factor in the seasonal fluctuations in water mass northwest of Luzon Island. Compared with other coral records reported for Guam, Ishigaki, Con Dao, and Hon Tre Island, the data suggest that the area of the Kuroshio loop current through the Luzon Strait decreased from the 1970s to 1980s as a result of the change in Kuroshio transport and the migration of the NEC bifurcation latitude after a regime shift in 1976.
Indian Ocean dipole and rainfall drive a Moran effect in East Africa malaria transmission.
Chaves, Luis Fernando; Satake, Akiko; Hashizume, Masahiro; Minakawa, Noboru
2012-06-15
Patterns of concerted fluctuation in populations-synchrony-can reveal impacts of climatic variability on disease dynamics. We examined whether malaria transmission has been synchronous in an area with a common rainfall regime and sensitive to the Indian Ocean Dipole (IOD), a global climatic phenomenon affecting weather patterns in East Africa. We studied malaria synchrony in 5 15-year long (1984-1999) monthly time series that encompass an altitudinal gradient, approximately 1000 m to 2000 m, along Lake Victoria basin. We quantified the association patterns between rainfall and malaria time series at different altitudes and across the altitudinal gradient encompassed by the study locations. We found a positive seasonal association of rainfall with malaria, which decreased with altitude. By contrast, IOD and interannual rainfall impacts on interannual disease cycles increased with altitude. Our analysis revealed a nondecaying synchrony of similar magnitude in both malaria and rainfall, as expected under a Moran effect, supporting a role for climatic variability on malaria epidemic frequency, which might reflect rainfall-mediated changes in mosquito abundance. Synchronous malaria epidemics call for the integration of knowledge on the forcing of malaria transmission by environmental variability to develop robust malaria control and elimination programs.
Analysis of the Relationship Between Climate and NDVI Variability at Global Scales
NASA Technical Reports Server (NTRS)
Zeng, Fan-Wei; Collatz, G. James; Pinzon, Jorge; Ivanoff, Alvaro
2011-01-01
interannual variability in modeled (CASA) C flux is in part caused by interannual variability in Normalized Difference Vegetation Index (NDVI) Fraction of Photosynthetically Active Radiation (FPAR). This study confirms a mechanism producing variability in modeled NPP: -- NDVI (FPAR) interannual variability is strongly driven by climate; -- The climate driven variability in NDVI (FPAR) can lead to much larger fluctuation in NPP vs. the NPP computed from FPAR climatology
European vegetation during Marine Oxygen Isotope Stage-3
NASA Astrophysics Data System (ADS)
Huntley, Brian; Alfano, Mary J. o.; Allen, Judy R. M.; Pollard, Dave; Tzedakis, Polychronis C.; de Beaulieu, Jacques-Louis; Grüger, Eberhard; Watts, Bill
2003-03-01
European vegetation during representative "warm" and "cold" intervals of stage-3 was inferred from pollen analytical data. The inferred vegetation differs in character and spatial pattern from that of both fully glacial and fully interglacial conditions and exhibits contrasts between warm and cold intervals, consistent with other evidence for stage-3 palaeoenvironmental fluctuations. European vegetation thus appears to have been an integral component of millennial environmental fluctuations during stage-3; vegetation responded to this scale of environmental change and through feedback mechanisms may have had effects upon the environment. The pollen-inferred vegetation was compared with vegetation simulated using the BIOME 3.5 vegetation model for climatic conditions simulated using a regional climate model (RegCM2) nested within a coupled global climate and vegetation model (GENESIS-BIOME). Despite some discrepancies in detail, both approaches capture the principal features of the present vegetation of Europe. The simulated vegetation for stage-3 differs markedly from that inferred from pollen analytical data, implying substantial discrepancy between the simulated climate and that actually prevailing. Sensitivity analyses indicate that the simulated climate is too warm and probably has too short a winter season. These discrepancies may reflect incorrect specification of sea surface temperature or sea-ice conditions and may be exacerbated by vegetation-climate feedback in the coupled global model.
NASA Astrophysics Data System (ADS)
Stewart, I. T.; Bacon, C. M.; Sundstrom, W.
2015-12-01
Smallholder farmers in Nicaragua and throughout much of Central America preserve forest biodiversity and contribute to the sustainable production of coffee and other crops while, paradoxically, they themselves must cope with recurring periods of seasonal hunger. Smallholder food and water security in the region is affected by hurricanes, periodic drought events, climatic changes, an on-going outbreak of the coffee leaf rust, and fluctuations in food prices. Using regression analysis, our research examines what factors strengthened resilience to these hazards at the household level over the 1981 - 2014 time period. To this end, we integrate qualitative research on coping responses and local institutions, a participatory survey of 368 households, and an analysis of hydro-climatic data. Our results indicate that coping responses to the coffee leaf rust outbreak and the 2014 drought are comparable in severity to those used to endure Hurricane Mitch in 1998, and a severe 2009 drought. Higher smallholder resilience to stresses affecting food and water security is associated with larger farms, off-farm employment, more on-farm food production, higher numbers of fruit trees, and greater coffee harvests. Households that reported more severe coping responses to hazards earlier in the study period tended to be more strongly impacted by later hazards and reported generally greater seasonal hunger. Affiliation with local farmer-to-farmer institutions prioritizing either subsistence-oriented production or sales to international fair-trade markets did not correlate strongly with coping responses; however, subsistence-oriented institutions promote several resilience-enhancing practices. Lessons learned by adapting to past hazards may be used to develop adaptation and mitigation strategies for smallholders under continued climate variability and change.
A quantitative method for risk assessment of agriculture due to climate change
NASA Astrophysics Data System (ADS)
Dong, Zhiqiang; Pan, Zhihua; An, Pingli; Zhang, Jingting; Zhang, Jun; Pan, Yuying; Huang, Lei; Zhao, Hui; Han, Guolin; Wu, Dong; Wang, Jialin; Fan, Dongliang; Gao, Lin; Pan, Xuebiao
2018-01-01
Climate change has greatly affected agriculture. Agriculture is facing increasing risks as its sensitivity and vulnerability to climate change. Scientific assessment of climate change-induced agricultural risks could help to actively deal with climate change and ensure food security. However, quantitative assessment of risk is a difficult issue. Here, based on the IPCC assessment reports, a quantitative method for risk assessment of agriculture due to climate change is proposed. Risk is described as the product of the degree of loss and its probability of occurrence. The degree of loss can be expressed by the yield change amplitude. The probability of occurrence can be calculated by the new concept of climate change effect-accumulated frequency (CCEAF). Specific steps of this assessment method are suggested. This method is determined feasible and practical by using the spring wheat in Wuchuan County of Inner Mongolia as a test example. The results show that the fluctuation of spring wheat yield increased with the warming and drying climatic trend in Wuchuan County. The maximum yield decrease and its probability were 3.5 and 64.6%, respectively, for the temperature maximum increase 88.3%, and its risk was 2.2%. The maximum yield decrease and its probability were 14.1 and 56.1%, respectively, for the precipitation maximum decrease 35.2%, and its risk was 7.9%. For the comprehensive impacts of temperature and precipitation, the maximum yield decrease and its probability were 17.6 and 53.4%, respectively, and its risk increased to 9.4%. If we do not adopt appropriate adaptation strategies, the degree of loss from the negative impacts of multiclimatic factors and its probability of occurrence will both increase accordingly, and the risk will also grow obviously.
Climate change impacts on thermoelectric-power generation in the United States
NASA Astrophysics Data System (ADS)
Liu, L.
2015-12-01
Thermoelectric-power generation accounts for more than 70% of the total electricity generation in the United States, which requires large amounts of water for cooling purposes. Water withdrawals for thermoelectric-power generation accounted for 45% of total water use in the United States in 2010. Across the country, water demand from power plants is increasing due to pressures from growing populations and other needs, and is straining existing water resources. Moreover, temperature exceedance in receiving waters has increasingly caused power plants shut downs across parts of the country. Thermoelectric power is vulnerable to climate change owing to the combined effects of lower summer river flows and higher receiving water temperatures. In addition, the efficiency of production is reduced as air temperature rises, which propagates to more unfulfilled power demand during peak seasons. Therefore, a holistic modeling framework of water-energy-climate for the contiguous U.S. is presented here to quantify thermal output from power plants and estimate water use and energy production fluctuations due to ambient climate as well as environmental regulations. The model is calibrated on a plant-by-plant basis for year 2010 and 2011 using the available power plant inventory from the Energy Information Administration (EIA). Simulations were carried out for years 2012 and 2013, and results show moderate improvements in capturing thermal output variabilities after calibration. Future power plant operations under scenarios featuring different climate and regulatory settings were investigated. Results demonstrate the interplay among water, energy and climate, and that future changes in climate and socioeconomics significantly affect power plant operations, which may provide insights to climate change mitigation considerations and energy decisions.
The Response of African Land Surface Phenology to Large Scale Climate Oscillations
NASA Technical Reports Server (NTRS)
Brown, Molly E.; de Beurs, Kirsten; Vrieling, Anton
2010-01-01
Variations in agricultural production due to rainfall and temperature fluctuations are a primary cause of food insecurity on the African continent. Analysis of changes in phenology can provide quantitative information on the effect of climate variability on growing seasons in agricultural regions. Using a robust statistical methodology, we describe the relationship between phenology metrics derived from the 26 year AVHRR NDVI record and the North Atlantic Oscillation index (NAO), the Indian Ocean Dipole (IOD), the Pacific Decadal Oscillation (PDO), and the Multivariate ENSO Index (MEI). We map the most significant positive and negative correlation for the four climate indices in Eastern, Western and Southern Africa between two phenological metrics and the climate indices. Our objective is to provide evidence of whether climate variability captured in the four indices has had a significant impact on the vegetative productivity of Africa during the past quarter century. We found that the start of season and cumulative NDVI were significantly affected by large scale variations in climate. The particular climate index and the timing showing highest correlation depended heavily on the region examined. In Western Africa the cumulative NDVI correlates with PDO in September-November. In Eastern Africa the start of the June-October season strongly correlates with PDO in March-May, while the PDO in December-February correlates with the start of the February-June season. The cumulative NDVI over this last season relates to the MEI of March-May. For Southern Africa, high correlations exist between SOS and NAO of September-November, and cumulative NDVI and MEI of March-May. The research shows that climate indices can be used to anticipate late start and variable vigor in the growing season of sensitive agricultural regions in Africa.
Is Global Warming Accelerating?
NASA Astrophysics Data System (ADS)
Shukla, J.; Delsole, T. M.; Tippett, M. K.
2009-12-01
A global pattern that fluctuates naturally on decadal time scales is identified in climate simulations and observations. This newly discovered component, called the Global Multidecadal Oscillation (GMO), is related to the Atlantic Meridional Oscillation and shown to account for a substantial fraction of decadal fluctuations in the observed global average sea surface temperature. IPCC-class climate models generally underestimate the variance of the GMO, and hence underestimate the decadal fluctuations due to this component of natural variability. Decomposing observed sea surface temperature into a component due to anthropogenic and natural radiative forcing plus the GMO, reveals that most multidecadal fluctuations in the observed global average sea surface temperature can be accounted for by these two components alone. The fact that the GMO varies naturally on multidecadal time scales implies that it can be predicted with some skill on decadal time scales, which provides a scientific rationale for decadal predictions. Furthermore, the GMO is shown to account for about half of the warming in the last 25 years and hence a substantial fraction of the recent acceleration in the rate of increase in global average sea surface temperature. Nevertheless, in terms of the global average “well-observed” sea surface temperature, the GMO can account for only about 0.1° C in transient, decadal-scale fluctuations, not the century-long 1° C warming that has been observed during the twentieth century.
Association between climate variability and malaria epidemics in the East African highlands.
Zhou, Guofa; Minakawa, Noboru; Githeko, Andrew K; Yan, Guiyun
2004-02-24
The causes of the recent reemergence of Plasmodium falciparum epidemic malaria in the East African highlands are controversial. Regional climate changes have been invoked as a major factor; however, assessing the impact of climate in malaria resurgence is difficult due to high spatial and temporal climate variability and the lack of long-term data series on malaria cases from different sites. Climate variability, defined as short-term fluctuations around the mean climate state, may be epidemiologically more relevant than mean temperature change, but its effects on malaria epidemics have not been rigorously examined. Here we used nonlinear mixed-regression model to investigate the association between autoregression (number of malaria outpatients during the previous time period), seasonality and climate variability, and the number of monthly malaria outpatients of the past 10-20 years in seven highland sites in East Africa. The model explained 65-81% of the variance in the number of monthly malaria outpatients. Nonlinear and synergistic effects of temperature and rainfall on the number of malaria outpatients were found in all seven sites. The net variance in the number of monthly malaria outpatients caused by autoregression and seasonality varied among sites and ranged from 18 to 63% (mean=38.6%), whereas 12-63% (mean=36.1%) of variance is attributed to climate variability. Our results suggest that there was a high spatial variation in the sensitivity of malaria outpatient number to climate fluctuations in the highlands, and that climate variability played an important role in initiating malaria epidemics in the East African highlands.
Paces, J.B.; Neymark, L.A.; Whelan, J.F.; Wooden, J.L.; Lund, S.P.; Marshall, B.D.
2010-01-01
Understanding the movement of water through thick vadose zones, especially on time scales encompassing long-term climate change, is increasingly important as societies utilize semi-arid environments for both water resources and sites viewed as favorable for long-term disposal or storage of hazardous waste. Hydrologic responses to Pleistocene climate change within a deep vadose zone in the eastern Mojave Desert at Yucca Mountain, Nevada, were evaluated by uranium-series dating of finely layered hyalitic opal using secondary ion mass spectrometry. Opal is present within cm-thick secondary hydrogenic mineral crusts coating floors of lithophysal cavities in fractured volcanic rocks at depths of 200 to 300 m below land surface. Uranium concentrations in opal fluctuate systematically between 5 and 550 μg/g. Age-calibrated profiles of uranium concentration correlate with regional climate records over the last 300,000 years and produce time-series spectral peaks that have distinct periodicities of 100- and 41-ka, consistent with planetary orbital parameters. These results indicate that the chemical compositions of percolating solutions varied in response to near-surface, climate-driven processes. However, slow (micrometers per thousand years), relatively uniform growth rates of secondary opal and calcite deposition spanning several glacial–interglacial climate cycles imply that water fluxes in the deep vadose zone remained low and generally buffered from the large fluctuations in available surface moisture during different climates.
A GEOCLIM Simulation Of Climatic And Biogeochemical Consequences Of Pangea Break Up
NASA Astrophysics Data System (ADS)
Donnadieu, Y.; Godderis, Y.; Pierrehumbert, R.; Dromart, G.; Jacob, R.
2006-12-01
Large fluctuations in continental configuration occur all along the Mesozoic times. While it has long been recognized that paleogeography may potentially influence atmospheric CO2 via the continental silicate weathering feedback, no numerical simulation have been done given the lack of a spatially resolved climate- carbon model. GEOCLIM, a coupled numerical model of the climate and global biogeochemical cycles, is used to investigate the consequences of the Pangea break up. The climate module of the GEOCLIM model is the FOAM atmospheric general circulation model, allowing the calculation of the consumption of atmospheric CO2 through continental silicate weathering with a spatial resolution of 7.5°long 4.5°lat. Seven time slices have been simulated. We show that the break up of the Pangea supercontinent triggers an increase in continental runoff, resulting in enhanced atmospheric CO2 consumption through silicate weathering. As a result, atmospheric CO2 falls from values above 3000 ppmv during the Triassic, down to rather low levels during the Cretaceous (around 400 ppmv), resulting in a decrease in continental temperatures from about 20°C to 10°C. Silicate weathering feedback and paleogeography both act to force the Earth system toward a dry and hot world reaching its optimum over the last 260 Ma during the Middle-Late Triassic. In the super continent case, given the relative aridity that cannot be climatically overwhelmed, the model generates high CO2 values to produce very warm continental temperatures compensating for the lack of continental humidity. Conversely, in the fragmented case, the runoff becomes the most important contributor to the silicate weathering rate, hence, producing a CO2 drawdown and a fall in continental temperatures. Finally, an other unexpected outcome is the pronounced fluctuations in carbonate accumulation simulated by the model in response to the Pangea break up. These fluctuations are driven by changes in continental carbonate weathering flux. Accounting for the fluctuations in area available for carbonate platforms, the simulated ratio of carbonate deposition between neritic and deep sea environments is in better agreement with available data.
European Climate and Pinot Noir Grape-Harvest Dates in Burgundy, since the 17th Century
NASA Astrophysics Data System (ADS)
Tourre, Y. M.
2011-12-01
Time-series of growing season air temperature anomalies in the Parisian region and of 'Pinot Noir' grape-harvest dates (GHD) in Burgundy (1676-2004) are analyzed in the frequency-domain. Variability of both time-series display three significant frequency-bands (peaks significant at the 5% level) i.e., a low-frequency band (multi-decadal) with a 25-year peak period; a 3-to-8 year band period (inter-annual) with a 3.1-year peak period; and a 2-to-3 year band period (quasi-biennial) with a 2.4-year peak period. Joint sea surface temperature/sea level pressure (SST/SLP) empirical orthogonal functions (EOF) analyses during the 20th century, along with spatio-temporal patterns for the above frequency-bands are presented. It is found that SST anomalies display early significant spatial SST patterns in the North Atlantic Ocean (air temperature lagging by 6 months) similar to those obtained from EOF analyses. It is thus proposed that the robust power spectra for the above frequency-bands could be linked with Atlantic climate variability metrics modulating Western European climate i.e., 1) the global Multi-decadal Oscillation (MDO) with its Atlantic Multi-decadal Oscillation (AMO) footprint; 2) the Atlantic Inter-Annual (IA) fluctuations; and 3) the Atlantic Quasi-Biennial (QB) fluctuations, respectively. Moreover these specific Western European climate signals have effects on ecosystem health and can be perceived as contributors to the length of the growing season and the timing of GHD in Burgundy. Thus advance knowledge on the evolution and phasing of the above climate fluctuations become important elements for viticulture and wine industry management. It is recognized that anthropogenic effects could have modified time-series patterns presented here, particularly since the mid 1980s.
NASA Astrophysics Data System (ADS)
Jiskoot, H.
2013-12-01
A multidecadal review of glacier fluctuations and case-studies of glacier processes and environments in central East Greenland will be used to demonstrate Mechanisms that Amplify, Attenuate and Deviate glacier response to climate forcings (MAAD). The different spatial and temporal scales at which MAAD affect mass balance and ice flow may complicate interpretation and longterm extrapolation of glacier response to climate change. A framework of MAAD characterisation and best-practice for interpreting climate signals while taking into account MAAD will be proposed. Glaciers in the Watkins Bjerge, Geikie Plateau and Stauning Alps regions of central East Greenland (68°-72°N) contain about 50000 km2 of glacierized area peripheral to the Greenland Ice Sheet. Within the region, large north-south and coast-inland climatic gradients, as well as complicated topography and glacier dynamics, result in discrepant glacier behaviour. Average retreat rates have doubled from about 2 to 4 km2 a-1 between the late 20th and early 21st centuries. However, glaciers terminating along the Atlantic coast display two times the retreat, thinning, and acceleration rates compared to glaciers terminating in inland fjords or on land. Despite similar climatic forcing variable glacier behaviour is apparent: individual glacier length change ranges from +57 m a-1 to -428 m a-1, though most retreat -20 to -100 m a-1. Interacting dynamic, mass balance and glacio-morphological mechanisms can amplify, attenuate or deviate glacier response (MAAD) to climate change, thus complicating the climatological interpretation of glacier length, area, and thickness changes. East Greenland MAAD include a range of common positive and negative feedback mechanisms in surface mass balance and terminus and subglacial boundary conditions affecting ice flow, but also mechanisms that have longterm or delayed effects. Certain MAAD may affect glacier change interpretation on multiple timescales: e.g. surging glaciers do not only pose problems for the direct interpretation of climate change from length and volume changes due to their dynamically-driven advance and retreat regimes, but also for the reconstruction of LIA extents from trimlines and moraines, and the reconstruction of surface mass balance due to crevasses, potholes or debris-cover. This presentation will address a range of MAAD, including thermal regime transitions; ocean influences on tidewater-terminating glaciers; glacier fragmentation and tributary-trunk interaction; glacier surging and tidewater behaviour; seasonal variations; glacier hypsometry and morphology; terrain and substrate; melt-albedo and melt-ice flow feedbacks; and ice marginal lakes.
Marín, Dolores; Martín, Mercedes; Serrot, Patricia H; Sabater, Bartolomé
2014-02-01
Experimental and theoretical flux models have been developed to reveal the influence of sun flecks and increasing CO2 concentrations on the energy and entropy balances of the leaf. The rapid and wide range of fluctuations in light intensity under field conditions were simulated in a climatic gas exchange chamber and we determined the energy and entropy balance of the leaf based on radiation and gas exchange measurements. It was estimated that the energy of photosynthetic active radiation (PAR) accounts for half of transpiration, which is the main factor responsible for the exportation of the entropy generated in photosynthesis (Sg) out of the leaf in order to maintain functional the photosynthetic machinery. Although the response of net photosynthetic production to increasing concentrations of CO2 under fluctuating light is similar to that under continuous light, rates of transpiration respond slowly to changes of light intensity and are barely affected by the concentration of CO2 in the range of 260-495 ppm, in which net photosynthesis increases by more than 100%. The analysis of the results confirms that future increases of CO2 will improve the efficiency of the conversion of radiant energy into biomass, but will not reduce the contribution of plant transpiration to the leaf thermal balance. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Plessis, Anne; Hafemeister, Christoph; Wilkins, Olivia; Gonzaga, Zennia Jean; Meyer, Rachel Sarah; Pires, Inês; Müller, Christian; Septiningsih, Endang M; Bonneau, Richard; Purugganan, Michael
2015-01-01
Plants rely on transcriptional dynamics to respond to multiple climatic fluctuations and contexts in nature. We analyzed the genome-wide gene expression patterns of rice (Oryza sativa) growing in rainfed and irrigated fields during two distinct tropical seasons and determined simple linear models that relate transcriptomic variation to climatic fluctuations. These models combine multiple environmental parameters to account for patterns of expression in the field of co-expressed gene clusters. We examined the similarities of our environmental models between tropical and temperate field conditions, using previously published data. We found that field type and macroclimate had broad impacts on transcriptional responses to environmental fluctuations, especially for genes involved in photosynthesis and development. Nevertheless, variation in solar radiation and temperature at the timescale of hours had reproducible effects across environmental contexts. These results provide a basis for broad-based predictive modeling of plant gene expression in the field. DOI: http://dx.doi.org/10.7554/eLife.08411.001 PMID:26609814
Baker, Robert Gv; Flood, Peter G
2015-01-01
A number of papers since Rampino and Stothers published in Science 1984 have reported common periodicities in a wide range of climate, geomagnetic, tectonic and biological proxies, including marine extinctions. Single taper and multitaper spectral analysis of marine fluctuations between the Late Cretaceous and the Miocene replicates a number of the published harmonics. Whereas these common periodicities have been argued to have a galactic origin, this paper presents an alternative fractal model based on large scale fluctuations of the magnetic field of the Sun. The fluctuations follow a self-similar matrix of periodicities and the solutions of the differential equation allow for models to be constructed predicting extreme events for solar emissions. A comparison to major Phanerozoic extinction, climate and geomagnetic events, captured in the geological record, show a striking loop symmetry summarised in major 66 Ma irradiance and electromagnetic pulses from the Sun.
Holocene geologic and climatic history around the Gulf of Alaska
Mann, D.H.; Crowell, A.L.; Hamilton, T.D.; Finney, B.P.
1998-01-01
Though not as dramatic as during the last Ice Age, pronounced climatic changes occurred in the northeastern Pacific over the last 10,000 years. Summers warmer and drier than today's accompanied a Hypsithermal interval between 9 and 6 ka. Subsequent Neoglaciation was marked by glacier expansion after 5-6 ka and the assembly of modern-type plant communities by 3-4 ka. The Neoglacial interval contained alternating cold and warm intervals, each lasting several hundred years to one millennium, and including both the Medieval Warm Period (ca. AD 900-1350) and the Little Ice Age (ca. AD 1350-1900). Salmon abundance fluctuated during the Little Ice Age in response to local glaciation and probably also to changes in the intensity of the Aleutian Low. Although poorly understood at present, climate fluctuations at all time scales were intimately connected with oceanographic changes in the North Pacific Ocean. The Gulf of Alaska region is tectonically highly active, resulting in a history of frequent geological catastrophes during the Holocene. Twelve to 14 major volcanic eruptions occurred since 12 ka. At intervals of 20-100 years, large earthquakes have raised and lowered sea level instantaneously by meters and generated destructive tsunamis. Sea level has often varied markedly between sites only 50-100 km apart due to tectonism and the isostatic effects of glacier fluctuations.
NASA Astrophysics Data System (ADS)
Lash, Gary G.
1986-06-01
Sedimentologic and geochemical characteristics of red and green deep water mudstone exposed in the central Appalachian orogen define climatically-induced fluctuations in bottom current intensity along the northwest flank of the Iapetus Ocean in Early and Middle Ordovician time. Red mudstone accumulated under the influence of moderate to vigorous bottom current velocities in oxygenated bottom water produced during climatically cool periods. Interbedded green mudstone accumulated at greater sedimentation rates, probably from turbidity currents, under the influence of reduced thermohaline circulation during global warming periods. The close association of green mudstone and carbonate turbidites of Early Ordovician (late Tremadocian to early Arenigian) age suggests that a major warming phase occurred at this time. Increasing temperatures reduced bottom current velocities and resulted in increased production of carbonate sediment and organic carbon on the carbonate platform of eastern North America. Much of the excess carbonate sediment and organic carbon was transported into deep water by turbidity currents. Although conclusive evidence is lacking, this eustatic event may reflect a climatic warming phase that followed the postulated glacio-eustatic Black Mountain event. Subsequent Middle Ordovician fluctuations in bottom current intensity recorded by thin red-green mudstone couplets probably reflect periodic growth and shrinkage of an ice cap rather than major glacial episodes.
Liu, Peilong; Hao, Lu; Pan, Cen; Zhou, Decheng; Liu, Yongqiang; Sun, Ge
2017-07-01
Leaf area index (LAI) is a key parameter to characterize vegetation dynamics and ecosystem structure that determines the ecosystem functions and services such as clean water supply and carbon sequestration in a watershed. However, linking LAI dynamics and environmental controls (i.e., coupling biosphere, atmosphere, and anthroposphere) remains challenging and such type of studies have rarely been done at a watershed scale due to data availability. The present study examined the spatial and temporal variations of LAI for five ecosystem types within a watershed with a complex topography in the Upper Heihe River Basin, a major inland river in the arid and semi-arid western China. We integrated remote sensing-based GLASS (Global Land Surface Satellite) LAI products, interpolated climate data, watershed characteristics, and land management records for the period of 2001-2012. We determined the relationships among LAI, topography, air temperature and precipitation, and grazing history by five ecosystem types using several advanced statistical methods. We show that long-term mean LAI distribution had an obvious vertical pattern as controlled by precipitation and temperature in a hilly watershed. Overall, watershed-wide mean LAI had an increasing trend overtime for all ecosystem types during 2001-2012, presumably as a result of global warming and a wetting climate. However, the fluctuations of observed LAI at a pixel scale (1km) varied greatly across the watershed. We classified the vegetation changes within the watershed as 'Improved', 'Stabilized', and 'Degraded' according their respective LAI changes. We found that climate was not the only driver for temporal vegetation changes for all land cover types. Grazing partially contributed to the decline of LAI in some areas and masked the positive climate warming effects in other areas. Extreme weathers such as cold spells and droughts could substantially affect inter-annual variability of LAI dynamics. We concluded that temporal and spatial LAI dynamics were rather complex and were affected by both climate variations and human disturbances in the study basin. Future monitoring studies should focus on the functional interactions among vegetation dynamics, climate variations, land management, and human disturbances. Published by Elsevier B.V.
Pacing of Paleozoic macroevolutionary rates by Milankovitch grand cycles.
Crampton, James S; Meyers, Stephen R; Cooper, Roger A; Sadler, Peter M; Foote, Michael; Harte, David
2018-05-29
Periodic fluctuations in past biodiversity, speciation, and extinction have been proposed, with extremely long periods ranging from 26 to 62 million years, although forcing mechanisms remain speculative. In contrast, well-understood periodic Milankovitch climate forcing represents a viable driver for macroevolutionary fluctuations, although little evidence for such fluctuation exists except during the Late Cenozoic. The reality, magnitude, and drivers of periodic fluctuations in macroevolutionary rates are of interest given long-standing debate surrounding the relative roles of intrinsic biotic interactions vs. extrinsic environmental factors as drivers of biodiversity change. Here, we show that, over a time span of 60 million years, between 9 and 16% of the variance in biological turnover (i.e., speciation probability plus species extinction probability) in a major Early Paleozoic zooplankton group, the graptoloids, can be explained by long-period astronomical cycles (Milankovitch "grand cycles") associated with Earth's orbital eccentricity (2.6 million years) and obliquity (1.3 million years). These grand cycles modulate climate variability, alternating times of relative stability in the environment with times of maximum volatility. We infer that these cycles influenced graptolite speciation and extinction through climate-driven changes to oceanic circulation and structure. Our results confirm the existence of Milankovitch grand cycles in the Early Paleozoic Era and show that known processes related to the mechanics of the Solar System were shaping marine macroevolutionary rates comparatively early in the history of complex life. We present an application of hidden Markov models to macroevolutionary time series and protocols for the evaluation of statistical significance in spectral analysis.
Effect of global climate change on rare trees and shrubs
Margaret S. Devall
2008-01-01
In the past, climate has fluctuated with periodsof cooler, warmer, drier or wetter weather thanat present. Plants have been able to adapt,but widespread, rapid warming could be disastrousfor rare trees and shrubs â i.e. thosenative species that are among an areaâs most
A unified nonlinear stochastic time series analysis for climate science
Moon, Woosok; Wettlaufer, John S.
2017-01-01
Earth’s orbit and axial tilt imprint a strong seasonal cycle on climatological data. Climate variability is typically viewed in terms of fluctuations in the seasonal cycle induced by higher frequency processes. We can interpret this as a competition between the orbitally enforced monthly stability and the fluctuations/noise induced by weather. Here we introduce a new time-series method that determines these contributions from monthly-averaged data. We find that the spatio-temporal distribution of the monthly stability and the magnitude of the noise reveal key fingerprints of several important climate phenomena, including the evolution of the Arctic sea ice cover, the El Nio Southern Oscillation (ENSO), the Atlantic Nio and the Indian Dipole Mode. In analogy with the classical destabilising influence of the ice-albedo feedback on summertime sea ice, we find that during some time interval of the season a destabilising process operates in all of these climate phenomena. The interaction between the destabilisation and the accumulation of noise, which we term the memory effect, underlies phase locking to the seasonal cycle and the statistical nature of seasonal predictability. PMID:28287128
A unified nonlinear stochastic time series analysis for climate science.
Moon, Woosok; Wettlaufer, John S
2017-03-13
Earth's orbit and axial tilt imprint a strong seasonal cycle on climatological data. Climate variability is typically viewed in terms of fluctuations in the seasonal cycle induced by higher frequency processes. We can interpret this as a competition between the orbitally enforced monthly stability and the fluctuations/noise induced by weather. Here we introduce a new time-series method that determines these contributions from monthly-averaged data. We find that the spatio-temporal distribution of the monthly stability and the magnitude of the noise reveal key fingerprints of several important climate phenomena, including the evolution of the Arctic sea ice cover, the El Nio Southern Oscillation (ENSO), the Atlantic Nio and the Indian Dipole Mode. In analogy with the classical destabilising influence of the ice-albedo feedback on summertime sea ice, we find that during some time interval of the season a destabilising process operates in all of these climate phenomena. The interaction between the destabilisation and the accumulation of noise, which we term the memory effect, underlies phase locking to the seasonal cycle and the statistical nature of seasonal predictability.
A unified nonlinear stochastic time series analysis for climate science
NASA Astrophysics Data System (ADS)
Moon, Woosok; Wettlaufer, John
2017-04-01
Earth's orbit and axial tilt imprint a strong seasonal cycle on climatological data. Climate variability is typically viewed in terms of fluctuations in the seasonal cycle induced by higher frequency processes. We can interpret this as a competition between the orbitally enforced monthly stability and the fluctuations/noise induced by weather. Here we introduce a new time-series method that determines these contributions from monthly-averaged data. We find that the spatio-temporal distribution of the monthly stability and the magnitude of the noise reveal key fingerprints of several important climate phenomena, including the evolution of the Arctic sea ice cover, the El Niño Southern Oscillation (ENSO), the Atlantic Niño and the Indian Dipole Mode. In analogy with the classical destabilising influence of the ice-albedo feedback on summertime sea ice, we find that during some period of the season a destabilising process operates in all of these climate phenomena. The interaction between the destabilisation and the accumulation of noise, which we term the memory effect, underlies phase locking to the seasonal cycle and the statistical nature of seasonal predictability.
Korotkov, Iu S
1998-01-01
The paper continues the discussion of published materials on the dynamic of Ixodes persulcatus number in mountain forests of the central part of the Krasnoyarsk region during 1958-1990 (Korotkov e. a., 1992). An unstationarity and polycyclicity of examined processus is confirmed. It is shown, that long-term and middle-term quasi-periodical fluctuations of the tick number are determined by successive changing in forest biocenoses going under the influence of respective fluctuations of the climate. The synchronization of climatic and biocenotic processes is complicatedly organized in time and is not indicated phenomenologically. Certain quasi-periodical components in their indices of the tick number and climate are quite different by their amplitude, value of phase displacement, and longevity of terms. However, these structural differences are natural and determined by peculiarities of the response reaction of I. persulcatus to different intensivity of acting factor. This reaction under extreme environment conditions, both minimal and maximal ones, leads to the same result, the decreasing of the vital activity and the tick number.
A GEOCLIM simulation of climatic and biogeochemical consequences of Pangea breakup
NASA Astrophysics Data System (ADS)
Donnadieu, Y.; GoddéRis, Y.; Pierrehumbert, R.; Dromart, G.; Fluteau, F.; Jacob, R.
2006-11-01
Large fluctuations in continental configuration occur throughout the Mesozoic. While it has long been recognized that paleogeography may potentially influence atmospheric CO2 via the continental silicate weathering feedback, no numerical simulations have been done, because of the lack of a spatially resolved climate-carbon model. GEOCLIM, a coupled numerical model of the climate and global biogeochemical cycles, is used to investigate the consequences of the Pangea breakup. The climate module of the GEOCLIM model is the FOAM atmospheric general circulation model, allowing the calculation of the consumption of atmospheric CO2 through continental silicate weathering with a spatial resolution of 7.5°long × 4.5°lat. Seven time slices have been simulated. We show that the breakup of the Pangea supercontinent triggers an increase in continental runoff, resulting in enhanced atmospheric CO2 consumption through silicate weathering. As a result, atmospheric CO2 falls from values above 3000 ppmv during the Triassic down to rather low levels during the Cretaceous (around 400 ppmv), resulting in a decrease in global mean annual continental temperatures from about 20°C to 10°C. Silicate weathering feedback and paleogeography both act to force the Earth system toward a dry and hot world reaching its optimum over the last 260 Myr during the Middle-Late Triassic. In the super continent case, given the persistent aridity, the model generates high CO2 values to produce very warm continental temperatures. Conversely, in the fragmented case, the runoff becomes the most important contributor to the silicate weathering rate, hence producing a CO2 drawdown and a fall in continental temperatures. Finally, another unexpected outcome is the pronounced fluctuation in carbonate accumulation simulated by the model in response to the Pangea breakup. These fluctuations are driven by changes in continental carbonate weathering flux. Accounting for the fluctuations in area available for carbonate platforms, the simulated ratio of carbonate deposition between neritic and deep sea environments is in better agreement with available data.
Climatic Fluctuations and the Diffusion of Agriculture*
Ashraf, Quamrul; Michalopoulos, Stelios
2015-01-01
This research examines the climatic origins of the diffusion of Neolithic agriculture across countries and archaeological sites. The theory suggests that a foraging society’s history of climatic shocks shaped the timing of its adoption of farming. Specifically, as long as climatic disturbances did not lead to a collapse of the underlying resource base, the rate at which hunter-gatherers were climatically propelled to experiment with their habitats determined the accumulation of tacit knowledge complementary to farming. Consistent with the proposed hypothesis, the empirical investigation demonstrates that, conditional on biogeographic endowments, climatic volatility has a hump-shaped effect on the timing of the adoption of agriculture. PMID:27019534
Klipker, Kathrin; Wrzus, Cornelia; Rauers, Antje; Boker, Steven M; Riediger, Michaela
2017-09-01
Recent investigations highlighted the role of within-person pubertal changes for adolescents' behavior. Yet, little is known about effects on adolescents' daily affect, particularly regarding the hormonal changes underlying physical changes during puberty. In a study with 148 boys aged 10 to 20years, we tested whether within-person physical and hormonal changes over eight months predicted everyday affect fluctuations, measured with experience sampling. As expected, greater within-person changes in testosterone (but not in dehydroepiandrosterone) were associated with higher affect fluctuations in daily life. Additionally, greater physical changes predicted higher affect fluctuations for individuals in the beginning of puberty. The findings demonstrate the relevance of physical and hormonal changes in boys' affective (in)stability. Copyright © 2017 Elsevier Inc. All rights reserved.
Gremer, Jennifer; Bradford, John B.; Munson, Seth M.; Duniway, Michael C.
2015-01-01
Climate change predictions include warming and drying trends, which are expected to be particularly pronounced in the southwestern United States. In this region, grassland dynamics are tightly linked to available moisture, yet it has proven difficult to resolve what aspects of climate drive vegetation change. In part, this is because it is unclear how heterogeneity in soils affects plant responses to climate. Here, we combine climate and soil properties with a mechanistic soil water model to explain temporal fluctuations in perennial grass cover, quantify where and the degree to which incorporating soil water dynamics enhances our ability to understand temporal patterns, and explore the potential consequences of climate change by assessing future trajectories of important climate and soil water variables. Our analyses focused on long-term (20 to 56 years) perennial grass dynamics across the Colorado Plateau, Sonoran, and Chihuahuan Desert regions. Our results suggest that climate variability has negative effects on grass cover, and that precipitation subsidies that extend growing seasons are beneficial. Soil water metrics, including the number of dry days and availability of water from deeper (>30 cm) soil layers, explained additional grass cover variability. While individual climate variables were ranked as more important in explaining grass cover, collectively soil water accounted for 40 to 60% of the total explained variance. Soil water conditions were more useful for understanding the responses of C3 than C4 grass species. Projections of water balance variables under climate change indicate that conditions that currently support perennial grasses will be less common in the future, and these altered conditions will be more pronounced in the Chihuahuan Desert and Colorado Plateau. We conclude that incorporating multiple aspects of climate and accounting for soil variability can improve our ability to understand patterns, identify areas of vulnerability, and predict the future of desert grasslands.
Gremer, Jennifer R; Bradford, John B; Munson, Seth M; Duniway, Michael C
2015-11-01
Climate change predictions include warming and drying trends, which are expected to be particularly pronounced in the southwestern United States. In this region, grassland dynamics are tightly linked to available moisture, yet it has proven difficult to resolve what aspects of climate drive vegetation change. In part, this is because it is unclear how heterogeneity in soils affects plant responses to climate. Here, we combine climate and soil properties with a mechanistic soil water model to explain temporal fluctuations in perennial grass cover, quantify where and the degree to which incorporating soil water dynamics enhances our ability to understand temporal patterns, and explore the potential consequences of climate change by assessing future trajectories of important climate and soil water variables. Our analyses focused on long-term (20-56 years) perennial grass dynamics across the Colorado Plateau, Sonoran, and Chihuahuan Desert regions. Our results suggest that climate variability has negative effects on grass cover, and that precipitation subsidies that extend growing seasons are beneficial. Soil water metrics, including the number of dry days and availability of water from deeper (>30 cm) soil layers, explained additional grass cover variability. While individual climate variables were ranked as more important in explaining grass cover, collectively soil water accounted for 40-60% of the total explained variance. Soil water conditions were more useful for understanding the responses of C3 than C4 grass species. Projections of water balance variables under climate change indicate that conditions that currently support perennial grasses will be less common in the future, and these altered conditions will be more pronounced in the Chihuahuan Desert and Colorado Plateau. We conclude that incorporating multiple aspects of climate and accounting for soil variability can improve our ability to understand patterns, identify areas of vulnerability, and predict the future of desert grasslands. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
NASA Astrophysics Data System (ADS)
Morelli, T. L.; DeLuca, W. V.; Duclos, T. R.; Foster, J. R.; Siren, A. P.
2016-12-01
The way that climate change will impact species ranges through habitat change and modify species interactions is not well enough understood. We took a community view of the climate-vulnerable, biologically-important spruce-fir forest ecosystem of the northeastern U.S., examining if and how species are responding to warming and changing precipitation patterns. We examined how fluctuations in temperature and snowpack influence distributional shifts along elevational and latitudinal gradients; for example, milder winter conditions may allow generalist carnivores such as bobcats to access boreal forest habitat, increasing direct and indirect competition with Canada lynx and American marten for prey. In another example of climate-driven predation shifts, upslope shifts of American red squirrels may increase predation rates on vulnerable montane songbirds. We combined data from weather stations with model-based high resolution data to obtain information on historical and present climate variables. We forecasted spruce-fir forest extent using landscape and ecosystem models under a combination of global circulation model projections and representative concentration pathways for the northern Appalachians. Presence and abundance data from animal surveys were used to build occupancy models to assess the habitat, climate, and species relationships. Species responded individually with geographic variation in response within and across species. Some species closely tracked climate changes, whereas others showed no response, or even responses such as shifts southward that were counter to what would be expected. For example, although low elevation boreal bird species showed evidence of expanding upslope, most high elevation species expanded downslope. This work highlights the need to take a mechanistic perspective of species responses to climate change and avoid generalizations of simple shifts northward and upward. Understanding how climate change affects community dynamics will improve predictions of how individual species will respond to climate change. These predictions then provide information about how distributional shifts will occur in a biologically critical ecosystem and if there will be climate change refugia they can target for management.
NASA Astrophysics Data System (ADS)
Wittmeier, Hella E.; Bakke, Jostein; Vasskog, Kristian; Trachsel, Mathias
2015-04-01
Late Glacial and Holocene glacier fluctuations are important indicators of climate variability in the northern polar region and contain knowledge vital to understanding and predicting present and future climate changes. However, there still is a lack of robustly dated terrestrial climate records from Arctic Norway. Here, we present a high-resolution relative glacier activity record covering the past ∼10,000 cal. a BP from the northern outlet of the Langfjordjøkelen ice cap in Arctic Norway. This record is reconstructed from detailed geomorphic mapping, multi-proxy sedimentary fingerprinting and analyses of distal glacier-fed lake sediments. We used Principal Component Analysis to characterize sediments of glacial origin and trace them in a chain of downstream lakes. Of the variability in the sediment record of the uppermost Lake Jøkelvatnet, 73% can be explained by the first Principal Component axis and tied directly to upstream glacier erosion, whereas the glacial signal becomes weaker in the more distal Lakes Store Rundvatnet and Storvatnet. Magnetic susceptibility and titanium count rates were found to be the most suitable indicators of Holocene glacier activity in the distal glacier-fed lakes. The complete deglaciation of the valley of Sør-Tverrfjorddalen occurred ∼10,000 cal. a BP, followed by a reduced or absent glacier during the Holocene Thermal Optimum. The Langfjordjøkelen ice cap reformed with the onset of the Neoglacial ∼4100 cal. a BP, and the gradually increasing glacier activity culminated at the end of the Little Ice Age in the early 20th century. Over the past 2000 cal. a BP, the record reflects frequent high-amplitude glacier fluctuations. Periods of reduced glacier activity were centered around 1880, 1600, 1250 and 950 cal. a BP, while intervals of increased glacier activity occurred around 1680, 1090, 440 and 25 cal. a BP. The large-scale Holocene glacier activity of the Langfjordjøkelen ice cap is consistent with regional temperature proxy reconstructions and glacier variability across Norway. Long-term changes in the extent of the northern outlet of the Langfjordjøkelen ice cap largely followed trends in regional summer temperatures, whereas winter season atmospheric variability may have triggered decadal-scale glacial fluctuations and generally affected the amplitude of glacier events.
Birkhofer, Klaus; Henschel, Joh; Lubin, Yael
2012-11-01
Individuals of most animal species are non-randomly distributed in space. Extreme climatic events are often ignored as potential drivers of distribution patterns, and the role of such events is difficult to assess. Seothyra henscheli (Araneae, Eresidae) is a sedentary spider found in the Namib dunes in Namibia. The spider constructs a sticky-edged silk web on the sand surface, connected to a vertical, silk-lined burrow. Above-ground web structures can be damaged by strong winds or heavy rainfall, and during dispersal spiders are susceptible to environmental extremes. Locations of burrows were mapped in three field sites in 16 out of 20 years from 1987 to 2007, and these grid-based data were used to identify the relationship between spatial patterns, climatic extremes and sampling year. According to Morisita's index, individuals had an aggregated distribution in most years and field sites, and Geary's C suggests clustering up to scales of 2 m. Individuals were more aggregated in years with high maximum wind speed and low annual precipitation. Our results suggest that clustering is a temporally stable property of populations that holds even under fluctuating burrow densities. Climatic extremes, however, affect the intensity of clustering behaviour: individuals seem to be better protected in field sites with many conspecific neighbours. We suggest that burrow-site selection is driven at least partly by conspecific cuing, and this behaviour may protect populations from collapse during extreme climatic events.
Ant-mediated seed dispersal in a warmed world
Patterson, Courtney M.; Rodriguez-Cabal, Mariano A.; Ribbons, Relena R.; Dunn, Robert R.; Sanders, Nathan J.
2014-01-01
Climate change affects communities both directly and indirectly via changes in interspecific interactions. One such interaction that may be altered under climate change is the ant-plant seed dispersal mutualism common in deciduous forests of eastern North America. As climatic warming alters the abundance and activity levels of ants, the potential exists for shifts in rates of ant-mediated seed dispersal. We used an experimental temperature manipulation at two sites in the eastern US (Harvard Forest in Massachusetts and Duke Forest in North Carolina) to examine the potential impacts of climatic warming on overall rates of seed dispersal (using Asarum canadense seeds) as well as species-specific rates of seed dispersal at the Duke Forest site. We also examined the relationship between ant critical thermal maxima (CTmax) and the mean seed removal temperature for each ant species. We found that seed removal rates did not change as a result of experimental warming at either study site, nor were there any changes in species-specific rates of seed dispersal. There was, however, a positive relationship between CTmax and mean seed removal temperature, whereby species with higher CTmax removed more seeds at hotter temperatures. The temperature at which seeds were removed was influenced by experimental warming as well as diurnal and day-to-day fluctuations in temperature. Taken together, our results suggest that while temperature may play a role in regulating seed removal by ants, ant plant seed-dispersal mutualisms may be more robust to climate change than currently assumed. PMID:24688863
Simulated influences of Lake Agassiz on the climate of central North America 11,000 years ago
Hostetler, S.W.; Bartlein, P.J.; Clark, P.U.; Small, E.E.; Solomon, A.M.
2000-01-01
Eleven thousand years ago, large lakes existed in central and eastern North America along the margin of the Laurentide Ice Sheet. The large-scale North American climate at this time has been simulated with atmospheric general circulation models, but these relatively coarse global models do not resolve potentially important features of the mesoscale circulation that arise from interactions among the atmosphere, ice sheet, and proglacial lakes. Here we present simulations of the climate of central and eastern North America 11,000 years ago with a high-resolution, regional climate model nested within a general circulation model. The simulated climate is in general agreement with that inferred from palaeoecological evidence. Our experiments indicate that through mesoscale atmospheric feedbacks, the annual delivery of moisture to the Laurentide Ice Sheet was diminished at times of a large, cold Lake Agassiz relative to periods of lower lake stands. The resulting changes in the mass balance of the ice sheet may have contributed to fluctuations of the ice margin, thus affecting the routing of fresh water to the North Atlantic Ocean. A retreating ice margin during periods of high lake level may have opened an outlet for discharge of Lake Agassiz into the North Atlantic. A subsequent advance of the ice margin due to greater moisture delivery associated with a low lake level could have dammed the outlet, thereby reducing discharge to the North Atlantic. These variations may have been decisive in causing the Younger Dryas cold even.
NASA Astrophysics Data System (ADS)
Ukhvatkina, Olga N.; Omelko, Alexander M.; Zhmerenetsky, Alexander A.; Petrenko, Tatyana Y.
2018-01-01
The aim of our research was to reconstruct climatic parameters (for the first time for the Sikhote-Alin mountain range) and to compare them with global climate fluctuations. As a result, we have found that one of the most important limiting factors for the study area is the minimum temperatures of the previous autumn-winter season (August-December), and this finding perfectly conforms to that in other territories. We reconstructed the previous August-December minimum temperature for 485 years, from 1529 to 2014. We found 12 cold periods (1535-1540, 1550-1555, 1643-1649, 1659-1667, 1675-1689, 1722-1735, 1791-1803, 1807-1818, 1822-1827, 1836-1852, 1868-1887, 1911-1925) and seven warm periods (1560-1585, 1600-1610, 1614-1618, 1738-1743, 1756-1759, 1776-1781, 1944-2014). These periods correlate well with reconstructed data for the Northern Hemisphere and the neighboring territories of China and Japan. Our reconstruction has 3-, 9-, 20-, and 200-year periods, which may be in line with high-frequency fluctuations in El Niño-Southern Oscillation (ENSO), the short-term solar cycle, Pacific Decadal Oscillation (PDO) fluctuations, and the 200-year solar activity cycle, respectively. We suppose that the temperature of the North Pacific, expressed by the PDO may make a major contribution to regional climate variations. We also assume that the regional climatic response to solar activity becomes apparent in the temperature changes in the northern part of Pacific Ocean and corresponds to cold periods during the solar minimum. These comparisons show that our climatic reconstruction based on tree ring chronology for this area may potentially provide a proxy record for long-term, large-scale past temperature patterns for northeastern Asia. The reconstruction reflects the global traits and local variations in the climatic processes of the southern territory of the Russian Far East for more than the past 450 years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wick, L.; Tinner, W.
Pollen and plant-macrofossil data are presented for two lakes near the timberline in the Italian (Lago Basso, 2250 m) and Swiss Central Alps (Gouille Rion, 2343 m). The reforestation at both sites started at 9700-9500 BP with Pinus cembra, Larix decidua, and Betula. The timberline reached its highest elevation between 8700 and 5000 BP and retreated after 5000 BP, due to a mid-Holocene climatic change and increasing human impact since about 3500 BP (Bronze Age). The expansion of Picea abies at Lago Basso between ca. 7500 and 6200 BP was probably favored by cold phases accompanied by increased oceanicity, whereasmore » in the area of Gouille Rion, where spruce expanded rather late (between 4500 and 3500 BP), human influence equality might have been important. The mass expansion of Alnus viridis between ca. 5000 and 3500 BP probably can be related to both climatic change and human activity at timberline. During the early and middle Holocene a series of timberline fluctuations is recorded as declines in pollen and macrofossil concentrations of the major tree species, and as increases in nonarboreal pollen in the pollen percentage diagram of Gouille Rion. Most of the periods of low timberline can be correlated by radiocarbon dating the climatic changes in the Alps as indicated by glacier advances in combination with palynological records, solifluction, and dendroclimatical data. Lago Basso and Gouille Rion are the only sites in the Alps showing complete palaeobotanical records of cold phases between 10,000 and 2000 BP with very good time control. The altitudinal range of the Holocene treeline fluctuations caused by climate most likely was not more than 100 to 150 m. A possible correlation of a cold period at ca. 7500-6500 BP (Misox oscillation) in the Alps is made with paleoecological data from North American and Scandinavia and a climate signal in the GRIP ice core from central Greenland 8200 yr ago (ca. 7400 yr uncal. BP).« less
Horsák, Michal; Polášková, Vendula; Zhai, Marie; Bojková, Jindřiška; Syrovátka, Vít; Šorfová, Vanda; Schenková, Jana; Polášek, Marek; Peterka, Tomáš; Hájek, Michal
2018-09-01
Climate warming and associated environmental changes lead to compositional shifts and local extinctions in various ecosystems. Species closely associated with rare island-like habitats such as groundwater-dependent spring fens can be severely threatened by these changes due to a limited possibility to disperse. It is, however, largely unknown to what extent mesoclimate affects species composition in spring fens, where microclimate is buffered by groundwater supply. We assembled an original landscape-scale dataset on species composition of the most waterlogged parts of isolated temperate spring fens in the Western Carpathian Mountains along with continuously measured water temperature and hydrological, hydrochemical, and climatic conditions. We explored a set of hypotheses about the effects of mesoclimate air and local spring-water temperature on compositional variation of aquatic (macroinvertebrates), semi-terrestrial (plants) and terrestrial (land snails) components of spring-fen biota, categorized as habitat specialists and other species (i.e. matrix-derived). Water temperature did not show a high level of correlation with mesoclimate. For all components, fractions of compositional variation constrained to temperature were statistically significant and higher for habitat specialists than for other species. The importance of air temperature at the expense of water temperature and its fluctuation clearly increased with terrestriality, i.e. from aquatic macroinvertebrates via vegetation (bryophytes and vascular plants) to land snails, with January air temperature being the most important factor for land snails and plant specialists. Some calcareous-fen specialists with a clear distribution centre in temperate Europe showed a strong affinity to climatically cold sites in our study area and may hence be considered as threatened by climate warming. We conclude that prediction models solely based on air temperature may provide biased estimates of future changes in spring fen communities, because their aquatic and semiterrestrial components are largely affected by water temperature that is modified by local hydrological and landscape settings. Copyright © 2018 Elsevier B.V. All rights reserved.
People On The Move: Some Thoughts On Human Dispersal In Relation To Rapid Climatic Change
NASA Astrophysics Data System (ADS)
Davies, W.
It is still generally assumed that the default situation for past humans must have been to be sedentary. That is to say, given a chance people would have settled in one area (with a good supply of resources) and established clearly-defined territories. Such concepts presuppose that much of human existence was conducted in climatic conditions sim- ilar to the relatively stable ones seen in the Holocene. What effects do rapid climatic fluctuations have upon environmental carrying capacity, and thus upon human mobil- ity and exploitation patterns? Such an approach could be called 'non-analogue', as it does not seek to impose [current] Holocene patterns upon the Pleistocene, in the same way that 'non-analogue' animal and plant communities are now routinely described for the same period. If one adopts non-analogue perspectives, perhaps one could also argue that in many cases mobility was the rule and not the exception. Turning the conventional wisdom around, we can ask why people should remain in an area. What are the characteristics of that area which could have encouraged people to become less mobile? I do not argue that all groups were mobile: some cannot have been, and not every member of other groups would have been equally mobile (differentiation on grounds of age and sex). In addition, mobility patterns must also have varied over time, although we should not necessarily expect a discernible linear trend either towards or away from greater mobility, because such behaviour operates within a climatic and environmental framework as well as a socio-economic one. If climate oscillated rapidly, it is feasible to suggest that such fluctuations affected environmental stability and thus carrying capacity. The resource species present and their availability would therefore affect the possibilities for human mobility. When discussing the possibilities for human dispersal into new regions, we essentially have a choice between two competing models: the Wave of Advance (sensu Boserup, Cavalli-Svorza &Ammermann) or Directional dispersal. The former model posits a slow, group-fission-based dispersal across the landscape, driven by 'push' factors such as population pressure. We should not expect resources to be evenly-distributed across the landscape, and thus if one adopts a Wave of Advance interpretation, one would have to consider the possibility of rapid, directional jumps between favoured resource 1 patches, seriously damaging the model's viability. On the other hand, Directional dis- persal models expect more focused movement, with certain ecotones (such as rivers or coasts) being preferred, and are driven more by 'pull' factors which draw people across the landscape relatively rapidly. In the latter model, 'infill' occupation between the initially occupied areas can occur if demanded by socio-economic requirements of the group[s]. This paper will explore all these issues, and discuss how we might identify and test them in the archaeological record, and set them in the climatic context. The effects of climatic factors on past human behaviour have to be qualified or discounted before we can really start to discuss social or 'cultural' explanations. 2
A real-time Global Warming Index.
Haustein, K; Allen, M R; Forster, P M; Otto, F E L; Mitchell, D M; Matthews, H D; Frame, D J
2017-11-13
We propose a simple real-time index of global human-induced warming and assess its robustness to uncertainties in climate forcing and short-term climate fluctuations. This index provides improved scientific context for temperature stabilisation targets and has the potential to decrease the volatility of climate policy. We quantify uncertainties arising from temperature observations, climate radiative forcings, internal variability and the model response. Our index and the associated rate of human-induced warming is compatible with a range of other more sophisticated methods to estimate the human contribution to observed global temperature change.
Identifying ontogenetic, environmental and individual components of forest tree growth
Chaubert-Pereira, Florence; Caraglio, Yves; Lavergne, Christian; Guédon, Yann
2009-01-01
Background and Aims This study aimed to identify and characterize the ontogenetic, environmental and individual components of forest tree growth. In the proposed approach, the tree growth data typically correspond to the retrospective measurement of annual shoot characteristics (e.g. length) along the trunk. Methods Dedicated statistical models (semi-Markov switching linear mixed models) were applied to data sets of Corsican pine and sessile oak. In the semi-Markov switching linear mixed models estimated from these data sets, the underlying semi-Markov chain represents both the succession of growth phases and their lengths, while the linear mixed models represent both the influence of climatic factors and the inter-individual heterogeneity within each growth phase. Key Results On the basis of these integrative statistical models, it is shown that growth phases are not only defined by average growth level but also by growth fluctuation amplitudes in response to climatic factors and inter-individual heterogeneity and that the individual tree status within the population may change between phases. Species plasticity affected the response to climatic factors while tree origin, sampling strategy and silvicultural interventions impacted inter-individual heterogeneity. Conclusions The transposition of the proposed integrative statistical modelling approach to cambial growth in relation to climatic factors and the study of the relationship between apical growth and cambial growth constitute the next steps in this research. PMID:19684021
NASA Astrophysics Data System (ADS)
Li, Jianyong; Dodson, John; Yan, Hong; Zhang, David D.; Zhang, Xiaojian; Xu, Qinghai; Lee, Harry F.; Pei, Qing; Cheng, Bo; Li, Chunhai; Ni, Jian; Sun, Aizhi; Lu, Fengyan; Zong, Yongqiang
2017-03-01
Our understanding on the spatial-temporal patterns of climatic variability over the last few millennia in the East Asian monsoon-dominated northern China (NC), and its role at a macro-scale in affecting the prosperity and depression of Chinese dynasties is limited. Quantitative high-resolution, regionally-synthesized palaeoclimatic reconstructions as well as simulations, and numerical analyses of their relationships with various fine-scale, numerical agro-ecological, social-economic, and geo-political historical records during the period of China's history, are presented here for NC. We utilize pollen data together with climate modeling to reconstruct and simulate decadal- to centennial-scale variations in precipitation or temperature for NC during the last 2200 years (-200-2000 AD). We find an overall cyclic-pattern (wet/warm or dry/cold) in the precipitation and temperature anomalies on centennial- to millennial-scale that can be likely considered as a representative for the entire NC by comparison with other related climatic records. We suggest that solar activity may play a key role in driving the climatic fluctuations in NC during the last 22 centuries, with its quasi ∼100, 50, 23, or 22-year periodicity clearly identified in our climatic reconstructions. We employ variation partitioning and redundancy analysis to quantify the independent effects of climatic factors on accounting for the total variation of 17 fine-grained numerical Chinese historical records. We quantitatively illustrate that precipitation (67.4%) may have been more important than temperature (32.5%) in causing the overall agro-ecological and macro-geopolitical shifts in imperial China with NC as the central ruling region and an agricultural heartland over the last 2200 years.
Climate and geochemistry as drivers of eucalypt diversification in Australia.
Bui, E N; Thornhill, A H; González-Orozco, C E; Knerr, N; Miller, J T
2017-05-01
Eucalypts cover most of Australia. Here, we investigate the relative contribution of climate and geochemistry to the distribution and diversity of eucalypts. Using geostatistics, we estimate major element concentrations, pH, and electrical conductivity at sites where eucalypts have been recorded. We compare the median predicted geochemistry and reported substrate for individual species that appear associated with extreme conditions; this provides a partial evaluation of the predictions. We generate a site-by-species matrix by aggregating observations to the centroids of 100-km-wide grid cells, calculate diversity indices, and use numerical ecology methods (ordination, variation partitioning) to investigate the ecology of eucalypts and their response to climatic and geochemical gradients. We find that β-diversity coincides with variations in climatic and geochemical patterns. Climate and geochemistry together account for less than half of the variation in eucalypt species assemblages across Australia but for greater than 80% in areas of high species richness. Climate is more important than geochemistry in explaining eucalypts species distribution and change in assemblages across Australia as a whole but there are correlations between the two sets of environmental variables. Many individual eucalypt species and entire taxonomic sections (Aromatica, Longistylus of subgenus Eucalyptus, Dumaria, and Liberivalvae of subgenus Symphyomyrtus) have distributions affected strongly by geochemistry. We conclude that eucalypt diversity is driven by steep geochemical gradients that have arisen as climate patterns have fluctuated over Australia over the Cenozoic, generally aridifying since the Miocene. The diversification of eucalypts across Australia is thus an excellent example of co-evolution of landscapes and biota in space and time and challenges accepted notions of macroecology. © 2017 John Wiley & Sons Ltd.
Zhang, Yin Bo; Gao, Chen Hong; Qin, Hao
2018-04-01
Understanding the responses of the habitats of endangered species to climate change is of great significance for biodiversity conservation and the maintenance of the integrity of ecosystem function. In this study, the potential suitable distribution habitats of Elaeagnus mollis in Shanxi Province was simulated by the maximum entropy model, based on 73 occurrence field records and 35 environmental factors under the current climate condition. Moreover, with the Fifth Assessment Report of Intergovernmental Panel on Climate Change, the dynamics of distribution pattern was analyzed for E. mollis under different climate scenarios. The results showed that the area under the receiver operating characteristic curve (AUC) value was 0.987, indicating that the data fitted the model very well and that the prediction was highly reliable. Results from the Jackknife test showed that the main environmental variables affecting the E. mollis distribution were the precipitation seasonality, the range of annual temperature, annual mean temperature, isothermality, annual precipitation, and pH of topsoil, with the cumulative contribution reaching 94.8%. At present, the potential suitable habitats of E. mollis are mainly located in two regions, the southern of Lyuliang Mountain and Zhongtiao Mountain in Shanxi Province. Under different climate scenarios, the total suitable area of E. mollis would shrink in 2070s. In RCP 2.6 the suitable area would firstly increase and then decrease, while in RCP 4.5 and RCP 8.5 it would response sensitively and first decrease and then increase. Its spatial distribution in two suitable regions would show divergent responses to climate change. The distribution in southern Lyuliang Mountain would fluctuate slightly in latitudinal direction, while that in Zhongtiao Mountain would migrate along elevation.
The weather and Climate: emergent laws and multifractal cascades
NASA Astrophysics Data System (ADS)
Lovejoy, S.
2016-12-01
In the atmosphere, nonlinear terms are typically about a trillion times larger than linear ones; we anticipate the emergence of high level turbulence laws. The classical turbulence laws were restricted to homogeneous and isotropic systems; to apply them to the atmosphere they must be generalized to account for strong anisotropy (especially stratification) and variability (intermittency). Over the last 30 years, using scaling symmetry principles and multifractal cascades, this has been done. While hitherto they were believed applicable only up to ≈ 100 m, (generalized) turbulence laws now anisotropic and multifractal, they cover spatial scales up planetary in extent and in time well beyond weather scales to include the climate. These higher level laws are stochastic in nature and provide the theoretical basis both for stochastic parametrizations as well as stochastic forecasting. In the time domain the emergent laws for fluctuations DT (for example in temperature T) have means T > ≈ DtH i.e. they are scaling (power laws) in the time interval Dt. We find find exponents H>0 (fluctuations increase with scale) up to ≈ Dt ≈10 days (the lifetime of planetary scale structures, the analogous transition in the ocean is at Dt ≈ 1 year on Mars it is Dt ≈ 2 sols). At larger Dt, there is a transition to a new "macroweather" regime with H<0: successive fluctuations tend cancel each; at Dt >≈30 years (anthropocene; larger in the pre-industrial epoch), new climate processes begin to dominate, leading to H>0. "The climate is what you expect, the weather is what you get": the climate is thought to be a kind of "average weather". However this "expected" behavior is macroweather, not the climate. On the contrary, the climate is the new even lower frequency regime at scales Dt> 30 yrs and it has statistical properties very similar to the weather. At these scales, "macroweather is what you expect, the climate is what you get". The scaling in the macroweather regime implies that there is a long-term memory. We show how the memory can be exploited for more accurate monthly, seasonal, interannual and decadal forecasts. For a review, see Lovejoy, S., D. Schertzer, 2013: The weather and Climate: emergent laws and multifractal cascades, 496pp, Cambridge U. Press.
ENSO Atmospheric Teleconnections and Their Response to Greenhouse Gas Forcing
NASA Astrophysics Data System (ADS)
Yeh, Sang-Wook; Cai, Wenju; Min, Seung-Ki; McPhaden, Michael J.; Dommenget, Dietmar; Dewitte, Boris; Collins, Matthew; Ashok, Karumuri; An, Soon-Il; Yim, Bo-Young; Kug, Jong-Seong
2018-03-01
El Niño and Southern Oscillation (ENSO) is the most prominent year-to-year climate fluctuation on Earth, alternating between anomalously warm (El Niño) and cold (La Niña) sea surface temperature (SST) conditions in the tropical Pacific. ENSO exerts its impacts on remote regions of the globe through atmospheric teleconnections, affecting extreme weather events worldwide. However, these teleconnections are inherently nonlinear and sensitive to ENSO SST anomaly patterns and amplitudes. In addition, teleconnections are modulated by variability in the oceanic and atmopsheric mean state outside the tropics and by land and sea ice extent. The character of ENSO as well as the ocean mean state have changed since the 1990s, which might be due to either natural variability or anthropogenic forcing, or their combined influences. This has resulted in changes in ENSO atmospheric teleconnections in terms of precipitation and temperature in various parts of the globe. In addition, changes in ENSO teleconnection patterns have affected their predictability and the statistics of extreme events. However, the short observational record does not allow us to clearly distinguish which changes are robust and which are not. Climate models suggest that ENSO teleconnections will change because the mean atmospheric circulation will change due to anthropogenic forcing in the 21st century, which is independent of whether ENSO properties change or not. However, future ENSO teleconnection changes do not currently show strong intermodel agreement from region to region, highlighting the importance of identifying factors that affect uncertainty in future model projections.
Precipitation and Air Temperature Impact on Seasonal Variations of Groundwater Levels
NASA Astrophysics Data System (ADS)
Vitola, Ilva; Vircavs, Valdis; Abramenko, Kaspars; Lauva, Didzis; Veinbergs, Arturs
2012-12-01
The aim of this study is to clarify seasonal effects of precipitation and temperature on groundwater level changes in monitoring stations of the Latvia University of Agriculture - Mellupīte, Bērze and Auce. Groundwater regime and level fluctuations depend on climatic conditions such as precipitation intensity, evapotranspiration, surface runoff and drainage, as well as other hydrological factors. The relationship between precipitation, air temperature and groundwater level fluctuations could also lead and give different perspective of possible changes in groundwater quality. Using mathematical statistics and graphic-analytic methods it is concluded that autumn and winter precipitation has the dominant impact on groundwater level fluctuations, whereas spring and summer season fluctuations are more dependent on the air temperature.
The Sahel Region of West Africa: Examples of Climate Analyses Motivated By Drought Management Needs
NASA Astrophysics Data System (ADS)
Ndiaye, O.; Ward, M. N.; Siebert, A. B.
2011-12-01
The Sahel is one of the most drought-prone regions in the world. This paper focuses on climate sources of drought, and some new analyses mostly driven by users needing climate information to help in drought management strategies. The Sahel region of West Africa is a transition zone between equatorial climate and vegetation to the south, and desert to the north. The climatology of the region is dominated by dry conditions for most of the year, with a single peak in rainfall during boreal summer. The seasonal rainfall total contains both interannual variability and substantial decadal to multidecadal variability (MDV). This brings climate analysis and drought management challenges across this range of timescales. The decline in rainfall from the wet decades of the 1950s and 60s to the dry decades of the 1970s and 80s has been well documented. In recent years, a moderate recovery has emerged, with seasonal totals in the period 1994-2010 significantly higher than the average rainfall 1970-1993. These MDV rainfall fluctuations have expression in large-scale sea-surface temperature fluctuations in all ocean basins, placing the changes in drought frequency within broader ocean-atmosphere climate fluctuation. We have evaluated the changing character of low seasonal rainfall total event frequencies in the Sahel region 1950-2010, highlighting the role of changes in the mean, variance and distribution shape of seasonal rainfall totals as the climate has shifted through the three observed phases. We also consider the extent to which updating climate normals in real-time can damp the bias in expected event frequency, an important issue for the feasibility of index insurance as a drought management tool in the presence of a changing climate. On the interannual timescale, a key factor long discussed for agriculture is the character of rainfall onset. An extended dry spell often occurs early in the rainy season before the crop is fully established, and this often leads to crop failure. This can be viewed as a special case of agricultural drought. Therefore, improving climate information around the time of planting can play a key role in agricultural risk management. Rainfall onset indices have been calculated for stations across Senegal. The problem is climatically challenging because the physical processes that impact rainfall onset appear to span aspects normally studied separately: weather system character, propagating intraseasonal features, and large-scale sea-surface temperature influence. We present aspects of all these, and ideas on how to combine them into seamless information to support agriculture.
USDA-ARS?s Scientific Manuscript database
Understanding naturally evolved adaptation to arid climates may be a key factor in developing crops that can thrive during extreme climate fluctuations. Malus sieversii (Ledeb.) M. Roem. is a wild apple species that has adapted to harsh environments in Kazakhstan, including extreme cold and dry reg...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-09
... range may be considered significant, and why. (5) The potential effects of climate change on this...). The petitioner also asserts the effects of global climate change, including sea-level rise, shoreline...). Fluctuations in food availability resulting from natural or anthropogenic changes in the environment (CBD 2009...
Schomburg, A; Schilling, O S; Guenat, C; Schirmer, M; Le Bayon, R C; Brunner, P
2018-10-15
Ecosystem services provided by floodplains are strongly controlled by the structural stability of soils. The development of a stable structure in floodplain soils is affected by a complex and poorly understood interplay of hydrological, physico-chemical and biological processes. This paper aims at analysing relations between fluctuating groundwater levels, soil physico-chemical and biological parameters on soil structure stability in a restored floodplain. Water level fluctuations in the soil are modelled using a numerical surface-water-groundwater flow model and correlated to soil physico-chemical parameters and abundances of plants and earthworms. Causal relations and multiple interactions between the investigated parameters are tested through structural equation modelling (SEM). Fluctuating water levels in the soil did not directly affect the topsoil structure stability, but indirectly through affecting plant roots and soil parameters that in turn determine topsoil structure stability. These relations remain significant for mean annual days of complete and partial (>25%) water saturation. Ecosystem functioning of a restored floodplain might already be affected by the fluctuation of groundwater levels alone, and not only through complete flooding by surface water during a flood period. Surprisingly, abundances of earthworms did not show any relation to other variables in the SEM. These findings emphasise that earthworms have efficiently adapted to periodic stress and harsh environmental conditions. Variability of the topsoil structure stability is thus stronger driven by the influence of fluctuating water levels on plants than by the abundance of earthworms. This knowledge about the functional network of soil engineering organisms, soil parameters and fluctuating water levels and how they affect soil structural stability is of fundamental importance to define management strategies of near-natural or restored floodplains in the future. Copyright © 2018 Elsevier B.V. All rights reserved.
Effect of spatial averaging on multifractal properties of meteorological time series
NASA Astrophysics Data System (ADS)
Hoffmann, Holger; Baranowski, Piotr; Krzyszczak, Jaromir; Zubik, Monika
2016-04-01
Introduction The process-based models for large-scale simulations require input of agro-meteorological quantities that are often in the form of time series of coarse spatial resolution. Therefore, the knowledge about their scaling properties is fundamental for transferring locally measured fluctuations to larger scales and vice-versa. However, the scaling analysis of these quantities is complicated due to the presence of localized trends and non-stationarities. Here we assess how spatially aggregating meteorological data to coarser resolutions affects the data's temporal scaling properties. While it is known that spatial aggregation may affect spatial data properties (Hoffmann et al., 2015), it is unknown how it affects temporal data properties. Therefore, the objective of this study was to characterize the aggregation effect (AE) with regard to both temporal and spatial input data properties considering scaling properties (i.e. statistical self-similarity) of the chosen agro-meteorological time series through multifractal detrended fluctuation analysis (MFDFA). Materials and Methods Time series coming from years 1982-2011 were spatially averaged from 1 to 10, 25, 50 and 100 km resolution to assess the impact of spatial aggregation. Daily minimum, mean and maximum air temperature (2 m), precipitation, global radiation, wind speed and relative humidity (Zhao et al., 2015) were used. To reveal the multifractal structure of the time series, we used the procedure described in Baranowski et al. (2015). The diversity of the studied multifractals was evaluated by the parameters of time series spectra. In order to analyse differences in multifractal properties to 1 km resolution grids, data of coarser resolutions was disaggregated to 1 km. Results and Conclusions Analysing the spatial averaging on multifractal properties we observed that spatial patterns of the multifractal spectrum (MS) of all meteorological variables differed from 1 km grids and MS-parameters were biased by -29.1 % (precipitation; width of MS) up to >4 % (min. Temperature, Radiation; asymmetry of MS). Also, the spatial variability of MS parameters was strongly affected at the highest aggregation (100 km). Obtained results confirm that spatial data aggregation may strongly affect temporal scaling properties. This should be taken into account when upscaling for large-scale studies. Acknowledgements The study was conducted within FACCE MACSUR. Please see Baranowski et al. (2015) for details on funding. References Baranowski, P., Krzyszczak, J., Sławiński, C. et al. (2015). Climate Research 65, 39-52. Hoffman, H., G. Zhao, L.G.J. Van Bussel et al. (2015). Climate Research 65, 53-69. Zhao, G., Siebert, S., Rezaei E. et al. (2015). Agricultural and Forest Meteorology 200, 156-171.
NASA Astrophysics Data System (ADS)
Fernandes, K.; Baethgen, W.; Verchot, L. V.; Giannini, A.; Pinedo-Vasquez, M.
2014-12-01
A complete assessment of climate change projections requires understanding the combined effects of decadal variability and long-term trends and evaluating the ability of models to simulate them. The western Amazon severe droughts of the 2000s were the result of a modest drying trend enhanced by reduced moisture transport from the tropical Atlantic. Most of the WA dry-season precipitation decadal variability is attributable to decadal fluctuations of the north-south gradient (NSG) in Atlantic sea surface temperature (SST). The observed WA and NSG decadal co-variability is well reproduced in Global Climate Models (GCMs) pre-industrial control (PIC) and historical (HIST) experiments that were part of the Intergovernmental Panel on Climate Change fifth assessment report (IPCC-AR5). This suggests that unforced or natural climate variability, characteristic of the PIC simulations, determines the nature of this coupling, as the results from HIST simulations (forced with greenhouse gases (GHG) and natural and anthropogenic aerosols) are comparable in magnitude and spatial distribution. Decadal fluctuation in the NSG also determines shifts in the probability of repeated droughts and pluvials in WA, as there is a 65% chance of 3 or more years of droughts per decade when NSG>0 compared to 18% when NSG<0. The HIST and PIC model simulations also reproduce the observed shifts in probability distribution of droughts and pluvials as a function of the NSG decadal phase, suggesting there is great potential for decadal predictability based on GCMs. Persistence of the current NSG positive phase may lead to continuing above normal frequencies of western Amazon dry-season droughts.
NASA Astrophysics Data System (ADS)
Dey, Saptarshi; Thiede, Rasmus C.; Schildgen, Taylor F.; Wittmann, Hella; Bookhagen, Bodo; Scherler, Dirk; Jain, Vikrant; Strecker, Manfred R.
2016-04-01
Deciphering the response of sediment routing systems to climatic forcing is fundamental for understanding the impacts of climate change on landscape evolution and depositional systems. In the Sub-Himalaya, late Pleistocene to Holocene alluvial fills and fluvial terraces record periodic fluctuations of sediment supply and transport capacity on timescale of 103 to 105 years, most likely related to past climatic fluctuations. To evaluate the climatic control on sediment supply and transport capacity, we analyze remnant alluvial fans and terraces in the Kangra Basin of the northwestern Sub-Himalaya. Based on field observations and OSL and CRN-dating, we recognized two sedimentary cycles with major sediment aggradation and subsequent re-incision phases. The large one developed over the entire last glacial period with ˜200 m high alluvial fan (AF1) and the second one during the latest Pleistocene/Holocene with ˜50 m alluvial fan (AF2) and its re-incision . Surface-exposure dating of six terrace levels with in-situ cosmogenic nuclides (10Be) indicates the onset of channel abandonment and ensuing incision phases. Two terrace surfaces from the highest level (T1) sculpted into the oldest-preserved AF1 dates back to 48.9 ± 4.1 ka and 42.1 ± 2.7 ka (2σ error). T2 surfaces sculpted into the remnants of AF1 have exposure ages of 16.8 ± 2 ka and 14.1 ± 0.9 ka, while terraces sculpted into the late Pleistocene- Holocene fan (AF2) provide ages of 8.4± 0.8 ka, 6.6± 0.7 ka, 4.9± 0.4 ka and 3.1± 0.3 ka. Together with previously-published ages on the timing of aggradation, we find a correlation between variations in sediment transport with oxygen-isotope records from regions affected by Indian Summer Monsoon. During stronger monsoon phases and post-LGM glacial retreat manifested by increased sediment delivery (moraines and hillslope-derived) to the trunk streams, causing aggradation in the basin; whereas, weakened monsoon phases characterized by reduced sediment-delivery from the hillslope or moraines resulted into incision of the transiently-stored sediments. Sediment cycles in the Kangra Basin are largely synchronous with those documented from other NW Himalayan valleys.
NASA Astrophysics Data System (ADS)
Masseroli, Anna; Leonelli, Giovanni; Pelfini, Manuela; Trombino, Luca
2016-04-01
High-altitude areas in the European Alps have been widely investigated through time for reconstructing the Holocene climate fluctuations, by analyzing both biological and abiological indicators. In high-altitude areas the ongoing temperature increase caused some effects in the natural environments such as the upward shift of the vegetation belts and, in particular, of the treeline. In fact, the treeline is considered a sensitive climate indicator; in high-altitude areas, the vegetation growth and dynamics are strongly influenced not only by climate but also by abiotic factors, like geomorphological processes and soil development. The aim of this study is the reconstruction of late Holocene soil evolution and environmental changes at the treeline on the SW slope of the Monte Confinale in the Upper Valtellina, Central Italian Alps. We performed a detailed reconstruction of the treeline altitudinal dynamics together with the field and laboratory characterization of a transect of nine soil profiles developing at an altitude ranging from 1800 m a.s.l. (closed forest) to 2600 m a.s.l. (species line), in order to understand the relationship between colonization by arboreal vegetation and soil development. The upward shift of the treeline was assessed analyzing tree age distribution on the slope by means of a tree-ring based approach. The treeline elevation over time (based on the years in which the trees reached 2 m in height) increased from 2505 m a.s.l. (period 1990-1999) to 2531 m (period 2000-2009) to 2545 m (in 2013) with a rate of upward shift of up to 2.6 m/y in the period 2000-2009. The investigated soils showed a decreasing development with increasing altitude, in fact at higher altitude we found less developed soils (i.e. Ranker), on the contrary in the forest area (about 2000 m a.s.l.) we found a more developed soil (i.e. Podzol). Moreover, the soil development may also be affected by the conditions of the slope, characterized by broad alpine grasslands that are interrupted by abundant rock outcrops, especially at the highest elevations. The integrate analysis of geopedological and dendrochronological data will provide high resolution information about the responses of biological and abiological systems through the Holocene and to the ongoing climate change.
NASA Astrophysics Data System (ADS)
Keppel-Aleks, G.; Hoffman, F. M.
2014-12-01
Feedbacks between the global carbon cycle and climate represent one of the largest uncertainties in climate prediction. A promising method for reducing uncertainty in predictions of carbon-climate feedbacks is based on identifying an "emergent constraint" that leverages correlations between mechanistically linked long-term feedbacks and short-term variations within the model ensemble. By applying contemporary observations to evaluate model skill in simulating short-term variations, we may be able to better assess the probability of simulated long-term feedbacks. We probed the constraint on long-term terrestrial carbon stocks provided by climate-driven fluctuations in the atmospheric CO2 growth rate at contemporary timescales. We considered the impact of both temperature and precipitation anomalies on terrestrial ecosystem exchange and further separated the direct influence of fire where possible. When we explicitly considered the role of atmospheric transport in smoothing the imprint of climate-driven flux anomalies on atmospheric CO2 patterns, we found that the extent of temporal averaging of both the observations and ESM output leads to estimates for the long-term climate sensitivity of tropical land carbon storage that are different by a factor of two. In the context of these results, we discuss strategies for applying emergent constraints for benchmarking biogeochemical feedbacks in ESMs. Specifically, our results underscore the importance of selecting appropriate observational benchmarks and, for future model intercomparison projects, outputting fields that most closely correspond to available observational datasets.
Longevity enhances selection of environmental sex determination.
Bull, J J; Bulmer, M G
1989-12-01
Environmental sex determination (ESD) is a mechanism in which an individual develops as male or female largely in response to some environmental effect experienced early in life. Its forms range from sex determination by egg incubation temperature in reptiles to sex determination of photoperiod in amphipods. Previous theoretical work as suggested that ESD is favored by natural selection if the fitness consequences of the early environmental experience differ for males and females, so that an individual benefits by being male under some conditions and female under others. A drawback of ESD is that it enables climatic changes to influence the population sex ratio, and such fluctuations select against ESD. This study employed numerical analyses to investigate the balance between these two opposing forces. The negative impact of climatic fluctuations appears to depend greatly on species longevity: substantial between-year fluctuations are of little consequence in selecting against ESD in long-lived species because annual sex ratio fluctuations tend to cancel and thus alter the total population sex ratio only slightly. Thus, if a species is sufficiently long-lived, extreme ESD can be maintained despite only a weak advantage. This result offers one explanation for the failure to demonstrate an advantage for the extreme forms of ESD observed in reptiles.
Pliocene environments and climates in the western United States
Thompson, R.S.
1991-01-01
The available evidence from the western United States suggests that the climate of the Early and Middle Pliocene (prior to ???2.4 Ma) was less seasonal (more equable) and generally more humid than now. Along the Pacific coast, summer drought was less pronounced than today. In the interior of the Pacific Northwest rainfall was more abundant and mild winter temperatures prevailed across much of the High Plains. In the Northwestern interior, a trend toward drier conditions began after ???4 Ma, although there may have been short periods of relatively humid conditions after this time. The period between 2.5 or 2.4-2.0 Ma was drier than earlier in the Pliocene throughout the American West, and apparently colder in many regions, although the occurrence of land tortoises as far north as Kansas may indicate intermittent frost-free conditions during this interval. After ???2.0 Ma conditions became warmer and more humid. The general climatic trends in the terrestrial data parallel fluctuations seen in North Pacific and in Oxygen Isotopic records of global glacial fluctuations. Global Climate Model (GCM) simulations of the regional effects of Late Cenozoic uplift and mountain-building are generally in accord with the nature, direction, and amplitude of differences between Pliocene and modern climates. ?? 1991.
Is a changing climate affecting the tropical cyclone behavior of Cape Verde?
NASA Astrophysics Data System (ADS)
Emmenegger, T. W.; Mann, M. E.; Evans, J. L.
2016-12-01
An existing dataset of synthetic tropical cyclone (TC) tracks derived from climate change simulations were used to explore TC variability within a 250 km radius of the Cape Verde Islands (16.5388N, 23.0418W). The synthetic sets were examined according to genesis point location, track projection, intensity, frequency, and seasonality within the observational era (1851 AD to present). These factors of TC variability have been shown to be strongly related to climate oscillations, thus the historical era was grouped by the increasing and decreasing regimes of sea surface temperature (SST) in the main development region (MDR) of the Atlantic Ocean. Numerous studies have examined Atlantic Basin activity throughout this era; the goal of this study is to investigate possible variations in TC behavior around Cape Verde, ultimately determining whether Cape Verde experiences similar fluctuations in activity as observed basin-wide. We find that several facets of TC variability such as intensity, seasonality, and genesis point location around Cape Verde are not significantly different to that of the entire basin, thus forecasts of the entire basin in these respects may also apply to our site. A long-term trend of increasing TC frequency can be identified basin-wide within the observed set, yet activity around Cape Verde does not display this same behavior observably or in any synthetic set. A relationship between the location of genesis points and the regimes of SST fluctuation is shown to be existent. We find both more observed and synthetic genesis points within the vicinity of Cape Verde during cool periods, and an eastward and equatorward shift in cyclogenesis is evident during warm regimes. This southeastern shift in genesis points attributes to the increased intensities of TCs seen during periods of warmer SST. Years of increased SST are additionally linked to an earlier seasonality in Cape Verde.
Treidel, L A; Carter, A W; Bowden, R M
2016-02-01
Our understanding of how oxidative stress resistance phenotypes are affected by the developmental environment is limited. One component of the developmental environment, which is likely central to early life oxidative stress among ectothermic and oviparous species, is that of temperature. We investigated how incubation temperature manipulations affect oxidative damage and total antioxidant capacity (TAC) in red-eared slider turtle (Trachemys scripta elegans) hatchlings. First, to determine whether temperature fluctuations elicit oxidative stress, eggs from clutches were randomly assigned to either a constant (29.5 °C) or daily fluctuating temperature incubation (28.7 ± 3 °C) treatment. Second, to assess the effect of temperature fluctuation frequency on oxidative stress, eggs were incubated in one of three fluctuating incubation regimes: 28.7 ± 3 °C fluctuations every 12 h (hyper), 24 h (normal) or 48 h (hypo). Third, we tested the influence of average incubation temperature by incubating eggs in a daily fluctuating incubation temperature regime with a mean temperature of 26.5 °C (low), 27.1 °C (medium) or 27.7 °C (high). Although the accumulation of oxidative damage in hatchlings was unaffected by any thermal manipulation, TAC was affected by both temperature fluctuation frequency and average incubation temperature. Individuals incubated with a low frequency of temperature fluctuations had reduced TAC, while incubation at a lower average temperature was associated with enhanced TAC. These results indicate that although sufficient to prevent oxidative damage, TAC is influenced by developmental thermal environments, potentially because of temperature-mediated changes in metabolic rate. The observed differences in TAC may have important future consequences for hatchling fitness and overwinter survival. © 2016. Published by The Company of Biologists Ltd.
Dormann, Carsten F; von Riedmatten, Lars; Scherer-Lorenzen, Michael
2017-06-17
Species richness affects processes and functions in many ecosystems. Since management of temperate grasslands is directly affecting species composition and richness, it can indirectly govern how systems respond to fluctuations in environmental conditions. Our aim in this study was to investigate whether species richness in managed grasslands can buffer the effects of drought and warming manipulations and hence increase the resistance to climate change. We established 45 plots in three regions across Germany, each with three different management regimes (pasture, meadow and mown pasture). We manipulated spring warming using open-top chambers and summer drought using rain-out shelters for 4 weeks. Measurements of species richness, above- and below-ground biomass and soil carbon and nitrogen concentrations showed significant but inconsistent differences among regions, managements and manipulations. We detected a three-way interaction between species richness, management and region, indicating that our study design was sensitive enough to detect even intricate effects. We could not detect a pervasive effect of species richness on biomass differences between treatments and controls, indicating that a combination of spring warming and summer drought effects on grassland systems are not consistently moderated by species richness. We attribute this to the relatively high number of species even at low richness levels, which already provides the complementarity required for positive biodiversity-ecosystem functioning relationships. A review of the literature also indicates that climate manipulations largely fail to show richness-buffering, while natural experiments do, suggesting that such manipulations are milder than reality or incur treatment artefacts.
Long-term resistance to simulated climate change in an infertile grassland.
Grime, J Philip; Fridley, Jason D; Askew, Andrew P; Thompson, Ken; Hodgson, John G; Bennett, Chris R
2008-07-22
Climate shifts over this century are widely expected to alter the structure and functioning of temperate plant communities. However, long-term climate experiments in natural vegetation are rare and largely confined to systems with the capacity for rapid compositional change. In unproductive, grazed grassland at Buxton in northern England (U.K.), one of the longest running experimental manipulations of temperature and rainfall reveals vegetation highly resistant to climate shifts maintained over 13 yr. Here we document this resistance in the form of: (i) constancy in the relative abundance of growth forms and maintained dominance by long-lived, slow-growing grasses, sedges, and small forbs; (ii) immediate but minor shifts in the abundance of several species that have remained stable over the course of the experiment; (iii) no change in productivity in response to climate treatments with the exception of reduction from chronic summer drought; and (iv) only minor species losses in response to drought and winter heating. Overall, compositional changes induced by 13-yr exposure to climate regime change were less than short-term fluctuations in species abundances driven by interannual climate fluctuations. The lack of progressive compositional change, coupled with the long-term historical persistence of unproductive grasslands in northern England, suggests the community at Buxton possesses a stabilizing capacity that leads to long-term persistence of dominant species. Unproductive ecosystems provide a refuge for many threatened plants and animals and perform a diversity of ecosystem services. Our results support the view that changing land use and overexploitation rather than climate change per se constitute the primary threats to these fragile ecosystems.
Population limitation in a non-cyclic arctic fox population in a changing climate.
Pálsson, Snæbjörn; Hersteinsson, Páll; Unnsteinsdóttir, Ester R; Nielsen, Ólafur K
2016-04-01
Arctic foxes Vulpes lagopus (L.) display a sharp 3- to 5-year fluctuation in population size where lemmings are their main prey. In areas devoid of lemmings, such as Iceland, they do not experience short-term fluctuations. This study focusses on the population dynamics of the arctic fox in Iceland and how it is shaped by its main prey populations. Hunting statistics from 1958-2003 show that the population size of the arctic fox was at a maximum in the 1950s, declined to a minimum in the 1970s, and increased steadily until 2003. Analysis of the arctic fox population size and their prey populations suggests that fox numbers were limited by rock ptarmigan numbers during the decline period. The recovery of the arctic fox population was traced mostly to an increase in goose populations, and favourable climatic conditions as reflected by the Subpolar Gyre. These results underscore the flexibility of a generalist predator and its responses to shifting food resources and climate changes.
ERIC Educational Resources Information Center
Allen, Walter C.
1976-01-01
Examines a century of library architecture in relation to the changing perceptions of library functions, the development of building techniques and materials, fluctuating esthetic fashions and sometimes wildly erratic economic climates. (Author)
Horikoshi, Humberto Mitio; Sekozawa, Yoshihiko; Kobayashi, Makoto; Saito, Kazuki; Kusano, Miyako; Sugaya, Sumiko
2018-05-01
Dormancy is a complex phenomenon that allows plants to survive the winter season. Studies of dormancy have recently attracted more attention due to the expansion of temperate fruit production in areas under mild winters and due to climate changes. This study aimed to identify and characterize the metabolic changes induced by chilling temperatures, as well as during thermal fluctuation conditions that simulate mild winter and/or climate change scenarios. To do this, we compared the metabolic profile of Japanese pear flower buds exposed to constant chilling at 6 °C and thermal fluctuations of 6 °C/18 °C (150 h/150 h) during endodormancy. We detected 91 metabolites by gas chromatography paired with time-of-flight mass spectrometry (GC-TOF-MS) that could be classified into eight groups: amino acids, amino acid derivatives, organic acids, sugars and polyols, fatty acids and sterols, phenol lipids, phenylpropanoids, and other compounds. Metabolomics analysis revealed that the level of several amino acids decreased during endodormancy. Sugar and polyol levels increased during endodormancy during constant chilling and might be associated with chilling stress tolerance and providing an energy supply for resuming growth. In contrast, thermal fluctuations produced low levels of metabolites related to the pentose phosphate pathway, energy production, and tricarboxylic acid (TCA) cycle in flower buds, which may be associated with failed endodormancy release. This metabolic profile contributes to our understanding of the biological mechanism of dormancy during chilling accumulation and clarifies the metabolic changes during mild winters and future climate change scenarios. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Steady-state EB cap size fluctuations are determined by stochastic microtubule growth and maturation
Rickman, Jamie; Duellberg, Christian; Cade, Nicholas I.; Griffin, Lewis D.; Surrey, Thomas
2017-01-01
Growing microtubules are protected from depolymerization by the presence of a GTP or GDP/Pi cap. End-binding proteins of the EB1 family bind to the stabilizing cap, allowing monitoring of its size in real time. The cap size has been shown to correlate with instantaneous microtubule stability. Here we have quantitatively characterized the properties of cap size fluctuations during steady-state growth and have developed a theory predicting their timescale and amplitude from the kinetics of microtubule growth and cap maturation. In contrast to growth speed fluctuations, cap size fluctuations show a characteristic timescale, which is defined by the lifetime of the cap sites. Growth fluctuations affect the amplitude of cap size fluctuations; however, cap size does not affect growth speed, indicating that microtubules are far from instability during most of their time of growth. Our theory provides the basis for a quantitative understanding of microtubule stability fluctuations during steady-state growth. PMID:28280102
Prediction of meningococcal meningitis epidemics in western Africa by using climate information
NASA Astrophysics Data System (ADS)
YAKA, D. P.; Sultan, B.; Tarbangdo, F.; Thiaw, W. M.
2013-12-01
The variations of certain climatic parameters and the degradation of ecosystems, can affect human's health by influencing the transmission, the spatiotemporal repartition and the intensity of infectious diseases. It is mainly the case of meningococcal meningitis (MCM) whose epidemics occur particularly in Sahelo-Soudanian climatic area of Western Africa under quite particular climatic conditions. Meningococcal Meningitis (MCM) is a contagious infection disease due to the bacteria Neisseria meningitis. MCM epidemics occur worldwide but the highest incidence is observed in the "meningitis belt" of sub-Saharan Africa, stretching from Senegal to Ethiopia. In spite of standards, strategies of prevention and control of MCS epidemic from World Health Organization (WHO) and States, African Sahelo-Soudanian countries remain frequently afflicted by disastrous epidemics. In fact, each year, during the dry season (February-April), 25 to 250 thousands of cases are observed. Children under 15 are particularly affected. Among favourable conditions for the resurgence and dispersion of the disease, climatic conditions may be important inducing seasonal fluctuations in disease incidence and contributing to explain the spatial pattern of the disease roughly circumscribed to the ecological Sahelo-Sudanian band. In this study, we tried to analyse the relationships between climatic factors, ecosystems degradation and MCM for a better understanding of MCM epidemic dynamic and their prediction. We have shown that MCM epidemics, whether at the regional, national or local level, occur in a specific period of the year, mainly from January to May characterised by a dry, hot and sandy weather. We have identified both in situ (meteorological synoptic stations) and satellitales climatic variables (NCEP reanalysis dataset) whose seasonal variability is dominating in MCM seasonal transmission. Statistical analysis have measured the links between seasonal variation of certain climatic parameters (particularly the meridional wind components) and seasonal recrudescence of MCM cases in order to elaborate seasonal occurrence of MCM epidemics prediction models on different spatiotemporal scales. These predictions have been experienced and evaluated by Burkina Meteorological Authority and Health Protection General Direction since 2009. The encouraging results from the monitoring and evaluation of these predictions given by such simple models enable the development of a monitoring and an early warning integrated system of MCM epidemics in Burkina Faso. This experience could be implemented in others African Sahelo-Soudanian countries.
E.R. Smith; J.C. Rennie
1991-01-01
A study was conducted to characterize temporal and spatial variability in the growth response of four major hardwood species (white oak, chestnut oak, northern red oak, and yellow-poplar) to climatic fluctuations, and to evaluate the role of environmental factors associated with difference in response among individuals. The study incorporated tree-ring data collected...
Wei-Ning Bai; Peng-Cheng Yan; Bo-Wen Zhang; Keith E. Woeste; Kui Lin; Da-Yong Zhang
2018-01-01
Whether species demography and diversification are driven primarily by extrinsic environmental changes such as climatic oscillations in the Quaternary or by intrinsic biological interactions like coevolution between antagonists is a matter of active debate. In fact, their relative importance can be assessed by tracking past population fluctuations over considerable...
Steven P. Norman; William W. Hargrove
2012-01-01
Satellite-based measurements provide a systematic measure of the seasonal fluctuations and general condition of forest vegetation, including that of the coast redwood region. Year-toyear variation in greenness may be caused by gradual disturbances, successional recovery or climatic variation, while within-year variation reflects disturbance events and the response of...
Added value from 576 years of tree-ring records in the prediction of the Great Salt Lake level
Robert R. Gillies; Oi-Yu Chung; S.-Y. Simon Wang; R. Justin DeRose; Yan Sun
2015-01-01
Predicting lake level fluctuations of the Great Salt Lake (GSL) in Utah - the largest terminal salt-water lake in the Western Hemisphere - is critical from many perspectives. The GSL integrates both climate and hydrological variations within the region and is particularly sensitive to low-frequency climate cycles. Since most hydroclimate variable records cover...
Frantz, Laurent A F; Madsen, Ole; Megens, Hendrik-Jan; Groenen, Martien A M; Lohse, Konrad
2014-01-01
In many temperate regions, ice ages promoted range contractions into refugia resulting in divergence (and potentially speciation), while warmer periods led to range expansions and hybridization. However, the impact these climatic oscillations had in many parts of the tropics remains elusive. Here, we investigate this issue using genome sequences of three pig (Sus) species, two of which are found on islands of the Sunda-shelf shallow seas in Island South-East Asia (ISEA). A previous study revealed signatures of interspecific admixture between these Sus species (Genome biology,14, 2013, R107). However, the timing, directionality and extent of this admixture remain unknown. Here, we use a likelihood-based model comparison to more finely resolve this admixture history and test whether it was mediated by humans or occurred naturally. Our analyses suggest that interspecific admixture between Sunda-shelf species was most likely asymmetric and occurred long before the arrival of humans in the region. More precisely, we show that these species diverged during the late Pliocene but around 23% of their genomes have been affected by admixture during the later Pleistocene climatic transition. In addition, we show that our method provides a significant improvement over D-statistics which are uninformative about the direction of admixture. PMID:25294645
Bajpai, Rajesh; Mishra, Seema; Dwivedi, Sanjay; Upreti, Dalip Kumar
2016-08-09
Climatic fluctuations largely affects species turnover and cause major shifts of terrestrial ecosystem. In the present study the five decade old herbarium specimens of lichens were compared with recent collection from Darjeeling district with respect to elements, PAHs accumulation and carbon isotope composition (δ(13)C) to explore the changes in climatic conditions and its impact on lichen flora. The δ(13)C has increased in recent specimens which is in contrast to the assumption that anthropogenic emission leads to δ(13)C depletion in air and increased carbon discrimination in flora. Study clearly demonstrated an increase in anthropogenic pollution and drastic decrease in precipitation while temperature showed abrupt changes during the past five decades resulting in significant change in lichen community structure. The Usneoid and Pertusorioid communities increased, while Physcioid and Cyanophycean decreased, drastically. Lobarian abolished from the study area, however, Calcicoid has been introduced in the recent past. Probably, post-industrial revolution, the abrupt changes in the environment has influenced CO2 diffusion and/C fixation of (lower) plants either as an adaptation strategy or due to toxicity of pollutants. Thus, the short term studies (≤5 decades) might reflect recent micro-environmental condition and lichen community structure can be used as model to study the global climate change.
The seasonal effect in one-dimensional Daisyworld.
Biton, Eli; Gildor, Hezi
2012-12-07
We have studied the effects of seasonal Solar Radiation Forcing (SRF) on the climate self-regulatory capability of life, using a latitudinal-dependent Daisyworld model. Because the seasonal polarity of SRF increases poleward, habitable conditions exist in the equatorial regions year round, whereas, in the high latitudes, harsh winters cause annual extinction of life, and only the summers are inhabited or regulated by life. Seasonality affects climate regulation by two major mechanisms: (1) the cold winter conditions in the high latitudes reduce the global temperature below the optimal temperature; (2) during summer, life experiences higher SRF anomalies and, therefore, shifts to higher albedo when compared to annual mean SRF. In turn, a full capacity for temperature regulation is reached at lower SRF, and the range of SRF over which life regulates climate is significantly reduced. Lastly, initiation/extinction of life at low/highly-perturbed SRF occurs at the poles. Therefore, an irreversible global extinction occurs once life passes its regulatory capacity in the poles. We conduct extensive sensitivity analyses on various model parameters (latitudinal heat diffusion, heat capacity, and population death rate), strengthening the generality/robustness of the above net seasonal effects. Applications to other SRF fluctuation, as Milankovitch cycles are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Beresford, D V; Sutcliffe, J F
2009-04-01
Stable fly (Diptera: Muscidae) populations in south central Ontario, Canada, first occur on dairy farms in late spring, grow exponentially throughout the summer, and are frozen back each autumn. We examined the extent of overwinter persistence on 22 dairy farms in a 55- by 60-km region north of Lake Ontario that spans four climatic zones. Our overwintering sampling of larval habitat identified three farms located in the southern section of the study region as potential overwintering refugia. Using sticky trap catches to identify the timing of first spring appearance at each farm, we then tested two models of how local farm populations are reestablished annually: 1) stable flies disperse from local climatic refuges and colonize neighboring farms (the local source model); and 2) stable flies are carried into the study region by frontal weather systems (the distant source model). The timing of when stable flies first occurred at these farms supported a local source of dispersing colonists from a small proportion of local refuge farms. We discuss our results in terms of how yearly fluctuation in climate would affect refuge farm density in the region and how this, in turn, would shift the recolonization dynamic. Implications for controlling stable flies also are discussed.
Jin, Zhao; Liang, Wei; Yang, Yuting; Zhang, Weibin; Yan, Jianwu; Chen, Xuejuan; Li, Sha; Mo, Xingguo
2017-08-15
Evapotranspiration (ET) is a key ecological process connecting the soil-vegetation-atmosphere system, and its changes seriously affects the regional distribution of available water resources, especially in the arid and semiarid regions. With the Grain-for-Green project implemented in the Loess Plateau (LP) since 1999, water and heat distribution across the region have experienced great changes. Here, we investigate the changes and associated driving forces of ET in the LP from 2000 to 2012 using a remote sensing-based evapotranspiration model. Results show that annual ET significantly increased by 3.4 mm per year (p = 0.05) with large interannual fluctuations during the study period. This trend is higher than coincident increases in precipitation (2.0 mm yr -2 ), implying a possible pressure of water availability. The correlation analysis showed that vegetation change is the major controlling factor on interannual variability of annual ET with ~52.8% of pixels scattered in the strip region from the northeastern to southwestern parts of the LP. Further factorial analysis suggested that vegetation greening is the primary driver of the rises of ET over the study period relative to climate change. Our study can provide an improved understanding of the effects of vegetation and climate change on terrestrial ecosystem ET in the LP.
Lüdtke, Thies; Kriston, Levente; Schröder, Johanna; Lincoln, Tania M; Moritz, Steffen
2017-09-01
Negative affect and a tendency to "jump to conclusions" (JTC) are associated with paranoia. So far, only negative affect has been examined as a precursor of subsequent paranoia in daily life using experience sampling (ESM). We addressed this research gap and used ESM to test whether JTC fluctuates in daily life, whether it predicts subsequent paranoia, and whether it mediates the effect of negative affect on paranoia. Thirty-five participants with schizophrenia spectrum disorders repeatedly self-reported negative affect, JTC, and paranoia via online questionnaires on two consecutive days. We measured JTC with a paradigm consisting of ambiguous written scenarios. Multilevel linear models were conducted. Most participants showed JTC consistently on two days rather than only on one day. When time was used as a predictor of JTC, significant slope variance indicated that for a subgroup of participants JTC fluctuated over time. For 48% of participants, these fluctuations equaled changes of approximately ±1 point on the four-point JTC scale within one day. There was no mediation. However, negative affect and JTC both significantly predicted subsequent paranoia. The ESM assessment period was short and encompassed few assessments (8 in total). Our findings indicate that JTC is both stable (regarding its mere occurrence) and fluctuating simultaneously (regarding its magnitude). Although JTC was not a mediator linking negative affect and paranoia, it did predict paranoia. Further ESM studies on JTC are needed to confirm our findings in longer assessment periods and with other JTC paradigms. Copyright © 2016 Elsevier Ltd. All rights reserved.
Teets, Aaron; Fraver, Shawn; Weiskittel, Aaron R; Hollinger, David Y
2018-03-11
A range of environmental factors regulate tree growth; however, climate is generally thought to most strongly influence year-to-year variability in growth. Numerous dendrochronological (tree-ring) studies have identified climate factors that influence year-to-year variability in growth for given tree species and location. However, traditional dendrochronology methods have limitations that prevent them from adequately assessing stand-level (as opposed to species-level) growth. We argue that stand-level growth analyses provide a more meaningful assessment of forest response to climate fluctuations, as well as the management options that may be employed to sustain forest productivity. Working in a mature, mixed-species stand at the Howland Research Forest of central Maine, USA, we used two alternatives to traditional dendrochronological analyses by (1) selecting trees for coring using a stratified (by size and species), random sampling method that ensures a representative sample of the stand, and (2) converting ring widths to biomass increments, which once summed, produced a representation of stand-level growth, while maintaining species identities or canopy position if needed. We then tested the relative influence of seasonal climate variables on year-to-year variability in the biomass increment using generalized least squares regression, while accounting for temporal autocorrelation. Our results indicate that stand-level growth responded most strongly to previous summer and current spring climate variables, resulting from a combination of individualistic climate responses occurring at the species- and canopy-position level. Our climate models were better fit to stand-level biomass increment than to species-level or canopy-position summaries. The relative growth responses (i.e., percent change) predicted from the most influential climate variables indicate stand-level growth varies less from to year-to-year than species-level or canopy-position growth responses. By assessing stand-level growth response to climate, we provide an alternative perspective on climate-growth relationships of forests, improving our understanding of forest growth dynamics under a fluctuating climate. © 2018 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Rossato, Sandro; Mozzi, Paolo
2016-09-01
The analysis of a database of radiocarbon ages is proposed as a tool for investigating major glaciofluvial systems of the Last Glacial Maximum (LGM) in the Alpine foreland, and their relations with glacier dynamics and climatic fluctuations. Our research concerns the Brenta megafan (NE Italy), where 110 radiocarbon dates integrate a robust regional stratigraphic and palaeoclimatic framework. Age-depth models allowed us to calculate sedimentation rates, while the time distribution of peat layers, which recurrently formed in this region during the LGM, were estimated through meta-analysis. The reliability of statistical results was carefully evaluated using Pearson and Spearman coefficients. Sedimentation rates in the Brenta megafan markedly fluctuated during LGM: ≈1.8 m/ka between 40 and 26.7 ka cal BP; ≈3 m/ka between 26.7 and 23.8 ka cal BP and ≈1.4 m/ka from 23.8 to 17.5 ka cal BP, when the distributary system deactivated due to fan-head trenching. This is evidence that sediment input and routing in the glaciofluvial distributary system was particularly efficient during the central part of LGM, when glaciers were stable at their outermost position. Meta-analysis indicates an increase in peat formation in correspondence with global (Heinrich Event 3 and/or the Greenland Interstadial 5.1 and 4 for the 30.5, 29.6 and 28.8 ka cal BP peaks) and regional (23.5 ka cal BP) wet events. Other peaks at 22.2, 21.8, 20.2 and 19 ka cal BP correlate with fluctuations of south-eastern Alpine glaciers. Significant peat formation continued until ≈18 ka cal BP, when the last peak occurred. A marked decrease in peat formation is recorded concomitantly with the onset of Heinrich Event 2 (i.e. the 26 ka cal BP trough). The good correspondence of sedimentary events in the Brenta glaciofluvial system with the dynamics of glaciers and glaciofluvial and lacustrine systems in the southern Eastern Alps suggests a common climatic forcing on the whole region during the LGM. Peat layer formation in the floodplain fens increased significantly in correspondence with glacier withdrawals and/or wetter climatic episodes, constituting a good proxy for climatic fluctuations during glacial periods. It also allows correlations across different continental environments and regions in the northern hemisphere.
Orbital pacing of carbon fluxes by a ∼9-My eccentricity cycle during the Mesozoic
Martinez, Mathieu; Dera, Guillaume
2015-01-01
Eccentricity, obliquity, and precession are cyclic parameters of the Earth’s orbit whose climatic implications have been widely demonstrated on recent and short time intervals. Amplitude modulations of these parameters on million-year time scales induce ‟grand orbital cycles,” but the behavior and the paleoenvironmental consequences of these cycles remain debated for the Mesozoic owing to the chaotic diffusion of the solar system in the past. Here, we test for these cycles from the Jurassic to the Early Cretaceous by analyzing new stable isotope datasets reflecting fluctuations in the carbon cycle and seawater temperatures. Our results document a prominent cyclicity of ∼9 My in the carbon cycle paced by changes in the seasonal dynamics of hydrological processes and long-term sea level fluctuations. These paleoenvironmental changes are linked to a great eccentricity cycle consistent with astronomical solutions. The orbital forcing signal was mainly amplified by cumulative sequestration of organic matter in the boreal wetlands under greenhouse conditions. Finally, we show that the ∼9-My cycle faded during the Pliensbachian, which could either reflect major paleoenvironmental disturbances or a chaotic transition affecting this cycle. PMID:26417080
Switch between competition and facilitation within a seasonal scale at colony level in bryophytes.
Spitale, Daniel
2009-06-01
The relative importance of positive and negative interaction in species assemblages is thought to be dependent on the harshness of the physical environment. I studied the consistency of this prediction in a field experiment using growth of the target species Warnstorfia exannulata as influenced by the presence or absence of two adjacent species, Sphagnum warnstorfii and Scapania undulata. In particular, I focused on the mechanism by which colony-colony interactions occur, elucidating how the balance of positive and negative interactions changes along a water gradient. Because the natural fluctuations of the environment modify the water gradient, it was expected that the competitive hierarchies of the species would not remain consistent over time. Results indicated that the different hydrological properties of the colonies, thought to be the necessary condition for the appearance of species interactions, were not sufficient to explain the outcome of the species interactions. The switch from competition to facilitation under more stressful conditions was not confirmed along a water stress gradient. In addition, natural climatic fluctuations, by affecting the length of the water gradient, changed the competitive hierarchies of the species on a seasonal scale.
Katsuki, Kota; Seto, Koji; Noguchi, Takuro; Sonoda, Takeshi; Kim, JuYong
2012-10-01
Diatom fossils from core sediments and living diatoms from water samples of Notoro Lagoon in northern Japan were examined to evaluate natural climate effects on lagoon environmental changes. In 1974, the artificial inlet was excavated. Immediately after, the anoxic bottom water in Notoro Lagoon began to disappear due to an increasing water exchange rate. However, chemical oxygen demand (COD) in the bottom water of Notoro Lagoon gradually increased, with fluctuations, during the last 30 years. In addition, the dominant diatom assemblages in Notoro Lagoon shifted to ice-related and spring bloom taxa after the excavation. The dominant taxa of each year in the sediment core were also strongly related to the timing of lagoon ice melting. This is because the COD in Notoro Lagoon was affected by the deposited volume of blooming diatoms, which was controlled by the duration of ice cover and the timing of ice discharge to the Okhotsk Sea likely due to an air pressure pattern change over the northern North Pacific like the Pacific Decadal Oscillation (PDO). Copyright © 2012 Elsevier Ltd. All rights reserved.
Atmosphere-biosphere exchange of CO2 and O3 in the Central Amazon Forest
NASA Technical Reports Server (NTRS)
Fan, Song-Miao; Wofsy, Steven C.; Bakwin, Peter S.; Jacob, Daniel J.; Fitzjarrald, David R.
1990-01-01
An eddy correlation measurement of O3 deposition and CO2 exchange at a level 10 m above the canopy of the Amazon forest, conducted as part of the NASA/INPE ABLE2b mission during the wet season of 1987, is presented. It was found that the ecosystem exchange of CO2 undergoes a well-defined diurnal variation driven by the input of solar radiation. A curvilinear relationship was found between solar irradiance and uptake of CO2, with net CO2 uptake at a given solar irradiance equal to rates observed over forests in other climate zones. The carbon balance of the system appeared sensitive to cloud cover on the time scale of the experiment, suggesting that global carbon storage might be affected by changes in insolation associated with tropical climate fluctuations. The forest was found to be an efficient sink for O3 during the day, and evidence indicates that the Amazon forests could be a significant sink for global ozone during the nine-month wet period and that deforestation could dramatically alter O3 budgets.
Forest dynamics to precipitation and temperature in the Gulf of Mexico coastal region.
Li, Tianyu; Meng, Qingmin
2017-05-01
The forest is one of the most significant components of the Gulf of Mexico (GOM) coast. It provides livelihood to inhabitant and is known to be sensitive to climatic fluctuations. This study focuses on examining the impacts of temperature and precipitation variations on coastal forest. Two different regression methods, ordinary least squares (OLS) and geographically weighted regression (GWR), were employed to reveal the relationship between meteorological variables and forest dynamics. OLS regression analysis shows that changes in precipitation and temperature, over a span of 12 months, are responsible for 56% of NDVI variation. The forest, which is not particularly affected by the average monthly precipitation in most months, is observed to be affected by cumulative seasonal and annual precipitation explicitly. Temperature and precipitation almost equally impact on NDVI changes; about 50% of the NDVI variations is explained in OLS modeling, and about 74% of the NDVI variations is explained in GWR modeling. GWR analysis indicated that both precipitation and temperature characterize the spatial heterogeneity patterns of forest dynamics.
Forest dynamics to precipitation and temperature in the Gulf of Mexico coastal region
NASA Astrophysics Data System (ADS)
Li, Tianyu; Meng, Qingmin
2017-05-01
The forest is one of the most significant components of the Gulf of Mexico (GOM) coast. It provides livelihood to inhabitant and is known to be sensitive to climatic fluctuations. This study focuses on examining the impacts of temperature and precipitation variations on coastal forest. Two different regression methods, ordinary least squares (OLS) and geographically weighted regression (GWR), were employed to reveal the relationship between meteorological variables and forest dynamics. OLS regression analysis shows that changes in precipitation and temperature, over a span of 12 months, are responsible for 56% of NDVI variation. The forest, which is not particularly affected by the average monthly precipitation in most months, is observed to be affected by cumulative seasonal and annual precipitation explicitly. Temperature and precipitation almost equally impact on NDVI changes; about 50% of the NDVI variations is explained in OLS modeling, and about 74% of the NDVI variations is explained in GWR modeling. GWR analysis indicated that both precipitation and temperature characterize the spatial heterogeneity patterns of forest dynamics.
Ocean angular momentum signals in a climate model and implications for Earth rotation
NASA Astrophysics Data System (ADS)
Ponte, R. M.; Rajamony, J.; Gregory, J. M.
2002-03-01
Estimates of ocean angular momentum (OAM) provide an integrated measure of variability in ocean circulation and mass fields and can be directly related to observed changes in Earth rotation. We use output from a climate model to calculate 240 years of 3-monthly OAM values (two equatorial terms L1 and L2, related to polar motion or wobble, and axial term L3, related to length of day variations) representing the period 1860-2100. Control and forced runs permit the study of the effects of natural and anthropogenically forced climate variability on OAM. All OAM components exhibit a clear annual cycle, with large decadal modulations in amplitude, and also longer period fluctuations, all associated with natural climate variability in the model. Anthropogenically induced signals, inferred from the differences between forced and control runs, include an upward trend in L3, related to inhomogeneous ocean warming and increases in the transport of the Antarctic Circumpolar Current, and a significantly weaker seasonal cycle in L2 in the second half of the record, related primarily to changes in seasonal bottom pressure variability in the Southern Ocean and North Pacific. Variability in mass fields is in general more important to OAM signals than changes in circulation at the seasonal and longer periods analyzed. Relation of OAM signals to changes in surface atmospheric forcing are discussed. The important role of the oceans as an excitation source for the annual, Chandler and Markowitz wobbles, is confirmed. Natural climate variability in OAM and related excitation is likely to measurably affect the Earth rotation, but anthropogenically induced effects are comparatively weak.
Bateman, Brooke L; Pidgeon, Anna M; Radeloff, Volker C; Flather, Curtis H; VanDerWal, Jeremy; Akçakaya, H Resit; Thogmartin, Wayne E; Albright, Thomas P; Vavrus, Stephen J; Heglund, Patricia J
2016-12-01
Climate conditions, such as temperature or precipitation, averaged over several decades strongly affect species distributions, as evidenced by experimental results and a plethora of models demonstrating statistical relations between species occurrences and long-term climate averages. However, long-term averages can conceal climate changes that have occurred in recent decades and may not capture actual species occurrence well because the distributions of species, especially at the edges of their range, are typically dynamic and may respond strongly to short-term climate variability. Our goal here was to test whether bird occurrence models can be predicted by either covariates based on short-term climate variability or on long-term climate averages. We parameterized species distribution models (SDMs) based on either short-term variability or long-term average climate covariates for 320 bird species in the conterminous USA and tested whether any life-history trait-based guilds were particularly sensitive to short-term conditions. Models including short-term climate variability performed well based on their cross-validated area-under-the-curve AUC score (0.85), as did models based on long-term climate averages (0.84). Similarly, both models performed well compared to independent presence/absence data from the North American Breeding Bird Survey (independent AUC of 0.89 and 0.90, respectively). However, models based on short-term variability covariates more accurately classified true absences for most species (73% of true absences classified within the lowest quarter of environmental suitability vs. 68%). In addition, they have the advantage that they can reveal the dynamic relationship between species and their environment because they capture the spatial fluctuations of species potential breeding distributions. With this information, we can identify which species and guilds are sensitive to climate variability, identify sites of high conservation value where climate variability is low, and assess how species' potential distributions may have already shifted due recent climate change. However, long-term climate averages require less data and processing time and may be more readily available for some areas of interest. Where data on short-term climate variability are not available, long-term climate information is a sufficient predictor of species distributions in many cases. However, short-term climate variability data may provide information not captured with long-term climate data for use in SDMs. © 2016 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Lucero, Omar A.; Rozas, Daniel
Climate variability in annual rainfall occurs because the aggregation of daily rainfall changes. A topic open to debate is whether that change takes place because rainfall becomes more intense, or because it rains more often, or a combination of both. The answer to this question is of interest for water resources planning, hydrometeorological design, and agricultural management. Change in the number of rainy days can cause major disruptions in hydrological and ecological systems, with important economic and social effects. Furthermore, the characteristics of daily rainfall aggregation in ongoing climate variability provide a reference to evaluate the capability of GCM to simulate changes in the hydrologic cycle. In this research, we analyze changes in the aggregation of daily rainfall producing a climate positive trend in annual rainfall in central Argentina, in the southern middle-latitudes. This state-of-the-art agricultural region has a semiarid climate with dry and wet seasons. Weather effects in the region influence world-market prices of several crops. Results indicate that the strong positive trend in seasonal and annual rainfall amount is produced by an increase in number of rainy days. This increase takes place in the 3-month periods January-March (summer) and April-June (autumn). These are also the 3-month periods showing a positive trend in the mean of annual rainfall. The mean of the distribution of annual number of rainy day (ANRD) increased in 50% in a 36-year span (starting at 44 days/year). No statistically significant indications on time changes in the probability distribution of daily rainfall amount were found. Non-periodic fluctuations in the time series of annual rainfall were analyzed using an integral wavelet transform. Fluctuations with a time scale of about 10 and 20 years construct the trend in annual rainfall amount. These types of non-periodic fluctuations have been observed in other regions of the world. This suggests that results of this research could have further geographical validity.
Chakraborty, Debapriyo; Sinha, Anindya; Ramakrishnan, Uma
2014-01-01
Quaternary glacial oscillations are known to have caused population size fluctuations in many temperate species. Species from subtropical and tropical regions are, however, considerably less studied, despite representing most of the biodiversity hotspots in the world including many highly threatened by anthropogenic activities such as hunting. These regions, consequently, pose a significant knowledge gap in terms of how their fauna have typically responded to past climatic changes. We studied an endangered primate, the Arunachal macaque Macaca munzala, from the subtropical southern edge of the Tibetan plateau, a part of the Eastern Himalaya biodiversity hotspot, also known to be highly threatened due to rampant hunting. We employed a 534 bp-long mitochondrial DNA sequence and 22 autosomal microsatellite loci to investigate the factors that have potentially shaped the demographic history of the species. Analysing the genetic data with traditional statistical methods and advance Bayesian inferential approaches, we demonstrate a limited effect of past glacial fluctuations on the demographic history of the species before the last glacial maximum, approximately 20,000 years ago. This was, however, immediately followed by a significant population expansion possibly due to warmer climatic conditions, approximately 15,000 years ago. These changes may thus represent an apparent balance between that displayed by the relatively climatically stable tropics and those of the more severe, temperate environments of the past. This study also draws attention to the possibility that a cold-tolerant species like the Arunachal macaque, which could withstand historical climate fluctuations and grow once the climate became conducive, may actually be extremely vulnerable to anthropogenic exploitation, as is perhaps indicated by its Holocene ca. 30-fold population decline, approximately 3,500 years ago. Our study thus provides a quantitative appraisal of these demographically important events, emphasising the ability to potentially infer the occurrence of two separate historical events from contemporary genetic data.
Seasonal patterns of body temperature and microhabitat selection in a lacertid lizard
NASA Astrophysics Data System (ADS)
Ortega, Zaida; Pérez-Mellado, Valentín
2016-11-01
In temperate areas, seasonal changes entail a source of environmental variation potentially important for organisms. Temperate ectotherms may be adapted to the seasonal fluctuations in environmental traits. For lizards, behavioural adaptations regarding microhabitat selection could arise to improve thermoregulation during the different seasons. However, little is still known about which traits influence microhabitat selection of lizards and their adaptation to seasonality. Here we used Podarcis guadarramae to study the role of potential intrinsic (body size, sex, age) and environmental traits (air and substrate temperatures, wind speed, and sunlight) in the seasonal changes of body temperatures and microhabitat selection of lizards. We measured body temperatures of lizards in the same habitat during the four seasons and compared the climatic variables of the microhabitats selected by lizards with the mean climatic conditions available in their habitat. Body temperatures were similar for adult males, adult females, and juveniles within each season, being significantly higher in summer than in the other seasons, and in spring than in winter. The same pattern was found regarding substrate and air temperatures of the selected microhabitats. Wind speed and air temperature did not affect body temperatures, while body length was marginally significant and substrate temperatures and season did affect the body temperatures of lizards. Our results during the whole year support the idea that the seasonality could be the most important factor affecting body temperatures of these temperate species. Regarding microhabitat selection, environmental constraints, as environmental temperatures and wind speed, affected the seasonal changes on behavioural thermoregulation of lizards. This effect was similar between sexes and age classes, and was independent of body size. In addition, importance of sunlight exposure of the selected microhabitats (full sun, filtered sun, or shade) also changed between seasons. Hence, environmental constraints were the main forces driving seasonal changes in microhabitat selection.
NASA Astrophysics Data System (ADS)
Marín-Moreno, Héctor; Minshull, Timothy A.; Westbrook, Graham K.; Sinha, Bablu
2015-05-01
Methane hydrate close to the hydrate stability limit in seafloor sediment could represent an important source of methane to the oceans and atmosphere as the oceans warm. We investigate the extent to which patterns of past and future ocean-temperature fluctuations influence hydrate stability in a region offshore West Svalbard where active gas venting has been observed. We model the transient behavior of the gas hydrate stability zone at 400-500 m water depth (mwd) in response to past temperature changes inferred from historical measurements and proxy data and we model future changes predicted by seven climate models and two climate-forcing scenarios (Representative Concentration Pathways RCPs 2.6 and 8.5). We show that over the past 2000 year, a combination of annual and decadal temperature fluctuations could have triggered multiple hydrate-sourced methane emissions from seabed shallower than 400 mwd during episodes when the multidecadal average temperature was similar to that over the last century (˜2.6°C). These temperature fluctuations can explain current methane emissions at 400 mwd, but decades to centuries of ocean warming are required to generate emissions in water deeper than 420 m. In the venting area, future methane emissions are relatively insensitive to the choice of climate model and RCP scenario until 2050 year, but are more sensitive to the RCP scenario after 2050 year. By 2100 CE, we estimate an ocean uptake of 97-1050 TgC from marine Arctic hydrate-sourced methane emissions, which is 0.06-0.67% of the ocean uptake from anthropogenic CO2 emissions for the period 1750-2011.
Orbital Noise in the Earth System is a Common Cause of Climate and Greenhouse-Gas Fluctuation
NASA Technical Reports Server (NTRS)
Liu, H. S.; Kolenkiewicz, R.; Wade, C., Jr.; Smith, David E. (Technical Monitor)
2002-01-01
The mismatch between fossil isotopic data and climate models known as the cool-tropic paradox implies that either the data are flawed or we understand very little about the climate models of greenhouse warming. Here we question the validity of the climate models on the scientific background of orbital noise in the Earth system. Our study shows that the insolation pulsation induced by orbital noise is the common cause of climate change and atmospheric concentrations of carbon dioxide and methane. In addition, we find that the intensity of the insolation pulses is dependent on the latitude of the Earth. Thus, orbital noise is the key to understanding the troubling paradox in climate models.
Ma, Jun; Hu, Yuanman; Bu, Rencang; Chang, Yu; Deng, Huawei; Qin, Qin
2014-01-01
The aboveground carbon sequestration rate (ACSR) reflects the influence of climate change on forest dynamics. To reveal the long-term effects of climate change on forest succession and carbon sequestration, a forest landscape succession and disturbance model (LANDIS Pro7.0) was used to simulate the ACSR of a temperate forest at the community and species levels in northeastern China based on both current and predicted climatic data. On the community level, the ACSR of mixed Korean pine hardwood forests and mixed larch hardwood forests, fluctuated during the entire simulation, while a large decline of ACSR emerged in interim of simulation in spruce-fir forest and aspen-white birch forests, respectively. On the species level, the ACSR of all conifers declined greatly around 2070s except for Korean pine. The ACSR of dominant hardwoods in the Lesser Khingan Mountains area, such as Manchurian ash, Amur cork, black elm, and ribbed birch fluctuated with broad ranges, respectively. Pioneer species experienced a sharp decline around 2080s, and they would finally disappear in the simulation. The differences of the ACSR among various climates were mainly identified in mixed Korean pine hardwood forests, in all conifers, and in a few hardwoods in the last quarter of simulation. These results indicate that climate warming can influence the ACSR in the Lesser Khingan Mountains area, and the largest impact commonly emerged in the A2 scenario. The ACSR of coniferous species experienced higher impact by climate change than that of deciduous species. PMID:24763409
Ma, Jun; Hu, Yuanman; Bu, Rencang; Chang, Yu; Deng, Huawei; Qin, Qin
2014-01-01
The aboveground carbon sequestration rate (ACSR) reflects the influence of climate change on forest dynamics. To reveal the long-term effects of climate change on forest succession and carbon sequestration, a forest landscape succession and disturbance model (LANDIS Pro7.0) was used to simulate the ACSR of a temperate forest at the community and species levels in northeastern China based on both current and predicted climatic data. On the community level, the ACSR of mixed Korean pine hardwood forests and mixed larch hardwood forests, fluctuated during the entire simulation, while a large decline of ACSR emerged in interim of simulation in spruce-fir forest and aspen-white birch forests, respectively. On the species level, the ACSR of all conifers declined greatly around 2070s except for Korean pine. The ACSR of dominant hardwoods in the Lesser Khingan Mountains area, such as Manchurian ash, Amur cork, black elm, and ribbed birch fluctuated with broad ranges, respectively. Pioneer species experienced a sharp decline around 2080s, and they would finally disappear in the simulation. The differences of the ACSR among various climates were mainly identified in mixed Korean pine hardwood forests, in all conifers, and in a few hardwoods in the last quarter of simulation. These results indicate that climate warming can influence the ACSR in the Lesser Khingan Mountains area, and the largest impact commonly emerged in the A2 scenario. The ACSR of coniferous species experienced higher impact by climate change than that of deciduous species.
The Lateglacial and Holocene history of annually laminated Lake Tiefer See
NASA Astrophysics Data System (ADS)
Theuerkauf, Martin; Dräger, Nadine; Lampe, Reinhard; Lorenz, Sebastian; Kienel, Ulrike; Schult, Manuela; Słowiński, Michał; Wulf, Sabine; Zawiska, Izabela; Brauer, Achim
2015-04-01
Lake Tiefer See (N 53.59, E 12.53) is one of the rare lakes with a long sequence of annually laminated Holocene sediments in northern Central Europe. The lake is a valuable link between laminated lakes in more oceanic climates of the Eifel region and NW Germany and laminated lakes in the more continental climate of Poland. It thus provides great potential to study past climate, vegetation and human land use along that climate transition. The sediments of Lake Tiefer See show repeated changes in varve quality and composition. To disentangle in how far these changes relate to either past climate change, lake water level fluctuations or to changes in the local environment caused by e.g. human activity, we studied 16 sediment cores taken mainly from the lake margin. Almost all cores show interruptions in sedimentation namely during the mid-Holocene, suggesting that the lake water level has been lowered during this period. However, peat-gyttia alternations point at lake level fluctuations also during the early and late Holocene. Discontinuous sedimentation in cores from intermediate depth points at recurring slumping events. The pollen record additionally indicates prominent alternations in land use intensity throughout the late Holocene. By testing correlation between the hydrological changes, changes in land use intensity and changes in the sediment record we discuss effects of climate change and further factors on varve formation in Lake Tiefer See. This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution Analysis -ICLEA- of the Helmholtz Association; grant number VH-VI-415.
NASA Astrophysics Data System (ADS)
Azuara, J.; Combourieu-Nebout, N.; Lebreton, V.; Mazier, F.; Müller, S. D.; Dezileau, L.
2015-09-01
Holocene climate fluctuations and human activities since the Neolithic have shaped present-day Mediterranean environments. Separating anthropogenic effects from climatic impacts to reconstruct Mediterranean paleoenvironments over the last millennia remains a challenging issue. High resolution pollen analyses were undertaken on two cores from the Palavasian lagoon system (Hérault, southern France). These records allow reconstruction of vegetation dynamics over the last 4500 years. Results are compared with climatic, historical and archeological archives. A long-term aridification trend is highlighted during the Late Holocene and three superimposed arid events are recorded at 4600-4300, 2800-2400 and 1300-1100 cal BP. These periods of climatic instability coincide in time with the rapid climatic events depicted in the Atlantic Ocean (Bond et al., 2001). From the Bronze Age (4000 cal BP) to the end of the Iron Age (around 2000 cal BP), the spread of evergreen taxa and loss of forest cover result from anthropogenic impact. The Antiquity is characterized by a major reforestation event related to the concentration of rural activities and populations in coastal plains leading to forest recovery in the mountains. A major regional deforestation occurred at the beginning of the High Middle Ages. Around 1000 cal BP, forest cover is minimal while cover of olive, chestnut and walnut expands in relation to increasing human influence. The present day vegetation dominated by Mediterranean shrubland and pines has been in existence since the beginning of the 20th century.
NASA Astrophysics Data System (ADS)
Azuara, J.; Combourieu-Nebout, N.; Lebreton, V.; Mazier, F.; Müller, S. D.; Dezileau, L.
2015-12-01
Holocene climate fluctuations and human activity since the Neolithic have shaped present-day Mediterranean environments. Separating anthropogenic effects from climatic impacts to better understand Mediterranean paleoenvironmental changes over the last millennia remains a challenging issue. High-resolution pollen analyses were undertaken on two cores from the Palavasian lagoon system (Hérault, southern France). These records allow reconstruction of vegetation dynamics over the last 4500 years. Results are compared with climatic, historical and archeological archives. A long-term aridification trend is highlighted during the late Holocene, and three superimposed arid events are recorded at 4600-4300, 2800-2400 and 1300-1100 cal BP. These periods of high-frequency climate variability coincide in time with the rapid climatic events observed in the Atlantic Ocean (Bond et al., 2001). From the Bronze Age (4000 cal BP) to the end of the Iron Age (around 2000 cal BP), the spread of sclerophyllous taxa and loss of forest cover result from anthropogenic impact. Classical Antiquity is characterized by a major reforestation event related to the concentration of rural activity and populations in coastal plains leading to forest recovery in the mountains. A major regional deforestation occurred at the beginning of the High Middle Ages. Around 1000 cal BP, forest cover is minimal while the cover of olive, chestnut and walnut expands in relation to increasing human influence. The present-day vegetation dominated by Mediterranean shrubland and pines has been in existence since the beginning of the 20th century.
Bradford, J.B.
2011-01-01
Climate change is altering long-term climatic conditions and increasing the magnitude of weather fluctuations. Assessing the consequences of these changes for terrestrial ecosystems requires understanding how different vegetation types respond to climate and weather. This study examined 20 years of regional-scale remotely sensed net primary productivity (NPP) in forests of the northern Lake States to identify how the relationship between NPP and climate or weather differ among forest types, and if NPP patterns are influenced by landscape-scale evenness of forest-type abundance. These results underscore the positive relationship between temperature and NPP. Importantly, these results indicate significant differences among broadly defined forest types in response to both climate and weather. Essentially all weather variables that were strongly related to annual NPP displayed significant differences among forest types, suggesting complementarity in response to environmental fluctuations. In addition, this study found that forest-type evenness (within 8 ?? 8 km2 areas) is positively related to long-term NPP mean and negatively related to NPP variability, suggesting that NPP in pixels with greater forest-type evenness is both higher and more stable through time. This is landscape- to subcontinental-scale evidence of a relationship between primary productivity and one measure of biological diversity. These results imply that anthropogenic or natural processes that influence the proportional abundance of forest types within landscapes may influence long-term productivity patterns. ?? 2011 Springer Science+Business Media, LLC (outside the USA).
Bruggeman, Jason E.; Swem, Ted; Andersen, David E.; Kennedy, Patricia L.; Nigro, Debora A.
2015-01-01
Intrinsic and extrinsic factors affect vital rates and population-level processes, and understanding these factors is paramount to devising successful management plans for wildlife species. For example, birds time migration in response, in part, to local and broadscale climate fluctuations to initiate breeding upon arrival to nesting territories, and prolonged inclement weather early in the breeding season can inhibit egg-laying and reduce productivity. Also, density-dependent regulation occurs in raptor populations, as territory size is related to resource availability. Arctic Peregrine Falcons (Falco peregrinus tundrius; hereafter Arctic peregrine) have a limited and northern breeding distribution, including the Colville River Special Area (CRSA) in the National Petroleum Reserve–Alaska, USA. We quantified influences of climate, topography, nest productivity, prey habitat, density dependence, and interspecific competition affecting Arctic peregrines in the CRSA by applying the Dail-Madsen model to estimate abundance and vital rates of adults on nesting cliffs from 1981 through 2002. Arctic peregrine abundance increased throughout the 1980s, which spanned the population's recovery from DDT-induced reproductive failure, until exhibiting a stationary trend in the 1990s. Apparent survival rate (i.e., emigration; death) was negatively correlated with the number of adult Arctic peregrines on the cliff the previous year, suggesting effects of density-dependent population regulation. Apparent survival and arrival rates (i.e., immigration; recruitment) were higher during years with earlier snowmelt and milder winters, and apparent survival was positively correlated with nesting season maximum daily temperature. Arrival rate was positively correlated with average Arctic peregrine productivity along a cliff segment from the previous year and initial abundance was positively correlated with cliff height. Higher cliffs with documented higher productivity (presumably indicative of higher-quality habitat), are a priority for continued protection from potential nearby development and disturbance to minimize population-level impacts. Climate change may affect Arctic peregrines in multiple ways, including through access to more snow-free nest sites and a lengthened breeding season that may increase likelihood of nest success. Our work provides insight into factors affecting a population during and after recovery, and demonstrates how the Dail-Madsen model can be used for any unmarked population with multiple years of abundance data collected through repeated surveys.
NASA Astrophysics Data System (ADS)
Vinci, Francesco; Iannace, Alessandro; Parente, Mariano; Pirmez, Carlos; Torrieri, Stefano; Giorgioni, Maurizio
2017-12-01
A multidisciplinary study of the dolomitized bodies present in the Lower Cretaceous platform carbonates of Mt. Faito (Southern Apennines - Italy) was carried out in order to explore the connection between early dolomite formation and fluctuating climate conditions. The Berriasian-Aptian investigated succession is 466 m thick and mainly consists of shallow-water lagoonal limestones with frequent dolomite caps. The dolomitization intensity varies along the succession and reaches its peak in the upper Hauterivian-lower Barremian interval, where it is present a completely dolomitized interval about 100-m-thick. Field relations, petrography, mineralogy, and geochemistry of the analyzed dolomite bodies allowed identifying two populations of early dolomites, a fine-medium crystalline (FMdol) and a coarse crystalline dolomite (Cdol), both interpreted as the product of mesohaline water reflux. According to our interpretation, FMdol precipitated from concentrated brines in the very early stage of the reflux process, producing typical sedimentary features as dolomite caps. In the successive step of the process, the basin-ward 'latent' reflux precipitated Cdol from less concentrated brines. A peculiar feature of the studied succession is the great consistency between stratigraphic distribution of dolomite bodies and their geochemical signature. The completely dolomitized Hauterivian-Barremian interval, in fact, is characterized by geochemical values suggesting an origin from distinctly saltier brines. Considering that the observed near-surface dolomitization process is controlled by physical and chemical parameters reflecting the paleoenvironmental and paleoclimatic conditions during dolomite formation, we propose that the stratigraphically controlled dolomitization intensity reflects periodic fluctuations in the salinity of dolomitizing fluid, in turn controlled by long-term climate oscillations. The present work highlights that the stratigraphic distribution of early diagenetic dolomite may be used as proxy to define the climatic fluctuations that have influenced the sedimentary dynamics in the Early Cretaceous. Moreover, considering that a comparable early dolomite distribution is present also in the Dinaric Platform, we suggest that a regional scale climate control acted on early dolomite formation and distribution. Refining the knowledge of such a key control may have a significative impact on hydrocarbon reservoir characterization and exploration in the Periadriatic area.
NASA Astrophysics Data System (ADS)
Sinatra, G. M.
2011-12-01
Changing students' ideas about controversial scientific issues, such as human-induced climate change, presents unique challenges for educators (Lombardi & Sinatra, 2010; Sinatra & Mason, 2008). First, climate science is complex and requires "systems thinking," or the ability to think and reason abstractly about emergent systems (Goldstone & Sakamoto, 2003). Appreciating the intricacies of complex systems and emergent processes has proven challenging for students (Chi, 2005). In addition to these challenges, there are specific misconceptions that may lead thinking astray on the issue of global climate change, such as the distinction between weather and climate (Lombardi & Sinatra, 2010). As an example, when students are asked about their views on climate change, they often recall individual storm events or very cold periods and use their personal experiences and recollections of short-term temperature fluctuations to assess whether the planet is warming. Beyond the conceptual difficulties, controversial topics offer another layer of challenge. Such topics are often embedded in complex socio-cultural and political contexts, have a high degree of uncertainty, and may be perceived by individuals as in conflict with their personal or religious beliefs (Levinson, 2006, Sinatra, Kardash, Taasoobshirazi, & Lombardi, 2011). Individuals are often committed to their own views on socio-scientific issues and this commitment may serve as a motivation to actively resist new ideas (Dole & Sinatra, 1998). Individuals may also have strong emotions associated with their misconceptions (Broughton, Pekrun, & Sinatra, 2011). Negative emotions, misconceptions, and resistance do not make a productive combination for learning. Further, teachers who find human-induced climate change implausible have been shown to hold negative emotions about having to teach about climate change (Lombardi & Sinatra, in preparation), which could affect how they present the topic to students. In this presentation, findings from a research program exploring the role of "hot constructs" such as motivation and emotion in teaching and learning about climate change will be shared. In these studies, we have explored constructs such as emotions, misconceptions, plausibility perceptions, understanding deep time, and dispositions towards uncertainty. Results from four studies will be highlighted. In the first study, we demonstrated that comfort with ambiguity and a willingness to think deeply about issues predicted both change in attitudes towards climate change and expressed willingness to take mitigative action in college students (Sinatra, et al. 2011). In another study with college students, we demonstrated that knowledge of deep time and plausibility perceptions of human-induced climate change were related to students' understanding of weather and climate distinctions (Lombardi & Sinatra, 2010). In a study with graduate education students, we found that misconceptions about climate change were associated with strong emotions (Broughton, et al., 2011). With practicing teachers we have found that emotions, specifically anger and hopelessness, were significant predictors of plausibility perceptions of human-induced climate change (Lombardi & Sinatra, in preparation). The implications for climate change education of the findings will be discussed.
NASA Astrophysics Data System (ADS)
Cohen, Denis; Person, Mark; Daannen, Ronnie; Locke, Sharon; Dahlstrom, Dave; Zabielski, Victor; Winter, Thomas C.; Rosenberry, Donald O.; Wright, Herb; Ito, Emi; Nieber, John L.; Gutowski, William J.
2006-04-01
This paper analyzes the effects of geology and geomorphology on surface-water/-groundwater interactions, evapotranspiration, and recharge under conditions of long-term climatic change. Our analysis uses hydrologic data from the glaciated Crow Wing watershed in central Minnesota, USA, combined with a hydrologic model of transient coupled unsaturated/saturated flow (HYDRAT2D). Analysis of historical water-table (1970-1993) and lake-level (1924-2002) records indicates that larger amplitude and longer period fluctuations occur within the upland portions of watersheds due to the response of the aquifer system to relatively short-term climatic fluctuations. Under drought conditions, lake and water-table levels fell by as much as 2-4 m in the uplands but by 1 m in the lowlands. The same pattern can be seen on millennial time scales. Analysis of Holocene lake-core records indicates that Moody Lake, located near the outlet of the Crow Wing watershed, fell by as much as 4 m between about 4400 and 7000 yr BP. During the same time, water levels in Lake Mina, located near the upland watershed divide, fell by about 15 m. Reconstructed Holocene climate as represented by HYDRAT2D gives somewhat larger drops (6 and 24 m for Moody Lake and Lake Mina, respectively). The discrepancy is probably due to the effect of three-dimensional flow. A sensitivity analysis was also carried out to study how aquifer hydraulic conductivity and land-surface topography can influence water-table fluctuations, wetlands formation, and evapotranspiration. The models were run by recycling a wet year (1985, 87 cm annual precipitation) over a 10-year period followed by 20 years of drier and warmer climate (1976, 38 cm precipitation). Model results indicated that groundwater-supported evapotranspiration accounted for as much as 12% (10 cm) of evapotranspiration. The aquifers of highest hydraulic conductivity had the least amount of groundwater-supported evapotranspiration owing to a deep water table. Recharge was even more sensitive to aquifer hydraulic conductivity, especially in the lowland regions. These findings have important implications for paleoclimatic studies, because the hydrologic response of a surface-water body will vary across the watershed to a given climate signal.
Cohen, D.; Person, M.; Daannen, R.; Locke, S.; Dahlstrom, D.; Zabielski, V.; Winter, T.C.; Rosenberry, D.O.; Wright, H.; Ito, E.; Nieber, J.L.; Gutowski, W.J.
2006-01-01
This paper analyzes the effects of geology and geomorphology on surface-water/-groundwater interactions, evapotranspiration, and recharge under conditions of long-term climatic change. Our analysis uses hydrologic data from the glaciated Crow Wing watershed in central Minnesota, USA, combined with a hydrologic model of transient coupled unsaturated/saturated flow (HYDRAT2D). Analysis of historical water-table (1970-1993) and lake-level (1924-2002) records indicates that larger amplitude and longer period fluctuations occur within the upland portions of watersheds due to the response of the aquifer system to relatively short-term climatic fluctuations. Under drought conditions, lake and water-table levels fell by as much as 2-4 m in the uplands but by 1 m in the lowlands. The same pattern can be seen on millennial time scales. Analysis of Holocene lake-core records indicates that Moody Lake, located near the outlet of the Crow Wing watershed, fell by as much as 4 m between about 4400 and 7000 yr BP. During the same time, water levels in Lake Mina, located near the upland watershed divide, fell by about 15 m. Reconstructed Holocene climate as represented by HYDRAT2D gives somewhat larger drops (6 and 24 m for Moody Lake and Lake Mina, respectively). The discrepancy is probably due to the effect of three-dimensional flow. A sensitivity analysis was also carried out to study how aquifer hydraulic conductivity and land-surface topography can influence water-table fluctuations, wetlands formation, and evapotranspiration. The models were run by recycling a wet year (1985, 87 cm annual precipitation) over a 10-year period followed by 20 years of drier and warmer climate (1976, 38 cm precipitation). Model results indicated that groundwater-supported evapotranspiration accounted for as much as 12% (10 cm) of evapotranspiration. The aquifers of highest hydraulic conductivity had the least amount of groundwater-supported evapotranspiration owing to a deep water table. Recharge was even more sensitive to aquifer hydraulic conductivity, especially in the lowland regions. These findings have important implications for paleoclimatic studies, because the hydrologic response of a surface-water body will vary across the watershed to a given climate signal. ?? 2005 Elsevier B.V. All rights reserved.
Oscillations in land surface hydrological cycle
NASA Astrophysics Data System (ADS)
Labat, D.
2006-02-01
Hydrological cycle is the perpetual movement of water throughout the various component of the global Earth's system. Focusing on the land surface component of this cycle, the determination of the succession of dry and humid periods is of high importance with respect to water resources management but also with respect to global geochemical cycles. This knowledge requires a specified estimation of recent fluctuations of the land surface cycle at continental and global scales. Our approach leans towards a new estimation of freshwater discharge to oceans from 1875 to 1994 as recently proposed by Labat et al. [Labat, D., Goddéris, Y., Probst, JL, Guyot, JL, 2004. Evidence for global runoff increase related to climate warming. Advances in Water Resources, 631-642]. Wavelet analyses of the annual freshwater discharge time series reveal an intermittent multiannual variability (4- to 8-y, 14- to 16-y and 20- to 25-y fluctuations) and a persistent multidecadal 30- to 40-y variability. Continent by continent, reasonable relationships between land-water cycle oscillations and climate forcing (such as ENSO, NAO or sea surface temperature) are proposed even though if such relationships or correlations remain very complex. The high intermittency of interannual oscillations and the existence of persistent multidecadal fluctuations make prediction difficult for medium-term variability of droughts and high-flows, but lead to a more optimistic diagnostic for long-term fluctuations prediction.
Liang, Hong-Yan; Feng, Zhi-Pei; Pei, Bing; Li, Yong; Yang, Xi-Tian
2018-01-08
The geological events and climatic fluctuations during the Pleistocene played important roles in shaping patterns of species distribution. However, few studies have evaluated the patterns of species distribution that were influenced by the Yellow River. The present work analyzed the demography of two endemic tree species that are widely distributed along the Yellow River, Tamarix austromongolica and Tamarix chinensis, to understand the role of the Yellow River and Pleistocene climate in shaping their distribution patterns. The most common chlorotype, chlorotype 1, was found in all populations, and its divergence time could be dated back to 0.19 million years ago (Ma). This dating coincides well with the formation of the modern Yellow River and the timing of Marine Isotope Stages 5e-6 (MIS 5e-6). Bayesian reconstructions along with models of paleodistribution revealed that these two species experienced a demographic expansion in population size during the Quaternary period. Approximate Bayesian computation analyses supported a scenario of expansion approximately from the upper to lower reaches of the Yellow River. Our results provide support for the roles of the Yellow River and the Pleistocene climate in driving demographic expansion of the populations of T. austromongolica and T. chinensis. These findings are useful for understanding the effects of geological events and past climatic fluctuations on species distribution patterns.
Bastille-Rousseau, Guillaume; Schaefer, James A; Lewis, Keith P; Mumma, Matthew A; Ellington, E Hance; Rayl, Nathaniel D; Mahoney, Shane P; Pouliot, Darren; Murray, Dennis L
2016-03-01
Climate can have direct and indirect effects on population dynamics via changes in resource competition or predation risk, but this influence may be modulated by density- or phase-dependent processes. We hypothesized that for ungulates, climatic conditions close to parturition have a greater influence on the predation risk of neonates during population declines, when females are already under nutritional stress triggered by food limitation. We examined the presence of phase-dependent climate-predator (PDCP) interactions on neonatal ungulate survival by comparing spatial and temporal fluctuations in climatic conditions, cause-specific mortality and per capita resource limitation. We determined cause-specific fates of 1384 caribou (Rangifer tarandus) from 10 herds in Newfoundland, spanning more than 30 years during periods of numerical increase and decline, while exposed to predation from black bears (Ursus americanus) and coyotes (Canis latrans). We conducted Cox proportional hazards analysis for competing risks, fit as a function of weather metrics, to assess pre- and post-partum climatic influences on survival on herds in population increase and decline phases. We used cumulative incidence functions to compare temporal changes in risk from predators. Our results support our main hypothesis; when caribou populations increased, weather conditions preceding calving were the main determinants of cause-specific mortality, but when populations declined, weather conditions during calving also influenced predator-driven mortality. Cause-specific analysis showed that weather conditions can differentially affect predation risk between black bears and coyotes with specific variables increasing the risk from one species and decreasing the risk from the other. For caribou, nutritional stress appears to increase predation risk on neonates, an interaction which is exacerbated by susceptibility to climatic events. These findings support the PDCP interactions framework, where maternal body condition influences susceptibility to climate-related events and, subsequently, risk from predation. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
Late Pleistocene glacial fluctuations in Cordillera Oriental, subtropical Andes
NASA Astrophysics Data System (ADS)
Martini, Mateo A.; Kaplan, Michael R.; Strelin, Jorge A.; Astini, Ricardo A.; Schaefer, Joerg M.; Caffee, Marc W.; Schwartz, Roseanne
2017-09-01
The behavior of subtropical glaciers during Middle to Late Pleistocene global glacial maxima and abrupt climate change events, specifically in Earth's most arid low-latitude regions, remains an outstanding problem in paleoclimatology. The present-day climate of Cordillera Oriental, in arid northwestern Argentina, is influenced by shifts in subtropical climate systems, including the South American Summer Monsoon. To understand better past glacier-subtropical climates during the global Last Glacial Maximum (LGM, 26.5-19 ka) and other time periods, we combined geomorphic features with forty-two precise 10Be ages on moraine boulders and reconstructed paleo-equilibrium line altitudes (ELA) at Nevado de Chañi (24°S) in the arid subtropical Andes. We found a major glacial expansion at ∼23 ± 1.6 ka, that is, during the global LGM. Additional glacial expansions are observed before the global LGM (at ∼52-39 ka), and after, at 15 ± 0.5 and 12 ± 0.6 ka. The ∼15 ka glacial event was found on both sides of Chañi and the ∼12 ka event is only recorded on the east side. Reconstructed ELAs of the former glaciers exhibit a rise from east to west that resembles the present subtropical climate trajectory from the Atlantic side of the continent; hence, we infer that this climate pattern must have been present in the past. Based on comparison with other low-latitude paleoclimate records, such as those from lakes and caves, we infer that both temperature and precipitation influenced past glacial occurrence in this sector of the arid Andes. Our findings also imply that abrupt deglacial climate events associated with the North Atlantic, specifically curtailed meridional overturning circulation and regional cooling, may have had attendant impacts on low subtropical Southern Hemisphere latitudes, including the climate systems that affect glacial activity around Nevado de Chañi.
Climate Change and the Snowmelt-runoff Relationship in the Upper Rio Grande Basin
NASA Astrophysics Data System (ADS)
Chavarria, S. B.; Gutzler, D. S.
2016-12-01
Drought and rising temperatures have resulted in reduced snowpack and low flows in recent years for the Rio Grande, a vital source of surface water in three southwestern states and northern Mexico. We assess monthly and seasonal changes in streamflow volume on the upper Rio Grande (URG) near its headwaters in southern Colorado for water years 1958-2015. We use gage data from the U.S. Geological Survey, naturalized streamflows from the U.S. Natural Resources Conservation Service, and observed temperature, precipitation and snowpack data in the URG. Trends in discharge and downstream gains/losses are examined together with covariations in snow water equivalent, and surface climate variables. We test the hypothesis that climate change is already affecting the streamflow volume derived from snow accumulation in ways consistent with CMIP-based model projections of 21st Century streamflow, and we attempt to separate climate-related streamflow signals from variability due to reservoir releases or diversions. Preliminary results indicate that decreasing snowpack and resulting diminution of springtime streamflow in the URG are detectable in both observed and naturalized flow data beginning in the mid to late 1980s, despite the absence of significant decrease in total flow. Correlations between warm and cold season fluctuations in streamflow and temperature or precipitation are being evaluated and will be compared to model projections. Our study will provide information that may be useful for validating hydroclimatic models and improving seasonal water supply outlooks, essential tools for water management.
Atoll groundwater movement and its response to climatic and sea-level fluctuations
Oberle, Ferdinand; Swarzenski, Peter W.; Storlazzi, Curt
2017-01-01
Groundwater resources of low-lying atoll islands are threatened due to short-term and long-term changes in rainfall, wave climate, and sea level. A better understanding of how these forcings affect the limited groundwater resources was explored on Roi-Namur in the Republic of the Marshall Islands. As part of a 16-month study, a rarely recorded island-overwash event occurred and the island’s aquifer’s response was measured. The findings suggest that small-scale overwash events cause an increase in salinity of the freshwater lens that returns to pre-overwash conditions within one month. The overwash event is addressed in the context of climate-related local sea-level change, which suggests that overwash events and associated degradations in freshwater resources are likely to increase in severity in the future due to projected rises in sea level. Other forcings, such as severe rainfall events, were shown to have caused a sudden freshening of the aquifer, with salinity levels retuning to pre-rainfall levels within three months. Tidal forcing of the freshwater lens was observed in electrical resistivity profiles, high-resolution conductivity, groundwater-level well measurements and through submarine groundwater discharge calculations. Depth-specific geochemical pore water measurements further assessed and confirmed the distinct boundaries between fresh and saline water masses in the aquifer. The identification of the freshwater lens’ saline boundaries is essential for a quantitative evaluation of the aquifers freshwater resources and help understand how these resources may be impacted by climate change and anthropogenic activities.
Lemmon, Emily Moriarty; Lemmon, Alan R; Cannatella, David C
2007-09-01
Tertiary geological events and Quaternary climatic fluctuations have been proposed as important factors of speciation in the North American flora and fauna. Few studies, however, have rigorously tested hypotheses regarding the specific factors driving divergence of taxa. Here, we test explicit speciation hypotheses by correlating geologic events with divergence times among species in the continentally distributed trilling chorus frogs (Pseudacris). In particular, we ask whether marine inundation of the Mississippi Embayment, uplift of the Appalachian Mountains, or modification of the ancient Teays-Mahomet River system contributed to speciation. To examine the plausibility of ancient rivers causing divergence, we tested whether modern river systems inhibit gene flow. Additionally, we compared the effects of Quaternary climatic factors (glaciation and aridification) on levels of genetic variation. Divergence time estimates using penalized likelihood and coalescent approaches indicate that the major lineages of chorus frogs diversified during the Tertiary, and also exclude Quaternary climate change as a factor in speciation of chorus frogs. We show the first evidence that inundation of the Mississippi Embayment contributed to speciation. We reject the hypotheses that Cenozoic uplift of the Appalachians and that diversion of the Teays-Mahomet River contributed to speciation in this clade. We find that by reducing gene flow, rivers have the potential to cause divergence of lineages. Finally, we demonstrate that populations in areas affected by Quaternary glaciation and aridification have reduced levels of genetic variation compared to those from more equable regions, suggesting recent colonization.
Evidence for a physical linkage between galactic cosmic rays and regional climate time series
Perry, C.A.
2007-01-01
The effects of solar variability on regional climate time series were examined using a sequence of physical connections between total solar irradiance (TSI) modulated by galactic cosmic rays (GCRs), and ocean and atmospheric patterns that affect precipitation and streamflow. The solar energy reaching the Earth's surface and its oceans is thought to be controlled through an interaction between TSI and GCRs, which are theorized to ionize the atmosphere and increase cloud formation and its resultant albedo. High (low) GCR flux may promote cloudiness (clear skies) and higher (lower) albedo at the same time that TSI is lowest (highest) in the solar cycle which in turn creates cooler (warmer) ocean temperature anomalies. These anomalies have been shown to affect atmospheric flow patterns and ultimately affect precipitation over the Midwestern United States. This investigation identified a relation among TSI and geomagnetic index aa (GI-AA), and streamflow in the Mississippi River Basin for the period 1878-2004. The GI-AA was used as a proxy for GCRs. The lag time between the solar signal and streamflow in the Mississippi River at St. Louis, Missouri is approximately 34 years. The current drought (1999-2007) in the Mississippi River Basin appears to be caused by a period of lower solar activity that occurred between 1963 and 1977. There appears to be a solar "fingerprint" that can be detected in climatic time series in other regions of the world, with each series having a unique lag time between the solar signal and the hydroclimatic response. A progression of increasing lag times can be spatially linked to the ocean conveyor belt, which may transport the solar signal over a time span of several decades. The lag times for any one region vary slightly and may be linked to the fluctuations in the velocity of the ocean conveyor belt.
Moroi, Takeo; Takahashi, Tomo
2004-03-05
We consider cosmic microwave background (CMB) anisotropy in models with quintessence, taking into account isocurvature fluctuation. It is shown that, if the primordial fluctuation of the quintessence has a correlation with the adiabatic density fluctuations, the CMB angular power spectrum C(l) at low multipoles can be suppressed without affecting C(l) at high multipoles. A possible scenario for generating a correlated mixture of the quintessence and adiabatic fluctuations is also discussed.
Negative affect variability and adolescent self-medication: The role of the peer context.
Shadur, Julia M; Hussong, Andrea M; Haroon, Maleeha
2015-11-01
Findings in the literature show mixed support for adolescent self-medication. Following recent reformulations of the self-medication hypothesis, we tested within-person effects of daily fluctuations in sadness and worry on daily substance use, and explored the moderating role of the peer context on self-medication. We hypothesized that greater daily fluctuations in mood would predict greater daily substance use, and lower levels of peer social support and higher levels of peer drug use would further increase this risk. Experience sampling methods captured within-person daily variations in mood and substance use over 21 days among 73 adolescents. An observational coding system was employed to characterize enacted peer social support. Multilevel modeling was used to parse between- versus within-person differences in risk for daily substance use. Greater within-person daily fluctuations in feelings of worry (but not sadness) significantly predicted increased daily substance use, consistent with self-medication. Moreover, greater daily fluctuations in negative affect were a stronger predictor of daily use than total level of daily negative affect. Peer social support moderated this relationship such that those with more supportive friendships were less likely to engage in self-medication. This is the first reported study to examine within-person processes of adolescent self-medication related to daily variability in mood and the peer context. Adolescent self-medication processes appear to differ depending on the type of negative affect and whether daily affective experiences are chronic or fluctuating, suggesting that the affective processes that cue adolescents to engage in substance use are quite nuanced. © 2015 Australasian Professional Society on Alcohol and other Drugs.
Sharma, Shruti; Mora, G.; Johnston, J.W.; Thompson, T.A.
2005-01-01
Beach ridges along the coastline of Lake Superior provide a long-term and detailed record of lake level fluctuations for the past 4000 cal BP. Although climate change has been invoked to explain these fluctuations, its role is still in debate. Here, we reconstruct water balance by employing peat samples collected from swale deposits present between beach ridge sequences at two locations along the coastline of Lake Superior. Carbon isotope ratios for Sphagnum remains from these peat deposits are used as a proxy for water balance because the presence or absence of water films on Sphagnum controls the overall isotope discrimination effects. Consequently, increased average water content in Sphagnum produces elevated ??13C values. Two maxima of Sphagnum ??13C values interpreted to reflect wetter conditions prevailed from 3400 to 2400 cal BP and from about 1900 to 1400 cal BP. There are two relatively short drier periods as inferred from low Sphagnum ??13C values: one is centered at about 2300 cal BP, and one begins at 1400 cal BP. A good covariance was found between Sphagnum ??13C values and reconstructed lake-levels for Lake Michigan in which elevated carbon isotope values correlate well with higher lake levels. Based on this covariance, we conclude that climate exerts a strong influence on lake levels in Lake Superior for the past 4000 cal BP. ?? 2005 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Jin -Ho
Amazon rainfall is subject to year-to-year fluctuation resulting in drought and flood in various intensities. A major climatic driver of the interannual variation of the Amazon rainfall is El Niño/Southern Oscillation. Also, the Sea Surface Temperature over the Atlantic Ocean is identified as an important climatic driver on the Amazon water cycle. Previously, observational datasets were used to support the Atlantic influence on Amazon rainfall. Furthermore, it is found that multiple global climate models do reproduce the Atlantic-Amazon link robustly. However, there exist differences in rainfall response, which primarily depends on the climatological rainfall amount.
Younger, Jane L; Emmerson, Louise M; Miller, Karen J
2016-02-01
The Southern Ocean ecosystem is undergoing rapid physical and biological changes that are likely to have profound implications for higher-order predators. Here, we compare the long-term, historical responses of Southern Ocean predators to climate change. We examine palaeoecological evidence for changes in the abundance and distribution of seabirds and marine mammals, and place these into context with palaeoclimate records in order to identify key environmental drivers associated with population changes. Our synthesis revealed two key factors underlying Southern Ocean predator population changes; (i) the availability of ice-free ground for breeding and (ii) access to productive foraging grounds. The processes of glaciation and sea ice fluctuation were key; the distributions and abundances of elephant seals, snow petrels, gentoo, chinstrap and Adélie penguins all responded strongly to the emergence of new breeding habitat coincident with deglaciation and reductions in sea ice. Access to productive foraging grounds was another limiting factor, with snow petrels, king and emperor penguins all affected by reduced prey availability in the past. Several species were isolated in glacial refugia and there is evidence that refuge populations were supported by polynyas. While the underlying drivers of population change were similar across most Southern Ocean predators, the individual responses of species to environmental change varied because of species specific factors such as dispersal ability and environmental sensitivity. Such interspecific differences are likely to affect the future climate change responses of Southern Ocean marine predators and should be considered in conservation plans. Comparative palaeoecological studies are a valuable source of long-term data on species' responses to environmental change that can provide important insights into future climate change responses. This synthesis highlights the importance of protecting productive foraging grounds proximate to breeding locations, as well as the potential role of polynyas as future Southern Ocean refugia. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Verma, M.; Diffenbaugh, N. S.; Hertel, T. W.; Beckman, J.
2011-12-01
In presence of bio-fuels, link between energy and agricultural commodity markets has become more complex. An increase in ethanol production to minimum 15bn gallons a year - Renewable Fuel Standard (RFS) and current technically permissible maximum 10% blending limit - Blend Wall (BW); make the link even stronger. If oil prices in future do not rise significantly from their current levels, this minimum production requirement would likely be binding. In such a scenario any fluctuation in crop production will have to be absorbed by the non-ethanol usage of the crop and would translate into crop prices adjusting to clear the markets and therefore the commodity prices will be more volatile. At high oil prices it is possible that the BW may become binding, severing the link between oil prices and commodity prices as well, potentially leading to higher price volatility. Hertel and Beckman (2010) find that, with both RFS and BW simultaneously binding, corn price volatility due to supply side shocks (which could arise from extreme climate events) could be more than 50% as large as in the absence of bio-fuel policies. So energy markets are important determinants of agricultural commodity price volatility. This proposal intends to introduce the increased supply side volatility on account of climate change and volatility, in the framework. Global warming on account of increased GHG concentrations is expected to increase the intensity and frequency of hot extremes in US (Diffenbaugh et al. 2008) and therefore affect corn yields. With supply shocks expected to increase, binding RFS and BW will exacerbate the volatility, while if they are non-binding then the price changes could be cushioned. We propose to model the impacts of climate changes and volatility on commodity prices by linking three main components - a. Projections for change in temperature and precipitation using climate model b. A statistical model to predict impacts of change in climate variable on corn yields in US c. Computable General Equilibrium economic model that uses the results of the two above as inputs, to predict commodity prices under alternative energy price scenarios We start with the high resolution projections on temperature and precipitation for US corn-belt for years 2020-2040. A modified version of statistical relationship estimated by Schlenker and Roberts, is used to translate climate variables' change into yield changes for each. Shocks are sampled from this distribution to decipher the corresponding volatility in commodity prices. All else constant, the increased supply side variability should result in increased price volatility; high oil prices however give markets an incentive to produce more than 15bn gallons ethanol a year (non-binding RFS) and part of supply fluctuation in crop production can be borne by ethanol production and impact of climate change on crop prices would be less dramatic than it would have been if the entire adjustment was to come through non-ethanol usage. So impact of climate change clearly depends on energy markets and policy decisions and results should provide insights into impact of climate change on agricultural prices under different energy market scenarios.
NASA Astrophysics Data System (ADS)
Liang, J.; Zhang, L.; Yuan, G.
2017-12-01
Accurate determination of surface turbulent fluxes in a stable boundary layer is of great practical importance in weather prediction and climate simulations, as well as applications related to air pollution. To gain an insight into the characteristics of turbulence in a stable boundary layer over the complex terrain of the Loess Plateau, we analyzed the data from the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL). We proposed a method to identify and efficiently isolate nonstationary motions from turbulence series, and examined the characteristics of nonstationary motions (nonstationary motions refer to gusty events on a greater scale than local shear-generated turbulence). The occurrence frequency of nonstationary motions was found to depend on the mean flow, being more frequent in weak wind conditions and vanishing when the wind speed, U, was greater than 3.0 m s-1. When U exceeded the threshold value of 1.0 m s-1 for the gradient Richardson number Ri ≤ 0.3 and 1.5 m s-1 for Ri > 0.3, local shear-generated turbulence depended systematically on U with an average rate of 0.05 U. However, for the weak wind condition, neither the mean wind speed nor the stability was an important factor for local turbulence. Under the weak wind stable condition, affected by topography-induced nonstationary motions, the local turbulence was anisotropic with a strong horizontal fluctuation and a weak vertical fluctuation, resulting in weakened heat mixing in the vertical direction and stronger un-closure of energy. These findings accessed the validity of similarity theory in the stable boundary layer over complex terrain, and revealed one reason for the stronger un-closure of energy in the night.
Demographic responses to weather fluctuations are context dependent in a long-lived amphibian.
Cayuela, Hugo; Arsovski, Dragan; Thirion, Jean-Marc; Bonnaire, Eric; Pichenot, Julian; Boitaud, Sylvain; Miaud, Claude; Joly, Pierre; Besnard, Aurélien
2016-08-01
Weather fluctuations have been demonstrated to affect demographic traits in many species. In long-lived organisms, their impact on adult survival might be buffered by the evolution of traits that reduce variation in interannual adult survival. For example, skipping breeding is an effective behavioral mechanism that may limit yearly variation in adult survival when harsh weather conditions occur; however, this in turn would likely lead to strong variation in recruitment. Yet, only a few studies to date have examined the impact of weather variation on survival, recruitment and breeding probability simultaneously in different populations of the same species. To fill this gap, we studied the impact of spring temperatures and spring rainfall on survival, on reproductive skipping behavior and on recruitment in five populations of a long-lived amphibian, the yellow-bellied toad (Bombina variegata). Based on capture-recapture data, our findings demonstrate that survival depends on interactions between age, population and weather variation. Varying weather conditions in the spring result in strong variation in the survival of immature toads, whereas they have little effect on adult toads. Breeding probability depends on both the individual's previous reproductive status and on the weather conditions during the current breeding season, leading to high interannual variation in recruitment. Crucially, we found that the impact of weather variation on demographic traits is largely context dependent and may thus differ sharply between populations. Our results suggest that studies predicting the impact of climate change on population dynamics should be taken with caution when the relationship between climate and demographic traits is established using only one population or few populations. We therefore highly recommend further research that includes surveys replicated in a substantial number of populations to account for context-dependent variation in demographic processes. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Becker, S.; Halsall, C. J.; Tych, W.; Kallenborn, R.; Su, Y.; Hung, H.
Twelve year datasets of weekly atmospheric concentrations of α- and γ-HCH were compared between the two Arctic monitoring stations of Alert, Nunavut, Canada, and Zeppelin Mountain, Svalbard, Norway. Time-series analysis was conducted with the use of dynamic harmonic regression (DHR), which provided a very good model fit, to examine both the seasonal behaviour in these isomers and the longer-term, underlying trends. Strong spatial differences were not apparent between the two sites, although subtle differences in seasonal behaviour and composition were identified. For example, the composition of γ-HCH to total HCH (α + γ) was greater at Zeppelin compared to Alert, probably reflecting this site's proximity to major use regions of lindane. Pronounced seasonality in air concentrations for γ-HCH was marked by a 'spring maximum event' (SME), confirming earlier studies. For α-HCH, the SME was much weaker and only evident at Alert, whereas at Zeppelin, seasonal fluctuations for α-HCH were marked by elevated concentrations in summer and lower concentrations during winter, with this pattern most apparent for the years after 2000. We attribute this difference in spatial and temporal patterns to the Arctic oscillation. A similar climatic pattern was not evident at either site in the γ-HCH data. Seasonally adjusted, long-term trends revealed declining concentrations at both sites for α- and γ-HCH over the entire time-series. Recent legislation affecting lindane use appear to account for this decline in γ-HCH, with little evidence of a delay or 'lag' between the banning of lindane in Europe (a main source region) or Canada, and a decline in air concentrations observed at both Arctic sites.
Nyamukondiwa, Casper; Weldon, Christopher W; Chown, Steven L; le Roux, Peter C; Terblanche, John S
2013-12-01
The link between environmental temperature, physiological processes and population fluctuations is a significant aspect of insect pest management. Here, we explore how thermal biology affects the population abundance of two globally significant pest fruit fly species, Ceratitis capitata (medfly) and C. rosa (Natal fruit fly), including irradiated individuals and those expressing a temperature sensitive lethal (tsl) mutation that are used in the sterile insect technique. Results show that upper and lower lethal temperatures are seldom encountered at the field sites, while critical minimum temperatures for activity and lower developmental thresholds are crossed more frequently. Estimates of abundance revealed that C. capitata are active year-round, but abundance declines markedly during winter. Temporal autocorrelation of average fortnightly trap captures and of development time, estimated from an integrated model to calculate available degree days, show similar seasonal lags suggesting that population increases in early spring occur after sufficient degree-days have accumulated. By contrast, population collapses coincide tightly with increasing frequency of low temperature events that fall below critical minimum temperatures for activity. Individuals of C. capitata expressing the tsl mutation show greater critical thermal maxima and greater longevity under field conditions than reference individuals. Taken together, this evidence suggests that low temperatures limit populations in the Western Cape, South Africa and likely do so elsewhere. Increasing temperature extremes and warming climates generally may extend the season over which these species are active, and could increase abundance. The sterile insect technique may prove profitable as climates change given that laboratory-reared tsl flies have an advantage under warmer conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Cherry, Seth G; Derocher, Andrew E; Thiemann, Gregory W; Lunn, Nicholas J
2013-07-01
Understanding how seasonal environmental conditions affect the timing and distribution of synchronized animal movement patterns is a central issue in animal ecology. Migration, a behavioural adaptation to seasonal environmental fluctuations, is a fundamental part of the life history of numerous species. However, global climate change can alter the spatiotemporal distribution of resources and thus affect the seasonal movement patterns of migratory animals. We examined sea ice dynamics relative to migration patterns and seasonal geographical fidelity of an Arctic marine predator, the polar bear (Ursus maritimus). Polar bear movement patterns were quantified using satellite-linked telemetry data collected from collars deployed between 1991-1997 and 2004-2009. We showed that specific sea ice characteristics can predict the timing of seasonal polar bear migration on and off terrestrial refugia. In addition, fidelity to specific onshore regions during the ice-free period was predicted by the spatial pattern of sea ice break-up but not by the timing of break-up. The timing of migration showed a trend towards earlier arrival of polar bears on shore and later departure from land, which has been driven by climate-induced declines in the availability of sea ice. Changes to the timing of migration have resulted in polar bears spending progressively longer periods of time on land without access to sea ice and their marine mammal prey. The links between increased atmospheric temperatures, sea ice dynamics, and the migratory behaviour of an ice-dependent species emphasizes the importance of quantifying and monitoring relationships between migratory wildlife and environmental cues that may be altered by climate change. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
Sloan, Chantel; Heaton, Matthew; Kang, Sorah; Berrett, Candace; Wu, Pingsheng; Gebretsadik, Tebeb; Sicignano, Nicholas; Evans, Amber; Lee, Rees; Hartert, Tina
2017-05-01
Infant bronchiolitis is primarily due to infection by respiratory syncytial virus (RSV), which is highly seasonal. The goal of the study is to understand how circulation of RSV is impacted by fluctuations in temperature and humidity in order to inform prevention efforts. Using data from the Military Health System (MHS) Data Repository (MDR), we calculated rates of infant bronchiolitis for the contiguous US from July 2004 to June 2013. Monthly temperature and relative humidity were extracted from the National Climate Data Center. Using a spatiotemporal generalized linear model for binomial data, we estimated bronchiolitis rates and the effects of temperature and relative humidity while allowing them to vary over location and time. Our results indicate a seasonal pattern that begins in the Southeast during November or December, then spreading in a Northwest direction. The relationships of temperature and humidity were spatially heterogeneous, and we find that climate can partially account for early onset or longer epidemic duration. Small changes in climate may be associated with larger fluctuations in epidemic duration. Copyright © 2017 Elsevier Ltd. All rights reserved.
El Nino during the 1990s: Harbinger of Climatic Change or Normal Fluctuation?
NASA Technical Reports Server (NTRS)
Wilson, Robert M.
1999-01-01
Today, El Nino refers to the extreme warming episodes of the globally effective, coupled ocean-atmospheric interaction commonly known as ENSO (i.e., "El Nino-Southern Oscillation"). Concerning its observed decadal frequency and severity, El Nino during the 1990s has often been regarded as being anomalous. Results of analysis reported herein, however, appear to mitigate this belief. For example, regarding the frequency and severity of El Nino, the decade of the 1990s is found to compare quite favorably with that of preceding decades. Hence, the 1990s probably should not be regarded as being anomalous. On the other hand, the number of El Nino-related months per decade has sharply increased during the 1990s, as compared to the preceding four decades, hinting of a marginally significant upward trend. Perhaps, this is an indication that the Earth is now experiencing an ongoing global climatic change. Continued vigilance during the new millennium, therefore, is of paramount importance for determining whether or not this "hint" of a global change is real or if it merely reflects a normal fluctuation of climate.
Computer Controlled Portable Greenhouse Climate Control System for Enhanced Energy Efficiency
NASA Astrophysics Data System (ADS)
Datsenko, Anthony; Myer, Steve; Petties, Albert; Hustek, Ryan; Thompson, Mark
2010-04-01
This paper discusses a student project at Kettering University focusing on the design and construction of an energy efficient greenhouse climate control system. In order to maintain acceptable temperatures and stabilize temperature fluctuations in a portable plastic greenhouse economically, a computer controlled climate control system was developed to capture and store thermal energy incident on the structure during daylight periods and release the stored thermal energy during dark periods. The thermal storage mass for the greenhouse system consisted of a water filled base unit. The heat exchanger consisted of a system of PVC tubing. The control system used a programmable LabView computer interface to meet functional specifications that minimized temperature fluctuations and recorded data during operation. The greenhouse was a portable sized unit with a 5' x 5' footprint. Control input sensors were temperature, water level, and humidity sensors and output control devices were fan actuating relays and water fill solenoid valves. A Graphical User Interface was developed to monitor the system, set control parameters, and to provide programmable data recording times and intervals.
Modes of embayed beach dynamics: analysis reveals emergent timescales
NASA Astrophysics Data System (ADS)
Murray, K. T.; Murray, A.; Limber, P. W.; Ells, K. D.
2013-12-01
Embayed beaches, or beaches positioned between rocky headlands, exhibit morphologic changes over many length and time scales. Beach sediment is transported as a result of the day-to-day wave forcing, causing patterns of erosion and accretion. We use the Rocky Coastline Evolution Model (RCEM) to investigate how patterns of shoreline change depend on wave climate (the distribution of wave-approach angles) and beach characteristics. Measuring changes in beach width through time allows us to track the evolution of the shape of the beach and the movement of sand within it. By using Principle Component Analysis (PCA), these changes can be categorized into modes, where the first few modes explain the majority of the variation in the time series. We analyze these modes and how they vary as a function of wave climate and headland/bay aspect ratio. In the purposefully simple RCEM, sediment transport is wave-driven and affected by wave shadowing behind the headlands. The rock elements in our model experiments (including the headlands) are fixed and unerodable so that this analysis can focus purely on sand dynamics between the headlands, without a sand contribution from the headlands or cliffs behind the beach. The wave climate is characterized by dictating the percentage of offshore waves arriving from the left and the percentage of waves arriving from high angles (very oblique to the coastline orientation). A high-angle dominated wave climate tends to amplify coastline perturbations, whereas a lower-angle wave climate is diffusive. By changing the headland/bay aspect ratio and wave climate, we can perform PCA analysis of generalized embayed beaches with differing anatomy and wave climate forcings. Previous work using PCA analysis of embayed beaches focused on specific locations and shorter timescales (<30 years; Short and Trembanis, 2004). By using the RCEM, we can more broadly characterize beach dynamics over longer timescales. The first two PCA modes, which explain a majority of the beach width time series variation (typically >70%), are a 'breathing' mode and a 'rotational' mode. The newly identified breathing mode captures the sand movement from the middle of the beach towards the edges (thickening the beach along the headlands), and the rotational mode describes the movement of sand towards one headland or another, both in response to stochastic fluctuations about the mean wave climate. The two main modes operate independently and on different timescales. In a weakly low-angle dominated wave climate, the breathing mode tends to be the first mode (capturing the most variance), but with greater low-angle dominance (greater morphological diffusivity), the rotational mode tends to be first. The aspect ratio of the bay also affects the order of the modes, because wave shadowing affects sediment transport behind the headlands. Previous work has attributed beach rotation to changes in various climate indices such as the North Atlantic Oscillation (Thomas et al., 2011); however, PCA analysis of the RCEM results suggests that embayed beaches can have characteristic timescales of sand movement that result from internal system dynamics, emerging even within a statistically constant wave climate. These results suggest that morphologic changes in embayed beaches can occur independently of readily identifiable shifts in forcing.
Huybers, Peter; Langmuir, Charles; Katz, Richard F; Ferguson, David; Proistosescu, Cristian; Carbotte, Suzanne
2016-06-17
Olive et al (Reports, 16 October 2015, p. 310) argue that ~10% fluctuations in melt supply do not produce appreciable changes in ocean ridge bathymetry on time scales less than 100,000 years and thus cannot reflect sea level forcing. Spectral analysis of bathymetry in a region they highlight as being fault controlled, however, shows strong evidence for a signal from sea level variation. Copyright © 2016, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Laib, Mohamed; Telesca, Luciano; Kanevski, Mikhail
2018-02-01
In this paper, we study the periodic fluctuations of connectivity density time series of a wind speed-monitoring network in Switzerland. By using the correlogram-based robust periodogram annual periodic oscillations were found in the correlation-based network. The intensity of such annual periodic oscillations is larger for lower correlation thresholds and smaller for higher. The annual periodicity in the connectivity density seems reasonably consistent with the seasonal meteo-climatic cycle.
Continuous wind measurement in the tropical Pacific using VHF radars
NASA Technical Reports Server (NTRS)
Balsley, B. B.; Ecklund, W. L.; Carter, D. A.
1986-01-01
Very High Frequency (VHF) Radar Wind Profilers are being installed on Ponape, East Caroline Islands and Christmas Island, Republic of Kiribati to continuously monitor winds aloft. The purpose of this experiment is to study wind fluctuations on time scales between minutes and days, to determine the longitudinal character of these fluctuations, and to examine their relationship to climate variability. Six-hourly wind profiles will be provided via satellite to the scientific community for Project TOGA (Tropical Ocean Global Atmosphere).
I Lacan; Kathleen R. Matthews; K.V. Feldman
2008-01-01
Between-year variation in snowpack (from 20 to 200% of average) and summer rainfall cause large fluctuations in volume of small lakes in the higher elevation (> 3000 m) Sierra Nevada, which are important habitat for the imperiled Sierra Nevada Yellow-legged Frog, Rana sierrae. Climate change (global warming) is predicted to increase these...
NASA Astrophysics Data System (ADS)
Ault, T. R.; Cole, J. E.; St. George, S.
2012-11-01
We assess the magnitude of decadal to multidecadal (D2M) variability in Climate Model Intercomparison Project 5 (CMIP5) simulations that will be used to understand, and plan for, climate change as part of the Intergovernmental Panel on Climate Change's 5th Assessment Report. Model performance on D2M timescales is evaluated using metrics designed to characterize the relative and absolute magnitude of variability at these frequencies. In observational data, we find that between 10% and 35% of the total variance occurs on D2M timescales. Regions characterized by the high end of this range include Africa, Australia, western North America, and the Amazon region of South America. In these areas D2M fluctuations are especially prominent and linked to prolonged drought. D2M fluctuations account for considerably less of the total variance (between 5% and 15%) in the CMIP5 archive of historical (1850-2005) simulations. The discrepancy between observation and model based estimates of D2M prominence reflects two features of the CMIP5 archive. First, interannual components of variability are generally too energetic. Second, decadal components are too weak in several key regions. Our findings imply that projections of the future lack sufficient decadal variability, presenting a limited view of prolonged drought and pluvial risk.
NASA Astrophysics Data System (ADS)
Thibault, N.; Harlou, R.; Schovsbo, N. H.; Stemmerik, L.; Surlyk, F.
2015-11-01
The last 8 Myr of the Cretaceous greenhouse interval were characterized by a progressive global cooling with superimposed cool/warm fluctuations. The mechanisms responsible for these climatic fluctuations remain a source of debate that can only be resolved through multi-disciplinary studies and better time constraints. For the first time, we present a record of very high-resolution (ca. 4.5 kyr) sea-surface temperature (SST) changes from the Boreal epicontinental Chalk Sea (Stevns-1 core, Denmark), tied to an astronomical time scale of the late Campanian-Maastrichtian (74 to 66 Myr). Well-preserved bulk stable isotope trends and calcareous nannofossil palaeoecological patterns from the fully cored Stevns-1 borehole show marked changes in SSTs. These variations correlate with deep-water records of climate change from the tropical South Atlantic and Pacific oceans but differ greatly from the climate variations of the North Atlantic. We demonstrate that the onset and end of the early Maastrichtian cooling and of the large negative Campanian-Maastrichtian boundary carbon isotope excursion are coincident in the Chalk Sea. The direct link between SSTs and δ13C variations in the Chalk Sea reassesses long-term glacio-eustasy as the potential driver of carbon isotope and climatic variations in the Maastrichtian.
NASA Astrophysics Data System (ADS)
Thibault, Nicolas; Harlou, Rikke; Schovsbo, Niels H.; Stemmerik, Lars; Surlyk, Finn
2016-02-01
The last 8 Myr of the Cretaceous greenhouse interval were characterized by a progressive global cooling with superimposed cool/warm fluctuations. The mechanisms responsible for these climatic fluctuations remain a source of debate that can only be resolved through multi-disciplinary studies and better time constraints. For the first time, we present a record of very high-resolution (ca. 4.5 kyr) sea-surface temperature (SST) changes from the Boreal epicontinental Chalk Sea (Stevns-1 core, Denmark), tied to an astronomical timescale of the late Campanian-Maastrichtian (74 to 66 Ma). Well-preserved bulk stable isotope trends and calcareous nannofossil palaeoecological patterns from the fully cored Stevns-1 borehole show marked changes in SSTs. These variations correlate with deep-water records of climate change from the tropical South Atlantic and Pacific oceans but differ greatly from the climate variations of the North Atlantic. We demonstrate that the onset and end of the early Maastrichtian cooling and of the large negative Campanian-Maastrichtian boundary carbon isotope excursion are coincident in the Chalk Sea. The direct link between SSTs and δ13C variations in the Chalk Sea reassesses long-term glacio-eustasy as the potential driver of carbon isotope and climatic variations in the Maastrichtian.
Osone, Yoko; Kawarasaki, Satoko; Ishida, Atsushi; Kikuchi, Satoshi; Shimizu, Akari; Yazaki, Kenichi; Aikawa, Shin-Ichi; Yamaguchi, Masahiro; Izuta, Takeshi; Matsumoto, Genki I
2014-10-01
The frequency of extreme weather has been rising in recent years. A 3-year study of street trees was undertaken in Tokyo to determine whether: (i) street trees suffer from severe water stress in unusually hot summer; (ii) species respond differently to such climatic fluctuations; and (iii) street trees are also affected by nitrogen (N) deficiency, photoinhibition and aerosol pollution. During the study period (2010-12), midsummers of 2010 and 2012 were unusually hot (2.4-2.8 °C higher maximum temperature than the long-term mean) and dry (6-56% precipitation of the mean). In all species, street trees exhibited substantially decreased photosynthetic rate in the extremely hot summer in 2012 compared with the average summer in 2011. However, because of a more conservative stomatal regulation (stomatal closure at higher leaf water potential) in the hot summer, apparent symptoms of hydraulic failure were not observed in street trees even in 2012. Compared with Prunus × yedoensis and Zelkova serrata, Ginkgo biloba, a gymnosperm, was high in stomatal conductance and midday leaf water potential even under street conditions in the unusually hot summer, suggesting that the species had higher drought resistance than the other species and was less susceptible to urban street conditions. This lower susceptibility might be ascribed to the combination of higher soil-to-leaf hydraulic conductance and more conservative water use. Aside from meteorological conditions, N deficiency affected street trees significantly, whereas photoinhibition and aerosol pollution had little effect. The internal CO2 and δ(13)C suggested that both water and N limited the net photosynthetic rate of street trees simultaneously, but water was more limiting. From these results, we concluded that the potential risk of hydraulic failure caused by climatic extremes could be low in urban street trees in temperate regions. However, the size of the safety margin might be different between species. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Steenhuis, T. S.; Azzaino, Z.; Hoang, L.; Pacenka, S.; Worqlul, A. W.; Mukundan, R.; Stoof, C.; Owens, E. M.; Richards, B. K.
2017-12-01
The New York City source watersheds in the Catskill Mountains' humid, temperate climate has long-term hydrological and water quality monitoring data It is one of the few catchments where implementation of source and landscape management practices has led to decreased phosphorus concentration in the receiving surface waters. One of the reasons is that landscape measures correctly targeted the saturated variable source runoff areas (VSA) in the valley bottoms as the location where most of the runoff and other nonpoint pollutants originated. Measures targeting these areas were instrumental in lowering phosphorus concentration. Further improvements in water quality can be made based on a better understanding of the flow processes and water table fluctuations in the VSA. For that reason, we instrumented a self-contained upland variable source watershed with a landscape characteristic of a soil underlain by glacial till at shallow depth similar to the Catskill watersheds. In this presentation, we will discuss our experimental findings and present a mathematical model. Variable source areas have a small slope making gravity the driving force for the flow, greatly simplifying the simulation of the flow processes. The experimental data and the model simulations agreed for both outflow and water table fluctuations. We found that while the flows to the outlet were similar throughout the year, the discharge of the VSA varies greatly. This was due to transpiration by the plants which became active when soil temperatures were above 10oC. We found that shortly after the temperature increased above 10oC the baseflow stopped and only surface runoff occurred when rainstorms exceeded the storage capacity of the soil in at least a portion of the variable source area. Since plant growth in the variable source area was a major variable determining the base flow behavior, changes in temperature in the future - affecting the duration of the growing season - will affect baseflow and related transport of nutrient and other chemicals many times more than small temperature related increases in potential evaporation rate. This in turn will directly change the water availability and pollutant transport in the many surface source watersheds with variable source area hydrology.
Shahzad, Khurram; Jia, Yun; Chen, Fu-Lin; Zeb, Umar; Li, Zhong-Hu
2017-01-01
Mountain uplift and climatic fluctuations are important driving forces that have affected the geographic distribution and population dynamics history of organisms. However, it is unclear how geological and climatic events might have affected the phylogeographic history and species divergence in high-alpine herbal plants. In this study, we analyzed the population demographic history and species differentiation of four endangered Notopterygium herbs on the high-altitude Qinghai–Tibetan Plateau (QTP) and adjacent areas. We combined phylogeographic analysis with species distribution modeling to detect the genetic variations in four Notopterygium species (N. incisum, N. franchetii, N. oviforme, and N. forrestii). In total, 559 individuals from 74 populations of the four species were analyzed based on three maternally inherited chloroplast fragments (matK, rbcL, and trnS-trnG) and one nuclear DNA region (internal transcribed spacer, ITS). Fifty-five chloroplast DNA (cpDNA) and 48 ITS haplotypes were identified in the four species. All of the cpDNA and ITS haplotypes were species-specific, except N. franchetii and N. oviforme shared one cpDNA haplotype, H32. Phylogenetic analysis suggested that all four species formed a monophyletic clade with high bootstrap support, where N. franchetii and N. oviforme were sisters. In addition, each Notopterygium species generated an individual clade that corresponded to their respective species in the ITS tree. Population dynamics analyses and species distribution modeling showed that the two widely distributed herbs N. incisum and N. franchetii exhibited obvious demographic expansions during the Pleistocene ice ages. Molecular dating suggested that the divergence of the four Notopterygium species occurred approximately between 3.6 and 1.2 Mya, and it was significantly associated with recent extensive uplifts of the QTP. Our results support the hypothesis that mountain uplift and Quaternary climatic oscillations profoundly shaped the population genetic divergence and demographic dynamics of Notopterygium species. The findings of this and previous studies provide important insights into the effects of QTP uplifts and climatic changes on phylogeography and species differentiation in high altitude mountainous areas. Our results may also facilitate the conservation of endangered herbaceous medicinal plants in the genus Notopterygium. PMID:29167679
Shahzad, Khurram; Jia, Yun; Chen, Fu-Lin; Zeb, Umar; Li, Zhong-Hu
2017-01-01
Mountain uplift and climatic fluctuations are important driving forces that have affected the geographic distribution and population dynamics history of organisms. However, it is unclear how geological and climatic events might have affected the phylogeographic history and species divergence in high-alpine herbal plants. In this study, we analyzed the population demographic history and species differentiation of four endangered Notopterygium herbs on the high-altitude Qinghai-Tibetan Plateau (QTP) and adjacent areas. We combined phylogeographic analysis with species distribution modeling to detect the genetic variations in four Notopterygium species ( N. incisum , N. franchetii , N. oviforme , and N. forrestii ). In total, 559 individuals from 74 populations of the four species were analyzed based on three maternally inherited chloroplast fragments ( matK , rbcL , and trn S -trn G) and one nuclear DNA region (internal transcribed spacer, ITS). Fifty-five chloroplast DNA (cpDNA) and 48 ITS haplotypes were identified in the four species. All of the cpDNA and ITS haplotypes were species-specific, except N. franchetii and N. oviforme shared one cpDNA haplotype, H32. Phylogenetic analysis suggested that all four species formed a monophyletic clade with high bootstrap support, where N. franchetii and N. oviforme were sisters. In addition, each Notopterygium species generated an individual clade that corresponded to their respective species in the ITS tree. Population dynamics analyses and species distribution modeling showed that the two widely distributed herbs N. incisum and N. franchetii exhibited obvious demographic expansions during the Pleistocene ice ages. Molecular dating suggested that the divergence of the four Notopterygium species occurred approximately between 3.6 and 1.2 Mya, and it was significantly associated with recent extensive uplifts of the QTP. Our results support the hypothesis that mountain uplift and Quaternary climatic oscillations profoundly shaped the population genetic divergence and demographic dynamics of Notopterygium species. The findings of this and previous studies provide important insights into the effects of QTP uplifts and climatic changes on phylogeography and species differentiation in high altitude mountainous areas. Our results may also facilitate the conservation of endangered herbaceous medicinal plants in the genus Notopterygium.
NASA Astrophysics Data System (ADS)
Lehmann, E.
2016-12-01
On interannual time scales the atmosphere affects significantly fluctuations in the geodetic quantity of length-of-day (LOD). This effect is directly proportional to perturbations in the relative angular momentum of the atmosphere (AAM) computed from zonal winds. During El Niño events tropospheric westerlies increase due to elevated sea surface temperatures (SST) in the Pacific inducing peak anomalies in relative AAM and correspondingly, in LOD. However, El Niño events affect LOD variations differently strong and the causes of this varying effect are yet not clear. Here, we investigate the LOD-El Niño relationship in the 20th and 21st century (1982-2100) whether the quantity of LOD can be used as a geophysical tool to assess variability and change in a future climate. In our analysis we applied a windowed discrete Fourier transform on all de-seasonalized data to remove climatic signals outside of the El Niño frequency band. LOD (data: IERS) was related in space and time to relative AAM and SSTs (data: ERA-40 reanalysis, IPCC ECHAM05-OM1 20C, A1B). Results from mapped Pearson correlation coefficients and time frequency behavior analysis identified a teleconnection pattern that we term the EN≥65%-index. The EN≥65%-index prescribes a significant change in variation in length-of-day of +65% and more related to (1) SST anomalies of >2° in the Pacific Niño region (160°E-80°W, 5°S-5°N), (2) corresponding stratospheric warming anomalies of the quasi-biennial oscillation (QBO), and (3) strong westerly winds in the lower equatorial stratosphere. In our analysis we show that the coupled atmosphere-ocean conditions prescribed in the EN≥65%-index apply to the extreme El Niño events of 19982/83 and 1997/98, and to 75% of all El Niño events in the last third of the 21st century. At that period of time the EN≥65%-index describes a projected altered base state of the equatorial Pacific that shows almost continuous El Niño conditions under climate warming.
Zalloni, Enrica; de Luis, Martin; Campelo, Filipe; Novak, Klemen; De Micco, Veronica; Di Filippo, Alfredo; Vieira, Joana; Nabais, Cristina; Rozas, Vicente; Battipaglia, Giovanna
2016-01-01
Tree rings provide information about the climatic conditions during the growing season by recording them in different anatomical features, such as intra-annual density fluctuations (IADFs). IADFs are intra-annual changes of wood density appearing as latewood-like cells within earlywood, or earlywood-like cells within latewood. The occurrence of IADFs is dependent on the age and size of the tree, and it is triggered by climatic drivers. The variations of IADF frequency of different species and their dependence on climate across a wide geographical range have still to be explored. The objective of this study is to investigate the effect of age, tree-ring width and climate on IADF formation and frequency at a regional scale across the Mediterranean Basin in Pinus halepensis Mill., Pinus pinaster Ait., and Pinus pinea L. The analyzed tree-ring network was composed of P. pinea trees growing at 10 sites (2 in Italy, 4 in Spain, and 4 in Portugal), P. pinaster from 19 sites (2 in Italy, 13 in Spain, and 4 in Portugal), and P. halepensis from 38 sites in Spain. The correlations between IADF frequency and monthly minimum, mean and maximum temperatures, as well as between IADF frequency and total precipitation, were analyzed. A significant negative relationship between IADF frequency and tree-ring age was found for the three Mediterranean pines. Moreover, IADFs were more frequent in wider rings than in narrower ones, although the widest rings showed a reduced IADF frequency. Wet conditions during late summer/early autumn triggered the formation of IADFs in the three species. Our results suggest the existence of a common climatic driver for the formation of IADFs in Mediterranean pines, highlighting the potential use of IADF frequency as a proxy for climate reconstructions with geographical resolution. PMID:27200052
NASA Astrophysics Data System (ADS)
Oguntunde, Philip G.; Lischeid, Gunnar; Dietrich, Ottfried
2018-03-01
This study examines the variations of climate variables and rice yield and quantifies the relationships among them using multiple linear regression, principal component analysis, and support vector machine (SVM) analysis in southwest Nigeria. The climate and yield data used was for a period of 36 years between 1980 and 2015. Similar to the observed decrease ( P < 0.001) in rice yield, pan evaporation, solar radiation, and wind speed declined significantly. Eight principal components exhibited an eigenvalue > 1 and explained 83.1% of the total variance of predictor variables. The SVM regression function using the scores of the first principal component explained about 75% of the variance in rice yield data and linear regression about 64%. SVM regression between annual solar radiation values and yield explained 67% of the variance. Only the first component of the principal component analysis (PCA) exhibited a clear long-term trend and sometimes short-term variance similar to that of rice yield. Short-term fluctuations of the scores of the PC1 are closely coupled to those of rice yield during the 1986-1993 and the 2006-2013 periods thereby revealing the inter-annual sensitivity of rice production to climate variability. Solar radiation stands out as the climate variable of highest influence on rice yield, and the influence was especially strong during monsoon and post-monsoon periods, which correspond to the vegetative, booting, flowering, and grain filling stages in the study area. The outcome is expected to provide more in-depth regional-specific climate-rice linkage for screening of better cultivars that can positively respond to future climate fluctuations as well as providing information that may help optimized planting dates for improved radiation use efficiency in the study area.
2013-01-01
The rate of any chemical reaction or process occurring in the brain depends on temperature. While it is commonly believed that brain temperature is a stable, tightly regulated homeostatic parameter, it fluctuates within 1–4 °C following exposure to salient arousing stimuli and neuroactive drugs, and during different behaviors. These temperature fluctuations should affect neural activity and neural functions, but the extent of this influence on neurochemical measurements in brain tissue of freely moving animals remains unclear. In this Review, we present the results of amperometric evaluations of extracellular glutamate and glucose in awake, behaving rats and discuss how naturally occurring fluctuations in brain temperature affect these measurements. While this temperature contribution appears to be insignificant for glucose because its extracellular concentrations are large, it is a serious factor for electrochemical evaluations of glutamate, which is present in brain tissue at much lower levels, showing smaller phasic fluctuations. We further discuss experimental strategies for controlling the nonspecific chemical and physical contributions to electrochemical currents detected by enzyme-based biosensors to provide greater selectivity and reliability of neurochemical measurements in behaving animals. PMID:23448428
Holocene glacial fluctuations in southern South America
NASA Astrophysics Data System (ADS)
Reynhout, S.; Sagredo, E. A.; Kaplan, M. R.; Aravena, J. C.; Martini, M. A.; Strelin, J. A.; Schaefer, J. M.
2016-12-01
Understanding the timing and magnitude of former glacier fluctuations is critical to decipher long-term climatic trends and to unravel both natural cycles and human impact on the current glacial behavior. Despite more than seven decades of research efforts, a unifying model of Holocene glacial fluctuations in Southern South America remains elusive. Here, we present the state-of-the-art regarding the timing of Holocene glacial fluctuation in southern Patagonia-Tierra del Fuego, with a focus on a new generation of high-resolution radiocarbon and 10Be surface exposure dating chronologies. Recently acquired evidence suggest that after receding from advanced Late Glacial positions, Patagonian glaciers were for the most part close to, or even behind, present ice margins during the Early Holocene. On the other hand, emerging chronologies indicate that in some areas there were extensive expansions (century scale?) that punctuated the warm interval. Subsequently, we have evidence of multiple millennial timescale glacial advances starting in the middle Holocene. Several glacial maxima are defined by moraines and other landforms from 7000 years ago to the 19th century, with a gap sometime between 4,500 and 2,500 years ago. The last set of advances began around 800-600 years ago. Although glacial activity is documented in Patagonia at the same time as the European Little Ice Age, the extent of these glacial events are less prominent than those of the mid-Holocene. The causes that may explain these glacial fluctuations remain elusive. Finally, we discuss ongoing efforts to better define the timing and extent of Holocene glaciations in southern South America, and to establish the basis to test competing hypothesis of regional Holocene climate variability.
Lovejoy, S; de Lima, M I P
2015-07-01
Over the range of time scales from about 10 days to 30-100 years, in addition to the familiar weather and climate regimes, there is an intermediate "macroweather" regime characterized by negative temporal fluctuation exponents: implying that fluctuations tend to cancel each other out so that averages tend to converge. We show theoretically and numerically that macroweather precipitation can be modeled by a stochastic weather-climate model (the Climate Extended Fractionally Integrated Flux, model, CEFIF) first proposed for macroweather temperatures and we show numerically that a four parameter space-time CEFIF model can approximately reproduce eight or so empirical space-time exponents. In spite of this success, CEFIF is theoretically and numerically difficult to manage. We therefore propose a simplified stochastic model in which the temporal behavior is modeled as a fractional Gaussian noise but the spatial behaviour as a multifractal (climate) cascade: a spatial extension of the recently introduced ScaLIng Macroweather Model, SLIMM. Both the CEFIF and this spatial SLIMM model have a property often implicitly assumed by climatologists that climate statistics can be "homogenized" by normalizing them with the standard deviation of the anomalies. Physically, it means that the spatial macroweather variability corresponds to different climate zones that multiplicatively modulate the local, temporal statistics. This simplified macroweather model provides a framework for macroweather forecasting that exploits the system's long range memory and spatial correlations; for it, the forecasting problem has been solved. We test this factorization property and the model with the help of three centennial, global scale precipitation products that we analyze jointly in space and in time.
Understanding Evolutionary Impacts of Seasonality: An Introduction to the Symposium.
Williams, Caroline M; Ragland, Gregory J; Betini, Gustavo; Buckley, Lauren B; Cheviron, Zachary A; Donohue, Kathleen; Hereford, Joe; Humphries, Murray M; Lisovski, Simeon; Marshall, Katie E; Schmidt, Paul S; Sheldon, Kimberly S; Varpe, Øystein; Visser, Marcel E
2017-11-01
Seasonality is a critically important aspect of environmental variability, and strongly shapes all aspects of life for organisms living in highly seasonal environments. Seasonality has played a key role in generating biodiversity, and has driven the evolution of extreme physiological adaptations and behaviors such as migration and hibernation. Fluctuating selection pressures on survival and fecundity between summer and winter provide a complex selective landscape, which can be met by a combination of three outcomes of adaptive evolution: genetic polymorphism, phenotypic plasticity, and bet-hedging. Here, we have identified four important research questions with the goal of advancing our understanding of evolutionary impacts of seasonality. First, we ask how characteristics of environments and species will determine which adaptive response occurs. Relevant characteristics include costs and limits of plasticity, predictability, and reliability of cues, and grain of environmental variation relative to generation time. A second important question is how phenological shifts will amplify or ameliorate selection on physiological hardiness. Shifts in phenology can preserve the thermal niche despite shifts in climate, but may fail to completely conserve the niche or may even expose life stages to conditions that cause mortality. Considering distinct environmental sensitivities of life history stages will be key to refining models that forecast susceptibility to climate change. Third, we must identify critical physiological phenotypes that underlie seasonal adaptation and work toward understanding the genetic architectures of these responses. These architectures are key for predicting evolutionary responses. Pleiotropic genes that regulate multiple responses to changing seasons may facilitate coordination among functionally related traits, or conversely may constrain the expression of optimal phenotypes. Finally, we must advance our understanding of how changes in seasonal fluctuations are impacting ecological interaction networks. We should move beyond simple dyadic interactions, such as predator prey dynamics, and understand how these interactions scale up to affect ecological interaction networks. As global climate change alters many aspects of seasonal variability, including extreme events and changes in mean conditions, organisms must respond appropriately or go extinct. The outcome of adaptation to seasonality will determine responses to climate change. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Ren, S.; Chen, X.; Qin, Q.; Zhang, Y.; Wu, Z.
2017-12-01
Grassland ecosystem is greatly sensitive to regional and global climate changes. In this study, the start (SOS) and end (EOS) date of growing season were extracted from NDVI data (1981 2014) across the mid-latitude (30°N 55°N) grasslands of Northern Hemisphere. We first validated their accuracy by ground observed phenological data and phenological metrics derived from gross primary production (GPP) data. And then, main climatic factors influencing the temporal patterns of SOS/EOS were explored by means of gridded meteorological data and partial correlation analysis. Based on the results of above statistical analysis, the similarities and differences of spring and autumn phenological responses to climate change among North American grasslands, Mid-West Asian grasslands, and Mongolian grasslands were analyzed. The main results and conclusions are as follows. First, a significant positive correlation was found between SOS/EOS and observed green-up/brown-off date (P<0.05) and GPP-based SOS/EOS (P<0.05), which means remote sensed SOS/EOS can reflect temporal dynamics of terrestrial vegetation phenology. Second, SOS in Mid-West Asian grasslands showed a significant advancing trend (0.22 days/year, P<0.01), whereas the trend of SOS in North American grasslands and Mongolian grasslands was not significant. EOS in North American grasslands (0.31 dyas/year, P<0.01) and Mongolian grasslands (0.09 days/year, P<0.05) both presented a significant delaying trend, but the trend of EOS in Mid-West Asian grasslands was not significant. Furthermore, the correlation analysis of SOS/EOS inter-annual fluctuations and hydrothermal factors showed that a significant negative correlation was found between SOS and the pre-season temperature in 41.6% of pixels (P<0.05), while a significant negative/positive correlation was detected between SOS and pre-season rainfall/snowfall in 14.6%/19.0% of pixels (P<0.05). EOS was significantly positively correlated with pre-season rainfall in 34.5% of pixels (P<0.05), and significantly negatively/positively correlated with pre-season temperature in 12.1%/11.9% of pixels (P<0.05). This indicates that the fluctuations of SOS and EOS are mainly affected by pre-season temperature and pre-season rainfall.
Smith, Felisa A.; Betancourt, Julio L.
2006-01-01
Aim The influence of anthropogenic climate change on organisms is an area of great scientific concern. Increasingly there is recognition that abrupt climate transitions have occurred over the late Quaternary; studies of these shifts may yield insights into likely biotic responses to contemporary warming. Here, we review research undertaken over the past decade investigating the response of Neotoma (woodrats) body size and distribution to climate change over the late Quaternary (the last 40,000 years). By integrating information from woodrat palaeomiddens, historical museum specimens and field studies of modern populations, we identify potential evolutionary responses to climate change occurring over a variety of temporal and spatial scales. Specifically, we characterize climatic thresholds in the past that led to local species extirpation and/or range alterations rather than in situ adaptation, and apply them to anticipate potential biotic responses to anthropogenic climate change. Location Middens were collected at about 55 sites scattered across the western United States, ranging from about 34 to 46° N and about 104 to 116° W, respectively. Data for modern populations were drawn from studies conducted in Death Valley, California, Missoula, Montana and the Sevilleta LTER site in central New Mexico. Methods We analysed faecal pellets from midden series collected at numerous cave sites across the western United States. From these we estimated body mass using techniques validated in earlier studies. We compared body size fluctuations at different elevations in different regions and integrated these results with studies investigating temperature–body size tradeoffs in modern animals. We also quantify the rapidity of the size changes over the late Quaternary to estimate the evolutionary capacity of woodrats to deal with predicted rates of anthropogenic climate change over the next century. Results We find remarkable similarities across the geographical range to late Quaternary climate change. In the middle of the geographical range woodrats respond in accordance to Bergmann's rule: colder climatic conditions select for larger body size and warmer conditions select for smaller body size. Patterns are more complicated at range boundaries, and local environmental conditions influence the observed response. In general, woodrat body size fluctuates with approximately the same amplitude and frequency as climate; there is a significant and positive correlation between woodrat body size and generalized climate proxies (such as ice core records). Woodrats have achieved evolutionary rates of change equal to or greater than those needed to adapt in situ to anthropogenic climate change. Main conclusions In situ body size evolution is a likely outcome of climate change, and such shifts are part of a normal spectrum of adaptation. Woodrats appear to be subject to ongoing body size selection in response to fluctuating environmental conditions. Allometric considerations suggest that these shifts in body size lead to substantial changes in the physiology, life history and ecology of woodrats, and on their direct and indirect interactions with other organisms in the ecosystem. Our work highlights the importance of a finely resolved and long-term record in understanding biotic responses to climatic shifts.
Holocene moisture changes in western China, Central Asia, inferred from stalagmites
NASA Astrophysics Data System (ADS)
Cai, Yanjun; Chiang, John C. H.; Breitenbach, Sebastian F. M.; Tan, Liangcheng; Cheng, Hai; Edwards, R. Lawrence; An, Zhisheng
2017-02-01
Central Asia lies at the convergence between the Mediterranean and Asian monsoon climates, and there is a complex interaction between the westerlies with the monsoon to form the climate of that region and its variability. The region is highly vulnerable to changes in rainfall, highlighting the need to understand the underlying controls. We present a stalagmite-based δ18O record from Kesang Cave in western China, using MC-ICP-MS U-series dating and stable isotope analysis. Stalagmite calcite δ18O largely documents changes in the δ18O of precipitation. δ18O in stalagmites was low during the early and middle Holocene (10.0-3.0 ka BP), and shifted to higher values between 3.0 and 2.0 ka BP. After 2.0 ka BP, δ18O fluctuates with distinct centennial-scale variations. Drawing from results of state-of-the-art atmospheric general circulation model simulations for the preindustrial period and 9 ka BP, we propose that changes in moisture source regions and the wetter climate both contributed to the isotopic depletion of precipitation during the early and middle Holocene. Multiple records from surrounding regions indicate a generally wetter climate during the early and mid- Holocene, supporting our interpretation on the speleothem δ18O. Changes in precipitation seasonality do not appear to be a viable explanation for the observed changes, nor increased penetration of monsoonal moisture to the study site. We speculate that the climatic regime shifted around 3.0-2.0 ka BP towards a drier climate, resulting in temperature having dominant control on precipitation δ18O. The demise of three settlements around 500AD at the margin of Tarim Basin coincided with a period of decreased precipitation and increased temperature that likely affected local water resources, underscoring the potential impact of climate on human habitation in this region.
Seasonal associations of climatic drivers and malaria in the highlands of Ethiopia.
Midekisa, Alemayehu; Beyene, Belay; Mihretie, Abere; Bayabil, Estifanos; Wimberly, Michael C
2015-06-24
The impacts of interannual climate fluctuations on vector-borne diseases, especially malaria, have received considerable attention in the scientific literature. These effects can be significant in semi-arid and high-elevation areas such as the highlands of East Africa because cooler temperature and seasonally dry conditions limit malaria transmission. Many previous studies have examined short-term lagged effects of climate on malaria (weeks to months), but fewer have explored the possibility of longer-term seasonal effects. This study assessed the interannual variability of malaria occurrence from 2001 to 2009 in the Amhara region of Ethiopia. We tested for associations of climate variables summarized during the dry (January-April), early transition (May-June), and wet (July-September) seasons with malaria incidence in the early peak (May-July) and late peak (September-December) epidemic seasons using generalized linear models. Climate variables included land surface temperature (LST), rainfall, actual evapotranspiration (ET), and the enhanced vegetation index (EVI). We found that both early and late peak malaria incidence had the strongest associations with meteorological conditions in the preceding dry and early transition seasons. Temperature had the strongest influence in the wetter western districts, whereas moisture variables had the strongest influence in the drier eastern districts. We also found a significant correlation between malaria incidence in the early and the subsquent late peak malaria seasons, and the addition of early peak malaria incidence as a predictor substantially improved models of late peak season malaria in both of the study sub-regions. These findings suggest that climatic effects on malaria prior to the main rainy season can carry over through the rainy season and affect the probability of malaria epidemics during the late malaria peak. The results also emphasize the value of combining environmental monitoring with epidemiological surveillance to develop forecasts of malaria outbreaks, as well as the need for spatially stratified approaches that reflect the differential effects of climatic variations in the different sub-regions.
Will climate change affect outbreak patterns of planthoppers in Bangladesh?
Ali, M P; Huang, Dingcheng; Nachman, G; Ahmed, Nur; Begum, Mahfuz Ara; Rabbi, M F
2014-01-01
Recently, planthoppers outbreaks have intensified across Asia resulting in heavy rice yield losses. The problem has been widely reported as being induced by insecticides while other factors such as global warming that could be potential drivers have been neglected. Here, we speculate that global warming may increase outbreak risk of brown planthopper (Nilaparvata lugens Stål.). We present data that demonstrate the relationship between climate variables (air temperature and precipitation) and the abundance of brown planthopper (BPH) during 1998-2007. Data show that BPH has become significantly more abundant in April over the 10-year period, but our data do not indicate that this is due to a change in climate, as no significant time trends in temperature and precipitation could be demonstrated. The abundance of BPH varied considerably between months within a year which is attributed to seasonal factors, including the availability of suitable host plants. On the other hand, the variation within months is attributed to fluctuations in monthly temperature and precipitation among years. The effects of these weather variables on BPH abundance were analyzed statistically by a general linear model. The statistical model shows that the expected effect of increasing temperatures is ambiguous and interacts with the amount of rainfall. According to the model, months or areas characterized by a climate that is either cold and dry or hot and wet are likely to experience higher levels of BPH due to climate change, whereas other combinations of temperature and rainfall may reduce the abundance of BPH. The analysis indicates that global warming may have contributed to the recent outbreaks of BPH in some rice growing areas of Asia, and that the severity of such outbreaks is likely to increase if climate change exaggerates. Our study highlights the need to consider climate change when designing strategies to manage planthoppers outbreaks.
Empirical evidence of climate's role in Rocky Mountain landscape evolution
NASA Astrophysics Data System (ADS)
Riihimaki, Catherine A.; Reiners, Peter W.
2012-06-01
Climate may be the dominant factor affecting landscape evolution during the late Cenozoic, but models that connect climate and landscape evolution cannot be tested without precise ages of landforms. Zircon (U-Th)/He ages of clinker, metamorphosed rock formed by burning of underlying coal seams, provide constraints on the spatial and temporal patterns of Quaternary erosion in the Powder River basin of Wyoming and Montana. The age distribution of 86 sites shows two temporal patterns: (1) a bias toward younger ages because of erosion of older clinker and (2) periodic occurrence of coal fires likely corresponding with particular climatic regimes. Statistical t tests of the ages and spectral analyses of the age probability density function indicate that these episodes of frequent coal fires most likely correspond with times of high eccentricity in Earth's orbit, possibly driven by increased seasonality in the region causing increased erosion rates and coal exhumation. Correlation of ages with interglacial time periods is weaker. The correlations between climate and coal fires improve when only samples greater than 50 km from the front of the Bighorn Range, the site of the nearest alpine glaciation, are compared. Together, these results indicate that the interaction between upstream glaciation and downstream erosion is likely not the dominant control on Quaternary landscape evolution in the Powder River basin, particularly since 0.5 Ma. Instead, incision rates are likely controlled by the response of streams to climate shifts within the basin itself, possibly changes in local precipitation rates or frequency-magnitude distributions, with no discernable lag time between climate changes and landscape responses. Clinker ages are consistent with numerical models in which stream erosion is driven by fluctuations in stream power on thousand year timescales within the basins, possibly as a result of changing precipitation patterns, and is driven by regional rock uplift on million year timescales.
Inherited hypoxia: A new challenge for reoligotrophicated lakes under global warming
NASA Astrophysics Data System (ADS)
Jenny, Jean-Philippe; Arnaud, Fabien; Alric, Benjamin; Dorioz, Jean-Marcel; Sabatier, Pierre; Meybeck, Michel; Perga, Marie-Elodie
2014-12-01
The Anthropocene is characterized by a worldwide spread of hypoxia, among other manifestations, which threatens aquatic ecosystem functions, services, and biodiversity. The primary cause of hypoxia onset in recent decades is human-triggered eutrophication. Global warming has also been demonstrated to contribute to the increase of hypoxic conditions. However, the precise role of both environmental forcings on hypoxia dynamics over the long term remains mainly unknown due to a lack of historical monitoring. In this study, we used an innovative paleolimnological approach on three large European lakes to quantify past hypoxia dynamics and to hierarchies the contributions of climate and nutrients. Even for lake ecosystems that have been well oxygenated over a millennia-long period, and regardless of past climatic fluctuations, a shift to hypoxic conditions occurred in the 1950s in response to an unprecedented rise in total phosphorus concentrations above 10 ± 5 µg P L-1. Following this shift, hypoxia never disappeared despite the fact that environmental policies succeeded in drastically reducing lake phosphorus concentrations. During that period, decadal fluctuations in hypoxic volume were great, ranging between 0.5 and 8% of the total lake volumes. We demonstrate, through statistical modeling, that these fluctuations were essentially driven by climatic factors, such as river discharge and air temperature. In lakes Geneva and Bourget, which are fed by large river systems, fluctuations in hypoxic volume were negatively correlated with river discharge. In contrast, the expansion of hypoxia has been related only to warmer air temperatures at Annecy, which is fed by small river systems. Hence, we outline a theoretical framework assuming that restored lake ecosystems have inherited hypoxia from the eutrophication period and have shifted to a new stable state with new key controls of water and ecosystem quality. We suggest that controlling river discharge may be a complementary strategy for local management of lakes fed by large river systems.
NASA Astrophysics Data System (ADS)
Paytan, A.; Eisenhauer, A.; Wallmann, K. J. G.; Griffith, E. M.; Ridgwell, A.
2017-12-01
The radiogenic Sr-isotopic signature (87Sr/86Sr) of seawater fluctuates primarily in response to changes in the inputs of Sr from weathering and hydrothermal activity, which have distinct 87Sr/86Sr values. Changes in the isotopic ratio of the weathered terrain also contribute to observed changes in 87Sr/86Sr. The stable Sr-isotope ratios in seawater (mass dependent isotopic fractionation; δ88/86Sr) fluctuate primarily in response to the rate of calcium carbonate (CaCO3) accumulation at the seafloor. Together the radiogenic and stable Sr can constrain the coupling between weathering and sedimentation and shed light on the relation between weathering, CaCO3 deposition, the global carbon (C) cycle and climate. Reconstruction of the coupled stable and radiogenic Sr seawater curves over the past 35 Ma of Earth history indicates that the location and rate of CaCO3 burial in the ocean fluctuated considerably over the past 35 Ma. Between 35 to 18 Ma a reduction in neritic CaCO3 burial and increased burial in pelagic settings is observed. The trend was reversed between 20 and 3 Ma and finally over the last 3 million years a rapid change from neritic to pelagic burial is seen. The lack of continues increase of pelagic CaCO3 burial rates suggests that silicate weathering rates have not increased monotonically over the past 35 Ma implying strong feedbacks operating in the climate system - lower atmospheric pCO2 and cooling trends (which control chemical weathering as seen from carbonate deposition in the ocean) countered the effects of uplift (which controls physical weathering) - modulating weathering rates and preventing a runaway ice-house. In addition the data suggests considerable fluctuations in seawater Sr concentrations over time. These data demonstrate how using multiple isotope proxies can help constrain interpretations of the geological record.
Ortiz Lledó, Álvaro; Vidal Mateo, Javier; Urios Moliner, Vicente
2018-01-01
A study on the Whiskered Tern Chlidonias hybrida was carried out between 2002 and 2009 in wetlands of eastern Spain to evaluate how water level fluctuation affects its reproductive success (hatching, fledgling and breeding success). This species is catalogued as Vulnerable in Spain and has an unfavorable conservation status in Europe. Our study includes 18 sampling areas from five wetlands, covering a total of 663 nests, 1,618 eggs, 777 nestlings and 225 fledglings. The colonies were visited at least twice per week in breeding period. The number of eggs and/or nestlings present in each nest were annotated each time the colonies were visited with the aim to compare the evolution of these parameters with time. Hatching success was calculated as the proportion of egg that hatched successfully. Fledgling success and breeding success were calculated as the proportion of chicks that fledged successfully and the proportion of eggs that produced fledglings. We used the Kruskal-Wallis test to analyze the differences in the dependent variables hatching, fledgling and breeding success among the wetlands and the sampling areas. We explored the relationship between the different reproductive success with the average fluctuation rate and the anchoring depth of nests, using statistics of the linear regression. It was observed that the reproductive success varied significantly in the interaction among the different categories of water level fluctuation and the different areas (using the Kruskal-Wallis test). Our records showed that pronounced variations in water level destroyed several nests, which affected the Whiskered Tern reproductive success. Considering all events that occurred in 18 areas, the mean (±SD) of nests, eggs and nestlings that were lost after water level fluctuations were of 25.60 ± 21.79%, 32.06 ± 27.58% and 31.91 ± 21.28% respectively, also including the effects of rain and predation. Unfavorable climatic events, such as strong wind, rain or hail, also caused the loss of nests, eggs and nestlings, even when wetland water levels remained constant. The influence of the anchorage depth of the nest and the water level fluctuation rate were analyzed and did not provide statistically significant results. It was not possible to establish a clear pattern on these latter variables, so further studies are needed to obtain more significant results. We propose to undertake similar studies in wetlands where the water level can be regulated, with the range of nest anchorage depth on the emergent vegetation being between 30 and 60 cm, which could improve the reproductive success in this kind of habitats. As recommendation, in water level controlled wetlands (that use sluices), it should not vary more than ±6 cm in a short time (1-2 days) once the nests are established since it negatively affects their reproductive success.
NASA Astrophysics Data System (ADS)
Corcoran, M. C.; Thomas, E. K.; Castañeda, I. S.; Briner, J. P.
2017-12-01
Understanding the causes of ice sheet fluctuations resulting in sea level rise is essential in today's warming climate. In high-latitude ice-sheet-proximal environments such as Baffin Bay, studying both the cause and the rate of ice sheet variability during past abrupt climate change events aids in predictions. Past climate reconstructions are used to understand ice sheet responses to changes in temperature and precipitation. The 9,300 and 8,200 yr BP events are examples of abrupt climate change events in the Baffin Bay region during which there were multiple re-advances of the Greenland and Laurentide ice sheets. High-resolution (decadal-scale) hydroclimate variability near the ice sheet margins during these abrupt climate change events is still unknown. We will generate a decadal-scale record of early Holocene temperature and precipitation using leaf wax hydrogen isotopes, δ2Hwax, from a lake sediment archive on Baffin Island, western Baffin Bay, to better understand abrupt climate change in this region. Shifts in temperature and moisture source result in changes in environmental water δ2H, which in turn is reflected in δ2Hwax, allowing for past hydroclimate to be determined from these compound-specific isotopes. The combination of terrestrial and aquatic δ2Hwax is used to determine soil evaporation and is ultimately used to reconstruct moisture variability. We will compare our results with a previous analysis of δ2Hwax and branched glycerol dialkyl glycerol tetraethers, a temperature and pH proxy, in lake sediment from western Greenland, eastern Baffin Bay, which indicates that cool and dry climate occurred in response to freshwater forcing events in the Labrador Sea. Reconstructing and comparing records on both the western and eastern sides of Baffin Bay during the early Holocene will allow for a spatial understanding of temperature and moisture balance changes during abrupt climate events, aiding in ice sheet modeling and predictions of future sea level rise.
Yang, Hao; Luo, Peng; Wang, Jun; Mou, Chengxiang; Mo, Li; Wang, Zhiyuan; Fu, Yao; Lin, Honghui; Yang, Yongping; Bhatta, Laxmi Dutt
2015-01-01
Climate and human-driven changes play an important role in regional droughts. Northwest Yunnan Province is a key region for biodiversity conservation in China, and it has experienced severe droughts since the beginning of this century; however, the extent of the contributions from climate and human-driven changes remains unclear. We calculated the ecosystem evapotranspiration (ET) and water yield (WY) of northwest Yunnan Province, China from 2001 to 2013 using meteorological and remote sensing observation data and a Surface Energy Balance System (SEBS) model. Multivariate regression analyses were used to differentiate the contribution of climate and vegetation coverage to ET. The results showed that the annual average vegetation coverage significantly increased over time with a mean of 0.69 in spite of the precipitation fluctuation. Afforestation/reforestation and other management efforts attributed to vegetation coverage increase in NW Yunnan. Both ET and WY considerably fluctuated with the climate factors, which ranged from 623.29 mm to 893.8 mm and –51.88 mm to 384.40 mm over the time period. Spatially, ET in the southeast of NW Yunnan (mainly in Lijiang) increased significantly, which was in line with the spatial trend of vegetation coverage. Multivariate linear regression analysis indicated that climatic factors accounted for 85.18% of the ET variation, while vegetation coverage explained 14.82%. On the other hand, precipitation accounted for 67.5% of the WY. We conclude that the continuous droughts in northwest Yunnan were primarily climatically driven; however, man-made land cover and vegetation changes also increased the vulnerability of local populations to drought. Because of the high proportion of the water yield consumed for subsistence and poor infrastructure for water management, local populations have been highly vulnerable to climate drought conditions. We suggest that conservation of native vegetation and development of water-conserving agricultural practices should be implemented as adaptive strategies to mitigate climate change. PMID:26237220
Yang, Hao; Luo, Peng; Wang, Jun; Mou, Chengxiang; Mo, Li; Wang, Zhiyuan; Fu, Yao; Lin, Honghui; Yang, Yongping; Bhatta, Laxmi Dutt
2015-01-01
Climate and human-driven changes play an important role in regional droughts. Northwest Yunnan Province is a key region for biodiversity conservation in China, and it has experienced severe droughts since the beginning of this century; however, the extent of the contributions from climate and human-driven changes remains unclear. We calculated the ecosystem evapotranspiration (ET) and water yield (WY) of northwest Yunnan Province, China from 2001 to 2013 using meteorological and remote sensing observation data and a Surface Energy Balance System (SEBS) model. Multivariate regression analyses were used to differentiate the contribution of climate and vegetation coverage to ET. The results showed that the annual average vegetation coverage significantly increased over time with a mean of 0.69 in spite of the precipitation fluctuation. Afforestation/reforestation and other management efforts attributed to vegetation coverage increase in NW Yunnan. Both ET and WY considerably fluctuated with the climate factors, which ranged from 623.29 mm to 893.8 mm and -51.88 mm to 384.40 mm over the time period. Spatially, ET in the southeast of NW Yunnan (mainly in Lijiang) increased significantly, which was in line with the spatial trend of vegetation coverage. Multivariate linear regression analysis indicated that climatic factors accounted for 85.18% of the ET variation, while vegetation coverage explained 14.82%. On the other hand, precipitation accounted for 67.5% of the WY. We conclude that the continuous droughts in northwest Yunnan were primarily climatically driven; however, man-made land cover and vegetation changes also increased the vulnerability of local populations to drought. Because of the high proportion of the water yield consumed for subsistence and poor infrastructure for water management, local populations have been highly vulnerable to climate drought conditions. We suggest that conservation of native vegetation and development of water-conserving agricultural practices should be implemented as adaptive strategies to mitigate climate change.
NASA Astrophysics Data System (ADS)
Diodato, Nazzareno; Mao, Luca; Borrelli, Pasquale; Panagos, Panos; Fiorillo, Francesco; Bellocchi, Gianni
2018-05-01
Pulsing storms and prolonged rainfall can drive hydrological damaging events in mountain regions with soil erosion and debris flow in river catchments. The paper presents a parsimonious model for estimating climate forcing on sediment loads in an Alpine catchment (Rio Cordon, northeastern Italian Alps). Hydroclimatic forcing was interpreted by the novel CliSMSSL (Climate-Scale Modelling of Suspended Sediment Load) model to estimate annual sediment loads. We used annual data on suspended-solid loads monitored at an experimental station from 1987 to 2001 and on monthly precipitation data. The quality of sediment load data was critically examined, and one outlying year was identified and removed from further analyses. This outlier revealed that our model underestimates exceptionally high sediment loads in years characterized by a severe flood event. For all other years, the CliSMSSL performed well, with a determination coefficient (R2) equal to 0.67 and a mean absolute error (MAE) of 129 Mg y-1. The calibrated model for the period 1986-2010 was used to reconstruct sediment loads in the river catchment for historical times when detailed precipitation records are not available. For the period 1810-2010, the model results indicate that the past centuries have been characterized by large interannual to interdecadal fluctuations in the conditions affecting sediment loads. This paper argues that climate-induced erosion processes in Alpine areas and their impact on environment should be given more attention in discussions about climate-driven strategies. Future work should focus on delineating the extents of these findings (e.g., at other catchments of the European Alpine belt) as well as investigating the dynamics for the formation of sediment loads.
Ecohydrology and biogeochemistry of seasonally-dry ecosystems
NASA Astrophysics Data System (ADS)
Feng, X.; Porporato, A. M.
2010-12-01
The composition and the dynamic in various types of seasonally dry ecosystems are largely determined by rainfall seasonality and distribution. The intermittency of rainfall in these ecosystems has played a dominant role in the life cycle of native plants such that phenological events such as growth or reproduction have oftentimes become synchronized with the onset of the dry or the wet season. Characteristic amongst such types of ecosystems are the tropical dry and Mediterranean ecosystems, both of which receive similar amount of precipitation yet are markedly distinct in their synchronization of rainfall fluctuations and temperature. Seasonally dry ecosystems cover more than 16 million square kilometers in the tropics, with short but intense wet seasons followed by long dry seasons and elevated temperature throughout the year. Native vegetation grows during the wet season and adopts dormancy or seasonal deciduousness to cope with the dry season. In the Mediterranean climates, precipitations and temperature are out of phase, with wet temperate winters and hot dry summers. Dimorphic root systems are prevalent, where deep rooted plants exploit the winter recharge while the shallow rooted species take advantage of the infrequent summer rains. Using a stochastic soil moisture model we analyze how temporal shifts, or the lack thereof, in temperature and precipitation patterns affect the development of water stress during the dry season and its feedbacks on soil-plant biogeochemistry. We especially focus on the role of differences in temperature and seasonal potential evapotranspiration between tropical dry and Mediterranean climates. We also compare irrigation needs and the effects of projected climatic conditions in those regions. Understanding how plants adopt different water use strategies in the context of shifted climatic patterns will shed light on how these regions of high biodiversity may cope with rapidly-changing climatic conditions.
Long-Term and Seasonal Dynamics of Dengue in Iquitos, Peru
Stoddard, Steven T.; Wearing, Helen J.; Reiner, Robert C.; Morrison, Amy C.; Astete, Helvio; Vilcarromero, Stalin; Alvarez, Carlos; Ramal-Asayag, Cesar; Sihuincha, Moises; Rocha, Claudio; Halsey, Eric S.; Scott, Thomas W.; Kochel, Tadeusz J.; Forshey, Brett M.
2014-01-01
Introduction Long-term disease surveillance data provide a basis for studying drivers of pathogen transmission dynamics. Dengue is a mosquito-borne disease caused by four distinct, but related, viruses (DENV-1-4) that potentially affect over half the world's population. Dengue incidence varies seasonally and on longer time scales, presumably driven by the interaction of climate and host susceptibility. Precise understanding of dengue dynamics is constrained, however, by the relative paucity of laboratory-confirmed longitudinal data. Methods We studied 10 years (2000–2010) of laboratory-confirmed, clinic-based surveillance data collected in Iquitos, Peru. We characterized inter and intra-annual patterns of dengue dynamics on a weekly time scale using wavelet analysis. We explored the relationships of case counts to climatic variables with cross-correlation maps on annual and trimester bases. Findings Transmission was dominated by single serotypes, first DENV-3 (2001–2007) then DENV-4 (2008–2010). After 2003, incidence fluctuated inter-annually with outbreaks usually occurring between October and April. We detected a strong positive autocorrelation in case counts at a lag of ∼70 weeks, indicating a shift in the timing of peak incidence year-to-year. All climatic variables showed modest seasonality and correlated weakly with the number of reported dengue cases across a range of time lags. Cases were reduced after citywide insecticide fumigation if conducted early in the transmission season. Conclusions Dengue case counts peaked seasonally despite limited intra-annual variation in climate conditions. Contrary to expectations for this mosquito-borne disease, no climatic variable considered exhibited a strong relationship with transmission. Vector control operations did, however, appear to have a significant impact on transmission some years. Our results indicate that a complicated interplay of factors underlie DENV transmission in contexts such as Iquitos. PMID:25033412
Recent changes in ecologically-relevant streamflows in North America
NASA Astrophysics Data System (ADS)
Ficklin, D. L.; Abatzoglou, J. T.; Knouft, J.; Robeson, S. M.
2017-12-01
The streamflow regime is a primary regulator of the composition and functioning of freshwater ecosystems. Growth, behavior, and/or reproduction of most freshwater organisms are influenced in some way by the amount of water, including high and low flows, and seasonal fluctuations in water availability in a particular habitat. This work examines trends in ecologically-relevant measures of streamflows from 1980-2015 for over 3,000 streamflow gauges located throughout Canada and United States. Specifically, we examine trends in water year mean flow and variability, as well as trends in high (95th and 99th percentile), low (1st and 5th percentile), and 7- and 3-day maximum and minimum streamflows. The results indicate a clear regional delineation of significant increases of ecologically-relevant streamflows in the northern Central Plains/south-central Canada, upper Midwest (except Michigan and Wisconsin) and northeastern United States/southeastern Canada, while significant decreases are found throughout the southeastern and southwestern United States. The regional agreement between streamflow trends in regulated and unregulated watersheds indicate a widespread climatic influence that is not masked by human alteration of streamflows. We explore the degree to which climate factors explain both interannual variability and observed trends in streamflow to better elucidate the role of top-down climate drivers versus bottom-up land surface drivers on recent trends in ecologically-relevant streamflow. We also explore how these changes in streamflow are affecting water quality such as water temperature and sediment concentration. This type of analysis will aid in highlighting streamflow regions in the United States that are currently sensitive to changes in climate, but may also aid in understanding which regions may be sensitive to future climatic changes.
Are thermal barriers "higher" in deep sea turtle nests?
Santidrián Tomillo, Pilar; Fonseca, Luis; Paladino, Frank V; Spotila, James R; Oro, Daniel
2017-01-01
Thermal tolerances are affected by the range of temperatures that species encounter in their habitat. Daniel Janzen hypothesized in his "Why mountain passes are higher in the tropics" that temperature gradients were effective barriers to animal movements where climatic uniformity was high. Sea turtles bury their eggs providing some thermal stability that varies with depth. We assessed the relationship between thermal uniformity and thermal tolerance in nests of three species of sea turtles. We considered that barriers were "high" when small thermal changes had comparatively large effects and "low" when the effects were small. Mean temperature was lower and fluctuated less in species that dig deeper nests. Thermal barriers were comparatively "higher" in leatherback turtle (Dermochelys coriacea) nests, which were the deepest, as embryo mortality increased at lower "high" temperatures than in olive ridley (Lepidochelys olivacea) and green turtle (Chelonia mydas) nests. Sea turtles have temperature-dependent sex determination (TSD) and embryo mortality increased as temperature approached the upper end of the transitional range of temperatures (TRT) that produces both sexes (temperature producing 100% female offspring) in leatherback and olive ridley turtles. As thermal barriers are "higher" in some species than in others, the effects of climate warming on embryo mortality is likely to vary among sea turtles. Population resilience to climate warming may also depend on the balance between temperatures that produce female offspring and those that reduce embryo survival.
Physiological Significance of Low Atmospheric CO 2 for Plant-Climate Interactions
NASA Astrophysics Data System (ADS)
Cowling, Sharon A.; Sykes, Martin T.
1999-09-01
Methods of palaeoclimate reconstruction from pollen are built upon the assumption that plant-climate interactions remain the same through time or that these interactions are independent of changes in atmospheric CO2. The latter may be problematic because air trapped in polar ice caps indicates that atmospheric CO2 has fluctuated significantly over at least the past 400,000 yr, and likely the last 1.6 million yr. Three other points indicate potential biases for vegetation-based climate proxies. First, C3-plant physiological research shows that the processes that determine growth optima in plants (photosynthesis, mitochondrial respiration, photorespiration) are all highly CO2-dependent, and thus were likely affected by the lower CO2 levels of the last glacial maximum. Second, the ratio of carbon assimilation per unit transpiration (called water-use efficiency) is sensitive to changes in atmospheric CO2 through effects on stomatal conductance and may have altered C3-plant responses to drought. Third, leaf gas-exchange experiments indicate that the response of plants to carbon-depleting environmental stresses are strengthened under low CO2 relative to today. This paper reviews the scope of research addressing the consequences of low atmospheric CO2 for plant and ecosystem processes and highlights why consideration of the physiological effects of low atmospheric CO2 on plant function is recommended for any future refinements to pollen-based palaeoclimatic reconstructions.
Bajpai, Rajesh; Mishra, Seema; Dwivedi, Sanjay; Upreti, Dalip Kumar
2016-01-01
Climatic fluctuations largely affects species turnover and cause major shifts of terrestrial ecosystem. In the present study the five decade old herbarium specimens of lichens were compared with recent collection from Darjeeling district with respect to elements, PAHs accumulation and carbon isotope composition (δ13C) to explore the changes in climatic conditions and its impact on lichen flora. The δ13C has increased in recent specimens which is in contrast to the assumption that anthropogenic emission leads to δ13C depletion in air and increased carbon discrimination in flora. Study clearly demonstrated an increase in anthropogenic pollution and drastic decrease in precipitation while temperature showed abrupt changes during the past five decades resulting in significant change in lichen community structure. The Usneoid and Pertusorioid communities increased, while Physcioid and Cyanophycean decreased, drastically. Lobarian abolished from the study area, however, Calcicoid has been introduced in the recent past. Probably, post-industrial revolution, the abrupt changes in the environment has influenced CO2 diffusion and/C fixation of (lower) plants either as an adaptation strategy or due to toxicity of pollutants. Thus, the short term studies (≤5 decades) might reflect recent micro-environmental condition and lichen community structure can be used as model to study the global climate change. PMID:27502030
Verducci, M.; Foresi, L.M.; Scott, G.H.; ,; Sprovieri, M.; Lirer, F.
2007-01-01
This research focuses on a detailed study of faunal and biogeochemical changes that occurred at ODP Hole 747A in the Kerguelen Plateau region of the Southern Ocean during the middle Miocene (14.8-11.8 Ma). Abundance fluctuations of several planktonic foraminiferal taxa, stable oxygen isotope and Mg/Ca ratios have been integrated as a multi-proxy approach to reach a better understanding of the growth modality and fluctuations of the East Antarctic Ice Sheet (EAIS) during this period. A 7°C decrease in Sea Surface Temperature (SST), an abrupt turnover in the planktonic foraminiferal assemblage, a 1.5‰ shift towards heavier δ18O values (Mi3 event) and a related shift towards heavier seawater δ118O values between 13.9 and 13.7 Ma, are interpreted to reflect rapid surface water cooling and EAIS expansion. Hole 747A data suggest a major change in the variability of the climate system fostered by EAIS expansion between 13.9 and 13.7 Ma. Ice sheet fluctuations were greater during the interval 14.8-13.9 Ma compared with those from 13.7 to 11.8 Ma, whereas the latter interval was characterized by a more stable EAIS. In our opinion, the middle Miocene ice sheet expansion in Antarctica represents a first step towards the development of the modern permanent ice sheet
Sensitivity of seafloor bathymetry to climate-driven fluctuations in mid-ocean ridge magma supply
NASA Astrophysics Data System (ADS)
Olive, Jean-Arthur; Behn, Mark; Ito, Garrett; Escartin, Javier; Buck, Roger; Howell, Samuel
2016-04-01
Abyssal hills are the most common topographic feature on the surface of the solid Earth, yet the detailed mechanisms through which they are formed remain a matter of debate. Classical seafloor observations suggest hills acquire their shape at mid-ocean ridges through a combination of normal faulting and volcanic accretion. However, recent studies have proposed that the fabric of the seafloor reflects rapid fluctuations in ridge magma supply caused by oscillations in sea level modulating the partial melting process beneath the ridge [Crowley et al., 2015, Science]. In order to move this debate forward, we propose a modeling framework relating the magma supply of a mid-ocean ridge to the morphology of the seafloor it produces, i.e., the spacing and amplitude of abyssal hills. We specifically assess whether fluctuations in melt supply of a given periodicity can be recorded in seafloor bathymetry through (1) static compensation of crustal thickness oscillations, (2) volcanic extrusion, and (3) fault growth modulated by dike injection. We find that topography-building processes are generally insensitive to fluctuations in melt supply on time scales shorter than ~50-100 kyr. Further, we show that the characteristic wavelengths found in seafloor bathymetry across all spreading rates are best explained by simple tectono-magmatic interaction models, and require no periodic (climatic) forcing. Finally, we explore different spreading regimes where a smaller amplitude sea-level signal super-imposed on the dominant faulting signal could be most easily resolved.
NASA Astrophysics Data System (ADS)
Xie, Y.
2013-12-01
Although the coupled impacts of climate change and human adaptation on land cover change has been a prime research topic in recent years, a majority of reported efforts are examining the coupled effects of climate and socioeconomic factors qualitatively. Even though some are applying statistical methods, they often look into the impacts of coupled climate variations and socioeconomic transformations on land cover changes in a detached or sequential manner, or they handle socioeconomic influences indirectly through land use changes. Very few of them deal with the coupled effects concurrently through times and cross regions. We assimilate a big dataset of climate change, plant community growth condition, and socioeconomic transformation in Inner Mongolia of China. The study area consists of twelve types of plant communities, reflecting an east-to-west water-temperature gradient from moist meadow-type, to typical steppe-type and then to arid desert-type communities. The enhanced vegetation index (EVI), derived from MODIS at a 250 m resolution and 16-day intervals from May 8 to September 28 during 2000-2010, is adopted as a proxy for vegetation growth. The inter-annual and intra-annual changes of seven climate factors (barometric pressure, humidity, precipitation, sunlight hours, temperature, vapor pressure and wind speed) during the same period are synchronized with the EVI observations. Ten socioeconomic variables (urban population, urban GDP, rural GDP, grain output, livestock, fixed assets investment, local government revenue, per capita net income of farmers and pastoralists, the total length of highways, and rural population) are collected over 34 counties in the study area and during the same period. The GIS-based spatial database approach is adopted to integrate all of the above data into a big spatiotemporal dataset. We develop a multi-controlled panel-data regression model to investigate spatiotemporal changes of vegetation growth and their underlying causes of coupled climate and human impacts. We are able to examine the causal relationships between vegetation growth and coupled climate change and socioeconomic transformation either from the perspective of seasonal, annual, eco-regional, or by-county change, respectively. Most importantly, we can investigate the causal relations concurrently over seasons and years and across administrative or ecological regions. The findings confirm that climate changes and human socioeconomic activities jointly affect vegetation growth and its trajectory of change; these climate and human factors reveal varied levels of impacts (sunshine hour, humidity, vapor, grain production, precipitation, urban-GDP, livestock, and urban population in descending order positively affect vegetation growth, while rural-GDP and rural population negatively do); and the causal relationships show clear seasonal trends, annual fluctuations, and regional disparities, depending on a variety of ecologically and economically varying contextual factors. The potential of applying our model and approach in the Eurasian Steppes is very promising.
Effect of climate-ocean changes on the abundance of Pacific saury.
Gong, Yeong; Suh, Young Sang
2013-01-01
Effects of ocean climate changes on the population structure and abundance of Pacific saury (Cololabis sira) were investigated on the basis of climate indices, sea surface temperature (SST) anomalies, catch and body size information from the Tsushima Warm Current (TWC) region (Yellow Sea, East China Sea and East/Japan Sea) during the period 1950-2010. It is suggested that oceanic regime shifts in the early 1970s, late 1980s and late 1990s occurred in the TWC region in winter, but the regime shifts in the mid-1970s and in the late 1980s were not evident in the spring SST anomaly series. The abundance and body size of Pacific saury fluctuated in association with the winter oceanic changes in the TWC region. The catch rates and abundance of large size saury were far bellow average during their northward migrations in the TWC region in the years with abnormally cool winters (e.g., 1963, 1970, 1977, 1981-1989 and 2006) and above average in the years with warm winters. These patterns demonstrate decadal-scale variations together with large inter-annual fluctuations in the structure and abundance of Pacific saury in association with the climatic-oceanic changes. These results, along with an alternation of dominant pelagic fish species, indicate the status of the saury population in the TWC region is in good condition, similar to that in the Kuroshio-Oyashio Current (KOC) region during the warm regime after the late 1980s climate regime shift.
NASA Astrophysics Data System (ADS)
Magee, N. B.; Finocchio, P.; Melaas, E. K.; Iacono, M. J.
2014-12-01
The Blue Hill Meteorological Observatory occupies a unique place in the history of the American Meteorological Society and the development of atmospheric science. Through its 129-year history, the Observatory has been operated by founder Abbott Lawrence Rotch (1861-1912), Harvard University, and the National Weather Service, and it is presently run by the non-profit Blue Hill Observatory Science Center. While daily temperature and precipitation records are available through the National Climatic Data Center, they do not include the full record of sunshine duration data that were measured using a Campbell-Stokes sunshine recorder. We have recently digitized the Observatory's original daily sunshine archives, and now present the first full collection and analysis of sunshine records extending from 1889 to the present. This data set is unique and salient to modern climate research because the collection represents the earliest and longest continuous measurements of insolation outside of Western Europe. Together the record provides an unprecedented glimpse into regional climate features, as well as important links between global phenomena and regional climate. Analysis reveals long-term fluctuations of cloud-cover and solar radiation, including signals of regional industrialization, global-dimming, volcanic eruptions, the 11-Year Solar Cycle, and the El Niño Southern Oscillation. Shorter period fluctuations include evidence of an intricate annual pattern of sunshine duration and correlations with the Arctic Oscillation, North Atlantic Oscillation, and galactic cosmic rays.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Act on the basis of previous sales analyses may fall below $1 million when the annual gross volume is... basis of previous sales analyses, may increase its annual gross volume to $1 million or more when... 29 Labor 3 2010-07-01 2010-07-01 false Fluctuations in annual gross volume affecting enterprise...
The causality analysis of climate change and large-scale human crisis
Zhang, David D.; Lee, Harry F.; Wang, Cong; Li, Baosheng; Pei, Qing; Zhang, Jane; An, Yulun
2011-01-01
Recent studies have shown strong temporal correlations between past climate changes and societal crises. However, the specific causal mechanisms underlying this relation have not been addressed. We explored quantitative responses of 14 fine-grained agro-ecological, socioeconomic, and demographic variables to climate fluctuations from A.D. 1500–1800 in Europe. Results show that cooling from A.D. 1560–1660 caused successive agro-ecological, socioeconomic, and demographic catastrophes, leading to the General Crisis of the Seventeenth Century. We identified a set of causal linkages between climate change and human crisis. Using temperature data and climate-driven economic variables, we simulated the alternation of defined “golden” and “dark” ages in Europe and the Northern Hemisphere during the past millennium. Our findings indicate that climate change was the ultimate cause, and climate-driven economic downturn was the direct cause, of large-scale human crises in preindustrial Europe and the Northern Hemisphere. PMID:21969578
The causality analysis of climate change and large-scale human crisis.
Zhang, David D; Lee, Harry F; Wang, Cong; Li, Baosheng; Pei, Qing; Zhang, Jane; An, Yulun
2011-10-18
Recent studies have shown strong temporal correlations between past climate changes and societal crises. However, the specific causal mechanisms underlying this relation have not been addressed. We explored quantitative responses of 14 fine-grained agro-ecological, socioeconomic, and demographic variables to climate fluctuations from A.D. 1500-1800 in Europe. Results show that cooling from A.D. 1560-1660 caused successive agro-ecological, socioeconomic, and demographic catastrophes, leading to the General Crisis of the Seventeenth Century. We identified a set of causal linkages between climate change and human crisis. Using temperature data and climate-driven economic variables, we simulated the alternation of defined "golden" and "dark" ages in Europe and the Northern Hemisphere during the past millennium. Our findings indicate that climate change was the ultimate cause, and climate-driven economic downturn was the direct cause, of large-scale human crises in preindustrial Europe and the Northern Hemisphere.
Fossils harbor climate clues and fuel debate over glacier stability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
At the edge of the Ross Ice Shelf near McMurdo Station in Antarctica, scientists have discovered fossils of well preserved wood and a mixture of microscopic marine organisms, dating from the Eocene epoch. This discovery promises significant clues to the onset of glaciation in Antarctica. Geologists believe that this discovery may shed light on Antarctica's link to world climate and help predict future climatic change. Debate centers around when glaciation first became extensive, 15 or 20 million years ago, and whether or not the ice sheet was dynamic and responsive to small fluctuations in climate or stable and able tomore » lock up massive amounts of the world's water. 7 refs.« less
NASA Astrophysics Data System (ADS)
Gaylord, D. R.
1983-09-01
The Ferris Dune Fields were examined. Sand dunes are especially valuable in paleoclimate reconstructions because they: (1) bury and preserve datable materials and artifacts; (2) respond to even subtle changes in wind velocity and direction as reflected both in external morphology and internal structures; and (3) remain unconsolidated, making them amenable to easy textural and compositional examination. The valley of Clear Creek in the Ferris Dunes reveals a relatively continuous Holocene section of interbedded dune and interdunal pond deposits. Radiocarbon dates from the interdunal pond strata at Clear Creek, theoretical sand dune migration rates, compositional analysis of periglacial sand wedges, and relative dating of actively migrating parabolic dunes reveals a general sequence of geologic-climatic events that affected the Ferris-Lost Soldier area. The most recent major reactivaton of dunes occurred approximately 290 years ago.
Increased ocean heat transports and warmer climate
NASA Technical Reports Server (NTRS)
Rind, D.; Chandler, M.
1991-01-01
The impact of an increased ocean heat transport on climate is investigated in the framework of the GISS GMC model described by Hansen et al. (1983), using two scenarios: one starting from warmer polar temperatures/no sea ice and the other from the current ocean conditions. A 20-percent increase in cross-equatorial heat transport was sufficient to melt all sea ice; it resulted in a climate that was 2 C warmer for the global average, with values some 20-deg warmer at high altitudes and 1-deg warmer near the equator. It is suggested that the hydrological and dynamical changes associated with this different climate regime may be self-sustaining and, as such, would account for the high-latitude warmth of climates in the Mesozoic and Tertiary periods and the decadenal-scale climate fluctuations during the Holocene.
Climate-Rotation Feedback on Mars
NASA Technical Reports Server (NTRS)
Bills, Bruce G.
1999-01-01
A new model is presented for the coupled evolution of climate and rotation, as applied to Mars. It has long been appreciated that changes in the orbital and rotational geometry of Mars will influence the seasonal and latitudinal pattern of insolation, and this will likely dominate climatic fluctuations on time scales of 10(exp 5) to 10(exp 7) years. Equally important, but less widely appreciated, is the influence climatic change can have on rotational dynamics. The primary means by which climate influences rotation is via its influence on transport of mass (volatiles and dust) into and out of the polar regions. Many important issues remain unresolved: What are the ages of the polar caps? What climatic periods are recorded in the polar layered deposits? What is the long term obliquity history? Additional information is contained in the original extended abstract.
Hydro-Climatic Data Network (HCDN) Streamflow Data Set, 1874-1988
Slack, James Richard; Lumb, Alan M.; Landwehr, Jurate Maciunas
1993-01-01
The potential consequences of climate change to continental water resources are of great concern in the management of those resources. Critically important to society is what effect fluctuations in the prevailing climate may have on hydrologic conditions, such as the occurrence and magnitude of floods or droughts and the seasonal distribution of water supplies within a region. Records of streamflow that are unaffected by artificial diversions, storage, or other works of man in or on the natural stream channels or in the watershed can provide an account of hydrologic responses to fluctuations in climate. By examining such records given known past meteorologic conditions, we can better understand hydrologic responses to those conditions and anticipate the effects of postulated changes in current climate regimes. Furthermore, patterns in streamflow records can indicate when a change in the prevailing climate regime may have occurred in the past, even in the absence of concurrent meteorologic records. A streamflow data set, which is specifically suitable for the study of surface-water conditions throughout the United States under fluctuations in the prevailing climatic conditions, has been developed. This data set, called the Hydro-Climatic Data Network, or HCDN, consists of streamflow records for 1,659 sites throughout United States and its Territories. Records cumulatively span the period 1874 through 1988, inclusive, and represent a total of 73,231 water years of information. Development of the HCDN Data Set: Records for the HCDN were obtained through a comprehensive search of the extensive surface- water data holdings of the U.S. Geological Survey (USGS), which are contained in the USGS National Water Storage and Retrieval System (WATSTORE). All streamflow discharge records in WATSTORE through September 30, 1988, were examined for inclusion in the HCDN in accordance with strictly defined criteria of measurement accuracy and natural conditions. No reconstructed records of 'natural flow' were permitted, nor was any record extended or had missing values 'filled in' using computational algorithms. If the streamflow at a station was judged to be free of controls for only a part of the entire period of record that is available for the station, then only that part was included in the HCDN, but only if it was of sufficient length (generally 20 years) to warrant inclusion. In addition to the daily mean discharge values, complete station identification information and basin characteristics were retrieved from WATSTORE for inclusion in the HCDN. Statistical characteristics, including the monthly mean discharge, as well as the annual mean, minimum and maximum discharge values, were derived for the records in the HCDN data set. For a full description of the development and content of the Hydro-Climatic Data Network, please take a look at the HCDN Report.
NASA Astrophysics Data System (ADS)
Dostal, P.; Seidel, J.; Imbery, F.
2010-09-01
A 500 year climate reconstruction of Southwest Germany based on documentary and direct data with a special focus on high resolute reconstructed extreme rain events Against the background of an increasing world population and the changes that this is causing to the earth, the increasing industrialisation resulting in more emissions of greenhouse gases, it is indispensable to differentiate between natural and anthropogenic climate changes. This applies equally to global as well as regional climates. Due to the fact, that the weather data measurement series in the upper Rhine valley go back a maximum of 150 years, it is not possible to use this data to grasp long term climate fluctuations. For example, the current climate is integrated in long scale climate cycles which last thousands of years. To describe these changes accurately, it is necessary to reconstruct the climate beyond that of instrumental series measurements. With the application of direct and indirect data (proxy data) a climate reconstruction will be attempted for the area of region TriRhena. With the application of documentary data it is possible to reconstruct the climate prior to instrumental measurements. These historical records are made up of, for e.g. weather descriptions, information about the wine harvest and other agricultural products, as well as their price fluctuations. Using this data it is possible to calculate meteorological parameters creating an index of air temperature and precipitation values. Climate is an integration of weather and therefore its worth to set the focus also on single interesting weather events. Especially extreme events can contribute to the thesis "learning from the past for a better future". Aim of the research is to identify and apply extreme flood events of the past 500 years as a basis for further analysis like a contribution to improve current flood hazard maps. The data which will be presented were extracted from historical records such as local annuals and chronologies from 1500-1900 and supplemented by instrumental observations since 1755.
NASA Astrophysics Data System (ADS)
Meng, Guanglan; Han, Yousong; Wang, Shaoqing; Wang, Zhenyan
2004-03-01
Based on the authors’ 1986 to 1994 sporo-pollen assemblage analysis in the southern Yellow Sea area, data from 3 main cores were studied in combination with14C, palaeomagnetic and thermoluminescence data. The evolution of the paleoclimate environments in the southern Yellow Sea since 15ka B. P. was revealed that, in deglaciation of the last glacial period, the climate of late glaciation transformed into that of postglaciation, accompanied by a series of violent climate fluctuations. These evolution events happened in a global climate background and related to the geographic changes in eastern China. We distinguished three short-term cooling events and two warming events. Among them, the sporo-pollen assemblage of subzone A1 showed some cold climate features indicating that a cooling event occurred at about 15-14ka. B. P. in early deglaciation. This subzone corresponds to the Oldest Dryas. In subzone A3, many drought-enduring herbal pollens and some few pollens of cold-resistant Picea, Abies, etc. were found, which indicated that a cooling event, with cold and arid climate, occurred at about 12-11ka. B. P. in late deglaciation. This subzone corresponds to the Younger Dryas. The sporo-pollen assemblage of zone B showed warm and arid climate features in postglaciation. Although the assemblage of subzone B2 indicated a cold and arid climate environment, the development of flora in subzone B2 climate was less cold than that in A3. Subzone B2 indicated a cooling event which occurred at about 9ka B. P. in early olocene. Subzone A2, with some distinct differences from subzone A1 and A3, indicated a warming event which occurred at 14-13ka. B.P. and should correspond to a warming fluctuation. The sporo-pollen assemblage of zone C showed features of warn-moist flora and climate, and indicated a warming event which universally occurred along the coast of eastern China at 8-3 ka B. P. in middle Holocene, and its duration was longer than that of any climate events mentioned above. This period was climatic optimum and belonged to an altithermal period in postglaciation.
Nonlinear effects of climate and density in the dynamics of a fluctuating population of reindeer.
Tyler, Nicholas J C; Forchhammer, Mads C; Øritsland, Nils Are
2008-06-01
Nonlinear and irregular population dynamics may arise as a result of phase dependence and coexistence of multiple attractors. Here we explore effects of climate and density in the dynamics of a highly fluctuating population of wild reindeer (Rangifer tarandus platyrhynchus) on Svalbard observed over a period of 29 years. Time series analyses revealed that density dependence and the effects of local climate (measured as the degree of ablation [melting] of snow during winter) on numbers were both highly nonlinear: direct negative density dependence was found when the population was growing (Rt > 0) and during phases of the North Atlantic Oscillation (NAO) characterized by winters with generally high (1979-1995) and low (1996-2007) indices, respectively. A growth-phase-dependent model explained the dynamics of the population best and revealed the influence of density-independent processes on numbers that a linear autoregressive model missed altogether. In particular, the abundance of reindeer was enhanced by ablation during phases of growth (Rt > 0), an observation that contrasts with the view that periods of mild weather in winter are normally deleterious for reindeer owing to icing of the snowpack. Analyses of vital rates corroborated the nonlinearity described in the population time series and showed that both starvation mortality in winter and fecundity were nonlinearly related to fluctuations in density and the level of ablation. The erratic pattern of growth of the population of reindeer in Adventdalen seems, therefore, to result from a combination of the effects of nonlinear density dependence, strong density-dependent mortality, and variable density independence related to ablation in winter.
Cao, Ling; Wang, Qiang; Deng, Zhen-yong; Guo, Xiao-qin; Ma, Xing-xiang; Ning, Hui-fang
2010-11-01
Based on the data of air temperature, precipitation, and millet yield from Ganzhou, Anding, and Xifeng, the representative stations in Hexi moderate arid oasis irrigation area, moderate sub-arid dry area in middle Gansu, and moderate sub-humid dry area in eastern Gansu, respectively, this paper calculated the regional active accumulated temperature of > or = 0 degrees C, > or =5 degrees C, > or =10 degrees C, > or =15 degrees C, and > or =20 degrees C in millet growth period, and the average temperature and precipitation in millet key growth stages. The millet climatic yield was isolated by orthogonal polynomial, and the change characteristics of climate and millet climatic yield as well as the effects of climate change on millet yield were analyzed by statistical methods of linear tendency, cumulative anomaly, and Mann-Kendall. The results showed that warming and drying were the main regional features in the modern climatic change of Gansu. The regional temperature had a significant upward trend since the early 1990s, while the precipitation was significantly reduced from the late 1980s. There were significant correlations between millet yield and climatic factors. The millet yield in dry areas increased with the increasing temperature and precipitation in millet key growth stages, and that in Hexi Corridor area increased with increasing temperature. Warming and drying affected millet yield prominently. The weather fluctuation index of regional millet yield in Xifeng, Anding, and Ganzhou accounted for 73%, 72%, and 54% of real output coefficient variation, respectively, and the percentages increased significantly after warming. Warming was conducive to the increase of millet production, and the annual increment of millet climatic yield in Xifeng, Anding, and Ganzhou after warming was 30.6, 43.1, and 121.1 kg x hm(-2), respectively. Aiming at the warming and drying trend in Gansu Province in the future, the millet planting area in the Province should be further expanded, and the millet planting structure should be adjusted. At the same time, according to the different regional and yearly climatic types, different varieties should be selected, and various planting measures should be taken.
NASA Astrophysics Data System (ADS)
Levy, L.; Larsen, N. K.; Kjaer, K. H.; Bjork, A. A.; Kjeldsen, K. K.; Funder, S.; Kelly, M. A.; Howley, J. A.
2016-12-01
The marine-terminating glaciers of the Greenland Ice Sheet (GrIS) are responding rapidly to present-day climate change. More than one-third of the GrIS's discharge flows to the ocean through the marine-terminating outlet glaciers of southeastern Greenland, making it a potentially important region of the ice sheet. Documenting how these outlet glaciers have responded to longer-term past climate change (i.e. the Holocene) allows for more accurate predictions of their response to future climate changes. Here, we present 36 new 10Be ages on boulders perched on bedrock and on bedrock that record the timing of ice marginal fluctuations in several fjords in southeast and south Greenland, a region where little is known about past ice fluctuations due to its relative inaccessibility. We show that at Skjoldungen Sund (63.4N), deglaciation was rapid, beginning by 10.1 ± 0.4 ka. Deglaciation occurred concurrently at Timmiarmiut Fjord (62.7N), 100 km to the south, at 10.3 ± 0.4 ka. We suggest that this was in response to the warming ocean and air temperatures of the early Holocene. Additionally, 10Be ages on boulders perched on bedrock just distal to the historic moraines in Timmiarmiut Fjord date to 1.7 ± 0.1 ka, indicating the presence of a late Holocene advance prior to the Little Ice Age. In southern Greenland, deglaciation at Lindenow Fjord (60.6N), which drains the Julienhåb ice cap, occurred at 11.2 ± 0.4 ka. The ice then retreated up-fjord at a rate of 70-100 m yr-1, comparable with modern retreat rates of 30-100 m yr-1. We hypothesize that the earlier deglaciation at Lindenow Fjord by 1 ka may indicate that the Julienhåb ice cap was more sensitive to early Holocene warming than the GrIS. Additional 10Be ages from Prins Christen Fjord and near Qaqortoq are forthcoming. These new 10Be ages provide a longer-term perspective of marine-terminating outlet glacier fluctuations in Greenland and show that the ice sheet responded sensitively to Holocene climate change.
Yang, Yuchen; Li, Jianfang; Yang, Shuhuan; Li, Xinnian; Fang, Lu; Zhong, Cairong; Duke, Norman C; Zhou, Renchao; Shi, Suhua
2017-01-18
A large-scale systematical investigation of the influence of Pleistocene climate oscillation on mangrove population dynamics could enrich our knowledge about the evolutionary history during times of historical climate change, which in turn may provide important information for their conservation. In this study, phylogeography of a mangrove tree Sonneratia alba was studied by sequencing three chloroplast fragments and seven nuclear genes. A low level of genetic diversity at the population level was detected across its range, especially at the range margins, which was mainly attributed to the steep sea-level drop and associated climate fluctuations during the Pleistocene glacial periods. Extremely small effective population size (Ne) was inferred in populations from both eastern and western Malay Peninsula (44 and 396, respectively), mirroring the fragility of mangrove plants and their paucity of robustness against future climate perturbations and human activity. Two major genetic lineages of high divergence were identified in the two mangrove biodiversity centres: the Indo-Malesia and Australasia regions. The estimated splitting time between these two lineages was 3.153 million year ago (MYA), suggesting a role for pre-Pleistocene events in shaping the major diversity patterns of mangrove species. Within the Indo-Malesia region, a subdivision was implicated between the South China Sea (SCS) and the remaining area with a divergence time of 1.874 MYA, corresponding to glacial vicariance when the emerged Sunda Shelf halted genetic exchange between the western and eastern coasts of the Malay Peninsula during Pleistocene sea-level drops. Notably, genetic admixture was observed in populations at the boundary regions, especially in the two populations near the Malacca Strait, indicating secondary contact between divergent lineages during interglacial periods. These interregional genetic exchanges provided ample opportunity for the re-use of standing genetic variation, which could facilitate mangrove establishment and adaptation in new habitats, especially in the context of global climate changes. Phylogeogrpahic analysis in this study reveal that Pleistocene sea-level fluctuations had profound influence on population differentiation of the mangrove tree S. alba. Our study highlights the fragility of mangrove plants and offers a guide for the conservation of coastal mangrove communities experiencing ongoing changes in sea-level.
NASA Astrophysics Data System (ADS)
Ma, Chunmei; Cui, Anning; Fang, Yiman; Zhao, Lin; Jia, Yulian
2017-04-01
Climate change during the last two millennia is one of the most important focuses of the "Past Global Changes" (PAGES) initiative. In this study, vegetation history and climate variability since 1.3kaBP was reconstructed from high-resolution multiproxy analysis of mountainous peat sediment from the central part of a swamp in Jiangxi Province, China. 210Pb, 137Cs and AMS14C dating were used to build the age framework on the basis of Bacon model. Pollen, Humification degree (HD), Loss-on ignition (LOI), XRF scan elements and grain-size distribution were analyzed. During 637-800 AD, the vegetation combination consists of upland herbs taxa and scattered evergreen Quercus (Quercus E). However, the pollen concentration was very low, and plant genera were seldom. Since harsh environment is not conducive to pollen storage, vegetation condition reconstructed by pollen information cannot reflect real climate change. During the Medieval Warm Period (MWP, 800-1250 AD) vegetation is abundant through the entire period, Quercus E is the building group of the forest, Pinus and Castanopsis are sporadic. Upland herbs grew up vigorously in the lower part of forest. Peat began to accumulate in the basin high terrain, where wetland herbs grew vigorous. The climate during MWP was characterized by warm and wet, inside there were obvious secondary fluctuations. Dramatic vegetation changes were recorded during the Little Ice Age LIA,1340-1870 AD). The vegetation community was primarily dominated by Castanopsis, upland land herbs thrive; wetland herbs were sparse with great fluctuations depending on changes in the humidity. Overall, during LIA, temperature pattern was featured by "four cold period and three warm period", and humidity condition was experienced a process from drought to wet. Periodic analysis of the moisture proxy (PCA 1) and temperature indicator (E/D: evergreen/deciduous tree pollen) shows cyclic fluctuations of 150 years in the temperature and precipitation, which is corresponded to historical document records. Solar activity should be the fundamental force that drove the same-phase variation of the temperature and precipitation in this region.
Carbaryl toxicity prediction to soil organisms under high and low temperature regimes.
Lima, Maria P R; Cardoso, Diogo N; Soares, Amadeu M V M; Loureiro, Susana
2015-04-01
Many studies on risk assessment of pesticides on non-target organisms have been performed based on standardized protocols that reflect conditions in temperate climates. However, the responses of organisms to chemical compounds may differ according to latitude and thus predicting the toxicity of chemicals at different temperatures is an important factor to consider in risk assessment. The toxic effects of the pesticide carbaryl were evaluated at different temperature regimes, which are indicative of temperate and tropical climates and are relevant to climate change predictions or seasonal temperature fluctuations. Four standard organisms were used (Folsomia candida, Eisenia andrei; Triticum aestivum and Brassica rapa) and the effects were assessed using synergistic ratios, calculated from EC/LC50 values. When possible, the MIXTOX tool was used based on the reference model of independent action (IA) and possible deviations. A decrease on carbaryl toxicity at higher temperatures was found in F. candida reproduction, but when the mixtox tool was used no interactions between these stressors (Independent Action) was observed, so an additive response was suggested. Synergistic ratios showed a tendency to synergism at high temperatures for E. andrei and B. rapa and antagonism at low temperatures for both species. T. aestivum showed to be less affected than expected (antagonism), when exposed to both low and high temperatures. The results showed that temperature may increase the deleterious effects of carbaryl to non-target organisms, which is important considering both seasonal and latitude related differences, as well as the global climate change context. Copyright © 2014 Elsevier Inc. All rights reserved.
The influence of grating shape formation fluctuation on DFB laser diode threshold condition
NASA Astrophysics Data System (ADS)
Bao, Shiwei; Song, Qinghai; Xie, Chunmei
2018-03-01
Not only the grating material refractive index itself but also the Bragg grating physical shape formation affects the coupling strength greatly. The Bragg grating shape includes three factors, namely grating depth, duty ratio and grating angle. During the lithography and wet etching process, there always will be some fluctuation between the target and real grating shape formation after fabrication process. This grating shape fluctuation will affect the DFB coupling coefficient κ , and then consequently threshold current and corresponding wavelength. This paper studied the grating shape formation fluctuation influence to improve the DFB fabrication yield. A truncated normal random distribution fluctuation is considered in this paper. The simulation results conclude that it is better to choose relative thicker grating depth with lower refractive index to obtain a better fabrication tolerance, while not quite necessary to spend too much effort on improving lithography and wet etching process to get a precisely grating duty ratio and grating angle.
The influence of grating shape formation fluctuation on DFB laser diode threshold condition
NASA Astrophysics Data System (ADS)
Bao, Shiwei; Song, Qinghai; Xie, Chunmei
2018-06-01
Not only the grating material refractive index itself but also the Bragg grating physical shape formation affects the coupling strength greatly. The Bragg grating shape includes three factors, namely grating depth, duty ratio and grating angle. During the lithography and wet etching process, there always will be some fluctuation between the target and real grating shape formation after fabrication process. This grating shape fluctuation will affect the DFB coupling coefficient κ, and then consequently threshold current and corresponding wavelength. This paper studied the grating shape formation fluctuation influence to improve the DFB fabrication yield. A truncated normal random distribution fluctuation is considered in this paper. The simulation results conclude that it is better to choose relative thicker grating depth with lower refractive index to obtain a better fabrication tolerance, while not quite necessary to spend too much effort on improving lithography and wet etching process to get a precisely grating duty ratio and grating angle.
Life cycle ecophysiology of small pelagic fish and climate-driven changes in populations
NASA Astrophysics Data System (ADS)
Peck, Myron A.; Reglero, Patricia; Takahashi, Motomitsu; Catalán, Ignacio A.
2013-09-01
Due to their population characteristics and trophodynamic role, small pelagic fishes are excellent bio-indicators of climate-driven changes in marine systems world-wide. We argue that making robust projections of future changes in the productivity and distribution of small pelagics will require a cause-and-effect understanding of historical changes based upon physiological principles. Here, we reviewed the ecophysiology of small pelagic (clupeiform) fishes including a matrix of abiotic and biotic extrinsic factors (e.g., temperature, salinity, light, and prey characteristics) and stage-specific vital rates: (1) adult spawning, (2) survival and development of eggs and yolk sac larvae, and (3) feeding and growth of larvae, post-larvae and juveniles. Emphasis was placed on species inhabiting Northwest Pacific and Northeast Atlantic (European) waters for which summary papers are particularly scarce compared to anchovy and sardine in upwelling systems. Our review revealed that thermal niches (optimal and sub-optimal ranges in temperatures) were species- and stage-specific but that temperature effects only partly explained observed changes in the distribution and/or productivity of populations in the Northwest Pacific and Northeast Atlantic; changes in temperature may be necessary but not sufficient to induce population-level shifts. Prey availability during the late larval and early juvenile period was a common, density-dependent mechanism linked to fluctuations in populations but recruitment mechanisms were system-specific suggesting that generalizations of climate drivers across systems should be avoided. We identified gaps in knowledge regarding basic elements of the growth physiology of each life stage that will require additional field and laboratory study. Avenues of research are recommended that will aid the development of models that provide more robust, physiological-based projections of the population dynamics of these and other small pelagic fish. In our opinion, the continued development of biophysical models that close the life cycle (depict all life stages) offers the best chance of revealing processes causing historical fluctuations on the productivity and distribution of small pelagic fishes and to project future climate-driven impacts. Correctly representing physiological-based mechanisms will increase confidence in the outcomes of models simulating the potential impacts of bottom-up processes, a first step towards evaluating the mixture of factors and processes (e.g. intra-guild dynamics, predation, fisheries exploitation) which interact with climate to affect populations of small pelagic fishes. Understand the impacts of reduced growth rates during the juvenile stage on the process of maturation and spawning condition of small pelagic fishes. Examine the effects of changes in prey quality on the duration and magnitude of spawning by small pelagic fishes to capture how climate-driven changes in zooplankton species composition might act as a “bottom-up” regulator of fish productivity. Identify the drivers for spawning location and timing to better understand how spawning dynamics may be influenced by climate change (e.g. changes in water salinity or turbidity resulting from changes in river discharges or wind-driven turbulence, respectively).
[Rainfall effects on the sap flow of Hedysarum scoparium.
Yang, Qiang; Zha, Than Shan; Jia, Xin; Qin, Shu Gao; Qian, Duo; Guo, Xiao Nan; Chen, Guo Peng
2016-03-01
In arid and semi-arid areas, plant physiological responses to water availability depend largely on the intensity and frequency of rain events. Knowledge on the responses of xerophytic plants to rain events is important for predicting the structure and functioning of dryland ecosystems under changing climate. The sap flow of Hedysarum scoparium in the Mu Us Sand Land was continuously measured during the growing season of 2012 and 2013. The objectives were to quantify the dynamics of sap flow under different weather conditions, and to examine the responses of sap flow to rain events of different sizes. The results showed that the daily sap flow rates of H. scoparium were lower on rainy days than on clear days. On clear days, the sap flow of H. scoparium showed a midday plateau, and was positively correlated with solar radiation and relative humidity. On rainy days, the sap flow fluctuated at low levels, and was positively correlated with solar radiation and air temperature. Rain events not only affected the sap flow on rainy days through variations in climatic factors (e.g., solar radiation and air temperature), but also affected post-rainfall sap flow velocities though changes in soil moisture. Small rain events (<20 mm) did not change the sap flow, whereas large rain events (>20 mm) significantly increased the sap flow on days following rainfall. Rain-wetted soil conditions not only resulted in higher sap flow velocities, but also enhanced the sensitivity of sap flow to solar radiation, vapor pressure deficit and air temperature.
The sediment record of Lake Ohrid (Albania/Macedonia)
NASA Astrophysics Data System (ADS)
Vogel, H.; Wagner, B.; Sulpizio, R.; Zanchetta, G.; Schouten, S.; Leng, M. J.; Wessels, M.; Nowaczyk, N.; Hilgers, A.
2009-12-01
Lake Ohrid, a transboundary lake shared by the former Yugoslav Republic of Macedonia and the Republic of Albania is with its likely Pliocene age, considered to be the oldest existing lake in Europe. Since 2004 numerous sediment successions have been recovered from Lake Ohrid in order to investigate modern and past sedimentation patterns, to establish a tephrostratigraphic and chronological framework, and to infer past climatic and environmental changes. Frequent occurrences of well-dated tephra and cryptotephra layers as well as radiocarbon, electron spin resonance, and luminescence dating allowed the establishment of a chronological framework for the recovered sediment successions. These data revealed that the sediment successions recovered so far in part reach well back into MIS 6. Despite distinct spatial heterogeneity in sediment composition, Lake Ohrid appears to have reacted uniformly to climatic forcing on changes in catchment configuration, limnology and hydrology in the past as evidenced by contemporaneous changes in sediment composition in successions from different parts of the lake basin. The interplay of climatic forced factors has varied significantly in the course of the last glacial-interglacial cycle and led to distinctly different sediment characteristics during glacial and interglacial phases at Lake Ohrid. Beside this general pattern tied to high amplitude climate fluctuations, short-term climatic fluctuations of reduced amplitude are also recorded in the sediment successions and generally well correlated to other paleoclimate records in the Mediterranean. Initial quantitative inferences of past lake surface temperatures using the TEX86 paleothermometer revealed c. 5-6°C lower temperatures in the glacial compared with the interglacial periods. The reconstructed glacial and interglacial temperatures from Lake Ohrid correspond relatively well with temperature anomalies derived from sea surface temperature reconstructions in the marine (-4°C) and pollen-based temperature reconstructions in the terrestrial (-9°C) vicinity. Moreover, the detection of subaquatic terrace levels implies that pronounced climate fluctuations in the past had substantial impact on the hydrological budget of the lake and led to significant lake level lowering. Dating and sedimentological analyses of sediment successions recovered from these subaquatic terrace levels point to significant lake level low stands during MIS 6, MIS 5.5, and during the last glacial inception. In order to recover longer sediment succession extending back into Pliocene times from this promising site an ICDP deep drilling campaign is envisaged and scheduled for 2011.
Dendroclimatic trend and glacial fluctuations in the Central Italian Alps
NASA Astrophysics Data System (ADS)
Pelfini, M.; Santilli, M.; D Agata, C.; Diolaiuti, G.; Smiraglia, C.
2003-04-01
In the Alpine environment, one of the main limiting factors for tree growth is the thermal conditions of the vegetative season. The conifers at high altitude, if not subject to others disturbs, such as geomorphological processes or biological interferences, undergo a development, from which the width of annual rings depends. Five chronologies few centuries long, obtained for the species Larix decidua Mill. and Pinus cembra L. from different valleys of the Central Italian Alps (Alpisella, Valfurva, Gavia and Solda) in proximity of timberline (2000-2550 m of altitude), were analysed and their climatic signal gained; this last one was then related to the recent glacial fluctuations. The chronologies are the averages of many dendrochronological indicized curves obtained from dominant trees with regular growth and extended from 13th-17th century up to the present. The time intervals of the chronologies are the following ones: Pinus cembra: 1752-1999 for Valfurva; 1607-1999 for Gavia; 1593-1999 for Val Solda. With regard to Larix decidua: 1252-1998 for Val Solda; 1784-2001 for Alpisella. The good correspondence between the various chronologies allows to consider them representative of the climatic regional signal. In order to evidence climatic evolution, linear trends based on running mean with period of 11 years have been constructed. Those curves have been compared between them and then overlapped and mediated in order to obtain a climatic signal of regional value that excludes eventual local anomalies. Finally, the growth variations in the chronologies have been compared to known alpine climatic variations and glacial fluctuations. In particular time-distance curves (curves of cumulated frontal variations) of some glaciers from the Ortles-Cevedale Group were utilized. The periods of tree rings growth rate reduction appear well correlated to glacial advancing phases of the Little Ice Age and of the following phases. In particular, growth rate reductions are observable in correspondence of the second decade of the 19th century (main LIA phases) and around 1880, 1920 and 1980, when the glaciers advanced almost all over the Alpine chain. The obtained results agree upon the data from various authors in Europe. This work was conducted as part of 2001 MIUR Project: Glacial retreat in the Italian Alps and the climatic change since deglaciation to the present phase. National Coordinator: Prof. R. Federici, Local Coordinator: Prof. C. Smiraglia
NASA Astrophysics Data System (ADS)
Nieto-Moreno, V.; Martínez-Ruiz, F.; Jiménez-Espejo, F. J.; Gallego-Torres, D.; Rodrigo-Gámiz, M.; Sakamoto, T.; Böttcher, M.; García-Orellana, J.; Ortega-Huertas, M.
2009-04-01
The westernmost Mediterranean (Alboran Sea basin) is a key location for paleoceanographic and paleoclimatic reconstructions since high sedimentation rates provide ultra high-resolution records at centennial and millennial scales. Here, we present a paleoenvironmental reconstruction for the last 4000 yr, which is based on a multi-proxy approach that includes major and trace element-content fluctuations and mineral composition of marine sediments. The investigated materials correspond to several gravity and box cores recovered in the Alboran Sea basin during different oceanographic cruises (TTR-14 and TTR-17), which have been sampled at very high resolution. Comparative analysis of these cores allows establishing climate oscillations at centennial to millennial scales. Although relatively more attention have been devoted to major climate changes during the last glacial cycle, such as the Last Glacial Maximun, deglaciation and abrupt cooling events (Heinrich and Younger Dryas), the late Holocene has also been punctuated by significant rapid climate variability including polar cooling, aridity and changes in the intensity of the atmospheric circulation. These climate oscillations coincide with significant fluctuations in chemical and mineral composition of marine sediments. Thus, bulk and clay mineralogy, REE composition and Rb/Al, Zr/Al, La/Lu ratios provide information on the sedimentary regime (eolian-fluvial input and source areas), Ba-based proxies on fluctuations in marine productivity and redox sensitive elements on oxygen conditions at time of deposition. A decrease in fluvial-derived elements/minerals (e.g., Rb, detrital mica) takes places during the so-called Late Bronze Age-Iron Age, Dark Age, and Little Ice Age Period. Meanwhile an increase is evidenced during the Medieval Warm Period and the Roman Humid Period. This last trend runs parallel to a decline of element/minerals of typical eolian source (Zr, kaolinite) with the exception of the Roman Humid Period where Zr/Al ratio increases. These climate oscillations (wet and dry periods) are also accompanied by changes in marine productivity rates, as suggested by the Ba/Al ratio. Additionally, anthropic contribution during the Industrial Period is also evidenced by a significant increase in Pb content in most recent sediments. Acknowledges: Projects Marcal CGL2006-13327-C04-04, Sagas CTM2005-08071-C03-01, Ministerio MARM 200800050084447, RNM 0179, CSD2006-00041.
Climate change impact on groundwater levels in the Guarani Aquifer outcrop zone
NASA Astrophysics Data System (ADS)
Melo, D. D.; Wendland, E.
2013-12-01
The unsustainable use of groundwater in many countries might cause water availability restrictions in the future. Such issue is likely to worsen due to predicted climate changes for the incoming decades. As numerous studies suggest, aquifers recharge rates will be affected as a result of climate change. The Guarani Aquifer System (GAS) is one of the most important transboundary aquifer in the world, providing drinkable water for millions of people in four South American countries (Brazil, Argentina, Uruguay and Paraguay). Considering the GAS relevance and how its recharge rates might be altered by climatic conditions anomalies, the objective of this work is to assess possible climate changes impacts on groundwater levels in this aquifer outcrop zone. Global Climate Models' (GCM) outputs were used as inputs in a transient flux groundwater model created using the software SPA (Simulation of Process in Aquifers), enabling groundwater table fluctuation to be evaluated under distinct climatic scenarios. Six monitoring wells, located in a representative basin (Ribeirão da Onça basin) inside a GAS outcrop zone (ROB), provided water table measurements between 2004 and 2011 to calibrate the groundwater model. Using observed climatic data, a water budget method was applied to estimate recharge in different types of land uses. Statistically downscaled future climate scenarios were used as inputs for that same recharge model, which provided data for running SPA under those scenarios. The results show that most of the GCMs used here predict temperature arises over 275,15 K and major monthly rainfall mean changes to take place in the dry season. During wet seasons, those means might experience around 50% decrease. The transient model results indicate that water table variations, derived from around 70% of the climate scenarios, would vary below those measured between 2004 and 2011. Among the thirteen GCMs considered in this work, only four of them predicted more extreme climate scenarios. In some regions of the study area and under these extreme conditions, groundwater surface would decline more than 10 m. Although more optimistic scenarios resulted in an increase of groundwater levels in more than half of ROB, these would cause up to 5 m water table decline. The results reinforce the need for a permanent hydrogeological monitoring, mainly in the GAS recharge areas, along with the development of other climate change impacts assessment works using different downscaling and recharge estimates methods.
Postglacial diatom-climate responses in a small lake in the Pacific Northwest of North America
NASA Astrophysics Data System (ADS)
Egan, J.; Allott, T. E.; Fletcher, W.
2017-12-01
Understanding the variability of ocean-atmosphere interactions in the Pacific Northwest (PNW) of North America is essential for climate forecasting, particularly variations in the El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). Research suggests that global warming is increasing the frequency of extreme El Niño events, which can have global climatic impacts (e.g. disrupting global weather patterns, affecting ecosystems and agriculture and extreme weather events (flood, drought, bushfires)). A diatom record spanning 14,500 Cal yr BP from Moss Lake, Washington is used to assess Holocene climate change in the PNW including evidence for periodicities related to ocean-atmosphere interactions and/or variations in solar output, and is directly compared to the Moss Lake pollen record. Three climate phases were identified: 1) the Late Pleistocene (until 11,800 Cal yr BP), with a cold climate evidenced by the low abundance of diatoms; 2) the early to mid-Holocene (11,800 - 7500 Cal yr BP), with warm climate, longer growing seasons and shorter periods of ice cover, indicated by the increase of Cyclotella pseudostelligera and decrease of Fragilaria taxa; and 3) the mid-to-late Holocene from 7500 Cal yr BP onwards, with a cooler climate reflected by a decrease in Cyclotella pseudostelligera and an increase in Fragilaria taxa. These climate shifts correlate with the regional and local pollen record. Fluctuations in Cyclotella pseudostelligera and Aulacoseira taxa suggest climatic cycles of varying amplitude throughout. RedFit and Wavelet analyses revealed periodicities of approximately 2000, 1300, and 450 yrs. The 2000 yr cycle is attributed to solar variation; the Hallstatt Oscillation. The 1300 yr and 450 yr cycles are attributed to ENSO and PDO like cycles. The 1300 periodicity is evident throughout the Late Pleistocene and Holocene and reflects shifts from El Niño/positive PDO (weak wind intensity, warm temperature) to La Niña/Negative PDO (high wind intensity, cool temperature). Between 11,800 and 7500 Cal yr BP the cycle amplitudes are reduced and frequency increased reflecting the 450 yr periodicity. Diatom data from Moss Lake provide a sensitive record of climate-related limnological responses and refine our understanding of Holocene climate change in the PNW.
Jump-Diffusion models and structural changes for asset forecasting in hydrology
NASA Astrophysics Data System (ADS)
Tranquille Temgoua, André Guy; Martel, Richard; Chang, Philippe J. J.; Rivera, Alfonso
2017-04-01
Impacts of climate change on surface water and groundwater are of concern in many regions of the world since water is an essential natural resource. Jump-Diffusion models are generally used in economics and other related fields but not in hydrology. The potential application could be made for hydrologic data series analysis and forecast. The present study uses Jump-Diffusion models by adding structural changes to detect fluctuations in hydrologic processes in relationship with climate change. The model implicitly assumes that modifications in rivers' flowrates can be divided into three categories: (a) normal changes due to irregular precipitation events especially in tropical regions causing major disturbance in hydrologic processes (this component is modelled by a discrete Brownian motion); (b) abnormal, sudden and non-persistent modifications in hydrologic proceedings are handled by Poisson processes; (c) the persistence of hydrologic fluctuations characterized by structural changes in hydrological data related to climate variability. The objective of this paper is to add structural changes in diffusion models with jumps, in order to capture the persistence of hydrologic fluctuations. Indirectly, the idea is to observe if there are structural changes of discharge/recharge over the study area, and to find an efficient and flexible model able of capturing a wide variety of hydrologic processes. Structural changes in hydrological data are estimated using the method of nonlinear discrete filters via Method of Simulated Moments (MSM). An application is given using sensitive parameters such as baseflow index and recession coefficient to capture discharge/recharge. Historical dataset are examined by the Volume Spread Analysis (VSA) to detect real time and random perturbations in hydrologic processes. The application of the method allows establishing more accurate hydrologic parameters. The impact of this study is perceptible in forecasting floods and groundwater recession. Keywords: hydrologic processes, Jump-Diffusion models, structural changes, forecast, climate change
NASA Astrophysics Data System (ADS)
Gómez-Beas, R.; Moñino, A.; Polo, M. J.
2012-05-01
In compliance with the development of the Water Framework Directive, there is a need for an integrated management of water resources, which involves the elaboration of reservoir management models. These models should include the operational and technical aspects which allow us to forecast an optimal management in the short term, besides the factors that may affect the volume of water stored in the medium and long term. The climate fluctuations of the water cycle that affect the reservoir watershed should be considered, as well as the social and economic aspects of the area. This paper shows the development of a management model for Rules reservoir (southern Spain), through which the water supply is regulated based on set criteria, in a sustainable way with existing commitments downstream, with the supply capacity being well established depending on demand, and the probability of failure when the operating requirements are not fulfilled. The results obtained allowed us: to find out the reservoir response at different time scales, to introduce an uncertainty analysis and to demonstrate the potential of the methodology proposed here as a tool for decision making.
NASA Astrophysics Data System (ADS)
Hörner, Tanja; Stein, Rüdiger; Fahl, Kirsten
2017-10-01
The Holocene is characterized by the late Holocene cooling trend as well as by internal short-term centennial fluctuations. Because Arctic sea ice acts as a significant component (amplifier) within the climate system, investigating its past long- and short-term variability and controlling processes is beneficial for future climate predictions. This study presents the first biomarker-based (IP25 and PIP25) sea ice reconstruction from the Kara Sea (core BP00-07/7), covering the last 8 ka. These biomarker proxies reflect conspicuous short-term sea ice variability during the last 6.5 ka that is identified unprecedentedly in the source region of Arctic sea ice by means of a direct sea ice indicator. Prominent peaks of extensive sea ice cover occurred at 3, 2, 1.3 and 0.3 ka. Spectral analysis of the IP25 record revealed 400- and 950-year cycles. These periodicities may be related to the Arctic/North Atlantic Oscillation, but probably also to internal climate system fluctuations. This demonstrates that sea ice belongs to a complex system that more likely depends on multiple internal forcing.
Tall Amazonian forests are less sensitive to precipitation variability
NASA Astrophysics Data System (ADS)
Giardina, Francesco; Konings, Alexandra G.; Kennedy, Daniel; Alemohammad, Seyed Hamed; Oliveira, Rafael S.; Uriarte, Maria; Gentine, Pierre
2018-06-01
Climate change is altering the dynamics, structure and function of the Amazon, a biome deeply connected to the Earth's carbon cycle. Climate factors that control the spatial and temporal variations in forest photosynthesis have been well studied, but the influence of forest height and age on this controlling effect has rarely been considered. Here, we present remote sensing observations of solar-induced fluorescence (a proxy for photosynthesis), precipitation, vapour-pressure deficit and canopy height, together with estimates of forest age and aboveground biomass. We show that photosynthesis in tall Amazonian forests, that is, forests above 30 m, is three times less sensitive to precipitation variability than in shorter (less than 20 m) forests. Taller Amazonian forests are also found to be older, have more biomass and deeper rooting systems1, which enable them to access deeper soil moisture and make them more resilient to drought. We suggest that forest height and age are an important control of photosynthesis in response to interannual precipitation fluctuations. Although older and taller trees show less sensitivity to precipitation variations, they are more susceptible to fluctuations in vapour-pressure deficit. Our findings illuminate the response of Amazonian forests to water stress, droughts and climate change.
NASA Astrophysics Data System (ADS)
Wörman, A.; Lindström, G.; Riml, J.
2017-05-01
Although the potential energy of surface water is a small part of Earth's energy budget, this highly variable physical property is a key component in the terrestrial hydrologic cycle empowering geomorphological and hydrological processes throughout the hydrosphere. By downscaling of the daily hydrometeorological data acquired in Sweden over the last half-century this study quantifies the spatial and temporal distribution of the dominating energy components in terrestrial hydrology, including the frictional resistance in surface water and groundwater as well as hydropower. The energy consumed in groundwater circulation was found to be 34.6 TWh/y or a heat production of approximately 13% of the geothermal heat flux. Significant climate driven, periodic fluctuations in the power of runoff, stream flows and groundwater circulation were revealed that have not previously been documented. We found that the runoff power ranged from 173 to 260 TWh/y even when averaged over the entire surface of Sweden in a five-year moving window. We separated short-term fluctuations in runoff due to precipitation filtered through the watershed from longer-term seasonal and climate driven modes. Strong climate driven correlations between the power of runoff and climate indices, wind and solar intensity were found over periods of 3.6 and 8 years. The high covariance that we found between the potential energy of surface water and wind energy implies significant challenges for the combination of these renewable energy sources.
Cultural and climatic changes shape the evolutionary history of the Uralic languages.
Honkola, T; Vesakoski, O; Korhonen, K; Lehtinen, J; Syrjänen, K; Wahlberg, N
2013-06-01
Quantitative phylogenetic methods have been used to study the evolutionary relationships and divergence times of biological species, and recently, these have also been applied to linguistic data to elucidate the evolutionary history of language families. In biology, the factors driving macroevolutionary processes are assumed to be either mainly biotic (the Red Queen model) or mainly abiotic (the Court Jester model) or a combination of both. The applicability of these models is assumed to depend on the temporal and spatial scale observed as biotic factors act on species divergence faster and in smaller spatial scale than the abiotic factors. Here, we used the Uralic language family to investigate whether both 'biotic' interactions (i.e. cultural interactions) and abiotic changes (i.e. climatic fluctuations) are also connected to language diversification. We estimated the times of divergence using Bayesian phylogenetics with a relaxed-clock method and related our results to climatic, historical and archaeological information. Our timing results paralleled the previous linguistic studies but suggested a later divergence of Finno-Ugric, Finnic and Saami languages. Some of the divergences co-occurred with climatic fluctuation and some with cultural interaction and migrations of populations. Thus, we suggest that both 'biotic' and abiotic factors contribute either directly or indirectly to the diversification of languages and that both models can be applied when studying language evolution. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.
Equilibrium line altitudes and climate during the Late Holocene glacial maximum in the Andes
NASA Astrophysics Data System (ADS)
Sagredo, E. A.; Lowell, T. V.; Kelly, M. A.; Aravena, J.
2012-12-01
Documenting the spatial and temporal pattern of climate change associated with widespread glacial fluctuations during Late Holocene time is critical for understanding the mechanisms underlying these climatic/glacial events. Here, we estimate the change in equilibrium line altitudes (ELAs) associated with the most prominent glacial advance during the last millennium for four alpine glaciers in different climatic regimes in the Andes. We reconstruct scenarios of the climatic conditions (temperature and precipitation anomalies) that accommodate the ELA depressions. The glaciers studied are an unnamed glacier in the Cordillera Vilcanota (13°S), Tapado glacier (30°S), Cipreses glacier (34°S) and Tranquilo glacier (47°S). Results from the combined geomorphic analysis and application of a surface energy and mass balance model suggest that there is not a unique combination of temperature and precipitation conditions that accommodates the ELA change recorded since the Late Holocene maximum at the four sites. Assuming no change in precipitation, the ELA depressions could be explained by a cooling (with respect to present-day values) of at least -0.7°C at Cordillera Vilcanota, -1.0°C at Tapado glacier, -0.5°C at Cipreses glacier and -1.3°C at Tranquilo glacier. In contrast, assuming no change in temperature, the ELA depressions could be explained by an increase in the precipitation of at least 0.51 m (63% of the annual precipitation) at Cordillera Vilcanota, 0.33 m (95%) at Tapado glacier, 0.17 m (21%) at Cipreses glacier and 0.68 m (62%) at Tranquilo glacier. Our results serve as targets to test predictions from models of global climate dynamics for the last millennium and contribute to the understanding of the mechanisms underlying the Late Holocene glacial fluctuations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lovejoy, S., E-mail: lovejoy@physics.mcgill.ca; Lima, M. I. P. de; Department of Civil Engineering, University of Coimbra, 3030-788 Coimbra
2015-07-15
Over the range of time scales from about 10 days to 30–100 years, in addition to the familiar weather and climate regimes, there is an intermediate “macroweather” regime characterized by negative temporal fluctuation exponents: implying that fluctuations tend to cancel each other out so that averages tend to converge. We show theoretically and numerically that macroweather precipitation can be modeled by a stochastic weather-climate model (the Climate Extended Fractionally Integrated Flux, model, CEFIF) first proposed for macroweather temperatures and we show numerically that a four parameter space-time CEFIF model can approximately reproduce eight or so empirical space-time exponents. In spitemore » of this success, CEFIF is theoretically and numerically difficult to manage. We therefore propose a simplified stochastic model in which the temporal behavior is modeled as a fractional Gaussian noise but the spatial behaviour as a multifractal (climate) cascade: a spatial extension of the recently introduced ScaLIng Macroweather Model, SLIMM. Both the CEFIF and this spatial SLIMM model have a property often implicitly assumed by climatologists that climate statistics can be “homogenized” by normalizing them with the standard deviation of the anomalies. Physically, it means that the spatial macroweather variability corresponds to different climate zones that multiplicatively modulate the local, temporal statistics. This simplified macroweather model provides a framework for macroweather forecasting that exploits the system's long range memory and spatial correlations; for it, the forecasting problem has been solved. We test this factorization property and the model with the help of three centennial, global scale precipitation products that we analyze jointly in space and in time.« less
NASA Astrophysics Data System (ADS)
Jiang, Chong; Li, Daiqing; Gao, Yanni; Liu, Wenfeng; Zhang, Linbo
2017-07-01
Under the impacts of climate variability and human activities, there is violent fluctuation for streamflow in the large basins in China. Therefore, it is crucial to separate the impacts of climate variability and human activities on streamflow fluctuation for better water resources planning and management. In this study, the Three Rivers Headwater Region (TRHR) was chosen as the study area. Long-term hydrological data for the TRHR were collected in order to investigate the changes in annual runoff during the period of 1956-2012. The nonparametric Mann-Kendall test, moving t test, Pettitt test, Mann-Kendall-Sneyers test, and the cumulative anomaly curve were used to identify trends and change points in the hydro-meteorological variables. Change point in runoff was identified in the three basins, which respectively occurred around the years 1989 and 1993, dividing the long-term runoff series into a natural period and a human-induced period. Then, the hydrologic sensitivity analysis method was employed to evaluate the effects of climate variability and human activities on mean annual runoff for the human-induced period based on precipitation and potential evapotranspiration. In the human-induced period, climate variability was the main factor that increased (reduced) runoff in LRB and YARB (YRB) with contribution of more than 90 %, while the increasing (decreasing) percentage due to human activities only accounted for less than 10 %, showing that runoff in the TRHR is more sensitive to climate variability than human activities. The intra-annual distribution of runoff shifted gradually from a double peak pattern to a single peak pattern, which was mainly influenced by atmospheric circulation in the summer and autumn. The inter-annual variation in runoff was jointly controlled by the East Asian monsoon, the westerly, and Tibetan Plateau monsoons.
Millennial-scale Climate Variations Recorded As Far Back As The Early Pliocene
NASA Astrophysics Data System (ADS)
Steenbrink, J.; Hilgen, F. J.; Lourens, L. J.
Quaternary climate proxy records show compelling evidence for climate variability on time scales of a few thousand years. The causes for these millennial-scale or sub- Milankovitch cycles are yet poorly understood, not in the least due to the complex feedback mechanisms of large ice-sheets during the Quaternary. We present evidence of millennial-scale climate variability in Early Pliocene lacustrine sediments from the intramontane Ptolemais Basin in northwestern Greece. The sediments are well ex- posed in a series of open-pit lignite mines and exhibit a distinct m-scale sedimentary cyclicity of alternating lignites and lacustrine marl beds that result from precession- induced variations in climate. A higher-frequency cyclicity is particular prominent within the marl segment of individual cycles. A stratigraphic interval of~115 kyr, cov- ering five precession-induced sedimentary cycles, was studied in nine parallel sections from two quarries located several km apart. Colour reflectance records were used to quantify the within-cycle variability and to determine its lateral continuity. Much of the within-cycle variability could be correlated between the parallel sections, even in fine detail, which suggests that these changes reflect basin-wide variations in environ- mental conditions related to (regional) climate fluctuations. Interbedded volcanic ash beds demonstrate the synchronicity of these fluctuations and spectral analysis of the reflectance time series shows a significant concentration of variability at periods of ~11,~5.5 and~2 kyr. Their occurrence at times before the intensification of the North- ern Hemisphere glaciation suggests that they cannot solely have resulted from internal ice-sheet dynamics. Possible candidates include harmonics or combination tones of the main orbital cycles, variations in solar output or periodic motions of the Earth and moon.
Large-scale climatic effects on traditional Hawaiian fishpond aquaculture
McCoy, Daniel; McManus, Margaret A.; Kotubetey, Keliʻiahonui; Kawelo, Angela Hiʻilei; Young, Charles; D’Andrea, Brandon; Ruttenberg, Kathleen C.
2017-01-01
Aquaculture accounts for almost one-half of global fish consumption. Understanding the regional impact of climate fluctuations on aquaculture production thus is critical for the sustainability of this crucial food resource. The objective of this work was to understand the role of climate fluctuations and climate change in subtropical coastal estuarine environments within the context of aquaculture practices in Heʻeia Fishpond, Oʻahu Island, Hawaiʻi. To the best of our knowledge, this was the first study of climate effects on traditional aquaculture systems in the Hawaiian Islands. Data from adjacent weather stations were analyzed together with in situ water quality instrument deployments spanning a 12-year period (November 2004 –November 2016). We found correlations between two periods with extremely high fish mortality at Heʻeia Fishpond (May and October 2009) and slackening trade winds in the week preceding each mortality event, as well as surface water temperatures elevated 2–3°C higher than the background periods (March-December 2009). We posit that the lack of trade wind-driven surface water mixing enhanced surface heating and stratification of the water column, leading to hypoxic conditions and stress on fish populations, which had limited ability to move within net pen enclosures. Elevated water temperature and interruption of trade winds previously have been linked to the onset of El Niño in Hawaiʻi. Our results provide empirical evidence regarding El Niño effects on the coastal ocean, which can inform resource management efforts about potential impact of climate variation on aquaculture production. Finally, we provide recommendations for reducing the impact of warming events on fishponds, as these events are predicted to increase in magnitude and frequency as a consequence of global warming. PMID:29145446
Large-scale climatic effects on traditional Hawaiian fishpond aquaculture.
McCoy, Daniel; McManus, Margaret A; Kotubetey, Keliʻiahonui; Kawelo, Angela Hiʻilei; Young, Charles; D'Andrea, Brandon; Ruttenberg, Kathleen C; Alegado, Rosanna ʻAnolani
2017-01-01
Aquaculture accounts for almost one-half of global fish consumption. Understanding the regional impact of climate fluctuations on aquaculture production thus is critical for the sustainability of this crucial food resource. The objective of this work was to understand the role of climate fluctuations and climate change in subtropical coastal estuarine environments within the context of aquaculture practices in He'eia Fishpond, O'ahu Island, Hawai'i. To the best of our knowledge, this was the first study of climate effects on traditional aquaculture systems in the Hawaiian Islands. Data from adjacent weather stations were analyzed together with in situ water quality instrument deployments spanning a 12-year period (November 2004 -November 2016). We found correlations between two periods with extremely high fish mortality at He'eia Fishpond (May and October 2009) and slackening trade winds in the week preceding each mortality event, as well as surface water temperatures elevated 2-3°C higher than the background periods (March-December 2009). We posit that the lack of trade wind-driven surface water mixing enhanced surface heating and stratification of the water column, leading to hypoxic conditions and stress on fish populations, which had limited ability to move within net pen enclosures. Elevated water temperature and interruption of trade winds previously have been linked to the onset of El Niño in Hawai'i. Our results provide empirical evidence regarding El Niño effects on the coastal ocean, which can inform resource management efforts about potential impact of climate variation on aquaculture production. Finally, we provide recommendations for reducing the impact of warming events on fishponds, as these events are predicted to increase in magnitude and frequency as a consequence of global warming.
Flood events across the North Atlantic region - past development and future perspectives
NASA Astrophysics Data System (ADS)
Matti, Bettina; Dieppois, Bastien; Lawler, Damian; Dahlke, Helen E.; Lyon, Steve W.
2016-04-01
Flood events have a large impact on humans, both socially and economically. An increase in winter and spring flooding across much of northern Europe in recent years opened up the question of changing underlying hydro-climatic drivers of flood events. Predicting the manifestation of such changes is difficult due to the natural variability and fluctuations in northern hydrological systems caused by large-scale atmospheric circulations, especially under altered climate conditions. Improving knowledge on the complexity of these hydrological systems and their interactions with climate is essential to be able to determine drivers of flood events and to predict changes in these drivers under altered climate conditions. This is particularly true for the North Atlantic region where both physical catchment properties and large-scale atmospheric circulations have a profound influence on floods. This study explores changes in streamflow across North Atlantic region catchments. An emphasis is placed on high-flow events, namely the timing and magnitude of past flood events, and selected flood percentiles were tested for stationarity by applying a flood frequency analysis. The issue of non-stationarity of flood return periods is important when linking streamflow to large-scale atmospheric circulations. Natural fluctuations in these circulations are found to have a strong influence on the outcome causing natural variability in streamflow records. Long time series and a multi-temporal approach allows for determining drivers of floods and linking streamflow to large-scale atmospheric circulations. Exploring changes in selected hydrological signatures consistency was found across much of the North Atlantic region suggesting a shift in flow regime. The lack of an overall regional pattern suggests that how catchments respond to changes in climatic drivers is strongly influenced by their physical characteristics. A better understanding of hydrological response to climate drivers is essential for example for forecasting purposes.
Tools to Help the NPDES Program Adapt to Fluctuating Environmental Conditions
Climate-related circumstances pose challenges for permittees and permit writers. Managing discharges to protect water quality can be aided by the refinement of the methods, tools and information used to develop and implement NPDES permits and programs.
Seasonal patterns of horse fly richness and abundance in the Pampa biome of southern Brazil.
Krüger, Rodrigo Ferreira; Krolow, Tiago Kütter
2015-12-01
Fluctuations in seasonal patterns of horse fly populations were examined in rainforests of tropical South America, where the climate is seasonal. These patterns were evaluated with robust analytical models rather than identifying the main factors that influenced the fluctuations. We examined the seasonality of populations of horse flies in fields and lowland areas of the Pampa biome of southern Brazil with generalized linear models. We also investigated the diversity of these flies and the sampling effort of Malaise traps in this biome over two years. All of the 29 species had clear seasonality with regard to occurrence and abundance, but only seven species were identified as being influenced by temperature and humidity. The sampling was sufficient and the estimated diversity was 10% more than observed. Seasonal trends were synchronized across species and the populations were most abundant between September and March and nearly zero in other months. While previous studies demonstrated that seasonal patterns in population fluctuations are correlated with climatic conditions in horse fly assemblages in South America rainforests, we show a clear effect of each factor on richness and abundance and the seasonality in the prevalence of horse fly assemblages in localities of the Pampa biome. © 2015 The Society for Vector Ecology.
Formation of minor moraines in high-mountain environments independent of a primary climatic driver
NASA Astrophysics Data System (ADS)
Wyshnytzky, Cianna; Lukas, Sven
2016-04-01
Closely-spaced minor moraines allow observations of moraine formation and ice-marginal fluctuations on short timescales, helping to better understand glacier retreat and predict its geomorphological effects (e.g. Sharp, 1984; Boulton, 1986; Bradwell, 2004; Lukas, 2012). Some minor moraines can be classified as annual moraines given sufficient chronological control, which implies a seasonal climatic driver of minor ice-front fluctuations. This leads to annual moraines being utilised as very specific and short-term records of glacier fluctuations and climate change. However, such research is sparse in high-mountain settings (Hewitt, 1967; Ono, 1985; Beedle et al., 2009; Lukas, 2012). This study presents the detailed sedimentological results of minor moraines at two high-mountain settings in the Alps. Minor moraines at Schwarzensteinkees, Austria, formed as push moraines in two groups, separated by a flat area and sloping zone with scattered boulders and flutings. The existence of a former proglacial lake, evident from ground-penetrating radar surveys and geomorphological relationships, appears to have exerted the primary control on minor moraine formation. Minor moraines at Silvrettagletscher, Switzerland, exist primarily on reverse bedrock slopes. The presence of these bedrock slopes, and in some areas medial moraines emerging beyond the ice front, appear to exert the primary controls on minor moraine formation. These findings show that climate may only play a small role in minor moraine formation at these study sites, echoing similar findings from another glacier in the Alps (Lukas, 2012). These two glaciers and valleys are differentiated primarily by geometry, sedimentation, and mechanisms of minor moraine formation. Despite these crucial differences, valley geometry and pre-existing geomorphology play a large, if not dominant, role in minor moraine formation and are at odds with a primarily-climatic control of minor moraine formation in lowland settings. This compelling discrepancy requires further investigation. References Beedle, M.J., Menounos, B., Luckman, B.H., and Wheate, R., 2009, Annual push moraines as climate proxy: Geophysical Research Letters, v. 36, no. 20, p. L20501, doi: 10.1029/2009GL039533. Boulton, G.S., 1986, Push-moraines and glacier-contact fans in marine and terrestrial environments: Sedimentology, v. 33, p. 677-698. Bradwell, T., 2004, Annual Moraines and Summer Temperatures at Lambatungnajökull, Iceland: Arctice, Antarctic, and Alpine Research, v. 36, no. 4, p. 502-508. Hewitt, K., 1967, Ice-Front Deposition and the Seasonal Effect: A Himalayan Example: Transactions of the Institute of British Geographers, v. 42, p. 93-106. Lukas, S., 2012, Processes of annual moraine formation at a temperate alpine valley glacier: insights into glacier dynamics and climatic controls: Boreas, v. 41, no. 3, p. 463-480, doi: 10.1111/j.1502-3885.2011.00241.x. Ono, Y., 1985, Recent Fluctuations of the Yala (Dakpatsen) Glacier, Langtang Himal, Reconstructed From Annual Moraine Ridges: Zeitschrift für Gletscherkunde und Glazialgeologie, v. 21, p. 251-258. Sharp, M., 1984, Annual moraine ridges at Skálafellsjökull, south-east Iceland: Journal of Glaciology, v. 30, no. 104, p. 82-93.
Zhang, Naili; Liu, Weixing; Yang, Haijun; Yu, Xingjun; Gutknecht, Jessica L M; Zhang, Zhe; Wan, Shiqiang; Ma, Keping
2013-11-01
A better understanding of soil microbial ecology is critical to gaining an understanding of terrestrial carbon (C) cycle-climate change feedbacks. However, current knowledge limits our ability to predict microbial community dynamics in the face of multiple global change drivers and their implications for respiratory loss of soil carbon. Whether microorganisms will acclimate to climate warming and ameliorate predicted respiratory C losses is still debated. It also remains unclear how precipitation, another important climate change driver, will interact with warming to affect microorganisms and their regulation of respiratory C loss. We explore the dynamics of microorganisms and their contributions to respiratory C loss using a 4-year (2006-2009) field experiment in a semi-arid grassland with increased temperature and precipitation in a full factorial design. We found no response of mass-specific (per unit microbial biomass C) heterotrophic respiration to warming, suggesting that respiratory C loss is directly from microbial growth rather than total physiological respiratory responses to warming. Increased precipitation did stimulate both microbial biomass and mass-specific respiration, both of which make large contributions to respiratory loss of soil carbon. Taken together, these results suggest that, in semi-arid grasslands, soil moisture and related substrate availability may inhibit physiological respiratory responses to warming (where soil moisture was significantly lower), while they are not inhibited under elevated precipitation. Although we found no total physiological response to warming, warming increased bacterial C utilization (measured by BIOLOG EcoPlates) and increased bacterial oxidation of carbohydrates and phenols. Non-metric multidimensional scaling analysis as well as ANOVA testing showed that warming or increased precipitation did not change microbial community structure, which could suggest that microbial communities in semi-arid grasslands are already adapted to fluctuating climatic conditions. In summary, our results support the idea that microbial responses to climate change are multifaceted and, even with no large shifts in community structure, microbial mediation of soil carbon loss could still occur under future climate scenarios.
North Pacific decadal climate variability since 1661
Biondi, Franco; Gershunov, Alexander; Cayan, Daniel R.
2001-01-01
Climate in the North Pacific and North American sectors has experienced interdecadal shifts during the twentieth century. A network of recently developed tree-ring chronologies for Southern and Baja California extends the instrumental record and reveals decadal-scale variability back to 1661. The Pacific decadal oscillation (PDO) is closely matched by the dominant mode of tree-ring variability that provides a preliminary view of multiannual climate fluctuations spanning the past four centuries. The reconstructed PDO index features a prominent bidecadal oscillation, whose amplitude weakened in the late l700s to mid-1800s. A comparison with proxy records of ENSO suggests that the greatest decadal-scale oscillations in Pacific climate between 1706 and 1977 occurred around 1750, 1905, and 1947.
European climate variability and human susceptibility over the past 2500 years
NASA Astrophysics Data System (ADS)
Buentgen, U.
2010-09-01
Climate variations including droughts in the western US and African Sahel, landfalls of Atlantic hurricanes, and shifts in the Asian monsoon have affected human societies throughout history mainly by modulating water supply and agricultural productivity, health risk and civil conflict. Yet, discriminations of environmental impacts from political, economical and technological drivers of societal shifts are may be hampered by the indirect effects of climate on society, but certainly by the paucity of high-resolution palaeoclimatic evidence. Here we present a tree-ring network of 7284 precipitation sensitive oak series from lower elevations in France and Germany, and a compilation of 1546 temperature responsive conifers from higher elevations in the Austrian Alps, both covering the past 2500 years. Temporal distribution of historical felling dates of construction timber refers to changes in settlement activity that mirror different stages of economic wealth. Variations in Central European summer precipitation and temperature are contrasted with societal benchmarks. Prolonged periods of generally wet and warm summers, favourable for cultural prosperity, appeared during the Roman epoch between ~200 BC and 200 AD and from ~700-1000 AD, with the latter facilitating the rapid economic, cultural and political growth of medieval Europe. Unprecedented climate variability from ~200-500 AD coincides with the demise of the Western Roman Empire and the subsequent Barbarian Migrations. This period was characterized by continental-scale political turmoil, cultural stagnation and socio-economic instability including settlement abandonment, population migration, and societal collapse. Driest and coldest summers of the Late Holocene concurred in the 6th century, during which regional consolidation began. The recent political, cultural and fiscal reluctance to adapt to and mitigate projected climate change reflects the common belief of societal insusceptibility to environmental conditions. The complex climatic interference with agrarian civilizations, however, challenges the sustainability of this attitude. In addition to the long-term context it provides for instrumentally observed European climate variability, our study reveals critical targets for next-generation climate models to hindcast the temporal footprints and magnitudes of natural fluctuations over the Late Holocene in response to internal dynamics and external forcings.
Reconstructing the climate states of the Late Pleistocene with the MIROC climate model
NASA Astrophysics Data System (ADS)
Chan, Wing-Le; Abe-Ouchi, Ayako; O'ishi, Ryouta; Takahashi, Kunio
2014-05-01
The Late Pleistocene was a period which lasted from the Eemian interglacial period to the start of the warm Holocene and was characterized mostly by widespread glacial ice. It was also a period which saw modern humans spread throughout the world and other species of the same genus, like the Neanderthals, become extinct. Various hypotheses have been put forward to explain the extinction of Neanderthals, about 30,000 years ago. Among these is one which involves changes in past climate and the inability of Neanderthals to adapt to such changes. The last traces of Neanderthals coincide with the end of Marine Isotope Stage 3 (MIS3) which was marked by large fluctuations in temperature and so-called Heinrich events, as suggested by geochemical records from ice cores. It is thought that melting sea ice or icebergs originating from the Laurentide ice sheet led to a large discharge of freshwater into the North Atlantic Ocean during the Heinrich events and severely weakened the Atlantic meridional overturning circulation, with important environmental ramifications across parts of Europe such as sharp decreases in temperature and reduction in forest cover. In order to assess the effects of past climate change on past hominin migration and on the extinction of certain species, it is first important to have a good understanding of the past climate itself. In this study, we have used three variants of MIROC (The Model for Interdisciplinary Research on Climate), a global climate model, for a time slice experiment within the Late Pleistocene: two mid-resolution models (an atmosphere model and a coupled atmosphere-ocean model) and a high-resolution atmosphere model. To obtain a fuller picture, we also look at a cool stadial state as obtained from a 'freshwater hosing' coupled-model experiment, designed to mimic the effects of freshwater discharge in the North Atlantic. We next use the sea surface temperature response from this experiment to drive the atmosphere models. We discuss the general features of the model-simulated climates and how model resolution can affect these results. We also compare our results with some available proxy data to elucidate where model simulations show good agreement.
Estimating glacier response times and disequilibrium in a changing climate
NASA Astrophysics Data System (ADS)
Christian, J. E.; Koutnik, M.; Roe, G.
2017-12-01
Glaciers respond to climate variations according to a characteristic timescale that, for most mountain glaciers, is on the order of 10—100 years. An important consequence of this multi-decadal memory is that a glacier's transient response to a climate trend exhibits a persistent lag behind the equilibrium response. In the context of anthropogenic warming, this means that most glaciers are currently well out of equilibrium, and that a substantial amount of retreat is committed even without further warming. The degree of disequilibrium depends fundamentally on the glacier response timescale, making it an important parameter to constrain. A common and robust metric for the response timescale is τ=H/bt, where H and bt are characteristic values for ice thickness and the terminus mass-balance rate, respectively. However, sparse observations, climate variability, and glacier disequilibrium make it difficult to define these characteristic values. We compare several sources of uncertainty that will affect estimates of the response timescale and thus the degree of disequilibrium. Ice thickness is poorly constrained for many glaciers, which bears directly on estimates of the response timescale. However, errors may also arise from estimating thickness and mass-balance rates in a variable climate. We assess how noisy mass balance and observed terminus fluctuations introduce sampling errors into estimates of the glacier's response timescale and the expected equilibrium response to a climate change. Additionally, the instantaneous value of τ evolves during sustained warming as the glacier thins and retreats. Perhaps counterintuitively, τ can increase if retreat into higher elevations exceeds thinning. This has implications for estimating the timescale based on currently observed geometry and mass balance. We use shallow-ice and 3-stage linear models to explore these effects with synthetic glacier geometries and climate forcings. In this way, we can diagnose the geometric and climatic sources of uncertainty in glacier response timescales and degrees of disequilibrium. Estimating these metrics from existing datasets is necessary to relate mass balance to glacier state and to anticipate future responses; our analyses will help constrain such estimates and improve understanding of their limitations.
Sardella, Brian A; Kültz, Dietmar
2014-01-01
The green sturgeon (Acipenser medirostris) is an anadromous species with a distinct population segment in the San Francisco Bay-Sacramento River Delta that is currently listed as threatened. Although this species is able to tolerate salinity challenges as soon as 6 mo posthatch, its ability to deal with unpredictable salinity fluctuations remains unknown. Global climate change is predicted to result in large freshwater (FW) flushes through the estuary during winter and greater tidal influence during the summer. We exposed green sturgeon acclimated to 15 (EST) or 24 (BAY) g/L salinity to a rapid FW influx, where salinity was reduced to 0 g/L in 3 h in order to simulate the effect of the "winter" scenario. Both groups survived, enduring a 10% plasma osmolality reduction after 3 h. BAY-acclimated sturgeon upregulated both Na(+), K(+)-ATPase (NKA) activity and caspase 3/7 activity, but no changes were observed in the EST-acclimated fish. In addition, we exposed FW-acclimated sturgeon to a dual 12-h salinity fluctuation cycle (0-24-0 g/L) in order to simulate the effect of greater tidal influence. At 6 h, the sturgeon showed a significant increase in plasma osmolality, and branchial NKA and caspase 3/7 activities were increased, indicating an acclimation response. There was no acclimation at 18 h, and plasma osmolality was higher than the peak observed at 6 h. The second fluctuation elicited an upregulation of the stress proteins ubiquitin and heat shock 70-kDa protein (HSP 70). Sturgeon can acclimate to changes in salinity; however, salinity fluctuations resulted in substantial cellular stress.
Hydrologic response of the Crow Wing Watershed, Minnesota, to mid-Holocene climate change
Person, M.; Roy, P.; Wright, H.; Gutowski, W.; Ito, E.; Winter, T.; Rosenberry, D.; Cohen, D.
2007-01-01
In this study, we have integrated a suite of Holocene paleoclimatic proxies with mathematical modeling in an attempt to obtain a comprehensive picture of how watersheds respond to past climate change. A three-dimensional surface-water-groundwater model was developed to assess the effects of mid-Holocene climate change on water resources within the Crow Wing Watershed, Upper Mississippi Basin in north central Minnesota. The model was first calibrated to a 50 yr historical record of average annual surface-water discharge, monthly groundwater levels, and lake-level fluctuations. The model was able to reproduce reasonably well long-term historical records (1949-1999) of water-table and lake-level fluctuations across the watershed as well as stream discharge near the watershed outlet. The calibrated model was then used to reproduce paleogroundwater and lake levels using climate reconstructions based on pollen-transfer functions from Williams Lake just outside the watershed. Computed declines in mid-Holocene lake levels for two lakes at opposite ends of the watershed were between 6 and 18 m. Simulated streamflow near the outlet of the watershed decreased to 70% of modern average annual discharge after ???200 yr. The area covered by wetlands for the entire watershed was reduced by ???16%. The mid-Holocene hydrologic changes indicated by these model results and corroborated by several lake-core records across the Crow Wing Watershed may serve as a useful proxy of the hydrologic response to future warm, dry climatic forecasts (ca. 2050) made by some atmospheric general-circulation models for the glaciated Midwestern United States. ?? 2007 Geological Society of America.
The Quasi-Biennial Oscillation and Ross River virus incidence in Queensland, Australia.
Done, Sinead J; Holbrook, Neil J; Beggs, Paul J
2002-09-01
Ross River virus (RRV) is the most important vector-borne disease in Australia. The National Notifiable Diseases Surveillance System has confirmed that its incidence is often greatest in the state of Queensland, where there is a clear seasonal pattern as well as interannual variability. Previous studies have examined relationships between large-scale climate fluctuations (such as El Niño Southern Oscillation) and vector-borne disease. No previous study has examined such relationships with the Quasi-Biennial Oscillation (QBO), another large-scale climate fluctuation. We employ time-series analysis techniques to investigate cycles inherent in monthly RRV incidence in Queensland, Australia, from January 1991 to December 1997 inclusive. The presence of a quasi-biennial cycle in the RRV time series that is out of phase with the climatic QBO is described. Quantitative analyses using correlograms and periodograms demonstrate that the quasi-biennial cycle in the RRV time series is statistically significant, at the 95% level, above the noise. Together with the seasonal cycle, the quasi-biennial cycle accounts for 77% of the variance in Queensland RRV cases. Regression analysis of QBO and summer rainfall in three climatic zones of Queensland indicates a significant association between QBO and rainfall in the subtropical southeastern part of the state. These results suggest an indirect influence of the QBO on RRV incidence in Queensland, via its influence on climate in this region. Our findings indicate that the QBO may be a useful predictor of RRV at several months lead, and might be used by public health authorities in the management and prevention of this disease.
Late Cenozoic fluvial successions in northern and western India: an overview and synthesis
NASA Astrophysics Data System (ADS)
Sinha, R.; Kumar, R.; Sinha, S.; Tandon, S. K.; Gibling, M. R.
2007-11-01
Late Cenozoic fluvial successions are widespread in India. They include the deposits of the Siwalik basin which represent the accumulations of the ancient river systems of the Himalayan foreland basin. Palaeomagnetic studies reveal that fluvial architecture and styles of deposition were controlled by Himalayan tectonics as well as by major climatic fluctuations during the long (∼13 Ma) span of formation. The Indo-Gangetic plains form the world's most extensive Quaternary alluvial plains, and display spatially variable controls on sedimentation: Himalayan tectonics in the frontal parts, climate in the middle reaches, and eustasy in the lower reaches close to the Ganga-Brahmaputra delta. Climatic effects were mediated by strong fluctuations in the SW Indian Monsoon, and Himalayan rivers occupy deep valleys in the western Ganga plains where stream power is high, cut in part during early Holocene monsoon intensification; the broad interfluves record the simultaneous aggradation of plains-fed rivers since ∼100 ka. The eastward increase in precipitation across the Ganga Plains results in rivers with low stream power and a very high sediment flux, resulting in an aggradational mode and little incision. The river deposits of semi-arid to arid western India form important archives of Quaternary climate change through their intercalation with the eolian deposits of the Thar Desert. Although the synthesis documents strong variability-both spatial and temporal-in fluvial stratigraphy, climatic events such as the decline in precipitation during the Last Glacial Maximum and monsoon intensification in the early Holocene have influenced fluvial dynamics throughout the region.
NASA Astrophysics Data System (ADS)
Di Girolamo, Paolo; Cacciani, Marco; Summa, Donato; Scoccione, Andrea; De Rosa, Benedetto; Behrendt, Andreas; Wulfmeyer, Volker
2017-01-01
Measurements carried out by the University of Basilicata Raman lidar system (BASIL) are reported to demonstrate the capability of this instrument to characterise turbulent processes within the convective boundary layer (CBL). In order to resolve the vertical profiles of turbulent variables, high-resolution water vapour and temperature measurements, with a temporal resolution of 10 s and vertical resolutions of 90 and 30 m, respectively, are considered. Measurements of higher-order moments of the turbulent fluctuations of water vapour mixing ratio and temperature are obtained based on the application of autocovariance analyses to the water vapour mixing ratio and temperature time series. The algorithms are applied to a case study (11:30-13:30 UTC, 20 April 2013) from the High Definition Clouds and Precipitation for Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE), held in western Germany in the spring 2013. A new correction scheme for the removal of the elastic signal crosstalk into the low quantum number rotational Raman signal is applied. The noise errors are small enough to derive up to fourth-order moments for both water vapour mixing ratio and temperature fluctuations.To the best of our knowledge, BASIL is the first Raman lidar with a demonstrated capability to simultaneously retrieve daytime profiles of water vapour turbulent fluctuations up to the fourth order throughout the atmospheric CBL. This is combined with the capability of measuring daytime profiles of temperature fluctuations up to the fourth order. These measurements, in combination with measurements from other lidar and in situ systems, are important for verifying and possibly improving turbulence and convection parameterisation in weather and climate models at different scales down to the grey zone (grid increment ˜ 1 km; Wulfmeyer et al., 2016).For the considered case study, which represents a well-mixed and quasi-stationary CBL, the mean boundary layer height is found to be 1290 ± 75 m above ground level (a.g.l.). Values of the integral scale for water vapour and temperature fluctuations at the top of the CBL are in the range of 70-125 and 75-225 s, respectively; these values are much larger than the temporal resolution of the measurements (10 s), which testifies that the temporal resolution considered for the measurements is sufficiently high to resolve turbulent processes down to the inertial subrange and, consequently, to resolve the major part of the turbulent fluctuations. Peak values of all moments are found in the interfacial layer in the proximity of the top of the CBL. Specifically, water vapour and temperature second-order moments (variance) have maximum values of 0.29 g2 kg-2 and 0.26 K2; water vapour and temperature third-order moments have peak values of 0.156 g3 kg-3 and -0.067 K3, while water vapour and temperature fourth-order moments have maximum values of 0.28 g4 kg-4 and 0.24 K4. Water vapour and temperature kurtosis have values of ˜ 3 in the upper portion of the CBL, which indicate normally distributed humidity and temperature fluctuations. Reported values of the higher-order moments are in good agreement with previous measurements at different locations, thus providing confidence in the possibility of using these measurements for turbulence parameterisation in weather and climate models.In the determination of the temperature profiles, particular care was dedicated to minimise potential effects associated with elastic signal crosstalk on the rotational Raman signals. For this purpose, a specific algorithm was defined and tested to identify and remove the elastic signal crosstalk and to assess the residual systematic uncertainty affecting temperature measurements after correction. The application of this approach confirms that, for the present Raman lidar system, the crosstalk factor remains constant with time; consequently an appropriate assessment of its constant value allows for a complete removal of the leaking elastic signal from the rotational Raman lidar signals at any time (with a residual error on temperature measurements after correction not exceeding 0.18 K).
Multi-model analysis of the Atlantic influence on Southern Amazon rainfall
Yoon, Jin -Ho
2015-12-07
Amazon rainfall is subject to year-to-year fluctuation resulting in drought and flood in various intensities. A major climatic driver of the interannual variation of the Amazon rainfall is El Niño/Southern Oscillation. Also, the Sea Surface Temperature over the Atlantic Ocean is identified as an important climatic driver on the Amazon water cycle. Previously, observational datasets were used to support the Atlantic influence on Amazon rainfall. Furthermore, it is found that multiple global climate models do reproduce the Atlantic-Amazon link robustly. However, there exist differences in rainfall response, which primarily depends on the climatological rainfall amount.
NASA Technical Reports Server (NTRS)
North, G. R.; Cahalan, R. F.; Coakley, J. A., Jr.
1980-01-01
An introductory survey of the global energy balance climate models is presented with an emphasis on analytical results. A sequence of increasingly complicated models involving ice cap and radiative feedback processes are solved and the solutions and parameter sensitivities are studied. The model parameterizations are examined critically in light of many current uncertainties. A simple seasonal model is used to study the effects of changes in orbital elements on the temperature field. A linear stability theorem and a complete nonlinear stability analysis for the models are developed. Analytical solutions are also obtained for the linearized models driven by stochastic forcing elements. In this context the relation between natural fluctuation statistics and climate sensitivity is stressed.
NASA Technical Reports Server (NTRS)
North, G. R.; Cahalan, R. F.; Coakley, J. A., Jr.
1981-01-01
An introductory survey of the global energy balance climate models is presented with an emphasis on analytical results. A sequence of increasingly complicated models involving ice cap and radiative feedback processes are solved, and the solutions and parameter sensitivities are studied. The model parameterizations are examined critically in light of many current uncertainties. A simple seasonal model is used to study the effects of changes in orbital elements on the temperature field. A linear stability theorem and a complete nonlinear stability analysis for the models are developed. Analytical solutions are also obtained for the linearized models driven by stochastic forcing elements. In this context the relation between natural fluctuation statistics and climate sensitivity is stressed.
Ecology and the ratchet of events: climate variability, niche dimensions, and species distributions
Jackson, Stephen T.; Betancourt, Julio L.; Booth, Robert K.; Gray, Stephen T.
2009-01-01
Climate change in the coming centuries will be characterized by interannual, decadal, and multidecadal fluctuations superimposed on anthropogenic trends. Predicting ecological and biogeographic responses to these changes constitutes an immense challenge for ecologists. Perspectives from climatic and ecological history indicate that responses will be laden with contingencies, resulting from episodic climatic events interacting with demographic and colonization events. This effect is compounded by the dependency of environmental sensitivity upon life-stage for many species. Climate variables often used in empirical niche models may become decoupled from the proximal variables that directly influence individuals and populations. Greater predictive capacity, and more-fundamental ecological and biogeographic understanding, will come from integration of correlational niche modeling with mechanistic niche modeling, dynamic ecological modeling, targeted experiments, and systematic observations of past and present patterns and dynamics.
Ecology and the ratchet of events: Climate variability, niche dimensions, and species distributions
Jackson, S.T.; Betancourt, J.L.; Booth, R.K.; Gray, S.T.
2009-01-01
Climate change in the coming centuries will be characterized by interannual, decadal, and multidecadal fluctuations superimposed on anthropogenic trends. Predicting ecological and biogeographic responses to these changes constitutes an immense challenge for ecologists. Perspectives from climatic and ecological history indicate that responses will be laden with contingencies, resulting from episodic climatic events interacting with demographic and colonization events. This effect is compounded by the dependency of environmental sensitivity upon life-stage for many species. Climate variables often used in empirical niche models may become decoupled from the proximal variables that directly influence individuals and populations. Greater predictive capacity, and morefundamental ecological and biogeographic understanding, will come from integration of correlational niche modeling with mechanistic niche modeling, dynamic ecological modeling, targeted experiments, and systematic observations of past and present patterns and dynamics.
NASA Astrophysics Data System (ADS)
Kovaleva, N. O.
2018-01-01
Specific features of the polygenetic mountain soils of the Tian-Shan (Kyrgystan) are due to the action of present-day and relict soil processes that vary in age and intensity under the influence of glacier movements and climatic fluctuations. These properties can be used as indicators of paleoclimatic changes. The diagnosis of ancient pedogenesis was based on criteria with the longest response time, namely, soil morphology, characteristics of organic matter, 13C-NMR spectra of soil humic acids, isotope composition of humus and carbonates, and the soil age. The results indicate a glacial climate of the Late Pleistocene, a dry and cold climate during the Early Holocene, warm and dry conditions of soil formation in the Middle Holocene, and humidity climate of the Late Holocene.
Ecology and the ratchet of events: Climate variability, niche dimensions, and species distributions
Jackson, Stephen T.; Betancourt, Julio L.; Booth, Robert K.; Gray, Stephen T.
2009-01-01
Climate change in the coming centuries will be characterized by interannual, decadal, and multidecadal fluctuations superimposed on anthropogenic trends. Predicting ecological and biogeographic responses to these changes constitutes an immense challenge for ecologists. Perspectives from climatic and ecological history indicate that responses will be laden with contingencies, resulting from episodic climatic events interacting with demographic and colonization events. This effect is compounded by the dependency of environmental sensitivity upon life-stage for many species. Climate variables often used in empirical niche models may become decoupled from the proximal variables that directly influence individuals and populations. Greater predictive capacity, and more-fundamental ecological and biogeographic understanding, will come from integration of correlational niche modeling with mechanistic niche modeling, dynamic ecological modeling, targeted experiments, and systematic observations of past and present patterns and dynamics. PMID:19805104
A fickle sun could be altering Earth`s climate after all
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerr, R.A.
1995-08-01
A long effort to link slight fluctuations in solar output with climate on Earth may finally be succeeding. A cycle of temperature changes in much of the middle and low atmosphere matches the 11 year sunspot cycle over much of the Northern Hemisphere. The findings were reported at the International Union of Geodesy and Gophysics meeting in Colorado. This article discusses the evidence and the modeling which has been done to reveal this possible connection. 1 fig.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elrick, M.; Read, J.F.
1990-05-01
Three types of 1-10-m upward-shallowing cycles are observed in the Lower Mississippian Lodgepole and lower Madison formations of Wyoming and Montana. Typical peritidal cycles have pellet grainstone bases overlain by algal laminites, which are rarely capped by paleosol/regolith horizons. Shallow ramp cycles have burrowed pellet-skeletal wackestone bases overlain by cross-bedded ooid/crinoid grainstone caps. Deep ramp cycles are characterized by sub-wave base limestone/argillite, storm-deposited limestone, overlain by hummocky stratified grainstone caps. Average cycle periods range from 17-155 k.y. This, rhythmically bedded limestone/argillite deposits of basinal facies do not contain shallowing-upward cycles, but do contain 2-4 k.y. limestone/argillite rhythms. These sub-wave basemore » deposit are associated with Waulsortian-type mud mounds which have >50 m synoptic relief. This relief provides minimum water depth estimates for the deposits, and implies storm-wave base was less than 50 m. Two-dimensional computer modeling of cyclic platform through noncyclic basinal deposits allows for bracketing of fifth-order sea level fluctuation amplitudes, thought responsible for cycle formation. Computer models using fifth-order amplitudes less than 20 m do not produce cycles on the deep ramp (assuming a 25-30 m storm-wave base). Amplitudes >30 m produce water depths on the inner ramp that are too deep, and disconformities extend too far into the basin. The absence of meter-scale cycles in the basin suggests water depths were too great to record the effects of sea level oscillations occurring on the platform, or climatic fluctuation, associated with glacio-eustatic sea level oscillations, were not sufficient to affect hemipelagic depositional patterns in the tropical basin environment.« less
Heritability of Intraindividual Mean and Variability of Positive and Negative Affect.
Zheng, Yao; Plomin, Robert; von Stumm, Sophie
2016-12-01
Positive affect (e.g., attentiveness) and negative affect (e.g., upset) fluctuate over time. We examined genetic influences on interindividual differences in the day-to-day variability of affect (i.e., ups and downs) and in average affect over the duration of a month. Once a day, 17-year-old twins in the United Kingdom ( N = 447) rated their positive and negative affect online. The mean and standard deviation of each individual's daily ratings across the month were used as the measures of that individual's average affect and variability of affect. Analyses revealed that the average of negative affect was significantly heritable (.53), but the average of positive affect was not; instead, the latter showed significant shared environmental influences (.42). Fluctuations across the month were significantly heritable for both negative affect (.54) and positive affect (.34). The findings support the two-factor theory of affect, which posits that positive affect is more situational and negative affect is more dispositional.
Heritability of Intraindividual Mean and Variability of Positive and Negative Affect
Zheng, Yao; Plomin, Robert; von Stumm, Sophie
2016-01-01
Positive affect (e.g., attentiveness) and negative affect (e.g., upset) fluctuate over time. We examined genetic influences on interindividual differences in the day-to-day variability of affect (i.e., ups and downs) and in average affect over the duration of a month. Once a day, 17-year-old twins in the United Kingdom (N = 447) rated their positive and negative affect online. The mean and standard deviation of each individual’s daily ratings across the month were used as the measures of that individual’s average affect and variability of affect. Analyses revealed that the average of negative affect was significantly heritable (.53), but the average of positive affect was not; instead, the latter showed significant shared environmental influences (.42). Fluctuations across the month were significantly heritable for both negative affect (.54) and positive affect (.34). The findings support the two-factor theory of affect, which posits that positive affect is more situational and negative affect is more dispositional. PMID:27729566
Ye, Zhen; Zhu, Gengping; Chen, Pingping; Zhang, Danli; Bu, Wenjun
2014-06-01
This study investigated the Pleistocene history of a semi-aquatic bug, Microvelia douglasi douglasi Scott, 1874 (Hemiptera: Veliidae) in East Asia. We used M. douglasi douglasi as a model species to explore the effects of historical climatic fluctuations on montane semi-aquatic invertebrate species. Two hypotheses were developed using ecological niche models (ENMs). First, we hypothesized that M. douglasi douglasi persisted in suitable habitats in southern Guizhou, southern Yunnan, Hainan, Taiwan and southeast China during the LIG. After that, the populations expanded (Hypothesis 1). As the spatial prediction in the LGM was significantly larger than in the LIG, we then hypothesized that the population expanded during the LIG to LGM transition (Hypothesis 2). We tested these hypotheses using mitochondrial data (COI+COII) and nuclear data (ITS1+5.8S+ITS2). Young lineages, relatively deep splits, lineage differentiation among mountain ranges in central, south and southwest China and high genetic diversities were observed in these suitable habitats. Evidence of mismatch distributions and neutrality tests indicate that a population expansion occurred in the late Pleistocene. The Bayesian skyline plot (BSP) revealed an unusual population expansion that likely happened during the cooling transition between LIG and LGM. The results of genetic data were mostly consistent with the spatial predictions from ENM, a finding that can profoundly improve phylogeographic research. The ecological requirements of M. douglasi douglasi, together with the geographical heterogeneity and climatic fluctuations of Pleistocene in East Asia, could have shaped this unusual demographic history. Our study contributes to our knowledge of semi-aquatic bug/invertebrate responses to Pleistocene climatic fluctuations in East Asia. © 2014 John Wiley & Sons Ltd.
Tipping Points in Resource Abundance Drive Irreversible Changes in Community Structure.
Haney, Seth D; Siepielski, Adam M
2018-05-01
Global climate change has made what were seemingly extraordinary environmental conditions, such as prolonged droughts, commonplace. One consequence of extreme environmental change is concomitant changes in resource abundance. How will such extreme resource changes impact biodiversity? We developed a trait-based consumer-resource model to examine how resource abundance affects the potential for adaptive evolution and coexistence among competitors. We found that moderate changes in resource abundance have little effect on trait evolution. However, when resource scarcities were sufficiently extreme, a critical transition-a tipping point-occurred, which caused consumer traits to diverge and restructured the community in a way that outlasted the scarcity. Therefore, even though traits can evolve in response to minor resource fluctuations, large environmental shifts may be necessary for producing long-lasting impacts on community structure. These results may also help to illuminate patterns of stasis frequently observed in nature, despite the considerable evidence demonstrating rapid evolutionary change.
Conceptual approach on harvesting PV dissipated heat for enhancing water evaporation
NASA Astrophysics Data System (ADS)
Latiff, N. Abdul; Ya'acob, M. E.; Yunos, Khairul Faezah Md.
2017-09-01
The fluctuating sun radiation in tropical climate conditions has significantly affected the output performance of the PV array and also processes related to direct-sun drying. Apart from this, the dissipated heat under PV array projected from photonic effects of generating electricity is currently wasted to the environment. This study shares some conceptual idea on a new approach for harvesting the dissipated heat energy from PV arrays for the purpose of enhancing water evaporation process. Field measurements for ambient temperature (Ta) and PV bottom surface temperature (FFb) are measured and recorded for calculating the evaporation rates at different condition in real time. The waste heat dissipated in this condition is proposed as a medium to increase evaporation thru speeding up the water condensation process. The significant increase of water evaporation rate based on Penman equation supports the idea of integration with landed PV array structures.
Radiative transfer in scattering stochastic atmospheres
NASA Astrophysics Data System (ADS)
Silant'ev, N. A.; Alekseeva, G. A.; Novikov, V. V.
2017-12-01
Many stars, active galactic nuclei, accretion discs etc. are affected by the stochastic variations of temperature, turbulent gas motions, magnetic fields, number densities of atoms and dust grains. These stochastic variations influence on the extinction factors, Doppler widths of lines and so on. The presence of many reasons for fluctuations gives rise to Gaussian distribution of fluctuations. The usual models leave out of account the fluctuations. In many cases the consideration of fluctuations improves the coincidence of theoretical values with the observed data. The objective of this paper is the investigation of the influence of the number density fluctuations on the form of radiative transfer equations. We consider non-magnetized atmosphere in continuum.
El-Mashad, Hamed M; Zeeman, Grietje; van Loon, Wilko K P; Bot, Gerard P A; Lettinga, Gatze
2004-11-01
The influence of temperature, 50 and 60 degrees C, at hydraulic retention times (HRTs) of 20 and 10 days, on the performance of anaerobic digestion of cow manure has been investigated in completely stirred tank reactors (CSTRs). Furthermore, the effect of both daily downward and daily upward temperature fluctuations has been studied. In the daily downward temperature fluctuation regime the temperatures of each reactor was reduced by 10 degrees C for 10 h while in the daily upward fluctuation regime the temperature of each reactor was increased 10 degrees C for 5 h. The results show that the methane production rate at 60 degrees C is lower than that at 50 degrees C at all experimental conditions of imposed HRT except when downward temperature fluctuations were applied at an HRT of 10 days. It also was found that the free ammonia concentration not only affects the acetate-utilising bacteria but also the hydrolysis and acidification process. The upward temperature fluctuation affects the maximum specific methanogenesis activity more severely as compared to imposed downward temperature fluctuations. The results clearly reveal the possibility of using available solar energy at daytime to heat up the reactor(s) without the need of heat storage during nights, especially at an operational temperature of 50 degrees C and at a 20 days HRT, and without the jeopardising of the overheating.
Engen, Steinar; Saether, Bernt-Erik
2014-03-01
We analyze the stochastic components of the Robertson-Price equation for the evolution of quantitative characters that enables decomposition of the selection differential into components due to demographic and environmental stochasticity. We show how these two types of stochasticity affect the evolution of multivariate quantitative characters by defining demographic and environmental variances as components of individual fitness. The exact covariance formula for selection is decomposed into three components, the deterministic mean value, as well as stochastic demographic and environmental components. We show that demographic and environmental stochasticity generate random genetic drift and fluctuating selection, respectively. This provides a common theoretical framework for linking ecological and evolutionary processes. Demographic stochasticity can cause random variation in selection differentials independent of fluctuating selection caused by environmental variation. We use this model of selection to illustrate that the effect on the expected selection differential of random variation in individual fitness is dependent on population size, and that the strength of fluctuating selection is affected by how environmental variation affects the covariance in Malthusian fitness between individuals with different phenotypes. Thus, our approach enables us to partition out the effects of fluctuating selection from the effects of selection due to random variation in individual fitness caused by demographic stochasticity. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
Coupled Effects of Climatic and Socio-economic Factors on Winter Cropping in India
NASA Astrophysics Data System (ADS)
Jain, M.; Mondal, P.; Galford, G. L.; DeFries, R. S.
2015-12-01
India is predicted to be one of the most vulnerable regions in terms of agricultural sensitivity to future climate changes. Approximately 69% of India's population is rural, and over 55% of the working population relies on agriculture for sustenance and livelihoods. Indian smallholder farmers who own less than 2 ha of farmland represent 78% of the total Indian farmers and produce 41% of the country's food crops. These smallholder farmers are among some of the most vulnerable communities to climatic and economic changes due to limited access to technology, infrastructure, markets, and institutional or financial support in the case of adverse climatic events. Baseline information on agricultural sensitivity to climate variability will provide useful information for regional-level, and eventually state- and national-level, strategies and policies that promote adaption to climate variability. We use a decade of remote sensing analysis of cropping patterns and climatic factors along with census data for irrigation and demographic factors to understand winter cropping trajectories across agro-ecological zones in India. Findings from multiple agro-ecological zones indicate that there are three primary trajectories in winter cropping in India - increasing, fluctuating, and decreasing. In the Central Indian Highlands, for example, the most dominant trend is that of fluctuating cropped area, ranging between ~37,300 km2 in 2010 and ~21,100 km2 in 2013, which is associated with village-level access to irrigation and local labor dynamics. Clay soil type and increasing irrigation coverage were associated with intensification. Yet, suitable soil type and access to irrigation do not reduce vulnerability to high daytime temperatures that is negatively associated with winter crop cover. With pronounced winter warming projected in the coming decades, effective adaptation by smallholder farmers would require additional strategies, such as access to fine-scale temperature forecasts ahead of the planting season and heat-tolerant winter crop varieties.
NASA Astrophysics Data System (ADS)
Matthews-Bird, F.; Gosling, W. D.; Brooks, S. J.; Montoya, E.; Coe, A. L.
2014-12-01
Chironomidae (non-biting midges) is a family of two-winged aquatic insects of the order Diptera. They are globally distributed and one of the most diverse families within aquatic ecosystems. The insects are stenotopic, and the rapid turnover of species and their ability to colonise quickly favourable habitats means chironomids are extremely sensitive to environmental change, notably temperature. Through the development of quantitative temperature inference models chironomids have become important palaeoecological tools. Proxies capable of generating independent estimates of past climate are crucial to disentangling climate signals and ecosystem response in the palaeoecological record. This project has developed the first modern environmental calibration data set in order to use chironomids from the Tropical Andes as quantitative climate proxies. Using surface sediments from c. 60 lakes from Bolivia, Peru and Ecuador we have developed an inference model capable of reconstructing temperatures, with a prediction error of 1-2°C, from fossil assemblages. Here we present the first Lateglacial and Holocene chironomid-inferred temperature reconstructions from two sites in the tropical Andes. The first record, from a high elevation (4153 m asl) lake in the Bolivian Andes, shows persistently cool temperatures for the past 15 kyr, punctuated by warm episodes in the early Holocene (9-10 kyr BP). The chironomid-inferred Holocene temperature trends from a lake sediment record on the eastern Andean flank of Ecuador (1248 m asl) spanning the last 5 millennia are synchronous with temperature changes in the NGRIP ice core record. The temperature estimates suggest along the eastern flank of the Andes, at lower latitudes (~1°S), climate closely resemble the well-established fluctuations of the Northern Hemisphere for this time period. Late-glacial climate fluctuations across South America are still disputed with some palaeoecological records suggesting evidence for Younger Dryas like events. Estimates from quantitative climate proxies such as chironomids will help constrain these patterns and further our understanding of climate teleconnections on Quaternary timescales.
Intensity of geodynamic processes in the Lithuanian part of the Curonian Spit
NASA Astrophysics Data System (ADS)
Česnulevičius, Algimantas; Morkūnaitė, Regina; Bautrėnas, Artūras; Bevainis, Linas; Ovodas, Donatas
2017-06-01
The paper considers conditions and intensity of aeolian and dune slope transformation processes occurring in the wind-blown sand strips of the dunes of the Curonian Spit. An assessment of the intensity of aeolian processes was made based on the analysis of climatic factors and in situ observations. Transformations in aeolian relief forms were investigated based on the comparison of geodetic measurements and measurements of aerial photographs. Changes in micro-terraces of dune slopes were investigated through comparison of the results of repeated levelling and measurements of aerial photographs. The periods of weak, medium, and strong winds were distinguished, and sand moisture fluctuations affecting the beginning of aeolian processes were investigated. The wind-blown sand movements were found to start when sand moisture decreased by 2 % in the surface sand layer and by up to 5 % at a depth of 10 cm. In 2004-2016, the wind-blown sand movements affected the size of reference deflation relief forms: scarp length by 8 %, scarp width by 35 %, pothole length by 80 %, pothole width by 80 %, roll length by 17 %, roll width by 18 %, hollow length by 17 %, and hollow width by 39 %. The elementary relief forms in the leeward eastern slopes of the dunes experienced the strongest transformations. During a period of 5 months, the height of micro-terraces of the eastern slope of the Parnidis Dune changed from 0.05 to 0.64 cm. The change was related to fluctuations in precipitation intensity: in July-August 2016 the amount of precipitation increased 1.6-fold compared with the multiannual average, thus causing the change in the position of terrace ledges by 21 %.
Hydroclimate variability in NE Brazil over the last 2K
NASA Astrophysics Data System (ADS)
Giselle, Utida; Ioanna, Bouloubassi; Francisco, Cruz; Enno, Schefuβ; Abdel, Sifeddine; Vincent, Klein; Johan, Etourneau; Renata, Zocatelli; André, Zular; Hai, Cheng; Laurence, Edwards R.
2016-04-01
Precipitation associated with the South American Summer Monsoon (SASM) and the Intertropical Convergence Zone (ITCZ) supplies more than 70% of tropical South America's annual precipitation and is fundamental in sustaining the water regime for regional socioeconomic activities. Motivated by the fact that the greatest uncertainty in model projections of future precipitation trends lies in the tropics, and particularly in South America, a number of recent proxy and modeling studies have aimed at understanding SASM spatiotemporal variability regarding its dynamics, driving mechanisms and teleconnections. Exact reconstructions of past meridional ITCZ displacements (timing, sign, amplitude), however, are currently lacking, mainly because of the paucity of suited high-resolution archives. This restricts our ability to assess regional rainfall variability at decadal to centennial timescales, especially in the hydroclimatic-sensitive semi-arid Nordeste, needed to understand the interactions between SASM and ITCZ and to evaluate the impact of Pacific-Atlantic climate interactions on the regional rainfall variability at decadal/multi-decadal scale. Here we present two new and complementary high-resolution records of past precipitation over the last 2K from the north area of Nordeste, an area ideally located to track fluctuations in the southernmost edge of ITCZ movement. We present a new δO18 record from a local speleothem and combine it, for the first time, with δD analyses of wax lipids in well-dated sediments from a nearby lake. The two independent records show a remarkable similarity and are characterized by strong decadal to multidecadal variability as well as century-scale changes. The period 250-450 yrs CE appears as the wettest phase over the last 2K, while the Medieval Climate Anomaly (MCA) is characterized by extremely dry conditions. Following the MCA, the Little Ice Age (LIA) is a relatively wetter phase. The data document fluctuations of southern meridional ITCZ movements during the last millennium that compare well with available records of fluctuations in northern ITCZ extension (Cariaco Basin). Comparisons to proxy records from tropical South America regions affected by the SASM and the South America Convergence Zone (SACZ) allow evaluating the SAMS/SACZ-ITCZ linkages. Furthermore, the data are discussed in terms of the role of the Atlantic and Pacific modes of variability in modulating regional hydroclimate.
NASA Astrophysics Data System (ADS)
Zorita, Eduardo; Frankignoul, Claude
1997-02-01
The climate variability in the North Atlantic sector is investigated in a 325-yr integration of the ECHAM1/ LSG coupled ocean-atmosphere general circulation model. At the interannual timescale, the coupled model behaves realistically and sea surface temperature (SST) anomalies arise as a response of the oceanic surface layer to the stochastic forcing by the atmosphere, with the heat exchanges both generating and damping the SST anomalies. In the ocean interior, the temperature spectra are red up to a period of about 20 years, and substantial decadal fluctuations are found in the upper kilometer or so of the water column. Using extended empirical orthogonal function analysis, two distinct quasi-oscillatory modes of ocean-atmosphere variability are identified, with dominant periods of about 20 and 10 years, respectively. The oceanic changes in both modes reflect the direct forcing by the atmosphere through anomalous air-sea fluxes and Ekman pumping, which after some delay affects the intensity of the subtropical and subpolar gyres. The SST is also strongly modulated by the gyre currents. In the thermocline, the temperature and salinity fluctuations are in phase, as if caused by thermocline displacements, and they have no apparent connection with the thermohaline circulation. The 20-yr mode is the most energetic one; it is easily seen in the thermocline and can be found in SST data, but it is not detected in the atmosphere alone. As there is no evidence of positive ocean-atmosphere feedback, the 20-yr mode primarily reflects the passive response of the ocean to atmospheric fluctuations, which may be in part associated with climate anomalies appearing a few years earlier in the North Pacific. The 10-yr mode is more surface trapped in the ocean. Although the mode is most easily seen in the temperature variations of the upper few hundred meters of the ocean, it is also detected in the atmosphere alone and thus appears to be a coupled ocean-atmosphere mode. In both modes, the surface heat flux acts neutrally on the associated SST anomalies once they have been generated, so that their persistence appears to be due in part to an overall adjustment of the air-sea heat exchanges to the SST patterns.
Are thermal barriers "higher" in deep sea turtle nests?
Santidrián Tomillo, Pilar; Fonseca, Luis; Paladino, Frank V.; Spotila, James R.; Oro, Daniel
2017-01-01
Thermal tolerances are affected by the range of temperatures that species encounter in their habitat. Daniel Janzen hypothesized in his “Why mountain passes are higher in the tropics” that temperature gradients were effective barriers to animal movements where climatic uniformity was high. Sea turtles bury their eggs providing some thermal stability that varies with depth. We assessed the relationship between thermal uniformity and thermal tolerance in nests of three species of sea turtles. We considered that barriers were “high” when small thermal changes had comparatively large effects and “low” when the effects were small. Mean temperature was lower and fluctuated less in species that dig deeper nests. Thermal barriers were comparatively “higher” in leatherback turtle (Dermochelys coriacea) nests, which were the deepest, as embryo mortality increased at lower “high” temperatures than in olive ridley (Lepidochelys olivacea) and green turtle (Chelonia mydas) nests. Sea turtles have temperature-dependent sex determination (TSD) and embryo mortality increased as temperature approached the upper end of the transitional range of temperatures (TRT) that produces both sexes (temperature producing 100% female offspring) in leatherback and olive ridley turtles. As thermal barriers are “higher” in some species than in others, the effects of climate warming on embryo mortality is likely to vary among sea turtles. Population resilience to climate warming may also depend on the balance between temperatures that produce female offspring and those that reduce embryo survival. PMID:28545092
The Extremely Warm Early Winter 2000 in Europe: What is the Forcing
NASA Technical Reports Server (NTRS)
Otterman, J.; Angell, J. K.; Atlas, R.; Ardizzone, J.; Demaree, G.; Jusem, J. C.; Koslowsky, D.; Terry, J.; Einaudi, Franco (Technical Monitor)
2001-01-01
High variability characterizes the winter climate of central Europe: interannual fluctuations in the surface-air temperature as large as 18 C over large areas are fairly common. The extraordinary early-winter 2000 in Europe appears to be a departure to an unprecedented extreme of the existing climate patterns. Such anomalous events affect agriculture, forestry, fuel consumption, etc., and thus deserve in-depth analysis. Our analysis indicates that the high anomalies of the surface-air temperature are predominantly due to the southwesterly flow from the eastern North Atlantic, with a weak contribution by southerly flow from the western Mediterranean. Backward trajectories based on the SSM/I and NCEP Reanalysis datasets traced from west-central Europe indicate that the warm air masses flowing into Europe originate in the southern North Atlantic, where the surface-air temperatures exceed by 15c or more the climatic norms in Europe for late-November or early-December. Because such large ocean-to-continent temperature differences characterize the winter conditions, we refer to this episode which started in late November as occurring in the early winter. In this season, with the sun low over the horizon in Europe, absorption of insolation by the surface has little significance. The effect of cloudiness, a corollary to the low-level maritime-air advection, is a warming by a reduction of heat loss (greenhouse effect). In contrast, in the summer, clouds, by reducing absorption of insolation, produce a cooling, effect at the surface.
Estimation of root zone storage capacity at the catchment scale using improved Mass Curve Technique
NASA Astrophysics Data System (ADS)
Zhao, Jie; Xu, Zongxue; Singh, Vijay P.
2016-09-01
The root zone storage capacity (Sr) greatly influences runoff generation, soil water movement, and vegetation growth and is hence an important variable for ecological and hydrological modelling. However, due to the great heterogeneity in soil texture and structure, there seems to be no effective approach to monitor or estimate Sr at the catchment scale presently. To fill the gap, in this study the Mass Curve Technique (MCT) was improved by incorporating a snowmelt module for the estimation of Sr at the catchment scale in different climatic regions. The "range of perturbation" method was also used to generate different scenarios for determining the sensitivity of the improved MCT-derived Sr to its influencing factors after the evaluation of plausibility of Sr derived from the improved MCT. Results can be showed as: (i) Sr estimates of different catchments varied greatly from ∼10 mm to ∼200 mm with the changes of climatic conditions and underlying surface characteristics. (ii) The improved MCT is a simple but powerful tool for the Sr estimation in different climatic regions of China, and incorporation of more catchments into Sr comparisons can further improve our knowledge on the variability of Sr. (iii) Variation of Sr values is an integrated consequence of variations in rainfall, snowmelt water and evapotranspiration. Sr values are most sensitive to variations in evapotranspiration of ecosystems. Besides, Sr values with a longer return period are more stable than those with a shorter return period when affected by fluctuations in its influencing factors.
Wallberg, Andreas; Han, Fan; Wellhagen, Gustaf; Dahle, Bjørn; Kawata, Masakado; Haddad, Nizar; Simões, Zilá Luz Paulino; Allsopp, Mike H; Kandemir, Irfan; De la Rúa, Pilar; Pirk, Christian W; Webster, Matthew T
2014-10-01
The honeybee Apis mellifera has major ecological and economic importance. We analyze patterns of genetic variation at 8.3 million SNPs, identified by sequencing 140 honeybee genomes from a worldwide sample of 14 populations at a combined total depth of 634×. These data provide insight into the evolutionary history and genetic basis of local adaptation in this species. We find evidence that population sizes have fluctuated greatly, mirroring historical fluctuations in climate, although contemporary populations have high genetic diversity, indicating the absence of domestication bottlenecks. Levels of genetic variation are strongly shaped by natural selection and are highly correlated with patterns of gene expression and DNA methylation. We identify genomic signatures of local adaptation, which are enriched in genes expressed in workers and in immune system- and sperm motility-related genes that might underlie geographic variation in reproduction, dispersal and disease resistance. This study provides a framework for future investigations into responses to pathogens and climate change in honeybees.
New insights into the multi-scale climatic drivers of the "Karakoram anomaly"
NASA Astrophysics Data System (ADS)
Collier, S.; Moelg, T.; Nicholson, L. I.; Maussion, F.; Scherer, D.; Bush, A. B.
2012-12-01
Glacier behaviour in the Karakoram region of the northwestern Himalaya shows strong spatial and temporal heterogeneity and, in some basins, anomalous trends compared with glaciers elsewhere in High Asia. Our knowledge of the mass balance fluctuations of Karakoram glaciers as well as of the important driving factors and interactions between them is limited by a scarcity of in-situ measurements and other studies. Here we employ a novel approach to simulating atmosphere-cryosphere interactions - coupled high-resolution atmospheric and physically-based surface mass balance modelling - to examine the surface energy and mass fluxes of glaciers in this region. We discuss the mesoscale climatic drivers behind surface mass balance fluctuations as well as the influence of local forcing factors, such as debris cover and feedbacks from the glacier surface to the atmosphere. The coupled modelling approach therefore provides an innovative, multi-scale solution to the paucity of information we have to date on the much-debated "Karakoram anomaly."
Indo-Pacific sea level variability at multidecadal time scales
NASA Astrophysics Data System (ADS)
Merrifield, M. A.; Thompson, P. R.
2016-12-01
Long tide gauge and atmospheric pressure measurements are used to infer multidecadal fluctuations in trade wind forcing and the associated Indo-Pacific sea level response along coastal and equatorial waveguides. The trade wind variations are marked by a weakening beginning with the late 1970s climate shift and a subsequent return to mean conditions since the early 1990s. These fluctuations covary with multidecadal wind changes at mid-latitudes, as measured by the Pacific Decadal Oscillation or the North Pacific indices; however, the mid-latitude multidecadal variations prior to 1970 or noticeably absent in the inferred trade wind record. The different behavior of tropical and mid-latitude winds support the notion that multidecadal climate variations in the Pacific result from a combination of processes and not a single coherent mode spanning the basin. In particular, the two-decade long satellite altimeter record represents a period of apparent connection between the two regions that was not exhibited earlier in the century.
Seasonality of births for West Malaysia's two main racial groups.
Johnson, J T; Ann, T B; Palan, V T
1975-09-01
Patterns of Malay and Chinese births occurring from January 1964 through December 1969 as registered by Malaysia's Department of Statistics were analyzed by comparing them with charts of major religious and secular holidays and with the marriage distributions (by month) of the 2 ethnic groups. For Malays there was a reduction in conc eptions associated with the Moslem month of Ramadan, a period of fasting. For the Chinese, number of conceptions peaked around the Chinese New Year, the main Chinese festival. For both groups the months of high marriage rates corresponded to months of high conception rates. Seasonal fluctuations in birthrates were higher for Malays than for the Chinese, which appeared to be due to the more pervasive effect of Islamic beliefs and practices on the Malay way of life. As the Malays constitute a more rural population, climate-related factors were considered as a possible explanation of their more extreme seasonal fluctuations, but the influence of climate could not be demonstrated for either the Malays or the Chinese.
Hurtado, Lisbeth Amarilis; Calzada, José E; Rigg, Chystrie A; Castillo, Milagros; Chaves, Luis Fernando
2018-02-20
Malaria has historically been entrenched in indigenous populations of the República de Panamá. This scenario occurs despite the fact that successful methods for malaria elimination were developed during the creation of the Panamá Canal. Today, most malaria cases in the República de Panamá affect the Gunas, an indigenous group, which mainly live in autonomous regions of eastern Panamá. Over recent decades several malaria outbreaks have affected the Gunas, and one hypothesis is that such outbreaks could have been exacerbated by climate change, especially by anomalous weather patterns driven by the EL Niño Southern Oscillation (ENSO). Monthly malaria cases in Guna Yala (1998-2016) were autocorrelated up to 2 months of lag, likely reflecting parasite transmission cycles between humans and mosquitoes, and cyclically for periods of 4 months that might reflect relapses of Plasmodium vivax, the dominant malaria parasite transmitted in Panamá. Moreover, malaria case number was positively associated (P < 0.05) with rainfall (7 months of lag), and negatively with the El Niño 4 index (15 months of lag) and the Normalized Difference Vegetation Index, NDVI (8 months of lag), the sign and magnitude of these associations likely related to the impacts of weather patterns and vegetation on the ecology of Anopheles albimanus, the main malaria vector in Guna Yala. Interannual cycles, of approximately 4-year periods, in monthly malaria case numbers were associated with the El Niño 4 index, a climatic index associated with weather and vegetation dynamics in Guna Yala at seasonal and interannual time scales. The results showed that ENSO, rainfall and NDVI were associated with the number of malaria cases in Guna Yala during the study period. These results highlight the vulnerability of Guna populations to malaria, an infection sensitive to climate change, and call for further studies about weather impacts on malaria vector ecology, as well as the association of malaria vectors with Gunas paying attention to their socio-economic conditions of poverty and cultural differences as an ethnic minority.
NASA Astrophysics Data System (ADS)
Cukur, D.; Krastel, S.; Schmincke, H.; Sumita, M.; Tomonaga, Y.; Damci, E.
2013-12-01
Lake Van is the largest soda lake in the world with a present surface of 3,574 km2 and a maximum water depth of 450 m. Sedimentary deposits in the lake preserve one of the most complete record of continental climate in the Middle East since the Middle Pleistocene. We studied these deposits to characterize the evolution of the lake level and its possible relationships with changes in climate, volcanic, and regional tectonics since the formation of the lake ca. 600 ka ago. Changes in lake level were determined based on high-resolution seismic reflection profiles showing erosional surfaces, changes in stratal geometries such as downward shifts in coastal onlap, and recognition of distinctive stratigraphic features such as prograding delta clinoforms. Our results show that Lake Van has undergone drastic changes in surface elevation by as much as 600 meters over the past ca. 600 ka. Five major lowstands occurred at ca. ~600 ka, ca. 365-340 ka, ca 290-230 ka; ca. 150-130 ka; and ca. 30-14 ka. During a first period (A) (ca. 600-ca 230 ka) lake levels changed drastically by hundreds of m but at longer time intervals between low and high stands. Changes occurred more frequently but mostly by a few tens of m during the past ca. 230 ka years where we can distinguish a first period (B1) of stepwise transgressions between ca. 230 and 150 ka followed by a short regression between ca. 150 and 130 ka. Lake level rose stepwise again during period B2 lasting until ca 30 ka. During the past 30 ka a regression and a final transgression each lasted ca. 15 ka years. The major lowstand periods in Lake Van occurred during glacial periods, arguing for a climatic control of these lake-level fluctuations (i.e., significantly reduced precipitation leading to lake level low stands). Although climate forcing may have been the dominant cause for the drastic lake level changes of Lake Van, volcanic and tectonic forcing factors are also invoked. For example, the number of distinct tephra layers, some several meters thick, has drastically increased in the upper ca 100 m (the past ca. 230 ka). The highest density of excellent reflectors occurs in this interval. Tectonic activity evidenced by extensional and/or compressional faults across the basin margins may have also affected the lake level fluctuations in Lake Van. This series of reconstructions using seismic stratigraphy from this study enlighten the understanding of tectonically-active lacustrine basins and provide a model for similar basins elsewhere.
Hernández Baeza, Ana; Araya Lao, Cristina; García Meneses, Juliana; González Romá, Vicente
2009-11-01
In this study, we evaluate the role of leader charisma in fostering positive affective team climate and preventing negative affective climate. The analysis of a longitudinal database of 137 bank branches by means of hierarchical moderated regression shows that leader charisma has a stronger effect on team optimism than on team tension. In addition, the leader's influence and the frequency of leader-team interaction moderate the relationship between charisma and affective climate. However, whereas the leader's influence enhances the relationship between leader charisma and positive affective climate, the frequency of interaction has counterproductive effects.
Climate alters intraspecific variation in copepod effect traits through pond food webs.
Charette, Cristina; Derry, Alison M
2016-05-01
Essential fatty acids (EFAs) are primarily generated by phytoplankton in aquatic ecosystems, and can limit the growth, development, and reproduction of higher consumers. Among the most critical of the EFAs are highly unsaturated fatty acids (HUFAs), which are only produced by certain groups of phytoplankton. Changing environmental conditions can alter phytoplankton community and fatty acid composition and affect the HUFA content of higher trophic levels. Almost no research has addressed intraspecific variation in HUFAs in zooplankton, nor intraspecific relationships of HUFAs with body size and fecundity. This is despite that intraspecific variation in HUFAs can exceed interspecific variation and that intraspecific trait variation in body size and fecundity is increasingly recognized to have an important role in food web ecology (effect traits). Our study addressed the relative influences of abiotic selection and food web effects associated with climate change on intraspecific differences and interrelationships between HUFA content, body size, and fecundity of freshwater copepods. We applied structural equation modeling and regression analyses to intraspecific variation in a dominant calanoid copepod, Leptodiatomus minutus, among a series of shallow north-temperate ponds. Climate-driven diurnal temperature fluctuations favored the coexistence of diversity of phytoplankton groups with different temperature optima and nutritive quality. This resulted in unexpected positive relationships between temperature, copepod DHA content and body size. Temperature correlated positively with diatom biovolume, and mediated relationships between copepod HUFA content and body size, and between copepod body size and fecundity. The presence of brook trout further accentuated these positive effects in warm ponds, likely through nutrient cycling and stimulation of phytoplankton resources. Climate change may have previously unrecognized positive effects on freshwater copepod DHA content, body size, and fecundity in the small, shallow bodies of inland waters that are commonly found in north-temperate landscapes.
NASA Astrophysics Data System (ADS)
Chen, Hao; Zhang, Wanchang
2017-10-01
The Variable Infiltration Capacity (VIC) hydrologic model was adopted for investigating spatial and temporal variability of hydrologic impacts of climate change over the Nenjiang River Basin (NRB) based on a set of gridded forcing dataset at 1/12th degree resolution from 1970 to 2013. Basin-scale changes in the input forcing data and the simulated hydrological variables of the NRB, as well as station-scale changes in discharges for three major hydrometric stations were examined, which suggested that the model was performed fairly satisfactory in reproducing the observed discharges, meanwhile, the snow cover and evapotranspiration in temporal and spatial patterns were simulated reasonably corresponded to the remotely sensed ones. Wetland maps produced by multi-sources satellite images covering the entire basin between 1978 and 2008 were also utilized for investigating the responses and feedbacks of hydrological regimes on wetland dynamics. Results revealed that significant decreasing trends appeared in annual, spring and autumn streamflow demonstrated strong affection of precipitation and temperature changes over the study watershed, and the effects of climate change on the runoff reduction varied in the sub-basin area over different time scales. The proportion of evapotranspiration to precipitation characterized several severe fluctuations in droughts and floods took place in the region, which implied the enhanced sensitiveness and vulnerability of hydrologic regimes to changing environment of the region. Furthermore, it was found that the different types of wetlands undergone quite unique variation features with the varied hydro-meteorological conditions over the region, such as precipitation, evapotranspiration and soil moisture. This study provided effective scientific basis for water resource managers to develop effective eco-environment management plans and strategies that address the consequences of climate changes.
The effects of climate change on harp seals (Pagophilus groenlandicus).
Johnston, David W; Bowers, Matthew T; Friedlaender, Ari S; Lavigne, David M
2012-01-01
Harp seals (Pagophilus groenlandicus) have evolved life history strategies to exploit seasonal sea ice as a breeding platform. As such, individuals are prepared to deal with fluctuations in the quantity and quality of ice in their breeding areas. It remains unclear, however, how shifts in climate may affect seal populations. The present study assesses the effects of climate change on harp seals through three linked analyses. First, we tested the effects of short-term climate variability on young-of-the year harp seal mortality using a linear regression of sea ice cover in the Gulf of St. Lawrence against stranding rates of dead harp seals in the region during 1992 to 2010. A similar regression of stranding rates and North Atlantic Oscillation (NAO) index values was also conducted. These analyses revealed negative correlations between both ice cover and NAO conditions and seal mortality, indicating that lighter ice cover and lower NAO values result in higher mortality. A retrospective cross-correlation analysis of NAO conditions and sea ice cover from 1978 to 2011 revealed that NAO-related changes in sea ice may have contributed to the depletion of seals on the east coast of Canada during 1950 to 1972, and to their recovery during 1973 to 2000. This historical retrospective also reveals opposite links between neonatal mortality in harp seals in the Northeast Atlantic and NAO phase. Finally, an assessment of the long-term trends in sea ice cover in the breeding regions of harp seals across the entire North Atlantic during 1979 through 2011 using multiple linear regression models and mixed effects linear regression models revealed that sea ice cover in all harp seal breeding regions has been declining by as much as 6 percent per decade over the time series of available satellite data.
The Effects of Climate Change on Harp Seals (Pagophilus groenlandicus)
Johnston, David W.; Bowers, Matthew T.; Friedlaender, Ari S.; Lavigne, David M.
2012-01-01
Harp seals (Pagophilus groenlandicus) have evolved life history strategies to exploit seasonal sea ice as a breeding platform. As such, individuals are prepared to deal with fluctuations in the quantity and quality of ice in their breeding areas. It remains unclear, however, how shifts in climate may affect seal populations. The present study assesses the effects of climate change on harp seals through three linked analyses. First, we tested the effects of short-term climate variability on young-of-the year harp seal mortality using a linear regression of sea ice cover in the Gulf of St. Lawrence against stranding rates of dead harp seals in the region during 1992 to 2010. A similar regression of stranding rates and North Atlantic Oscillation (NAO) index values was also conducted. These analyses revealed negative correlations between both ice cover and NAO conditions and seal mortality, indicating that lighter ice cover and lower NAO values result in higher mortality. A retrospective cross-correlation analysis of NAO conditions and sea ice cover from 1978 to 2011 revealed that NAO-related changes in sea ice may have contributed to the depletion of seals on the east coast of Canada during 1950 to 1972, and to their recovery during 1973 to 2000. This historical retrospective also reveals opposite links between neonatal mortality in harp seals in the Northeast Atlantic and NAO phase. Finally, an assessment of the long-term trends in sea ice cover in the breeding regions of harp seals across the entire North Atlantic during 1979 through 2011 using multiple linear regression models and mixed effects linear regression models revealed that sea ice cover in all harp seal breeding regions has been declining by as much as 6 percent per decade over the time series of available satellite data. PMID:22238591
Atmospheric Calibration for Cassini Radio Science
NASA Technical Reports Server (NTRS)
Resch, G. M.; Bar-Sever, Y.; Keihm, S.; Kroger, P.; Linfield, R.; Mahoney, M. J.; Tanner, A.; Teitelbaum, L.
1996-01-01
The signals from the Cassini spacecraft that will be affected by delay fluctuations in the Earth's atmosphere. These fluctuations are dominated by water vapor in the troposphere, and in the case of Gravitaional Wave Experiment (GWE), they are likely to be a limiting error source. A passive remote sensing system, centered around a water vapor radiometer (WVR), has been developed to provide calibrations of water vapor fluctuations during radio science experiments.